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Floating breakwaters offer a cost-efficient alternative to common emerged rubble mound breakwaters in deep water
coastal areas or harbours with poor seabed conditions. Often, simple box type structures with a suitable mooring
system are considered. The motion of the moored box and the resulting tension forces in the cables have to be known
during the design process. The accurate determination of these properties is therefore of high significance to configure
a safe and economical design. In this paper, a numerical model for determining the influence of the mooring system
on floating breakwater dynamics is developed and incorporated into the open-source CFD solver REEF3D.

Keywords: Mooring Modelling, Floating Structures, Fluid-Structure Interaction, CFD

INTRODUCTION

The safety of floating breakwaters has to be guaranteed by an appropriate mooring system. The mooring de-
sign has to provide enough strength to withstand the hydrodynamic loads on the structure while restraining
its motion. Therefore, the accurate simulation of the moored-floating breakwater are of highly relevancy to
construct a safe and economical design.

The calculation of the position of the mooring system often arises from the application of the catenary
equation for cables. This analytical approach neglects hydrodynamic effects of the flow on the structure and
is just valid in a certain range of shapes. In case of rather taut cables, the catenary form is no longer valid
and an alternative approach based on a discrete model has to be considered. To simplify this, a single model
which is suitable for slack and taut configurations is preferable. A discretisation of the problem has to be
applied due to the underlying non-linear system of equations. There are several models which are based on
splitting the cable in finite differences or elements (Huang, 1994; Aamo and Fossen, 2001). In the lumped
mass method (Hall and Goupee, 2015), simple truss or spring elements are applied. The knot positions is
then found in each time step by solving the force equilibria at each mass point. This approach shows good
results for dynamic and static problems but generally lacks the possibility to physically correlate tension
forces and deformation of the elements. In order to incorporate this necessary connection between the
elements at any time, the tension element method (TEM) was developed (Leitzke, 1983; Hackmann, 1983).
The method is limited to quasi-static cases which is appropriate for cases where the exact motion of the
cable is not of interest.

The presented mooring model is implemented in the open-source CFD code REEF3D (Bihs et al.,
2016). The code has been validated for a wide range of coastal and marine applications like breaking waves
kinematics (Kamath et al., 2017b, 2015, 2017), sloshing (Grotle et al., 2017), sediment transport (Ahmad
et al., 2018) and floating structures (Bihs and Kamath, 2017).

Figure 1: Moored-floating breakwater in a wave trough situation.

1Department of Civil and Environmental Engineering, NTNU, Trondheim, Norway



2 COASTAL ENGINEERING 2018

NUMERICAL MODEL
The continuity equation and conservation equations of momentum for incompressible fluids
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are solved in the computational domain. Here, ui is the velocity components, ρ is the fluid density, p is
the pressure, ν is the kinematic viscosity and ~g represents the gravity acceleration vector. In the presented
calculations, a Reynolds-averaged Navier-Stokes (RANS) approach is incorporated by introducing time-
averaged fluid properties and adding turbulent viscosity to ν. This additional viscosity is modelled with a
k-ω model including an additional source term for the free surface (see Bihs et al. (2016) for details). The
spatial domain is divided into uniform cells of the same length. System (1) is then solved in a staggered
manner using finite difference methods (FDM) to avoid decoupling of pressure and velocity. Convection
terms are discretised using the fifth-order accurate weighted essentially non-oscillatory (WENO) scheme
(Jiang and Shu, 1996) adapted to non-conservative terms (Zhang and Jackson, 2009). Chorin’s projec-
tion method for incompressible flows (Chorin, 1968) is used for solving the resulting system of algebraic
equations. First, a non-divergence free velocity field is calculated employing the third-order accurate Total
Variation Diminishing (TVD) Runge–Kutta scheme (Shu and Osher, 1988). Then, the pressure is calcu-
lated from the solution of a Poisson equation which is found using a fully parallelized BiCGStab algorithm
(van der Vorst, 1992). Finally, the velocities are corrected with the updated pressure such the conservation
of mass equation is fulfilled. The free surface is represented implicitly by the zero level set of a smooth
signed distance function. It is defined by the closest distance of each point to the interface (Osher and
Sethian, 1988). The function is captured in time and space using the linear advection equation. The convec-
tion term is discretised by a fifth-order accurate Hamilton-Jacobi WENO method (Jiang and Peng, 2000).
The level set function is reinitialized after each time step in order to conserve the signed distance property
(Sussman et al., 1994).

Floating Algorithm
Floating bodies are defined by the location of their centre of gravity and their orientation in the inertial
coordinate system described by the three Euler angles φ, θ and ψ. The translational motions are described
by Newton’s second law and can be calculated analytically. A coordinate transformation given by Fossen
(1994) is applied to simplify the calculation of the rotational motion. Using the principal axes system of
the body, the inertia tensor reduces to its main diagonal, and the rotatory motions are given by the Euler
equations (Fossen, 1994)

Ixξ̈1 + ξ̇2ξ̇3 · (Iz − Iy) = M1,~ξ,

Iyξ̈2 + ξ̇1ξ̇3 · (Ix − Iz) = M2,~ξ,

Izξ̈3 + ξ̇1ξ̇2 · (Iy − Ix) = M3,~ξ, (2)

which are solved explicitly using the second-order accurate Adams-Bashforth scheme. A weak coupling be-
tween fluid and structure is applied. It provides a stable model with accurate results for various applications
as could be shown in previous publications (Bihs and Kamath, 2017; Kamath et al., 2017a).

Mooring Algorithm
The discretisation of the mooring lines is shown in Fig. 2. Each line is divided into a finite number of
straight but elastic bars ~f . Between the bars, N mass points P are defined. The tension forces FT act at
P in the direction of the adjacent bars. All external forces are concentrated on P. In this paper, just the
gravitational force ~FG is incorporated which is valid for heavy mooring systems. Further, a flexible system
is assumed and time dependencies are neglected. Under these assumptions, the solution for the shape of the
line and the distribution of tension forces can be found by solving a linear system of equations. This system
results from the force equilibria

~f (ν+1)F(ν+1)
T − ~f (ν)F(ν)

T = − ~F(ν)
G , (3)
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at the inner knots Pν. Here, ~FG
(ν)

is the approximated gravity force from an uniformly distributed mass of
the adjacent bars

~FG
(ν)

= q~g ·
(

l(ν) + l(ν+1)

2

)
, (4)

with q the specific material weight per length in water and ~g the gravity vector pointing in negative
z−direction.
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Figure 2: Discrete mooring line: mass points (black points), bars (vectors).

The resulting system is undetermined because the number of bars exceeds the number of inner knots. It
is closed by adding a geometrical constraint which is the physical coherence of the mooring line during the
deformation. The resulting system of equations can be written in an appropriate way for obtaining the ma-
trix of bar vectors as the solution matrix. Here, the system matrix, containing the unknown tension forces,
reduces significantly if comparing to a Newton-Raphson. It results in an improved runtime performance.
Since the unknowns are separated, and the system has to be corrected iteratively using the intermediate
results until convergence has been reached. After each iteration, the lengths of the bar vectors have to equal
one by definition. Therefore, a correction step has to be performed for the system matrix before the loop
proceeds. The algorithm stops in case of reaching a predefined criterion for the residuals which corresponds
to the conservation of all bar unit vectors within a certain tolerance. The calculated forces of the mooring
lines on the body are included in the floating algorithm in an explicit manner.

RESULTS

Validation of the Mooring Model
The principal working of the mooring model is shown using an elastic catenary solution (Faltinsen, 1990).
This analytical solution represents the physical shape of a chain between two fixed points. Fig. 3 shows the
convergence of the TEM to this analytical solution with increasing number of elements N. The L2-norm of
the error in z-direction decreases from 0.009 for N = 3 to 0.004 for N = 50.
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Figure 3: Numerical Solution of the mooring model using N elements in comparison to the elastic catenary
solution.
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Validation of the Floating Algorithm
First, the developed floating algorithm is validated for single heave and pitch decay motions. A numerical
heave decay test for a cylinder of diameter 0.1524m and density 500kg/m3 is compared to experimental
data (Yang, 2018). The cylinder is partially submerged with its centre located at 0.0254m above the water
surface. As soon as the body is released, a heave motion with decreasing amplitude can be observed over
time. In 4a the results for three different cell sizes are compared to the experiments. The coarsest grid over-
predicts the first peak while the finer grids reproduce the experimental data in amplitude and frequency
properly.

A numerical pitch decay test for a box of length 0.3m, height 0.1m and density 856kg/m3 compared
to experimental data (Yang, 2018) is investigated. The box is partially submerged with its centre located
at the water surface but rotated by 15◦. The pitch motion with decreasing amplitude is observed over
time. In 4b the results for three different cell sizes are compared to the experiments. All grid resolutions
result in slightly over-predicted amplitudes but a very good agreement with the experiments with regards to
frequencies of the motion.

(a) Heave decay test: Heave amplitude over time. (b) Pitch decay test: Pitch amplitude over time.

Figure 4: Numerical and experimental results for the heave (a) and pitch (b) decay tests.

Moored-Floating Breakwater in Waves
The effect of mooring on the motion of a floating breakwater is presented next. The 2D numerical setup
is taken from experiments of a free-floating breakwater (Ren et al., 2015). The tank’s dimensions are
20m × 0.8m and the water depth is 0.4m (Fig. 5). A rectangular breakwater of 0.30m × 0.2m and density
500kg/m3 is placed in the tank at (x, z) = (7.0m, 0.4m). Second-order Stokes waves of h = 0.02m, T = 1.2s
and λ = 1.336m are generated at the inlet using a relaxation method. Wave reflections are prevented at the
outlet by using a numerical beach zone. The chosen mooring system consists of two lines fixed to the body
at the free surface. Both lines have a length of 1.9m and a thickness of 0.004m. Two configurations with
different specific material weight in water of 0.25kg/m and 1.5kg/m are considered. The results in Fig.
6 show the heave, surge and pitch motions of the free-floating and moored-floating breakwater between
t = 8s and t = 14s.
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Figure 5: Setup for the 2D moored-floating breakwater in a numerical wave tank.

As can be seen in Fig. 6a, the heave motion is just slightly influenced by the mooring system in both
amplitude and frequency. The rather flat angles between line and body at the attachment points result in
small vertical reaction forces which influence this motion. It is however noticeable that the draft of the
breakwater increases due to the additional weight of the system, which is obviously even more noticeable



COASTAL ENGINEERING 2018 5

for the heavier configuration. Fig. 6b shows the effect of mooring on the surge motion of the breakwater.
The free-floating breakwater moves in x-direction over time due to Stokes drift. In contrast, the mooring
systems prevent this motion because of large horizontal reaction forces. Additionally, the amplitude of the
motion decreases with the increasing weight. Similarly, the pitch motion is reduced by the counteracting
tension forces of the mooring systems (see Fig.6c).
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Figure 6: Numerical results of the moored-floating breakwater in comparison to the free-floating breakwa-
ter.

Analysis of the Motion of a Moored-Floating Breakwater
The sensitivity of the breakwater’s motion with respect to different mooring systems shall be emphasised.
For this purpose, different mooring systems are connected to the floating breakwater and waves of the
same height but different lengths are imposed in the numerical tank. The dimensions of the tank and
breakwater are taken from above. Further, the shown mooring configurations with different material weights
are considered but with a slightly increased length resulting in a different angle between line and body at
the mooring point. As results, the maximum amplitudes and frequencies of the heave and pitch motion for
wave lengths between λ = 0.2m and λ = 3.0m are compared to the free-floating breakwater (see Fig. 7).
All computations are executed with cell size ∆x = 0.01m.

For the heave motion in Fig. 7a, the decrease in amplitude increases over the wavelength up to λ = 1.5m
and stays constant afterwards. While for small wavelengths the amplitude is similar, the frequency of the
motion changes due to the mooring forces (Fig. 7b). The results for the pitch motion are similarly. The
frequency changes just for small wavelengths while the amplitudes change for larger wavelengths. It might
be also noticed that for certain wavelengths, the maximum pitch amplitude increases for a light mooring
system but decreases for a heavy system. This results in an overall different response function of the
moored-floating body. At the same time, the global maximum of the pitch motion is smaller if mooring is
applied due to the additional damping.

CONCLUSION
The open-source CFD solver REEF3D is applied to simulate the interaction of waves with a moored-
floating breakwater. The presented numerical mooring model provides an accurate solution for quasi-static
applications. A toolbox for investigating complicated fluid-structure interactions including mooring could
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(a) Maximum heave amplitudes over λ.
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(b) Maximum heave frequencies over λ.
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(c) Maximum pitch amplitudes over λ.
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Figure 7: Numerical results for the maximum amplitudes and frequencies in heave and pitch for different
wave lengths.

be presented by coupling the developments to the accurate wave modelling of REEF3D. The results verify
the implementation of the discrete mooring model and indicate its validity for simulating dynamic mooring
systems. The influence of mooring on a floating breakwater was investigated. It keeps the body in position
and reduces rolling. The analysis of the motion for different wavelengths emphasises the importance of
a careful selection of the cable properties. These properties play a major role for the response of the
breakwater and the occurring tension forces in the mooring system. If the typical wave conditions are
known, the presented mooring model can be used for getting useful hints for an optimal design of the
mooring system.
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