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Immiscible two-phase flow of Newtonian fluids in porous media exhibits a power law

relationship between flow rate and pressure drop when the pressure drop is such that

the viscous forces compete with the capillary forces. When the pressure drop is large

enough for the viscous forces to dominate, there is a crossover to a linear relation

between flow rate and pressure drop. Different values for the exponent relating the flow

rate and pressure drop in the regime where the two forces compete have been reported

in different experimental and numerical studies. We investigate the power law and its

exponent in immiscible steady-state two-phase flow for different pore size distributions.

We measure the values of the exponent and the crossover pressure drop for different

fluid saturations while changing the shape and the span of the distribution. We consider

two approaches, analytical calculations using a capillary bundle model and numerical

simulations using dynamic pore-network modeling. In case of the capillary bundle when

the pores do not interact to each other, we find that the exponent is always equal to 3/2

irrespective of the distribution type. For the dynamical pore network model on the other

hand, the exponent varies continuously within a range when changing the shape of the

distribution whereas the width of the distribution controls the crossover point.

Keywords: non-linear fluid flow, two-phase flow, porous media, pore-size distribution, effective rheology

1. INTRODUCTION

Multiphase flow is relevant for a wide variety of different applications which deal with the flow
of multiple immiscible fluids in single capillaries to more complex porous media (Bear, 1988;
Dullien, 1992). The rheology of such flow is guided by a series of parameters: capillary forces at
the interfaces, viscosity contrast between the fluids, wettability, and geometry of the system, which
collectively make the flow properties different compared to single phase flow. The study of two-
phase flow is generally divided in two regimes: (i) the transient regime and (ii) the steady-state
flow. In the transient regime, one can obtain different types of flow patterns, namely capillary
fingering (Lenormand and Zarcone, 1985), viscous fingering (Chen and Wilkinson, 1985; Måløy
et al., 1985), and stable displacement (Lenormand et al., 1988), andmodels such as diffusion limited
aggregation (DLA) (Witten and Sander, 1981) and invasion percolation (Wilkinson andWillemsen,
1983) are used to describe the patterns. When the steady state sets in after the initial instabilities,
the flow properties are determined by the global parameters such as global pressure drops, flow
rates, saturation, and fractional flow (Valavanides, 2018).
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In recent years, many studies on the steady-state two phase
flow on Newtonian fluids have revealed a non-trivial rheology,
that is, in the regime where capillary forces are comparable to
viscous forces, the relation between the total flow rate Q in a
sample and the global pressure drop 1P across it differs from
a linear Darcy law (Darcy, 1856; Whitaker, 1986). Instead, Q
increases much faster with 1P, obeying a power law where
the power-law exponent β is larger than 1 (Tallakstad et al.,
2009a,b; Rassi et al., 2011; Sinha et al., 2017). Furthermore,
studies have also shown that it undergoes crossovers to linear
regimes at both sides of the non-linear regime, that is, at flow
rates below a threshold and at flow rates higher than another
larger threshold. Experiments by Tallakstad et al. (2009a,b) for
a two-dimensional (2D) Hele-Shaw cell filled with glass beads
measured this exponent β as 1.85 (≈ 1/0.54)1. For a three-
dimensional (3D) porous media, this exponent was observed
to vary between 2.2 (≈ 1/0.45) and 3.3 (≈ 1/0.3) (Rassi
et al., 2011) depending on the saturation. It was later found to
converge to a certain value≈ 2.17 when a global yield pressure is
considered in the system, below which there is no flow (Sinha
et al., 2017). By using pore-network modeling with 2D and
3D pore networks, Sinha et al. found the exponent to be close
to 2 in the non-linear regime (Sinha and Hansen, 2012; Sinha
et al., 2017). They also have reported a crossover to linear Darcy
type regime at high capillary number when capillary forces are
insignificant. Yiotis et al. (2013) performed Lattice-Boltzmann
simulations with stochastically reconstructed porous system and
studied the dynamics of fluid blobs in the presence of gravity. In
the steady state, they found a non-linear regime with quadratic
dependence with an exponent 2, which is bounded by two linear
regimes at both the high and low capillary numbers. The blobs
were then studied experimentally and the non-linear exponent
was found as 1.54 (≈ 1/0.65) (Chevalier et al., 2015). Very
recently, Gao et al. (2020) performed experiments of two-phase
flow in sandstone samples. They used x-ray micro-tomography
measurements and for a fractional flow of 0.5 they found the
exponent in the non-linear regime to be equal to 1.67 (≈ 1/0.6).
They also reported a regime with linear Darcy type behavior at
lower capillary numbers where the conductance does not change
significantly. Further experiments by Zhang et al. (2021) explore
the dependence of the exponent on fractional flow and reported
values in the range of 1.35 (≈ 1/0.74) to 2.27 (≈ 1/0.44). They
presented a theory that can predict the boundary between the
linear regime and the non-linear intermittent flow regime.

A simple explanation for the observed power law relation
between flow rate and pressure drop may be found by following
the arguments of Roux and Herrmann (1987), concerning the
conductivity of a disordered network of resistors, where each
resistor has a threshold voltage to start conducting current.
If we compare the voltage across a resistor in this system to
the pressure drop over a link in a network of pores, and the
threshold voltage to the pressure drop necessary to overcome

1The values in the brackets are the exponents reported in the literature, the

reciprocals of them should be compared here, as we express our results as Q as

a power law in 1P, whereas the cited articles expressed 1P as a power law in Q, or

rather the corresponding capillary number Ca.

capillary forces due to the presence of fluid interfaces (Sinha et al.,
2013), we may translate the Roux and Herrmann arguments into
a language appropriate for porous media. When the pressure
drop 1P across a network of pores containing fluid interfaces
is increased by an amount d1P, an additional number of pores
(dN) will start contributing to the flow. This leads to an increase
in the effective conductivity K of the network as more links are
participating to the flow. If correlations between the opened links
are ignored, the increase in conductivity dK will be proportional
to the increase in the number of opened links, dK ∝ dN. We
integrate to find

K(1P′) ∝
∫ 1P′

Pc

d1P′′ = 1P′ − Pc, (1)

where the lower integration limit Pc is the threshold pressure
necessary to induce a flow across the network and can be
determined from the effective threshold pressure of the first flow
path. If the pressure drop 1P is less than Pc, there will be no flow
across the porous media. The flow rate is then given by

Q =
∫ 1P

Pc

K(1P′)d1P′ ∝ (1P − Pc)
2. (2)

Tallakstad et al. (2009a,b) provided another explanation by
considering the scaling of clusters that are trapped by capillary
forces. They assumed that the flow occurs in channels in between
trapped clusters. In a two-dimensional system of length L under
a pressure drop 1P, a cluster will be trapped if the capillary force
pc > λ‖|1P|/L, where the λ‖ is the length of such a cluster. The
maximum length of a such a trapped cluster is therefore given
by λm‖ = Lpc/|1P|. By assuming the distance between the flow
channels equal to the typical cluster length, the total number of
flow channels will be nc = L/λm‖ . The total flow through all the
channels is therefore the number of channels multiplied by the
flow rate in each channel, which leads to Q ∝ nc|1P| ∝ |1P|2.
However, if this formalism is extended to three dimensions, it
leads to a cubic relationship, Q ∝ |1P|3, which is in contrary
to what is observed in experiments and simulations.

Sinha and Hansen (2012) developed a mean-field theory for
a disordered network. By analytically calculating the average
rheological behavior for such a pore (Sinha et al., 2013) and
using Kirkpatrick’s self-consistent expression for the equivalent
conductivity for a homogeneous network (Kirkpatrick, 1973),
they derived the relationship,

Q ∝ (1P − Pc)
2. (3)

Note that the above theoretical approaches find the exponent
in the non-linear regime β to be equal to 2, thus hinting
at universality.

Recently, Roy et al. (2019) have studied the effect of the
threshold distribution on the effective rheology of twoNewtonian
fluids in a capillary bundle model. The model consists of
a bundle of parallel capillary tubes with variable diameters
along their lengths which introduce thresholds for each tube
(Scheidegger, 1953, 1974). For power-law type distributions of
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the thresholds they find analytically and numerically that the
non-linear exponent β can be related to α, the exponent for
the power-law distribution, by the relationships β = α + 1 or
β = α + 1/2 depending on whether the distribution starts from
zero or has lower cut off, respectively. This means, for α = 1,
the uniform threshold distribution, β will be equal to 2 and 3/2,
respectively for the two cases. This study clearly hints that the
non-linear exponent depends on the distributions related to the
system properties. We note that the capillary fiber bundle model
in the form studied by Roy et al. only considered variations in
the flow thresholds and not directly on the variations in the pore
sizes, nor fluctuations in the saturation.

In this article, we present a detailed study on how the
distribution of pore sizes controls the effective rheology of the
two-phase flow in the steady state. We will first study analytically
the capillary bundle model, as it is an analytically tractable model
for two-phase flow and provides deeper understanding of the
underlying physical mechanism. There we will show that as
the applied pressure is increased there exists a transition point
below which the relation between flow rate and pressure drop
is non-linear. We will investigate how the degree of such non-
linearity depends on the shape and width of the distribution
of the pore sizes. Above the transition point, we observe that
the flow rate increases in a Darcy-like linear manner with the
increase in pressure drop and the linearity do not depend on
the distribution. We will then move to numerical simulation
with dynamic pore-network modeling, where a similar transition
is observed. There the variation in exponent in the non-linear
regime and the transition point is studied by varying three
parameters: the saturation of the wetting fluid, and the span and
shape related to the pore-size distribution. Finally, with a two-
dimensional plane of the non-linear exponent vs. the transition
point, we show how the above three parameters control the
effective rheology of two-phase flow.

2. CAPILLARY FIBER BUNDLE MODEL

In this section, we will study the analytically solvable capillary
fiber bundle model (CFBM) (Scheidegger, 1953, 1974), which
can be considered as a prototype for a one-dimensional porous
medium. The model was recently studied by the present authors
to explore the non-linearity in the effective rheology in two-phase
flow in a bundle of capillary tubes (Roy et al., 2019). Here we
will analytically derive the relation between average flow rate and
pressure drop for this model for different distributions of pore-
radii. CFBM is a hydrodynamic analog of the fiber bundle model
(Hansen et al., 2015), which is a disordered system driven by
threshold activated dynamics and often used as a model system
to study mechanical failure under stress.

The model consists of a bundle of N independent parallel
tubes each of length L, carrying train of bubbles with different
distributions of wetting and non-wetting fluids. A global pressure
drop 1P is applied across the bundle, creating a global flow rate
Q. In the steady state, Q is the sum of all the time averaged flow
rates 〈q〉 in each individual tube. The diameter of each tube varies
along the length of the tubes which makes the interfacial forces

vary as the bubble train moves along the tubes. We assume no
film flow so the fluids do not pass each other. The total length
of the sections along the tube containing the more wetting fluid
(called the wetting fluid) is Lw and the total length of the sections
containing the less wetting fluid (called the non-wetting fluid) is
Ln. The corresponding volumes are therefore given by πr2Lw and
πr2Ln, where r is the average radius of the capillary tube. The
saturations in each tube are then Sw = Lw/L and Sn = Ln/L.
Each tube making up the bundle contains the same amount of
each fluid but with its own division of the fluids into bubbles.

The total volumetric flow rate q in a capillary tube at any
instant of time is given by,

q = −
πr4

8µavL
2(|1P| − pc)(|1P| − pc), (4)

where |1P| is the pressure drop across the capillary tube, pc is
the instantaneous capillary pressure given by the sum of all the
capillary forces along the capillary tube due to the interfaces and
µav is the effective viscosity given by µav = Swµw + Snµn. Here
µw and µn are the visocities of the wetting and the non-wetting
fluids. Here 2(|1P| − pc) is the Heaviside function which is
0 for negative arguments and 1 for positive arguments. When
the pressure difference across the tube is kept fixed, the average
volumetric flow rate 〈q〉 in the steady state can be obtained by
averaging Equation (4) over a time interval,

〈q〉 = −
πr4

8µavL
sgn(1P)2(|1P| − γ )

√

|1P|2 − γ 2, (5)

where sgn(1P) is the sign of the argument. Here the parameter γ

is the effective threshold pressure for the single tube below which
there is no flow, and a function of the average pore radii, surface
tension, contact angle, and bubble sizes. If the tube is assumed to
have a sinusoidal variation in radius with amplitude a about an
average radius r and a period of length l, then the exact form of γ
is given by,

γ =
√

Ŵ2
s + Ŵ2

c , (6)

where

Ŵs =
+K
∑

j=−K

4σa

r
sin

(

π1xj

l

)

sin

(

2π(xj − x0)

l

)

, (7)

and

Ŵc =
+K
∑

j=−K

4σa

r
sin

(

π1xj

l

)

cos

(

2π(xj − x0)

l

)

. (8)

Here xj is the position of center of the jth bubble if the tube is
filled with 2K + 1 bubbles. Its width is 1xj. The surface tension
times the cosine of the average contact angle is σ .

We are interested in the effect due to the variation in the pore
radii assuming that the average contribution due to the bubble
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sizes are the same for all tubes. In such a scenario, γ can be
expressed in terms of the link radius r as,

γ =
k

r
, (9)

where k is a proportionality constant. Equation (9) implies that
the larger the radius of a tube, the lower the threshold pressure
will be and the fluids will start flowing at a relatively lower value
for |1P|.

We now consider a bundle ofN tubes with average radii drawn
from a distribution ρ(r). We assume there is a smallest radius
rmin and a largest radius rmax, so that ρ(r) = 0 for r < rmin

and for r > rmax. This means that there is a smallest threshold
Pm = k/rmax and a largest threshold PM = k/rmin among the N
tubes as N → ∞.

Let us define a radius

rc(|1P|) = max

(

k

|1P|
, rmin

)

. (10)

The total flow rate is then given by

Q

N
=

{

0 if |1P| < Pm,
∫ rmax

rc(|1P|) q ρ(r)dr if |1P| ≥ Pm,
(11)

which combined with Equations (9), (5), and (11) give.

8µavLQ

Nπ
=







0 if |1P| < Pm,

−
∫ rmax

rc(|1P|) r
4

√

|1P|2 −
(

k
r

)2
ρ(r)dr if |1P| ≥ Pm.

(12)

2.1. Uniform Distribution
We use a uniform distribution of r between rmin > 0 and rmax >

rmin as a first illustration. We have that

ρ(r) =







0 if r ≤ rmin,
1/(rmax − rmin) if rmin < r ≤ rmax,
0 if r > rmax.

(13)

Equation (12) then gives for |1P| > k/rmax

Q = −
k5Nπ

120µav[rmax − rc(|1P|)]L
1

|1P|4
[

(u2 − 1)3/2(2+ 3u2)
]rmax|1P|/k
rc(|1P|)|1P|/k . (14)

We now have two possibilities, either |1P| > k/rmin, making
rc(|1P|)|1P|/k = rmin|1P|/k. The other possibility is that
|1P| < k/rmin making rc(|1P|)|1P|/k = 1.

We consider the |1P| > k/rmin case first. This is when there
is flow in all the fibers. We get

Q = −
k5Nπ

120µav[rmax − rmin]L

1

|1P|4
[

(u2 − 1)3/2(2+ 3u2)
]rmax|1P|/k
rmin|1P|/k . (15)

For large pressure drops |1P|≫k/rmin, this expression reduces to

Q = −
Nπ[r5max − r5min]

40µav[rmax − rmin]L
|1P|. (16)

We now consider the opposite case, i.e., when |1P| < k/rmin. In
this case, rc(|1P|)|1P|/k = rmin|1P|/k. The flow rate is then

Q = −
k5Nπ

[

(

rmax|1P|
k

)2
− 1

]3/2 [

2+ 3
(

rmax|1P|
k

)2
]

120µav[rmax − k/|1P|]L|1P|4
. (17)

If we now assume that |1P| − k/rmax = |1P| − Pm ≪ Pm, we
may expand this expression in terms of |1P| − Pm, finding to
lowest order.

Q = −
√
2 r

11/2
max Nπ

12µav(rmax − rmin)k1/2L
(|1P| − Pm)

3/2. (18)

2.2. Power Law Distribution
We now consider a power law distribution where link radii are
chosen with different probabilities depending on the slope of the
distribution. The expression for ρ(r) we assume to be

ρ(r) =











0 if r ≤ rmin,
1−α

r1−α
max−r1−α

min

r−α if rmin < r ≤ rmax,

0 if r > rmax.

(19)

The uniform distribution (Equation 13) illustrated in the
previous section is a special case of this distribution with α = 0.
The global flow rate obtained from Equation (13) is

Q = −
k(1− α)Nπ

8µav[r
1−α
max − r1−α

min ]L

∫ rmax

rc(|1P|)
r4−α

√

(

|1P|
k

)2

−
(

1

r

)2

dr.

(20)
As for the uniform distribution, we have two cases to consider:
|1P| > k/rmin for which rc(|1P|) = rmin and |1P| < k/rmin for
which rc(|1P|) = k/|1P|.

We consider the case |1P| > k/rmin first. Then, there is flow
in all the fibers and we have

Q = −
k5−α(1− α)Nπ

8µav[r
1−α
max − r1−α

min ]L|1P|4−α

∫ rmax|1P|/k

rmin|1P|/k
u3−α

√

u2 − 1du.

(21)
When the pressure drop |1P| becomes very large, i.e., |1P| ≫
k/rmin, the integral in Equation (21) simplifies by having√
u2 − 1 → u in the integrand, and we find

Q = −
(1− α)[r5−α

max − r5−α
min ]Nπ

8(5− α)µav[r
1−α
max − r1−α

min ]L
|1P|. (22)

The other case, |1P| < k/rmin leads to rc(|1P|) = k/|1P| and
Equation (20) becomes

Q = −
k5−α(1− α)Nπ

8µav[r
1−α
max − r1−α

min ]L|1P|4−α

∫ rmax|1P|/k

1
u3−α

√

u2 − 1du.

(23)
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We now assume that |1P| − Pm ≪ Pm. We expand the integral
in Equation (23) to find

∫ 1+1

1
u3−α

√

u2 − 1du =
∫ 1

0
(1+ w)3−α

√
2+ w

√
wdw

=
2
√
2

3
13/2, (24)

to lowest order in 1. Hence, the total flow rate is to lowest order
in |1P| − Pm

Q = −
√
2(1− α)Nπr

11/2−α
max

12
√
kµav[r

1−α
max − r1−α

min ]L
(|1P| − Pm)

3/2. (25)

We see that the exponent α does not affect the exponent β for
|1P| larger than but close to Pm. Furthermore, for α = 0 we
retrieve Equation (18).

Here Pm = k/rmax plays the role of a threshold pressure
Pc below which there is no flow, whereas PM = k/rmin is the
crossover pressure drop at which there is flow in all fibers. This
pressure (PM) signals the transition to the Darcy-type flow where
Q is proportional to |1P|.

In gist, the analytical calculations with the capillary bundle
model show that as soon as the pressure drop over the fiber
bundle is large enough for flow to start, it enters a non-linear
regime where the total flow rate Q is proportional to (|1P| −
Pm)

3/2 irrespective of the exponent α, defined in Equation (19).
When the threshold pressure PM is crossed, the non-linear
behavior subsides and we find Darcy-type flow. Mobility is
sensitive to the details of the radius distribution for low flow
rates and insensitive at higher flow rates. We like to point out
here that, unlike the radii distribution, when a distribution of
pore thresholds is considered, a quadratic regime with β =
2 can also obtained for CFBM when the distribution has no
lower cutoff (Roy et al., 2019). With any non-zero lower cut-
off in the thresholds, β is also 3/2 there. In the present study
we considered the distribution of pore radii rather than the
thresholds, and for any finite pore radii, there is always a lower
cutoff in the thresholds.

3. DYNAMIC PORE NETWORK MODEL
(DPNM)

Pore-network modeling is a computational technique to simulate
two-phase flow in porous media where the porous matrix is
represented by a network of pores with simplified geometries
(Joekar-Niasar and Hassanizadeh, 2012). In comparison to other
computational methods for simulating two-phase flow in porous
media, such as the lattice Boltzmann method (Gunstensen et al.,
1991) which solves Boltzmann transport equations at discretized
pore space, the pore-network model is a more computationally
efficient method when doing simulation with large number of
pores. Themodel is therefore useful to study up-scaled properties
of two-phase flow in porousmedia in the steady state (Sinha et al.,
2017) or drainage displacements (Zhao et al., 2019). Here we will
use this model to simulate the two-phase flow in the networks

with different pore size distributions and will measure total flow
rate as a function of the global pressure drop in the steady-state.
In this model, one pore is the smallest computational unit and the
fluid displacements inside the pores are governed by equations
for fully developed flow. We use a dynamic pore-network model
where the menisci positions between the fluids track the flow
(Aker et al., 1998; Sinha et al., 2021). The network in this model
is defined in such a way that total pore space related to both the
pore-throat and pore-bodies are represented by composite links of
varying radii. The nodes of the network therefore only represent
the positions of the link intersections and do not contain any
volume. We considered a tilted square lattice in two dimensions
as a network with coordination number 4. The flow rate in a link
in the network is given by (Washburn, 1921),

qj = −
gj

ljµj

[

1pj −
∑

pc(x)
]

, (26)

where1pj is the local pressure drop across the jth link. The terms
lj, gj, andµj, respectively define the length, mobility, and effective
fluid viscosity related to that link. If µw and µn are the wetting
and non-wetting viscosities, respectively, then µj = sn,jµn +
sw,jµw, where sn,j and sw,j are wetting and non-wetting saturations
inside that link. In this study, we consider links with circular
cross sections with radii rj, for which gj = ajr

2
j /8 where aj =

πr2j , the cross-sectional area (Langglois, 1964). The interfacial

pressure due to surface tension between the fluids is indicated
by pc which is summed over all the interfaces inside the link j,
taking into account the direction of the capillary forces. The links
here represent the total pore space that consists of a pore throat
in between pore bodies and the variation in the link radii along
its length is therefore modeled by a sinusoidal periodic shape.
The interfacial pressure at a meniscus inside such a pore can be
expressed by a modified Young-Laplace equation (Sinha et al.,
2013),

|pc(xk)| =
2σ

rj

[

1− cos

(

2πxk

lj

)]

, (27)

where x ∈ [0, lj], the position of a meniscus inside the jth link.
Here σ is the surface tension times the cosine of the contact angle
for the set of fluids and pores which are kept constant throughout
the simulations. We considered σ = 0.03N/m here. We study
in-compressible fluids and therefore at every time step 1t we
have for each node i from Kirchhoff law,

∑

qi = 0, where the
sum is over all the links connected to ith link. This, together with
Equations (26) and (27), constructs a set of linear equations. We
solve these equations by conjugate gradient method (Batrouni
and Hansen, 1988) and determine the flow rates qj in every link.
All the menisci in each link are then advanced by an amount
1xj = qj1t. Further technical details related to the menisci
displacements can be found in Sinha et al. (2021). We consider
periodic boundary conditions that lead the system to evolve to a
steady state.

The network we consider in this study consists of 64 × 64
links in two dimensions (2D) which form a diamond lattice. All
the links are therefore at an angle 45◦ with respect to the overall
flow direction. The links have equal lengths, lj = 1mm, and the
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FIGURE 1 | Distributions of link radii rj for different values of the power α and

width δ. For α = 0 all the radii within the interval have equal probability

whereas for positive and negative values of α there is higher probability to have

narrow and wide links, respectively.

disorder appears in their radii rj. We choose the values of rj from
a distribution ρ(rj) with a power α and in the range rmin to rmax

given by the same type of distribution as in Equation (19),

ρ(rj) =











0 if r ≤ rmin,
1−α

r1−α
max−r1−α

min

r−α
j if rmin < r ≤ rmax,

0 if r > rmax.

(28)

We denote the width of the distribution by δ = rmax − rmin.
The power α generates different distribution types, α = 0
corresponds to a uniform distribution whereas positive and
negative values of α imply higher probability to find narrower
and wider links, respectively. Figure 1 shows ρ(rj) for α = 0.0,
1.7, and −1.7. For α = 0, we show the distributions for δ = 0.1,
0.3, and 0.7.

4. NUMERICAL RESULTS FROM DPNM

We perform simulations with constant global pressure drop 1P
and evolve the systems to steady state, where the macroscopic
quantities fluctuate around a steady average. In the steady state,
we measure the total flow rate Q. Results are averaged over 20
different realizations of the pore network. By fitting the numerical
data with Equation (3) for the low capillary number regime,
we calculate the exponent β and the threshold pressure Pc. As
there are two parameters to determine from each data set, we
considered a method of minimizing the error related to the least
square fit (Sinha and Hansen, 2012). We illustrate this procedure
briefly here. First we choose a trial value of β and perform least
square fitting with the data points. This will provide a value of
Pc and an error associated with it. We perform this for a set of
β values and find the corresponding error values. We then plot
the errors as a function of β . This is shown in Figure 2 for five
different saturations where we see non-monotonic behavior of
the errors with a minimum. We then consider the value of β that
corresponds to the minimum error and use the corresponding
value of Pc. When plotting log(1P − Pc) with logQ, we find
the crossover point between a non-linear and a linear regime

FIGURE 2 | The error associated with least-square fitting of the numerical

results to Equation (3) as a function of the trial values of β. Results are shown

for five different saturations Sw. The minima of these plots decide the final

values of β and Pc.

from eye approximation. From this crossover, we then identify
the crossover pressure drop Pt .

In the following we present the results showing how the
steady-state rheology depends on the three parameters, (A) the
wetting saturation Sw, (B) the power α, and (C) the width δ

related to the pore-size distribution. Sw is varied between 0 and
1. We keep rmin = 0.1 and vary rmax from 0.2 to 0.8. In case
of real a porous media, the pore sizes generally vary over a few
orders of magnitude. In the pore-network simulations however,
making the pores very small will lead the simulations to reach
the steady state in a slower rate and will make the simulations
computationally very expensive. Furthermore, as we will see in
the following, δ do not affect the value of the exponent β and
only controls the crossover point. We therefore considered δ to
vary from 0.1 to 0.7 in the present study. The exponent α is
varied in the range −2.0 ≤ α ≤ 2.0. We will focus on the non-
linear exponent β and the pressure Pt related to the cross-over
from non-linear to linear regime. Then in a Pt vs. β plane we will
highlight how the two quantities vary when we change the values
of Sw, α and δ.

4.1. Effect of Sw
The variation of the flow rate Q with the pressure drop 1P
is shown in Figure 3 for three different wetting saturations
(Figure 3A) 0.1, (Figure 3B) 0.5, and (Figure 3C) 0.9 where we
plotted log(Q) as a function of log(1P − Pc). The value of α

and δ are kept constant here at 0.0 and 0.3, respectively. The
respective threshold pressures (Pc), measured by the minimum
error method, are indicated in the plots. All the plots show a non-
linear regime at lower pressure drops and then a crossover to
a linear regime. However, the slope in the non-linear regime is
much higher for Sw = 0.5 than 0.1 or 0.9. Similarly, the threshold
pressure Pc is also higher for Sw = 0.5. This indicates the fact
that as Sw → 0 or Sw → 1, the two-phase flow essentially
approach to the single phase flow and it should eventually follow
the linear Darcy law without any threshold pressure. In order to
see the nature of this variation toward the linear regime, we plot
in Figures 3D–F, the values of β and Pt and Pc as a function of
Sw, where Sw is varied from 0.1 to 0.9 with an interval of 0.1. All
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FIGURE 3 | Plot of 1P− Pc (Pa) vs. Q (m3/s) for a network of 64× 64 links in 2D for three different wetting saturations Sw = 0.1, 0.5, and 0.9 are shown in (A–C),

respectively. The plots show a non-linear regime at low pressure drop and a liner regime at high pressure drop. The variations of the slopes β in the non-linear regime,

the crossover pressure drop Pt (KPa) and the threshold pressure Pc (KPa) as a function of Sw are shown in (D–F), respectively. All the β, Pt, and Pc have a maximum

around Sw = 0.5 and decreases on either side.

three plots show a peak around Sw = 0.5 with β = 1.97 and then
continuously decrease in both sides. The decrease in both β and
Pt suggests that not only the non-linearity gradually disappears
as Sw deviates from 0.5, but also the linear Darcy regime can be
obtained at a relatively lower pressure drop. At the same time,
the overall threshold pressure Pc also decreases as the saturation
approaches to 0 or 1.

If we consider that the flow occurs in channels with capillary
barriers (Roux and Herrmann, 1987), that is, the increase in Q
with 1P is contributed from two factors, the increase in the
number of conducting flow paths and the increase in the flow
in each path, then that explains the reduction in both β and Pt as
Sw → 0 or 1. As the saturation of a certain fluid decreases, either
it reduces the number of fluid-fluid interfaces or produces smaller
bubbles of one fluid. In both the cases the effective capillary
barriers corresponding to any flow path decreases. This results
in more flow paths with one fluid or with negligible capillary
barriers which will start flowing as soon as any pressure drop
is applied, making the β to move toward 1. At the same time,
the maximum capillary barrier that the model needs to overcome
to make all possible paths flowing also decreases, which moves
the non-linear to linear transition point to a lower value of 1P.
Experimental observation of the variation of β with saturation
was first reported in Rassi et al. (2011). No threshold pressure
was considered in that study while analyzing the results. A recent
experimental study (Zhang et al., 2021) explores the variation
of β and the crossover point as a function of fractional flow,

Fw = Qw/Q. By balancing the surface energy to create fluid
meniscus to the injection energy, they developed a theory that can
predict the crossover point between the two regimes they have
studied. However, they have studied the crossover from the linear
regime at very low pressure drop to the non-linear regime at the
intermediate pressure drop, whereas our present study addresses
the crossover from the non-linear regime at the intermediate
pressure drop to the linear regime at high pressure drop.

4.2. Effect of α
The power α related to the pore-size distribution function
defined in Equation (28) determines the shape of the distribution
and tells us how the probability of having the wider pores are
compared to the narrower ones. All the pore radii within the
range δ are equally probable for α = 0 whereas positive and
negative values of α indicate lower or higher probability of having
wider pores, respectively (Figure 1). As the interfacial pressures
are inversely proportional to ri (Equation 27), the local capillary
barriers are larger for α > 0 compared to α < 0. In Figure 4,
we plot log(1P − Pc) with log(Q) for three different values of
α (Figure 4A) 0, (Figure 4B) 0.5, and (Figure 4C) −0.5. The
wetting saturation and the distribution width are kept constant
here at Sw = 0.5 and δ = 0.3, respectively. A few things are
to be noticed. The non-linear regime here is highly influenced
by the value of α whereas the slope in linear regime remains
at ≈ 1 independent of α. The exponent β is maximum for
α = 0, and then falls to 1.46 and 1.58 at α = 0.5 and −0.5,
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FIGURE 4 | Variation of Q (m3/s) as a function of 1P− Pc (Pa) for a network of 64× 64 links and for α = 0, +0.5, and −0.5 are shown in (A–C), respectively. The

wetting saturation Sw = 0.5 and the distribution width δ = 0.3 here. The variations of the slopes β in the non-linear regime, the crossover pressure drop Pt (KPa) and

the threshold pressure Pc (KPa) as a function of Sw are shown in (D–F), respectively where β has a maximum at α = 0 whereas Pt does not show any specific

dependence on α. Pc has a maximum around α = 0 and decreases on either side.

respectively. Moreover, the threshold pressure Pc also decreases
with the increase of |α|. The decrease in Pc for α < 0 is intuitive,
since the wider pores are in larger quantity compared to smaller
pores, which will cause a less capillary barrier to start the flow.
The decrease in Pc for α > 0 is rather counter intuitive and may
be related to the decrease in slope in the non-linear regime.

In Figure 4D, we plot β as a function of α which shows
the decreasing trends of β on both sides of α = 0 and then
becomes constant after it reaches to ≈ 1.5 around |α| = 1.
This indicates that any change in the fluctuations among the
link radii than the uniform distribution causes slower increase
in the conductive paths when increasing the 1P. The crossover
pressure drop Pt is plotted in Figure 4E which shows that Pt
remains constant independent of the value or sign of α. Figure 4F
shows that Pc shows a maximum at Sw = 0.5 and decreases on
either side. The decrease of Pc for negative α is understandable as
there will more links with larger radius in this case. For positive
α we have less links with large radius. Pc is still observed to
decrease, most probably because of the nature of the fitting since
β decreases here.

Notice that, such a variation in the non-linear exponent β

while varying α was not observed in case of CFBM where β has
a value of 3/2 irrespective of the radii distribution (Equation 25).
This indicates that the mixing of the fluids at the nodes in a
pore network has more complex effect than the flow in individual
channels in CFBM. The crossover point Pt here is analogous

to the maximum threshold PM in CFBM which do not depend
on α in both the models as it only depends on the span of the
distribution and not on the shape. Therefore, as we will see in
the next section, Pt has a strong dependence on δ, the span of
the distribution.

4.3. Effect of δ
We now perform simulations by varying the width of the radii
distribution give by, δ = rmax − rmin = 0.1, 0.2, 0.3, 0.5, and
0.7, where rmin was kept constant at 0.1. The wetting saturation
and the distribution power are kept constant here at Sw = 0.5
and α = 0, respectively. The results are illustrated in Figure 5.
Interestingly, unlike the variation of β with the distribution
power α as seen before, here the slopes in the non-linear regime
are almost independent of the distribution width δ and remains
constant around 2.0 (Figure 5A). The crossover pressure drop Pt ,
on the other hand, decreases with increase in δ, which was almost
constant when we varied the distribution power α. We also found
that the global threshold pressure Pc gradually decreases with
increasing δ, from Pc ≈ 2.5KPa at δ = 0.1 to ≈ 1.5KPa at
δ = 0.7. This is because as we increase δ, rmax also increases
and the system contains more pores with larger pore radii. This
decreases the capillary barriers and hence reduces the global
threshold pressure Pc.
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FIGURE 5 | (A) Plot of Q (m3/s) vs. 1P− Pc (Pa) when varying the distribution width δ where the slopes in the non-linear, as well as in the linear regimes do not show

any variation with δ. In (B–D), respectively, we show the variation of β, Pt (KPa) and Pc (KPa) with δ.

FIGURE 6 | The Pt − β plane, which shows the effect of varying Sw, α, and δ

on the rheological behavior. As Sw deviates from 0.5 (triangles), both β and Pt

decreases. On the other hand, with increasing α (squares) and δ (circles),

respectively, either β or Pt decreases keeping the other one constant.

4.4. The Pt vs. β Plane
To illustrate the all variations in the rheological behavior as a
function of different parameters, we constructed a Pt − β plane.
This is shown in Figure 6. We indicate all the data points there
corresponding to the three sets. The variation in the β and Pt as
we increase Sw, α, and δ are indicated by arrows in the plot. They
can be summarized as:

Varying α: When α is increased, β decreases keeping Pt
constant, and the points moves to left along a horizontal line
(green squares).

Varying δ: When δ is increased, Pt decreases keeping β

constant, and the points move down along a vertical line
(red circles).

Varying Sw: When Sw deviates from 0.5, both β and Pt
decreases and the points move to lower values along a diagonal
line (purple triangles).

5. DISCUSSION

In this article we explored how the rheological properties
two-phase flow in porous media in steady state is affected
by the underlying system disorder. We performed analytical
calculations with a capillary bundle model and numerical

simulations with dynamic pore-network model. We varied the
shape and width of the distribution of the pore-radii with two
distribution parameters α and δ, respectively, and studied the
transition from a non-linear flow regime to a linear Darcy
flow. We found that the exponent β related to the non-
linearity is equal to 3/2 for the capillary bundle model and
do not depend on α. For the pore-network model on the
other hand, β ≈ 2 for uniform distribution (α = 0) and
approaches toward 1.5 as |α| is increased. The width δ of the
distribution affects the crossover point Pt in both the models.
When δ is increased, the linear regime becomes achievable
at a relatively lower pressure drop. Both β and Pt depends
on the saturation Sw. As Sw deviates from 0.5, the two-phase
flow moves closer to single phase flow and both β and Pt
decreases simultaneously making the linear region more and
more prominent. These numerical results can be explained
qualitatively with the hypothesis that the total flow rate is
contributed from the number of conducting paths and the flow
in those paths (Roux and Herrmann, 1987), which makes it to
increase faster than a linear behavior.

It is worth mentioning here that the single phase flow of
Bingham fluid in porous media also shows similar non-linearity
with a global yield threshold and a crossover to a linear regime
(Roux and Herrmann, 1987; Talon and Bauer, 2013; Chevalier
and Talon, 2015). Nash and Rees (2017) has studied Bingham
fluid flow in one dimension and obtained different relations
between applied pressure drop and Darcy velocity depending
on the distribution of channel widths. Talon et al. (2014) have
analytically explored the flow of Bingham fluid in 1d channels
with aperture variation and observed different scaling between
pressure drop and flow rate depending on such variation in
apertures. Above studies support the fact that, when up-scaled to
a certain pore-network, both Bingham flow and two-phase flow
is affected by the pore-size distribution and hence the topology of
the network.

The dependency of the effective rheological properties on
the pore-size distribution indicates a possibility to predict the
transport properties directly from the geometrical properties of
the porous media. Puyguiraud et al. (2021) in a recent letter
developed a model for single phase flow for the prediction of
transport from knowledge of the characteristic pore length and
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of the Eulerian velocity distribution. Another approach is based
on the Hadwiger theorem stating that any extensive function
(such as the free energy) describing the flow may be expressed
in terms of the Minkowski functionals describing the geometry
of the porous medium. The transport properties may then be
found from the free energy (see Khanamiri et al., 2018). Roy et al.
(2020) proposed a framework that connects the average seepage
velocities to the distribution of local fluid velocities. This means,
obtaining the velocity or flow distribution from the distribution
of pores is the missing link that would allow the prediction
of hydrodynamic transport from geometrical information only.
For random bead packs, Coppersmith et al. (1996) showed that
the variations of contact angles allow for the relation between
distribution of throat radii and the distribution of the flow
fractions that depart a pore body. With that, Alim et al. (2017)
proposed an approach for single phase flow to predict the flow
distribution from the geometrical properties of porousmedia that
is based on Kirchhoff’s law for fluid mass conservation coupled
with assumptions on the distribution of coordination numbers
of pore bodies. There are more studies on the local velocity
distribution for single phase flow (Siena et al., 2014; Wu et al.,
2016; De Anna et al., 2017; Aramideh et al., 2018; An et al.,
2020; Souzy et al., 2020), but detailed study for two-phase flow
are lacking. Furthermore, Alim et al. (2017) also emphasized
that, in addition to the distribution of pore sizes, the local
correlations between adjacent pores are necessary to predict the
flow distribution. The observation in our present study, that the
non-linear exponent β does not depend on the radii distribution
in case of the capillary bundle with disconnected links, whereas it

varies continuously with the distribution for the pore-network,
also indicates the same, that the network connectivity plays a
key role in the transport properties in addition to the pore-
size distribution. In our present study we considered a fixed
coordination number, and therefore further study is necessary to
explore the role of network connectivity on the effective rheology.
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