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Abstract 

In this chapter we discuss the role of context in shaping spatial and episodic memories. We 

first survey the psychological literature on the types of cues that define context and offer an 

inclusive definition that focuses on the adaptive role of contextual representations for guiding 

behavioral and mnemonic outputs. Using observations from both humans and non-human 

animals, we then review the neural basis of contextual memory focusing in particular on the 

hippocampus. We show that contextual representations in the hippocampus are organized by 

those same cues that define context cognitively. Finally, we characterize the inputs to the 

hippocampus mediating recognition of context-defining cues. Together, our review supports 

the hypothesis that a function of the hippocampus and its primary inputs is to form the 

holistic context representations that shape memory. 

 

Introduction 

Theories of memory suggest that encoding and retrieval are facilitated or hindered by context 

(Davies & Thomson, 1988; Smith & Vela, 2001). For example, it is easier to recognize 

someone when that person is in the same setting as when you initially encountered her. 

Context plays a particularly important role in shaping spatial and episodic memories. Spatial 

memory reflects memory for spatial information defined relative to a particular contextual 

frame of reference (e.g., memory for the location of my seat in a movie theater). Episodic 

memories are detailed representations of the what, where, and when of past experiences 

(Tulving, 2002), and thus the ability to reinstate contextual information is one of the defining 

features of episodic memory (e.g., my memory of finding my seat in the movie theater). By 

contrast, other types of memory require no contextual information, such as knowledge of 

facts in the absence of memory for the context in which they were learned, or recognition of 
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stimuli based on a feeling of familiarity. A major scientific challenge has been to understand 

how the brain processes contextual information, and how this information shapes spatial and 

episodic memories. In this chapter, we review the cognitive role that context plays in memory 

and elucidate how contextual information is processed by the brain in service of such 

memories. 

 

What cues define contexts? 

Despite the ubiquity of context in our lives, and its clear importance for shaping memory, 

“context” has proven to be a surprisingly difficult concept to define (Nadel & Willner, 1980). 

Confusion around the definition of context is not new; Smith and colleagues (1979) argued in 

the 1970s that context “is a kind of conceptual garbage… that denotes a great variety of 

intrinsic and extrinsic characteristics of the presentation or test...” of stimuli. Indeed, across 

studies purporting to interrogate contextual memory, ‘context’ has been operationalized in 

terms as nearly anything associated with items or locations in an event, ranging from 

something as simple as the color of text in a word list, to cues as complex as the physical 

environment. This ongoing lack of definitional clarity is due in part to the fact that general 

rules governing when cues do or do not define a context are unclear. Moreover, the type of 

context referred to in studies of memory is often underspecified, and it is not empirically 

clear that all types of cues used to operationalize context play identical mnemonic roles. To 

provide a handle for understanding the neural basis of context-dependent memory, it is thus 

critical to start by surveying the possible types of context-defining cues:  

 

Spatial cues. Everything we do occurs somewhere. The external sensory cues (visual, 

olfactory, auditory, and tactile) that denote this “somewhere” form the spatial context relative 
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to which memories are encoded and retrieved. Early research using “interference reduction” 

paradigms demonstrated that confusions between two lists of to-be-remembered items are 

reduced if the lists are learned in different spatial environments rather than the same 

environment (Canas & Nelson, 1986; Emmerson, 1986; Smith & Vela, 2001; Godden & 

Baddeley, 1975). In other words, people exhibit better memory when tested in the presence of 

the same external sensory cues as those experienced during learning compared to people 

tested in new spatial contexts. Studies with both rodents and non-human primates have 

likewise found that changes to spatial cues strongly influence memory (Bachevalier, 

Nemanic, & Alvarado, 2015; Bouton, 2002; Curzon, Rustay, & Browman, 2009; Dellu, 

Fauchey, Le Moal, & Simon, 1997; Pascalis, Hunkin, Bachevalier, & Mayes, 2009). For 

example, although animals are able to recognize objects after moving from one experimental 

chamber to another, memory is stronger when the familiar environment is used during both 

learning and retrieval (Dix & Aggleton, 1999). Any external sensory cue could theoretically 

constitute a spatial contextual cue, though for reasons that will become clear in the next 

section, landmarks—stable and salient environmental features—are particularly critical.  

 

Situational cues. Everything we do occurs in some way, and this state of affairs or ‘situation’ 

surrounding an event is often an important contextual cue. For instance, a wedding and 

funeral are vastly different experiences even if they occur in the presence of the same spatial 

cues. Early reports noted that simple physical disruption between two lists of 

to-be-remembered items caused as much interference reduction as changes in spatial cues 

(Strand, 1970), and contextual interference is eliminated when participants tested in a new 

spatial context are instructed to recall the original learning environment just prior to recall 

(Smith, 1979). Such results show that situational cues, often operationalized in terms of task 
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or motivational demands, influence memory independent of spatial cues. Moreover, 

memories are best retrieved if the “brain state” at encoding and retrieval are similar. “Brain 

state” refers to the internal state of the individual, which we include as a kind of situational 

cues, such as mood (Bower, 1981; Eich, 1995), hormonal state (McGaugh, 1989), or feelings 

associated with administration of drugs (Overton, 1964). Whether external situational cues, 

such as the normative rules surrounding an event, and internal situational cues like brain state 

have qualitatively different influences on contextual representations remains an open 

question.  

  

Temporal cues. Everything we do occurs at some time, and it is possible to remember that 

different events that occurred in the presence of similar spatial or situational cues occurred at 

different times. Two kinds of temporal cues influence memory. First, an internal 

representation of the time of day at which learning occurs, tightly linked an individual’s 

circadian rhythm, has an influence on retrieval (Mulder, Gerkema, & Van Der Zee, 2013). 

Time of day can serve as an important mnemonic cue in spatial memory tasks (Boulos & 

Logothetis, 1990). Time-of-day effects are also observed in contextual fear conditioning 

experiments that interrogate episodic memory, in which animals learn to fear a spatial context 

in which shock was previously experienced. Rodents display strongest context-dependent 

fear response during their “inactive phase” (the light period) (Chaudhury & Colwell, 2002). 

The second kind of temporal cue is the relative sequence in which learning takes place. 

Events experienced closer together in time are more similar than events experienced further 

apart. As a result, if a person experiences an event and her memory is later assessed, the 

ability to recall that event will decrease as the time between learning and retrieval increases 

(Rubin & Wenzel, 1996). Similarly, items encountered in close temporal proximity are more 
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likely to be recalled sequentially than items encountered further apart (Howard & Kahana, 

2002).   

 

This brief taxonomy of context-defining cues suggests that context is characterized by factors 

external to the agent, including the set of environmental cues that define a place or the 

situation that characterizes an event, and the internal factors (e.g., temporal, cognitive, 

hormonal, affective) against which mnemonic processes operate. The cinema provides an apt 

metaphor for summarizing these context-defining cues: a cinema contains multiple movie 

theaters (spatial cues) playing different movies (situational cues) at different times (temporal 

context) (Fig. 1A).  

 

Figure 1. 

When do cues not define contexts? 

For context to be a useful scientific construct there must be factors that differentiate contexts 

from other types of mnemonic cues. We suggest three important properties that limit the 

appropriate application of the term “context”: 
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First, for the brain to form contextual representations from statistical cue regularities, the 

cues that characterize context must be reliably present over time or stable (Biegler & Morris, 

1993; Robin, 2018; Stark, Reagh, Yassa, & Stark, 2017). For instance, the location of seats 

that define a movie theater context must not change often for the seat locations to form an 

integral part of that context. In contextual fear conditioning experiments, if animals are 

briefly (e.g., less than 27 seconds) exposed to a context and shocked, they later show little 

fear of the context (Fanselow, 1990) (Fig. 1B). However, if they are first pre-exposed to the 

context, the shock elicits a fear response when the animal is subsequently returned to the 

conditioned context. Contextual conditioning thus only occurs if animals have an opportunity 

to learn the reliability of contextual cues through prolonged or repetitive exposure, indicating 

that experience of cue stability is critical for the formation of contextual representations that 

organize memory.   

Second, just as eating popcorn does not define being in a cinema (one can also eat 

popcorn at home), contexts are not defined by any single discrete cue (Robin, 2018). In other 

words, contexts are not the same as cues that serve as discrete signals for other events. Unlike 

contexts, increased time spent with a discrete cue does not alter conditioning to that cue 

(Fanselow, 1990). As a corollary, contexts are tolerant to changes in any one discrete cue. 

The context of your local movie theater could be recalled as such independent of whether you 

have popcorn, or are seeing a horror or comedy film, or if you have consumed caffeine 

beforehand. This corollary suggests that context is not simply the set of cues associated with 

a particular event, but rather a holistic representation of those cues. Consistent with this idea, 

rodents do not exhibit a typical contextual fear conditioning response when exposed only to 

the cues individually that conjunctively form the conditioned context (Rudy & O’Reilly, 

1999) (Fig. 1C). Therefore, context is a neural construct, rather than something that exists in 
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the world (Anderson, Hayman, Chakraborty, & Jeffery, 2003). As illustration of this point, 

suppose the locations of the seats in your local movie theater are moved in your absence. 

When you later return to the theater, did you return to the same context or not? The answer to 

this question is not knowable a priori, but you could easily answer this question about your 

own memory.  

Third, because contexts are not defined by any one discrete cue, different 

context-defining cues must have a reliable organization that allows them to be unified in a 

contextual representation. A common cue organization used by the brain to represent contexts 

is a hierarchy (Jeffery, Anderson, Hayman, & Chakraborty, 2004; Pearce & Bouton, 

2001). There is an extensive literature demonstrating that the spatial environment is encoded 

as multiple hierarchically organized contexts, varying in spatial scale, instead of a single 

environmental context, and performance on memory tasks is influenced by this hierarchical 

structure (Han & Becker, 2014; Hirtle & Jonides, 1985; Holding, 1994; Marchette, Ryan, & 

Epstein, 2017; McNamara, 1986; McNamara, Hardy, & Hirtle, 1989; Montello & Pick Jr, 

1993; Wiener & Mallot, 2003) (Fig. 1D). Situational and temporal contexts also have 

intuitive hierarchical structures. Purchasing movie tickets or purchasing movie snacks are 

both subordinate to the larger class of transactional situational contexts, and the relative 

sequence of events can be organized over minutes or days. Beyond hierarchical 

arrangements, the set of possible relational structures between cues necessary for such cues to 

be associated in a contextual representation is unknown.  

 

What is context? 

Based on this survey of context defining cues and their boundary conditions, we offer the 

following inclusive definition of context:  
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Context is a holistic representation of the internal and external (stable, non-discrete, and 

reliably organized) cues that predict particular behavioral or mnemonic outputs.  

This definition unifies the contextual cues by placing emphasis on the adaptive function of 

contextual representations, rather than on any one specific cue type (Mizumori, 2013; 

Stachenfeld, Botvinick, Gershman, 2017). Note that although this definition runs the risk of 

circularity, we have proposed three boundary conditions that limit the correct application of 

the ‘context’ construct—stability, non-discreteness, and reliable organization—that 

immunizes against circularity. Insofar as the role of context is concerned, this definition is 

consistent with theories of memory that do not place particular importance on any one 

contextual cue type, but rather focuses on the function of contextual representations 

(Eichenbaum, 1993, 1996; Howard & Kahana, 2002; Mensink & Raaijmakers, 1988; 

Schacter, 2012; Schacter, Addis, & Buckner, 2007; Ranganath, 2010).  

By contrast, others argue that spatial cues play a particularly special role in memory 

by serving as an ineluctable component of all memories (Burgess, Becker, King, & O’Keefe, 

2001; Hassabis & Maguire, 2007; Maguire & Mullally, 2013; Nadel & Moscovitch, 1997; 

Robin, Buchsbaum, & Moscovitch, 2018). There is empirical evidence in favor of this 

position. For instance, when recalling previously read scenarios, participants spontaneously 

generate spatial contexts for the scenarios, even when the scenarios did not include any 

spatial cues (Robin et al., 2018; see also Hebscher, Levine, & Gilboa, 2017). However, as 

eluded to above, situational and temporal context can also have strong influence over 

memory if they are behaviorally relevant. Our definition suggests that spatial cues may often 

be strong determinants of contextual representations because they are often experienced as 

most stable, thereby most predictive of context-appropriate behaviors, even if they do not 

necessarily have unique cognitive status. An important area for future research is the extent to 

10 
 



which different context-defining cues, matched in terms of their behavioral relevance—not 

just in an experimental situation, but also over the lifetime of an individual or evolution—are 

incorporated into contextual representations.  

 

The hippocampal basis of contextual memory 

There is consensus that the hippocampus in the mammalian medial temporal lobe plays a 

crucial role in spatial and episodic memory, and neurobiological studies of contextual 

processing have focused on this brain area (for reviews see Maren, Phan, & Liberzon, 2013; 

Myers & Gluck, 1994; Ranganath, 2010; Rudy, 2009; Rugg & Vilberg, 2013; Smith & 

Mizumori, 2006; Winocur & Olds, 1978). In the 1970s, Hirsch (1974) first explicitly 

proposed that the hippocampus mediates retrieval of information in response to contextual 

cues that refer to the retrieved information. Since then, a wide variety of studies in both 

human and non-human animals have reinforced the importance of the hippocampus for 

context-dependent memory. Indeed, an automated meta-analysis (www.neurosynth.org) of 

functional magnetic resonance imaging (fMRI) studies of human context-dependent memory 

revealed common activation across these studies largely localized to the hippocampus (Fig. 

2A).  

Consistent with these neuroimaging findings, lesion studies have shown that the 

hippocampus is necessary for maintaining context-dependent memories (Anagnostaras, Gale, 

& Fanselow, 2001; Maren, 2001). When rodents are conditioned in one spatial context, for 

instance, they typically show a reduction of conditioned responses when tested in a new 

context, but animals with hippocampal damage continue to respond as if they did not notice 

the spatial context change (Bachevalier et al., 2015; Butterly, Petroccione, & Smith, 2012; 

Corcoran & Maren, 2001; Honey & Good, 1993; Penick & Solomom, 1991). Hippocampal 
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damage also impairs memory for situational contexts (Ainge, van der Meer, Langston, & 

Wood, 2007); for example, hippocampal lesions disrupt the ability of rats to approach 

different goal objects depending on the rats’ internal motivational state (hunger or thirst), 

even though object and motivational state discrimination are preserved (Kennedy and 

Shapiro, 2004). Finally, hippocampal lesions impair the ability to recall the biological time of 

day at which an event occurred (Cole et al., 2016), and for remembering the temporal 

sequence of events (i.e., the relative temporal context) (Agster, Fortin, & Eichenbaum, 2002; 

Fortin, Agster, & Eichenbaum, 2002; Kesner, Gilbert, & Barua, 2002). Thus, the 

hippocampus is necessary for retrieval of memories associated with contexts characterized by 

the full range of context-defining cues.  

At the cellular level, context is represented by the population activity of hippocampal 

neurons that fire whenever a navigator occupies particular environmental locations (“place 

fields”) (O’Keefe & Dostrovsky, 1971). Within a context, different neurons have different 

place fields, and thus - as a population - are thought to reflect a cognitive map of locations 

within the local context (O’keefe & Nadel, 1978). Neuroimaging studies in humans likewise 

support the idea that the hippocampus represents a map of local context (Epstein, Patai, 

Julian, & Spiers, 2017). Beyond distinguishing between locations within a context, however, 

the hippocampus also stores multiple maps that allows it to represent multiple contexts 

(Bostock, Muller, & Kubie, 1991; Muller & Kubie, 1987). The hippocampus’ ability to 

distinguish between contexts is indexed by a process known as remapping (Fig. 2B). During 

remapping, when an animal changes contexts, all simultaneously recorded neurons shift their 

relative place fields to new locations or stop firing altogether, quickly forming a new 

map-like representation (Bostock et al., 1991; Save, Nerad, & Poucet, 2000).  Current 1

1 In contrast to remapping, in some cases the same neurons fire in the same locations across contexts, but with 
reliably different firing rates, a process termed “rate remapping” (Leutgeb et al., 2005). The conditions under 
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evidence suggests that a distinct ensemble of hippocampal neurons represents each different 

context (Alme et al., 2014; Anderson et al., 2003; Leutgeb et al., 2005; Leutgeb, Leutgeb, 

Treves, Moser, & Moser, 2004). If remapping mediates contextual memory, then remapping 

should occur between contexts defined by all contextual cue types and should be constrained 

by the same factors that limit when cues do not define contexts. As we will now review, this 

is indeed the case.  

 

Figure 2 

What contextual cues induce hippocampal remapping? 

Spatial cues. Remapping is induced by spatial cue changes such as when the walls of a 

familiar testing arena are replaced with walls of a different color (Bostock et al., 1991) or 

which remapping (sometimes called “global” or “complex” remapping) versus rate remapping are observed are 
not currently well understood, but whereas global remapping may relate more to contextual changes, rate 
remapping may reflect non-contextual, non-spatial influences on hippocampal representations (Leutgeb et al., 
2005).  
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when the shape of the environment is altered (Lever, Wills, Cacucci, Burgess, & O’Keefe, 

2002). For example, Wills and colleagues (2005) observed that incremental changes in the 

squareness or circularity of the walls of an experimental chamber produced no change in 

hippocampal activity until the cumulative changes became sufficiently great, at which point 

all neurons suddenly remapped to the other pattern. Human fMRI studies provide convergent 

evidence for the idea that the hippocampus represents spatial context as well (Alvarez, Biggs, 

Chen, Pine, & Grillon, 2008; Chadwick, Hassabis, & Maguire, 2011; Copara et al., 2014; 

Kyle, Stokes, Lieberman, Hassan, & Ekstrom, 2015; Steemers et al., 2016; Stokes, Kyle, & 

Ekstrom, 2015) (Fig. 2C). Interestingly, rapid remapping following spatial cue changes is not 

always observed, but rather depends on several factors, including prior learning experience 

(Leutgeb et al., 2005; Bostock et al., 1991) and the extent of differences between cues. 

Moreover, if there are sudden shifts from one spatial context to another, the hippocampus 

spontaneously ‘flickers’ back to the original context representation (Jezek, Henriksen, 

Treves, Moser, & Moser, 2011). Remapping thus does not simply reflect changes to the 

perceived spatial cue constellation, but rather reflects contextual memory. 

 

Situational cues. Task and motivational demands strongly influence the firing of 

hippocampal neurons (Frank, Brown, & Wilson, 2000; Gothard, Skaggs, & McNaughton, 

1996; Hampson, Simeral, & Deadwyler, 1999; Kobayashi, Nishijo, Fukuda, Bures, & Ono, 

1997; Lee, LeDuke, Chua, McDonald, & Sutherland, 2018; Markus et al., 1995; Redish, 

Rosenzweig, Bohanick, McNaughton, & Barnes, 2000; Smith & Mizumori, 2006; Wible et 

al., 1986; Yeshenko, Guazzelli, & Mizumori, 2001). For instance, hippocampal neurons 

remap depending on the behavioral strategy used to solve a spatial memory task (Eschenko & 

Mizumori, 2007), or when navigators explore the same spatial context using different modes 
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of transport (Song, Kim, Kim, & Jung, 2005), or when an animal’s future goal changes 

(Skaggs & McNaughton, 1998; Wood, Dudchenko, Robitsek, & Eichenbaum, 2000). In an 

even more striking demonstration of the impact of situational context cues, Kelemen and 

Fenton (2010) trained rats to avoid two shock zones on a rotating disk-shaped arena, one zone 

that was stationary relative to the larger room frame and the other rotated with the arena. 

Some neurons had place fields that were stationary relative to the broader room framework, 

while other fields rotated along with the local cues of the rotating arena (Fig. 2C). Thus, the 

hippocampus held distinct representations of two situational contexts in the same spatial 

context, one defined by the stable shock zone and the other defined by the rotating shock 

zone, and alternated between them when the situational contexts were placed in conflict. 

Human fMRI experiments provide convergent evidence for hippocampal coding of 

situational contexts (Milivojevic, Varadinov, Grabovetsky, Collin, & Doeller, 2016). 

Changes in affective brain state can induce remapping as well (Moita, Rosis, Zhou, LeDoux, 

& Blair, 2004; Wang, Yuan, Keinath, Álvarez, & Muzzio, 2015).  

 

Temporal cues. Circadian rhythms modulate the firing rates of hippocampal neurons (Munn 

& Bilkey, 2012), but whether changes in behaviorally-relevant biological times of day 

induces remapping is less well studied. Greater evidence supports the idea that that the 

hippocampus encodes the relative temporal context in which stimuli are learned and remaps 

between event sequences with different temporal structures. Temporal sequence information 

is represented by hippocampal cells that encode successive moments during a temporal gap 

between events (MacDonald, Lepage, Eden, & Eichenbaum, 2011; Sakon, Naya, Wirth, & 

Suzuki, 2014), even for sequences devoid of specific discrete cues (Farovik, Dupont, & 

Eichenbaum, 2010; Hales & Brewer, 2010; Meck, Church, & Olton, 1984; Moyer, Deyo, & 
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Disterhoft, 1990; Staresina & Davachi, 2009). Critically, many hippocampal neurons 

sensitive to temporal information remap (or “re-time”) when the main temporal parameter of 

a task is altered (Fig. 2C), suggesting that such neural populations encode temporal context. 

Human fMRI studies have likewise found that temporal sequence structure learning is 

associated with the hippocampus (Schapiro, Turk-Browne, Norman, & Botvinick, 2016; Lehn 

et al., 2009), and that the hippocampus generalizes across different sequences with similar 

temporal structures but not random sequences (Hsieh, Gruber, Jenkins, & Ranganath, 2014). 

 

Effects of contextual boundary conditions on hippocampal codes 

Hippocampal context representations are stable. Repeated visits to the same context reliably 

elicit activity in similar hippocampal populations.For example, Tayler and colleagues (2013) 

used genetically engineered mice that express a long-lasting marker of neural activity to 

compare the hippocampal population active at the time of initial exposure to a context with 

the population active in that same context two weeks later (Fig. 2D). Many neurons were 

active at both time points, but not re-activated in a different context, indicating that 

hippocampal context representations are stable over weeks. Inactivation of the hippocampus 

prior to context pre-exposure also eliminates the effect of pre-exposure in contextual fear 

conditioning paradigms (Matus-Amat, Higgins, Barrientos, & Rudy, 2004), suggesting that 

pre-exposure allows the hippocampus to form a contextual representation reflecting stable 

cues. Likewise, spatial cues that are previously experienced as unstable have little control 

over place fields (Knierim, Kudrimoti, & McNaughton, 1995). 

Despite the stability of hippocampal context representations, hippocampal population 

activity changes over time in the presence of the same spatial and situational cues (Mankin et 

al., 2012). Ziv and colleagues (2013) used calcium imaging to monitor the activity of 
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hundreds of hippocampal neurons in mice over a 45-day period. Although many neurons had 

a place field on any given day, only 15-25% were present on any other given day. Indeed, the 

overlap between hippocampal populations activated by two distinct spatial contexts acquired 

within a day is higher than when separated by a week (Cai et al., 2016). Therefore, in 

addition to forming stable contextual representations, hippocampal neurons change firing 

patterns over time in a manner that may reflect gradually shifting temporal context 

information, an idea also supported by human fMRI and intracranial recording studies 

(Manning, Polyn, Baltuch, Litt, & Kahana, 2011; Copara et al., 2014; Deuker, Bellmund, 

Schröder, & Doeller, 2016; Nielson, Smith, Sreekumar, Dennis, & Sederberg, 2015).  

 

Hippocampal contextual representations do not reflect discrete cues. Hippocampal lesions 

selectively impair context-dependent learning in rodents, but not conditioned responses to 

discrete cues such as a tone, during both episodic (Kim & Fanselow, 1992; Phillips & 

LeDoux, 1992; Selden, Everitt, Jarrard, & Robbins, 1991) and spatial (Pearce, Roberts, & 

Good, 1998) memory tasks. Human patients with hippocampal damage likewise have greater 

deficits in memory for contextual associations compared to recall or recognition of discrete 

cues and events (Giovanello, Verfaellie, & Keane, 2003; Holdstock, Mayes, Gong, Roberts, 

& Kapur, 2005; Mayes, Holdstock, Isaac, Hunkin, & Roberts, 2002; Turriziani, Fadda, 

Caltagirone, & Carlesimo, 2004). Human fMRI studies have also found that the hippocampus 

is more sensitive to contextual cues than information about the discrete cues learned within 

those contexts (Copara et al., 2014; Davachi, Mitchell, & Wagner, 2003; Hsieh et al., 2014; 

Ross & Slotnick, 2008). Importantly, consistent with these lesion and neuroimaging results, 

changes to discrete spatial cues does not always elicit remapping (Cressant, Muller, & 

Poucet, 1997; Deshmukh & Knierim, 2013) (Fig. 2D).  
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Hippocampal representations reflect reliable organization of contextual cues. When spatial 

and episodic cues are hierarchically structured, hippocampal neurons differentiate between 

such cues using a hierarchical coding scheme (Takahashi, 2013). McKenzie and colleagues 

(2014) recorded hippocampal neurons while rats explored two rooms containing two objects 

(A and B) located in either of two positions (Fig. 2D). In one room, object A was rewarded, 

and in the other, object B was rewarded. The rats subsequently learned new 

room-object-reward contingencies using a second object set (C and D) within the same 

rooms. At the most general level, hippocampal activity encoded room identity. At the next 

level, the population responded similarly to objects at similar positions independent of the 

valence, and so forth. Thus, the hippocampus can represent cues using a hierarchical coding 

scheme in which each kind of response represents a subset of the responses at the next 

highest level of coding. Broadly, this suggests that the hippocampus represents contextual 

cues in a manner that reflects the reliable organization of those cues. Interestingly, rather than 

a distinct hippocampal ensemble representing each different context, this would imply that 

hippocampal neurons do not remap randomly across contexts; rather, the similarity between 

different hippocampal context representations may reflect the similarity in across-context 

relational cue structure, thus enabling across-context behavioral predictions. Consistent with 

this idea, when only a subset of cues change across contexts, partial remapping can occur in 

which place fields of only a proportion of neurons remap (Anderson & Jeffery, 2003).  

 

Hippocampal context representations and behavior 

If the hippocampus mediates contextual memory, we would expect a link between 

hippocampal population activity and context-dependent behavior. Striking demonstrations of 
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this link come from studies using optogenetics to stimulate hippocampal populations (Liu et 

al., 2012; Tanaka et al., 2014). In one recent example, mice were exposed to a spatial context 

and the hippocampal neurons active in that context genetically labeled (Ramirez et al., 2013). 

The next day the mice were shocked in a different context while the labeled neurons from the 

original context were reactivated. When the mice were subsequently tested in the original 

context with no stimulation, they exhibited a fear response. Thus, the mice learned to fear an 

artificially reactivated representation of the original context, even though they had never been 

shocked there. Since hippocampal activity elicited by stimulation acted as a serviceable 

substitute for contextual cues—akin to how recalling the original learning context at retrieval 

eliminates contextual interference effects—hippocampal context representations mediate 

context-dependent behavior.  

Despite this growing evidence that hippocampal activity is sufficient to induce 

context-dependent behavior, there is conflicting evidence regarding whether remapping is 

necessary for contextual memory under more naturalistic conditions. On the one hand, 

Kennedy and Shapiro (2009) observed remapping due to changes in motivational state 

(hunger vs. thirst) only when such situational cues were required to select among 

goal-directed actions, but not during random foraging when the situational cues were 

incidental to behavior. On the other hand, a consistent relationship between remapping and 

context-dependent behavior is not always found. Jeffery and colleagues (2003) trained rats to 

locate a reward in a chamber with black walls. When the wall color was changed to white, the 

rats still accurately chose the rewarded location despite the fact that the change in wall color 

induced remapping. This disconnect could have been due to the fact that behavior in this case 

was guided by discrete cues (i.e., behavior did not actually reflect contextual memory), even 
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though the hippocampus remapped. Understanding the link between remapping and 

contextual memory is a critical area for future research.  

 

Context recognition inputs to the hippocampus 

For context to influence memory, an agent must first recognize the cues that denote their 

current context. This context recognition process is cognitively dissociable from other aspects 

of spatial memory (Julian, Keinath, Muzzio, & Epstein, 2015). Since the hippocampus 

mediates both contextual memory, as well as recall of locations, events, or items within a 

single context (Keinath, Julian, Epstein, & Muzzio, 2017; Redish & Touretzky, 1998; 

Ranganath, 2010; Eichenbaum, Yonelinas, Ranganath, 2007), this raises the possibility that 

context recognition is performed upstream of the hippocampus itself.  

The primary inputs to the hippocampus originate in entorhinal cortex (EC; Witter & 

Amaral, 2004), which has medial (MEC) and lateral (LEC) subdivisions. There is mixed 

evidence for the idea that EC supports context recognition. On the one hand, lesions of the 

entire entorhinal region produce contextual memory deficits that mirror those caused by 

hippocampal damage (Ji & Maren, 2008; Majchrzak et al., 2006). Perturbation of 

hippocampal inputs from MEC also induces spontaneous hippocampal remapping (Miao et 

al., 2015) (Fig. 3A), suggesting that MEC in particular may be the source of hippocampal 

context representations. The MEC contains several types of place-modulated neurons 

(Hafting, Fyhn, Molden, Moser, & Moser, 2005; Sargolini et al., 2006), a subset of which are 

strongly contextually modulated (Kitamura et al., 2015). When contextually-modulated MEC 

neurons change firing patterns across different spatial contexts (Barry, Hayman, Burgess, & 

Jeffery, 2007; Fyhn, Hafting, Treves, Moser, & Moser, 2007; Marozzi, Ginzberg, Alenda, & 

Jeffery, 2015), coincident remapping is found in the hippocampus (Fyhn et al., 2007). MEC 
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sensitivity to behaviorally-relevant situational cues has not been extensively explored, but 

some MEC neurons are modulated by temporal sequence information (Kraus et al., 2015). On 

the other hand, lesions specifically targeting MEC or LEC do not cause selective contextual 

memory deficits (Hales et al., 2014; Wilson et al., 2013), and lesions localized to MEC do not 

eliminate hippocampal remapping (Schlesiger, Boublil, Hales, Leutgeb, & Leutgeb, 2018). 

Thus, although EC is critical for transmitting contextual information to the hippocampus, it is 

unlikely to serve as a context recognition system itself.  

 

Figure 3 
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In rodents, one of the primary MEC inputs is postrhinal cortex (POR) (Ho & Burwell, 

2014), which also projects directly to the hippocampus (Agster & Burwell, 2013). 

Cytoarchitectonic characteristics and anatomical connectivity suggest that POR is 

homologous to the primate posterior parahippocampal cortex (Burwell, 2001; Furtak, Wei, 

Agster, & Burwell, 2007), including a functionally-defined region known as the 

parahippocampal place area (PPA) in humans (Aguirre, Zarahn, & D’esposito, 1998; Epstein 

& Kanwisher, 1998) (Fig. 3B). Growing evidence suggests that the POR / PPA plays an 

important role in context recognition (Julian, Keinath, Marchette, & Epstein, 2018). Damage 

to the human posterior parahippocampal cortex by stroke causes context recognition 

impairments (Aguirre & D’Esposito, 1999; Takahashi & Kawamura, 2002). Animal lesion 

studies have also confirmed the importance of the posterior parahippocampal / POR region 

for context-dependent memory (Okudzhava et al., 2009; Bucci, Phillips, & Burwell, 2000; 

Bucci, Saddoris, & Burwell, 2002; Burwell, Bucci, Sanborn, & Jutras, 2004; Norman & 

Eacott, 2005; Peck & Taube, 2017) (Fig. 3C). The magnitude of contextual memory deficits 

following POR lesions is not delay dependent, suggesting that the POR serves a context 

recognition function, rather than retrieval of contextual memories per se (Liu & Bilkey, 

2002). POR lesions have little effect on the stability of hippocampal representations in a 

single context (Nerad, Liu, & Bilkey, 2009), but whether POR damage disrupts hippocampal 

remapping is unknown.  

Recent human fMRI studies provide convergent evidence for the role of the PPA in 

processing contextual information. The PPA response pattern is similar for visual scenes 

depicting different views of the same spatial context, but only in participants that have 

learned that these views depict the same context (Marchette, Vass, Ryan, & Epstein, 2015) 

(Fig. 3C), and posterior parahippocampal cortex is activated when participants process cues 
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with strong contextual associations (Aminoff, Kveraga, & Bar, 2013; Bar & Aminoff, 2003; 

Bar, Aminoff, & Schacter, 2008; Davachi et al., 2003; Diana, 2017; Hayes, Nadel, & Ryan, 

2007; Ross & Slotnick, 2008). The PPA is particularly sensitive to landmark cues that could 

serve as useful indicators of context (Troiani, Stigliani, Smith, & Epstein, 2012; Epstein, 

2014), such as environmental boundaries (Epstein & Kanwisher, 1998; Kamps, Julian, 

Kubilius, Kanwisher, & Dilks, 2016; Kravitz, Peng, & Baker, 2011; Park, Brady, Greene, & 

Oliva, 2011) and large, stable objects (Julian, Ryan, & Epstein, 2016; Konkle & Oliva, 2012). 

The PPA is also modulated by the temporal sequence in which items are experienced 

(Turk-Browne, Simon, & Sederberg, 2012). However, one previous study found that the PPA 

is less strongly activated when participants identify scenes based on situational than spatial 

cues (Epstein & Higgins, 2006). Future studies are needed to resolve whether the POR / PPA 

is equally sensitive to all types of context-defining cues, and to determine whether contextual 

representations in this region are constrained by all contextual cue boundary conditions.  

  

Concluding remarks 

Based on a survey of the cues critical for shaping contextual representations and their 

boundary conditions, we propose that context is a holistic representation of the spatial, 

situational, and temporal cues that reliably predict particular behavioral and mnemonic 

outputs. Extensive research supports the idea that context-dependent memory is mediated by 

the hippocampus. At a mechanistic level, context is represented by the hippocampus through 

remapping, driven by parahippocampal context recognition inputs. Together, our chapter 

shows that the brain learns in a dynamic world by forming holistic representations of the 

stable and reliably structured cue constellations (i.e., contexts) that in turn make it possible to 

generate precise predictions about the future. 
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Figure captions 
 
Figure 1. What is Context? A) Contexts are defined by three cue types: Spatial, Situational, 
and Temporal. B) Cues must be experienced as stable to form an integral part of context. The 
longer rodents experienced a context prior to fear conditioning, the more likely they were to 
show contextual conditioning (% freezing). Context pre-exposure (PRE) also resulted in 
stronger conditioning than no pre-exposure (Fanselow, 1990). C) Contexts are not defined by 
single discrete cues. When rodents were pre-exposed to either a spatial context (Context), 
separately to each of the cues that conjointly define that context (Cues), or a completely 
different context (Control), they subsequently displayed fear response to the context only 
when initially exposed to the context itself (Rudy and O'Reilly, 1999). D) Contextual cues are 
represented as reliably organized. When participants recalled locations of landmarks in a city, 
their recall patterns showed evidence of hierarchical clustering into multiple smaller local 
contexts. Landmarks were drawn closer together on a map when recalled as being in similar 
local contexts (Within) than in different local contexts (Between) (Hirtle & Jonides, 1985).  
 
Figure 2. The hippocampal basis of contextual memory. A) Reverse inference 
meta-analysis (Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) of 36 
context-dependent memory human fMRI studies. Overlapping activation across studies was 
largely localized to the hippocampus (threshold p < 0.01, FDR-corrected). B) Contextual 
memory is indexed by hippocampal remapping, in which all simultaneously recorded neurons 
alter their firing patterns across contexts (Alme et al., 2015). C) Remapping is induced by 
contextual cue changes: i) Spatial Cues. As visual cues (mountains) were gradually morphed 
from Context A to B during a spatial memory task, a rapid remapping of fMRI response 
patterns (Sigmoidal) better characterized hippocampal activity than a gradual change (Linear) 
(Steemers et al., 2016). ii) Situational cues. Hippocampal neurons represented locations in 
two different situational contexts, one relative to a moving platform (left) and another relative 
to the stable room (right) (Keleman & Fenton, 2010). iii) Temporal cues. Left: hippocampal 
neurons modulated by time. Right: neurons changed firing patterns when the task’s temporal 
parameters (yellow bars) were altered (MacDonald et al., 2011). D) Remapping reflects 
contextual boundary conditions: i) Stability. The same hippocampal neurons (in subfields 
CA3 and CA1) reactivated two weeks later after mice were placed in the same context as 
initial exposure (Tayler et al. 2013). ii) Non-discreteness. Example hippocampal neuron that 
did not remap when a discrete object (white circles) was moved (magenta line to star) or a 
novel object was added (star) (Deshmuch & Knierim, 2013). iii) Reliable organization. When 
rodents explored two chambers containing objects in different positions associated with 
different valences, hierarchical cue structure was reflected in hippocampal population activity 
patterns (McKenzie et al., 2014). 
 
Figure 3. Parahippocampal context recognition inputs to the hippocampus. A) When 
rodents walked along a linear track, optogenetic (laser) inactivation of the MEC induced 
hippocampal remapping (Miao et al., 2015). B) A primary input to the rodent MEC is POR, 
which may be homologous to human PPA (shown on the inflated cortical surface; Julian, 
Fedorenko, Webster, & Kanwisher, 2012). C) POR lesions cause context recognition 
impairments. Control rats explore familiar discrete objects more when those objects appear in 
a different familiar context than they initially encountered them, but POR lesions eliminate 
this object-context novelty preference. POR lesions had no effect in a comparable discrete 
cue object recognition task (Norman & Eacott, 2005). D) PPA mediates context recognition 
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in humans. FMRI activity patterns in the PPA were similar for images of the interior and 
exterior of the same buildings, which share the same spatial context, but only students who 
have experience with those buildings (Penn), not in students who do not (Temple) (Marchette 
et al., 2015). 
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