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Abstract—A planning system for efficient of robotic inspection
of surface tolerances is presented. This is done using visual
tracking of a manual polishing tool. The application that is
studied is surface finishing of large ship propeller blades. The
propeller blade is cast in in NiAl bronze and then adjusted by
manual surface finishing. Robotic inspection is used to check
the quality of the resulting surface using an high-accuracy
RGBD-camera. To avoid time-consuming inspection of the entire
propeller blade, the area affected by the manual adjustment
is detected with a visual tracking system, which measures the
motion of the manual tool using a particle filter and a CAD
model of the tool. The main contribution of this work is the
strategy for selecting camera views for the inspection robot.
The algorithm employs Hotelling’s T-squared distribution in
a Principal Component Analysis to find efficient viewpoints.
The approach is implemented with an industrial robot, a high-
accuracy RGBD-camera, and a low-cost RGBD-camera. The
system is validated in simulations and experiments, where a
surface conditioned ship propeller blade is inspected.

Index Terms—Manufacturing automation, Inspection, View-
points, Statistical analysis, Particle filters

I. INTRODUCTION

Optical inspection of surface tolerances for industrial prod-
ucts can be performed by robotic inspection. Then a robot is
used to move a camera over the surface of the workpiece.
The robot program must be designed so that the relevant parts
of the surface is scanned, with the optical sensor positioned
sufficiently close to the surface during scanning, so that the
required accuracy is achieved. For small batch production with
frequent change of product dimensions and product types, it
is important that the robotic inspection tasks can be generated
efficiently, and preferably by using automated techniques for
generating the inspection program. If a CAD model of the
workpiece is available, the inspection points can be generated
according to surface definition. In some applications, the prod-
uct may be large and a complete inspection of the geometry
may be time consuming. Moreover, it may be necessary to
inspect only parts of the workpiece, like weld seams or parts
that have undergone manual surface finishing. In this case, it
may be advantageous to track the tool paths of the manual
operation and then use this as input for the robotic inspection.
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Fig. 1. Overview of the information flow in the proposed approach. Inputs
to the tracking process are depth images from an RGBD-camera and a CAD
model of the tool to be tracked. In order to generate the camera poses for
inspection, information about depth range and field of view of the scanning
RGBD-camera is necessary.

Many contact and non-contact methods have successfully
been applied in order to track the tool movements of Skilled
Workers. It is possible to use contacting motion capturing
systems like exoskeletal systems. However, the contacting
methods may hinder the human motion or the production
process. Noncontacting ways such as vision-based techniques
may not hinder human movements [1]. Fiducial markers
have been applied successfully in vision-based human-robot
interfaces for many applications, including teleoperation [2],
where the markers placed on the hand of a human were used
to control a robot remotely. It is beneficial to avoid interfering
with the process when tracking it, e.g. by avoiding fiducial
markers attached to the tool while the worker is performing
the process [3].

Optical 3D digitizing systems allows for inspecting complex
shapes in a short time. One of the main related problems is
to determine the sensor position in order to achieve the best
measurement accuracy using a minimal number of views. The
challenge of automatic determination of view poses has been
widely studied in robotics and computer vision. CAD-based



approaches originate from Coordinate Measuring Machines
(CMM), but has been extended to 6 DoF robotic arms coupled
with 3D optical scanners. A comprehensive review of proposed
and employed methodologies and systems can be found in [4],
[5], [6]. In computer vision literature, the problem of determin-
ing the best camera view poses when no CAD data is available
is known as Next Best View (NBV) planning [7]. NBV is used
to minimize the number of required camera views to acquire a
complete 3D model, or to ensure that the view poses selected
are as close as possible to the optimal view poses.

Capturing of surface finishing processes and other complex
behaviors from human demonstration is a research topic of
consistent relevance [8], [9], [10], [11], [12]. Automatic in-
spection of a processed surface based on the learned trajecto-
ries is however not much described in the literature.

In this paper, we propose to track the trajectories of the
manual tool, and then to use the captured tool trajectories as
the basis for automated inspection planning. A demonstration
setup is described (Figure 1), where a simple RGBD-camera
is used for tracking a tool used in manual surface finishing.
A particle filter is used for tracking a CAD model of the
tool, making the tracker sufficiently robust to handle occlu-
sions and cluttered environments. Based on the recorded time
history of motions from the particle filter, robotic inspection
is performed where the robot moves a high-accuracy RGBD-
camera over the relevant parts of the workpiece. This is
done using statistical properties of the assumed surface. The
system is implemented in simulations and experiments, and
the performance is investigated.

The paper is organized as follows: In Section II the de-
veloped motion tracking and inspection system is presented.
A computational analysis of the algorithm performance takes
place in Section III. Simulated and experimental verification
of the overall scheme is described in Section IV, followed by
a summary of the approach and proposals for further research
in Section V.

II. MOTION TRACKING AND VIEW PLANNING

The goal of the approach is to enable the inspection robot
to execute a scanning program based on the tool trajectories
learned from a Skilled Worker. The resulting trajectories are
assumed to follow the surface of the object to inspect. The
robot will thus only inspect the parts of the surface which the
worker has performed any processing on.

We employ a Rao-Blackwellized particle filter for tracking
the tool movements [13]. A demonstration consists of a
trajectory T and a set of 6-dimensional references R. The
trajectory T = {t0, . . . , tn−1} represents the n ∈ N samples
(via-points) of the tool center point ti as a unit quaternion and
translation vector.

A. System Overview

An overview of the proposed approach is shown in Figure 1.
We start by capturing the tool trajectories with the particle
filter. The input to the particle filter is depth images from a
low accuracy RGBD-camera at 30Hz, combined with a CAD

model of the tool to be tracked. After various filtering of the
captured tool trajectories, the scanning view poses are selected
on the basis of a set of basic camera parameters: Its field of
view and optimal scanning distance.

The cameras and robot are calibrated w.r.t each other using
an offline calibration procedure.

B. Particle Filter Tracking

The Rao-Blackwellized Particle Filter (RBPF) [14] im-
proves the performance of particle filtering by sampling over
a subspace of the probability distribution of the state. The
method is based on the assumption that it is possible to
evaluate some of the filtering equations analytically and the
others with a particle filter instead of computing everything
with pure sampling.

C. Trajectory Filtering

Many surface treatment processes consist of repetitive
movements over the same surface patch. The tracked trajectory
would then be too detailed and ineffective as input for the
inspection robot. A learned process trajectory could potentially
contain several thousand recorded tool poses. It would be a
highly time-consuming task for the inspecting robot to visit
and scan all of them. In many cases, the camera is able to
cover large parts of the tracked path simultaneously. It is thus
necessary to use filtering methods in order to streamline the
inspection.

Our main strategy for filtering the view poses is to divide
them into a voxel grid structure, effectively grouping nearby
view poses and replacing them with their centroid. This en-
sures that repetitive tool movements are filtered into essential
view poses. By adjusting the voxel size, the resolution of
the following view selection can be adjusted. Increased grid
resolution comes with a computational cost.

Before the voxel grid filtering step, we do a simple Gaussian
smoothing of the recorded data, in both the forward and
reverse directions.

D. Camera Orientation by Averaging Quaternions

The distribution of the recorded poses into a voxel grid does
not comprise determining a camera orientation for the camera
viewpoints. For each pose present in the voxel grid, the camera
orientation must be chosen.

We use the average of the local group of viewpoints for
each of the poses in order to account for more of the local
orientational information. We employ a quaternion based fast
averaging technique as proposed in [15]. The local group is
determined by doing a linear k-nearest neighbor search for
each of the poses present in the voxel grid.

Given qi, a set of quaternions, we form the weighted dot
product matrix:

B =
1

nq

nq∑
i=1

wq
i (q

T
i · qi) (1)

where nq is the number of poses in the local group, and wq
i is

the associated weights, given the pose qi. The mean quaternion
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height hfar .

qavg is given by the eigenvector emax corresponding to the
maximum eigenvalue of B, λmax.

E. Hotelling’s T-squared Distribution

We employ a multivariate statistical distribution in order
to select the most relevant view poses for inspection. The
Hotelling’s T 2 values represent a measure of the variation in
each sample within the model [16]. It indicates how far each
sample is from the center of the model.

The statistics are calculated for a Principal component
analysis model (PCA), which is a well-established technique
for unsupervised dimensionality reduction [17]. PCA is used
for data compression and information extraction.

The T 2 value for the ith observation is defined as:

T 2 =

a=A∑
a=1

(
ti,a
sa

)2

(2)

where the s2a values are constants, and represents the variances
of each component. A is the PCA components, with score ti,a.

After calculating the T 2, we sort the view poses in de-
scending order and use the resulting list as input for checking
volumetric overlap between adjacent camera views.

F. Camera Volumetric Overlap Calculation

In order to reduce the number of camera views such that
there is only a minimal camera overlap, we iterate through all
view pose candidates generated from the statistical selection
step. An illustration of the geometric method of comparison is
shown in Figure 2. The camera views are modeled as pyramids
with sides and height corresponding to the field of view and
optimal scanning distance of the inspecting RGBD-camera.

Camera view overlap (fraction of superimposed voxels)
is determined using a Jaccard similarity coefficient between
adjacent camera views in voxel space, where each attribute of
Ck and Ck−1 can either be 0 or 1.

J(Ck, Ck−1) =
|Ck ∩ Ck−1|
|Ck ∪ Ck−1|

=
|Ck ∩ Ck−1|

|Ck|+ |Ck−1| − |Ck ∩ Ck−1|

=

∑n
i=1(Ck[i] · Ck−1[i])∑n

i=1(Ck[i] +
∑n

i=1(Ck−1[i]
−
∑n

i=1(Ck[i] · Ck−1[i])

(3)

The similarity coefficient is defined 0 ≤ J(Ck, Ck−1) ≤ 1.
View pose candidates with a similarity coefficient over a

certain threshold are disregarded. Finally, a list of reasonable
camera view poses for inspection emerges.

III. COMPUTATIONAL ANALYSIS

A simple but scalable surface finishing scenario is used
for evaluating the computational capabilities of the proposed
algorithm. The test scenario consists of a path where the
movements follow an equilateral triangular pattern. It has a
total height of 500mm, a total width of 1200mm, and it
is arranged in a plane as shown in Figure 3. The surface
corresponds to an area of 0.6m2, filled with a variable
number of equilateral triangles. This effectively corresponds
to different trajectory lengths and resolutions over an equal
area, and thus a varying number of view poses.

The analysis is performed by measuring the time spent on
each part of the algorithm when varying the number of input
view poses and the resolution of the voxel grid. Simulations
were performed on a computer with a 3.6GHz CPU running
Windows 10 and implementing the view selection algorithm
in a single-thread MATLAB program. The tracking part of the
proposed system is hence not evaluated in this test.

The simulations were performed by assuming a camera with
optimal scanning distance of 700mm, and a field of view
image area (yfar × xfar) of 430mm× 270mm.

The resulting time consumption for various situations is
shown in Figure 4. The total running time takes a linear
behavior around 1000 input trajectory points (Figure 4a),
whereas increasing voxel grid resolution (decreasing voxel
size) results in exponential behavior when approaching zero
(Figure 4b).
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Fig. 3. The triangular pattern used in various resolutions for analyzing
computational characteristics of the proposed algorithm.
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Fig. 4. Analysis of computational characteristics of the proposed algorithm. The total algorithm running time is considered, where voxel grid filtering, camera
orientation selection, and the final statistical and geometrical camera view selection step is performed. In (a), the number of considered points is varied, while
the voxel size is varied in (b).

IV. EXPERIMENTAL RESULTS

We tested our approach in an experimental setup us-
ing a Universal Robots UR10 robot equipped with a Zivid
high-accuracy RGBD-camera for inspection. Another RGBD-
camera (Microsoft Kinect v2) was used to track the motions of
an angle grinder using the particle filter and a CAD model of
the angle grinder. The trajectory was obtained while the Skilled
Worker performed surface polishing of a ship propeller blade
as shown in Figure 5a.

This experiment was conducted in order to evaluate the
qualitative results of the approach. The motions performed
by the Skilled Worker in the surface conditioning process
is characterized by repetitive, alternating motions over the
double-chambered surface. The trajectory shown in Figure 5c
is the raw tool trajectory captured with the tracking camera and
particle filter. Figure 5d shows the resulting scanning camera
views used by the inspection robot to capture the point cloud
of the ship propeller blade shown in Figure 5b.

The point cloud captured from the qualitative experiment
confirms the quantitative results. The proposed inspection
camera views have high coverage of the captured trajectory
and underlying ship propeller surface.

V. SUMMARY & CONCLUSIONS

This paper presents a new approach to generate meaningful
camera views for inspecting the results of manual surface
finishing processes. The approach is based on the assumption
that the tool trajectories of the Skilled Worker represent the
most relevant regions of the underlying surface of the work-
piece, namely the parts where a process has been performed.

The approach is also suitable for generating meaningful
view poses for an inspection robot in the case where robots
or CNC machines perform an industrial process and sparse
or no CAD-data is available, or when inspecting workpieces
processed by a robot programmed by online teach- or lead-
through methods.

In contrast to existing work, the algorithm expects a tool
trajectory and is capable of adapting the orientation of the
robot. In order to select meaningful camera views, camera
parameters such as camera field of view and optimal scanning
distance are necessary input to the algorithm. The algorithm
is not aware of what process it has been shown. It does not
recognize, that for example a surface polishing task has been

demonstrated. There is neither deduction of the actions nor a
priori knowledge.

We provided qualitative results by simulating various tool
paths and quantitatively results by recording data from a
human Skilled Worker. The approach can be easily extended
to other applications, such as robotic welding, machining, or
painting.

While the different operations described in this paper have
been functionally implemented and successfully experimented
with, the integration into a complete process cycle remains
to be done. Collision avoidance could be added to the sys-
tem, taking into account the complete robot model and the
continuous stream of information originating while inspecting
the workpiece. Further work may also focus on improving the
scanning execution time and integration of the approach into
our ship propeller inspection system [18].
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