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a b s t r a c t

Virtual flow metering (VFM) is a cost-effective and non-intrusive technology for inferring multiphase
flow rates in petroleum assets. Inferences about flow rates are fundamental to decision support systems
that operators extensively rely on. Data-driven VFM, where mechanistic models are replaced with
machine learning models, has recently gained attention due to its promise of lower maintenance costs.
While excellent performances in small sample studies have been reported in the literature, there is still
considerable doubt about the robustness of data-driven VFM. In this paper, we propose a new multi-
task learning (MTL) architecture for data-driven VFM. Our method differs from previous methods in
that it enables learning across oil and gas wells. We study the method by modeling 55 wells from four
petroleum assets and compare the results with two single-task baseline models. Our findings show
that MTL improves robustness over single-task methods, without sacrificing performance. MTL yields
a 25%–50% error reduction on average for the assets where single-task architectures are struggling.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Knowledge of gas, oil, and water flow rates in a petroleum
sset is highly valuable in operations and production planning
ut challenging to obtain [1]. There is a large economic incen-
ive for operators to maintain high production rates and avoid
perational problems. Flow rates from individual wells support
any important operational decisions, such as production opti-
ization [2], reservoir management [3], and flow assurance [4].
Most assets consist of a set of wells that produce to a shared

rocessing facility, as illustrated in Fig. 1. The joint flow from all
ells is continuously measured after being physically separated

nto its main phases, gas, oil, and water. These can be accurately
easured by single phase flow sensors. Flow rates from indi-
idual wells are conventionally measured by routing the flow
o a dedicated test separator. The resulting observations, known
s well tests, are of high quality [5]. However, the frequency of

well tests is low since the test separator accommodates one well
at a time and requires several hours to measure the flow. It is
therefore desirable to measure well flow rates before separation.

There are two main strategies for measuring multiphase flow,
ultiphase flow meters (MPFM) and virtual flow meters (VFM)

6]. MPFMs are complex and expensive measurement devices
hysically installed in the well. VFM is a soft sensing technology
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that makes inferences about flow rates from existing sensor data
and mathematical models implemented in software. VFM is often
seen as complementary to MPFMs. Multiphase flow measure-
ments have higher uncertainty than single phase measurements.
Single phase measurements have errors around 0.25% for oil and
1% for gas rates [7]. The quality and availability of water measure-
ments are more varying. A calibrated MPFM is expected to have
approximately 5% error for all phases [7]. However, they are spe-
cialized to certain operating conditions and must be re-calibrated
as conditions change [5].

VFMs can be categorized based on their use of mechanistic or
data-driven models [6]. A mechanistic VFM is derived from first
principles and utilizes empirical correlations sparingly. A data-
driven VFM is based on a machine learning method that fits a
generic mathematical model to data. The generic models do not
offer a physical interpretation of the parameters, as opposed to
mechanistic models where parameters are related to physical
properties. Most VFM solutions today are based on mechanistic
models implemented in multiphase flow simulators [8]. There
are few, if any, commercially available data-driven VFM solu-
tions. However, there has been an increasing interest in their
development [6], which is likely motivated by several factors.
First, both instrumentation and data availability have improved.
Second, the tooling for machine learning has improved consid-
erably and the number of practitioners has increased. Third, oil
and gas profit margins have decreased, leading to a search for
more cost-efficient solutions. Data-driven VFM is attractive in

terms of cost efficiency due to the promise of low maintenance
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Fig. 1. Asset with J wells sharing a single separator.

equirements and high scalability. Data-driven VFMs are expected
o be easier to develop and maintain since they only require
low rate observations to be calibrated [9]. This is in contrast to
echanistic models, which can be challenging to maintain due

o high model complexity [10]. Calibration demands flow rate
bservations and experiment data, such as fluid samples, to attain
hysically meaningful parameters values. Furthermore, calibra-
ion often requires personnel with asset experience and expert
nowledge of multiphase flow physics and the VFM software.
A diverse set of methods, models, and experiment setups

or data-driven VFM have been presented in the literature. The
ecent survey in [6] tabulates a selection of the proposed so-
utions, where architectures based on neural networks are the
ost frequent. Neural networks have been researched exten-
ively and have been successfully applied in other domains, such
s image analysis [11,12], medicine [13], and natural language
rocessing [14], which motivates its popularity in VFM appli-
ations. Representative works on neural network based VFMs
nclude [9,15], which report 2.2–4.2% errors and 2.4–4.7% errors
espectively. A hybrid solution of neural networks and regression
rees is presented in [16], reporting errors in the range of 1.5–
.5%. Gradient boosted trees are explored as an alternative to
eural networks in [17], achieving errors of 2%–6% in different
cenarios. In all approaches, the VFM model is trained on data
rom a single well.

Several of the proposed solutions rival the expected perfor-
ance of conventional MPFMs, but commercially viable alter-
atives have yet to emerge. The recent study in [18] applied
ayesian neural networks to data-driven VFM. The authors ques-
ioned if a robust data-driven method can be obtained by in-
ividually modeling wells from historical observations. Several
hallenges facing any data-driven VFM were highlighted. To re-
terate, there are usually few data points for each individual well,
aking it difficult to identify complex models. Additionally, the
nderlying process is non-stationary, which makes past data less
elevant for future predictions. Finally, the operational practices
n most assets may result in low data variety and create highly
orrelated explanatory variables.
Challenges related to insufficient data are common in machine

earning. A solution is to utilize data collected from other related
roblems [19,20]. There are several ways such data could be
ombined. One approach is Multi-Task Learning (MTL), where
odels for all problems are jointly optimized [20,21]. In MTL, the
roblem is given as a set of tasks, {T1, . . . , TJ}, where each task Tj
as a set of observations (yij, xij), i = 1, . . . ,Nj. MTL attempts to
ointly learn models for each task, utilizing the knowledge from
ther tasks to improve performance. Tasks are assumed to share
ome common structure that enables the transfer of knowledge.
everal mechanisms have been suggested to facilitate knowledge
haring. One approach is to have a set of parameters shared
etween the task models.
Methods that combine MTL and deep learning have been

uccessfully applied to several domains, e.g., image analysis [22],
atural language processing [23], and speech processing [24]. It
2

has also been applied to problems in the energy sector, such as
solar and wind power [25,26]. Multi-task neural networks have
been presented in a wide range of complexities, from simple
feed forward networks [27] to more complex recent architectures
that utilize both recurrent and convolutional network compo-
nents [28]. Some architectures, such as Cross-stitch networks,
use a deep neural network for each task and are not designed
to scale to numerous tasks [29]. On the opposite side, context-
sensitive networks use a task encoding as input to a network with
all parameters being shared [30]. A related approach is context
adaptation, in which context parameters are learned and used as
inputs to a shared neural network [31]. While much work has
centered around neural networks, other learners such as support
vector machines [32,33] and Gaussian process regression [34]
have also been successfully explored.

Even though knowledge sharing has been successful in many
cases, it is not guaranteed that all tasks will benefit from each
other [35]. Negative transfer refers to the phenomenon where
the performance of one task is reduced when another task is
introduced. Deciding which task that should be learning together,
and how to best avoid negative transfer, is still an open problem.

We present a multi-task learning based data-driven VFM. Our
key insight is that knowledge can be shared among wells in
a data-driven model, similarly to how knowledge is encoded
and reused in mechanistic models. In the context of VFMs, we
consider modeling the flow rate from one well as a learning task.
Task domains have different data distributions (domain shift) and
the tasks must learn different discriminative models. Our MTL
architecture, which resembles that of [31], is specialized for data-
driven VFM, for which there is a large number of tasks with
few observations. It utilizes well-specific parameters to adapt the
domains and tasks. Domain adaptation is performed by learning
domain-specific feature mappings, which transform input fea-
tures to abstracted domain features. Task adaptation is enabled
by learning task-specific parameters. The domain features and task
parameters are fed to a shared discriminator, to predict flow
rates. Because our architecture efficiently scales to many tasks,
all wells can be modeled simultaneously.

The framing of data-driven VFM as an MTL problem enables
us to learn from more data. While previous methods are limited
to small datasets with observations from individual wells, our
method scales learning to datasets with observations from any
number of wells. To test the proposed method, we perform a
study of 55 wells from four assets.

2. Problem description

The system of interest is the well choke valve. Choke valves are
adjustable restrictions that are used to control the flow rate from
the well. We only consider measurements that are commonly
available for oil and gas wells. These are the pressure (p1) and
temperature (T ) upstream the choke, the pressure downstream
the choke (p2), and the choke opening (u). In addition, flow rates
(q) are measured by a separator (well testing) or an MPFM. A
single choke valve is illustrated in Fig. 2.

Flow rates are represented as a vector qT =
[
qG, qO, qW

]
of gas,

il, and water rate. The rates are customarily given in volumetric
low pr. day, at standard conditions [36]. However, due to the
arge magnitude of volumetric gas rates, qG is scaled down by a
actor of 1000 to represent liquid equivalents. We denote the total
low rate by Q = qG+qO+qW , and the flow composition fractions
y φ = q/Q . Flow composition φ is dependent on reservoir
onditions and is slowly time varying. It can be estimated or
ssumed fixed between well tests. Here we consider φ to be
nown.
We consider the problem of modeling Q given u, p1, p2, T , and

. The gas, oil, and water flow rates are then found as q = Qφ.



A.T. Sandnes, B. Grimstad and O. Kolbjørnsen Knowledge-Based Systems 232 (2021) 107458

2

e
a

Q

Fig. 2. Choke valve with instrumentation.

.1. Insights from mechanistic modeling

The system in question poses some challenges that are best
xplored by a simple mechanistic example. For single phase flow,
n analytic model

= AC
√

p1 − p2
ρ

, (1)

can be derived from the Bernoulli equation [37]. Here, A is the
choke opening area, C is a choke specific flow factor, and ρ is
the fluid density. Eq. (1) is the result of generic assumptions
and simplifications, and appears in multiple domains. Multiphase
extensions to Eq. (1) are usually domain specific. Multiplier mod-
els are one class of such extensions for oil and gas flows. They
introduce additional factors to Eq. (1) to correct errors in the
pressure drop calculation due to multiphase flow. Additionally,
the single phase density is replaced by a mixture density. There
are several variations of multiplier and density computations,
some of which are explored in [38]. These computations often
rely on flow composition and fluid properties such as single phase
densities.

Eq. (1) contains choke area A as one of the observed variables,
and flow factor C as a given constant. However, these quantities
are rarely measured directly. In the measurement setup consid-
ered here, the choke position is given in percent of full travel.
Choke position is not directly comparable between wells, because
they have different choke valve designs. It is common to describe
choke valves by a CV curve [39]. The CV curve is a mapping
between a choke opening and a flow factor, which captures the
effect opening area and geometry have on an idealized flow rate.
All mechanistic simulators include CV curves or similar mappings.
Data-driven approaches often circumvent this by modeling di-
rectly on u, which means the mapping is implicit within a black
box model.

To utilize a shared discriminator, it is necessary to adapt
the observed values to universally comparable quantities and to
capture the unique aspects of each well, such as fluid properties
and choke geometries.

3. Data

Our data is a set of observations (Qij, xij), i = 1, . . .Nj, j =

1, . . . , J . Each data point is one observation from one well, in-
dexed as data point i from well j. The total flow rate Qij is a scalar.
Variables xij is a vector,

x⊤

ij =
[
uij, pij,1, pij,2, Tij, φij,G, φij,O, φij,W

]
, (2)

of choke opening, pressure upstream choke, pressure down-
stream choke, temperature, and flow composition fractions. Ob-
servations are taken at time tij, given in days since the first
observation for each well. Time is used for visualization and
splitting datasets. We are interested in the steady state behavior
of the flow rates. All observation are therefore averages taken
over 3–9 h intervals of stable production [40]. Observations are
shifted and scaled to lie approximately in the unit interval before

model training and evaluation.

3

3.1. Data exploration

The nature of the underlying process and operational practice
can create datasets that are challenging for machine learning
models to deal with. For instance, it is common to see reservoir
pressure decline as a well develops. As pressure declines, oper-
ators will increase the choke opening to keep flow rates stable
at a given target. Some assets attempt to reduce the decline,
for instance by injecting water into the reservoir [41]. Another
remedy is to inject gas into the well flow, which makes the flow
composition lighter [42]. Either way, future operating points will
generally not be drawn from the same distribution as the training
data.

Fig. 3 illustrates the relationship between choke and pressure
from all wells, with one well highlighted and colored by time.
The systematic development in pressure and operational practice
is clear. Models trained on such data are vulnerable to changes
in operational practice. A similar pattern can be found in the
flow composition, which typically develops into a higher water
content with time.

All models trained on data from a single well are vulnerable to
correlated explanatory variables and how data change with time.
Training on data from multiple wells is one way to overcome
these issues. A joint data set has several benefits. The depen-
dencies between explanatory variables become weaker, and the
variability within each explanatory variable becomes greater. This
is because different wells have different operating regions and
operating patterns. The reservoir development also becomes less
important. Because, while a single well may move away from its
previous operation region, other wells have likely operated under
similar conditions before.

The joint data set contains data from 55 wells from four
assets. These wells differ in design, operational practice, and
reservoir conditions. Fig. 4 explore how the distribution of up-
stream pressure vary between wells and assets. Many wells have
observations in the same range, but one asset is operating at a
significantly higher pressure.

4. Model formulation

We propose a data driven virtual flow meter with signature

Qij = f (xij; γj, βj, α). (3)

It takes input variables xij, as described in Eq. (2), and is parame-
terized by three sets of parameters. Two of these parameter sets,
γj and βj, are well specific, while α is shared between all wells.
The model is based on a shared neural network. The well specific
parameters are used in feature adaptation and task differentia-
tion. The model in Eq. (3) is composed of two steps. A feature
adjustment step

zij = g(xij; γj), (4)

and a flow computation step

Qij = h(zij;βj, α). (5)

The composition is illustrated in Fig. 5.

4.1. Feature adjustment

As discussed in Section 2.1, the observed choke opening is
not directly comparable between wells. We are interested in a
mapping from u for a universally comparable quantity ψ , which
is analog to a CV curve. A piecewise linear mapping is chosen
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Fig. 3. Scatter plot of choke opening and upstream pressure for all wells. Observations from a single well is highlighted and colored by days since first observation.
Choke is continuously adjusted to counteract the declining reservoir pressure.
Fig. 4. Box plot of pressure upstream observations for each well. The dotted vertical lines and coloring indicate which wells are from the same asset.
f

Fig. 5. Block diagram of the model architecture. The model is composed of two
functions. A task specific domain adaptation g , and a flow computation h, which
akes both task parameters and shared parameters.

or this purpose. It has with mg break points, u∗

1, . . . , u
∗
mg

, and is
arameterized by γj =

[
γj,0, . . . , γj,mg

]
. It is formulated as

ij = (1 + γj,0)

(
uij +

mg∑
k=1

γj,k max(0, uij − u∗

k)

)
, (6)

hich becomes an identity mapping if all parameters are zero. A
onotonic mapping can be enforced by restricting γj, but this is
ot done here. In the examples below we use mg = 4 and set
reakpoints to u∗

k = 0.2k. Recall that uij is mapped to the unit
nterval.

The adjusted feature vector z⊤

ij =
[
ψij, pij,1, pij,2, Tij, φij,G, φij,O

]
s then used to evaluate the flow computation. Note that only two
f the flow composition fractions are included. This is because
he fractions sum to one, and the last component is therefore
edundant.

.2. Flow computation

The flow rate approximation h in Eq. (5) is modeled by a resid-
al feed forward network. The skip connection of the residual
locks spans two hidden layers with pre-activation [43]. There are
4

Fig. 6. Diagram of a neural network residual block as described in Eq. (10). The
skip connection span two sets of activation (A) and linear layers (L).

ml layers, and all hidden layers have dimension mh. Linear trans-
orms are parameterized by weights α = {(Wk, bk)|k = 1, . . . ,ml}.
The rectifier function Φ(zkij) = max(0, zkij), where the max op-
eration is performed elementwise, is used for activation [21].
There is no activation on the final layer. Adjusted features zij and
task parameters βj are stacked in a vector before the network is
evaluated:

z1ij =

[
zij
βj

]
, (7)

z2ij = W1z1ij + b1, (8)

zk+2
ij = zkij + Wk+1Φ

([
WkΦ

(
zkij
)
+ bk

])
+ bk+1, (9)

k = 2, 4, . . . ,ml − 2,

Qij = Wmlz
ml
ij + bml . (10)

The residual blocks in the neural network is illustrated in Fig. 6.

4.3. Model comparison

The effect of multi-task learning is explored by comparing four
different models on the given data. Two conventional single-task
learning models are used as a baseline. These are compared to
two versions of the proposed multi-task architecture.

Both multi-task model formulations are identical, as described
above, but they differ in how many tasks are included. The first
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ption is trained on wells from the same asset. There are four
uch models because the dataset contains wells from four assets.
hese are referred to as ‘‘MTL-Asset’’ models. The second option
s trained on all wells and is referred to as the ‘‘MTL-Universal’’
odel. The two multi-task alternatives are selected to explore

he degree of positive and negative transfer between tasks. These
odels are collectively referred to as the MTL models.
Gradient boosted trees and conventional neural networks are

elected as the single-task baselines, as these represent the cur-
ent state of the art. They are referred to as ‘‘STL-GBT’’ and
‘STL-ANN’’ respectively. Gradient boosted trees are based on the
escription given in [17]. The neural network models are based
n the residual architecture described in Section 4.2, but without
he task parameters. Both baseline models take all observations
xcept water fraction as input, and total flow as output. An
ndividual copy of each baseline model is identified for each well.
hese models are only trained and evaluated on data from a single
ell.

. Method

Parameters and hyperparameters are found through exper-
mentation and optimization. The dataset is divided into de-
elopment and test sets. Development data is used to identify
yperparameters and train a final set of models. Test data is only
sed to evaluate the performance of the final models.

.1. Data splits

We split the data into subsets used for model development
nd testing. The development dataset is split further into training
nd validation sets. Data splits are visualized in Fig. 7.
Test data is selected to reflect how models are used in practice.

eaning that they are trained on all values observed up to a
ertain point, and then used for weeks or months before they
re updated again. For each well, test data is selected such that
t comes after development data in time, and the maximum
istance between test and development is 120 days. The number
f points selected is less than 20% of the observation for that well,
nd less than 500.
Development data is split further into training and validation.

ata points are partitioned into blocks of up to 100 consec-
tive days. Blocks are randomly divided between training and
alidation, such that the validation set is 10%–20% of the total.

.2. Loss and minimization

Model parameters are found by minimizing a standard loss
unction of prediction error and parameter regularization [44]. All
our model types use weighted mean square error with weights
ij as prediction loss.
For the three neural network models (STL-ANN, MTL-Asset,

TL-Universal) the network parameters are regularized by a L2
orm scaled by a factor λ. We regularize all parameters except
he first neural network bias term. For the two MTL models, the
ask specific parameters are regularized by a L2 norm scaled by a
factor λT .

The loss is minimized with the AdamW optimizer [45]. The
learning rate is set to 10−3, with a decay rate of 0.5 every 100
of the last 500 epochs. Each optimization runs for 3000 epochs
during hyperparameter searches. An additional 1000 epochs are
used in the final training. There are three batches pr epoch.
Implementation and training are done with PyTorch [46].

STL-GBT models are regularized by penalizing the number of
leaves and the squared leaf weight values [17]. Implementation
and training are done with XGBoost [47].
5

5.3. Model evaluation metrics

We use absolute percentage error as the primary performance
metric. For data point ij with observed flow rate Qij and predicted
flow rate Q̂ij,M from model M , we find percentage error as eij,M =

100(Q̂ij,M − Qij)/Qij. For all observations we have Qij > 0. Model
subscripts M indicate which of the four model types the error
relates to, e.g., MTL-Asset. Root mean squared error is used as a
secondary metric.

The mean absolute percentage error (MAPE) for well j with
model M is denoted by Ej,M . Because of the heavy tails of the error
distributions, we use a trimmed mean where 5% of the largest
errors are removed when computing average errors for individual
wells [48].

In addition to the test set performance, we will explore how
the models adhere to the expected physical behavior. We expect
an isolated increase in upstream pressure to increase flow rate,
as indicated by Eq. (1). For any datapoint xij we have model
predictions Q̂ij,M . This is compared to Q̂+

ij,M , which is the same
model evaluated on the same data point, with the exception that
pij,1 is increased by 10 bar. We compute a binary score

sij,M =

{
0 if Q̂+

ij,M − Q̂ij,M > 0,
1 otherwise,

(11)

to indicate whether this significant increase in pressure also
produces an increase in flow rate. The average well score is found
as Sj,M =

1
Nj

∑Nj
i=1 sij,M . A perfect score, Sj,M = 0, corresponds to

a correct sensitivity to changes in upstream pressure for all data
points.

5.4. Hyperparameter selection

Hyperparameters related to model complexity and regular-
ization are optimized for each model individually. E.g., for the
STL-ANN models we conduct 55 individual searches. Optimiza-
tion is done by grid search [49]. In case multiple configurations
have similar performance, the one with fewer task or network
parameters is preferred.

Neural network models are controlled by the number of hid-
den layers ml, hidden layer dimension mh, and regularization
factor λ. Additionally, MTL models require task parameter di-
mension mβ and task parameter regularization factor λT . These
parameters are found by grid search, where candidate values are
restricted based on the number of data points available for each
model type.

STL-GBT models are tuned by the number of leaves, leaf
weight, and the number of boosting iterations. These are all found
by grid search.

Sample weight wij is set to 0.1 for multiphase meter observa-
tions and 1 for separator observations. This is motivated by the
high uncertainty in multiphase meters, as discussed in Section 1.
Since most of the data is from multiphase meters, the results are
not particularly sensitive to these values. These weights are used
for all four model types.

6. Results and discussion

6.1. Test error overview

We first explore how the models generalize by looking at
prediction errors across all wells. The results are summarized in
Table 1. The performance is quite similar for the three neural
network models, but multi-task models are more robust towards
large errors. The neural network models outperform STL-GBT.

The distribution of prediction errors is heavy tailed, with a few
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Fig. 7. Training, validation, and test data split for each well. Each mark is one data point. For some wells, the time between observations can be significant. This
can be due to long periods with missing measurements, or because the well was closed. Wells from the same asset are grouped by the dotted lines.
Table 1
Summary statistics of absolute percentage error, |eij,M |. Statistics are computed
on all test data from all wells. Reported is the mean and a set of percentiles.
Model Mean P05 P25 P50 P75 P95

STL-GBT 17.8 0.5 2.9 7.5 16.3 62.3
STL-ANN 20.6 0.4 2.0 4.5 11.2 44.8
MTL-Asset 10.5 0.4 1.8 4.2 9.6 42.1
MTL-Universal 12.8 0.5 2.0 4.4 8.6 33.1

outliers skewing the mean errors. These outliers motivate the use
of trimmed mean when results are reported on a well by well
basis.

Fig. 8 illustrates how prediction errors develop with time.
s expected, the performance degrades with time for all model
ypes. All model types have great performance in the first few
eeks. The benefit of multi-task learning becomes apparent after
ix weeks.

.2. Well by well performance

Wells have a different number of data points, and the errors
eported in Section 6.1 will naturally be dominated by the wells
ith many data points. We now explore the test set errors for

ndividual wells. Trimmed MAPE and RMSE values for each well
s summarized in Table 2. The three neural network models have
imilar performance for the best half of the wells, with perfor-
ance comparable to conventional multiphase meters. Multi-task
6

Table 2
Mean prediction errors are computed as trimmed MAPE and RMSE for each well.
This yields 55 error estimates for each combination of model and metric, which
are summarized by their mean and a set of percentiles.
Metric Model Mean P05 P25 P50 P75 P95

EMAPE
j,M

STL-GBT 14.5 2.3 5.8 8.6 10.8 53.9
STL-ANN 10.4 1.4 3.8 5.7 11.1 34.5
MTL-Asset 8.2 1.4 3.5 6.2 9.0 22.2
MTL-Universal 7.5 1.6 3.5 5.0 9.2 19.8

ERMSE
j,M

STL-GBT 9.6 2.0 3.7 6.3 11.0 27.0
STL-ANN 7.2 1.2 2.5 4.1 8.9 22.4
MTL-Asset 5.7 1.2 2.5 4.1 7.5 14.1
MTL-Universal 5.5 0.8 2.5 3.7 6.9 17.1

models are significantly better on the more challenging wells.
Neural network models generally outperform STL-GBT. MAPE and
RMSE reveal similar patterns. The remainder of the analysis will
focus on MAPE values.

6.3. Asset performance

The two MTL models are trained on wells from the same asset
and on all wells. To explore the degree of positive and negative
knowledge transfer, performance is explored on the four assets.
The results are summarized in Table 3. Apart from Asset 3, which
has great performance for all neural network models, there is
a clear benefit of shared data. For assets 1, 2, and 4, the best
multi-task model offers a 25%–50% error reduction compared
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Fig. 8. Box plot of absolute percentage error, grouped by weeks since the last training datapoint. Errors are computed on all test data for all wells.
Fig. 9. Comparison of model sensitivity for well 7. Each model is evaluated by taking a subset of 30 test data points (black dots) and varying upstream pressure in
neighborhood around the observed value. The response of STL-ANN is given in blue and MTL-Universal in orange.
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able 3
odel performance grouped by assets. Reported is the average trimmed MAPE

or wells from the same asset, for the four model types. The best model type is
ighlighted.
Model A. 1 A. 2 A. 3 A. 4

STL-GBT 15.6 13.5 10.4 18.3
STL-ANN 10.9 13.8 5.9 10.5
MTL-Asset 8.1 10.2 6.5 7.9
MTL-Universal 7.3 11.3 5.7 4.9

to STL-ANN. However, it is an open question to decide which
level of data sharing is best suited for a given well or asset.
All model types struggle with Asset 2, which could be due to
the limited excitation seen in Fig. 4. Apart from Asset 2, MTL
model performance is close to that expected from conventional
multiphase meters.

6.4. Sensitivity analysis

Models with great test set performance can still suffer from
he data challenges presented in Section 3.1. Correlated explana-
ory variables make it difficult to isolate the effect of individual
ariables. Fig. 9 illustrates the issue for Well 7. We expect the
esponse to an increase in upstream pressure to be an increase
n flow rate, as indicated by the mechanistic model in Eq. (1). For
ell 7, both STL-ANN and MTL-Universal models have low test er-
ors, with trimmed MAPE being 2.2% and 1.6% respectively. There
s however a significant difference in how they have interpreted
he explanatory variables. In this case, the MTL-Universal model
as able to identify the expected response, while the STL-ANN

as not. i

7

Fig. 10. Plot of βj from the universal model. Asset 3 has two distinct classes
f wells, oil producers and gas producers, which are highlighted by triangle
arkers.

The observations from Fig. 9 are generalized using the sen-
itivity metric described in Section 5.3. The results are given in
able 4. A large majority of wells remain unchanged or achieve
better sensitivity score by sharing data with other wells. The
dvantage of transfer learning is clear in this comparison.

.5. Ablation study

An ablation study is conducted to better understand the im-
rovements seen in the proposed architecture [50]. The proposed
odel extends the current state-of-the-art with multi-task learn-

ng. Two task adaptation mechanisms are included. These are
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Fig. 11. Effect of βj on model predictions. The universal model is evaluated on a fixed operating point, except for varying the adjusted choke between 0.1 and 0.9.
ach subplot has a fixed value for βj,2 , given in the title. Each curve has a fixed value for βj,1 , ranging from −0.1 for the light green to 0.1 for the dark blue.
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able 4
ean sensitivity error Sj,M for the four model types. Zero is the best score, which
eans a model had the correct sensitivity for each data point for a given well.
Model Error

STL-GBT 0.56
STL-ANN 0.28
MTL-Asset 0.14
MTL-Universal 0.07

Table 5
Summary of ablations conducted on the MTL-Universal model. Average trimmed
MAPE is computed on all wells. Value for the complete model is repeated from
Table 2.
Ablation Error

Remove γj and βj 10.5
Remove βj 8.8
Remove γj 8.4
Complete model 7.5

task parameters βj, and domain adaptation parameterized by γj.
o explore the effect of the task adaptation, the MTL-Universal
odel is trained with one or both elements removed. When both
lements are removed, the model is reduced to a single-task neu-
al network trained on data from all wells. New hyperparameters
re found for each ablation. The results is given in Table 5. On
verage, both adaptation mechanisms have a similar impact. The
nclusion of both is beneficial for overall performance, but with
iminishing returns, as they are potentially overlapping.

.6. Model complexity

A multi-task model is more complex than an isolated single-
ask model. However, as the number of tasks grows, there are
everal aspects to multi-task learning that leads to overall less
omplexity. Table 6 summarizes the number of parameters and
raining time for the four model types presented. STL-GBT is a
eparate class of models and is much faster to compute than
eural networks. For neural network models, the larger models
equire more time for each model, but less time overall.

In the universal model, the number of well parameters is
ignificantly smaller than the number of parameters needed in an
ndividual well model. On average, an MTL-Asset model requires
lmost the same number of parameters as MTL-Universal. Indi-
ating that model size does not need to grow significantly with
he number of tasks.

In terms of manual work and maintenance, the MTL-Universal
ormulation scales better with additional wells than conventional
odel formulations, because it is only one neural network that
ust be curated. This is highly advantageous for the practical
pplication and commercialization of the results.
8

able 6
ummary of model complexity, judged by the number of parameters and time
equired to train models for all wells. E.g., it took 21 min and 25 s to train the
our MTL-Asset models, and they have 711389 parameters in total. All models
re trained on a single GPU.
Model Models Time Parameters

STL-GBT 55 00:57 –
STL-ANN 55 56:06 450455
MTL-Asset 4 21:25 711389
MTL-Universal 1 12:38 203851

6.7. Qualitative properties

The selected hyperparameter configuration has two task pa-
rameters for each well, βT

j =
[
βj,1, βj,2,

]
. Fig. 10 illustrates

the identified parameters for all wells. Asset 3 has two types
off wells, oil producers and gas producers, which have different
choke geometries and fluid properties. These wells are separated
in space according to their classes, which indicates that task
parameters capture physical properties, rather than being proxies
for the well index. To further support this, Fig. 11 illustrates how
changes in task parameters alter the shape and magnitude of the
model response in a consistent fashion.

7. Conclusion

A multi-task learning architecture for data driven virtual flow
metering was proposed and explored in a study of 55 wells from
four assets. The proposed architecture successfully addresses the
identified data challenges, while generally improving model per-
formance. Sharing data between wells improves robustness to-
wards changes in operational practice and makes the model
adhere better to the expected physical relationships. In terms
of prediction errors, all assets benefit from some level of data
sharing. Two of the assets saw average errors reduced by 30%–
50% when data was shared between all assets. One asset saw a
reduction of 24% when data was shared within the asset, but only
16% improvement when data is shared between all assets. This
indicates that issues related to negative transfer could be present
in the VFM problem. The final asset saw no significant improve-
ments because the single task architectures already performed
well. Overall, the MTL architecture is a promising step towards
a data driven virtual flow meter solution.

7.1. Future work

All wells explored here have many data points. It is expected
that wells with fewer observations will see a greater benefit from
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he knowledge sharing architecture. Exploring these opportuni-
ies is left as future work. Additionally, it is desirable to further
xplore task synergies and negative transfer in the VFM context.
In the proposed model, task specific parameters are constants.

n practice, these are likely time varying, since both the well and
eservoir will develop over time, e.g., changes in fluid properties,
r equipment wear and tear. These aspects are topics for future
esearch.
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