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Abstract. A numerical model for the determination of the deformed shape of nets under
consideration of hydrodynamic loads and elastic twines is presented. The hydrodynamic forces
are incorporated using Morison’s formula and force coefficients evaluated from experiments.
The model is coupled to a CFD fluid model by representing the net’s influence on the fluid as a
porous medium. For this purpose, the volume-averaged Navier-Stokes equations, which include
porosity and an additional resistance term, are solved. The source term is calculated from an
adapted version of Forchheimer’s equation for flow in porous media. A validation part focusing
on forces and deformation of a net wall in steady current provides insight into the accuracy of
the chosen concept.

1 INTRODUCTION

The aquaculture industry has seen strong growth over the last decades due to its potential to
meet the rising global food demand. Offshore fish production becomes relevant as the size of the
structures increases and greater concerns about the environmental impact on the nearshore zone
arise. In the open sea, severe environmental loadings from high energy sea states necessitate
accurate analysis of motion and fatigue for the design of reliable and economical marine fish
farm structures. Separated studies on either the motion of the structure or the fluid around the
structure using experimental or simple numerical tools were predominant in the past. However,
these approaches are not suitable for real sea state conditions due to the strong and non-linear
fluid-structure interaction. In contrast, computational fluid dynamics can be applied to under-
stand the structural and environmental challenges in the operation of the whole structures by
studying the forces on and the fluid dynamics in and around the cages.

Several experimental studies were presented for nets in current. Patursson [1] published a
series of measurements of drag and lift forces on a fixed net panel and the velocity reduction
behind the net for different inflow velocities and angles between fluid and panel. Similar studies
were presented in [2] where the authors investigated the deformation of a square net in different
current velocities. Lader and Enerhaug [3] analysed the forces and deformation of a net cage in
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current. They found a strong coupling between occurring forces and deformation and concluded
that existing simple drag formulae for stiff net panels are not suitable for calculating the forces
on flexible cage structures. Less research focused on experiments including waves. Lader et al.
[4, 5] studied wave forces on net panels in a small wave flume and compared the results with
different wave force models. They could show the increasing influence of the net on the wave
with increasing wave steepness. A complete study of a net cage in current and waves including
an elastic floater, mooring and net is presented in [6], where the authors investigated the validity
of different rational hydrodynamic load models for more complex wave situations.

The numerical representation of the net is mostly based on a finite element method (FEM).
Tronstad [7] developed a non-linear FEM applying membrane elements suitable for static anal-
yses of net deformation. Priour [8] generalised this idea for triangular elements and in [9], a
similar approach is used for dynamic calculations. All the approaches rely on super elements
which represent a certain area of the net. In contrast, Tsukrov et al. [10] presented a consistent
net element method. Here, the discrete net consists of several 1D truss elements which move
due to tension and external forces from a modified Morison equation. Marichal [11] developed
an elastic truss element method with kinematic constraints. A similar approach is presented
in [12]. It is a quasi-static approach which leads to an efficient overall computation due to
missing time step restrictions. The coupling of a net model to a fluid solver is advanced by
different researches. Patursson et al. [13] incorporated the net as a porous medium and solved
the volume-averaged Navier-Stokes equations. Good agreements with experiments for a fixed
net panel could be shown, but the deformation of the net is not included in the study. Bi et
al. [2] and Zhao et al. [14] followed the same approach but included the net deformation using
a lumped-mass model. They validated the model for current and waves and could show good
agreement with the experiments. Chen and Christensen [15, 16] extended this idea for net cages
and provided a comprehensive validation of their approach. The good accuracy of the model for
current cases shows the validity of this approach.

The presented net model is implemented in the open-source CFD code REEF3D [17]. The
fluid solver has been validated for a wide range of marine applications which are relevant for
this research. Kamath et al. [18] tested successfully the code for shoaling and decomposition
of non-breaking and breaking waves over varying bathymetry. In [19], the code showed good
agreement with experiments for the fluid-structure interaction with fixed cylinders. Further,
floating structures [20] including a numerical mooring model [21] were incorporated using a
directional immersed boundary method. In the following, details about the numerical fluid and
net models are given. The coupling between the two models is mainly based on the ideas in
[13, 16]. The paper concludes with a validation of the presented approach for the deformation
of a net in current and the forces acting on the net.

2 NUMERICAL MODELS

2.1 Fluid model

The Reynolds averaged continuity equation and Navier-Stokes (RANS) equations for incompress-
ible fluids are the typical set of equations solved for describing the fluid. In non-conservative
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term, they are given as
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with ui the velocities in the principal directions, p including the pressure and the root mean
square of the turbulent velocity fluctuations, and ~g accounting for gravitational forces. In a two
phase approach, the density ρ and the viscosity νeff have to be determined from the two material
properties. The effective viscosity is the sum of the kinematic viscosity ν and the turbulent
viscosity νt, which is calculated using Boussinesq’s approximation and the two-equations k − ε
turbulence model.

The set of equations (1) is computed on a rectilinear staggered grid using a finite differ-
ence method. Chorin’s projection method for incompressible flows [22] is implemented with
a third-order accurate Runge-Kutta discretisation scheme for temporal terms [23] and a fifth-
order accurate weighted essentially non-oscillatory (WENO) scheme [24] for convection terms.
The resulting Poisson equation for pressure is solved by HYPRE’s MPI parallelized BiCGStab
method [25] with a geometric multigrid method as preconditioner.

Resolving the twines of the net would incorporate a very large number of cells. Therefore,
the effect of the net on the fluid is incorporated as a porous medium. For this purpose, a volume
averaging operator according to

〈a〉 =
1

V

∫
Vf

a dV, (2)

is introduced. The portion fluid volume Vf in the control volume V is expressed trough the
porosity Φ which is defined as

Φ =
Vf
V
, (Φ ∈ [0, 1]). (3)

Without presenting the derivation, the introduction of the operator in (1) results in the volume-
averaged RANS (VARANS) equations [26]
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The added mass coefficient ca takes the transient interaction of fluid and twines into account
but is not well investigated for nets yet. In this study, the value is calculated as given in [15].
The source term Si includes the drag resistance of the porous zone and can be calculated under
consideration of the equation of Forchheimer as [13]

Si = −ρ ·
(
νDij 〈ui〉+

1

2
Cij | 〈u〉 | 〈uj〉

)
. (5)

The material matrices Dij and Cij include the porous media resistance coefficients in normal
and tangential directions of a net element in there main diagonal. If the element is not aligned
with the principal directions of the fluid flow, a coordinate transformation as given in [13] is
applied to the matrices.
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2.2 Net model

In this paper, the tension element method [12] is utilised for the simulation of the deformation
of a net plane. It is assumed that the net consists of square meshes such that the solidity ratio
S can be approximated as [27]

S =
2d

l
−
(
d

l

)2

, (6)

where d is the diameter and l is the length of each twine. The porosity defined in (3) equals
then 1− S.

The net is represented as a finite number of massless bars connected with mass points P .
Further, the elasticity of the twines is incorporated, and bending stiffness is neglected such that
a flexible system is assumed. A static force equilibrium can then be stated for each of the Nik

inner knots of the net P (ν) as (see Fig. 1)

Nb,ν∑
j=1

(
~f (j)T (j) +

1

2
· ~H(j)

)
+ ~G(ν) = ~0, ν = 1, ..., Nik. (7)

Here, the Nb,ν bars which are connected to P (ν) point in the direction of the unit vectors ~f and
include the tension forces T . Once these forces are known for each of the bars, the length can
be updated from e.g. Hooke’s law

l(j) = l
(j)
0 ·

(
1.0 +

T (j)

EA

)
. (8)

The gravity forces ~G are known forces and uniformly distributed on all knots. The hydrodynamic
forces ~H are calculated from the surrounding fluid using Morsion’s drag formula

~H(j) =
ρdl(j)

2
·
[
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(
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)
~f
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(
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, (9)

with cn and ct the normal and tangential drag coefficients. The chosen velocity ~v is due to the
fluid because of the quasi-static assumption for the net motion. The coefficients are calculated
using formulae for flow around cables [28]
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8π

Re · s
·
(
1− 0.87s−2

)
, (0 < Re ≤ 1)

1.45 + 8.55 · Re−0.9, (1 < Re ≤ 30)
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,
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(

0.55
√
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2
3

)
, (10)

with s = −0.077215665 + ln( 8
Re) and Re = vnd

ν . The same approach was used by Tsukrov et al.
[10] for developing their consistent net element model.

The solution of (7) is found by separating internal and external forces. This leads to

Nb,ν∑
j=1

(
~f (j)T (j)

)
=

Nb,ν∑
j=1

1

2
· ~H(j) + ~G(ν), ν = 1, ..., Nik. (11)

4



T. Martin et al.

The arising system of equations is solved for the unit bar vectors using a successive approximation
method. A net of rectangular meshes always contains more twines than knots such that the
system is undetermined. To overcome this issue and include physical coherence into the model,
appropriate geometrical constraints in form of boundary and internal mesh equations are added
as described in [12].

P (ν)

~G(ν)

~f (1)T (1)

~f (4)F
(4)
T

~f (2)T (2)

~f (3)T (3)

~H(1)

~H(2)

~H(3)

~H(4)

Figure 1: Acting forces at knot P ν of the net.

2.3 Coupling algorithm

The algorithm developed for simulating the fluid-structure interaction of a moving net is shown
in figure 2. In the first step of the iterative process of the net model, the hydrodynamic forces are
updated using (9) and (10). The necessary fluid velocity information is provided by interpolating
the velocity field at all knots of the net and averaging them accordingly for each intermediate
bar. Additionally, the elasticity of the twines is incorporated using (8). The system is then
solved and corrected as described above, and the new net position is stored when convergence
has been reached. In the fluid solver, a zone of porous medium is then generated based on the
current position of the net. Here, the authors follow the idea of Chen and Christensen [16],
which defines prisms of thickness t around the triangulated net and checks for each fluid cell
whether it is within these prisms. Due to the time and space dependency of the angles of attack,
the porous media resistance coefficients have to be calculated for each mesh in each time step.
The drag resistance is then determined for each cell in the porous zone using the coefficients
from the corresponding mesh and (5). A porosity value is assigned, and the fluid problem is
solved with the VARANS equations as given in section 2.1.

3 VALIDATION

For validation purposes, two cases are compared to experimental data from the literature. For
both cases, the resistance coefficients are taken from [13]. They are based on comparisons
between a simple analytical model and experimental data for nets with different solidity.
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Figure 2: Flowchart of the presented fluid-structure interaction algorithm.

3.1 Fixed net panel in steady current flow

A fixed net panel in current flow under several angles of attack α and current velocities shall
be compared to the experimental data of Patursson et al. [13]. Here, the drag and lift force
coefficients and the velocity reduction factor behind the net ur are considered. The latter is
defined as

ur =
u∞ − u2.5

u∞
, (12)

with u2.5 the measured velocity 2.5m behind the net. The force coefficients are calculated by
integrating the source term in x- and z-direction over the porous zone

cd =
SxtA
ρ
2Au

2
∞
, cl =

SztA
ρ
2Au

2
∞
. (13)

The thickness of the zone is set to be 50mm. The net is fixed in a frame of 1m × 1m and has
a solidity of 0.184. Three different angle of attacks, i.e. α = 15◦, 45◦, 90◦ and four different
inflow velocities between 0.125m/s and 0.75m/s are investigated. The chosen porous resistance
coefficients are C11 = 5.098, C22 = C33 = 1.6984 and D11 = 51730, D22 = C33 = 26379. A
computational domain of 4.5m× 3.66m× 2.44m consisting of 0.6Mio. cells is chosen. The nets
middle position is kept at (1.5m, 1.83m, 1.22m) for all angle of attacks.

A slice of the domain at y = 0.915m is shown for the different angles of the net and u∞ =
0.5m/s in Fig. 3. The wake of the net is clearly visible and has approximately the same width
as the net panel. At α = 15◦ some fluid is accelerated alongside the net and flows below the
panel. As the angle of attack increases, the fluid slows down in front of the net which leads to
a decreasing velocity at the net itself. Behind the net, a nearly steady velocity can be observed
for all angles of attack. Fig. 4a shows the velocity reduction factor for the different angles
of attack and velocities. A very good agreement can be achieved at α = 45◦ for the whole
range of velocities. For α = 90◦, the numerical model over-predicts the experimental results
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with about 50%. In contrast, the model under-predicts the experiment at a small α. The
observed offset hints at a good agreement of the chosen distribution of drag forces with respect
to Reynolds numbers but a less accurate incorporation of the angle between the fluid and net
element. Further research has to clarify this issue. A similar situation can be seen for the force
coefficients, shown in Fig. 4b and Fig. 4c. Again, a small over-prediction can be seen for α = 15◦

and a small under-prediction for α = 90◦. However, the calculated distributions match well the
experimental data with errors less than 20%.

(a) α = 15◦. (b) α = 45◦.

(c) α = 90◦.

Figure 3: Velocity field for the fixed net panel in steady current flow of u∞ = 0.5m/s.

3.2 Moving net panel in current

The motion of a net panel in steady current shall be analysed next. For this purpose, the
experimental setup from [2] for the inflow velocity of 0.226m/s is taken as the reference. The
net is fixed on the top, and sinker with a weight of 64.5g in water is attached to the bottom. It
has a size of 0.3m×0.3m and consists of 225 square meshes. Each twine has a diameter of 2.6mm
and a length of 20mm. This results in a solidity of 0.26. Further, the chosen material has a
density of 1150kg/m3 which leads to small gravity forces in water. In the numerical simulations,
the geometry of the net is not changed which prevents eventual scaling effects. The sinker
is represented by distributing its weight equally to the bottom knots. The porous resistance
coefficients are taken from above, whereas the thickness of the zone is reduced to 20mm. The
three-dimensional computational domain is illustrated in Fig. 5a. The domain has a length of
1.5m, a width of 0.5m and a height of 0.6m. The numerical grid consists of 0.72Mio cells with
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(a) Velocity reduction factor ur.
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Figure 4: Comparison of numerical and experimental results for the fixed net panel in steady
current flow.

gradual refinement around the net. The top bar of the net is fixed in the middle of the tank
at x = 0.5m and z = 0.4m. In accordance with the experiments, no free surface is taken into
account.

The loss of momentum due to the drag of the net is analysed in Fig. 5b. Here, the predicted
velocity distribution along the x-axis through the points (y, z) = (0.25, 0.25) is shown. The
wake velocity behind the net reproduces the experimental data which indicates properly chosen
porous resistance coefficients. The deformation of the net panel is presented in Fig. 6. The
displacement of the net bottom is in good agreement with the experiments for the x-direction.
In z-direction, the numerical model is 50mm over the experimental results. This is caused by
a generally over-prediction of drag and lift forces, which result in a more significant bending of
the net geometry.

As a final remark, the tension forces in the net can be seen in Fig. 5a. The highest tension
is computed in the upper part of the net where the weight of the net and the sinker is acting
in combination with relatively large shear forces due to the small angle between net and fluid.
The smallest tension is predicted in the lowest part of the net due to a smaller weight acting
on these meshes. In addition, the ideal flexible assumption prevents the eventual occurrence of
bending or shear forces in this part.
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(a) Velocity distribution and tension forces in deformed
net panel.
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Figure 5: Results of the simulation of a net panel deformation in steady current.

4 CONCLUSIONS

This paper presents a numerical approach for the simulation of the fluid-structure interaction of
a net and fluid. The applied tension element method is based on static force equilibria at each
knot of the net and additional geometrical constraints to close the system of equations. Hence,
a fast and reliable solution procedure for quasi-stationary problems is provided. The coupling
between fluid and structural model is achieved by a porous medium introduction into the fluid
describing equations. This approach has the advantage of being easy to implement and highly
adaptable to various net configurations. The validation of the algorithm indicated the successful
implementation but also several discrepancies in comparison to experimental data. Here, the
driving factors are the calculation of forces on the net from the surrounding fluid and the porous
resistance coefficients which have to be determined from a limited amount of experiments. These
indications were also concluded in previous studies, and are especially distinct for more complex
structures, such as net cages, and in wave conditions. Therefore, an improvement of these
leading factors has to be sought during further research.
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