
Building Confidence using Beliefs and Arguments
in Security Class Evaluations for IoT

Manish Shrestha
eSmart Systems AS
Halden, Norway

manish.shrestha@esmartsystems.com

Christian Johansen
Department of Technology Systems

University of Oslo
Oslo, Norway
cristi@ifi.uio.no

Josef Noll
Department of Technology Systems

University of Oslo
Oslo, Norway

josef.noll@its.uio.no

Abstract—The proliferation of IoT (Internet of Things) though
making life easier, comes with security and privacy challenges.
We have previously proposed a security classification methodo-
logy meant to help in practice build IoT systems focused on
security during the development process. This method departs
from classical risk analysis and certification methods in two
ways: (i) it can be used at design time and (ii) it caters for
the needs of system designers by helping them to identify
protection mechanisms necessary for the connectivity required
by their system under development. However, similarly to many
risk analysis methods, this methodology was unable to provide
assurance in the evaluation results. In this paper, we add two
confidence parameters: belief and uncertainty to the assessment
tree of arguments of a class. Thus, the final result is now a tuple
<C, B, U>, where C is the class to which the system belongs,
together with a belief measure B in the evaluation aspects of
C, and the uncertainty U in the evaluation details. Looking at
the confidence parameters tells how well the security assessment
is justified. To exemplify this enhanced security classification
methodology, we systematically apply it to control mechanisms
for Smart Home Energy Management Systems.

Index Terms—Security Classification, Security assurance, Un-
certainty, Confidence, Security labelling

I. INTRODUCTION

Internet of Things (IoT) is widely adopted in major sec-
tors including critical infrastructures such as smart grids and
privacy-sensitive domains such as smart homes. Because IoT
devices produce sensitive data and have limited memory and
processing power, IoT systems are easy targets for launching
cyber attacks. Despite the efforts to secure IoT systems, attacks
are increasing1. One of the reasons behind this is the lack of
security awareness in end-users preferring cheaper and easy to
install insecure products. Traditional certification approaches
s.a. Common Criteria are usually expensive and take more than
a year to get certified [2]. Investing in such certification does
not pay off because of the lower cost and short life span of IoT
products. Even if we start to see standards for cybersecurity for
consumer IoT, s.a. the recent ETSI TS 103 645, a framework
for designing and evaluating IoT systems for an appropriate
level of security still does not exist.

This work is funded by eSmart Systems AS and the Research Council of
Norway through the project IoTSec - ”Security in IoT for Smart Grids”, with
number 248113/O70. A long version of this paper is available as [1].

1https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-
cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/

We have previously proposed a notion of security classes [3]
to address the aforementioned challenges. By systematically
applying our security classification methodology, a system
designer (or user or certification body, for the same matter)
can classify the security of their system on a scale from A to
F where A represents the best security level. Most methodo-
logies for security classification or risk analysis are based on
knowledge and experience of security experts executing the
evaluations. For our target audience, i.e., end-users or system
designers/developers, only claiming a security class without
justification is insufficient.

To build trust in the security classification one needs to
answer questions like: “How confident are the experts in their
result?” or “Were any decisions made under uncertainty?”.
In response, we introduce in this paper two new parameters
in the security classification methodology, namely belief and
uncertainty, described in section III after briefly recalling our
previous security classification methodology in Section II. In
Section IV the enhanced security classification methodology
is applied to a Smart Home Energy Management System
(SHEMS), ending up with a comparative discussion.

II. SECURITY CLASSIFICATION METHODOLOGY

We have proposed in [3] a security classification methodo-
logy, which extends the ANSSI classification, for analysing
and evaluating the security of complex connected systems.
This methodology is built around three main factors (see
Figure 1): Connectivity, Security mechanisms, and Impacts.
Connectivity reflects how the system is exposed to attacks,
whereas security mechanisms evaluate the security features
protecting the system (Protection Level). Connectivity and
Protection level combined form the Exposure.
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Impact

Exposure

Connectivity

Protection Level

Fig. 1: Process of computing a security class.



We have considered five levels of connectivity (C):
• C1 : Includes completely closed/isolated systems.
• C2 : Includes the system with wired Local Area Network

and does not permit operations from outside the network.
• C3 : Includes C2 systems that use wireless technologies.
• C4 : Includes systems with private or leased infrastruc-

ture, which may permit remote operations (e.g., VPN,
private APN, etc).

• C5 : Includes distributed systems with public infrastruc-
ture, i.e., like the C4 category only that the communica-
tion infrastructure is public.

Similarly, there are five protection levels (P), reflecting
the security mechanisms in the system. To determine the
protection level, relevant security criteria are defined, and for
each criterion, the respective security mechanisms are derived.
The security mechanisms are then grouped to form individual
protection levels where a higher protection level includes all
the security functionalities of lower protection levels, plus
additional functionalities. Protection level P1 represents no
security mechanisms whereas the protection level P5 repre-
sents the strongest protection mechanisms. The evaluation of
protection mechanisms is conducted by security experts. Table
I guides the evaluation of exposure from connectivity and
protection levels.

TABLE I: Calculation of Exposure Levels.
P1 E4 E4 E5 E5 E5
P2 E3 E4 E4 E5 E5
P3 E2 E3 E3 E4 E4
P4 E1 E1 E2 E2 E3
P5 E1 E1 E1 E1 E2
Protection/
Connectivity

C1 C2 C3 C4 C5

TABLE II: Calculation of Security Classes.
Catastrophic A C E F F
Major A B D E F
Moderate A B C E E
Minor A A B D D
Insignificant A A A C C
Impact/
Exposure

E1 E2 E3 E4 E5

The impacts also have five levels taken from ANSSI: Insig-
nificant, Minor, Moderate, Major, and Catastrophic. A security
class is determined using impact and exposure according to the
look-up Table II.

In a typical SHEMS, devices are remotely controlled (hence,
connectivity is C5) and the control data are well encrypted and
monitored (hence, protection level P4), and so the acquired
Exposure would be E3 (cf. Table I). Given that a compromised
SHEMS is seen as a major impact, the final security class
would be “D”. Details can be found in [3], [4].

Table II shows variations on these calculations, e.g., exposu-
res E1, E2, or E3 with impact “catastrophic” result in classes
A, C, resp. E. However, there are no more explanations than
this look-up table, whereas the details of choosing protection
mechanisms and connectivity are considered expert judgement
art. Hence, we see the need to introduce confidence in the

analysis and arguments to justify the results and quantify the
(un)certainty with which the decision is made.

III. CONFIDENCE IN A SECURITY CLASS

The main contribution of this paper is to enhance the
security classification method with the ability to argue and
reflect the level of confidence for each decision. By confidence,
we mean the degree to which one agrees on the result of
the assessment (belief) and the degree to which the expert
lacks knowledge about the assessment (uncertainty). To enrich
the security classification method, we propose to represent
the assessment result using a three tuple <C, B, U>, e.g.,
the evaluation <A, 84, 16> means that the result is class A
with 84% confidence and 16% uncertainty. The 84% belief is
meant to say that we have high confidence in the coverage of
all necessary security measures to justify the protection (P),
exposure (E), and security class. An uncertainty of 16% would
indicate that there is a moderate lack for justification of some
of the arguments.

A. Assessment of Belief and Uncertainty

To understand the concept of belief, let us consider a
wireless sensor network where an expert makes a claim C1:
“Source node adequately encrypts data before sending to the
destination”. An expert may justify this claim by referring
to the technical documentation from the vendor claiming that
data is encrypted during transfer. If the vendor is reliable one
may set higher belief on the claim C1, say 90%. However,
there may be some errors during design or implementation
which may result in unencrypted data. So, the remaining
10% represents the uncertainty of the claim. If one can
experimentally verify the C1, e.g. through a penetration testing
tool, C1 could be fully trustworthy, which means 100% belief.
This 100% is called a plausible belief or plausibility. Hence,
plausibility is the maximum belief that can be obtained if all
the evidence is provided. In another case where an exploitable
flaw is discovered in an encryption algorithm, then disbelief
in the claim may arise. Let us say that the estimated disbelief
is 30%, then the highest level of belief that one can make in
this situation is 70% (reduced plausibility).

One of the widely used approaches to quantifying belief
and uncertainty is the Dempster-Shafer theory, which is a
generalization of probability theory that allows representing
incomplete knowledge by the notion of upper and lower pro-
babilities (belief and plausibility) [5]. Belief (Bel) represents
the strength of the existing pieces of evidence that support a
given statement. Similarly, Plausibility (Pl) is the upper bound
on the belief that could be obtained by adding the evidence
to support the statement. Thus, belief is less than or equal to
plausibility (0 ≤ Bel ≤ Pl ≤ 1).

Uncertainty is the degree of lack of knowledge or evidence
to justify the claim. It can be calculated as the difference
between plausibility and belief on the acceptance of the claim.
Additionally, Pl < 1 indicates the existence of disbelief
meaning that there is some evidence against the claim. In
our context, we reuse the definition of belief and plausibility



from the Dempster-Shafer theory. After belief and plausibility
evaluation, uncertainty can be calculated as:

Uncertainty = Plausibility − Belief (1)

B. Specifying security arguments

In a security class evaluation, a series of security arguments
are made. Govier defines an argument as “a set of claims in
which one or more of them —the premises— are put forward
so as to offer reasons for another claim, the conclusion” [6]. To
demonstrate an argument in our case, let us take an example
of the assessment of the physical security of an IoT device.
During the assessment, it was found that the device is located
inside the apartment, and is physically accessible only by the
residents. Moreover, the device has a tamper detection mecha-
nism which notifies about unauthorized tampering. Therefore,
it can be concluded that the IoT device has adequate physical
security. In this example, there is a set of claims and reasons:
IoT device has a secure location because it is installed inside
the apartment; IoT device notifies about tamper activities
because it has tamper detection mechanism; IoT device has
good physical security because it is placed in a safe place and
the owner gets notification about device tampering.

The confidence in the conclusion “IoT device has good
physical security” depends on the confidence in the reasons
presented. The amount of trust in the ground of the claim also
impacts the confidence. In our example, the ground of the
argument is: “if the physical location is secure and a tamper
detection functionality exists, the device is physically secure”.
If the ground is weak, the trust in the conclusion would also
be weak. This implies that the amount of confidence in the
conclusion depends on the trust in the main claim and the
supporting components of the claim.

Properly structured arguments with appropriate justifications
and evidence make the expert opinion explicit, resulting in
improved communication between experts. This can also help
identify missing evidence and poor assumptions. Structured
arguments are widely used for justification of decisions, e.g.,
in safety cases [7], assurance cases [8], [9] and trust cases [10].
In structured cases, the main conclusion is backed up by the
evidence. To make the arguments clearer, there are various
methods and notations such as Goal Structuring Notation
(GSN) [11], Claim Argument Evidence (CAE) [7], or Toulmin
argument model [12], that can help experts to structure their
arguments. All the above methods represent the argument as
a tree structure where the root node is the main claim which
further grows into child nodes that provide the justifications
using sub-claims and evidence.

Our security classification methodology involves a series
of systematic steps to achieve a final security class. We here
propose to structure such an assessment as an argumentation
model. Structured arguments provide the reasons to support
the security claims. These reasons can be seen as security
requirements for the assessment, and also guide security
experts to determine to which degree the requirements that are
fulfilled is reflected by the confidence (belief and uncertainty).

Fig. 2 shows an example of the security class evaluation step
as an argumentation model using GSN. After the assessment is
structured as the argumentation model, the weights, beliefs and
plausibility are assigned to the claims and evidence produced.
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Fig. 2: Class A evaluation using Goal Structuring Notation.
(In the figure “J” and “A” point to the justification and assumption
made to support the strategy represented by a parallelogram. The
rectangle represents the claim and the diamond symbol represents
that the digram is incomplete and should be expanded further.)

C. Aggregation of confidence parameters
The result of a security class assessment is represented by

the class label with the overall confidence parameter (belief
and uncertainty). Thus, after specifying confidence parameters
to the security arguments, the result is aggregated to represent
an overall assessment. Various aggregation methods have
been proposed for structured cases, e.g., Wang et. al. [13]
proposed generalized confidence propagation rules for safety
cases based on Dempster-Shafer theory. In their D-arg rule, the
aggregated belief is calculated as a weighted mean. However,
weighted means are not sensitive to extreme lower values
of beliefs. Similarly, in their FC-Arg rule, the aggregated
belief is the result of multiplying the individual beliefs [13].
The result of such beliefs would always be diminished if
we add more evidence that has belief less than 1. However,
normal intuition is that, with an increase of evidence, the
beliefs should strengthen. Aggregation rules in trust cases have
similar problems, e.g., see aggregation rules C-arg, SC-arg and
NSC-arg in [10]. Noll et. al., in their Multi-Metrics (MM)
approach [14], have claimed that quadratic functions reflect
the aggregation better than linear approaches.

In our case, the arguments we have considered contribute
individually to the overall goal. Based on the significance of



each component in the system’s security, we assign appropriate
weights in the range [0-100]. We then compare the weighted
mean approach with MM approach for calculating beliefs.

1) Weighted mean approach: The aggregated belief using
weighted mean for beliefs (b) and weights (w) can be calcu-
lated using the formula:

AggregatedBelief (c) =

∑n
i wibi∑n
i wi

(2)

2) MM approach: The MM approach uses the Root Mean
Squared Weighted Data (RMSWD) to aggregate criticality
values and is expressed as:

X =

√∑
i

(
x2
iWi∑n
i Wi

)
(3)

where X is the aggregated criticality, xi is the criticality of ith

component, and Wi is calculated from the component weight
wi as:

Wi =
( wi

100

)2
(4)

In the original work, criticality xi is defined as the comple-
ment of security, privacy or dependability metrics [14]. In our
context, we use the complement of belief value (100 - belief )
to express criticality. Finally, the aggregated belief (Bel) is
computed as a complement of X (i.e., Bel = 100−X). Thus,
using equation 3, Bel can be expressed as:

Bel = 100−
√∑

i

(
(100− beli)

2Wi∑n
i Wi

)
(5)

where beli is the individual belief value of the component
under consideration.

D. Underlying principles for aggregation

Belief aggregation depends on how the arguments are pre-
sented. There are cases when there are multiple justifications
independent of each other fulfilling the same claim, or so-
metimes each justification contributes towards the fulfillment
of the claim to some extent. Here we describe the principles
to guide the aggregation mechanism in special cases.

1) Maximum belief: If justifications are overlapping and
one justification includes another, the highest belief
should be considered. For example, to justify the claim
”Data is encrypted”, there are two evidences with dif-
ferent beliefs: 1) Document from the vendor describing
that the data is encrypted (belief = 90%), and 2) Expe-
rimental verification for encryption (belief = 100%). In
this case, we simply select the highest belief because the
information from the vendor’s document is subsumed by
the experimental verification. Thus,
Aggregated Belief = Max (b1, b2)

where b1 and b2 are beliefs on overlapping claims where
justification of one of the claim includes the other.

2) Zero belief: If the belief for any of the claims in the
evaluation for protection level is zero, then the total
belief should be zero because the class is determined

based on the previously specified requirements of secu-
rity functionality (sf ). If one of the functionality has no
belief at all, then the whole claim for that protection
level fails and it must be evaluated against the lower
protection level. The same applies to the aggregation of
protection criteria (c) towards the protection level.

if c.securityFunctionalities.Any(sf .belief = 0)
then

c.belief = 0
end if

3) Minimum belief: Typically, it is assumed that the
impacts and connectivity have full beliefs; otherwise, if
the beliefs are lower than 100%, the resulting aggregated
belief should be the lowest one. For example, if the
exposure is E2, with belief 90% and the Impact is Major
with 60% then the class obtained should have belief 60%
instead of the average. This is because both of them are
equally important and required for evaluation. Thus, the
averaged belief has no meaning. Hence,
Aggregated Belief = Min(b1, b2).

IV. CASE STUDY

To demonstrate the applicability of confidence in security
classifications, we have selected a use case involving command
and control in SHEMS. The scenarios for the use case are built
upon our previous work [4] which used two principal methods
to control the IoT devices: centralized and edge control. The
centralized control has higher connectivity and major impacts,
therefore resulting in class D; whereas, in the edge control
scenario, the connectivity is reduced, while also reducing the
impacts, thus resulting in class A. We continue here to look
at the edge control scenario and follow Section III to add
confidence reasoning.

A. Protection level evaluation

For an IoT device control system, we considered Data
Encryption (e.g., for securing control commands), Access
control, and Monitoring & Analysis, as relevant criteria. We
first analyze the security mechanisms available for each of
these security criteria, in order to determine the protection
level following the summary in Table III. We assume that
the answers for the existing security functionalities in the
C&C component fall onto the column (i.e., protection level)
P4, i.e., two functionalities are not present. Next, we discuss
confidence parameters for each protection criteria and their
mechanisms.

1) Data Encryption: The following sub-claims were con-
sidered to satisfy the P4 level requirements:

• C&C data is encrypted between IoT hub and devices:
The belief on this claim is 100% and is justified by the
vendor’s document and lab test.

• Data encryption uses a strong encryption algorithm: It
has been verified that data is encrypted with AES 128-bit
encryption which is considered strong for home network.
Thus, the belief in this sub-claim is also set to 100%.



TABLE III: Protection Level Requirements for C&C in a SHEMS application.
Protection Criteria Security Functionality P5 P4 P3 P2 Table IV

Data
Encryption

C&C data is encrypted between IoT hub and devices X X X X X
Data encryption uses a strong encryption algorithm X X X X
End-to-end encryption is supported X X X
Does not use custom encryption algorithms X X X

Access Control
Disable remote access functionality X
Weak and default credentials are not allowed X X X X
Enable Multi-factor Authentication X X N/A

Monitoring
and
Analysis

Monitor system components X X X
Analysis of monitored data X X X
Act on analysed data X

• End-to-end encryption is supported: Communication
uses Zigbee which supports end-to-end encryption. Ho-
wever, we did not find any claims from the vendor about
end-to-end encryption. We also did not experimentally ve-
rify this claim. Thus, this claim is partially trusted (50%)
but has the plausibility of 100% if verified experimentally
or claimed by the vendor.

• Does not use custom encryption algorithms: This
sub-claim has 100% belief because the communication
uses the Zigbee protocol with a standard AES 128-bit
encryption.

2) Access Control: In our case, a C&C command is trig-
gered based on a predefined threshold setting. The C&C
command is sent from the IoT hub to the devices in the home
network. We consider the following sub-claims to fulfil P4:

• Weak and default credentials are not allowed: The
hub and the devices are authenticated using pre-shared
unique keys allowing only authorized nodes access to
C&C data. The C&C data has restrictions to be accessed
and triggered only by the gateway. Thus, we consider
access control as adequate and assign the belief of 100%.

• Enable Multi-factor Authentication: This claim is not
relevant because the control signals are sent autono-
mously and thus user authentication is not involved.

3) Monitoring and analysis: The claim for this criterion
can be supported by the following two sub-claims:

• C&C data is adequately monitored: The SHEMS in our
context supports basic monitoring. The log information
such as devices status and control signals are collected.
Thus, the assigned belief is 98% because we have not
done testing in the lab of the logging system for bugs.

• C&C data is adequately analyzed: The gateway per-
forms regular availability check on its devices and notifies
about the disconnection of device(s). Though it is possible
to manually analyze the monitored data more thoroughly
from the log, such more extensive security analysis on
collected data is not performed. Thus, the sub-claim has
a lower belief set to 80%.

Table IV summarizes the beliefs, plausibilities and weights
(w) assigned to the parameters for protection level evaluation
of the selected criteria.

B. Aggregation using the weighted mean approach

Since there was no disbelief, and we calculate

Plausibility = 1−Disbelief (6)

then the plausibility in all cases was 100%.
Using the weighted mean approach (Equation 2), we cal-

culated the aggregated belief for Data Encryption criterion as
89%, Access Control as 100% and Monitoring & Analysis as
89%. Further aggregation gave us 93% belief on the claim of
protection level P4. Thus, we assign the overall confidence to
the class A evaluation as 93% belief and 7% uncertainty, i.e.
<A, 93, 7>.

C. Aggregation using MM approach

Using this approach, the aggregated belief for Data en-
cryption, Access Control and Monitoring & Analysis criteria
obtained were 78%, 100% and 86%. Similarly, the aggregated
belief for P4 was 84%. Since plausibility was considered
100% all the time, it does not change after aggregation. The
resulting class obtained was class A with 84% belief and 16%
uncertainty i.e., <A, 84, 16>. Table V summarizes the results
from the weighted mean and MM approach.

V. ANALYSIS AND DISCUSSIONS

We compared two approaches to aggregate beliefs. The
weighted mean approach is not sensitive to low values. For
instance, among the data encryption criteria from Table IV,
there is one security functionality with weight 80 and belief
50. However, the aggregated belief is calculated as 89% in
Table V. This value is not very realistic, because in security if
one of the claims has low belief, it may have a high effect in
the overall security (i.e., the “weakest-link” principle). Hence,
the lower values should be well reflected in the aggregation
of beliefs in security. When applying the MM approach to
aggregate the belief for the same criterion (Data Encryption),
we obtain the aggregated value of 78%, which is somewhat
more realistic than 89%; suggesting the MM approach to
aggregation of beliefs as preferable.

Because there is no disbelief in our case, the plausibility is
100%. Thus, the overall evaluation using the MM approach
produced a belief of 84% and an uncertainty measure of 16%.
The uncertainty can be reduced by providing missing evidence,
e.g., the belief in the existence of end-to-end encryption can
be increased by performing experimental validation.



TABLE IV: Belief, Plausibility and Weights on security claims.
Protection Criteria Security Functionality <Bel, Pl, w>

Data
Encryption (w=100)

C&C data is encrypted between IoT hub and devices <100, 100, 100>
Data encryption uses a strong encryption algorithm <100, 100, 95>
End-to-end encryption is supported <50, 100, 80>
Does not use custom encryption algorithms <100, 100, 95>

Access Control (w=95) Weak and default credentials are not allowed <100, 100, 100>
Monitoring and
Analysis (w=80)

Monitor system components <98, 100, 100>
Analysis of monitored data <80, 100, 95>

TABLE V: Comparison of weighted mean and Multi-Metrics approach for belief aggregation.
Weighted Mean Approach Protection

Criteria
Multi-Metrics Approach

Aggregated to
Protection Level

Aggregated to
Criterion Level

Aggregated to
Criterion Level

Aggregated to
Protection Level

Bel = 93%
Pl = 100%
U = 7%

Bel = 89%
Pl = 100%
U = 11%

Data Encryption
(w=100)

Bel = 78%
Pl = 100%
U = 22%%

Bel = 84%
Pl = 100%
U = 16%Bel = 100%

Pl = 100%
U = 0%

Access Control
(w=95)

Bel = 100%
Pl = 100%
U = 0%

Bel = 89%
Pl = 100%
U = 11%

Monitoring &
Analysis
(w=80)

Bel = 86%
Pl = 100%
U = 14%

Both uncertainty and disbelief increase unreliability. Ho-
wever, higher disbelief shows unreliability with certainty
(obtained via evidence) indicating a weaker statement. As
an example of disbelief, let us say that a claim is made for
adequate data encryption for Wi-Fi communication using WEP
standard. The disbelief in the claim is high and the uncertainty
is low because, although WEP provides encryption, it is proven
to be weak. Hence, to reduce the disbelief, the WEP must be
upgraded to a more secured standard such as WPA2.

In the assessment, if the belief is too low, and the uncertainty
is high, then the assessment requires more work or the experts
may have less knowledge about the security built into the
system. However, if the belief is low and the disbelief is high,
it means the claims made in the assessment are not trustworthy.
Therefore, appropriate measures should be taken to improve
confidence. Similarly, an acceptable but not too high value of
beliefs may say that the claims are trustworthy but not fully
acceptable. In terms of security class, it may mean a different
level of trust in the assessment. For instance, a claim of Class
A with belief 60% and plausibility 95%, may mean a less
trusted class A (which we could denote as A--), while a belief
of 95% may represent a highly trusted class A (e.g. A++).

VI. CONCLUSION

We have shown how to extend security classifications with
confidence parameters (i.e., belief and uncertainty) focusing
on the methodology presented in [3]. We then exemplified the
calculation of confidence parameters for a use case involving
an edge command & control mechanism for SHEMS. We
compared two types of methods for aggregating confidence
measures, observing that weighted average methods are less
suitable for security assurance than methods based on Root
Mean Squared Weighted Data as the one used to aggregate
“criticality” in the Multi-Metrics method of [14]. There are
though different principles guiding when to consider mini-
mum, maximum, or zero belief during aggregation.

Further work is needed for building these argumentation
and aggregation methods into a tool, following works on tools
like NOR-STA [10]. This work is more difficult to integrate
with the security classification methodology that comes with
predefined mechanisms and look-up tables.
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