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Abstract—This paper proposes efficient batch-based and online
strategies for kernel regression over graphs (KRG). The proposed
algorithms do not require the input signal to be a graph signal,
whereas the target signal is defined over the graph. We first use
random Fourier features (RFF) to tackle the complexity issues
associated with kernel methods employed in the conventional
KRG. For batch-based approaches, we also propose an imple-
mentation that reduces complexity by avoiding the inversion of
large matrices. Then, we derive two distinct online strategies
using RFF, namely, the mini-batch gradient KRG (MGKRG)
and the recursive least squares KRG (RLSKRG). The stochastic-
gradient KRG (SGKRG) is introduced as a particular case of the
MGKRG. The MGKRG and the SGKRG are low-complexity
algorithms that employ stochastic gradient approximations in
the regression-parameter update. The RLSKRG is a recursive
implementation of the RFF-based batch KRG. A detailed stability
analysis is provided for the proposed online algorithms, includ-
ing convergence conditions in both mean and mean-squared
senses. A discussion on complexity is also provided. Numerical
simulations include a synthesized-data experiment and real-data
experiments on temperature prediction, brain activity estimation,
and image reconstruction. Results show that the RFF-based batch
implementation offers competitive performance with a reduced
computational burden when compared to the conventional KRG.
The MGKRG offers a convenient trade-off between performance
and complexity by varying the number of mini-batch samples.
The RLSKRG has a faster convergence than the MGKRG and
matches the performance of the batch implementation.

Index Terms—kernel regression on graphs, random Fourier
features, stochastic gradient, recursive least squares

I. INTRODUCTION

Graph signal processing (GSP) employs graph-structural
information to model, process, and analyze signals defined
over graph nodes [1]–[4]. The growing importance of GSP
is due to its applicability to networked data processing,
as connectivity between real-world elements progressively
increases with the advent of the internet-of-things, sensor
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networks, and better communication technologies [5]–[7]. By
associating real-world network elements with graph nodes
and encoding their interrelations through graph edges, GSP
leverages the graph structure to process or analyze the network
data, modeled as a graph signal. Like conventional signal
processing, the literature consists of various GSP techniques
and approaches that address different needs associated with
real-world networks.

Here, we are particularly interested in GSP approaches for
modeling relations between a reference signal and a target
signal, usually referred to as an input-output pair [8]–[18].
Typically, state-of-the-art techniques address the case where
both reference and target signals share the same graph. In
the context of linear system modeling, different learning
problems have been studied within the GSP framework, e.g.,
classification on graphs [19], autoregressive models for graph
signal prediction [15], [16], [20], dictionary learning [21],
and distributed adaptive filtering [8]–[14]. Several learning
strategies have been proposed for the nonlinear setting as
well. In particular, kernel regression has been extensively
employed for a range of nonlinear learning tasks, such as
reconstruction [22]–[24] and prediction of graph signals [15].

In contrast to previous works, [15] proposes a batch-based
kernel regression method that maps a general signal, not
necessarily a graph signal, to an output signal that resides
on a given graph. This means that the input signal can
be agnostic to the graph or that the relation between the
input signal and the graph structure is unavailable. A penalty
term, added to the loss function, achieves this mapping and
enforces the graph signal at the output, whose smoothness
across the graph is defined by the graph Laplacian. The
batch implementation in [15] requires that all samples are
available before computing the solution, which induces a delay
when dealing with streaming data. Moreover, obtaining the
regression parameters through the batch-based KRG for large
amounts of data may be computationally prohibitive. Finally,
the approach in [15] inherits the well-known scaling issue of
kernel methods [25], [26] since the model dimension increases
with the number of training samples, which increases with
the network size and with time. Other batch-based learning
methods that take the graph structure into account, with
different objective functions, are available in the literature,
such as geometric deep learning [27], methods that link GSP
and graph neural networks [28]–[30], and other GSP-based
machine-learning methods [31], [32].

This work proposes an approach for kernel regression
on graphs using random Fourier features (RFF) [33], [34],



2

which enjoys a reduced model complexity compared to the
batch-based KRG. Also, we derive and analyze two online
strategies, namely, the mini-batch gradient KRG (MGKRG),
with the particular case of the stochastic-gradient descent KRG
(SGKRG), and the recursive least squares KRG (RLSKRG).
The proposed RFF-based algorithms approximate the kernel
evaluations by inner-products in a fixed-dimensional space,
avoiding the model dimension dependency on the number of
training samples encountered in the conventional KRG. Addi-
tionally, we propose an efficient implementation applicable to
the conventional and RFF-based KRG that avoids large-scale
matrix inversions. Similar to the approach in KRG [15], the
proposed algorithms produce signals that vary smoothly over
the graph, while input signals need not reside on a graph.

Among the proposed online algorithms, the stochastic gra-
dient implementations, SGKRG and MGKRG, offer low-
complexity alternatives. While the SGKRG requires the least
computational effort, the MGKRG can improve the perfor-
mance at a small additional cost by incorporating more sam-
ples in the stochastic gradient approximation. The RLSKRG,
being the most complex, has faster convergence and higher
accuracy than the other online implementations.

This paper is organized as follows. In Section II, we
present some basic GSP concepts, formulate the problem of
learning over graphs, and briefly describe the KRG method-
ology proposed in [15]. Section III presents the proposed
methodology for batch-based KRG using RFF, along with
an efficient implementation for large networks. The proposed
online algorithms, namely the MGKRG, the RLSKRG, and
its efficient implementation, are presented in Section IV.
Section V provides a convergence analysis of the proposed
online algorithms, and Section VI provides a brief discussion
on the complexity of the algorithms. Numerical experiments to
validate the performance of the proposed algorithms on both
synthesized and real data are presented in Section VII. In the
real-data experiments, we tackle the problems of predicting
temperature on a weather-station network, estimating brain
activity, and reconstructing corrupted video frames. Finally,
concluding remarks for this work are presented in Section IX.

Mathematical notation: scalars are denoted by lowercase
letters, column vectors by bold lowercase, and matrices by
bold uppercase. Superscripts (·)T and (·)−1 denote the trans-
pose and inverse operators, respectively. Given a matrix A =
[a1 a2 . . . aN ], the column-stacking operation is denoted by
vec(A) = [aT

1 aT
2 . . . aT

N ]T and the reverse operation that
reshapes a column vector back to its appropriate matrix form
is A = mat(vec(A)). The (i, j)th element of matrix A is
denoted by Ai,j . Symbol ⊗ denotes the Kronecker product.
1N denotes the N×1 vector with all entries equal to unity and
IN denotes the N×N identity matrix. The M×N matrix with
all entries equal to zero is denoted by 0M×N . ‖ · ‖2 denotes
the 2-norm of the argument vector or the spectral norm of the
argument matrix. The Frobenius norm of the argument matrix
is denoted by‖ · ‖F. E[·] denotes the expected value of the
argument.

II. BACKGROUND AND PROBLEM FORMULATION

Consider an undirected graph G = {N , E}, where N =
{1, 2, . . . ,K} is the set of nodes and E is the set of edges
such that (k, l) ∈ E if nodes k and l are connected. To
each edge (k, l) ∈ E , a weight wk,l ∈ R+ can be assigned,
which represents the strength of the relation between nodes
k and l [1]–[3]. The set of edges is usually represented
by the adjacency matrix A ∈ RK×K+ , such that the entry
Ak,l = Al,k = wk,l if (k, l) ∈ E and Ak,l = 0 otherwise.
At time instant n, the graph signal is defined by a vector
yn = [y1,n y2,n . . . yK,n]T, with yk,n ∈ R being the signal
value at node k.

Let Nk denote the neighborhood of node k, which is the set
of nodes connected to k including itself. The graph Laplacian
matrix is defined as L = D − A, where D is the degree
matrix of G, with Dk,k =

∑K
l=1 wk,l. The graph Laplacian

is associated with the total-variation metric ν(y) of a graph
signal y as follows:1

ν(y) = yTLy

=
∑
k<l

Ak,l
(
yk − yl

)2
. (1)

The metric (1) represents how much a signal varies across the
graph, taking into account the edge weights [2], [15].

Considering a graph-based system, which takes an input
vector x ∈ RM and outputs a graph signal t ∈ RK ,
we are interested in estimating the corresponding mapping
M : RM → RK . Given a set of training (available) data
pairs {xn, tn}Nn=1, regression methods can estimate M. Re-
gression methods that leverage the graph structure to improve
the estimation are proposed in [15]. These methods were
shown to outperform other approaches that do not use graph
information.

A. Kernel Regression on Graphs

In [15], the model is estimated in terms of a matrix W ∈
RM×K such that

yn = WTφ(xn), (2)

where yn is an estimate of the target graph signal tn and
φ : RM → RM is an unknown function of the input signal.
The optimal parameter matrix W is found by minimizing the
cost function

C(W) =

N∑
n=1

‖tn−yn‖22 +αtr(WTW) +β

N∑
n=1

ν(yn), (3)

where N ≥M . The cost function C(W) augments traditional
regression methods by incorporating the penalty

∑N
n=1 ν(yn),

which enforces smoothness of the output signal with respect
to the graph. Defining the matrices

T = [t1 t2 . . . tN ]T ∈ RN×K , (4)

Y = [y1 y2 . . . yN ]T ∈ RN×K , (5)

Φ = [φ(x1) φ(x2) . . . φ(xN )]T ∈ RN×M , (6)

1The term “total variation” has been used to denote different smoothness
metrics in the GSP literature [2], [35], [36]. We follow the notation from [36].
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and assuming Φ is full rank, we can make the substitution
W = ΦTΨ, so that the optimization is now conducted in
terms of Ψ ∈ RN×K . The predicted output of the kernel
regression is given by [15]

y = ΨTΦφ(x) = ΨTκ(x)

=
(
mat

(
(B + C)−1vec(T)

))T
κ(x), (7)

where κ(x) = [κ1(x) κ2(x) . . . κN (x)]T, with κn(x) =
φ(xn)Tφ(x). Also,

B = (IK ⊗ (K + αIN )), (8)
C = (βL⊗K), (9)

with K = ΦΦT ∈ RN×N . Here, the kernel trick is employed
to avoid the explicit knowledge of φ(·), by replacing the inner
product κn(xi) = φ(xi)

Tφ(xn) with a kernel κ(xi,xn) [38],
[39]. The method described in (7), which outputs an estimate
y for an input x, is referred to as kernel regression on graphs.

The regression in (7) is performed in a batch-based fashion,
assuming that all training samples are available a priori. A
significant drawback of this implementation is the inherent
delay of batch-based implementations, as the computation of
the parameter matrix Ψ must wait for all training samples
{xn, tn}Nn=1 to be available. The increase in the computational
burden of the KRG with the number of training samples is
twofold. First, computing Ψ becomes more complex as the
dimensions of K increase with N . Second, the regression
dimension increases as the size of κ(x) increases with N , and
each additional training sample requires a kernel evaluation.
The model complexity also depends on the number of training
samples N , requiring N kernel evaluations for each new
input signal, which is an issue if an online implementation is
derived. In the following section, we treat the growing com-
plexity by proposing a batch-based approach using random
Fourier features.

III. BATCH KRG USING RANDOM FOURIER FEATURES

Random Fourier features is a widely used technique to
circumvent the scaling problems of kernel methods [33]. This
methodology presumes that the evaluation of a shift-invariant
kernel, which satisfies κ(xm,xn) = κ(xm − xn, 0), can
be approximated as an inner product in the D-dimensional
RFF space. This turns the problem into a finite-dimension
linear filtering problem while avoiding the evaluation of kernel
functions. Let zn be the mapping of xn into the RFF space
RD, given by

zn = (D/2)
− 1

2
[
cos(vT

1 xn + b1) . . . cos(vT
Dxn + bD)

]T
,

(10)

where the phase terms {bi}Di=1 are drawn from a uniform
distribution on the interval [0, 2π]. Vectors {vi}Di=1 are real-
izations of a random variable with probability density function
(pdf) p(v) such that

κ(xm,xn) =

∫
p(v) exp

(
jvT(xm − xn)

)
dv, (11)

where j2 = −1. In other words, the Fourier transform of
κ(xm,xn) is given by p(v). From (10) and (11), it can be
verified that E[zTnzm] = κ(xm,xn) [33].

A. RFF-based KRG

To employ RFF in the KRG methodology, we first consider
the kth entry of the estimate y as

yk = wT
kφ(x), (12)

where wk denotes the kth column of the parameter matrix
W. Using the substitution W = ΦTΨ, and the kernel trick
κ(xm,xn) = φ(xm)Tφ(xn), (12) can be rewritten as

yk =

(
N∑
n=1

Ψn,kφ(xn)

)T

φ(x) =

(
N∑
n=1

Ψn,kκ(xn,x)

)
.

(13)

Using RFF, we can approximate (13) as

yk ≈
N∑
n=1

Ψn,kz
T
nz = hT

k z. (14)

Finally, the RFF-based regression estimate for the entire
graph signal is written as

y = HTz, (15)

where H = [h1 h2 . . . hK ] ∈ RD×K is the representation of
the regression coefficient matrix in the RFF space. Letting the
matrix

Z = [z1 z2 . . . zN ]T ∈ RN×D (16)

represent the RFF mapping of all training input vectors
{xn}Nn=1, and using T and Y as respectively defined in (4)
and (5), the cost function (3) can be rewritten in terms of H
as

C(H) =

N∑
n=1

‖tn‖22 − 2tr(TTZH) + tr(HTZTZH)

+ α(HTH) + βtr(HTZTZHL). (17)

The gradient of C(H) with respect to H is given by

∇C(H) = −2ZTT + 2ZTZH + 2αH + 2βZTZHL. (18)

Setting ∇C(H) = 0, we obtain

(ZTZ + αID)Hopt + βZTZHoptL = ZTT. (19)

Then, vectorizing both sides of (19) and using the relation
vec(AXB) = (BT ⊗ A)vec(X), the regression coefficients
in the RFF space can be obtained as

vec(Hopt) = (BRFF + CRFF)−1vec(ZTT), (20)

where

BRFF = (IK ⊗ (ZTZ + αID)), (21)

CRFF = (βL⊗ ZTZ). (22)

Once the regression coefficients are trained, the target
estimate y given an input signal x corresponding to z in the
RFF space is given by

y = HT
optz. (23)

From (21) and (22), it can be observed that the com-
putational burden of obtaining the regression parameters is
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drastically reduced when compared to the conventional KRG,
as the size of the BRFF and CRFF is now KD ×KD, with
D possibly much smaller than N . From (23), we see that the
estimation does not depend on the number of training samples
and the model has a fixed size D, requiring only the mapping
of each new input sample into the RFF space.

B. Efficient Computation For Large Networks

For large networks, computing the inverses in (7) and (20)
may be prohibitively complex. We propose an efficient way
to compute the parameters in these cases. We adopt the
notation of the conventional KRG, but the same reasoning
applies directly to the RFF-based implementation. We rewrite
(B + C)−1 as

(B + C)−1 = (IK ⊗ (K + αIN ) + βL⊗K)
−1

= (IK ⊗ αIN + (IK + βL)⊗K)
−1

= (αIKN + (IK + βL)⊗K)
−1 . (24)

Consider the eigendecompositions (IK + βL) = UΣUT

and K = VΩVT. We use the mixed-product property
(AB)⊗ (CD) = (A⊗C)(B⊗D) to rewrite the Kronecker
product. Note also that matrices αIKN and (IK + βL) ⊗K
are simultaneously diagonalizable. Then, (24) can be written
as

(B+C)−1 = (U⊗V)(αIKN +Σ⊗Ω)−1(UT⊗VT), (25)

and

(B+C)−1vec(T)

= (U⊗V)(αIKN + Σ⊗Ω)−1(UT ⊗VT)vec(T)

= (U⊗V)(αIKN + Σ⊗Ω)−1vec(VTTU). (26)

Letting

Γ = mat
(
(αIKN + Σ⊗Ω)−1vec(VTTU)

)
(27)

and using the relation (BT ⊗ A)vec(X) = vec(AXB), we
have

Ψ = VΓUT. (28)

Note that (27) requires the trivial inversion of a diagonal
matrix. Hence, the dominating complexity is reduced from
(KN)3 operations due to matrix inversion to approximately
K3 and N3 operations required for the eigendecompositions
of (IK + βL) and K, respectively.

IV. ONLINE KERNEL REGRESSION ON GRAPHS

In what follows, we consider online implementations of the
KRG. To bypass the dimensionality problem associated with
the kernel dictionary, we resort to online RFF-based KRG
implementations.

Algorithm 1: MGKRG
Initialization:
H1 = 0D×K ;
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
Learning:
for each time instant n do

map xn into zn;
if (n mod δ) = 0 then

Zn = [z(n−Nb+1) . . . zn]T;
Tn = [t(n−Nb+1) . . . tn]T;
Yn = ZnHn;
En = Tn −Yn;
Hn+1 = (1− µα)Hn + µ

Nb
ZT
n (En − βYnL);

end
store zn;
release z(n−Nb+1);

end

A. Mini-batch Stochastic-Gradient KRG

Consider the following minimization problem:

min
H

E
[
‖t− y‖22] + αtr(HTH) + E[βν(y)

]
. (29)

Similar to the batch-based approach, which conducts the
optimization over N batch samples, problem (29) considers
the expectation of the regularized regression problem. The
gradient of the cost function in (29) is

∇C(H) = −2Rzt + 2RzH + 2αH + 2βRzHL, (30)

where Rzt = E[ztT] and Rz = E[zzT]. In practice, the
statistics Rzt and Rz can be unavailable.

In the proposed approach, we use mini-batch averages to
approximate Rzt and Rz . We define the matrices composed
by the signals corresponding to each individual mini-batch as

Zn = [z(nδ−Nb+1) . . . znδ]
T ∈ RNb×D

and
Tn = [t(nδ−Nb+1) . . . tnδ]

T ∈ RNb×K ,

where 1 ≤ δ ≤ Nb is the batch displacement parameter. For
the nth batch, we can compute the approximations R̂zt,n =
(ZT

nTn)/Nb and R̂z,n = (ZT
nZn)/Nb. We implement the

sliding-window MGKRG, with δ = 1, such that consecutive
mini-batches have maximum overlap of Nb − 1 samples.
A particular case of the MGKRG is defined by making
Nb = δ = 1. In this case, only the current sample is used to
compute the approximation of the gradient. This corresponds
to a stochastic-gradient approach and will be referred to as
stochastic gradient KRG (SGKRG).

The regression parameters are updated at the nth batch by
taking a step in the negative direction of the corresponding
approximate gradient, i.e.,

Hn+1 = (1− µα)Hn +
µ

Nb
ZT
n (Tn − ZnHn − βZnHnL) ,

(31)
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where µ > 0 is the gradient-descent step size. Letting Yn =
ZnHn be the mini-batch estimate and En = Tn−Yn be the
corresponding a priori error matrix, the update equation for
the mini-batch gradient KRG is written as

Hn+1 = (1− µα)Hn +
µ

Nb
ZT
n (En − βYnL) . (32)

B. Recursive Least-Squares KRG

We now explore the principles of the recursive least squares
algorithms [40] to derive a recursive learning of the regression
coefficients of the RFFKRG. That is, we part from the same
optimization problem (17) but, instead of solving (20) directly,
we solve it recursively. First, we rewrite (20) as

vec(Hn)

=
(
(IK ⊗ (ZTZ + αID)) + (βL⊗ ZTZ)

)−1
vec(ZTT)

= R−1n rn, (33)

where

Rn = αIK ⊗ ID + (IK + βL)⊗ ZTZ (34)

rn = vec(ZTT). (35)

Note that these terms are obtained at time n, i.e., once n
training samples are available. We aim to write both R−1n
and rn in terms of R−1n−1 and rn−1, respectively, to derive a
recursive algorithm. First, we rewrite (34) as

Rn = αIKD + (IK + βL)⊗
n∑
i=0

ziz
T
i (36)

= αIKD + (IK + βL)⊗
n−1∑
i=0

ziz
T
i + (IK + βL)⊗ znzTn

= Rn−1 + (IK + βL)⊗ znzTn . (37)

We rewrite the second term on the right-hand side (RHS)
of (37) using the mixed-product property and the fact that
the resulting matrix is symmetric, as

(IK + βL)⊗ znzTn = ((IK + βL)⊗ zn)(IK ⊗ zTn )

= (IK ⊗ zn)((IK + βL)⊗ zTn )

Now, letting Pn = (IK ⊗ zn) and Qn = ((IK + βL)⊗ zTn ),
we can use the matrix inversion lemma to derive a recursive
equation for R−1n as

R−1n = R−1n−1 −R−1n−1Pn

(
IK + QnR−1n−1Pn

)−1︸ ︷︷ ︸
Gn∈RKD×K

QnR−1n−1.

(38)
where the gain matrix Gn may be simplified as follows:

Gn =
(
R−1n−1 −GnQnR−1n−1

)
Pn = R−1n Pn. (39)

We now write (35) in a recursive manner as

rn = vec

(
n∑
i=0

zit
T
i

)
= rn−1 + vec(zntTn ). (40)

Substituting (40) into (33), we obtain

vec(Hn) = R−1n rn−1 + R−1n vec(zntTn ). (41)

Algorithm 2: RFF-based RLSKRG
Initialization:
R−1−1 = 1

αIKD;
H−1 = 0D×K ;
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
Learning:
for each time instant n do

map xn into zn;
Pn = IK ⊗ zn;
Qn = (IK + βL)⊗ zTn ;
Gn = R−1n−1Pn

(
IK + QnR−1n−1Pn

)−1
;

ŷn = HT
n−1zn;

en = tn − ŷn;
Hn = Hn−1 + mat(Gn(en − βLŷn));
R−1n = R−1n−1 −GnQnR−1n−1;

end

Using the relation vec(AXB) = (BT ⊗ A)vec(X) and the
mixed-product property, vec(zntTn ) can be written as

vec(zntTn ) = tn ⊗ zn = (IK ⊗ zn)tn.

and (41) becomes

vec(Hn) = R−1n rn−1 + R−1n (IK ⊗ zn)tn

= R−1n rn−1 + Gntn (42)

Substituting (38) into (42)

vec(Hn) = R−1n−1rn−1 −GnQnR−1n−1rn−1 + Gntn

= vec(Hn−1) + Gn(tn −Qnvec(Hn−1))

= vec(Hn−1) + Gn

(
tn − (IK ⊗ zTn )vec(Hn−1)

− (βL⊗ zTn )vec(Hn−1)
)

= vec(Hn−1) + Gn(tn −HT
n−1zn − βLHT

n−1zn)

= vec(Hn−1) + Gn(en − βLŷn), (43)

or, equivalently,

Hn = Hn−1 + mat(Gn(en − βLŷn)), (44)

where ŷn = HT
n−1zn is the a priori target estimate and en =

tn − ŷn is the a priori error. Equation (43) is the recursive
update equation for the proposed recursive least squares KRG
(RLSKRG) algorithm. The steps for the implementation of the
RLSKRG algorithm are summarized in Algorithm 2.

Due to its recursive nature, the RLSKRG algorithm consid-
ers past samples when computing the update matrix at each
iteration. Thus, its performance is expected to match that of
the batch-based approach.

C. Efficient RLSKRG Implementation

The complexity associated with large matrix multiplications
or inversions can render the RLSKRG impractical for large
networks. For instance, the computations of Gn and R−1n in
Algorithm 2 require multiplications of matrices with dimen-
sion KD ×KD and KD ×K. This implies at least K3D2
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Algorithm 3: Efficient RLSKRG
Initialization:
Rz,−1 = 0D×D;
H−1 = 0D×K ;
get U and Σ;
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
Learning:
for each time instant n do

map xn into zn;
Rz,n = Rz,n−1 + znzTn ;
Get Vn and Ωn;
Pn = IK ⊗ zn;
ŷn = HT

n−1zn;
en = tn − ŷn;
Ξ = mat(Pn(en − βLŷn));
Γn = mat((αIKD + Σ⊗Ωn)−1vec(VT

nΞnU));
Hn = Hn−1 + VnΓnUT;

end

multiplication operations for each computation. We now derive
an alternative implementation with reduced complexity.

Substituting (36) into (39), and substituting the result
into (44), we obtain

Hn = Hn−1

+ mat
(

(αIKD + (IK + βL)⊗Rz,n)
−1

ξn)
)
,

(45)

where Rz,n =
∑n
i=0 znzTn and ξn = Pn(en − βLŷn). We

now use the eigendecompositions (IK + βL) = UΣUT and
Rz,n = VnΩnVT

n . Using the mixed-product property of the
Kronecker product, and considering that αIKD and (IK +
βL) ⊗Rz,n share the same set of eigenvectors, (45) can be
rewritten as
Hn = Hn−1

+ mat
(
(U⊗Vn)(αIKD + Σ⊗Ωn)−1vec(VT

nΞnU))
)
,

(46)

where Ξn = mat(ξn). Letting Γn = mat((αIKD +
Σ ⊗ Ωn)−1vec(VT

nΞnU)), and using the relation (BT ⊗
A)vec(X) = vec(AXB), the update equation for the efficient
RLSKRG algorithm is given by

Hn = Hn−1 + VnΓnUT. (47)

All steps for the implementation of the efficient RLSKRG are
presented in Algorithm 3.

V. CONVERGENCE ANALYSIS

This section examines the convergence of the proposed
online algorithms; in particular, we study their first- and
second-order stability conditions. In the following analysis,
Ho denotes the optimal linear estimator in the least mean
squares sense of Tn in the RFF domain. In this case, Tn =
ZnHo + Υn, where Υn = [υ(nδ−Nb+1) . . . υnδ]

T ∈ RNb×K

denotes the corresponding optimum-error matrix, which sat-
isfies the orthogonality condition E[ZT

nΥn] = 0D×K ⇔
E[(IK ⊗ ZT

n )vec(Υn)] = 0KD×1 [40], [41].

For the derivations that follow, let λmax(·) denote the
maximum eigenvalue of the argument matrix and let ρ(·)
denote the spectral radius of the argument matrix, i.e., the
largest absolute value of its eigenvalues. Additionally, we
use the following property of the Kronecker product: let the
eigenvalues of a matrix A be {λ1, λ2, . . . , λM} and of a
matrix B be {σ1, σ2, . . . , σN}. Then, the eigenvalues of
A⊗B and B⊗A are given by {λiσj}M,N

i=1,j=1 [41].

A. First-Order Analysis of the MGKRG

Making the substitution in (31) and subtracting both sides
from Ho yields

H̃n+1 = H̃n − µαH̃n −
µ

Nb
ZT
nZnH̃n −

µ

Nb
βZT

nZnH̃nL

+
µ

Nb
βZT

nZnHoL + µαHo −
µ

Nb
ZT
nΥn,

(48)

where H̃n = Ho − Hn is the parameter-deviation matrix.
Defining h̃n = vec(H̃n), ho = vec(Ho), and γn = vec(Υn),
the above recursion can be alternatively expressed as

h̃n+1 =

(
IKD − µ

(
αIKD +

1

Nb
(IK + βL)⊗ (ZT

nZn)

))
h̃n

+ µ

(
αIKD +

β

Nb
L⊗ (ZT

nZn)

)
ho

− µ

Nb
(IK ⊗ ZT

n )γn. (49)

To study the convergence behavior of the proposed MGKRG
governed by the form (49), we make the following assump-
tions:
A1: The RFF-mapped data signal zn is drawn from a wide-

sense stationary multivariate random sequence with cor-
relation matrix Rz = E[znzTn ].

A2: For n large enough, the contribution of the batch Zn
to Hn is negligible, such that Hn is considered to be
independent of Zn.

A3: The graph topology is assumed to be static, meaning that
the graph Laplacian L is fixed throughout the process.

Theorem 1. A sufficient condition on the step size µ for the
convergence of the proposed MGKRG algorithm governed
by (32), is given by

0 < µ <
2

λmax(Rz) + α+ βλmax(L)λmax(Rz)
. (50)

Proof. Taking the expectation E[·] on both sides of (49), using
A1-A2, and using the orthogonality condition such that the
error-related term can be set to zero, we obtain

E[h̃n+1] = AE[h̃n] + Bho, (51)

where
A = IKD − µ (αIKD + (IK + βL)⊗Rz)

B = µ (αIKD + βL⊗Rz) .
(52)

Iterating the above recursion back down to zero, we obtain

E[h̃n] = AnE[h̃0] +

n−1∑
j=0

An−1−jBho. (53)
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Therefore, we see that convergence is guaranteed if ρ(A) < 1.
We note that a scalar matrix aI, with a ∈ R, is simultane-
ously diagonalizable with any arbitrary matrix with adequate
dimensions. Using the properties of the Kronecker product,
and recalling that the eigenvalues of L and Rz are non-
negative, the above condition reduces to 0 < µ(α + (1 +
βλmax(L))λmax(Rz)) < 2. The result in (50) follows from
here.

Remark 1. Under the convergence condition (50), (53) con-
verges asymptotically to (IKD−A)−1Bho, which reduces to
(αIKD+(IK+βL)⊗Rz)

−1(αIKD+βL⊗Rz)ho. This means
that limn→∞Hn is a biased estimate of Ho. Also, the bias
is introduced by the regularization coefficients α and β, such
that a non-regularized problem leads to an unbiased solution.

B. Second-Order Analysis of the MGKRG

For the second-order analysis of the MGKRG, we consider
the following additional assumption:
A4: The step size µ is sufficiently small so that the terms

involving higher order powers of µ can be ignored.
Using A1-A4, the covariance matrix of the parameter deviation
vector h̃n+1 is given by

E[h̃n+1h̃
T
n+1] = E[h̃nh̃T

n ]− µE[h̃nh̃T
n ]C − µCE[h̃nh̃T

n ]

− µE[h̃nhT
o ]D − µDE[hoh̃

T
n ],

(54)

where
C = αIKD + (IK + βL)⊗Rz

D = αIKD + βL⊗Rz .
(55)

The cross terms involving µ
Nb

(IK ⊗ ZT
n )γn are zero due to

the orthogonality condition. By vectorizing both sides of (54)
and defining ηn = vec(h̃nh̃T

n ), we can now write

E[ηn+1] = ∆E[ηn] + Θn, (56)

where

∆ = IK2D2 − µ(C ⊗ IKD)− µ(IKD ⊗ C) (57)

and
Θn =

− µ(D ⊗ IKD)vec(E[h̃n]hT
o )− µ(IKD ⊗D)vec(hoE[h̃n]T).

(58)

Theorem 2. Assume A1-A4 hold. Then, the second-order con-
vergence of the proposed gradient-based algorithms, namely
the MGKRG and the SGKRG, is guaranteed under

0 < µ <
1

λmax(Rz) + α+ βλmax(L)λmax(Rz)
. (59)

Proof. Iterating the recursion (56) back down to zero, we
obtain

E[ηn] = ∆nE[ηo] +

n−1∑
j=0

∆n−1−jΘj . (60)

Recalling that E[h̃n] is finite under (50), so Θn converges
asymptotically with n. Therefore, equation (60) is stable iff

ρ(∆) < 1. Since matrices C ⊗ IKD and IKD ⊗ C commute
and are both diagonalizable, the eigenvalues of their sum equal
the sum of their eigenvalues. Moreover, these matrices share
the same eigenvalues under the properties of the Kronecker
product. Then, the condition for ρ(∆) < 1 reduces to

ρ(IK2D2 − 2µ(C ⊗ IKD)) < 1, (61)

which can be written as |1− 2µλmax(C)| < 1. Substituting C
as in (55), the second-order convergence condition reduces to

0 < 2µ
(
α+ (1 + βλmax(L))λmax(Rz)

)
< 2, (62)

from which (59) follows.

Theorem 2 shows that the condition for second-order sta-
bility of the MGKRG is more strict than that of the first-
order stability. The upper-bound imposed on the step-sizes for
second-order stability is half of the upper-bound established
in Theorem 1.

C. First-Order Analysis of the RLSKRG

In the analysis of the RLSKRG, the following additional
assumption is considered:
A5: The random sequence that governs signals zn is ergodic.

Then, for sufficiently large n, Rn behaves as a deter-
ministic matrix given by Rn = αIKD + (IK + βL) ⊗
(n+ 1)Rz .

Assumption A5 is commonly employed in the analysis of
RLS-based algorithms [42]. It considers that, given ergodicity,
the time average of rank-one covariance matrices znzTn can be
replaced by the expected value for large enough n.

Multiplying both sides of (33) from the left by Rn, and
using (40) in conjunction with (33) we can write

Rnvec(Hn) = rn

Rnvec(Hn) = rn−1 + vec(zntTn )

Rnvec(Hn) = Rn−1vec(Hn−1) + vec(zntTn ) (63)

Substituting the model tn = HT
o zn + υn into (63), we have

Rnvec(Hn) = Rn−1vec(Hn−1) + vec(znυ
T
n ) + vec(znzTnHo)

(64)

We now subtract both sides from Rnvec(Ho). By recalling
that h̃n = vec(Ho −Hn), we obtain

Rnh̃n =Rnvec(Ho)−Rn−1vec(Hn−1)

− vec(znυ
T
n )− vec(znzTnHo). (65)

Substituting (37) into the first term on the RHS, we
rewrite (65) as

Rnh̃n = Rn−1h̃n−1 − vec(znυ
T
n ) + (βL⊗ znzTn )vec(Ho).

(66)

Taking the recursion down to n = 0 and solving for h̃n, we
obtain

h̃n = R−1n R0h̃0 + R−1n πn, (67)

where

πn =

n∑
i=0

vec(βziz
T
i HoL− ziυ

T
i ). (68)
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Using vec(AXB) = (BT ⊗A)vec(X) and A5, we get

πn = (βL⊗ (n+ 1)Rz) ho −
n∑
i=0

vec(ziυ
T
i ). (69)

Theorem 3. The RLSKRG described in Algorithm 2 is stable
in the mean sense and converges to a steady state.

Proof. The expected value of the parameter deviation in (67)
is given by

E[h̃n] = E[R−1n R0h̃0] + E[R−1n πn]. (70)

For sufficiently large n, we can apply A5 so that R−1n can be
regarded as a deterministic matrix for which limn→∞R−1n =
0KD×KD, since Rn is dominated by the term (IK + βL) ⊗
(n + 1)Rz . Thus, the first term on the RHS of (70) tends to
zero. As for the second term, under the same conditions we
have that

E[R−1n πn] =R−1n (βL⊗ (n+ 1)Rz) ho

−R−1n

n∑
i=0

vec
(
E[ziυ

T
i ]
)︸ ︷︷ ︸

=0KD×1

, (71)

where the second term on the RHS is zero due to the
orthogonality condition. Regarding the first term, as Rn is
dominated by the term (IK + βL)⊗ (n+ 1)Rz , then we can
write limn→∞R−1n (βL⊗ (n+ 1)Rz) ho = Eho, in which

E = lim
n→∞

[(IK + βL)⊗ (n+ 1)Rz]
−1

(βL⊗ (n+ 1)Rz)

=
[
(IK + βL)−1βL

]
⊗ ID , (72)

where we used the Kronecker product property (A⊗B)−1 =
(A−1 ⊗ B−1) and the mixed-product property. Hence, we
have that Hn is an asymptotically biased estimate of Ho, and
by using the relation (BT ⊗ A)vec(X) = vec(AXB), we
can rewrite the bias term Eho as follows: limn→∞ E[H̃n] =
βHoL(IK + βL)−1.

Remark 2. Under the convergence condition (50), the bias of
the MGRKG tends to the bias of the RLSKRG when α→ 0+.
In addition, the bias in the RLSKRG is introduced solely
by the regularization coefficient β, since the regularization
coefficient α contributes only with an initial condition for the
matrix Rn, which plays no role in the algorithm’s average
behavior as n grows to infinity.

D. Second-Order Analysis of the RLSKRG

For the second order analysis, we assume further that
A6: Variables zn and tn are jointly ergodic, so that, for

sufficiently large n,
∑n
i=0 zit

T
i ≈ (n+ 1)E[zit

T
i ].

Assumptions A5 and A6 imply that, for sufficiently large n,
matrix

∑n
i=0 zi(t

T
i − zTi Ho) can be approximated as (n +

1)E[ziυ
T
i ], which is equal to 0K×D due to the orthogonality

condition.

Theorem 4. The RLSKRG described in Algorithm 2 is stable
in the mean-squared sense and converges to a steady state.

Proof. From (67), we have

E[‖h̃n‖22] = E[‖R−1n R0h̃0‖22]

+ 2E[h̃T
0 R0R

−2
n πn] + E[‖R−1n πn‖22].

(73)

For sufficiently large n, we can apply A5 so that the
first non-negative term on the RHS of (73) is up-
per bounded by ‖R−1‖22 · E[‖R0h̃0‖22], which tends to
zero since E[‖R0h̃0‖22] is bounded and limn→∞R−1n =
0KD×KD. Under A5 and A6, we can write R−1n πn =
vec
(
βHoL(IK + βL)−1

)
for sufficiently large n. This im-

plies both that the middle term on the RHS of (73) can
be written as 2E[h̃T

0 R0]R−1n vec
(
βHoL(IK + βL)−1

)
, which

tends to zero as n grows to infinity, and that the last term
on the RHS of (73) is finite. Therefore, the RLSKRG con-
verges in the mean-squared sense to limn→∞ E[‖h̃n‖22] =
‖vec

(
βHoL(IK + βL)−1

)
‖22.

VI. DISCUSSION ON COMPLEXITY

For the MGKRG algorithm, the update (32) requires DK+
Nb(K2 + 2DK + K) multiplication operations. That is, the
complexity of the MGKRG increases linearly with Nb with a
slope equal to K2 + 2DK + K. Additionally, the MGKRG
requires a memory to store Nb > 1 samples. Hence, the
batch-size translates into a trade-off between complexity and
performance since the gradient approximation using more
samples yields a better update direction than those using a
reduced number of samples. In this sense, the SGKRG yields
the lowest computational burden of the proposed online KRG
implementations.

The proposed efficient implementation of the RLSKRG
in (47) requires D3 + D2 + 2D2K + 5DK + 2DK2 + K2

multiplication operations to update Hn. The terms D2 and
D3 correspond to the complexity of updating the matrix
Rz,n and computing its eigendecomposition, respectively.
Since Rz,n is only updated with znzTn at time n, and we
only need its eigensystem, the complexity can be reduced
using efficient techniques for rank-one updates of the singular
value decomposition [43]. Other techniques for reducing the
complexity of the RLSKRG can be considered. For instance,
dichotomous-coordinate descent (DCD) iterations, which uses
only additions and bit-shifts with no multiplications, have been
considered for reduced-complexity RLS implementations [44].
Under a reasonable assumption that Nb has the same order of
magnitude as D and K, we observe that the RLSKRG has
a slightly heavier computational burden per iteration when
compared to the MGKRG.

The efficient implementation (28) of the offline batch KRG
using RFF requires D3 +D2N + 2D2K + 3DK + 2DK2 +
KDN multiplications. We highlight that this complexity is
considerably smaller than that of the conventional implementa-
tion (20), which requires the inversion of a DK×DK matrix,
leading to complexity equivalent to D3K3 multiplications
for the inversion operation only. Moreover, we note that the
computations of ZTZ and ZTT depend on N and yield the
terms D2N and KND, respectively. This implies that the
complexity of the offline RFF-based KRG is not constant with
time. The batch-based KRG can be considered in an online
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Fig. 1. NMSE achieved by the Batch-based and RLSKRG implementations
versus number of training samples using synthesized data.

fashion, such that matrices ZTZ and ZTT are stored and only
rank-one updates are required at each time instant, reducing
the complexity of these terms to D2 and KD multiplications
per iteration, respectively.

The complexity of the proposed algorithms is further dis-
cussed in Section VII-A, where we evaluate the time taken for
the algorithms to learn the regression coefficients.

VII. NUMERICAL RESULTS

In this section, we validate the proposed methodology and
the theoretical results with numerical experiments using both
synthesized and real datasets. To assess the performance of the
proposed algorithms in terms of learning accuracy, we evaluate
the normalized mean squared error

NMSE = 10 log10

(
E

[
‖Y −T0‖2F
‖T0‖2F

])
, (74)

where T denotes the true target matrix and Y denotes the
estimated matrix. The NMSE is also used for the online algo-
rithms, instead of the commonly used learning error, to allow
comparison with the batch-based algorithms. We compare the
results against the conventional KRG proposed in [15] using
different hyperparameters, such as the dimension D of the RFF
space, the step size µ for online algorithms, and the number
Nb of samples in the mini-batches. In the experiments, we use
the Gaussian kernel κ(xi,xj) = exp

(
−‖xi − xj‖22/(2σ2)

)
,

with σ2 obtained via grid search.

A. Synthesized Data

Similar to the setup in [15], we consider an Erdös Rényi
graph with K = 50 nodes and edge-probability equal to 0.1. A
total of S = 20000 K-dimensional i.i.d. samples, {xn}Sn=1,
are generated, where xn ∼ N (0,CS). The S-dimensional
covariance matrix CS ∈ RS×S is drawn from the inverse
Wishart distribution with an identity scale matrix. We generate
the target graph signals {tn}Sn=1 as in [15], i.e., by solving
tn = arg minτ

{
‖xn − τ‖22 + τTLτ

}
. The generated signals

are divided into a training set and a test set, containing Nts

and N samples, respectively, with Nts + N ≤ S. The target
signals in the training dataset are perturbed by white Gaussian
noise (AWGN). The SNR is fixed across all nodes, with noise
variance on the kth node σ2

n,k =
σ2
s,k√
10

, where σ2
s,k denotes
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Fig. 2. NMSE achieved by the MGKRG implementations versus number of
training samples for different step sizes and mini-batch sizes.

the signal variance on the kth node. In our simulations, we
fix Nts = 1000 and let N vary. Finally, α and β were
obtained from the training set, via grid search and 5-fold cross-
validation, by minimizing the NMSE.

We evaluate the NMSE over the entire test dataset for the
proposed online algorithms at each iteration n. That is, for
every n, we obtain Hn, calculate the estimates of all Nts

test signals, and we compute the NMSE using (74). The
expected value is obtained as the ensemble average over 500
independent runs.

Fig. 1 presents the results of the batch-based implementa-
tions and the RLSKRG. We see that the RFF implementation
approximates well the conventional KRG even for relatively
small D = 32. The performance of the RLSKRG closely
matches the performance of the batch-based implementation.
Results in Fig. 2a show that online algorithms can effectively
learn the regression parameters. We analyze different step sizes
and we show that the NMSE level achieved by the SGKRG
approximates that of the batch RFF-based KRG as µ decreases.
Fig. 2b shows the performance of the MGKRG for different
mini-batch sizes. Plots show an increase in convergence speed
as Nb increases to 15 and then to 50 samples.

B. Runtime and Complexity Analysis

Here we evaluate the time that the proposed algorithms,
along with their different implementations, take to learn the
regression parameters, starting from the mapping of the input
signals into the RFF space. We use the same simulation setup
as in Section VII-A, with ensemble averages over 50 inde-
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Fig. 3. Runtime of the algorithms versus number of training samples (for
batch-based algorithms) or iteration (for online algorithms).

pendent runs. The algorithms are implemented in MATLAB®

running on an i7-6700HQ CPU @2.60 GHz with 16 GB RAM
DDR4 @2133 MHz.

Fig. 3a shows the results for the efficient implementation of
the conventional KRG, the RFF-based KRG and its efficient
implementation, and the RLSKRG from Algorithm 2. We do
not show the results for the conventional implementation of the
KRG since the runtimes escalate too quickly to be represented
in the plots. For example, for 100, 200, and 300 training
samples, the KRG takes approximately 3 seconds, 23 seconds,
and 82 seconds, respectively. These values become consider-
ably larger than the runtimes depicted in Fig. 3. Simulation
results show that the efficient implementation considerably
reduces runtimes. The dependence on N of the conventional
KRG can be observed in Fig. 3a, illustrating the well-known
complexity issue of kernel methods, whereas the runtimes of
the RFF-based KRG are mostly stable with N . As discussed
in Section VI, we can observe a relatively slight increase in
the runtime of the efficient RFF-based KRG as the number
of samples increases, even though the RFF-based model does
not depend on N anymore. This is due to the computations of
ZTZ and ZTT in an offline fashion. In the conventional RFF-
based implementation, this effect is masked by the increased
complexity of the inversion operation.

Fig. 3b shows the results for the online implementations
only. We can observe that the runtime per iteration is mostly
constant for all online algorithms. As presented in Section VI,
the RLSKRG in its efficient implementation is computationally
heavier than the stochastic-gradient approaches. The efficient
RLSKRG runs considerably faster than its non-efficient coun-
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Fig. 4. Trade-off between NMSE (solid lines) and runtime (dash-dot lines)
versus the RFF-space dimension D.

terpart. It can also be observed that increasing Nb, the number
of samples used to compute the gradient approximations,
increases the computational burden.

Fig. 4 shows the trade-off between complexity and accuracy
of the proposed algorithms as a function of the dimension
of the RFF-space, D, at N = 3000 samples. For the online
algorithms, we show the average runtime per iteration, which
is expected to be constant with N . The value of D controls
how well the RFF approximate the kernel function [33].
Thus, theoretically, increasing D leads to accuracy closer
to that achieved by the conventional KRG, while increasing
the computational complexity. In this particular simulation,
approximately D > 30 is enough to approximate the kernel
function with considerable accuracy and we observe that the
runtime increases in a linear fashion.
C. Real Data - Temperature Prediction

In this experiment, we use temperature data from 30 weather
stations distributed across Norway’s mainland, collected by the
Norwegian Meteorological Institute [45]. Data from 2019 are
used for the final experiment, while data from 2018 are used
for training hyperparameters σ, α, and β.

We construct a nearest-neighbor graph with K = 30 nodes
using the GSPBOX toolbox for MATLAB, such that each
station is connected to its five nearest neighbors. The latitude
and longitude coordinates of the stations are available in [45]
and are used for computing the distance between stations.
Fig. 5a shows the graph and the approximate positions of the
weather stations.

We employ the KRG for a 4-days ahead temperature
prediction on the 2019 data, with a 70% and 30% split
between training and test data, respectively. For the RFF-based
implementations, we use D = 128. The results are obtained as
an ensemble average over 100 independent experiments, with
different permutations of the data to generate the correspond-
ing training and test datasets.

Results are presented in Fig. 5. In this example, we observe
that the SG-based approaches, shown in Fig. 5b, achieve
performance similar to the performance achieved by the batch-
based approaches and the RLSKRG, in Fig. 5c. Comparing the
SG implementations among themselves, we control the step
size to achieve a similar steady-state NMSE. We observe that
increasing the mini-batch size increases convergence speed.
Plots in Fig. 5c show that the RLSKRG closely matches the
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Fig. 5. Setup and results for temperature-prediction simulation: (a) illustration of the map of Norway and the approximate position of the stations, as
represented by the graph used in the simulations; (b) results for SGKRG algorithms; and (c) results for batch-based algorithms and RLSKRG.
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Fig. 6. NMSE achieved by the KRG implementations versus number of
training samples for the fMRI signal simulation.

batch-based KRG using RFF. Also, for D = 128 used in this
example, the RFF offer an approximation that allows the RFF-
based KRG to match the conventional KRG in performance.

D. Real Data - fMRI Signal Extrapolation

This section reproduces the example from [15], which
employs the conventional KRG to estimate the intensities of
voxels in a functional magnetic resonance imaging (fMRI)
dataset. The data and graph used are available in [46].

In the fMRI context, a voxel is a volumetric unit that
constitutes a 3-dimensional image of the brain, analogous
to pixels in 2-dimensional digital images. Each voxel is
associated with a small cubic portion of the brain. The fMRI
measures the changes in blood flow on each of these voxels.
The blood flow is, in turn, associated with brain activity and,
thus, by collecting measurements on all voxels, one can obtain
a mapping of the brain activity. Regions of the brain relate to
each other anatomically and, by considering these relations,
a graph can be constructed where voxels are the nodes, and
edges represent relations between them. For more details on
this dataset and graph construction, see [15].

The regression experiment consists of estimating the signal
on 90 of the voxels using the signal from other 10 voxels.
In other words, we consider an input signal x ∈ R10 to
estimate a graph signal t ∈ R90. The graph corresponds to the
pairwise relations of the 90 voxels. A total of 292 snapshots

is available. We consider training and test datasets of same
size equal to 146 input-target pairs. The training signals are
corrupted by an AWGN with covariance matrix 0.1 ·IK . RFF-
based implementations use D = 32.

Fig. 6 shows the results for all algorithms. We can observe
that D = 32 is enough for the RFF-based KRG to closely
match the conventional KRG, converging to approximately -
23 dB. Again, the RLSKRG mostly coincides with the batch-
based implementations. Results also show that the SG-based
implementations can achieve low NMSE, around -20 dB,
while increasing the number of samples when computing
the stochastic approximation for the gradient increases the
convergence speed.

E. Real Data - Image Reconstruction

We now consider the application of KRG in the image
and video processing scenario. This simulation showcases the
performance and the capability of the online algorithms to deal
with large datasets. In particular, we tackle the reconstruction
of a corrupted video frame. Each frame is divided into blocks
of 4 × 4 pixels. Each block of pixels is represented as a
graph with K = 16 nodes, where each node corresponds to
a pixel, and nodes are connected to their nearest neighbors
inside a fixed radius equal to the minimum distance between
two pixels. Frames are black and white, and pixels are treated
in double format, such that a zero corresponds to black and
a one corresponds to white. In this setup, corrupted frames
have up to one random pixel per block that is set to unity,
simulating a saturated pixel. An example of a corrupted frame,
along with a block of 4 × 4 pixels with one corrupted pixel,
and the corresponding graph are illustrated in Fig. 7a.

The video recording used in this simulation corresponds to a
sequence of objects being captured against a generic wooden
background as the camera pans from left to right, moving
along the objects, at 30 frames per second. The video frames
have a resolution of 480× 480 pixels, which results in 14400
non-overlapping blocks per frame. We utilize six full frames
taken with a distance of 50 frames between them to train the
regression parameters, and two frames are used as the test
dataset. We highlight that, in a real application, six frames
correspond to approximately 0.2 seconds of video. Consistent
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(a) (b)

Fig. 7. Example of the image reconstruction process using KRG: (a) shows an example frame and how a 4 × 4 block of pixels is treated as a graph; (b)
shows the original frame, the corrupted frame, and the reconstructed frame, from left to right.
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Fig. 8. NMSE achieved by the KRG implementations versus number of
training samples in the image reconstruction simulation.

learning during a video sequence becomes quickly impractical
for the conventional KRG due to the large dataset.

Fig. 8 shows the NMSE versus iterations for the proposed
algorithms. These results are consistent with previous simu-
lations and show that online KRG strategies can successfully
learn the target model. We observe that the RLSKRG exhibits
the best performance while the single-sample SGKRG exhibits
the worst performance, as expected, given the complexity-
performance trade-off. In this simulation, increasing the num-
ber of blocks to Nb = 20 and Nb = 60 (which corresponds
to half the number of blocks on a single line in an image)
considerably increases the performance of the MGKRG. A
depiction of the frame reconstruction using the RLSKRG is
presented in Fig. 7b, which showcases the capabilities of the
proposed algorithm.

Other dedicated methods for image processing are available
in the literature [47]. We provide online algorithms with
reduced-complexity. Better accuracy can be achieved with
other methods, at the cost of increased complexity or batch-
based implementations. Moreover, the performance of KRG
methods can be further improved as discussed in the following
section.

VIII. DISCUSSION ON APPLICABILITY

According to the cost function in (3), the proposed method-
ology builds upon the assumption that the target signal is

smooth with respect to the graph, by learning models that
enforce a small variation metric (1). This suggests that KRG
algorithms perform better when the signal variation is small
with respect to the network topology, whereas modeling accu-
racy should not benefit from the proposed regularization when
the graph signals are not smooth with respect to the topology.

The definition of total variation in (1) depends both on the
graph topology, as a function of the Laplacian L, and the graph
signal. Thus, the performance of the KRG algorithms is subject
to proper topology identification [36]. In the simulations pre-
sented in Section VII, we have resorted to simple methods for
constructing the graphs, such as probability-based approaches
in the synthesized-data example, and nearest-neighbor graphs
for temperature prediction and image reconstruction. The
nearest-neighbor topology is reasonable for many real-world
applications based on physical structures, since one can expect
that elements physically close to each other have similar
behavior. However, given the availability of data, other ap-
proaches can be considered for constructing a graph to further
benefit the proposed KRG algorithms.

In [15], a joint learning approach is proposed to learn both
the graph Laplacian L and the regression parameters in matrix
W, by minimizing the cost function

C(W,L) =

N∑
n=1

‖tn − yn‖22 + αtr(WTW)

+ β

N∑
n=1

ν(yn) + γtr(LTL).

(75)

The minimization problem (75) can be solved using an al-
ternating minimization approach. A similar approach can be
considered for the batch-based algorithm proposed here, and
an adaptation of this method can be developed for the online
algorithms. In fact, many other approaches for graph-topology
learning can be considered to benefit the KRG algorithms. In
practice, we are interested in learning a topology that induce
smoothness on the graph signal. For instance, in [48], an
approach based on factor analysis is proposed to estimate
the graph Laplacian under the smoothness assumption. Other
approaches including edge sparsity can be found in the litera-
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ture [49], [50]. These approaches can be used to improve the
performance of the proposed KRG algorithms.

IX. CONCLUSION

This paper proposed efficient batch-based implementations
for kernel regression on graphs (KRG). The proposed im-
plementations use random Fourier features (RFF) to over-
come the growing complexity of kernel methods. Addition-
ally, we showed that we could leverage the properties of
the matrices involved in the regression process to formu-
late a less computationally-demanding derivation of the re-
gression parameters. Furthermore, online strategies for RFF-
based KRG were proposed, namely the mini-batch gradient
KRG, the stochastic-gradient KRG, and the recursive least
squares KRG. We showed that the RLSKRG also enjoys
an alternative reduced-complexity implementation leveraging
matrices’ properties. For all online algorithms, conditions for
convergence in the mean and the mean-squared sense were
derived. We also presented a brief discussion on the trade-
off between complexity and performance of the proposed
algorithms. Finally, the performance of all algorithms was
validated with numerical experiments using synthesized and
real data simulations. Results confirmed that both the proposed
KRG using RFF and the RLSKRG have accuracy close to
that of the conventional KRG, with a considerable reduc-
tion in complexity. Additionally, simulations showed that the
MGKRG can effectively learn the regression parameters and
that its performance can be improved at a small increase in
computational cost by increasing the number of samples in the
mini-batch.
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M. Nygård, M. Grasmair and S. Werner, “Recurrent time-varying multi-
graph convolutional neural networks for personalized cervical cancer
risk prediction,” in Proc. Asilomar Conf. on Signals, Systems, and
Computers, 2021.

[31] X. Dong, D. Thanou, L. Toni, M. Bronstein and P. Frossard, “Graph
signal processing for machine learning: A review and new perspectives,”
IEEE Signal Process. Mag. vol. 37, no. 6, pp. 117-127, Nov. 2020.

[32] G. Lewenfus, W. A. Martins, S. Chatzinotas and B. Ottersten, “Joint
forecasting and interpolation of time-varying graph signals using deep
learning,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp. 761-773,
2020.

[33] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. Adv. Neural Inf. Process. Syst., pp. 1177–1184, 2007.

[34] P. Bouboulis, S. Pougkakiotis, and S. Theodoridis, “Efficient KLMS and
KRLS algorithms: A random Fourier feature perspective,” in Proc. IEEE
Stat. Signal Process. Workshop, 2016, pp. 1–5.



14

[35] A. Sandryhaila and J. M. F. Moura, “Discrete Signal Processing on
Graphs: Frequency Analysis,” IEEE Trans. Signal Process., vol. 62, no.
12, pp. 3042-3054, June, 2014

[36] G. Mateos, S. Segarra, A. G. Marques and A. Ribeiro, “Connecting the
Dots: Identifying Network Structure via Graph Signal Processing,” IEEE
Signal Process. Mag., vol. 36, no. 3, pp. 16-43, May 2019.

[37] J. Kivinen, A. J. Smola and R. C. Williamson, “Online learning with
kernels,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2165-2176,
Aug. 2004.

[38] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,”
in Learning Theory and Kernel Machines. Lecture Notes in Computer
Science, vol. 2777, pp. 144-158, Springer, 2003.

[39] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering. Wiley,
Feb. 2010.

[40] P. S. R. Diniz, Adaptive Filtering. Springer, 2013.
[41] A. H. Sayed, Adaptive Filters. Wiley, Jan. 2008.
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