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a b s t r a c t

Recent works have presented promising results from the application of machine learning (ML) to the
modeling of flow rates in oil and gas wells. Encouraging results and advantageous properties of ML
models, such as computationally cheap evaluation and ease of calibration to new data, have sparked
optimism for the development of data-driven virtual flow meters (VFMs). Data-driven VFMs are
developed in the small data regime, where it is important to question the uncertainty and robustness
of models. The modeling of uncertainty may help to build trust in models, which is a prerequisite for
industrial applications. The contribution of this paper is the introduction of a probabilistic VFM based
on Bayesian neural networks. Uncertainty in the model and measurements is described, and the paper
shows how to perform approximate Bayesian inference using variational inference. The method is
studied by modeling on a large and heterogeneous dataset, consisting of 60 wells across five different
oil and gas assets. The predictive performance is analyzed on historical and future test data, where
an average error of 4%–6% and 8%–13% is achieved for the 50% best performing models, respectively.
Variational inference appears to provide more robust predictions than the reference approach on future
data. Prediction performance and uncertainty calibration is explored in detail and discussed in light of
four data challenges. The findings motivate the development of alternative strategies to improve the
robustness of data-driven VFMs.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Knowledge of multiphase flow rates is essential to efficiently
perate a petroleum production asset. Measured or predicted
low rates provide situational awareness and flow assurance,
nable production optimization, and improve reservoir manage-
ent and planning. However, multiphase flow rates are challeng-

ng to obtain with great accuracy due to uncertain subsurface
luid properties and complex multiphase flow dynamics [1]. In
ost production systems, flow rates are measured using well

esting. While these measurements are of high accuracy, they are
ntermittent and infrequent [2]. Some production systems have
ultiphase flow meters (MPFMs) installed at strategic locations

o continuously measure flow rates. Yet, these devices are ex-
ensive, and typically have lower accuracy than well testing. An
lternative approach is to compute flow rates using virtual flow
etering (VFM). VFM is a soft-sensing technology that infers the

low rates in the production system using mathematical models
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and ancillary measurements [3]. Many fields today use some form
of VFM technology complementary to flow rate measurements.
There are two main applications of a VFM: (i) real-time pre-
diction of flow rates, and (ii) prediction of historical flow rates.
The second application is relevant to the prediction of missing
measurements due to sensor failure or lacking measurements in
between well tests.

VFMs are commonly labeled based on their use of either
mechanistic or data-driven models [4]. Both model types can be
either dynamic or steady-state models. Mechanistic VFM models
are derived from prior knowledge about the internal structure
of the process [5]. Physical, first-principle laws such as mass,
energy, and momentum-balance equations, along with empirical
closure relations, are utilized to describe the relationship between
the system variables. Mechanistic modeling is the most common
approach in today’s industry and some commercial VFMs are
Prosper, ValiPerformance, LedaFlow, FlowManager, and Olga [6].

In contrary to mechanistic models, data-driven models exploit
patterns in process data and attempt to find relationships be-
tween the system variables with generic mathematical models.
In other words, data-driven models attempt to model the process

without utilizing explicit prior knowledge [5]. In recent years,
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here has been an increasing number of publications on data-
riven VFMs [4]. The developments are motivated by the increas-
ng amount of sensor data due to improved instrumentation of
etroleum fields, better data availability, more computing power,
etter machine learning tools and more practitioners [7]. Addi-
ionally, data-driven VFMs may require less maintenance than a
echanistic VFMs [8]. Even so, commercial data-driven VFMs are

are. This is arguably due to the following data challenges, which
ust be overcome by data-driven VFMs:

1. Low data volume
2. Low data variety
3. Poor measurement quality
4. Non-stationarity of the underlying process

The first two challenges are due to data-driven methods, espe-
ially neural networks, being data-hungry, and require substantial
ata volume and variety to achieve high accuracy [9]. Petroleum
roduction data do not generally fulfill these requirements. For
etroleum fields without continuous monitoring of the flow rates,
ew data is obtained at most 1–2 times per month during well
esting [2], yielding low data volume. For fields with continuous
easurements, the data volume may be higher, yet, the second
hallenge of low variety remains. Low data variety relates to
he way production systems are operated and how it affects the
nformation content in historical production data. The production
rom a well is often kept fairly constant by the operator, in
articular during plateau production, i.e., when the production
ate is limited by surface conditions such as the processing ca-
acity. When a field later enters the phase of production decline,
he operator compensates for falling pressures and production
ates by gradually opening the production choke valves. This
an introduce correlations among the measured variables which
re unfortunate for data-driven models. A common consequence
f modeling in the small data regime is overfitting which de-
reases the generalization ability of the model, that is, the models
truggle with extrapolation to unseen operating conditions [5].
onetheless, one should be able to model the dominant behav-
or of the well and make meaningful predictions close to the
bserved data if care is taken to prevent overfitting [10].
The third challenge, poor measurement quality, highly influ-

nces the predictive abilities of data-driven VFMs. Common issues
ith measurement devices in petroleum wells include measure-
ent noise, bias, and drift. Additionally, equipment or communi-
ation failures may lead to temporarily or permanently missing
ata. Common practices to improve data quality include device
alibration, data preprocessing and data reconciliation [11]. In
odel development, methods such as parameter regularization
nd model selection techniques prevent overfitting of the model
n the presence of noisy data. However, some of the above issues
nd practices may be challenging to handle in a data-driven
odel.
Lastly, the underlying process in petroleum production sys-

ems, the reservoir, is non-stationary. The pressure in the reser-
oir decreases as the reservoir is drained and the composition of
he produced fluid changes with time [12]. Time-varying bound-
ry conditions make it more difficult to predict future process
ehavior for data-driven VFMs as they often struggle with ex-
rapolation. As mentioned above, methods to prevent overfitting
o the training data in model development may (and should) be
tilized to improve extrapolation abilities to the near future, and
requent model updating or online learning would contribute to
etter predictive abilities for larger changes in the underlying
rocess.
As the above discussion reflects, data-driven VFMs are influ-

nced by uncertainty. Both model (epistemic) uncertainty and
easurement (aleatoric) uncertainty are present [13]. The first
2

type originates from the model not being a perfect realization
of the true process and there are uncertainties related to the
model structure and parameters. The latter type is a cause of
noisy data due to imprecision in measurements [14]. Accounting
for uncertainty is important to petroleum production engineers
as they are often concerned with worst- and best-case scenarios.
Further, information about the prediction uncertainty may aid the
production engineers to decide whether the model predictions
may be trusted. According to a recent survey [4], uncertainty
estimation must be addressed by future research on VFM.

The motivation of this paper is to address uncertainty by intro-
ducing a probabilistic, data-driven VFM based on Bayesian neural
networks. With this approach, epistemic uncertainty is modeled
by considering the weights and biases of the neural network as
random variables. Aleatoric uncertainty can be accommodated by
a homoscedastic or heteroscedastic model of the measurement
noise. This allows the modeler to separately specify priors related
to the two uncertainty types. This can be beneficial when having
knowledge of the measurement devices that produced the data
modeled on.

Historically, the difficulty of performing Bayesian inference
with neural networks has been a hurdle to practitioners. We thus
provide a description of how to train the model using variational
inference. Variational inference provides the means to perform
efficient, approximate Bayesian inference and results in a poste-
rior distribution over the model parameters [15]. The method has
shown promising results in terms of quantifying prediction un-
certainty on other problems subject to small datasets and dataset
shift [16]. We also consider maximum a posteriori estimation,
which serves as a non-probabilistic reference method. Although
it computes a point estimate of the parameters, as opposed to
a posterior distribution, it more closely resembles the maximum
likelihood methods used in the majority of previous works on
data-driven VFM. The reference method enables us to investigate
if a probabilistic method, i.e. variational inference, may improve
robustness over a non-probabilistic method. We test the pro-
posed VFM by performing a large-scale empirical study on data
from a diverse set of 60 petroleum wells.

The paper is organized as follows. In Section 2 we briefly
survey related works on data-driven VFM, with a focus on appli-
cations of neural networks. This section also gives some relevant
background on probabilistic modeling. In Section 3 we describe
how flow rates are measured and the dataset used in the case
study. The probabilistic model for data-driven VFM is presented
in Section 4 and in Section 5 we discuss methods for Bayesian
inference. The case study is presented in Section 6 and discussed
in Section 7. In Section 8 we conclude and give our recommen-
dations for future research on data-driven VFM based on our
findings.

2. Related work

2.1. Traditional data-driven modeling

In literature, several data-driven methods have been proposed
for VFM modeling, for instance, linear and nonlinear regres-
sion, principal component regression, random forest, support
vector machines and the gradient boosting machine learning
algorithm [17–20]. One of the most popular and promising data-
driven methods for VFM are neural networks (NN). In [17], the
oil flow rate from three wells was modeled using NNs, and an
error as low as 0.15% was reported. However, well-step tests
were used to generate data with sufficient variety, and the time-
span of the data covered only 30 h. The three studies, [21–23],
investigated NNs for the oil flow rate from a reservoir using data
samples from 31–50 wells. All used a neural network architecture
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ith one hidden layer and 7 hidden neurons. In the two first,
he imperialist competitive algorithm was used to find the NN
eights. All of the three studies reported a very small mean
quared error, of less than 0.05. Yet, the data was limited to a
ime-span of 3 months and did not include measurements of the
hoke openings of the petroleum wells. This will strongly affect
he future model performance when reservoir conditions change
nd the choke openings are adjusted.
A particularly noticeable series of studies on VFM and NN,

sing historical well measurements with a time-span of more
han a year, are [8,10,24,25]. In [24], the oil and gas flow rates
ere modeled using two individual feed-forward NN, with one
idden layer and 6 and 7 neurons respectively, and with early
topping to prevent overfitting. An error of 4.2% and 2.3% for the
il and gas flow rates were reported. In [8], a radial basis function
etwork was utilized to model the gas flow rate from four gas
ondensate wells, and the Orthogonal Least Squares algorithm
as applied to find the optimal number of neurons (≤ 80) in
he hidden layer of the network. The study reported an error of
.9%. In [10,25], ensemble neural networks were used to excel
he learning from sparse data. In the first, the neural network
rchitecture was limited to one hidden layer but the number of
idden neurons was randomly chosen in the range 3–15. Errors of
.5%, 6.5%, and 4.7% for gas, oil, and water flow rate predictions
ere achieved. The second paper considered 1–2 hidden layers
ith 1–25 neurons. Errors of 4.7% and 2.4% were obtained for

iquid and gas flow rates respectively.

.2. Probabilistic modeling

A common approach in today’s industry and literature is to
tudy the sensitivity of the model to changes in parameter values,
hus to a certain extent approaching epistemic uncertainty, e.g. [2,
7,26–28]. By approximating probability distributions for some
f the model parameters from available process data and using
ampling methods to propagate realizations of the parameters
hrough the model, a predictive distribution of the output with
espect to the uncertainty in the parameter may be analyzed.

Probabilistic modeling offers a more principled way to model
ncertainty, e.g. by considering model parameters and measure-
ent noise as random variables [29]. With Bayesian inference,
posterior distribution of the model output is found that takes

nto account both observed process data and prior beliefs of the
odel parameters [30]. The result is a predictive model that
verages over all likely models that fit the data and a model that
ffers a natural parameter regularization scheme through the use
f priors. This is in contrast to traditional data-driven modeling
here the concern is often to find the maximum likelihood esti-
ate [29]. Although probabilistic models and Bayesian inference
re well-known in other fields of research, probabilistic VFMs are
are, yet existent [31–34].

The following series of studies, [31–33], constructed a mecha-
istic, probabilistic model of the flow rate in petroleumwellbores.
method for probabilistic, data-driven models is Bayesian neural
etworks (BNNs). BNNs are similar to traditional neural networks
ut with each parameter represented with a probability distri-
ution [30,35]. Bayesian methods have shown to be efficient in
inding high accuracy predictors in small data regimes and in
he presence of measurement noise without overfitting to the
ata [36]. Further, Bayesian methods lend themselves to online
odel updating and could quickly improve the model’s predictive
bility when introduced to new operating regions. Yet, there are
isadvantages with probabilistic modeling and Bayesian infer-
nce. Except in special cases, inferring the posterior probability
istribution of the model consists of solving intractable integrals
nd inference is slow for large datasets [15]. However, meth-
ds for approximation of the posterior distribution exist such
3

as Markov Chain Monte Carlo (MCMC) sampling and variational
inference (VI). Comparing these two approximation methods, VI
has shown to scale better to large datasets and inference tends
to be faster. Additionally, it simplifies posterior updating in the
presence of new data. Nevertheless, the approximation with VI is
in most cases bounded away from the true distribution, whereas
MCMC methods will in principle converge towards the true dis-
tribution [15]. A challenge for data-driven probabilistic models,
such as Bayesian neural networks, is that the model parameters
are generally non-physical, and setting the parameter priors is
nontrivial. Despite neural networks being among the more pop-
ular data-driven methods for VFM modeling, to the extent of the
authors’ knowledge, there has been no attempt at using BNNs
for VFM. There are, however, examples of BNNs being used for
data-driven prediction in similar applications [37,38].

3. Flow rate measurements and dataset

A petroleum production well is illustrated in Fig. 1. Produced
fluids flow from the reservoir, up to the wellhead, and through
the choke valve. The choke valve opening (u) is operated to
control the production from the well. The fluids thereafter enter
the separator which separates the multiphase flow into the three
single phases of oil, gas, and water q = (qoil, qgas, qwat). On well-
instrumented wells, pressure (p) and temperature (T ) is measured
upstream and downstream the choke valve.

The two main devices to measure multiphase flow rates in a
well are the multiphase flow meter (MPFM) and test separator,
both illustrated in Fig. 1. MPFMs are complex devices based on
several measurement principles and offer continuous measure-
ments of the multiphase flow rate. Unfortunately, MPFMs have
limited operation range, struggle with complex flow patterns, and
are subject to drift over time [39]. Additionally, PVT (pressure–
volume–temperature) data are used as part of the MPFM cal-
culations and should be accurate and up-to-date for high ac-
curacy MPFM measurements. On the other hand, well-testing
is performed by routing the multiphase flow to a test sepa-
rator whereby the separated flows are measured using single-
phase measurement devices over a period of time (typically a
few hours). Compared to the MPFM, well tests are performed
infrequently, usually 1–2 times a month [2].

Normally, measurements of the multiphase flow rate obtained
through well-testing have higher accuracy than the measure-
ments from the MPFMs. This is due to the use of single-phase
measurement devices in well-testing. According to [39,40], the
uncertainty, in terms of mean absolute percentage error, of well
tests, may potentially be as low as 2% and 1% for gas and oil
respectively, whereas MPFM uncertainty is often reported to be
around 10%. The error statistics are calculated with respect to
reference measurements. For measurements of pressure, temper-
ature, and choke openings, we assume that the sensors’ accuracy
is high, typically with an uncertainty of 1% or less, and measure-
ment error in these measurements are therefore neglected.

The flow rates are often given as volumetric flow rates un-
der standard conditions, e.g. as standard cubic meter per hour
(Sm3/h). Standard conditions make it easier to compare to ref-
erence measurements or measurements at other locations in the
process as the volume of the fluid changes with pressure and tem-
perature. Flow rates may be converted from actual conditions to
standard conditions using PVT data [41]. If the density of the fluid
at standard conditions is known, the standard volumetric flow
rate may be converted to mass flow rate, and the phasic mass
fractions, η = (ηoil, ηgas, ηwat), may be calculated. We assume
teady-state production, frozen flow, and incompressible liquid
uch that the phasic volumetric flow rate and mass fractions are
onstant through the system, from the reservoir to the separator.
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Fig. 1. Sensor placement in a typical production well. A MPFM measures multiphase flow rates in the well. During well testing, single phase flow rates are measured
ith high accuracy after fluid separation.
Fig. 2. The number of measurements is plotted against the time span from the first to last measurement in (a). The average gas and water mass fraction is shown
for all wells in (b).
3.1. Dataset

The dataset used in this study consists of 66 367 data points
rom 60 wells producing from five oil and gas fields. The dataset
as produced from raw measurement data using a data squash-

ng technology [42]. The squashing procedure averages raw mea-
urement data in periods of steady-state operation to avoid short-
cale instabilities. The resulting data points, which we refer to as
easurements henceforth, are suitable for modeling of steady-
tate production rates.
For each well we have a sequence of measurements in time.

he time span from the first to last measurement is plotted for
ach well in Fig. 2(a). The figure shows that the measurement
requency varies from a handful to hundreds of measurements
er year. There are 14 wells with test separator measurements,
or which the average number of measurements is 163. The other
6 wells have MPFM measurements, and the average number of
easurements is 1393. The 60 wells are quite different from each
ther in terms of produced fluids. Fig. 2(b) illustrates the spread
n mass fractions among the wells.

In the following, we model the multiphase flow through the
roduction choke valve, a crucial component in any VFM. We
onsider ideal conditions, in the sense that all measurements
equired by a reasonable choke model are available [43]. For each
ell, we collect the corresponding measurements in a dataset
= {(xi, yi)}Ni=1. We will only consider one well at the time and

imply refer to the dataset as D. The target variable is the total
olumetric flow rate, yi = qoil,i + qgas,i + qwat,i ∈ R, measured
ither by a test separator or a MPFM. The explanatory variables,

= (u , p , p , T , T , η , η ) ∈ R7,
i i 1,i 2,i 1,i 2,i oil,i gas,i

4

are the measured choke opening, the pressures and temperatures
upstream and downstream the choke valve, and the mass frac-
tions of oil and gas. No experimental set-up was used to affect
the data variety; for example, we did not consider step well tests
as in [17].

4. Probabilistic flow model

Consider the following probabilistic model for the total multi-
phase flow rate:

yi = zi + ϵi
zi = f (xi,φ)
si = g(zi,ψ)

ϵi ∼ N (0, s2i )

⎫⎪⎪⎪⎬⎪⎪⎪⎭ i = 1, . . . ,N,

φ ∼ p(φ) =
Kφ∏
i=1

N (φi | ai, b2i ),

ψ ∼ p(ψ) =
Kψ∏
i=1

N (ψi | ci, d2i ),

(1)

where yi is a measurement of the multiphase flow rate zi subject
to additive measurement noise ϵi. The nonlinear dependence of zi
on xi is approximated by a Bayesian neural network f (xi,φ) with
weights and biases represented by latent (random) variables φ.
The neural network is composed of L functions, f = f (L) ◦· · ·◦ f (1),
where f (1) to f (L−1) are called the hidden layers of f , and f (L)
is the output layer [44]. A commonly used form of a hidden
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Fig. 3. A probabilistic graphical model for flow rates. Random variables are
inscribed by a circle. A gray-filled circle means that the random variable is
observed. The dependence zi → ϵi indicates that the noise is heteroscedastic,
hile the dependence ψ → ϵi indicates that the noise model is learned from
ata.

ayer l is f (l)(x) = ReLU(W (l)x + b(l)), where the rectified linear
nit (ReLU) operator is given as ReLU(z)i = max{zi, 0}, W (l) is
weight matrix, and b(l) is a vector of biases. For regression

asks the output layer is usually taken to be an affine mapping,
(L)(x) = W (L)x + b(L). The layer weights and biases are collected
n φ = {(W (l), b(l))}Ll=1 to enable the compact notation f (xi,φ).
ith a slight abuse of this notation, an element φi of φ represents
scalar weight or bias for i ∈ {1, . . . , Kφ}, where Kφ is the

otal number of weights and biases in the neural network. The
istinguishing feature of a Bayesian neural network is that the
eights and biases, φ, are modeled as random variables with a
rior distribution p(φ).
We assume the noise to be normally distributed with standard

eviation g(zi,ψ) > 0, and we consider different functions g of zi
nd latent variables ψ. We discuss the priors on the latent vari-
bles, p(φ) and p(ψ), in the subsequent sections. The probabilistic
odel is illustrated graphically in Fig. 3.
Given φ, ψ and explanatory variables x, the conditional flow

ate z = f (x,φ) and a measurement y is generated as

| z,ψ ∼ N (y | z, g(z,ψ)2). (2)

The flow rate measurement y is subject to epistemic (model)
uncertainty in f (x,φ) and aleatoric (measurement) uncertainty
via g(z,ψ). We differ between homoscedastic and heteroscedastic
measurement noise. Heteroscedasticity is when the structure of
the noise in a signal is dependent on the structure of the signal
itself and is more difficult to capture [45]. Homoscedasticity is the
lack of heteroscedasticity.

The flow model in (1) is a quite generic regression model, but
it restricts the modeling of the measurement noise. The model
allows the noise to be heteroscedastic, with the noise level being
a function of the flow rate z, or homoscedastic for which the noise
level is fixed. In the latter case, g(z,ψ) = σn, where σn is a fixed
noise level. If the noise level is unknown, it can be learned with
the following homoscedastic noise model:

g(zi,ψ) = exp(ψ1),

ψ1 ∼ N (c1, d21),
(3)

where ψ1 is a normally distributed latent variable and the noise
level is log-normal. The exponential ensures that g(zi,ψ) > 0.

The homoscedastic noise model in (3) may be unrealistic for
low meters with a heteroscedastic noise profile. As described
arlier, the uncertainty of the flow rate measurement is often
iven in relative terms. To model this property of the data, we

ugment (3) with a multiplicative term to get the following i

5

heteroscedastic noise model:
g(zi,ψ) = exp(ψ2) · |zi| + exp(ψ1),

ψ1 ∼ N (c1, d21),

ψ2 ∼ N (c2, d22),
(4)

where ψ1 and ψ2 are normally distributed latent variables.1 Both
exp(ψ1) and exp(ψ2) are log-normal, and are hence strictly pos-
itive. It follows from |z| ≥ 0 that the noise standard deviation
g(z,ψ) > 0.

4.1. Prior for the noise model, p(ψ)

The prior for the noise model is assumed to be a factorized
normal

p(ψ) =
Kψ∏
i=1

N (ψi | ci, d2i ), (5)

where Kψ = 1 for the homoscedastic noise model in (3) and
Kψ = 2 for the heteroscedastic noise model in (4).

The accuracy of an instrument measuring flow rate is com-
monly given as a mean absolute percentage error (MAPE) to a ref-
erence measurement. More precisely, the expected measurement
error is specified as

Ey|z

[
|y− z|
|z|

]
= Er , (6)

where y is the measurement, z > 0 is the reference measurement,
and Er is the MAPE, e.g. Er = 0.1 for a MAPE of 10%. We wish to
ranslate such statements to a prior p(ψ).

Assuming a perfect reference measurement z, normal noise ϵ,
nd an additive noise model y = z+ϵ, we obtain from (6) a noise
tandard deviation g(z) =

√
π/2Er |z|. We recognize this as the

first term in the heteroscedastic noise model (4). We derive prior
parameters of ψ2 ∼ N (c2, d22) that correspond to a log-normal
distribution exp (ψ2) with mean

√
π/2Er by solving:

c2 = log(
√
π/2Er )− d22/2, (7)

where we can adjust the variance d22 to express our uncertainty
in the value of Er .

The specification of a relative measurement error Er cannot
be translated directly to a fixed noise level, as required by the
homoscedastic noise model in (3). However, we can obtain a
reasonable approximation by using the above procedure. If we set
z = z̄, where z̄ is the mean production of a well, we can calculate
prior parameters for ψ1 as follows:

1 = log(
√
π/2Er z̄)− d21/2. (8)

We express our uncertainty about the noise level by adjusting the
variance d21.

4.2. Prior for the neural network weights, p(φ)

We encode our initial belief of the parameters φ with a fully
actorized normal prior

(φ) =
Kφ∏
i=1

N (φi | ai, b2i ), (9)

where Kφ is the number of weights and biases in the neural
networks f . We assume a zero mean for the weights and biases,

1 We assume that we have one flow rate instrument for each well. Yet,
everal instruments may be handled by having separate noise models for each
nstrument.
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that is ai = 0, as is common practice for neural networks. One
interpretation of the prior standard deviations is that they encode
the (believed) frequencies of the underlying function, with low
values of b inducing slow-varying (low frequency) functions, and
high values inducing fast-varying (high frequency) functions [14].
While this interpretation can give us some intuition about the
effect of the prior, it is not sufficiently developed to guide the
specification of a reasonable prior. We refrain from learning the
prior from the data (as with empirical Bayes) and therefore treat
b as hyperparameters to be prespecified.

For deep neural networks it is common practice to randomly
ample the initial weights so that the output has a variance of
ne for a standard normal distributed input [46,47]. For example,
e-initialization [47] is often used for neural networks with ReLU
ctivation functions. With He-initialization, the weights of layer l
re drawn from the distribution N (0, σ 2

l ) with σl =
√
2/nl, where

nl is the number of layer inputs. The weights in the first hidden
layer are initialized with σl =

√
1/nl since no ReLU activation is

pplied to the network’s input. With layer biases set to zero, this
nitialization scheme yields a unit variance for the output.

The objective of weight initialization is similar to that of prior
pecification; a goal in both settings is to find a good initial
odel. In this work, we use the standard deviations bi = σl as a

starting point for the prior specification (for weight i in layer l of a
ReLU network). We call this the He-prior. The resulting standard
deviations can then be increased (or decreased) if one believes
that the underlying function amplifies (or diminishes) the input
signal.

Fig. 4 shows the effect of b on the predictive uncertainty of
a Bayesian neural network. With a common prior standard devi-
ation (same for all weights), the output variance is sensitive to
the network size (depth and width). This sensitivity complicates
the prior specification, as illustrated for different network depths
in the figure. The He-prior retains a unit output variance for
different network sizes.

4.3. A fully factorized normal prior on the latent variables

The prior of model (1) is a fully factorized normal distribution,
p(φ)p(ψ). To simplify the notation in the rest of this paper we
collect the latent variables in θ = (φ,ψ) ∈ RK , where K =
Kφ+Kψ . This allows us to state the prior on θ as p(θ) = p(φ)p(ψ),
where

p(θ) =
K∏

i=1

N (θi | µ̄i, σ̄
2
i ), (10)

with means µ̄ = (µ̄1, . . . , µ̄K ) = (a1, . . . , aKφ , c1, . . . , cKψ ) ∈ RK

¯
and standard deviations σ = (σ̄1, . . . , σ̄K ) = (b1, . . . , bKφ , d1, . . . , t

6

dKψ ) ∈ RK . The total number of model parameters (µ̄ and σ̄) is
2K .

5. Methods

We wish to infer the latent variables θ of the flow rate model
in (1) from observed data. With Bayesian inference, the initial
belief of θ, captured by the prior distribution p(θ) in (10), is
updated to a posterior distribution p(θ | D) after observing data
D. The update is performed according to Bayes’ rule:

p(θ | D) =
p(D | θ)p(θ)

p(D)
, (11)

here p(D) is the evidence and the likelihood is given by

(D | θ) =
N∏
i=1

p(yi | xi, θ). (12)

he log-likelihood of the model in (1) is shown in Appendix A.1.
From the posterior distribution, we can form the predictive

osterior distribution

(y+ | x+,D) =
∫

p(y+ | x+, θ)p(θ | D)dθ (13)

o make a prediction y+ for a new data point x+.
The posterior in (11) involves intractable integrals that pre-

ents a direct application of Bayes’ rule [15]. In the following
ections, we review two methods that circumvent this issue,
amely maximum a posteriori (MAP) estimation and variational
nference. With MAP estimation inference is simplified by con-
idering only the mode of p(θ | D), and with variational inference
he posterior distribution is approximated. In the latter case, we
an form an approximated predictive posterior distribution by
eplacing the posterior in (13) with its approximation. Statistics of
his distribution, such as the mean and variance, can be estimated
sing Monte-Carlo sampling [14].

.1. MAP estimation

With maximum a posteriori (MAP) estimation we attempt to
ompute:

ˆMAP = argmax
θ

p(θ | D), (14)

here θ̂MAP is the mode of the posterior distribution in (11). For
2
he model in (1) with a fixed and constant noise variance σn and
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σ̄ 2
i is the (prior) variance of θi, we have that

θ̂MAP = argmax
θ

log p(D | θ)+ log p(θ)

= argmin
θ

1
2σ 2

n

N∑
i=1

(yi − f (xi, θ))2 +
K∑

i=1

1
2σ̄ 2

i
θ2i ,

(15)

From (15), we see that MAP estimation is equivalent to maximum
likelihood estimation with L2-regularization [30].

While MAP estimation allows us to incorporate prior informa-
tion about the model, it provides only a point estimate θ̂MAP and
will not capture the epistemic uncertainty of the model. To obtain
a posterior distribution of θ we consider the method of variational
inference.

5.2. Variational inference

With variational inference, the posterior in (11) is approxi-
mated by solving an optimization problem, cf. [15]. Consider a
variational posterior density q(θ | λ), parameterized by a real vec-
tor λ. The objective of the optimization is to find a density q⋆ =
q(θ | λ⋆) that minimizes the Kullback–Leibler (KL) divergence to
the exact posterior, i.e.

λ⋆ = argmin
λ

DKL (q(θ | λ) ∥ p(θ | D)) . (16)

A direct approach to solve (16) is not practical since it includes
the intractable posterior. In practice, the KL divergence is instead
minimized indirectly by maximizing the evidence lower bound
(ELBO):

L (λ) := log p(D)− DKL (q(θ | λ) ∥ p(θ | D)) (17)

= Eq [log p(D|θ)]− DKL (q(θ | λ) ∥ p(θ)) , (18)

where the expectation Eq [·] is taken with respect to q(θ | λ).
From the ELBO loss in (18), we see that an optimal variational dis-
tribution maximizes the expected log-likelihood on the dataset,
while obtaining similarity to the prior via the regularizing term
DKL (q(θ | λ) ∥ p(θ)).

5.2.1. Stochastic gradient variational Bayes
Stochastic gradient variational Bayes (SGVB) or Bayes by back-

prop is an efficient method for gradient-based optimization of the
ELBO loss in (18), cf. [48,49].

Suppose that the variational posterior q(θ | λ) is a mean-
field (diagonal) normal distribution with mean µ and standard
deviation σ. Let the variational parameters be λ = (µ, ρ) and
compute σ = log(1 + exp(ρ)), where we use an elementwise
softplus mapping to ensure that σi > 0.

The basic idea of SGVB is to reparameterize the latent variables
to θ = h(ζ,λ) = µ + log(1 + exp(ρ)) ◦ ζ, where ◦ denotes
pointwise multiplication and ζ ∼ N (0, I). With this formulation,
the stochasticity of θ is described by a standard normal noise ζ
which is shifted by µ and scaled by σ. The reparameterization
allows us to compute the gradient of the ELBO (18) as follows:

∇λL (λ) = ∇λEq [log p(D|θ)]−∇λDKL (q(θ | λ) ∥ p(θ))
= Eζ [∇θ log p(D | θ)∇λh(ζ,λ)]−∇λDKL (q(θ | λ) ∥ p(θ))

(19)

The expectation in (19) can be approximated by Monte-Carlo
sampling the noise: ζi ∼ N (0, I) for i = 1, . . . ,M . If we also
approximate the likelihood by considering a mini-batch B ⊂ D of
size B ≤ N , we obtain the unbiased SGVB estimator of the ELBO
gradient:

∇λL (λ) ≃ ∇λL̂(λ) :=
N
B

1
M

M∑
i=1

∇θ log p(B | θ)∇λh(ζi,λ) (20)
−∇λDKL (q(θ | λ) ∥ p(θ)) .
7

An advantage with the SGVB estimator in (20) is that we can
utilize the gradient of the model ∇θ log p(B|θ) as computed by
back-propagation. When both the variational posterior and prior
are mean-field normals, as is the case for our model,
DKL (q(θ | λ) ∥ p(θ)) can be computed analytically as shown in
Appendix A.2.

In Algorithm 1 we summarize the basic SGVB algorithm for
mean-field normals and Monte-Carlo sample size of M = 1. We
finally note that for variables representing weights of a neural
network, we implement the local reparameterization trick in [50]
to reduce gradient variance and save computations (not shown in
Algorithm 1).

Algorithm 1 Basic implementation of SGVB for mean-field
normals (M = 1)
Require: data D, model p(D, θ) = p(D | θ)p(θ), parameters

λ = (µ, ρ), learning rate α.
1: repeat
2: Sample mini-batch B from D
3: Sample ζ ∼ N (0, I)
4: θ← µ+ log(1+ exp(ρ)) ◦ ζ
5: Compute ∇λL̂(λ) using (20)
6: λ← λ+ α∇λL̂(λ)
7: until no improvement in ELBO
8: return λ

6. Case study

The goal of the case study was to investigate the predictive
performance and generalization ability of the proposed VFM.
The study was designed to test the predictive performance on
historical data and on future data, which reflect the two main
applications of a VFM. If the models generalize well, a similar
performance across all wells for each model type should be
expected on both historical and future data. To cast light on the
data challenges in Section 1, the results differentiate between
wells with test separator and MPFM measurements, which have
different measurement accuracy and frequency. The prediction
uncertainty of the models was also analyzed and the effect of
training set size on prediction performance was investigated.

The probabilistic flow rate models in Section 4 were devel-
oped using the dataset described in Section 3.1. The conditional
mean flow rate, f (x,φ), was modeled using a feed-forward neural
network. Three different noise models were considered: a ho-
moscedastic model with fixed noise standard deviation g(z,ψ) =
σn = const., a homoscedastic model with learned noise standard
deviation (3), and a heteroscedastic model with learned noise
standard deviation (4). For each of the three model types and the
60 wells in the dataset, the neural network was trained using the
SGVB method in Section 5.2.1. These models will be referred to
by the label VI-NN. For comparison, a neural network for each
of the 60 wells was trained using the MAP estimation method
in Section 5.1. For these models we considered the measurement
noise to be homoscedastic with a fixed noise standard deviation
(σn). We label these models as MAP-NN. The He-prior was used
for the hidden layers to initialize and regularize the parameters,
see Section 4.2. For the noise models, we set the priors as de-
scribed in Section 4.1, differentiating between wells with MPFM
and test separator measurements.

A schematic representation of the Bayesian neural network
is shown in Fig. 5. The network architecture was fixed to three
hidden layers, each with 50 nodes to which we apply the ReLU
activation function [51]. Using practical recommendations in [52],
the network architecture may be large as long as regulariza-
tion is used to prevent overfitting. The Adam optimizer [53]
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Fig. 5. The architecture of the BNNs used in this study is illustrated in (a). Probabilistic computations are colored gray. Variables φ and ψ are drawn from the
pproximate posterior and used to compute the conditional mean flow rate, f (x,φ), and noise standard deviation, g(z,ψ). The composition of f (x,φ) with four layers
three hidden) and φ = {(W (l), b(l))}4l=1 is shown in (b). Fully connected blocks perform the operation FCl(x) = W (l)x+ b(l) .
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Table 1
Prediction performance in terms of mean absolute percentage error on historical
test data. The percentiles show the variation in performance among all wells.
Method and model P10 P25 P50 P75 P90
MAP-NN fixed homosc. 1.8 2.8 5.1 8.3 16.0
VI-NN fixed homosc. 1.4 2.6 4.8 8.5 12.8
VI-NN learned homosc. 1.3 2.4 5.3 8.4 13.3
VI-NN learned heterosc. 1.7 3.5 5.9 9.7 11.5

with the learning rate set to 0.001 was used to train all net-
works. Early stopping with a validation dataset was used to
determine an appropriate number of epochs to train the mod-
els to avoid overfitting [44]. The hyper-parameters were chosen
by experimentation and using best practices. The models were
implemented and trained using PyTorch [54].

6.1. Prediction performance on historical data

To examine the predictive performance on historical data, a
hree months long period of contiguous data located in the mid-
le of the dataset, when ordered chronologically, was set aside for
esting. The rest of the data was used to train the models. During
odel development, a random sample of 20% of the training data
as used for model validation. The performance of each model
ype across the 60 wells was analyzed. Table 1 shows the P10,
25, P50 (median), P75, and P90 percentiles of the MAPE across all
ells. Detailed results which differentiate between test separator
nd MPFM measurements are reported in Appendix B, Table B.4.
The results show that the four model types achieve similar

erformance to each other for the 75th and lower percentiles.
he median MAPEs (P50) lie in the range 4%–6%. A comparison
f the 90th percentile performance indicates that models trained
y variational inference are more robust in terms of modeling
ifficult wells. Regardless of the model type used, there are large
ariations in the performance on different wells, as seen by com-
aring the 10th and 90th percentiles. The best performing model
chieved an error of 0.3% for one of the wells. Yet, some models
btain an unsatisfactory large error. The overall worst-performing
odel (MAP-NN) achieved an error of 72.1% for one of the wells.
The cumulative performance of the four models is plotted in

ig. 6. The cumulative performance plot shows the percentage
f test points that fall within a certain percent deviation from
he actual measurements [39]. The figure shows that the models
erform better on wells with MPFM measurements than on wells
8

able 2
rediction performance in terms of mean absolute percentage error on future
est data. The percentiles show the variation in performance among all wells.
Method and model P10 P25 P50 P75 P90
MAP-NN fixed homosc. 3.7 5.6 12.4 24.1 40.0
VI-NN fixed homosc. 4.0 5.6 9.6 18.2 29.3
VI-NN learned homosc. 4.0 6.0 8.9 22.5 32.5
VI-NN learned heterosc. 4.0 5.0 9.2 15.7 24.3

with test separator measurements. Again, similar performance of
the four model types is observed.

6.2. Prediction performance on future data

The last three months of measurements were used to test the
predictive performance on future data. The rest of the data was
used to train the models. During model development, a random
sample of 20% of the training data was used for model validation.
Table 2 shows the percentiles of the MAPE for the different mod-
els on all 60 wells. Detailed results which differentiate between
MPFM and test separator measurements are given in Appendix B,
Table B.5.

Similarly to the case with historical test data, the performance
of the four model types is comparable for the 50th and lower
percentiles. The median MAPEs (P50) lie in the range 8%–13%.
For all model types, the 25% best-performing models achieved
a MAPE of less than 6%. The best performing model obtained
a MAPE of 1.1% on one of the wells. This is in line with some
of the best reported results in the literature; see Section 2.1.
Nevertheless, for each model type there is a large variation in
performance among wells. The overall worst performing model
achieved a MAPE of 48.7%.

Comparing the performance for either the 75th or 90th per-
centile again indicates that models trained by variational infer-
ence are more robust in terms of modeling difficult wells. In
this regard, the heteroscedastic VI-NN performs particularly well
compared to the other model types.

As seen from the cumulative performance plot in Fig. 7, the
four model types have similar performance to each other. The
exception is the heteroscedastic VI-NN, which outperforms the
other model types for wells with test separator measurements.
As seen in the case of historical test data, the models perform
better on wells with MPFM measurements than on well with test
separator measurements.
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Fig. 6. Cumulative performance of the four models on historical test data. The cumulative performance is shown for wells with (left) MPFM and (right) test separator
measurements.
Fig. 7. Cumulative performance of the four models on future test data. The cumulative performance is shown for wells with (left) MPFM and (right) test separator
measurements.
6.3. Comparison of performance on historical and future data

A comparison of the MAPEs on historical and future data is
llustrated in Fig. 8. The plots differentiate wells with MPFM and
est separator measurements. In general, the prediction error is
arger on future test data than on historical test data. There is
lso a larger variance in the performance on future test data. This
ndicates that it is harder to make predictions on future data, than
n historical data. Further, observe that the errors are smaller
or the wells with MPFM measurements than for the wells with
est separator measurements in both the historical and future test
ata case.

.4. Uncertainty quantification and analysis

In contrary to the MAP-NN models, the VI-NN models quantify
he uncertainty in their predictions. To study the quality of the
rediction uncertainty, we generated a calibration plot for the
hree different noise models using the test datasets from Sec-
ions 6.1 and 6.2; see Fig. 9. The plot shows the frequency of
esiduals lying within varying posterior intervals. For instance, for
perfectly calibrated model, 20% of the test points is expected
9

to lie in the 20% posterior interval centered about the poste-
rior mean. In other words, the calibration curve of a perfectly
calibrated model will lie on the diagonal gray line illustrated in
the figures. The calibration of a model may vary across wells. To
visualize the variance in model calibration, we have illustrated
the (point-wise) 25th and 75th percentiles of the calibration
curves obtained across wells.

On historical data, the models trained on test separator mea-
surements seem to be best calibrated. The models trained on
MPFM measurements overestimate the uncertainty in their pre-
dictions. On future data, the results are reversed. The models
trained on MPFM measurements are better calibrated and the
models trained on test separator measurements all underesti-
mate the prediction uncertainty. Overall, the calibration improves
when the noise model is learned. This is seen clearly when
comparing the fixed homoscedastic noise to the learned het-
eroscedastic noise model. The results are summarized in Table 3,
which shows the coverage probabilities for the 95% posterior
interval (using the point-wise median in the calibration plots).
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Fig. 8. Comparison of performance on historical and future data for the different models. The box plots differentiate between wells with multiphase flow meter and
test separator measurements. The boxes show the P25 , P50 (median), and P75 percentiles. The whiskers show the P10 and P90 percentiles.
Fig. 9. Calibration plots for fixed homoscedastic noise (a–d), learned homoscedastic noise (e–h), and learned heteroscedastic noise (i–l). Wells are grouped by
measurement device, multiphase flow meter or test separator, and the calibration on historical test data (Section 6.1) and future test data (Section 6.2) are shown.
The median frequency is shown as a dashed line for each posterior interval (x-axis). The 25th and 75th percentiles (colored bands) show the variation in calibration
across wells. A perfectly calibrated model would lie on the diagonal line y = x.
.5. Effect of training set size on prediction performance

When analyzing the prediction performance of the four model
ypes in Sections 6.1 and 6.2, it was noticed that the prediction
10
error tended to decrease as the training set size increased. This
is illustrated in Fig. 10, which shows the MAPEs for the different
models and corresponding regression lines with negative slopes.
This tendency is generally expected of machine learning models.
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Fig. 10. The plot shows the mean absolute percentage error of the four models on historical and future test data for all wells. A regression line for each model
shows the tendency of the error as the number of training points varies.
Table 3
Coverage probability (95%).
Case Method and model Test sep. (%) MPFM (%)

Future prediction VI-NN fixed homosc. 37.5 99.5
VI-NN learned homosc. 81.0 87.7
VI-NN learned heterosc. 92.3 90.0

Historical prediction VI-NN fixed homosc. 92.4 100.0
VI-NN learned homosc. 98.5 99.1
VI-NN learned heterosc. 100.0 97.2

On the other hand, previous studies such as [10], indicate that
model performance does not necessarily improve when including
data that is several years old. To closer inspect this effect, we
compared models developed on successively larger training sets.

To allow for an interesting range of dataset sizes a subset of 21
ells with 1200 or more MPFM measurements was considered.

n a number of trials, a well from the subset and an instant of
ime at which to split the dataset into a training and test set,
ere randomly picked. Keeping the test set fixed, a sequence of
raining sets of increasing size was generated. The training sets
ere extended backwards in time with data preceding the test
ata. The following training set sizes were considered: 150, 200,
00, . . ., 1100, where the increment is 100 between 300 and
100. A MAP-NN model was developed for each of these training
ets, using early stopping and validating against the last 100 data
oints. The test set size was also set to 100 data points, spanning
n average 90 days of production.
Denoting the test MAPE of the models by E150, E200, E300, . . . ,

1100, we computed relative MAPEs

k =
Ek
E150

, for k ∈ {150, 200, 300, . . . , 1100}. (21)

he relative errors indicate how the performance develops as the
raining set size increases, with a baseline at R150 = 1. The result
f 400 trials is shown in Fig. 11.

. Discussion

In Section 1 some of the challenges faced by data-driven VFMs
ere discussed. These were: (1) low data volume, (2) low data
ariety (3) poor measurement quality, and (4) non-stationarity
f the underlying process. Here we discuss the results in light
11
Fig. 11. Relative test errors of the MAP-NN model for increasing training set
sizes. Shown are the medians and 50% intervals of 400 trials.

of these challenges. All results are discussed in terms of MAPE
values.

No widely used standard exists for VFM performance spec-
ification or requirements. Thus, the following performance re-
quirements have been set by the authors to assess the com-
mercial viability of a VFM: (1) predictive performance in terms
of mean absolute percentage error on test data of 10% or less,
and (2) robustness in terms of achieving the above predictive
performance for at least 90% of wells. While these simple require-
ments lack a specification of the test data, we find them useful
in the assessment of VFM performance. A VFM failing to meet
these requirements would not be practical to use in industrial
applications.

7.1. Performance on historical and future test data

First, we discuss the concern about the non-stationarity of the
underlying process. This means the distribution of values seen
during training is not necessarily the same as the distribution
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f values used for testing. The effect of this is best observed
hen comparing the performance on historical and future data,
ee Tables 1 and 2 and Fig. 8. Looking at the upper and lower
ercentiles, we see the different models achieve performance in
he range of 1%–16% error on historical data and 3%–40% error
n future data. Since the strength of data-driven models lies with
nterpolation, rather than extrapolation, it is natural that the per-
ormance is worse on the future data case. Considering the VFM
erformance requirement of 10% MAPE for 90% of the wells, the
erformance is not acceptable for the historical or for the future
ata case. This indicates that the robustness of the models is inad-
quate for use in a commercial VFM. For real time applications,
requent model updates are likely required to achieve the VFM
erformance requirement. This raises the technical challenge of
mplementing a data-driven modeling approach.

The study on dataset size in Section 6.5 further explores the
evelopment of data distributions and the effect older data has
n future prediction errors. The result, seen in Fig. 11, indicates
hat additional data is only valuable up to a certain point, after
hich older data will no longer be useful when predicting future
alues. The point where this happens will naturally vary between
ells. For the wells included here, this happens at 600 data points
n average, for which the additional data is approximately 18
onths or longer into the past. Looking at Fig. 10, we again see

he trend that wells with more data perform better, but only up to
certain point. We remark that insufficient model capacity would
ave a similar effect on the performance. However, we find this
o be unlikely in this case study due to the high capacity and low
raining errors of the neural networks used.

At this point we remark that, for two observations D1,D2 ∈

D, we model conditional independence (D1 ⊥⊥ D2 | θ). While
the observations result from preprocessing measurement data
in a way that removes transients and decorrelates observations,
we cannot guarantee independence due to the non-stationary
process. With dependent observations, the modeling assumption
of conditional independence is not satisfied since the models
lack temporal dependencies. This is also true for most, if not
all published models for data-driven VFM. Models that include
temporal dependencies may be better suited to learn from past
data.

A second concern raised was related to small data regimes,
both in terms of data volume and data variety. The results men-
tioned above also illustrate the effect of small data. Looking at
Fig. 10, higher variance in performance is seen among wells with
less than 700 data points. This is concerning because many of the
wells, in particular those with test separator measurements as
their primary source of data, have very few data points. Based on
the median MAPE values in Fig. 8, also given in Tables B.4 and B.5,
models trained on MPFM data outperforms the models trained
on test separator data. This indicates that data quantity may
outweigh data quality in the small-data regime. The difference in
performance is also evident in the cumulative performance plots,
see Figs. 6 and 7.

The wells that lie in the top quarter of performance achieved
MAPE values comparable to the earlier works discussed in Sec-
tion 2.1. However, this performance seems difficult to achieve
for the full set of wells. The difficulty in generalizing a single
model architecture to a broad set of wells is troublesome for the
potential commercialization of data-driven VFM.

7.2. Noise models

The last concern raised was poor data quality. In particular
uncertainty in flow rate measurements, and potential gross errors
in MPFM measurements.

The three different noise models perform similarly in terms
of MAPE, on both historical and future data. The only exception
12
being the learned heteroscedastic noise model, which performed
better than the others on historical and future test data case when
judged by the 90th percentile. This is believed to be because
the heteroscedastic error term gives the objective function some
added robustness towards large errors.

From the calibration plots in Fig. 9, we see that learning the
noise model improves the calibration. The calibration curves for
models trained on MPFM data generally lie above the curves for
models trained on test separator data, both for historical and fu-
ture predictions. This means that models trained on MPFM mea-
surements are less confident in their predictions, even though
they are trained on more data. It was suspected that models
trained on MPFM data would reflect the increased uncertainty
present in these measurements, but this is difficult to observe
from the results. It is worth noting that the MPFM models are
tested on MPFM data, so any systematic errors present in the
MPFM measurements themselves will not be detected.

Because the models have potentially large prediction errors,
especially for future data, it is desirable that the model can assess
its performance. The coverage probabilities reported in Table 3
give us some confidence in the uncertainty estimates for the
learned noise models, especially for the historical cases.

Neither the homoscedastic or heteroscedastic noise models in
(3) and (4), respectively, can capture complex noise profiles that
depend on the flow conditions x. As most flow meters are spe-
cialized to accurately measure flow rates for certain compositions
and flow regimes, this is a potential drawback of the models. We
leave it to later works to address such limitations, but note that
with few adjustments the flow model in (1) can accommodate
heteroscedasticity of a rather general form.

7.3. Bayesian neural networks

As stated in Section 1, setting the priors on the parameters
in the model is not a trivial task. In several papers, the Kullback–
Leibler divergence term of the ELBO loss in (18) is down-weighted
to improve model performance due to poor priors [55]. This
remains a research question, however, in Section 4.2 one way of
approaching prior specification in BNNs is described. The diffi-
culty of setting priors combined with small data sets may make
it difficult to successfully train models of this complexity. Still,
the results are reasonable in the historical data case, and the
estimated uncertainty is still better than only relying on point
estimates.

8. Concluding remarks

MAP estimation and VI for a probabilistic, data-driven VFM
was presented and explored in a case study with 60 wells. The
models achieve acceptable performance on future test data for
approximately half of the studied wells. It is observed that models
trained on historical data lack robustness in a changing envi-
ronment. Frequent model updates are therefore likely required,
which pose a technical challenge in terms of VFM maintenance.

Of the presented data challenges, the non-stationary data dis-
tribution is the most concerning. It means that models must have
decent extrapolating properties if they are to be used in real-
time applications. This is inherently challenging for data-driven
approaches, and limits the performance of all the models consid-
ered in this paper. Of the models explored here, VI provided more
robust predictions than MAP estimation on future test data.

The BNN approach is promising due to its ability to provide
uncertainty estimates. Among these models, the heteroscedastic
model had the best performance, indicating that a heteroscedastic
model can be advantageous for flow rate measurements. How-
ever, it is challenging to obtain well-calibrated models due to
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he difficulty of setting meaningful priors on neural network
eights, and the fact that priors play a significant role in small
ata regimes. As a result, the uncertainty estimates provided by
he BNNs should be used with caution.

.1. Recommendations for future research

We would suggest future research on data-driven VFM to fo-
us on ways to overcome the challenges related to small data and
on-stationary data distributions. Advances on these problems
re likely required to improve the robustness and extrapolation
apabilities of models to be used in real-time applications. We be-
ieve promising avenues of research to be: (i) hybrid data-driven,
hysics-based models that allows for stronger priors; (ii) data-
riven architectures that enables learning from more data, for
nstance by sharing parameters between well models; (iii) online
earning to enable frequent model updates; and (iv) modeling of
emporal dependencies, for example using sequence models, to
etter capture time-varying boundary conditions.
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Appendix A. Derivations

A.1. Log-likelihood of the flow rate model

The log-likelihood of the flow model in (1) with parameters
N
θ = (φ,ψ) on a dataset D = (X, y) = {(xi, yi)}i=1 is given by

13
log p(y | X, θ) =
N∑
i=1

log p(yi | xi, θ)

=

N∑
i=1

logN (yi | f (xi,φ), g(f (xi,φ),ψ)2)

= −
N
2

log(2π )−
N∑
i=1

log g(f (xi,φ),ψ)

−
1
2

(
yi − f (xi,φ)
g(f (xi,φ),ψ)

)2

.

(A.1)

With a homoscedastic noise model g(z,ψ) = σn = const., the
og-likelihood simplifies to:

og p(y | X, θ) = −
N
2

log(2πσ 2
n )−

1
2σ 2

n

N∑
i=1

(yi − f (xi,φ))2 . (A.2)

.2. Kullback–Leibler divergence term, DKL (q(θ | λ) ∥ p(θ))

Let the approximation q(θ | λ) and prior p(θ) be mean-field
ormal distributions of the random variables θ ∈ RK . Assume that
he approximation is parameterized with λ = (µ, ρ), where µ is
he mean and σ = log(1+ exp(ρ)) is the standard deviation of q.
hen, the Kullback–Leibler divergence is given as:

DKL (q(θ | λ) ∥ p(θ)) = Eq [log q(θ | λ)− log p(θ)]

= Eq

[
K∑

i=1

log q(θi | λi)− log p(θi)

]

=
1
2
Eq

[
K∑

i=1

− log(2πσ 2
i )−

(
θi − µi

σi

)2

+ log(2πσ̄ 2
i )+

(
θi − µ̄i

σ̄i

)2
]

=
1
2

⎡⎢⎢⎣ K∑
i=1

−2 log
σi

σ̄i
−

1
σ 2
i
Eqi

[
(θi − µi)2

]  
=σ2

i

+
1
σ̄ 2
i
Eqi

[
(θi − µ̄i)2

]⎤⎥⎥⎦
=

1
2

K∑
i=1

[
−1− 2 log

σi

σ̄i
+

1
σ̄ 2
i
Eqi

[
(θi − µ̄i)2

]]

=
1
2

K∑
i=1

[
−1− 2 log

σi

σ̄i
+

(
µi − µ̄i

σ̄i

)2

+

(
σi

σ̄i

)2
]

(A.3)

Appendix B. Results

See Tables B.4 and B.5.
Table B.4
Prediction performance on historical test data for each well group. Reported values are the P10 , P25 ,
P50 , P75 , and P90 percentiles for the statistics root mean square error (RMSE) and mean absolute
percentage error (MAPE).
Well group Method and model RMSE MAPE %

All MAP-NN fixed homosc. 0.4, 0.7, 1.1, 1.7, 3.0 1.8, 2.8, 5.1, 8.3, 16.0
VI-NN fixed homosc. 0.3, 0.5, 1.0, 2.1, 3.0 1.4, 2.6, 4.8, 8.5, 12.8
VI-NN learned homosc. 0.3, 0.5, 1.0, 2.0, 3.0 1.3, 2.4, 5.3, 8.4, 13.3
VI-NN learned heterosc. 0.4, 0.6, 1.2, 1.9, 3.0 1.7, 3.5, 5.9, 9.7, 11.5

Test sep. MAP-NN fixed homosc. 0.4, 0.8, 1.5, 1.7, 3.0 3.1, 5.7, 7.2, 11.1, 16.2
VI-NN fixed homosc. 0.5, 0.8, 1.6, 2.2, 4.3 2.8, 4.9, 7.9, 11.3, 13.2
VI-NN learned homosc. 0.6, 1.1, 1.7, 2.1, 3.1 3.9, 5.8, 8.1, 12.3, 16.4
VI-NN learned heterosc. 0.5, 1.0, 1.7, 2.1, 3.9 3.7, 5.1, 9.5, 11.4, 12.2

MPFM MAP-NN fixed homosc. 0.3, 0.6, 1.0, 1.6, 2.8 1.8, 2.4, 4.5, 8.1, 14.3
VI-NN fixed homosc. 0.3, 0.4, 1.0, 1.9, 2.9 1.3, 2.3, 4.1, 7.7, 11.5
VI-NN learned homosc. 0.3, 0.4, 0.7, 1.6, 3.0 1.2, 2.0, 4.1, 7.3, 11.7
VI-NN learned heterosc. 0.4, 0.5, 1.2, 1.5, 2.9 1.3, 3.1, 5.1, 8.6, 10.8
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Table B.5
Prediction performance on future test data for each well group. Reported values are the P10 , P25 ,
P50 , P75 , and P90 percentiles for the statistics root mean square error (RMSE) and mean absolute
percentage error (MAPE).
Well group Method and model RMSE MAPE %

All MAP-NN fixed homosc. 0.8, 1.2, 2.1, 4.0, 6.1 3.7, 5.6, 12.4, 24.1, 40.0
VI-NN fixed homosc. 0.6, 1.1, 1.8, 3.5, 5.2 4.0, 5.6, 9.6, 18.2, 29.3
VI-NN learned homosc. 0.7, 1.2, 1.9, 3.3, 5.5 4.0, 6.0, 8.9, 22.5, 32.5
VI-NN learned heterosc. 0.6, 1.1, 1.7, 3.1, 4.5 4.0, 5.0, 9.2, 15.7, 24.3

Test sep. MAP-NN fixed homosc. 0.8, 1.0, 1.6, 3.0, 6.7 3.9, 6.2, 18.1, 28.8, 41.1
VI-NN fixed homosc. 0.3, 1.0, 2.1, 3.2, 8.0 5.2, 9.5, 14.6, 31.4, 40.9
VI-NN learned homosc. 0.6, 1.3, 1.9, 3.6, 5.9 6.6, 7.8, 15.5, 31.6, 35.9
VI-NN learned heterosc. 0.4, 1.2, 1.6, 2.3, 2.9 5.1, 6.0, 10.6, 18.6, 21.6

MPFM MAP-NN fixed homosc. 0.9, 1.2, 2.4, 4.2, 5.7 3.7, 6.2, 12.2, 23.0, 30.2
VI-NN fixed homosc. 0.8, 1.3, 1.8, 3.5, 4.6 4.0, 5.3, 8.3, 15.0, 24.6
VI-NN learned homosc. 0.7, 1.1, 1.9, 3.1, 5.2 3.4, 4.9, 8.0, 17.5, 28.1
VI-NN learned heterosc. 0.7, 1.0, 1.8, 3.3, 4.6 3.8, 4.7, 8.9, 14.9, 24.5
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