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This article presents an approach for determining suitable camera view poses for inspec-

tion of surface tolerances based on visual tracking of the tool movements performed by
a skilled worker. Automated surface inspection of a workpiece adjusted by manual op-

erations depends on manual programming of the inspecting robot, or a time-consuming

exhaustive search over the entire surface. The proposed approach is based on the as-
sumption that the tool movements of the skilled worker coincide with the most relevant

regions of the underlying surface of the workpiece, namely the parts where a manual
process has been performed. The affected region is detected with a visual tracking sys-

tem, which measures the motion of the tool using a low-cost RGBD-camera, a particle

filter, and a CAD model of the tool. The main contribution is a scheme for selecting
relevant camera view poses for inspecting the affected region using a robot equipped

with a high-accuracy RGBD-camera. A principal component analysis of the tracked tool

paths allows for evaluating the view poses by the Hotelling’s T-squared distribution test
in order to sort and select suitable camera view poses. The approach is implemented

and tested for the case where a large ship propeller blade cast in NiAl bronze is to be

inspected by a robot after manual adjustments of its surface.

Keywords: Manufacturing Automation; Inspection Planning; Computer Vision for Man-
ufacturing; Visual Tracking.

1. Introduction

For small batch production with frequent change of product dimensions and prod-

uct types, it is vital that the product tolerance inspection can be planned and

executed efficiently and accurately without unnecessary effort. Robotic inspection

with optical sensors can significantly alleviate the problem of achieving sufficient

quality assurance of the fabricated products in a minimum amount of time. The

workpiece geometry and any deviations are then possible to determine by observing
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the workpiece surface from various angles and distances with a 3D camera held by

a robot, or by letting the robot carry a line scanner along the surface. Then an

effective inspection process depends on the robot being programmed to scan the

relevant parts of the surface, with the optical sensor being placed sufficiently close

to the surface during scanning in order to achieve the required accuracy.

When a CAD model of the workpiece is available, definitions of the part’s geom-

etry can be retrieved and used as a basis for automatically determining necessary

sensor view poses in order to obtain a complete and accurate 3D image of a surface

or the whole part [1,2]. This bridge between CAD/CAM and automated inspection

is called Computer-aided inspection planning (CAIP) [3, 4]. CAD-based tolerance

inspection originates from software developed for Coordinate Measuring Machines

(CMM), but its application has spread, and it has proven to be suitable for inspec-

tions performed by 6 DoF robotic arms coupled with 3D optical scanners [5, 6]. A

thorough review of suggested and applied methodologies and systems can be found

in [3, 7, 8].

In scenarios where the geometry of the workpiece is unknown, typically if there

is no CAD model of the workpiece available, the challenge turns into a search for

determining suitable sensor view poses while exploring the unknown object. There

is much previous work on robotic exploring and automatic determination of sensor

view poses. In computer vision literature, the problem of determining the best

camera poses is named Next Best View (NBV) planning [9]. Typical uses of NBV

includes determining the minimum amount of view poses necessary for a complete

3D capture of an object [10], or finding a sequence of views which allows optimal

reconstruction of an object [11], i.e., which minimizes some reconstruction error

metric. NBV approaches are classified as online or offline methods, furthermore as

model-based or non-model based methods.

If the product to be inspected is large, a complete scan of its surface may be

time-consuming. Moreover, only parts of the product may be required to undergo

an inspection, like a weld seam or some parts of the surface that have undergone

manual surface finishing. In this case, it may be advantageous to track the tool

paths of the manual operation and then use this as input for the robotic inspection.

Provided that the tool paths allow for selecting suitable view poses, the inspection

can achieve higher performance by focusing only on the affected areas, especially

when a manual surface finishing process is to be inspected.

There are several successful methods available for contacting and non-contacting

tracking of the tool movements of skilled workers. Motion capturing systems like ex-

oskeletal systems are an example of a well-known approach. However, the contacting

methods may hinder the human motion or the production process. Non-contacting

alternatives such as vision-based techniques may not hinder human gestures [12].

Fiducial markers have proved to be successful in vision-based interfaces between hu-

mans and robots for multiple applications, including teleoperation, where markers

placed on the hand of a human operator can remotely control a robot [13]. It may,

however, be favorable to avoid interfering with the process when recording it, e.g.,
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by avoid using markers that are attached to the tool while the worker is performing

the process [14].

A research topic of constant relevance is the challenge of capturing surface fin-

ishing processes and other complex actions from human demonstration [15–19].

Automatic inspection of a processed workpiece based on tool paths learned from a

skilled worker is, however, not much reported in the literature.

In this paper, we propose a new approach to robotic inspection. We intend to

focus the inspection on the parts of the workpiece that has undergone manual sur-

face geometry corrections by a skilled worker. The main contribution is a scheme for

selecting the most relevant inspection view poses from the tool paths that are per-

formed by the worker. The paper is an extended and revised version of a preliminary

conference article that was presented on IEEE IRC 2019 [20].

We suggest using a low-cost RGBD-camera for tracking the tool movements

of the skilled worker. In order to handle occlusions and cluttered environments, we

employ a particle filter for tracking a CAD model of the tool and recording the time

history of the tracked tool movements. Based on the recorded tool paths, a robot

holding a second, high-accuracy RGBD-camera inspects the relevant sections of the

workpiece. An implementation of a working system is studied through simulations

and experiments, and its performance is investigated and validated.

The rest of the paper is organized as follows: Section 2 presents the particle

filter used for tracking the tool movements of the skilled worker. In Section 3,

a description of the proposed motion tracking and inspection planning approach

is given, while an analysis of the computational performance of the algorithm is

described in Section 4. Simulated and experimental verification of the overall scheme

is detailed in Section 5, followed by a summary of the approach and proposals for

further work in Section 6.

2. Preliminaries

When tracking the manual surface adjusting operations, the recorded demonstration

consists of a tool path T = {t0, . . . , tn−1} which represents the n ∈ N samples (via-

points) of the tool center point ti in the form of a unit quaternion and accompanying

translation vector. We employ a Rao-Blackwellized particle filter for tracking the

tool movements of the skilled worker [21].

2.1. Particle filter tracking

The Rao-Blackwellized Particle Filter (RBPF) [22] improves the performance of

particle filtering by sampling over a subspace of the probability distribution of the

state. RBPF is based on the assumption that it is reasonable to evaluate some

filtering equations analytically and the remaining with a particle filter rather than

computing everything with pure sampling.

Let zk be a Markov process of initial distribution p(z0) and transition equa-

tion p(zk|zk−1). The set of observations {y1, . . . yk} is denoted by y1:k. It is possi-
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ble to divide the hidden variables zk into two groups called rk and xk, such that

p(zk|zk−1) = p(xk|rk−1:k, xk−1)p(rk|rk−1) and, depending on r0:k, the conditional

posterior distribution p(x0:k|y1:k, r0:k) is thus possible to handle analytically [23].

As a result, we can marginalize out x0:k from the posterior, and only need to fo-

cus on estimating p(r0:k|y1:k), which now is in a lower-dimensional space. In other

words: p(r1:k|y1:k) can be predicted with a particle filter, while p(xk|r1:k, y1:k) can

be updated using a Kalman filter.

At time step k − 1 it is assumed that an approximation to the filter density is

given by

p(r1:k−1|y1:k−1) ≈
N∑
i=1

w
(i)
k−1δ(r1:k−1 − r(i)1:k−1) (1)

where δ(·) is the Dirac delta function, and the weights w
(i)
k−1 are scalars, and

r
(i)
k−1 ∈ Rn. Given N particles (samples) {r(i)0:k−1, x

(i)
0:k−1} at time k − 1, approxi-

mately distributed according to the distribution p(r
(i)
0:k−1, x

(i)
0:k−1|y0:k−1), the RBPF

is used to compute N particles
(
r
(i)
0:k, x

(i)
0:k

)
approximately distributed according to

the posterior p(r
(i)
0:k, x

(i)
0:k|y1:k), at time k. This is accomplished with the following

steps:

(1) Sequential Importance Sampling

• For each particle i a new state vector is predicted by taking a sample:

r
(i)
k ∼ p(rk|r

(i)
0:k−1, y1:k).

• For each particle i, the importance weights are evaluated up to a normal-

izing constant

w
(i)
k =

p(r
(i)
0:k|y1:k)

q(r
(i)
k |r

(i)
0:k−1, y1:k)p(r

(i)
0:k−1|y1:k−1)

. (2)

• For each particle i, the importance weights are normalized

w̃
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

. (3)

(2) Selection

• Multiply samples r
(i)
0:k with high importance weights w̃

(i)
k to obtain N ran-

dom samples r̃
(i)
0:k distributed approximately according to p(r̃

(i)
0:k|y1:k). In

the same way, samples with low importance weights w̃
(i)
k are suppressed.

(3) Markov Chain Monte Carlo (MCMC)

• The set of particles is resampled using MCMC. A Markov transition kernel

is applied with invariant distribution, which is given by p(r
(i)
0:k|y1:k) in

order to obtain r
(i)
0:k. We can now go to the next time-step and repeat the

procedure.
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Finally, we have the particle filter approximation at time step k:

p(r1:k|y1:k) ≈
N∑
i=1

w
(i)
k δ(r1:k − r(i)1:k) (4)

3. Motion Tracking and View Planning

The goal of the approach is to enable the inspection robot to execute a scanning

program based on the tool paths learned from a skilled worker. Recorded tool paths

are assumed to follow the surface of the object to inspect. The robot will thus

be able to focus the inspection to the surface sections on which the worker has

performed manual processing.

3.1. System overview

An overview of the proposed approach is shown in Fig. 1. We start by capturing

the tool paths with the particle filter described in Section 2. Input to the particle

filter is depth images from a consumer-grade and low-accuracy RGBD-camera at

30 Hz, combined with a CAD model of the tool to be tracked. After various filtering

of the recorded tool paths, the scanning view poses are selected based on a set of

basic camera parameters: Its field of view and optimal scanning distance.

The cameras and robot are calibrated with respect to each other using an offline

calibration procedure.

3.2. Tool path filtering

Many surface treatment processes consist of repetitive movements over the same

surface patch. The tracked tool path would then be too detailed and ineffective as

input for the inspection robot. A typical learned process tool path could potentially

contain several thousand tracked tool poses. It would be a highly time-consuming

task for the inspecting robot to visit and scan all of them. In many cases, the camera

can cover large parts of the tracked path simultaneously. It is then necessary to use

filtering methods in order to refine the inspection process.

Our primary strategy for filtering the view poses is to divide them into a voxel

grid structure, effectively grouping nearby view poses and replacing them with their

centroid. This step ensures that repetitive tool movements are filtered and combined

into a set of unique view poses. By adjusting the voxel size, the resolution of the

subsequent selection of camera poses can be adjusted. Increasing the grid resolution

comes with a computational cost.

Before the voxel grid filtering step, we do a simple Gaussian smoothing of the

recorded data, in both the forward and reverse directions.

3.3. Camera orientation by averaging quaternions

Distributing the recorded tool poses into a voxel grid does not involve determining

a camera orientation for the camera viewpoints. For each centroid camera position
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Fig. 1: Overview of the information flow in the proposed approach. Inputs to the

tracking process are depth images from a low-accuracy RGBD-camera with the

workspace in its field of view, and a CAD model of the tool to be tracked. In order

to generate the camera views for inspection, information about depth range and

field of view of the second RGBD-camera used for inspection is necessary.

present in the voxel grid, a camera orientation must be chosen.

A simple strategy for selecting the camera orientation would be to choose the

view orientation from the viewpoint laying closest to the center of each of the voxels

in the voxel grid. The information about view orientation from all the disregarded

original viewpoints would then be neglected.

We use the average of the local set of viewpoints around each filtered pose

in order to account for more of the local orientation information. We employ a

quaternion based fast averaging technique, as proposed in [24]. The local group is

determined by doing a linear k-nearest neighbor search for each of the poses present

in the voxel grid.

Given qi, a set of quaternions, we form the weighted dot product matrix:

B =
1

nq

nq∑
i=1

wq
i (qT

i · qi) (5)

where nq is the number of poses in the local group, and wq
i is the associated weights,



View Planning for Robotic Inspection of Tolerances 7

given the pose qi. The mean quaternion qavg is given by the eigenvector emax

corresponding to the maximum eigenvalue of B, λmax.

3.4. Hotelling’s T-squared distribution

We employ a multivariate statistical distribution in order to select the most relevant

view poses for inspection. The Hotelling’s T 2 values represent a measure of the

variation in each sample within the model [25]. It indicates how far each sample is

from the center of the model.

The statistics are calculated for a principal component analysis model (PCA),

which is a well-established technique for unsupervised dimensionality reduction [26].

PCA is used for data compression and information extraction. The idea behind is

to reduce the dimensionality of the original data by forming a new set of latent

variables which are a linear combination of the original data, without losing essential

information. PCA explains the amount of variability in the data.

The T 2 value for the ith observation is defined as:

T 2 =

a=A∑
a=1

(
ti,a
sa

)2

(6)

where the s2a values are constants and are the variances of each component. A is the

number of PCA components, with accompanying score ti,a. The T 2 measure can be

interpreted as a scalar number that summarizes all the score values. The method

requires that the data displays a normal distribution.

After calculating the T 2, we sort the view poses in descending order and uses

the resulting list as input for checking overlap between adjacent camera views.

3.5. Camera overlap calculation

In order to reduce the number of camera views such that there is only a minimum

camera overlap, we iterate through all view pose candidates generated from the

statistical selection step. An illustration of the geometric method of comparison is

shown in Fig. 2. The camera views are modeled as pyramids with sides and height

corresponding to the field of view and optimal scanning distance of the inspecting

RGBD-camera.

Camera view overlap is determined using a Jaccard similarity coefficient between

adjacent camera views in voxel space, where a fraction of superimposed voxels

expresses the overlap. Each attribute of Ck and Ck−1 can either be 0 or 1.
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J(Ck, Ck−1) =
|Ck ∩ Ck−1|
|Ck ∪ Ck−1|

=
|Ck ∩ Ck−1|

|Ck|+ |Ck−1| − |Ck ∩ Ck−1|

=

∑n
i=1(Ck[i] · Ck−1[i])∑n

i=1(Ck[i] +
∑n

i=1(Ck−1[i]−
∑n

i=1(Ck[i] · Ck−1[i])

(7)

The similarity coefficient is defined 0 ≤ J(Ck, Ck−1) ≤ 1.

View pose candidates with a similarity coefficient over a specified threshold are

disregarded. A list of reasonable camera view poses for automated inspection then

emerges.

Ck−1

Ck
T

Ck−1

Ck

g

hf

yf

xf

Fig. 2: The overlap g between adjacent camera poses. The transformation between

the camera poses Ck and Ck−1 is T
Ck−1

Ck
. The camera views are modeled as pyramids

representing the camera field of view, with base sides xf , yf , and height hf .
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4. Computational Analysis

A scalable but straightforward surface finishing scenario is used for evaluating the

computational capabilities of the proposed procedure. The test scenario consists of

1200mm

5
00

m
m

(a)

Y [mm]
X [mm]

Z
[m

m
]

(b)

Fig. 3: The triangular pattern used for analyzing the algorithm characteristics (a).

The resolution of the pattern is varied, yet the surface area it covers is kept constant.

Using the proposed approach, an example of a resulting set of camera view poses

covering the pattern is shown in (b).
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a tool path where the tool movements follow an equilateral triangular pattern. The

pattern has a total height of 500mm, a total width of 1200mm, and it is arranged

in a plane, as shown in Fig. 3a. The surface corresponds to a total area of 0.6m2,

filled with a variable number of equilateral triangles. Effectively, this corresponds

to different tool path lengths and resolutions over a fixed area, and consequently,

a varying amount of input view poses. The triangular pattern is to be inspected

by a simulated camera that has a field of view imaging area of (yfar × xfar) of

430 mm× 270 mm and an optimal scanning distance of 700 mm.

The analysis is performed by measuring the time spent on each part of the

algorithm when varying the number of input view poses or the resolution of the

voxel grid filter. Simulations were performed on a computer with a 3.6 GHz CPU

running Windows 10, and the view selection algorithm was implemented in a single-

thread MATLAB program. The particle filter based tool tracking and recording

parts of the proposed system are hence, not evaluated in this test.

Fig. 3b gives an example of a set of camera view poses generated by the proposed

approach in order to inspect the triangular pattern shown in Fig. 3a. Total time

consumption and the timing of each step of the algorithm is shown in Fig. 4. The

total running time assumes linear behavior around 1000 input tool path points

(Fig. 4a), while increased voxel grid resolution (decreasing voxel size) results in

exponential behavior when approaching zero (Fig. 4b). From the figures, it can be

seen that the initial filtering of the tool path takes a negligible amount of time. The

T 2 and camera overlap calculations that are performed for sorting and selecting the

view poses is the most time-consuming part of the algorithm.

The performance of the proposed approach is also assessed by comparing it with

a brute force approach, where all the recorded tool path points, after the initial voxel

grid filtering, are considered as possible camera view poses for surface inspection.

The exhaustive approach examines all the view poses in order to find the required

number of views. As shown in Fig. 5, the exhaustive strategy demonstrates high

dependence on the number of recorded tool path points. Varying the resolution

of the initial voxel grid filtering displays similar effects on running times for both

procedures.

5. Evaluation Test Cases

The proposed approach has been evaluated through three different test cases. In the

first case, an inspection of a simulated CNC surface machining operation is under

consideration. The two subsequent cases deal with different cases of inspection of a

large ship propeller blade cast in NiAl bronze.

5.1. Simulating a complex surface machining operation

In the first evaluation case, a CNC machining process is simulated, where camera

view poses are generated from the tool paths of a machining process performed on a

double-curved surface. The simulation was performed with the same computational
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resources and camera parameters as in the computational analysis in the previous

section. The particle filter based tool tracking and recording parts of the proposed

approach are not evaluated in this test.

A curved and bent surface with associated tool path is shown in Fig. 6a. The
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Fig. 4: Computational analysis of the proposed approach. Time consumption is

measured for each of the essential steps: The voxel grid filtering step, the camera

orientation selection step (qavg), and the final step where the statistical T 2 measure

and camera view overlap calculations are used for sorting and selection of camera

view poses. The total running time is also considered. In (a), the amount of examined

tool path points is varied, while the voxel size for the initial filtering is varied in

(b).
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Fig. 5: Running times of the proposed approach compared with an exhaustive strat-

egy, where all the recorded tool path points remaining after the initial voxel grid

filtering are considered as possible camera view poses for inspecting the triangular

pattern shown in Fig. 3a. The exhaustive strategy demonstrates high dependence

on the number of recorded tool path points (left), but similar performance as the

proposed approach regarding voxel grid filter resolution (right).

tool path, which is sampled from the simulated CNC machining process, is also

shown in Fig. 6b. The tool path was sampled at a rate of 15 Hz. A representation of

the tool path after initial voxel grid filtering is shown in Fig. 6c. Fig. 6d illustrates

the 17 resulting camera views.

The proposed system was able to successfully generate camera viewpoints cov-

ering the whole surface area, based on the simulated machining tool path.

5.2. Capturing a surface finishing process

We tested our approach in an experimental setup using a Universal Robots UR10

robot equipped with a Zivid high-accuracy RGBD-camera for inspection of a large

ship propeller blade. A second RGBD-camera (Microsoft Kinect v2) was used to

track the motions of an angle grinder using the particle filter described in Section 2

and a CAD model of the angle grinder. The tool path was obtained while the skilled

worker performed surface polishing on the side of a ship propeller blade, as shown

in Fig. 7a.

This experiment was conducted in order to evaluate the qualitative results of

the approach. The motions performed by the skilled worker in the surface polishing

process is characterized by repetitive, alternating motions over the double-curved

surface of the propeller blade. The captured raw tool path is shown in Fig. 7b. A

representation of the tool path after initial voxel grid filtering is shown in Fig. 7c.

Fig. 7d illustrates the generated inspection camera view poses, which is used by

the robot to capture the point cloud of one side of the ship propeller blade. The
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(a)

X [mm]
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Z
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]

(b)

(c)
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Z
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]

(d)

Fig. 6: First evaluation test case: Simulation of a complex surface machining op-

eration. In (a), the original surface with the CNC machining tool path is shown.

The sampled tool path is shown in (b). In (c), a voxel representation of the tool

path after the initial voxel grid filtering is shown. The resulting camera view poses

generated by our approach is illustrated in (d).

resulting point cloud is shown in Fig. 8. The selected inspection camera view poses

provide satisfying coverage of the captured tool path and underlying ship propeller

surface. The generated camera view poses have high coverage of the captured tool

path.

5.3. Capturing a surface adjusting process

The approach was in the following round evaluated for the case where a skilled

worker is performing minor geometry adjustments of a ship propeller blade sur-



14 E.B. Njaastad and O. Egeland
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Worker

Tracking
Camera

Inspection
Robot

Tool
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Fig. 7: Second evaluation test case, where an actual surface finishing process is

inspected. In (a), a skilled worker is polishing a propeller blade surface using an

angle grinder which is tracked by the RGBD-camera and particle filter. The resulting

raw tool path from the manual process is shown in (b). In (c), the tool path after

initial voxel grid filtering is represented as a voxel grid. The resulting inspection

camera view poses generated by our approach is shown in (d). The point cloud

produced by the inspection is given in Fig. 8.

face. The setup is similar to the test case described in the previous instance, except

for that the recorded tool path has different characteristics compared to the pre-

vious case. An alternative attitude was also tested for the tracking RGBD-camera

(Microsoft Kinect v2) and the inspection robot. The setup is shown in Fig. 9.

This experiment was conducted in order to demonstrate how the procedure for

selecting the camera view poses performs when subjected to a highly repetitive tool

path. Compared to the previous test case, performing adjustments to the surface
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Fig. 8: 3D inspection results using the proposed approach with an industrial robot

and a high-accuracy RGBD-camera.

geometry involves even more repetitive tool movements yet only in a small region of

the total blade surface. Fig. 9b shows the skilled worker performing the adjustments

by using an angle grinder. The illustration is a frame from the depth stream captured

by the tracking RGBD-camera. Marked in red is the tool CAD model, which is used

for particle filter tracking of the tool. The recorded raw tool path is shown in Fig. 9c.

A voxel representation of the tool path following the initial filtering is illustrated

in Fig. 9d. The resulting inspection camera view poses are given in Fig. 9e, next to

an image of the robot inspecting the surface (Fig. 9f).

6. Summary & Conclusions

This paper presents a novel approach for determining camera view poses for auto-

mated inspection of the results of manual processes performed by skilled workers.

The approach is based on the assumption that tool movements performed by a

skilled worker coincide with the most relevant areas of the underlying surface of the



16 E.B. Njaastad and O. Egeland

Tool

Tracking

Camera

(a) (b)

Z
[m

m
]

X [mm] Y [mm]

(c)

Z
[m

m
]

X [mm] Y [mm]

(d)

Z
[m

m
]

X [mm] Y [mm]

(e) (f)

Fig. 9: Third evaluation test case, where a propeller blade is inspected after manual

surface geometry adjustments. In (a), the evaluation setup is shown. A point cloud

representation of a skilled worker adjusting the surface geometry is given in (b). The

tracked raw tool paths from the manual process is shown in (c). In (d), the tool path

after initial voxel grid filtering is represented as a voxel grid. The inspection camera

view poses generated by our approach is shown in (e), with a robot performing the

inspection in (f).
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workpiece, namely the parts where a manual process has been performed.

The technique is also suitable for automated inspection planning in the case

where a robotic welding or polishing operation has been performed, and sparse or

no CAD information of the workpiece is available. Such scenarios can occur if online

teach- or lead-through methods are used for robot programming.

In contrast to existing work, the algorithm expects a tool path and is capable

of adapting the orientation of the robot. In order to select meaningful camera view

poses, camera parameters such as field of view and optimal scanning distance are

necessary input to the algorithm. The procedure is not aware of what process it

has been shown. It does not recognize, that for example, a surface polishing task

has been demonstrated. There is neither deduction of the operations nor a priori

knowledge.

We provided qualitative results by simulating various tool paths and quantitative

results by recording data from a skilled worker. The approach can easily be extended

to other applications, such as robotic welding, machining, or painting.

While the different operations described in this paper have been functionally

implemented and successfully experimented with, the integration into a complete

process cycle remains to be done. Collision avoidance could be added to the sys-

tem, taking into account the complete robot model and the continuous stream of

information originating while inspecting the workpiece. It would also make sense

to take into account the reach of the robot when selecting the inspection camera

view poses, or adapting generated inspection programs to the reach of the robot

used. Further work may also focus on improving the scanning execution time or on

integrating the approach into our ship propeller inspection system [27].
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