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H I G H L I G H T S

• A novel approach is introduced for building performance robustness assessment.• Robustness assessment and decision making are integrated to select robust designs.• A case study is conducted to demonstrate the value of the approach.• Impacts of occupancy and weather scenario on building performance are analyzed.• Robustness of competitive designs with the same performance level are compared.• The results are compared to the Hurwicz criterion as a decision making method.
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A B S T R A C T

Considering the diverse uncertainties in building operations and external factors (i.e., occupancy and weather
scenarios that can impact a building’s energy and comfort), performance robustness has become as important as
the building performance itself. Selecting a robust and high performance building design is challenging, parti-
cularly when multiple performance criteria should be fulfilled. It requires performance evaluation, robustness
assessment, and multi-criteria decision making in three sequential steps. The current study introduces a new
robustness-based decision making approach that integrates the robustness assessment and decision making steps
and is more transparent than previously used approaches. The proposed approach normalizes each objective
function based on its defined target and combines them into one comprehensive indicator. Moreover, it penalizes
solutions that do not meet the targeted margins. The new approach is tested on a case study of a single-family
house, where eight competitive designs and 16 occupant and climate scenarios are investigated. Exhaustive
searches and sophisticated engineering analysis are applied to validate the logic behind the approach’s results. In
addition, a test framework is used to validate the reliability of the approach under different combinations of
scenarios. The results show that the proposed approach can select a high performance and robust building design
simultaneously with less analysis effort (no need for weighting the objectives nor for conducting a robustness
analysis for each objective separately) and with much trustworthy rate (selecting solution in comparison to the
defined targets and with less dependency on the scenario conditions) compared to one frequently used approach
(i.e., the Hurwicz criterion).

1. Introduction

1.1. Background

Improving the energy performance of buildings is an essential goal
in environmentally conscious societies. One of the actions that societies
take to achieve this is to establish stricter standards and requirements
for building components and performance [1]. Although there has been

an increase in the construction of environmentally friendly buildings,
these buildings do not always perform as expected, e.g., variations in
thermal comfort [2], energy, or costs [3]. Designers estimate how a
building should perform, but their estimates often deviate from the
actual energy consumption when the building is in operation because
uncertainties in the design or renovation phase are not adequately
considered. The notion of uncertainties in the building context can be
related to changes in the building environment, including climate
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changes [4], variations in occupant behaviour [5], and changes in
economic factors [6]. Uncertain environments are rarely considered in
the first steps of the design phase, so decisions based on these designs
will be sensitive to uncertainties, leading to a gap between the esti-
mated and observed energy performance [7]. Therefore, there is a need
to reduce the sensitivity of a building’s energy performance to an un-
certain environment. Reducing sensitivity to a changing environment
can be done by taking robustness assessment into account during the
design or renovation phase [8]. In this work, robustness is defined as
the ability of a building to perform effectively and remain within the
acceptable margins under the majority of possible changes in internal
and/or external environments. In the context of building energy per-
formance, robustness can be assessed using probabilistic approaches for
cases where the probabilities of uncertainties are known [9] and non-
probabilistic approaches where the probabilities of uncertainties are
unknown [10]. In the latter approach, the assessment is done based on a
scenario analysis, in which scenarios are implemented to formulate
alternatives with unknown probabilities [11]. The aim of using sce-
narios is to better understand the impact of uncertainties and to help
decision makers select designs that perform robustly under the un-
certainties [12]. There are different robustness assessment methods
based on scenario analysis that can aid decision makers in selecting a
robust design. Some examples include the max–min, best-case and
worst-case, and minimax regret methods [13]. Furthermore, some
studies use probabilistic approaches, such as assessing mean and stan-
dard deviation across scenarios [14].To select a high performance and
robust building design, three main steps should be followed [12]. The
first step is to evaluate the performance of the building based on the
results obtained from a building performance simulation (BPS). As a
building’s performance must respond to multiple criteria [15], as the
second step robustness is assessed regarding these criteria under various
uncertainties. Building performance robustness assessments can be ca-
tegorized as either single-criterion [16], or multi-criteria [17], where
the performance robustness of the building is assessed regarding one or
multiple performance criteria, respectively. For instance, energy ro-
bustness, comfort robustness, and cost robustness can be assessed for a
building. Multi-criteria robustness assessment requires the robustness
assessment to be repeated separately for each criterion, and the designs
selected as robust based on each criterion may not be the same [17]. In
the reported research, a design that is robust for energy consumption is
not robust for overheating, and one that is robust for overheating is not
robust for cost. Furthermore, it is important to consider the actual
performance of selected robust designs and compare them to the per-
formance targets; otherwise, the process can lead to unrealistic designs
[16]. Together with both single-criterion and multi-criteria robustness

assessments, a multi-criteria decision making (MCDM) step is used as
the third step for supporting decision-makers in selecting a robust and
high performance building design. The selection of this design in
MCDM is based on the trade-off between performance and corre-
sponding robustness. The Hurwicz criterion [17], Minimin, Laplace,
Wald [18], and Savage [16] are some examples of decision making
strategies that have been implemented to select a robust building de-
sign. Based on the preferences of decision-makers, the impacts of dif-
ferent types of performance robustness or actual performance of the
building can be prioritized by weighting them in the decision making
process. Weights and other preferences data aid decision makers in
tuning the selection of the best design (i.e., a high and robust perfor-
mance design). However, in practice, selecting a robust and high per-
formance design is a complicated and difficult task, particularly when
multiple and conflicting performance criteria should be fulfilled. As the
number of criteria and/or the conflicts among them increase, the de-
cision making step becomes more difficult and requires more experi-
ence in order to set the preference weights for each criterion [19].
Furthermore, in the existing literature, a high performance and robust
building design is selected by comparing different alternatives (i.e.,
building designs) to each other without comparing them with the per-
formance targets set by standards and regulations [17]. In this ap-
proach, the best alternative is defined based on the best alternative in
the design space (i.e., minimum or maximum of each performance
criterion), which may be undesirable in comparison with performance
targets. Furthermore, deviations of different alternatives from the per-
formance target can be necessary in some cases. At the same time, re-
peating robustness assessments focusing on different criteria can be
demanding from the computational point of view, especially in cases
with a huge number of designs and scenarios that need sampling
techniques.

1.2. Contribution of this paper

To bridge the abovementioned gaps, this paper introduces a com-
putational approach, the T-robust approach, that integrates a multi-
target robustness assessment into a multi-criteria decision making
(MCDM) process and includes performance targets when the decision is
being made. There are five main advantages to this approach:

• All assessed alternatives (i.e., building designs) are compared, not
only to each other but also to the performance targets set by stan-
dards and regulations.
• The performances of alternatives are defined (penalized) based on
deviations from the performance targets.

Nomenclature

AHP Analytical Hierarchy Process
ASHRAE The American Society of Heating, Refrigerating and Air-

Conditioning Engineers
ASHP Air source heat pump
BPS Building performance simulation
COP Coefficient of performance
DHW Domestic hot water
DM Decision making
EB Electric boiler
IWEC International Weather for Energy Calculations
KPI Key performance indicator(s)
LED Light emitting diode
MAUT Multi-Attribute Utility Theory
MCDM Multi-criteria decision making
PA Performance assessment
PCM Phase change material

RA Robustness assessment
TEK Norwegian building regulation
WWR Window to wall ratio
Am Maximum performance of design m across all scenarios
Bm Minimum performance of design m across all scenarios
Cn Minimum performance of each scenario
Di Best performance of all designs across all scenarios
H A( )i Hurwicz weighted average for alternative Ai
KPIi,rel Relative performance for indicator i
KPIm,n Performance of design m across scenario n
KPIi,m Robustness margin for indicator i
KPI¯ i Mean of performance indicator (i) across scenarios
PD Performance deviation
PR Performance regret
PS Performance spread
T Test condition
α Weighting preference
Ϭ Standard deviation
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• The performance targets are based on regulations, standards, laws
and can be adapted according to specific occupants’ needs.
• The robustness assessment is not repeated separately for each per-
formance criterion.
• Criteria preferences are automatically established in the decision
making process by including performance targets.

This approach can aid building performance decision makers in
selecting robust designs under possible uncertainties (possible sce-
narios). The integration of robustness assessment into the MCDM is
done by introducing a multi-target key performance indicator, which is
defined based on the design’s performance regarding two different
criteria. This indicator penalizes designs that do not meet the robust-
ness margins for different key performance indicators (KPIs). This
penalty differentiates between the solutions with performance less than
the robustness margin (called feasible solutions in this paper) and so-
lutions with performance greater than the robustness margin (called
infeasible solutions). The robustness margins for each KPI are defined
based on the requirements specified by regulations for each criterion.
The introduced approach is evaluated with four different robustness
assessment methods; three of them are non-probabilistic methods,
while the last is a probabilistic one. To validate the introduced ap-
proach, it was also compared with a commonly used MCDM approach
(the Hurwicz criterion) under a test framework. The test framework
consists of eight test conditions, which are different combinations of
implemented scenarios in the robustness assessment. The present ap-
proach can support designers and decision-makers in the design or re-
novation phase in identifying robust, high performance building de-
signs that meet requirements even under changing conditions.

The paper is organized as follows. Section 2 reviews existing multi-
criteria decision making methods in the field of building performance.
In addition, different robustness assessment methods that quantify the
impact of uncertainties are presented in this section. Section 3 describes
the steps toward the multi-target robustness-based decision making
approach and the test framework. In Section 4, the introduced approach
is demonstrated using a case study. The design options and future
scenarios, KPIs, and targets for each indicator are described in this
section. Section 5 analyses the results obtained from the introduced
approach and compares them with those from the Hurwicz decision
making method through the test framework. A summary of the meth-
odology, along with the main conclusions, is presented in Section 6.

2. Literature review

2.1. Review of multi-criteria decision making methods

In the building performance context, the best solution can be se-
lected based on a trade-off between performance and corresponding
robustness [17]. When considering multiple criteria, this can be
achieved using a framework that makes it possible to compare different
designs for various criteria. For such a comparison, the designs and
performance criteria are shown in a decision making matrix, and be-
cause assessed criteria have different dimensions, a criteria normal-
ization is applied. This allows different criteria to be translated to di-
mensionless criteria. In the next step, by applying preference weights to
each criterion, different alternatives are compared to each other and the
best one is selected based on an optimality function. This framework
can be obtained through “multi-criteria decision-making” (MCDM)
methods. These methods provide a solution to problems that are often
associated with a trade-off between the performances of available al-
ternatives under conflicting criteria. In the existing literature, MCDM
methods are applied in different fields including energy planning [20],
building performance simulation [21], and risk management [22].
Some examples are the Multi-Attribute Utility Theory (MAUT), Analy-
tical Hierarchy Process (AHP), Fuzzy Set Theory, Weighted Sum
Method, and Weighted Product Method. In the building performance

context, AHP and MAUT are two of the most commonly applied
methods in the literature. AHP is a well-known MCDM technique that
helps decision makers to integrate different criteria into a single overall
score for ranking decision alternatives through a pair-wise comparison
[23]. In the building performance context, AHP has been used to de-
velop a comprehensive indicator for indoor environment assessment
[24], to select intelligent building systems [25],to develop a housing
performance evaluation model that considers different criteria [26], to
rank and compare residential energy management control algorithms
[27], and to select an optimal phase change material (PCM) for a
ground source heat pump integrated with a PCM storage system [28].
The AHP method does not consider uncertainties. For this reason, Hopfe
et al. extended the classical AHP for use with uncertain information
[15]. The other commonly used MCDM method is “multi-attribute
utility theory,” which is a more precise methodology for incorporating
uncertainty into MCDM [29]. In this method, the overall value of al-
ternatives is defined in the form of a utility function based on a set of
attributes. Multi-attribute utility theory has been applied to select cost-
effective retrofit measures for existing UK housing stock under un-
certainty [30] and to perform a comparative assessment of energy ef-
ficiency alternatives with the aim of improving utility savings, and re-
ducing embodied energy and investment cost [31].There are also
several other well-known decision making approaches, such as the
Laplace [32], Wald [33], Hurwicz criterion [34], and Savage [35]
methods. For example, Raysanek et al. [36] used classical decision
theories like the Wald, Savage, and Hurwicz criterion approaches to
find the optimum building energy retrofits under technical and eco-
nomic uncertainty. In the context of robust design, Kotireddy et al.
implemented Savage [16] that allows decision makers to select a design
that has the least risk among alternative that are ranked based on re-
gret. They also used Hurwicz [17] to select a robust design for low-
energy buildings and consider decision makers attitudes toward risk.
Nikolaidou et al. [18] also used Laplace, Wald, and Savage to find ro-
bust optimal Pareto solutions under uncertainty. The weaknesses of
most of the methods that have been previously used to find high per-
formance and robust designs under uncertainty are as follows. First, one
of the criteria for finding a high performance robust design is the per-
formance (with respect to energy consumption, comfort, cost, etc.) of
each design across the assessed scenarios, which can be expressed by
different indicators such as, mean, median, standard deviation. This can
be confusing for a decision maker who wants to find the best indicator
to reflect the design performance across all scenarios. Moreover, the
concept of performance targets that are based on standards and reg-
ulations have not been used in previous studies, and the ideal alter-
native is determined based on the best performance (i.e., maximum and
minimum value among all alternatives). This is in contrast with reality,
in which the ideal alternative of some criteria does not have the
minimum or maximum value. Furthermore, finding the optimal pre-
ference criteria can be a difficult task, particularly when multiple
conflicting criteria should be fulfilled. In order to show the differences
between the proposed approach and previously used methods, the re-
sults of the proposed approach are compared with the results of ro-
bustness assessment and decision making based on the Hurwicz cri-
terion. This criterion states that the best alternative is the one located in
a middle ground between the extremes posed by the optimist and
pessimist criteria. The first step for the Hurwicz criterion is to calculate
a weighted-average return for each alternative. This calculation
averages the minimum and maximum of each alternative using α and 1-
α as weights; α (0 ≤ α ≤ 1) is the Hurwicz index and reflects the
decision-makers' personal attitude toward risk taking. A Hurwicz
weighted average can be calculated as below for each alternative (Ai):

= +H A
For positive flow payoffs:

( ) (maximum of row) (1 )(minimum of row)i

(1)
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= +H A

For negative flow payoffs:

( ) (minimum of row) (1 )(maximum of row)i

(2)

The best Hurwicz score is the one with the maximum H for positive-
flow payoffs and minimum H for negative-flow payoffs.

2.2. Introducing robustness assessment methods

The selection of robustness assessment methods is related to the
purpose of the study, the decision-makers, and their preferences [37].
In the building performance context, robustness assessment is done
with both probabilistic and non-probabilistic approaches. Hoes et al.
[38] were the first to investigate the Taguchi method, which uses the
signal-to-noise ratio value for decreasing variation in the signal (per-
formance) due to the noise (uncertainty) in the building performance
context. The robustness indicator implemented by Hoes et al. [38] is the
relative standard deviation, which is similar to the signal-to-noise ratio.
This indicator leads to designs that are robust for one performance in-
dicator and sensitive for others (e.g., overheating hours). The conclu-
sion of that study highlights the importance of considering the actual
performance in addition to the relative robustness. Different robustness
assessment methods have been implemented in the literature, such as
Chinazzo et al. [39], Buso et al. [40], Karjalainen [41] and Gang et al.
[42] implemented the spread of box plot (max–min), relative standard
deviation referred to the basic model, best-case and worst-case, and
minimax regret methods as robustness assessment methods respec-
tively. Scenario analysis is one of the most widely used methods for
robustness assessment. Some studies use probabilistic approaches such
as comparison of mean and standard deviation across scenarios [14].
Nik et al. [43]used the mean across scenarios as a robustness indicator
for robustness assessment of energy retrofits when considering climate
scenarios as a source of uncertainty. Hoes et al. [10] also used relative
standard deviation in the optimization of design robustness. This ap-
proach is questionable because the likelihood of occurrence of different
scenarios is unknown. Thus, considering the mean and standard de-
viation across all scenarios does not represent the impact of each sce-
nario, and the fluctuation between different scenarios will not be de-
picted. Furthermore, Li et al. [44] found that it is not suitable to adopt
the standard deviation of building annual or hourly energy demand as
an optimization objective function to select a robust optimal design of

zero/low energy buildings. Another option is implementing a non-
probabilistic approach with scenario analysis; for example, Kotireddy
[13] implemented three robustness assessment methods—max–min,
best-case and worst-case and minimax regret—with scenario analysis.
In the present paper, the same three non-probabilistic robustness as-
sessment methods (max–min method, best-case and worst-case method,
and minimax regret method) are implemented. These methods are
compared with one probabilistic method (mean and standard deviation
based on the Taguchi method) as a frequently used method. The im-
plemented robustness assessment methods are described below.

2.2.1. The Max-Min method
This method is based on the difference between the maximum

performance for each design (Am) and the minimum performance for
each design across all scenarios (Bm), as shown in Appendix I. The
design with the smallest difference is the most robust one. In this
method, the performance of a single design is only compared between
different scenarios, without comparison between different designs. This
indicator is calculated as in Eq. (3), in which PS is an abbreviation of
performance spread.

=PS A Bm m (3)

2.2.2. The best-case and worst-case method
This method is based on the difference between the maximum

performance of each design (Am) and the minimum performance of all
designs across all scenarios (D), as shown in Appendix I. The design that
has the smallest difference between these two factors is the most robust.
This indicator is calculated as below, in which PD is an abbreviation of
performance deviation.

=PD A Dm (4)

2.2.3. The minimax regret method
This method is based on the difference between the key perfor-

mance indicator (KPI) value for each design and the minimum perfor-
mance of each scenario across all designs (Cn). This indicator is calcu-
lated as below, in which PR is an abbreviation of performance regret
and KPImn represents the performance of design m under scenario n.

=PR KPI Cmn n (5)

Fig. 1. Diagram flow of the multi-target robustness-based decision making approach.
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The maximum performance regret represents the highest deviation
in each design, i.e., the largest difference between the worst perfor-
mance and the best performance. The most robust design is then the one
with the smallest maximum performance regret across all designs.
Appendix I shows the calculation of performance regret for designs
across all scenarios.

2.2.4. The mean and standard deviation based on the Taguchi method
In this method, mean and standard deviation are considered as ro-

bustness indicators. The most robust design is the design that has the
smallest variation (standard deviation) around the target performance
(mean) based on the Taguchi method, which is also called the Robust
Design Method. This method was used for the first time in product
development [45]. The calculation of this indicator is shown in Ap-
pendix I.

3. Methodology

This section is divided into two major parts. The first section will
focus on introducing the multi-target robustness-based decision making
approach, and the second section will focus on validating of this ap-
proach under different test conditions (various sets of scenarios) in a
test framework. Steps toward developing the approach are shown in
Fig. 1 and in more detail in the following subsections.

3.1. Multi-target robustness-based decision making approach (T-robust)

In this section, the robustness-based decision making approach,
which is called the T-robust approach in this paper, is introduced. This
approach integrates robustness assessment into the decision making
process. It considers multiple criteria for building performance and
applies penalties if the robustness margins for them are not met. There
are seven steps to this approach (Fig. 1), which are described below.

Step 1: Define designs and scenarios

Different possible designs for a building should be defined based on
the preferences of the stakeholders who are involved in the project.
Furthermore, designs are defined based on the building regulations and
requirements of each country [46]. Designers also need to define sce-
narios for formulating alternative future conditions, considering the
effects of various uncertainties in a building’s energy performance
during its lifespan. For instance, changes in occupant behaviour are one
of the significant factors that impact a building’s energy consumption
[47]. Other external factors can also have effects on building perfor-
mance, e.g., changes in climate conditions [48] and changes in eco-
nomic factors [36]. Robustness assessment should be evaluated across
the combination of all considered scenarios because the probability of
occurrence of any combination is unknown. This can lead to high
computational cost. The literature shows that different sampling stra-
tegies can be implemented in order to find samples that are re-
presentative of all scenario combinations [49].

Step 2: Define key performance indicators and stipulated targets

The performance of a building can be measured based on different

indicators. These indicators can be related to objectives that originated
from demands, such as energy consumption, thermal comfort, and cost.
Indicators can be defined based on the preferences of the decision-
makers involved in the building project or by considering the existing
risks and technical problems in the building. Furthermore, buildings
must meet specific requirements according to regulations [50], building
codes, and standards [51]. In this paper, requirements are called per-
formance targets, and the performance of the building under the design
conditions (reference scenario) should not exceed the performance
target. However, as stated before, the performance of buildings deviates
from the performance target during operation, and this is where the
robustness is needed. In order to evaluate robustness in this paper,
another concept is defined, which is called the robustness margin. Fig. 2
shows the difference between “the performance target” and “the ro-
bustness margin” for energy consumption. According to this figure, the
building will be robust from an energy perspective if its energy con-
sumption does not exceed the robustness margin. The arrows in Fig. 2
represent the changes that can occur during the building’s operation
and lead to an increase or decrease in its energy consumption.

Step 3. Define robustness assessment methods

The performance robustness of a building can be assessed by various
methods. These methods are introduced in Section 2.

Step 4. Simulate the performance of designs across all scenarios

In this step, the performance of each design across the formulated
scenarios is simulated in simulation software, and based on the defined
performance indicators, the results are extracted from the software.

Step 5. Calculate Multi-target KPI

In order to integrate the robustness assessment into the decision
making process, a new KPI is developed called a multi-target KPI (MT-
KPI). This KPI reflects the performance of the building regarding mul-
tiple criteria and penalizes the solutions that do not meet the robustness
margin. In this way, it can differentiate between feasible and infeasible
solutions. In the current paper, the development of the MT-KPI focuses
on only two performance indicators (energy and comfort), but it can
also be extended for more than two criteria. The vital point in the de-
finition of this KPI is considering the robustness margin (KPIi,m) for each
primary KPI for penalizing infeasible solutions. Considering KPIi,m, two
parameters can be defined as below, which represent the relative per-
formance of each indicator.

= × = ×KPI KPI100 100rel
KPI

KPI rel
KPI

KPI1, 2,m m
1

1,
2

2, (6)

Implementing the robustness margin leads to differentiating be-
tween the feasible solutions (KPIi < KPIi,m) and infeasible solutions
(KPIi > KPIi,m). Fig. 3 shows an example of the performance of a
building under 16 scenarios. Point (100,100) in Fig. 3 shows the re-
lative margin point, at which the performance of the building regarding
both indicators is equal to the robustness margin. Around the relative
margin point, four different performance zones are created, of which
two (i.e., zones 2 and 4) are feasible regarding one KPI and infeasible
regarding the other, one (zone 3) is feasible for both KPIs, and the last

Fig. 2. Conceptual illustration of performance target and robustness margin for energy consumption.
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zone (zone 1) is completely infeasible.
The calculation of the MT-KPI depends on the performance zones,

and is defined in Table 1. As can be seen from Fig. 3 and Table 1, in the
completely infeasible zone (zone 1), the MT-KPI is the sum of the KPIs’
difference with their corresponding robustness margins. This is applied
as a penalty for the infeasibility of both indicators. In the completely
feasible zone (zone 3), the MT-KPI is the sum of the inverted difference
between indicators and their corresponding robustness margins. In-
verting the differences is used in order to differentiate the feasible de-
signs. For the other two zones, which are feasible for one KPI and in-
feasible for the other (zones 2 and 4), a penalty is applied only for the
infeasible solutions, and the MT-KPI is defined based on Table 1.

Step 6. Carry out robustness assessment

In this step, the performance robustness of buildings is assessed with
the mentioned robustness indicators for the MT-KPI. Assessing robust-
ness using this KPI reflects not only robustness for multiple criteria but
also the actual performance of the building because of the incorporation
of the robustness margins in the definition of the MT-KPI.

Step 7. Make the decision

In this step, the best solution (i.e., high and robust performance
design) is chosen based on the results of the robustness assessment with
the MT-KPI.

3.2. The test framework

The combination of scenarios for a robustness assessment can vary
based on the knowledge of the designers. A combination of a huge

number of scenarios can lead to high computational costs. On the other
hand, decreasing the number of scenarios will remove some useful in-
formation, and this can affect the selection of a robust design. The lit-
erature shows that considering extreme scenarios (low–high scenarios)
can be sufficient for performance robustness assessment [49]. In order
to test the validation of the T-robust approach, a test framework was
developed. For this purpose, the robustness assessment in the previous
section was considered as input data, and the designs selected as robust
under different scenario combinations (test conditions) were compared,
as shown in Fig. 4. The steps of developing the test framework are
described below.

Step 1: Develop test conditions

To test the performance of the robustness assessment methods, test
conditions are needed. The original set of scenarios suggested for ro-
bustness assessment is called a reference test condition. This condition
is the most informative condition, and other test conditions have fewer
scenarios than the reference one. In the limited number of scenarios,
extreme scenarios (low–high scenarios) can be identified based on the
comparison of performance across scenarios. For cases with a high
number of scenarios, extreme scenarios can be found using special
sampling techniques [16]. In this study, test conditions were created
based on a random combination of extreme and non-extreme scenarios.
Notably, each test condition must have some extreme scenarios in order
to sufficiently assess robustness.

Step2: Repeat robustness-based decision making for each test con-
dition

In this step, the robustness assessment is repeated for the created
test conditions in order to determine how different robustness assess-
ment methods behave when the combination of scenarios is changed
from the reference condition to other test conditions.

4. Demonstration of the T-robust approach using a case study

A representative model of Norwegian single-family houses [52] was
chosen as the case study building. This model is based on representative
models in the IEEE project TABULA (Typology Approach for Building
Stock Energy Assessment) [53], which aimed to develop building
typologies for 13 European counties. A synthetic average building is
defined for each building type, whose characteristics are representative
of the most common features found in that building type based on the
best available knowledge. This building is a two-story building located
in Oslo with a floor area of 162.40 m2, and is divided into three zones in
a detailed model in IDA Indoor Climate and Energy software (IDA-ICE)
[54] which is validated using the BESTEST: Test Procedures [55]. The
zones consist of a representative day room (i.e., a combined zone for
living room, kitchen, and entrance), bedroom, and bathroom. Occu-
pancy schedules, domestic hot water distribution, and internal gains are
derived from Nord et al. [56]. The building envelopes, window to wall
ratio, and building energy systems (heating system, ventilation system,
and DHW generation system) are considered as design options and will
vary between eight competitive designs. Heating set-points, window
opening, and shading strategies are considered as scenario parameters

Fig. 3. Illustration of the performance zones of one design under 16 possible
scenarios.

Table 1
Calculation of MT-KPI in different performance zones.

Num Performance zone Feasibility Mt-KPI

1 KPI1,rel > 100 and KPI2,rel > 100 Completely infeasible (KPI1,rel-100) + (KPI2,rel-100)
2 KPI1,rel > 100 and KPI2,rel ≤ 100 Feasible for KPI2 (KPI1,rel-100) + (1/(100-KPI2,rel))
3 KPI1,rel ≤ 100 and KPI2,rel ≤ 100 Completely feasible (1/(100-KPI1,rel)) + (1/(100-KPI2,rel))
4 KPI1,rel ≤ 100 and KPI2,rel > 100 Feasible for KPI1 (1/(100-KPI1,rel)) + (KPI2,rel-100)
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and 16 scenarios are created, which will be explained in the upcoming
sections. Fig. 5 shows a screenshot of the IDA-ICE model and the
building layout, which has a window to wall ratio of 30%. Steps toward
the T-robust approach and test framework are described below for the
considered case study.

4.1. Description of case study

4.1.1. Design variants and scenarios
4.1.1.1. Competitive designs. In this study, eight design configurations

are considered for the case study building. The same energy and
thermal comfort targets are set for all of the design configurations
under the reference scenario (S1). This creates the opportunity to
compare the robustness of designs with the same performance targets
across the considered scenarios. The target set for annual energy
consumption is 110 KWh/m2 based on the TEK17 standard [50]. For
thermal comfort, the number of unacceptable hours (including
underheating and overheating hours based on the TEK17 standard)
should not exceed 5% of occupied hours. To achieve these energy and
thermal comfort targets, the building envelope, window to wall ratio,

Reference condition (T0)

1

2

Robustness- based 
decision-making(Fig.1)

Test condition  (T1)
Test condition (T2)

...
Test condition  (TN)

Robust design in T0

Robust design in T1

Robust design in T2

...

Robust design in TN

Fig. 4. Flow diagram of the test framework.

Fig. 5. Layout and appearance of a representative single-family house with a floor area of ca. 162 m2.
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and energy systems are considered as design options for the competitive
designs. For example, the targets can be achieved by combining the
envelope with low insulation and very efficient energy and ventilation
systems. In contrast, another design can achieve the targets via a highly
insulated envelope and less efficient ventilation and energy systems.
However, targets are met only in the reference scenario, and when
uncertainties arise, designs can have different magnitudes of
performance deviations from the energy and comfort targets. Hence,
the robustness margin is considered in the definition of the MT-KPI in
order to select a design based on both its actual performance and
performance robustness. Table2 shows the details of the designs and the
assessed KPIs under the reference scenario (S1). The building envelope
of D1 is based on the TEK17 standard, the current minimum
requirement in Norway [50]. In the building envelope, the U-values
of the floor, walls, and roof, infiltration, and thermal bridges are
variable, and the overall U-value shows the effect of these changes. Two
WWR values are considered in the design options. The heating system
options are an electric boiler and an air source heat pump with a COP
(coefficient of performance) of 3.2 under the rating condition. The heat
emitter are electric radiators in the living room and bedroom and
electric floor heating in the bathroom. It should be noted that in the
designs with the air source heat pump, the heat pump is used in
combination with an electric boiler, which is used to generate heat for
the electric floor heating in the bathroom. Options for the ventilation
system are balanced mechanical ventilation with a heat recovery unit
that has an efficiency of 80% and mechanical exhaust ventilation
without a heat recovery unit. Domestic hot water in the building is
generated with the electric boiler, but in some of the designs (i.e., D2
and D6), in order to compensate for the high energy consumption due to
other design options, an auxiliary solar thermal collector is added. For
lighting, in most of the designs, typical lighting (luminous efficacy of
12 W/m) is implemented, but in the designs with high energy demand
(i.e., D2 and D6), LED light (luminous efficacy of 60 W/m) is used in
order to keep the total energy demand lower.

4.1.1.2. Scenarios. The scenarios that are considered in this paper
include two groups of parameters: occupant behaviour and climate
scenarios. The eight occupant behaviours consist of eight possible
combinations of two heating setpoints, two window opening
strategies, and two window shading strategies. In the climate group,
two climate scenarios are considered, which leads to a total of 16
scenarios. Table 3 summarizes the scenario parameters and
combinations of them across the 16 scenarios.

i. Heating setpoints

The first option for heating setpoint is taken from [52]. In order to
create an option with more heating use, heating setpoints are increased
in the second scenario based on the survey data taken from [57].

ii. Window shading strategies

The first window shading strategy, taken from [52], is based only on
temperature control. This strategy creates a moderate usage of lighting
and moderate solar gain. The second scenario increases the shaded time
during the day, leading to more lighting use and less solar gains from
the window.

iii. Window opening strategies

The first window opening strategy is based on [58], and is adapted
with the Norwegian scale. The second option is a hybrid option that
uses the first option for window opening in the day room and bathroom.
In contrast, in the bedroom, which faces more overheating, it uses the
upper limits of the adaptive temperature limits proposed by [59] and is
developed by a macro control in IDA ICE. This reflects a group of oc-
cupants who prefer a lower inside temperature.

iv. Climate scenarios

To consider the effect of climate uncertainties, two climate files
from The American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE), IWEC and IWEC2, are used from the
library of IDA ICE [54]. The IWEC file is derived from up to 18 years of
DATSAV3 hourly weather data from 227 locations, originally archived
at the National Climatic Data Center (NCDC), and the IWEC2 file is
derived from Integrated Surface Hourly (ISH) weather data for 3012
locations, also originally archived at the NCDC. Direct radiation para-
meters in the IWEC weather file have a strong negative bias of approx.
20 to 40% for Northern Europe [60]. The difference between dry-bulb
temperature and direct normal radiation in the IWEC and IWEC2
weather files is shown in Fig. 6. These are the parameters with the
strongest effects on the simulation results regarding energy consump-
tion and thermal comfort, and for this reason, other parameters (e.g.,
relative humidity, etc.) are not compared in this paper.

4.1.2. Simulation model validation
The simulated model is validated using two different approaches.

The first approach is to compare the amount of annual energy con-
sumption to the calculated value based on the TEK 17 standard [50].
The comparison shows that if the model implements all of the re-
quirements of TEK 17 standard (D1 in the considered case study), it can
meet the targeted value for annual energy consumption based on that
standard, which is 110 KWh/m2 for the considered case study. Fur-
thermore, the annual energy consumption is compared with that of a
similar building from [61]. Karlsen et al. [61] evaluated the annual
energy consumption of a Norwegian single family house with two dif-
ferent envelope levels: typical ’60 s buildings and TEK 17 standards.
Their results show that the range of energy consumption for the Nor-
wegian single-family house based on the TEK 17 standard and without
electric vehicles is varing from 100 to 200 KWh/m2. This is in line with
the estimated energy consumption for the current case study, which is
110 KWh/m2. The second approach focuses on the energy use of

Table 2
Details of the eight competitive designs considered in the case study demonstration.

Designs
Design parameters D1 D2 D3 D4 D5 D6 D7 D8

Overall U-value (W/m2. k) 0.31 0.25 0.43 0.36 0.33 0.29 0.51 0.44
WWR (%) 30 30 30 30 40 40 40 40
Heating system EB EB ASHP + EB ASHP + EB EB EB ASHP + EB ASHP + EB
Ventilation system Balanced Exhausted Balanced Exhausted Balanced Exhausted Balanced Exhausted
Solar domestic hot water system size (m2) 0 5 0 0 5 0 0
Lighting Typical LED Typical Typical Typical LED Typical Typical
KPIs D1 D2 D3 D4 D5 D6 D7 D8

Total energy consumption (KWh/m2) 110 110 110 110 110 110 110 110
Unacceptable hours (hr) 18 15 12 188 18 3 75 334

ASHP: Air source heat pump, EB: Electric boiler.
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internal gains. Norwegian standard SN/TS 30301:2016 [46], which was
developed for the calculation of the energy performance of buildings
with standardized requirements, considers internal gains as fixed
average values per square meter of the building which is shown in
Appendix II. In the considered simulation model, these values are based
on realistic values for each zone in order to increase the reliability of
the energy demand profile in the model. In this validation approach, the
energy consumption caused by realistic schedules is compared with the
fixed values from the standard. The comparison shows that the range of
simulation results is close to the reference values (Appendix II).

4.1.3. Performance indicators and stipulated targets
A building’s performance robustness may be evaluated in terms of

different key performance indicators. In this paper, it is evaluated for
two KPIs, annual energy consumption and thermal comfort, the latter of
which is evaluated in terms of unacceptable comfort level hours.

i. Total energy consumption

Total net specific energy use, which includes space heating, heating
for ventilation air, space cooling, domestic hot water, ventilation,
lighting systems, and appliances, is considered as the first performance
indicator. TEK17 (the current minimum energy requirements in
Norway) states that the total net specific energy use for a single-family
house is derived from the following equation [50]:

= +

Total net specific energy use

100 1600
heated gross internal area

(KWh/m )2
(7)

Considering this equation, total energy use for the case study
building shall not exceed 110 KWh/m2. This target is the one that all
eight designs should not exceed under the reference scenario. As stated
before, infeasible solutions are penalized based on the robustness

margin in the definition of the multi- target KPI. In this paper, the ro-
bustness margin allows 5% tolerance from the energy consumption
target (110 KWh/m2), which sets115 KWh/m2 as the robustness
margin.

ii. Thermal comfort (unacceptable hours)

Energy-robust buildings are only effective when the users of the
building feel comfortable. This leads us to adopt thermal comfort as the
second performance indicator in this paper, which is only evaluated for
the bedroom zone. TEK17 recommends an operative temperature be-
tween 16 and 26 °C (289.15 and 299.15 K) for bedrooms in Norway
[50]. Unacceptable hours include both overheating hours
(Tindoor > 26 °C, 299.15 K) and underheating hours (Tindoor < 26 °C,
299.15 K). In this paper, the indoor temperature should not fall outside
of TEK17′s comfort range for more than 5% of occupied hours. Fur-
thermore, the robustness margin allows 5% tolerance from this limit for
a solution to be considered feasible.

4.2. Validation under the test framework

Since excluding extreme scenarios may lead to designs that are more
sensitive to change, all of the created test conditions should include
some extreme scenarios. For this reason, test conditions are a combi-
nation of random extreme and random non-extreme scenarios. Because
there are limited numbers of scenarios in this paper, extreme scenarios
were identified by observing and comparing the performance across
scenarios, as can be seen in Fig. 7. Extreme scenarios that lead to the
same robust design as all scenarios are S6, S9, and S11 for energy con-
sumption and S1, S8, S12, S13, and S16 for thermal comfort. Since the
case study for this paper is a heating-dominated building, a large por-
tion of the unacceptable hours is related to underheating hours. The
combination of underheating and overheating hours makes the identi-
fication of extreme scenarios more complex. Fig. 8 represents the

Table 3
Summary of the considered occupant behaviour and climate parameters and their combinations in the 16 considered scenarios.

Scenarios

Parameter Options 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Heating setpoint 1) Bedroom, Living room, bathroom 18 ,21.5 ,23 °C (291.15, 294.65, 296.15 K) × × × × × × × ×
2) Bedroom, Living room, bathroom 20 ,23 ,23 °C (293.15, 296.15, 296.16 K) × × × × × × × ×

Window shading 1) Shading control On if Tindoor > 23 °C (296.15 K) × × × × × × × ×
2) Shading control On if radiation above 100 W/m2 × × × × × × × ×

Window opening 1) Open if Tindoor > Tout and Tindoor > 23 °C (296.15 K) for windows in all zones × × × × × × × ×
2) Open if Tindoor > Tout and Tindoor > 23 °C (296.15 K) for day room and
bathroomOpen based on adaptive thermal model limits for bedroom

× × × × × × × ×

Climate 1) IWEC × × × × × × × ×
2) IWEC2 × × × × × × × ×

Fig. 6. Temperature and radiation differences in the IWEC and IWEC2 weather files.
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Fig. 7. Predicted performance (total energy consumption and unacceptable hours) of eight competitive designs across all scenarios.

Fig. 8. Comparison of performance of eight competitive designs for combinations of all scenarios and extreme scenarios. The solid box represents all scenarios, and
the hatched box represents extreme scenarios (S6, S9, and S11 for total energy consumption and S1, S8, S12, S13, and S16 for unacceptable hours).
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comparison of building design performances from the energy and
comfort perspectives for all scenarios and for extreme scenarios. As can
be seen, the range of predicted performance with extreme scenarios is
the same as the predicted performance across all scenarios. This shows
that a test condition without any extreme scenarios cannot be sufficient
for testing the performance of robustness assessment methods. So, in
addition to the reference test condition (16 scenarios), eight test con-
ditions are developed in this paper. The first test condition consists of
all extreme scenarios, and the other test conditions consist of four
random extreme scenarios and four random non-extreme scenarios.
These combinations are shown in Table 4. Finally, robustness-based
decision making was assessed for all developed test conditions with four
proposed robustness assessment methods.

5. Results and discussion

5.1. Performance assessment for considered scenarios

Fig. 9 represents the variations in total energy consumption and
unacceptable hours for the eight designs across the considered sce-
narios. The ranges of the boxes indicate the distribution of performance
indicators. It can be inferred from Fig. 9 that the performance range of
the designs with the electric boiler (D1, D2, D5, D6) is entirely different
from that of the designs with the air source heat pump (D3, D4, D7, D8).
D3 has better predicted energy performance, and D4 has the least var-
iation in total energy consumption. So, it is not easy to determine which
of them is the best design if total energy consumption is prioritized. If
unacceptable hours are prioritized, it can be noted that D1 has better
performance and D6 has the least variation. Fig. 9 shows that the de-
signs with the air source heat pump (D3, D4, D7, D8) exhibit significant
variation in the number of unacceptable hours. This is because the
decrease in heat pump’s COP (coefficient of performance) on cold
winter days leads to more underheating hours during winter operation.
So, if uncertainties are not considered in the performance prediction,
the decision making process can select designs that lead to more un-
derheating hours during winter operation. It can be concluded that
selecting the best design based on performance cannot be achieved
easily because some designs perform well but with significant variation
across scenarios. So, robustness assessment is needed to facilitate the
selection of designs that are robust under uncertainties and also have
optimal actual performance.

5.2. Robustness assessment and robust design selection

In this section, the robust designs selected for the case study are
compared based on four robustness assessment methods using two ap-
proaches:

• Choosing the best design based on robustness assessment and the
decision making steps (Hurwicz criterion approach is used for the
decision making step here.)
• Multi-target robustness-based decision making approach (T-robust
approach)

5.2.1. Decision making based on the Hurwicz criterion
In this approach, first, robustness assessments are performed sepa-

rately for total energy consumption and for unacceptable hours. Then,
the design that is robust regarding both criteria is selected in a decision
making step based on the Hurwicz criterion, with equal prioritization of
energy and comfort. The robustness of the eight designs is calculated
using the four robustness assessment methods in Fig. 10. It can be seen
that for both KPIs, there are two trends among the robustness assess-
ment methods. First, the spreads using the max–min method and
standard deviation follow the same trend. This is because both of these
robustness indicators are calculated based on the variation. Second, the
maximum regret using the minimax regret method, the deviation using

the best-case worst-case method and the mean follow the same trend
because all define robustness with respect to the optimal performance.
Furthermore, it should be noted that considering the mean by itself
cannot be a good indicator for selecting the robust design because that
does not reflect the fluctuation across different scenarios. For this
reason, the mean and standard deviation in the Taguchi method is
considered as a robustness indicator in this paper. It can be inferred
from Fig. 10 that D4 is the most robust design regarding total energy
consumption for the max–min, best-case and worst-case, and Taguchi
methods, but the minimax regret method selects D3 as the robust de-
sign. This is in line with what the literature states about the max–min
and best-case worst-case methods as conservative approaches and the
minimax regret method as a less conservative approach [13]. In this
case, D4 is a design that can exhibit the best performance even in ex-
treme cases, and for this reason, it is selected by the conservative ap-
proaches. Similarly, comparing the robustness of unacceptable hours, it
can be found that the max–min, best-case and worst-case, and Taguchi
methods select designs D5 and D6, which have better performance even
in extreme cases, and the minimax regret method selects D1, which is
less conservative. In order to select a robust and high performance
design regarding both criteria, a decision making approach using a
neutral Hurwicz criterion (α = 0.5) is implemented. For this decision
making, the actual performances regarding both KPIs and their corre-
sponding robustness values are normalized, and a design score is cal-
culated based on the following equation:

= +H A( ) (maximum of row) (1 )(minimum of row)i (8)

It should be noted that in this paper, all actual performance and
corresponding robustness values are prioritized equally to simplify the
demonstration. The design scores for all robustness assessment methods
are calculated and presented in Fig. 11. The most robust design is the
design with the highest score. It can be observed from Fig. 11.a that D1
is the most robust design using the max–min method and D3 is the most
robust design using the best-case and worst-case, minimax regret, and
Taguchi methods. It can also be seen that without prioritizing the
performance criteria, the max–min method selects a design that per-
forms better for unacceptable hours (D1), and the other methods select
a design (D3) that performs better from the energy consumption per-
spective.

5.2.2. Multi-target robustness-based decision making
In this section, the results of the T-robust approach are presented. In

this approach, based on the definition, MT-KPI differentiates between
feasible and infeasible designs by considering the robustness margin.
The results of the robustness assessment with MT-KPI are shown in
Fig. 11.b, which indicates that the most robust designs regarding MT-
KPI are D1 for the max–min method and D2 for the best-case worst-case,
minimax regret and Taguchi methods. D1 is a design that has better
performance for MT-KPI even in extreme scenarios, and the selected
designs show that regarding the MT-KPI, the max–min method selects
the most robust design using a conservative approach. The max–min
method selects D1 in both the Hurwicz decision making and the T-

Table 4
Details of scenario combinations of the eight considered test conditions.

Test condition Number of
scenarios

Extreme scenarios Non-extreme
scenarios

1 8 S1, S6, S8, S9, S11,
S12, S13, S16

–

2 8 S1, S6, S13, S16 S2, S3, S14, S15
3 8 S8, S9, S11, S12 S2, S5, S7, S10
4 8 S1, S6, S8, S9 S2, S3, S4, S7
5 8 S11, S12, S13, S16 S2, S3, S10, S14
6 8 S1, S6, S11, S12 S5, S7, S10, S15
7 8 S6, S9, S13, S16 S4, S5, S14, S15
8 8 S1, S8, S9, S12 S2, S3, S7, S10
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robust approaches; however, for the other indicators, the design se-
lected using the Hurwicz method is D3, but the one selected using the T-
robust approach is D2. In the T-robust approach, the preferences are
automatically incorporated into the MT-KPI by using a robustness
margin. Selecting designs D1 and D2 in the T-robust approach shows
that the comfort criterion is prioritized in the robust design selection.
This is in contrast with the designs selected using the Hurwicz criterion,
in which all performance indicators are equally prioritized. In order to
test the validity of the designs selected in the implemented approaches
using different robustness assessment methods, the test framework was
developed. The results for this test are represented in the next section.

5.3. Test results

As stated earlier, eight test conditions were generated in addition to
the reference condition (T0). The robustness assessment was repeated
under the test conditions, and the results are shown in Table 5 for total
energy consumption and unacceptable hours, respectively. It can be

observed from this table that the design selected as most robust by all
robustness assessment methods is repeated in conditions T1, T2 T4, T6,
and T7 for total energy consumption. In contrast, the designs selected as
robust by the best-case worst-case method and the Taguchi method vary
under conditions T3, T5, and T8. So, for total energy consumption, the
max–min and the minimax regret robustness indicators selected the
same robust design across all generated test conditions. For the un-
acceptable hours, the T1 and T8 test conditions resulted in the selection
of the same robust design as the reference condition for all robustness
indictors. It can be inferred from Table 5 that the best-case worst-case
and Taguchi methods selected the same robust design across all test
conditions for unacceptable hours. A comparison of the robustness as-
sessments for total energy consumption and unacceptable hours shows
that one robustness assessment method can select the same design
across all test conditions for one KPI but select different designs for the
second KPI. For example, in this case study, the max–min method se-
lects the same design across all test conditions for total energy con-
sumption but different designs for unacceptable hours. Furthermore,

Fig. 9. Variation of total energy consumption and unacceptable hours for eight competitive designs across considered scenarios.

Fig. 10. Robustness of total energy consumption and unacceptable hours using different robustness assessment methods for eight designs across considered scenarios.
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between the implemented robustness methods, the Taguchi method
selects different designs across test conditions regarding both total en-
ergy consumption and unacceptable hours. This shows that the Taguchi
method is the most sensitive one regarding test conditions.

Table 6 shows the robust designs selected by the Hurwicz criterion
and the T-robust approach across test conditions. The same designs that
are selected as most robust by each robustness assessment methods
under the Hurwicz criterion are also selected for conditions T1, T4, and
T7. No robustness assessment method generates the same result across
every test condition in the Hurwicz decision making process, high-
lighting the complexity of the decision making process, which takes
both indicators and their corresponding robustness into account. Even
though there are some robustness assessment methods that perform
consistently under different test conditions for individual KPIs, the
design selected in the different test conditions is not the same when it
comes to the decision making step. In the Hurwicz decision making
process, D1 is the most-selected design by the max–min method, and D3
is the most-selected design by the other three methods. This is in line
with the designs selected in the reference condition. Furthermore, the
two designs selected most often by all methods across all test condi-
tions, which are called the first and second dominant designs, are D3

and D1 for decision making based on the Hurwicz criterion. Regarding
the T-robust approach, it can be observed that in this approach, as in
the previous one, no assessment method selects the same design across
all test conditions. In test conditions T3 and T4, all robustness assess-
ment methods select the same design that they do in the reference test
condition. The most-selected designs are D1 for the max–min method
and D2 for the other three methods. In this approach, the designs se-
lected most often by each robustness assessment method are again in
line with the designs selected in the reference condition. In the T-robust
approach, the first and second dominant designs are D2 and D3, re-
spectively.

The differences between the two decision making approaches that
can lead to diversity between the selected robust designs are summar-
ized in Table 7. As can be seen from this table, the T-robust approach
decreases the number of steps needed to find the best design from three
to two steps by integrating the robustness assessment and decision
making steps. Furthermore, the T-robust approach only assesses ro-
bustness for MT-KPI, instead of assessing it separately for energy and
comfort. Performance and corresponding robustness in the Hurwicz
criterion are normalized regarding the maximum performance among
the alternatives. This makes the Hurwicz criterion dependent on the

Fig. 11. (a) Design scores calculated using the Hurwicz criterion considering both performance indicators and corresponding robustness with different robustness
assessment methods; (b) robustness calculated using the T-robust approach with different assessment methods.

Table 5
Designs selected as robust regarding total energy consumption and unacceptable hours under test conditions.

Total energy consumption Unacceptable hours

Test conditions Max-min Best-case worst-case Minimax regret Taguchi Max-min Best-case worst-case Minimax regret Taguchi

T0 D4 D4 D3 D4 D5 D6 D1 D6
T1 D4 D4 D3 D4 D5 D6 D6 D6
T2 D4 D4 D3 D4 D6 D6 D1 D6
T3 D4 D3 D3 D3 D5 D6 D1 D1
T4 D4 D4 D3 D4 D6 D6 D6 D6
T5 D4 D3 D3 D3 D6 D6 D6 D6
T6 D4 D4 D3 D4 D5 D6 D6 D6
T7 D4 D4 D3 D4 D6 D6 D6 D6
T8 D4 D3 D3 D3 D5 D6 D1 D6
Most selected D4 D4 D3 D4 D5 D6 D1 D6
Dominant design D4 D6
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combination of performances in the solution space, and if the perfor-
mance in the solution space change, the normalization process will be
changed, which will affect the selected designs. In the T-robust ap-
proach, the normalization process is based on the performance targets
and it does not vary with the changes in the combination of perfor-
mances in the solution space. The last difference is related to the se-
lection basis. In T-robust approach, the best design is selected by the
integration of performance targets in the robustness assessment and
there is no need for preferences in order to weight various criteria. This
is exactly in contrast with the Hurwicz approach, where preference
weights are needed for selecting the best design. For example, in the
current case study, the energy and comfort criteria are weighted
equally, and this can be one reason for differences between the designs
selected by the two approaches. In order to validate the logic behind the
selected designs and compare the dominant designs identified by the
two approaches, the designs were ranked in an exhaustive search based
on their physical meaning, as described in the next section.

5.4. Selection of the best design with an exhaustive search

In this section, the designs selected as robust using the Hurwicz
criterion and T-robust approaches were compared via an exhaustive
search. A limited number of designs was considered for the case study
building in order to be able to analyse them with the exhaustive search
and engineering knowledge. It is remarkable that in both approaches,
designs D1, D2, D3, and D6 are selected by robustness assessment
methods under different test conditions, but the dominant design in the
Hurwicz criterion is not the same as in the T-robust approach. This
difference can be attributed to the approach of quantifying the MT-KPI,

which takes a robustness margin into account and differentiates be-
tween feasible and infeasible solutions. This differentiation is done by
penalizing infeasible solutions in the definition of the MT-KPI. To make
the penalizing process more understandable, an exhaustive search was
implemented for the proposed designs based on two performance cri-
teria.

It should be noted that the exhaustive search could be done for this
case study because it has a limited number of designs, but in cases with
a large number of designs, it would be a tedious task to make a ranking
based on design physical meaning and trade-off between different
performance perspectives. This can lead to computational and practical
difficulties. Furthermore, this search requires a deep understanding of
the physical meaning of each design and expert knowledge. First, the
most influential design options that can affect total energy consumption
and thermal comfort were identified based on the physical meanings of
designs. Then, the designs were ranked based on those options. The
ranking is summarized in Table 8. Based on the evaluation of the si-
mulation results (Figs. 8 and 9), the most influential design option for
total energy consumption is implementing the electric boiler (D1, D2,
D5, D6), and its effect is stronger when there is no solar thermal col-
lector for generating hot water, which occurs in designs D1 and D5. On
the other hand, designs with a higher U-value and larger WWR lead to
higher energy consumption. So, of the two designs, D5 consumes higher
energy than D1, because it has higher U-value and larger WWR. After D5
and D1, the next highest energy consumption is related to D2 and D6,
but they consume less electricity because they have solar thermal col-
lectors for generating hot water. The other designs consume less energy
and are not considered in detail in the ranking for total energy con-
sumption because they do not include the most influential options.

Table 6
Selected robust design using the Hurwicz criterion and T-robust approach under test conditions.

Hurwicz criterion T-robust approach

Test 

conditions
Max-min

Best-case

worst-case

Minimax 

regret
Taguchi Max-min

Best-case

worst-case

Minimax 

regret
Taguchi

T0 D1 D3 D3 D3 D1 D2 D2 D2

T1 D1 D3 D3 D3 D3 D3 D3 D3

T2 D2 D3 D3 D3 D6 D6 D1 D6

T3 D1 D6 D6 D1 D1 D2 D2 D2

T4 D1 D3 D3 D3 D1 D2 D2 D2

T5 D2 D2 D2 D2 D2 D2 D2 D2

T6 D3 D3 D3 D3 D3 D3 D3 D3

T7 D1 D3 D3 D3 D1 D2 D2 D3

T8 D1 D6 D6 D1 D6 D6 D6 D6

Most selected D1 D3 D3 D3 D1 D2 D2 D2

First dominant D3 D2

Second dominant D1 D3

Table 7
Summary of differences between the Hurwicz and T-robust approaches.

Approaches

Num Criteria Hurwicz criterion T-robust

1 No. of needed steps 3 steps (PA, RA, and DM) 2 steps (PA, integrated RA and DM)
2 No. of needed RAs Dependent on the number of performance criteria (here 2) 1
3 Normalization basis Maximum performance in the solution space Performance targets
4 Selection basis Weights of criteria are necessary(Equally prioritized for the current case study) Weights are based on the required targets

No.: Number, PA: performance assessment, RA: Robustness assessment, DM: Decision making
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Regarding underheating hours, the air source heat pump, which occurs
in designs D3, D4, D7, and D8 is the most influential option for in-
creasing underheating hours. The second influential parameter is ex-
haust ventilation, which can be found in D8 and D4, and the last options
are higher U-value and larger WWR. So, the four designs with the most
underheating hours are, in order, D8, D4, D7, and D3. Other designs have
fewer underheating hours and are not considered in the ranking. Air
balanced ventilation is the most influential parameter that increases
overheating hours, and the second influential parameter is a lower U-
value. This makes D1 the design with the most overheating hours, fol-
lowed by D5. Fig. 12 summarises the results for all designs and scenarios
using the same four performance zones defined previously in Fig. 3.
Designs D4, D7, and D8 are placed in zone 4 (infeasible for both criteria)
for some scenarios, and for this reason, they are not preferable designs.
D1 is a design with high energy consumption and the highest over-
heating, so it cannot be selected as the best design, either. This is
completely proven by both the T-robust and the Hurwicz approach,
neither of which selected D4, D7, D8, or D1. The next design that cannot
be selected as the best design is D5, because it has the highest energy
consumption and is ranked in the high overheating category. D6 also
cannot be selected as the best design because it has more energy con-
sumption than D2. The remaining candidates for selection as the best
design are D2 and D3. The energy ranking shows that D2 is the best
design among the four designs considered from an energy perspective
(D5, D1, D6, D2). On the other hand, based on the unacceptable hours
ranking, D3 is the best design among the four considered designs (D8,
D4, D7, D3). This shows that there is a trade-off between the selection of
D2 or D3 as the best design. The results show that the effect of un-
acceptable hours ( = = 1.40Maximum unacceptable hours

Unacceptable hours margin
460
330 ) for D3 is more

severe than the effect of energy consumption
( = = 1.2Maximum energy consumption

Energy margin
139
115 ) for D2. Furthermore, D3 violates

both the energy and comfort criteria (under different scenarios) because
its performance is placed in zones 2 and 4. In contrast, D2 only violates
the energy criterion. The selection of D2 by the T-robust approach
proves that this approach can completely reflects the effects that can
occur due to the sever deviations from target and the violation from two
perspective. Nevertheless, selecting the best design between these two
designs by ranking their performance regarding both criteria is not so
easy, and this shows that D2 and D3 are the best two designs that can be
selected by exhaustive search. This is also in line with the results of the
designs selected by the Hurwicz and T-robust approaches. As stated
before, the first dominant designs selected by the Hurwicz and the T-
robust approaches are D3 and D2, respectively, which are also selected
as the best design in the exhaustive search. Furthermore, the T-robust
approach selects D3 as the second dominant design. In contrast, the
second dominant design selected by the Hurwicz approach is D1, which
is not a preferable design based on the results of the exhaustive search
and the physical meaning of the designs because it results in high en-
ergy consumption and high overheating hours. One of the reasons for
the selection of different designs by two approaches is that in the T-
robust approach, preferences regarding energy and comfort are auto-
matically included in the robustness assessment by using robustness
margins in the definition of the MT-KPI. This is in contrast with the
decision that is made by the Hurwicz approach with equally prioritized
energy and comfort. This can be solved by prioritizing energy and
comfort criteria using commonly agreed upon weights and preferences.
However, in practice, identifying those preferences and tuning the de-
cision making can be dependent on the project and vary for different
objectives. Furthermore, finding the optimum weights that lead to the
best design selection becomes more difficult when it comes to real-
world problems that face a high number of conflicting criteria. Im-
plementing the T-robust approach reflects the decision-makers’

Table 8
Design ranking based on total energy consumption and unacceptable hours.

Performance indicator Most influential design options Design ranking

Total energy consumption 1) Electric Boiler without solar thermal collectors Bad → Good
D5 > D1≫D6 > D2 > other designs2) Higher U-value

3) Larger WWR
Underheating hours 1) ASHP Bad → Good

D8 > D4 > D7 > D3 > other designs2) Exhausted ventilation
3) Higher U-value
4) Larger WWR

Overheating hours 1) Air balanced ventilation
2) Lower U-value

Bad → Good
D1 > D5 > other designs

Fig. 12. Unacceptable hours vs. total energy consumption of the eight addressed designs under the 16 considered scenarios (the red lines show the robustness margin
for each indicator). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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preferences in a transparent way to ease the decision making process to
select the best design without any guiding and tuning steps, at the same
time reducing the computational cost.

The main contributions of this research are dual. First, it has pro-
posed the T-robust approach, which allows a robust high performance
building design to be selected by comparing assessed designs with
performance targets. Second, the proposed approach was applied to a
case study with eight competitive designs that all have the same energy
and target requirement.

5.5. Practical use of the proposed approach

The proposed approach can be used by building designers, architects,
engineers and other decision makers such as grid suppliers to find high
performance and robust building designs. These designs can perform based
on targeted requirements during operation while exhibiting minimal
sensitivity to future uncertainties. Robust buildings can assure home-
owners and building designers that the building will perform as expected
against uncertainties, which can include changes in occupant behaviour,
climate conditions, etc. As an example, it is documented that in identically
constructed buildings, energy use can vary up to 17 fold due to the in-
fluence of occupants [62]. These fluctuations can be decreased by ap-
propriately selecting robust designs. From broader perspective such as
demand-side management, the energy consumption fluctuations created
by uncertainties in the building sector can lead to issues such as grid
failure and can increase grid stress. Thus, these fluctuations are not de-
sirable for companies such as grid suppliers that are planning for current
and future energy use in the building sector as the major energy consumer
worldwide [63]. As an example, electricity demand can increase sig-
nificantly during extreme weather conditions, which can be caused by
buildings that are not designed for such conditions. This can leave thou-
sands of buildings out of the comfort range and threaten the lives of
vulnerable people. Furthermore, as demonstrated for the case study
building, it is easier to compare designs based on the performance ro-
bustness of MT-KPI under uncertainty (Fig. 11.b), instead of comparing
them regarding two different performance indicators (i.e. energy and
comfort) across scenarios (Fig. 9). This comparison can be instrumental in
decision making, especially when designs are going to be selected from a
large design space. This approach also provides designers with information
on which designs deviate more from the performance targets. This is done
by penalizing the designs that do not meet the required targets.

6. Conclusion

This paper focuses on the selection of high performance and robust
building designs under climate and occupant uncertainties. It introduces a
new approach that integrates robustness assessment and decision making
steps and selects the best design by not only comparing different designs to
each other but also comparing them to performance targets that can be set
by building regulations, standards or the desires of homeowners. The
proposed approach comprises building performance simulation, scenario
analysis, and different robustness assessment methods and then describes
the robustness-based decision making approach based on the combination
of these steps in a transparent and easy to understand way. This approach
can be effectively used by building designers, architects, engineers, and
decision-makers to select high performance and robust designs that can
meet the established requirements even when considering possible
changes in the internal and external environments.

The integration of robustness assessment into the decision making
process is achieved using a multi-target key performance indicator, which
takes multiple performances into account and differentiates between fea-
sible and infeasible solutions using robustness margins. Using this approach
also removes the need for repeated robustness assessments regarding mul-
tiple criteria. The introduced approach was assessed using four robustness
assessment methods (i.e., max–min, best-case and worst-case, minmax re-
gret and Taguchi methods) for a representative model of Norwegian single-

family houses as a case study under occupant behaviour and climate sce-
narios in order to identify the best design. The designs of the case study
building are competitive designs and all of themmet the same requirements
for energy and comfort based on Norwegian standards under the reference
scenario. In the demonstration example, performance robustness was as-
sessed in terms of energy and thermal comfort. Furthermore, the introduced
approach was compared to one of the frequently used methods for selecting
robust designs (i.e., the Hurwicz criterion) in a test framework that consisted
of different sets of scenarios (test conditions).

The following conclusions can be drawn based on this comparative
study:

• The proposed approach can be used by designers and decision ma-
kers to select a robust and high performance building design by
comparing designs not only to each other but also to performance
targets based on standards, regulations or the desire of homeowners.
• The inclusion of the performance targets in the proposed approach
can automatically establish the criteria preferences. This removes
the need for a weighting process which requires high levels of ex-
perience and knowledge in real-world projects that face many
conflicting criteria.
• Regardless of how many performance criteria are going to be eval-
uated, the proposed approach needs only one robustness assessment
for the multi-target key performance indicator. This can reduce the
demand for the computational cost.
• Implementation of the performance targets in the proposed ap-
proach can lead to the selection of different designs in comparison
with the Hurwicz approach (D2 in contrast with D3 for the con-
sidered case study). This can be related to the differences in the
selection basis; in the proposed approach, the designs are selected
based on the performance targets, whereas the Hurwicz approach
requires the weighting preferences in order to select the best design.
• Robustness assessment methods can exhibit different behaviours
under test conditions when they are evaluating different key per-
formance indicators. For example, in this case study, the max–min
and minimax regret methods repeatedly selected the same design
under all test conditions regarding total energy consumption. In
contrast, they selected different designs under different test condi-
tions when they were evaluating unacceptable hours. This also led
to different designs being selected designs in the decision making
process, which shows the complexity of multi-criteria decision
making under uncertainty.
• In the introduced approach, the max–min method selected a design
that can work for all scenarios, including extreme scenarios, and can
thus be considered as a conservative method for this approach.
Other methods (the best-case worst-case, minimax regret, and
Taguchi methods) selected less conservative designs.

The proposed approach is a generic approach that can be im-
plemented for case studies with different backgrounds. In this paper, it
was assessed for a two-criteria (energy and comfort) robust design
problem. In future works, this can be extended to address other criteria
such as cost, which is an important perspective in high performance
building design. Furthermore, in this paper, the context of the proposed
approach is considered for a single building. In the real world, buildings
interact with each other and with the connected grids. It is, therefore,
an interesting option to consider this approach for larger scales, such as
a neighbourhood scale.
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Appendix I. Calculation of implemented robustness indicators are shown in the following tables.

See Tables A1.1–A1.4.

Table A1.1
Finding the maximum and minimum performance of a design across scenarios and best performance for designs and scenarios [17].

Design Scenarios Max and Min performance across scenarios

S1 S2 … Si Sn Maximum performance (A) Minimum performance (B)

D1 KPI11 KPI21 … KPIi1 KPIn1 A1 = max (KPI11,…, KPIn1) B1 = min (KPI11,…, KPIn1)
D2 KPI12 KPI22 … KPIi2 KPIn2 A2 B2
… …
Di KPI1i KPI2i … KPIi2 KPIni Ai Bi
Dm KPI1m KPI2m … KPI3i KPInm Am Bm
Minimum performance for each scenario (C) C1 = min (KPI11,…, KPI1m) C2 … Ci Cn
Best performance of all designs across all scenarios D = min(B) = min(C)

Table A1.2
Robustness calculation using max–min, best-case and worst-case, and minimax regret methods [17].

Design Performance
spread (PI)

Performance
deviation (PD)

Performance
regret (PR)

D1 A1- B1 A1- D max (R11,… , Rn1)
D2 A2- B2 A2- D max (R12,… , Rn2)
…
Di Ai- Bi Ai- D max (R1i,… , Rni)
Dm Am- Bm Am-D max (R1m,… , Rnm)
Robust design min (PS) min (PD) min (PR)

Table A1.3
Calculation of performance regret of designs across all scenarios [17].

Performance regret(R)
Designs Scenarios

S1 S2 … Sn

D1 R11 = KPI11- C1 R21 = KPI21- C2 … Rn1 = KPIn1- Cn
D2 R12 = KPI12- C1 R22 = KPI22- C2 … Rn2 = KPIn2- Cn
… …
Di R1i = KPI1i- C1 R2i = KPI2i- C2 … Rni = KPIni- Cn
Dm R1m = KPI1m- C1 R2m = KPI2m- C2 … Rnm = KPInm- Cn

Table A1.4
Robustness calculation using the Taguchi method [17].

Design Scenarios

S1 S2 … Si Sn Mean Standard deviation

D1 KPI11 KPI21 … KPIi1 KPIn1 KPI¯ 1=
+ + +KPI KPI KPI n

n
11 12 1

Ϭ1= =i
n KPI i KPI

n1
( 1 1¯ )2

D2 KPI12 KPI22 … KPIi2 KPIn2 KPI¯ 2= + + +KPI KPI KPI n
n

21 22 2
Ϭ2= =i

n KP i KPI
n1

( 21 2¯ )2

Dm KPI1m KPI2m … KPI3i KPInm KPĪm= + + +KPIm KPIm KPImn
n

1 2
Ϭm= =i

n KPImi KPIm
n1

( ¯ )2

Robust design min(PĪ )
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Appendix II

See Table A2.1.
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