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There is a vast number of existing bridges in infrastructure that are approaching or 
have exceeded their original design lives. A large part of these bridges are steel and 
composite steel-concrete bridges. The primary damage mechanism in these bridges 
is fatigue, which can lead to component failure that is critical for the structural 
integrity. Structural health monitoring systems can provide information regarding 
the state of the bridge condition, with the aim of increasing the economic and life-
safety benefits through damage detection. The primary motive of structural health 
monitoring is to design a system that minimizes false positive indications of 
damage for economic and reliability concerns and false negative indications of 
damage for life-safety issues. For infrastructure owners, structural health 
monitoring systems can result in enhanced decision support and structural 
diagnosis of the structure. 
 This thesis considers damage detection and structural health monitoring 
through numerical and experimental studies of a full-scale steel bridge. An 
essential part of this research is the establishment of an experimental benchmark 
study to obtain response measurement data under different structural state 
conditions with imposed damage. The thesis consists of four papers, referred to as 
parts. In the first part, the damage detection possibilities for improved bridge 
inspection are determined. Damage detection of existing structural damage is 
assessed through analysis of response measurements obtained from a systematic 
experimental study using a modal hammer. In the second part, a strategy to 
effectively establish a validated numerical finite element model using model 
updating is developed and implemented. A validated finite element model can be 
utilized to perform numerical simulations for damage detection and structural 
health monitoring purposes. 
 The research then follows logically into using the validated finite element 
model in the third part. More specifically, a novel hybrid structural health 
monitoring framework for damage detection is proposed by integrating numerical 
models, experimental data, and machine learning. A challenge in structural health 
monitoring is that almost all statistical decision making must be done in an 
unsupervised learning mode. This part aims at providing an important contribution 
towards solving this challenge. Finally, a data-based structural health monitoring 
approach for damage detection in bridges using only experimental data is presented 
in the fourth paper. Damage detection of local and global structural damage using 
an unsupervised learning algorithm by novelty detection is performed. 
Furthermore, the detectability of different damage types within the established 
dataset is evaluated by considering the average performance of four supervised 
learning algorithms. 
 In this thesis, current approaches for damage detection and structural health 
monitoring of bridges have been implemented, evaluated, and further developed 
through numerical and experimental studies. The results presented demonstrate that 
damage detection of bridges can be performed using structural health monitoring 
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approaches and practices. In conclusion, this thesis provides valuable contributions 
to the field of structural health monitoring regarding its application to bridges. 
 
Keywords: Structural health monitoring, damage detection, machine learning, 
finite element model updating, operational modal analysis, bridge, experimental 
benchmark study. 
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Chapter 1 

1.1 Introduction 
Ageing and deterioration of infrastructure is a major concern worldwide. Bridges 
are complex structures that provide critical links in the infrastructure. Table 1.1 
summarizes the total number of highway and railway bridges in service in the 
United States and Europe. Many of these bridges, which were built after 1945 with 
a design life of 50–100 years, are approaching or have exceeded their original 
design lives. Furthermore, these bridges experience increasing demands from 
operational and environmental conditions, for which they were originally not 
designed. Considering the requirements for more efficient transportation systems 
due to the increase in traffic loads, speed and intensity, many bridges are being 
used despite ageing and the associated damage accumulation. Replacing bridges, 
which are associated with considerable investment costs and undesirable traffic 
interruptions, is not feasible due to the large number of existing bridges in the 
infrastructure. Although many uncertainties related to ageing and the associated 
damage accumulation are present in these bridges, lifetime extension is the 
preferred option to ensure continuous operation. 

Table 1.1: Bridges in the United States and Europe. 

 Number of bridges  
Location Highway Railway References 

United States > 600 000 > 100 000 [1], [2] 
Europe1 - > 300 000 [3]–[5] 
Norway 16 971 2 370 [6], [7] 

1 More than 1234 km of highway bridges longer than 100 m (a significantly higher number 
is expected when smaller bridges are included). 
 

A large part of the existing highway and railway bridges presented in Table 1.1 
are steel and composite steel-concrete bridges. Based on an overview and extensive 
investigation of the common damage types experienced by such bridges, it is found 
that most damages are caused by fatigue and most frequently occur in or below the 
bridge deck [8]. Concerning structural integrity, several of these damage types can 
be critical with respect to operational and strong environmental loading. 
Consequently, many case studies have been performed on service life estimation 
and fatigue reliability analysis of structural components in the bridge deck of steel 
and composite steel-concrete bridges [9]–[16]. If not detected at an early stage, 
such damage can develop and lead to component failure and, ultimately, system 
failure. 
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There are extensive requirements for inspections of existing bridges. 
Inspections are performed to ensure the safe operation of bridges and are typically 
specified in regular intervals to establish maintenance needs. Requirements of 
minor inspections every year, major inspections every fifth or sixth year, and 
special inspections when needed, are common practice. However, many bridges are 
in remote locations and have low accessibility, requiring operational downtime or 
temporary installation of access platforms to be able to perform a full inspection. 
Furthermore, there is often limited information about existing damage. Fatigue 
damage can be difficult to detect due to low visibility, and critical structural 
damage can be difficult to establish until the structure is subjected to operational or 
strong environmental loading. Therefore, significant challenges are associated with 
the inspections of such bridges in terms of finding critical structural damage. 

Maintenance of bridges is mainly performed in a time-based mode based on 
information obtained from inspections. However, periodic inspections do not 
provide complete up-to-date information about the current state of the bridge 
condition. Moving towards a condition-based maintenance philosophy where a 
sensing system on the structure monitors the system response and notifies if 
structural damage is detected would be cost-effective. However, condition-based 
maintenance is only helpful if such a monitoring system provides sufficient 
warning for corrective actions to be made before damage evolves to failure. Being 
able to detect structural damage at the earliest possible time and monitor the health 
of bridges is becoming increasingly important. 

Structural health monitoring (SHM) systems can provide information regarding 
the state of the bridge condition. As such, SHM systems can monitor the condition 
and integrity of bridges, which allow for (1) prioritization of inspections and 
planning for maintenance works, (2) rapid evaluation of structural integrity after 
extreme events in operational and environmental conditions, (3) the identification 
of changes in the structural condition over time, (4) validation of the bridge design 
and numerical models for future analysis and (5) lifetime extension opportunities. 
However, and most importantly, the primary purpose of SHM systems is to detect 
structural damage. 

Table 1.2 summarizes two of the largest and, perhaps, most complex projects 
in the world concerning the application of advanced bridge SHM systems. For the 
SHM systems of these bridges, sensors are included to measure environmental 
actions, bridge actions and bridge responses. Two important observations are made 
from Table 1.2: first, only a part of each SHM system includes measurements of 
the bridge responses, which is essential for damage detection purposes; and second, 
although many sensors are included and integrated into each SHM system, the 
bridges are still considered sparsely instrumented. Consequently, there are limited 
possibilities to detect structural damage, particularly local structural damage. This 
aspect signifies an important challenge with SHM systems and the structural 
damage detection possibilities. 
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Table 1.2: Projects with advanced structural health monitoring systems. 

Bridge Location Type Length 
(m) 

Longest 
span (m) 

Sensors1 

The Queensferry 
Crossing [17] United Kingdom 

Cable-
stayed 2700 650 

1972 
(1106) 

The 
Stonecutters [18] Hong Kong Cable-

stayed 1596 1018 1505 
(1010) 

1 In parentheses: the number of sensors of the total measuring the bridge responses. 
 

In the context of SHM, numerous methods and applications of damage 
detection exist, of which most applications are based on numerical studies or 
laboratory studies performed in a controlled environment [19], [20]. Furthermore, 
there are several important benchmark studies of test structures relevant for bridges 
[21], [22]. However, there are few studies where experimental tests have been 
performed of bridges progressing from an undamaged (reference) state to known 
damage states. Table 1.3 summarizes the experimental studies that have been 
reported in the literature where relevant structural damage is imposed on bridges. 
From this table, it is seen that a majority of the studies are related to concrete 
bridges. Additionally, only highway bridges are considered. It should also be noted 
that most of the studies contain limited data for machine learning applications. One 
notable exception is, however, the Z24 bridge study. 

In general, the few experimental studies on real bridges provide limited 
opportunities in terms of validating existing and developing new techniques for 
damage detection and structural health monitoring. Furthermore, variability in the 
operational and environmental conditions affects the structural response and can 
mask changes caused by structural damage [32]. To further develop the 
possibilities of employing SHM systems on bridges, research should be focused on 
tests of real structures in their operating and environmental conditions, rather than 
numerical or laboratory studies of representative structures [4], [33]–[37].  

In summary, three important observations are made. First, there are many 
existing bridges in infrastructure, and significant challenges exist with respect to 
inspecting and maintaining these bridges. Second, although advanced SHM 
systems are installed on bridges, these bridges are in many cases still considered 
sparsely instrumented, which limits the damage detection possibilities. Last, 
considering the vast amount of technical literature that is published on damage 
detection and structural health monitoring of bridges, exceptionally few studies 
have been reported in the literature where relevant structural damage is imposed on 
bridges. Consequently, two major research needs are identified. First, there is a 
need for SHM systems on bridges that can detect relevant local and global 
structural damage, taking into consideration variability in the operational and 
environmental conditions. Second, there is a need for research that is focused on 
tests of full-scale bridges rather than numerical or laboratory studies of 
representative structures. Particularly, studies where SHM approaches are tested 
experimentally on bridges are needed. 
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Table 1.3: Experimental studies of bridges for damage detection purposes. 

Bridge Location Traffic Type Length (m)1 Reference(s) 

I-40 United 
States Highway 

Composite 
steel-concrete 
plate girder 

129.5 [23] 

Z24 United 
States Highway Prestressed 

concrete 

 
63.4 

 
[24], [25] 

Dogna Italy Highway Reinforced 
concrete 

 
16.0 

 
[26] 

Deutsche 
Bank Luxembourg Highway Prestressed 

concrete 

 
59.0 

 
[27] 

Avenue 
JFK Luxembourg Highway Prestressed 

concrete 

 
29.0 

 
[27] 

S101 Austria Highway Prestressed 
concrete 

 
56.0 

 
[28] 

I-40 
westbound 

United 
States Highway 

Composite 
steel-concrete 
plate girder 

52.1 [29] 

- Japan Highway Steel truss 
bridge 

 
65.5 

 
[30] 

Old ADA Japan Highway Steel truss 
bridge 

 
59.2 

 
[31] 

1 Length of the bridge considered in the testing. 
 

SHM systems can provide information regarding the state of the bridge 
condition, with the aim of increasing the economic and life-safety benefits through 
damage identification. The primary motive of SHM is to design a system that 
minimizes false positive (FP) indications of damage for economic and reliability 
concerns and false negative (FN) indications of damage for life-safety issues. For 
infrastructure owners, structural health monitoring systems can result in enhanced 
decision support and structural diagnosis of the structure. 
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1.2 Structural health monitoring 

1.2.1 SHM approaches 
Structural health monitoring (SHM) is referred to as the process of implementing 
an automated and online strategy for damage detection in a structure [38], [39]. 
SHM has traditionally been performed using two main approaches: model-based 
and data-based [40]. However, a hybrid approach to SHM, which takes principles 
from both the model-based and data-based approaches into consideration, has 
emerged in the recent years [41]. Common for all the approaches is that they 
provide some form of decision support or structural diagnosis of the structure under 
consideration. The main approaches to SHM are summarized in Figure 1.1. 

Figure 1.1: SHM approaches. 

The model-based approach, shown in Figure 1.2, consists of two stages and 
involves the calibration of numerical finite element (FE) models. In the first stage, 
an initial FE model is calibrated based on data from the undamaged condition to 
obtain a validated FE model or reference model. In the second stage, the reference 
model is calibrated based on data from the damaged condition (assuming that the 
operational and environmental conditions have been eliminated). Damage detection 
is then performed based on the resulting change in the updated parameters. As 
such, the model-based approach is also considered an inverse approach. 

Applications of the model-based approach by considering relevant structural 
damage in bridges have been reported [42]–[47]. However, in the context of SHM, 
the model-based approach is considered impractical for large and complex 
structures such as bridges due to several disadvantages and limited possibilities to 
detect local structural damage. Particularly, parameterizing the numerical model 
for the parameters to be associated with damage is challenging. 
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Figure 1.2: The model-based SHM approach. 

The data-based approach is based on the statistical pattern recognition (SPR) 
paradigm, which is also referred to as the SHM process [48]. The data-based 
approach, shown in a simplified version in Figure 1.3, builds a statistical model 
based only on experimental data and generally relies on machine learning 
algorithms. Damage detection is performed by analyzing the damage-sensitive 
features using unsupervised or supervised learning, referred to as statistical model 
development. In the context of SHM, unsupervised learning refers to the situation 
where data are available only from the undamaged condition of the structure, 
whereas supervised learning refers to the situation where data are available from 
both undamaged and damaged conditions. Unsupervised learning is often required 
for bridges in operation since data from both the undamaged and damaged 
conditions are rarely available. For a complete description of the SHM process, it is 
referred to [48]. 

Figure 1.3: The data-based SHM approach (simplified version). 

There are several applications of statistical model development in the data-
based approach using numerical models or test structures, which are relevant to 
bridges [49]–[54]. However, there are few examples of applications to real bridges 
where relevant structural damage has been considered [55]–[57]. Furthermore, 
these examples consider relevant structural damage mostly applicable to concrete 
bridges. There are mainly two challenges with this approach. First, unsupervised 
learning is often required due to the lack of data from damaged conditions. Second, 
data normalization, which is referred to as the process of separating changes caused 
by operational and environmental conditions from changes caused by structural 
damage [58], must be considered. Despite these challenges, the data-based 
approach is the preferred SHM approach for the application to bridges. 
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 The hybrid SHM approach takes principles from the model-based and data-
based approaches into consideration. Although there are different ways to utilize 
this approach, a common understanding is that numerical model(s), experimental 
data, and machine learning are integrated in some way. A general configuration of 
the hybrid SHM approach is shown in Figure 1.4. Two studies have been reported 
in the literature in which this approach is considered: one study applied to a test 
structure [59], and one applied to a real bridge [60]. Although this approach has 
received little attention in the literature, it can be used to overcome the limitations 
and challenges experienced in the traditional SHM approaches. 

Figure 1.4: The hybrid SHM approach. 

Data normalization should be considered irrespective of the SHM approach 
chosen. There are mainly two approaches to separate changes caused by 
operational and environmental conditions from changes caused by damage [33]. In 
the first approach, structural response measurements and direct measurements of 
parameters related to the operational and environmental conditions are made. The 
damage-sensitive features extracted from the structural response measurements in 
the undamaged condition can then be parameterized as a function of the measured 
operational and environmental conditions. In the second approach, only structural 
response measurements are used to assess the influence of the operational and 
environmental variability on the damage-sensitive features. From the application of 
machine learning algorithms, the underlying relationship between the features and 
the variables of the operational and environmental conditions can implicitly be 
modelled. 

As such, data normalization can be considered in several parts of the SHM 
process. However, this possibility is limited in the model-based approach to only 
apply to the part involving structural monitoring. Furthermore, the possibility of 
performing decision support or structural diagnosis in terms of statistical models 
can only be done in the data-based and hybrid approaches. Consequently, the data-
based and hybrid approaches are considered in this thesis due to the many 
advantages and few limitations compared to the model-based approach. 
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1.2.2 Levels of damage detection in SHM 
Decision support or structural diagnosis involves determining the damage state of 
the structure, which is performed according to the hierarchical structure of damage 
identification [39], [61]: 

• Level I (existence). 
• Level II (location). 
• Level III (type). 
• Level IV (extent). 
• Level V (prediction). 

 
Increased knowledge of the damage state is represented in the given order of the 
levels. The vertical structure of the hierarchy implies that each level (generally) 
requires that information from the lower levels is available. 
 In the model-based approach, level I, II and IV damage detection can be 
performed. Here, it is assumed that the type of damage, or classification, cannot be 
determined based on the parameters of the numerical model to be associated with 
damage. It is simply assumed that the damage produces a local change in the 
considered parameters which provides no information regarding the type of 
damage. In the data-based approach, unsupervised learning is often required, which 
allows for level I, and, to a certain extent, level II damage detection. Although 
supervised learning provides the opportunities for level I-V damage detection, data 
from all realistic damage situations are generally not available for large operating 
structures such as bridges. Therefore, supervised learning is not considered feasible 
in the data-based approach. The hybrid approach can consider both unsupervised 
and supervised learning. Furthermore, statistical models can, in theory, when 
coupled with numerical models and applied in supervised learning, be used for 
level I-V damage detection. Consequently, the hybrid approach has the potential to 
provide a significant impact on the future development of SHM. 

According to the hierarchical structure of damage identification, level III 
damage detection requires level II. In other words, classifying or determining the 
type of damage requires knowledge of the damage location. There is, however, no 
clear distinction between level III and the degree of level II damage detection 
provided in the literature. Consequently, a brief discussion of this subject is 
included in the following. 

In supervised learning, the appropriate class labels can encode damage 
information, such as the location and type. However, the degree of level II damage 
detection depends on the chosen analysis approach. To utilize supervised learning 
for location purposes, the damage state conditions must be quantized. In other 
words, in terms of the location, the structure should be divided into labelled 
substructures. In this case, the machine learning algorithm can perform localization 
within a substructure, and the degree of localization depends on the number of 
labelled substructures. Furthermore, the machine learning algorithm can be trained 
to yield the probability of a class membership. The following analysis approaches 
in supervised learning can be considered: 
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• Consider an analysis approach in which the target variable is a matrix, 
n q×∈y  , where n denotes the samples, and q denotes the substructures. 

The localization is performed in the labelled substructures, and the degree 
of localization depends on the chosen resolution of the structure. This 
situation pertains to supervised learning with increased possibilities of 
realizing level II damage detection. 

• Consider an analysis approach in which the target variable is a vector 
consisting of discrete class labels, 1n×∈y  . The localization is performed 
in the labelled substructure, which, in this case, is the entire structure 
represented by the scalar discrete class label in the target variable. This 
situation pertains to supervised learning with limited possibilities of 
realizing level II damage detection. 

 
This thesis is mainly concerned with implementing the latter analysis approach 

in supervised learning, which limits the possibility of performing level II damage 
detection. It should also be noted that, within supervised learning, other level II 
damage detection approaches can be implemented by considering feature selection 
to determine the statistical significance of the features, or dimension reduction 
techniques to reduce features that are of minor or no relevance. Such alternatives 
can be used to realize level II damage detection; however, some uncertainties 
related to these alternatives exist depending on the type and number of features 
used. 
 The aim of statistical model development is to reduce classification errors, 
which fall into two categories: Type I and Type II errors. Type I errors, or false 
positive indications of damage, provide indications of damage in the structure 
when no damage is present. Type II errors, or false negative indications of damage, 
provide no indications of damage in the structure when damage is present. As such, 
the primary motive of SHM is to design a system that minimizes FP indications of 
damage for economic and reliability concerns and FN indications of damage for 
life-safety issues. 
 As a final note, statistical model development allows the implementation of 
two types of SHM [40]: protective and predictive monitoring. Protective 
monitoring refers to the situation where damage-sensitive features are used to 
identify upcoming failure before catastrophic failure occurs, whereas predictive 
monitoring refers to the situation where trends in damage-sensitive features are 
identified to predict the critical damage level. The latter is needed to develop cost-
effective planning of maintenance, which is an important motive for asset owners. 
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1.2.3 The fundamental axioms of SHM 
Based on the research performed within SHM over the last 30 years, fundamental 
axioms or general principles have been formed. These SHM axioms are 
summarized in the following [62], [63]: 
 
• Axiom I. All materials have inherent flaws or defects. 

Imperfections or defects are inherent in all materials. Defects lead to damage, 
and damage ultimately leads to failure. Structures can be designed to be 
tolerant to damage at some point during the operational lifetime, provided that 
monitoring systems are introduced to ensure safe operation. 

 
• Axiom II. The damage assessment requires a comparison between two system 

states. 
In both the model-based and data-based SHM approaches, data representing 
the undamaged condition, or baseline, is needed. Furthermore, to perform 
damage detection beyond level I and II, the data must be expanded to contain 
information corresponding to various damage conditions. Baseline data must 
always be present to compare between two system states to assess damage. 
 

• Axiom III. Identifying the existence and location of damage can be done in an 
unsupervised learning mode, but identifying the type of damage present and 
the damage severity can generally only be done in a supervised learning mode. 
Unsupervised learning refers to the situation where data are available from the 
undamaged condition of the structure, whereas supervised learning refers to the 
situation where data are available from both undamaged and damaged 
conditions. Novelty detection is the main class of algorithms applied in 
unsupervised learning. Furthermore, classification and regression analysis are 
associated with discrete and continuous classification, respectively, and are 
categories of supervised learning.  

 
• Axiom IVa. Sensors cannot measure damage. Feature extraction through 

signal processing and statistical classification are necessary to convert sensor 
data into damage information. 
Sensors cannot directly measure damage; they merely measure the response of 
the structure to the operational and environmental conditions. This can be 
understood by considering the equation ( )D=x f , where the 
(multidimensional) vector x measures some quantity of interest and ( )Df  is a 
function of the damage state of the structure, D. The challenge in SHM is that 

( )Df  must be learned from the data obtained from the sensors since this 
function is generally not known from basic physics. 
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• Axiom IVb. Without intelligent feature extraction, the more sensitive a 
measurement is to damage, the more sensitive it is to changing operational and 
environmental conditions. 
Features derived from measured data depend on the operational and 
environmental variables in addition to the damage. Feature extraction should 
ideally result in features that depend only on the damage and have reduced or 
eliminated sensitivity to other factors.  

 
• Axiom V. The length and time scales associated with damage initiation and 

evolution dictate the required properties of the SHM sensing system. 
The design parameters of the SHM system hardware depend on (1) the length 
scale associated with the damage, i.e., somewhere between a defect and a 
failure, and (2) the time scale associated with the damage, which can be a short 
time scale caused by sudden discrete events or a long time scale through a 
gradual accumulation of damage. Quantifying the length and time scales prior 
to installing the SHM systems allows for an efficient design. 

 
• Axiom VI. There is a trade-off between the sensitivity to damage of an 

algorithm and its noise rejection capability. 
The level of noise in the data should be reduced as much as possible to increase 
the likelihood of successful damage detection. 
 

• Axiom VII. The size of damage that can be detected from changes in system 
dynamics is inversely proportional to the frequency range of excitation. 
By considering the relationship v fλ = , where λ , v  and f denote the 
wavelength, wave phase velocity and frequency, respectively, it is clear that 
the wavelength will decrease as the frequency increases when a constant 
velocity is considered. This, in turn, implies that the damage sensitivity will 
increase. Hence, the sensitivity to damage increases with increasing frequency. 
Global low-frequency modes of structures such as bridges have long 
wavelengths that are insensitive to local damage. Local damage is more likely 
to be detected in high frequencies. 

 
• Axiom VIII. Damage increases the complexity of a structure. 

The complexity of the structure increases in cases where damage causes a 
structure that originally exhibits linear behavior to exhibit nonlinear behavior. 
A change in the complexity is assessed through structural response 
measurements. Furthermore, a change in the complexity, or information 
content, can be evaluated in terms of complex quantitative measures such as 
the entropy as defined in information theory. Almost all features in SHM 
assess changes in the complexity of a structure resulting from damage. 
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1.2.4 Challenges in SHM 
In addition to the research issues stated in the fundamental axioms, the following 
challenges in SHM are defined in various literature: 
 
• Structural damage is typically a local phenomenon and may not significantly 

influence the global response of the structure. As a result of Axiom VII, this 
challenge is inevitably relevant in SHM applications of bridges. 
 

• Instrumenting large structures, such as bridges, with many sensors still 
represent a sparsely instrumented system. This was exemplified in Section 1.1. 
Furthermore, SHM systems involving many sensors provide challenges with 
respect to maintenance, reliability, redundancy, and data management. 
Additionally, there is no accepted methodology for the sensor design in SHM 
systems since individual considerations must be made for all structures.  
 

• Variability in the operational and environmental conditions affects the 
structural response and can mask changes caused by damage. A fundamental 
challenge in SHM is the process of separating changes caused by operational 
and environmental conditions from changes caused by damage. Considering 
data normalization is important for the successful deployment of a robust SHM 
system. 

 
• A fundamental challenge in SHM is that almost all statistical decision making 

must be done in an unsupervised learning mode. Unsupervised learning is often 
required for bridges in operation since data from both the undamaged and 
damaged conditions are rarely available. 

 
• There are no criteria for selecting machine learning or deep learning algorithms 

in SHM applications. There is a large variety of different algorithms and 
network architectures to choose from. Furthermore, setting classification 
boundaries in the decision-making process is challenging. There is a trade-off 
between acceptable levels of FP and FN indications of damage. 

 
• It is desirable to optimize the cost-benefit of SHM systems in the operational 

evaluation or design process [64]. However, quantifying the cost of SHM is 
difficult. Furthermore, there is no general accepted procedure to demonstrate 
the rate of return on investment in SHM systems. 

 
• There is a need for recommended practices, certification, regulations, and 

standardization in SHM. Codes and standards for SHM have been developed 
[65]. However, further development with respect to requirements in SHM of 
large structures is needed. 

 
• There is a need for validation of SHM approaches, procedures, techniques and 

algorithms on real bridge structures. This aspect also includes the application 
of statistical model development. Experimental benchmark studies that are 
representative of real bridge structures are essential in this regard.  
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1.3 PhD thesis 

1.3.1 General 
The research needs stated in Section 1.1, along with the fundamental axioms and 
challenges defined in SHM in Section 1.2 form the basis of the research objective 
in this PhD thesis. 

1.3.2 Objective 
The research objective in this thesis is to implement, evaluate and further develop 
current approaches for damage detection and SHM on steel bridges through 
numerical and experimental studies. 

1.3.3 Scope of work 
To accomplish the research objective in this thesis, the following scope of work is 
defined: 
 
• Determine the damage detection possibilities for improved bridge 

inspection by simple existing experimental methods 
Inspection is the preferred non-destructive evaluation method of existing 
bridges in service. To improve the quality and process of current bridge 
inspections, a part of the scope of work is to assess the damage detection 
possibilities by introducing a methodology that performs analysis of response 
measurements obtained from a systematic experimental study of a full-scale 
bridge using a modal hammer. 

 
• Establish data from an extensive experimental benchmark study of a full-

scale bridge under different structural state conditions 
There are currently no available data of steel bridges that provide dynamic 
response measurements (acceleration and strain) under different structural state 
conditions with multiple relevant damage scenarios. An important part of the 
scope of work is therefore to establish data from a full-scale bridge for use in 
damage detection and SHM applications. 

 
• Establish a validated numerical FE model 

To perform numerical simulations for damage detection and SHM purposes, it 
is imperative to have an accurate numerical FE model with realistic parameter 
values. Therefore, a vital part of the scope of work is to develop and implement 
a strategy to effectively establish a validated numerical FE model using FE 
model updating. 
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• Develop a hybrid SHM framework for damage detection in bridges using 
numerical and experimental data 
To further advance the field of SHM for the application to bridges, an approach 
that can overcome the limitations of the model-based and data-based SHM 
approaches is needed. Consequently, an essential part of the scope of work is to 
develop a hybrid SHM framework for damage detection by integrating 
numerical models, experimental data, and machine learning. 

 
• Implement and evaluate a data-based SHM approach for damage 

detection in bridges using only experimental data 
Currently, there are no studies in the literature where statistical model 
development is performed based on experimental studies of steel bridges. A 
key part of the scope of work is therefore to implement and evaluate a data-
based SHM approach using both unsupervised and supervised machine 
learning algorithms for damage detection based only on experimental data. 

1.3.4 Assumptions and limitations 
The Hell Bridge Test Arena is used as a case study in the research. To further 
clarify the framework of the scope of work defined in this thesis, the following 
assumptions and limitations are included: 
 
Assumptions 
• The bridge is assumed to be highly representative of the existing bridges still in 

service, despite the minor modifications made when establishing the bridge as 
a damage detection test structure, i.e., taking the bridge out of service and 
moving it to new foundations on land. 

• Only vibration-based assessments to damage detection and SHM are 
considered. The underlying assumption for the vibration-based assessment is 
that (1) damage will somehow change the stiffness, mass or energy dissipation 
characteristics of the structural system, and (2) damage can provide changes to 
the boundary conditions or connections of the structural system. In both cases, 
the damage affects the structural dynamic response characteristics.  

 
Limitations 
• The model-based SHM approach is not considered due to the limitations 

identified with this approach, although a numerical FE model is utilized in 
large parts of this research. 

• There exists a vast number of algorithms for supervised and unsupervised 
machine learning. This research does not focus on developing new algorithms 
but merely relies on existing algorithms that are well documented in the 
literature. 

• This thesis is not concerned with topics related to quantifying the cost of SHM 
or the Value of Information (VoI).  



1.4 Experimental benchmark study 

15 

1.4 Experimental benchmark study 

1.4.1 General 
The Hell Bridge Test Arena, shown in Figure 1.5, is a full-scale steel riveted truss 
bridge located in Norway. The bridge was built in 1902 and was in operation as a 
train bridge until it was taken out of service and moved to foundations on land in 
2016. Despite its long service time, the bridge is highly representative of the many 
bridges still in service. The bridge has a main span of 35 m and width of 4.5 m. 
The structural system of the bridge is composed of two bridge walls, the bridge 
deck and the lateral bracing. 

All cross sections, connections and details were originally made using steel 
plates connected by rivets. The bridge cross section is formed as a U-section with 
no upper lateral bracing to provide stiffening of the bridge. Moreover, the bridge 
deck is made of longitudinal stringers connected to transverse girders. The lateral 
bracing, located below the bridge deck, provides a stiffening of the bridge in the 
lateral direction to mainly withstand wind loads. 
 An extensive experimental benchmark study was performed in 2020 during the 
summer and fall. The objective of the experimental benchmark study was to 
establish dynamic response measurement data of the bridge under different 
structural state conditions for damage detection and SHM applications. As such, 
the scope of work was divided into two parts. In the first part, relevant local and 
global structural damage was introduced and prepared. In the second part, the 
structural monitoring system was installed, and test measurements in the 
undamaged and damaged state conditions of the bridge were carried out. The 
experimental benchmark study was conducted over approximately three months, 
excluding planning and data preprocessing. 
 

Figure 1.5: The Hell Bridge Test Arena (HBTA). 
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1.4.2 Part 1 – Damage introduction 
Relevant structural damage was introduced and prepared in the first part of the 
experimental benchmark study. The selection of damage types was based on three 
conditions: the frequent occurrence of the damage types according to the literature; 
the severity of the damage types with respect to the structural integrity; and the 
applicability and relevance to the bridge under consideration. An overview of 
common fatigue damage cases for steel and composite steel-concrete bridges is 
summarized in Figure 1.6. Based on this overview and the abovementioned 
conditions, four different damage types were considered: stringer-to-floor-beam 
connections; stringer cross beams; lateral bracing connections; and connections 
between floor beams and main load-carrying members. These damage types are 
highlighted in Figure 1.6. All the damage types are related to fatigue occurring in 
or below the bridge deck. 
 Altogether eight damage states were considered by introducing each damage 
type with varying degrees of severity. To represent different degrees of severity, 
each damage type was introduced at one or more locations in the bridge. Table 1.4 
summarizes the structural state conditions. Additionally, the undamaged state of 
the bridge was represented by the baseline condition. Figure 1.7 shows an overview 
of the bridge and the damage state conditions introduced to the bridge deck and 
lateral bracing. For each damage state, damage was introduced, measurements 
were performed, and the damage was then repaired. In this way, measurements 
were obtained before and after introducing damage to the bridge. 
   

Figure 1.6: Overview of fatigue damage cases for steel and composite steel-concrete 
bridges [8]. The damage types considered in the experimental benchmark study are 

highlighted.  
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Table 1.4: Overview and description of the structural state conditions. 

Label State 
condition 

Categorization1 Type Description 

 
UDS 

 
Undamaged - Baseline 

condition - 

DS1 Damaged Local 
Stringer-to-
floor-beam 
connection 

Single 
connection 
damaged 

DS2 Damaged Local 
Stringer-to-
floor-beam 
connection 

Multiple 
connections 

damaged 

DS3 Damaged Local Stringer cross 
beam 

Main part of 
single cross 

beam removed 

DS4 Damaged Local Stringer cross 
beam 

Main parts of 
multiple cross 

beams removed 

DS5 Damaged Global 
Lateral bracing 

connection 

Single 
connection 
damaged 

DS6 Damaged Global Lateral bracing 
connection 

Single 
connection 
damaged 

DS7 Damaged Global Lateral bracing 
connection 

Multiple 
connections 

damaged 

DS8 Damaged Global 

Connection 
between the 

floor beam and 
main load-

carrying member 

Single 
connection 
damaged 

1 Local: damage to the secondary steel. Global: damage to the primary steel. 
 

Each damage type and the corresponding damage state conditions were 
prepared by replacing existing rivets with bolts. Furthermore, each damage state 
condition was imposed by temporarily removing all bolts. As such, each damage 
state considered highly progressed damage, representing large cracks or loose 
connections that open and close under dynamic loading, typically caused by traffic 
or large environmental loads. These damage states correspond to fully developed 
cracks resulting from fatigue, leading to a total loss of functionality. It should be 
noted that this damage progression leads to a redistribution of forces in the 
structure. This situation would be demanding on the structure over time but is not   
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Figure 1.7: Damage introduced to the bridge deck and lateral bracing. 

 
considered critical to the immediate structural integrity due to the structural 
redundancy of the bridge. 

Of the four damage types considered in the experimental benchmark study, two 
damage types were of major importance with respect to the structural integrity of 
the bridge considering operational loading (traffic): the stringer-to-floor-beam 
connections; and the connection between the floor beam and main load-carrying 
member. Furthermore, the stringer cross beams and lateral bracing connections 
damage types were of minor importance with respect to the structural integrity and 
operational loading. These damage types ensure the stability of the bridge against 
lateral and torsional loads mainly during environmental loading. Figure 1.8 shows 
the damage types imposed on the bridge before and after damage.  
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Figure 1.8: The damage types imposed on the bridge (before and after damage). (a) 
Stringer-to-floor beam connection. (b) Stringer cross beam. (c) Lateral bracing connection. 

(d) Connection between the floor beam and main load-carrying member. 
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1.4.3 Part 2 – Experimental setup and test measurements 
Installation of the structural monitoring system and test measurements were 
performed in the second part of the experimental benchmark study. An 
instrumentation system from National Instruments was used to acquire data from 
58 accelerometers and 15 strain gages. Figure 1.9 and Figure 1.10 show overviews 
of the acceleration and strain sensors, respectively. The environmental conditions 
(weather) were logged manually. 
 The acceleration sensors consisted of two groups. Sensor group 1 consisted of 
40 single-axis accelerometers to measure the local response of the bridge deck in 
the vertical direction (global z-direction), whereas sensor group 2 consisted of 18 
tri-axial accelerometers to measure the global response of the bridge in both lateral 
and vertical directions (global y and z-directions). Additionally, one accelerometer 
was allocated to measure the input force of the load excitation source. 

Figure 1.9: Overview of the acceleration sensors and the modal vibration shaker (MVS) 
locations. 

Figure 1.10: Overview of the strain sensors. 
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 Altogether 15 quarter bridge strain gages with a nominal resistance of 120 
ohms and 6 mm grid length were used for the strain measurements. The strain 
gages were located on the primary steel components, i.e., the floor beams and 
lower chords, to measure the maximum strain from axial forces and bending about 
the strong and weak axes. 
 The instrumentation system consisted of three individual data acquisition 
(DAQ) units, shown in Figure 1.11. Data were sampled at 400 Hz. Preprocessing 
of the data was performed in two steps after all the measurement data had been 
collected. In the first step, interpolation of signals and subsequent data merging 
was performed to obtain synchronous data. The interpolation was based on a 
common time vector obtained from the global positioning system (GPS) signals of 
each DAQ unit. In the second step, general data processing was performed by 
adding sensor sensitivities, detrending, low-pass filtering and resampling. 
 The bridge was excited in the vertical (global z) and lateral (global y) 
directions using a modal vibration shaker (APS 420) as a load excitation source. 
Figure 1.12 shows the modal vibration shaker in the vertical and horizontal 
configurations. The modal vibration shaker was used in two positions: at bridge 
midspan and approximately at one-third of the bridge span, shown in Figure 1.9. 
Furthermore, the modal vibration shaker was operated in sine sweep and noise 
modes. Specifications of the sine sweep and noise modes are provided in Table 1.5 
and Table 1.6, respectively. 
 In sine mode, the sine sweep counted one when reaching the target (end) 
frequency. Hence, with the number of sweeps equal to two, a full sweep of the 
defined frequency range was performed once. The sweep speed, which determined 
the rate of frequency change, was constant at 1 Oct/min. With a sweep rate of 1 
Oct/min, the frequency doubles every minute. It took approximately 10 min to 
perform one full sweep of the defined frequency range. The modal vibration shaker 
provided a maximum of 900 N (theoretically) in sine sweep mode. In noise mode, 
random white noise was generated within the defined frequency spectrum. The 
length of each run in the noise mode was 15 min (900 sec). The modal vibration 
shaker provided a varying force in the range of approximately 180-210 N for the 
noise mode settings summarized in Table 1.6. 

Figure 1.11: Overview of the instrumentation system DAQ units on the bridge deck. 
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Figure 1.12: The modal vibration shaker. (a) Vertical position. (b) Horizontal position. 

 
Table 1.5: Sine sweep mode specifications. 

Specification Value 

Minimum frequency (Hz) 2 
Maximum frequency (Hz) 55 

Start frequency (Hz) 2 
Start direction Up 
Sweep type1 Log 
Sweep speed 1 
Limit type Sweep count 

Number of sweeps 2 
1 The sweep speed is provided in Oct/min. 
 

Table 1.6: Noise mode specifications. 

Specification Value 

Minimum frequency (Hz) 1 
Maximum frequency (Hz) 100 

Mode Random 
Limit type Time 

Time limit (sec) 900 
 

Altogether, two measurement test setups were performed. In each measurement 
test setup, all the damage state conditions were introduced with the modal vibration 
shaker at one of the specified locations. The modal vibration shaker was used in 
both sine sweep and noise modes at the bridge midspan, while it was only used in 
sine sweep mode at the approximate one-third bridge span. Different 
environmental conditions were experienced in each measurement test setup. 
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1.5 Summary 

1.5.1 General 
The works in this thesis have been published in international peer-reviewed 
journals (Parts 1 and 2) or are submitted for publication in international peer-
reviewed journals (Parts 3 and 4). The four papers are summarized below. 

1.5.2 Part 1 
Svendsen, B. T., Frøseth, G. T., and Rønnquist, A. (2020). Damage detection 
applied to a full-scale steel bridge using temporal moments. Shock and Vibration, 
1-16. https://doi.org/10.1155/2020/3083752. 
 
The first paper presents a methodology for detecting damage in the joint 
connections of existing steel bridges to improve the quality of bridge inspections. 
The paper highlights two important issues: first, there are several challenges with 
visual bridge inspections, which is the preferred non-destructive evaluation (NDE) 
method of existing bridges; and second, the most common damage types in 
existing highway and railway steel bridges are caused by fatigue and most 
frequently occur in or below the bridge deck. The proposed methodology, which 
combines the use of temporal moments from response measurements with an 
appropriate instrumentation setup, addresses these issues. Temporal moments are 
statistical parameters that characterize transient dynamic signals. The theory of 
temporal moments is presented, and a description of the experimental study 
performed on the bridge is provided. The experimental study considers a 
systematic monitoring procedure where transient acceleration response 
measurements are obtained using a modal hammer. The temporal moments 
obtained from each joint are established in feature vectors, which are subsequently 
assessed using a damage indicator matrix. The damage indicator matrix provides a 
statistical comparison of all joints based on the measure of correlation. From the 
results presented, two existing and known damages below the bridge deck are 
identified and localized. Damage identification is performed by comparing 
statistical parameters based on temporal moments to a baseline, and damage 
localization is performed by utilizing the instrumentation setup. The study also 
includes a sensitivity analysis by investigating the effects of sampling frequency on 
the damage identification, which shows that a high sampling frequency is required. 
The main limitation identified in the study is the need for an adequate number of 
joint connections or similar structural components to obtain a baseline. In cases 
where the baseline is adequate, it is concluded that the methodology, which is easy 
to implement and requires limited technical equipment, can contribute to 
improving the identification of critical damage during a scheduled bridge 
inspection.  
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1.5.3 Part 2 
Svendsen, B. T., Petersen, Ø. W., Frøseth, G. T., and Rønnquist, A. (2021). 
Improved finite element model updating of a full-scale steel bridge using sensitivity 
analysis. Structure and Infrastructure Engineering, 1-17. 
https://doi.org/10.1080/15732479.2021.1944227. 
 
The second paper investigates the effects of using a sensitivity analysis for 
improved model updating. The aim of the paper is twofold: first, develop a 
procedure to obtain an optimal solution from model updating; and second, apply 
the procedure to obtain a calibrated numerical FE model of the bridge. The 
sensitivity-based model updating framework, including the implementation of the 
local parameter bounds in the optimization algorithm, is presented. There are 
several choices required to be made in model updating with respect to (1) ratios of 
overdetermined systems, which is related to the parameterization of the numerical 
model and the number of measured outputs available from the experimental study, 
and (2) the constraints to enforce on the parameters. These choices largely affect 
the improvement of the modal parameters and the parameter values of the 
calibrated model. Therefore, a procedure is developed to consider these choices in 
a structured approach. Through a sensitivity analysis, the proposed procedure is 
applied to the numerical model of the bridge, which is established and 
parameterized by considering general uncertainties and several model 
simplifications. The sensitivity analysis results in several solutions with improved 
modal properties but with a large variability in the parameter values. These effects 
demonstrate the importance of the sensitivity analysis. However, an optimal 
solution from the sensitivity analysis is obtained, and from this solution an 
improvement in the modal parameters of the bridge is achieved with highly reliable 
parameter values. The average absolute frequency error is decreased from 5.22% to 
3.84%, and the MAC numbers are improved from 0.72 to 0.75 considering all 
modes, including the control modes. The main challenge in the work presented lies 
in the model parameterization, which accounts for modelling inaccuracies, 
including the model simplifications introduced to reduce the complexity of the 
model, and uncertainties in the bridge structural properties. Nevertheless, the 
calibrated numerical model obtained is beneficial for performing a large number of 
numerical simulations and is developed for the hybrid SHM framework proposed 
in the third paper. 
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1.5.4 Part 3 
Svendsen, B. T., Øiseth, O., Frøseth, G. T., and Rønnquist, A. (2021). A hybrid 
structural health monitoring approach for damage detection in steel bridges under 
simulated environmental conditions using numerical and experimental data. 
Submitted for journal publication. 
 
In the third paper, a novel hybrid SHM framework for damage detection in bridges 
is presented. A grand challenge in SHM is that almost all statistical decision 
making must be done in an unsupervised learning mode. This paper aims at 
providing an important contribution towards solving this challenge. The concept of 
the hybrid SHM framework is presented. The framework combines the use of a 
numerical FE model to generate data from different structural state conditions 
under varying environmental conditions with machine learning algorithms, which 
allows for supervised learning to be applied. From the resulting machine learning 
model, experimental test data is applied to provide decision support or diagnose the 
structure. The extensive experimental benchmark study of the bridge is presented, 
and the experimental test data are obtained by performing output-only system 
identification using the covariance-driven stochastic subspace identification (cov-
SSI) method. The two most important damage types with respect to the immediate 
structural integrity of the bridge are considered in the study. Numerical simulations 
are performed by using the calibrated numerical model developed in the second 
paper. Importantly, the numerical simulations include variability in the 
environmental conditions. It is demonstrated that relevant structural damage can be 
established from the hybrid SHM framework by separately evaluating different 
cases considering natural frequencies, mode shapes and mode shape derivatives. 
Other important results include the establishment of all the damage types 
(including the undamaged state), and the performance of level I (existence), level II 
(location) and level III (type) damage detection. However, several uncertainties are 
found to be associated with different parts of the hybrid SHM process. Particularly, 
uncertainties related to (1) the representation of the numerical model and 
simulations, (2) the estimation of the modal parameters from the output-only 
system identification, (3) the performance of the machine learning algorithm and 
(4) the statistical representation of the experimental data, are highlighted. Reducing 
the uncertainties can further improve the damage detection and enable improved 
classification results. Despite the identified uncertainties, the work presented in the 
paper demonstrates that the hybrid SHM framework is successfully performed for 
damage detection. The study also shows the importance of a dense sensor network 
for performing level II (location) damage detection. 
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1.5.5 Part 4 
Svendsen, B. T., Frøseth, G. T., Øiseth, O., and Rønnquist, A. (2021). A data-
based structural health monitoring approach for damage detection in steel bridges 
using experimental data. Journal of Civil Structural Health Monitoring, 1-15. 
https://doi.org/10.1007/s13349-021-00530-8. 
 
In the fourth paper, a data-based SHM approach for damage detection in bridges 
using only experimental data is presented. The aim of the paper is to detect local 
and global structural damage using an unsupervised learning algorithm by novelty 
detection. Furthermore, an important part of the study is to evaluate the 
detectability of the different damage types within the established dataset by 
considering the average performance of four supervised learning algorithms. 
Similar to the third paper, the experimental study is described, including the 
damage introduced to the bridge and the operational and environmental conditions 
experienced during the measurements. The main difference from the previous 
study is that all the damage state conditions are now considered. Furthermore, more 
data are used, which allows for a quality assessment of the SHM system in terms of 
receiver operating characteristics (ROC) curves. Autoregressive (AR) parameters 
are used as damage-sensitive features, and the important process of selecting the 
appropriate AR model order is detailed. The results obtained from the statistical 
model development using both supervised and unsupervised learning algorithms 
are presented. An important finding from the statistical model development in 
unsupervised learning is that the Mahalanobis squared distance (MSD) algorithm 
performs well with respect to minimizing both false positive and false negative 
indications of damage. Importantly, it performs almost equally as well as the best 
supervised learning algorithms. The importance of a dense sensor network on the 
classification results in unsupervised learning is also shown. From the statistical 
model development in supervised learning, the two most important damage types 
with respect to the immediate structural integrity of the bridge are best detected. 
Although these results have limited practical significance since data from both the 
damaged and undamaged conditions are rarely available for bridges in operation, 
the results provide invaluable information in the design of SHM systems. A 
limitation in this study is the lack of data normalization assessment; a larger 
variability in the operational and environmental conditions than experienced during 
the measurements is needed for the baseline data that represent the undamaged 
condition. Nevertheless, the study provides several important contributions to the 
field of SHM regarding its application to bridges. 
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1.6 Concluding remarks 
Based on the results obtained from the research presented in this thesis, the 
following concluding remarks are made: 
 
• Damage detection possibilities for improved bridge inspection by simple 

existing experimental methods. 
The damage detection possibilities were investigated by introducing a 
methodology for damage detection on existing bridges for improved bridge 
inspection. The main limitation concerning the damage detection possibilities 
of the methodology presented is the need for an adequate number of similar 
structural components to obtain a baseline for comparison. Additionally, the 
baseline can be affected in cases where many damages are present in the 
structural system. Despite this limitation, the methodology is easy to 
implement, both in a practical and technical manner, and limited technical 
equipment is needed. Furthermore, temporal moments are found to be excellent 
features for transient dynamic signals. Most importantly, damage in structural 
components such as joint connections can be established in an actual bridge. 

Although there are several advantages with the work presented in this part 
of the research, it is important to highlight that the methodology does not 
provide solutions to many of the current challenges experienced in traditional 
bridge inspection; it merely improves the possibilities for detecting local 
damage of certain structural components. Furthermore, the methodology 
cannot fully replace existing methods, such as visual assessments, and 
therefore adds additional manual work to current bridge inspections. Although 
the methodology is demonstrated to work as a damage detection approach, the 
main conclusions from this part of the research are that (1) more reliable and 
advanced approaches for data interpretation to enhance the damage detection, 
preferably in an SHM context, are needed, and (2) effort should be made in 
developing automated and reliable SHM systems that can detect both local and 
global damage. 
 

• Experimental benchmark study of a full-scale bridge under different 
structural state conditions. 
An extensive experimental benchmark study of the Hell Bridge Test Arena was 
performed to obtain data under different structural state conditions. There are 
several observations that can be viewed as limitations of the experimental 
study. First, only fully developed damage is considered, representing loose 
connections and large cracks that open and close under dynamic loading. 
Consequently, lower degrees of damage have not been considered. Second, the 
statistical representation of the experimental data is somewhat limited. 
Additional measurements and tests are needed to obtain a better statistical 
representation of the data from each damage state condition, including the 
baseline condition. This limitation is caused by constraints on time and 
resources allocated to the experimental study. Third, low variability in the 
operational and environmental conditions experienced during the experimental 
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study limits the possibility of performing data normalization. Last, the signal-
to-noise (SNR) ratio of the strain data is low. Exciting the bridge in its 
resonance frequencies by using the modal vibration shaker does not provide 
significant excitation for the strain measurements. Higher force excitation than 
provided by the modal vibration shaker is needed to increase the SNR of the 
strain measurements. 

Regardless of the limitations, a database of valuable response measurement 
data is established. The quality of the acceleration data is excellent, and the 
strain data are useful. Furthermore, local and global response measurements 
are obtained from a dense instrumentation setup under different structural state 
conditions and environmental conditions. All operational and environmental 
conditions were logged. Additionally, the damage types chosen, including their 
locations, represent (1) the most common and frequently reported damage 
types in the literature and (2) the most severe but relevant damage types for 
this type of bridge. In conclusion, a unique dataset that contains high-quality 
and valuable structural response measurement data of a full-scale bridge under 
different structural conditions for use in damage detection and SHM 
applications have successfully been established. 
 

• Validation of a numerical FE model. 
A procedure to obtain an optimal solution from model updating was developed, 
and the procedure was applied to achieve a validated numerical FE model of 
the bridge. In general, developing a validated FE model is challenging: the 
work is time consuming; many assumptions must be made in the modelling 
and model parameterization; all relevant uncertainties must be accounted for; 
and small errors can have a significant effect on the analysis results. The main 
limitation of the developed procedure is the need for an adequate number of 
modes established from the system identification to be included in the model 
updating. Additionally, many analyses may be required to find the optimal 
solution with respect to improved modal properties combined with reasonable 
parameter values. The main limitation of the validated FE model is the limited 
improvement obtained in the modal properties. Further improvement in the 
modal properties would require a different parameterization and an increased 
complexity of the FE model. However, this is a consequence of the trade-off 
between a validated detailed FE model in good agreement with measurements 
and a validated FE model being computationally efficient for numerical 
simulations. 

There are major advantages of the work presented in this part of the 
research. The developed procedure can effectively establish an optimal 
solution in the model updating, resulting in a validated FE model. The 
procedure can be applied to similar case studies irrespective of the structure 
under consideration and the corresponding parameterization to be made. 
Furthermore, a validated FE model of the bridge is established with highly 
reliable parameter values by applying the procedure. It is concluded that the 
work performed in this part of the research has been successful in terms of 
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obtaining a validated FE model to perform numerical simulations for damage 
detection and SHM purposes. 

  
• A hybrid SHM framework for damage detection in bridges using 

numerical and experimental data. 
A hybrid SHM framework for damage detection was developed by integrating 
numerical models, experimental data, and machine learning. The main 
limitation of this work is related to the identified uncertainties of the hybrid 
SHM framework. Particularly, the uncertainties related to the representation of 
the FE model and numerical simulations have the most significant effect on the 
classification results. In the context of SHM, it is instrumental to reduce false 
positive indications of damage for economic and reliability concerns and false 
negative indications of damage for life-safety issues. Further development of 
the hybrid SHM framework is still needed to achieve this. 

Despite the uncertainties, three major advantages with the hybrid SHM 
framework regarding its application to bridges are obtained. First, a supervised 
learning approach can be applied. Second, level I, II and III damage detection 
of relevant structural damage can be performed based only on numerical 
simulations of a calibrated FE model. Last, and most importantly, the 
framework is applicable to any bridge structure in which relevant structural 
damage can be simulated and experimental data obtained. In conclusion, the 
hybrid SHM framework can overcome the limitations of the model-based and 
data-based SHM approaches. Although further research is needed, the work in 
developing and evaluating the hybrid SHM framework represents a significant 
contribution towards establishing SHM systems that can be applied to existing 
bridges and can as such further advance the field of SHM for the application to 
bridges. 

 
• A data-based SHM approach for damage detection in bridges using only 

experimental data. 
A data-based SHM approach was implemented and evaluated using both 
unsupervised and supervised machine learning algorithms for damage 
detection based only on experimental data. There are several limitations 
associated with this work. First, a dense sensor network is applied. A 
sensitivity analysis is carried out with a reduced number of sensors in different 
locations of the bridge deck to investigate the effect of a dense sensor network 
on the classification results. However, the sensitivity analysis is limited in 
extent with respect to optimization of the number and location of sensors on the 
structure. Second, only level I damage detection is considered in unsupervised 
learning, i.e., level II damage detection is not attempted. Third, an assessment 
of the variability in the operational and environmental conditions through data 
normalization is not included due to a generally low variability in the 
environmental conditions experienced during the experimental study. Last, the 
analysis approach used provides a high dimension of the feature space, which 
limits the number of features that can be included per sensor channel. 
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Nevertheless, two major advantages of this part of the research are 
highlighted. First, relevant structural damage can be found and well classified 
in an unsupervised learning approach from simulated ambient vibration. 
Furthermore, the unsupervised learning algorithm performs almost as well as 
the supervised learning algorithms within the established dataset. Second, an 
evaluation of the damage types that best can be detected is performed by 
utilizing the supervised learning algorithms. This evaluation is valuable for the 
design of SHM systems with respect to the instrumentation setup and sensor 
placement. From the work performed in this part of the research, a data-based 
approach based on an extensive experimental study has been successfully 
implemented and evaluated. Although a dense sensor network is utilized, the 
data-based approach is considered feasible for detecting relevant structural 
damage using statistical model development. In conclusion, the study provides 
valuable contributions to the field of SHM regarding its application to bridges. 

 
Through the scope of work defined, current approaches for damage detection and 
SHM are implemented, evaluated, and further developed through numerical and 
experimental studies. As such, the objective of the research in this thesis is 
accomplished. 
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1.7 Suggestions for further work 
Based on the results obtained and conclusions made from the research presented in 
this thesis, the following suggestions for future work are made: 
 
Experimental benchmark study 
• Extend the experimental benchmark study to include (1) the application of 

lower degrees of damage and (2) additional measurements and tests to obtain a 
better statistical representation of the data from each damage state condition. 
The research performed in this thesis has focused on imposing damage 
considered highly progressed, representing loose connections and large cracks 
that open and close under dynamic loading. Consequently, all the bolts for each 
damage type and in each damage state condition have been removed during 
testing. Future research should investigate if lower degrees of damage can be 
detected by (i) only removing a subset of bolts in the connections and (ii) 
leaving bolts untightened in the connections. 

• Extend the experimental benchmark study with additional test measurements to 
investigate and map the effects of environmental conditions on modal 
parameters (such as natural frequencies, mode shapes and damping) of steel 
bridges for the typical European and Scandinavian climate. The long-term 
effects of environmental conditions with respect to temperature and humidity 
are of particular interest for damage detection and SHM purposes. The studies 
currently found in the literature are primarily based on concrete bridges. Data 
with variability in the operational and environmental conditions allow for 
studies on data normalization. 

 
The hybrid SHM approach 
• Optimize and increase the efficiency of generating training data from the 

numerical model in the hybrid SHM framework using surrogate modelling. 
Particularly, the use of surrogate modelling could be introduced by generating 
training data that takes variability in the operational and environmental 
conditions into consideration through key parameters of the numerical model 
for each damage state and location. A resulting outcome could lead to a 
significantly larger dataset for training. 

• Implement an Artificial Neural Network (ANN) configuration for enhanced 
level II damage detection in the hybrid SHM framework. The appropriate class 
labels in supervised learning can encode damage information, such as the type 
and location. However, the degree of level II damage detection depends on the 
analysis approach chosen. Supervised learning with limited possibilities of 
performing level II damage detection has been employed in the presented 
research. To use supervised learning for location purposes, the damage state 
conditions must be quantized. This means that, for location, the structure 
should be divided into labelled substructures. In such a case, the machine 
learning algorithm can perform localization within a substructure, and the 
degree of localization depends on the number of labelled substructures. 
Furthermore, the machine learning algorithm can be trained to give the 
probability of a class membership. 

 



Chapter 1 

32 

• Extend and further develop the hybrid SHM framework by (1) introducing 
increased complexity of the numerical model to reduce uncertainties related to 
the representation of the FE model and numerical simulations and (2) 
evaluating all damage types imposed in the experimental benchmark study. 
The damage types considered in the experimental benchmark study have 
different importance with respect to the traffic loading, environmental loading, 
and structural integrity. The damage types also have different likelihoods of 
occurrence. The research presented in this thesis only considered the most 
important damage types using a simplified numerical model with reduced 
complexity. 

 
The data-based SHM approach 
• Perform a study that optimizes the number and location of sensors on the 

structure, particularly on the bridge deck. Furthermore, perform sensitivity 
analyses in a systematic approach to investigate the level II damage detection 
possibilities in unsupervised learning. The study should be based on the 
established dataset from the experimental benchmark study, which provides 
data from a densely instrumented bridge. 

• Implement and compare state-of-the-art unsupervised learning algorithms 
based on the established dataset from the experimental benchmark study. 
Several studies in the literature present novel unsupervised learning algorithms 
and comparison of algorithms. However, these studies are mostly based on 
numerical models or test structures and not on experimental data of real 
structures where relevant structural damage is imposed. 

 
Other 
• Investigate the effects of relevant structural damage imposed on steel bridges 

by considering only experimental and operational modal analysis. The research 
performed in this thesis only considered the natural frequencies and mode 
shapes of a selection of the most relevant global modes. Future research should 
investigate the effect of structural damage on more or all relevant global and 
local modes. This research should include the investigation of the bridge modal 
parameters, such as natural frequencies, mode shapes and damping, and how 
well the damage types, including the severity of the different damage types, 
can be established. Furthermore, different system identification methods 
should be compared based on several excitation methods, such as wind and 
load generated from the modal vibration shaker (band-limited random white 
noise and sine sweep). The already established dataset from the experimental 
benchmark study should be used for this purpose. 

• Perform features extraction and feature selection studies based on experimental 
data. There exist numerous features to be applied in the time, frequency, and 
time-frequency domain in damage detection and SHM studies. In the research 
presented in this thesis, only a small subset of features has been considered. An 
evaluation of features, feature selection methods, and dimension reduction 
techniques for feature selection on the experimental data would be highly 
useful for consideration in the current and proposed SHM approaches. 
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• Address the use of SHM from a cost perspective and quantify the expected cost 
of the damage detection strategy for different sensor networks (number of 
sensors). The ROC curves constitute an essential tool for determining the best 
classifier. However, it is difficult to decide among thresholds based on false 
positive versus true positive rates. Determining appropriate thresholds based on 
a criterion of the minimum expected cost of the damage detection strategy can 
be considered for this purpose and would be valuable to consider in an SHM 
context based on the research performed in this thesis. Ultimately, such studies 
can allow for improvements in safety and reduction of bridge management 
costs. 
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Abstract 
The most common damages in existing highway and railway steel bridges are 
related to fatigue and are, as reported in the literature, found in the structural 
system of the bridge deck. This paper proposes a methodology for detecting 
damaged joint connections in existing steel bridges to improve the quality of bridge 
inspections. The methodology combines the use of temporal moments from 
response measurements with an appropriate instrumentation setup. Damaged joint 
connections are identified by comparing statistical parameters based on temporal 
moments to a baseline, where the baseline data are established from statistical 
parameters evaluated for all considered joint connections. Localization of damaged 
joint connections is performed by utilizing the instrumentation setup. The 
feasibility of the proposed methodology is demonstrated through an experimental 
study on a full-scale steel riveted truss bridge with two known damages below the 
bridge deck, where both damages are identified and localized. The proposed 
methodology can improve the identification of critical structural damage during 
bridge inspections and is applicable to open-deck steel bridges. 
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Chapter 2 

2.1 Introduction 
Deterioration and ageing of infrastructure is a major concern worldwide. Many 
highway and railway bridges are subject to increasing demands with respect to 
traffic loads and intensity, even though these structures are approaching or have 
exceeded their original design life. Considering the requirements for more efficient 
transportation systems, for which these bridges were not originally designed, many 
bridges are still in service despite ageing and the associated damage accumulation 

Many of the existing bridges built in the first half of the 20th century in Europe 
and the U.S. are made of steel. The primary damage mechanism in these bridges is 
fatigue, and the most common types of fatigue damage reported are found in the 
structural system of the bridge deck [1]. Consequently, several case studies are 
performed on service life estimation and fatigue reliability analysis of structural 
components in the bridge deck structural system of steel bridges [2]–[9]. The 
connections between longitudinal stringers and transverse girders are critical and 
have been subject to investigation in studies of railway bridges [10]–[16]. These 
stringer-to-girder connections are not easily accessible and are consequently 
difficult to inspect. The induced damages involve cracking in various parts of the 
connections and can, if not detected at an early stage, develop and lead to 
component failure being critical for the structural integrity. 

Inspections are performed to ensure the short-term safe operation of bridges. 
For railway bridges, visual inspection is the preferred non-destructive testing 
(NDT) method [17]. Typically, these inspections are specified in regular intervals 
to establish maintenance needs. There are several challenges related to visual 
inspections. First, inspections require direct access to critical structural 
components. Many bridges are in remote locations and have low general 
accessibility. To perform a full inspection requires either operational downtime or 
temporary installation of access support or both. Second, the quality of the 
inspection depends on the experience and knowledge of the inspector. Fatigue 
damage can be difficult to detect due to low visibility. Critical structural damage 
can be difficult to establish until the structure is subjected to operational or strong 
environmental loading. As such, having full access to a bridge for inspection is 
costly and provides no guarantee of finding damage. Third, periodic inspections do 
not provide full up-to-date information about the current state of the bridge 
condition. Structural health monitoring (SHM), defined as the process of 
implementing an automated and online strategy for damage detection in a structure 
[18], can provide such information. Although SHM systems can undoubtedly 
optimize the inspection process, development is still needed to ensure that such 
systems are affordable and reliable, and that these systems are likely to detect both 

2 Damage detection applied to a full-scale steel bridge using 
temporal moments 



Chapter 2 

44 

local and global damages. With the large number of existing bridges in 
infrastructure, an enhanced inspection methodology is needed to detect damage 
during bridge inspections. 

Many vibration-based damage detection methods exist, of which most 
applications are based on numerical studies or laboratory studies performed in a 
controlled environment [19]–[23]. One method not widely reported in the literature 
is the use of temporal moments [24]. Temporal moments can be used to 
characterize shock or transient dynamic signals and are useful in describing the 
shape of such time histories. Only one study is found that has applied this method 
for damage detection purposes. Hemez et al. [25] applied temporal moments to 
acceleration response measurements obtained from a complex threaded assembly 
of metallic and joint components, where one of the objectives was to distinguish a 
loose assembly test from several tight assembly tests. The load was established as 
patches of explosives on the external surface of the system. The study concluded 
that the loose assembly test could be successfully distinguished from other tests 
through analyses using temporal moments. A similar analysis approach is utilized 
to detect damage in joint connections of full-scale steel bridges. 

In this paper, a new methodology is proposed to detect damage in stringer-to-
girder connections from the bridge deck to improve the process and quality of 
bridge inspections. This methodology consists of combining the use of temporal 
moments from response measurements with an appropriate instrumentation setup 
and a systematic monitoring procedure. As such, an experimental study on a full-
scale steel bridge is carried out. Instrumentation of the bridge deck is performed, 
and acceleration response measurements are obtained using a modal hammer. By 
applying the method of temporal moments to the transient part of the acceleration 
response, feature vectors containing statistical parameters are established for the 
stringer-to-girder connections. Damaged connections are identified and localized 
by 1) investigation of individual statistical parameters and 2) establishing a damage 
indicator matrix by comparing feature vectors using a correlation analysis. The 
effect of sampling frequency is also investigated. The feasibility of the proposed 
methodology is discussed with respect to its applicability to similar bridges in 
service, in particular as a part of a general inspection plan for damage detection. 

2.2 Temporal moments 

2.2.1 Temporal moments in continuous time signals 
Temporal moments describe how the energy of a signal is distributed over time. 
These are established by considering the square of the signal amplitudes and 
provide an alternative to statistically characterizing transient signals [26]. The ith-
order temporal moment, iM , about a reference time, rt , for a continuous system is 
defined as [24] 

 ( ) ( ) ( )2i
i r rM t t t y t dt

+∞

−∞

= −∫  (2.1) 
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where, t  denotes time and ( )y t  is the system output, which is typically the 
response measurement signal. The first five moments are of particular relevance to 
describe the statistical properties of a transient signal: energy ( )E , central time 
( )T , mean-square duration ( )2D , skewness ( )3

tS  and kurtosis ( )4
tK . These 

moments are expressed in terms of basic and central moments. A basic moment is 
defined when the reference time, rt , is 0. A simplified notation can then be 
introduced as 

 ( )0i iM M=  (2.2) 

Furthermore, a central moment, ( )iM T , is defined about a value T of the 
reference time when the first-order temporal moment is zero, i.e., 

 ( )1 0M T =  (2.3) 

The definitions of the first five moments about T  are given in terms of the 
basic and central moments. The energy, E , is the zero-order moment defined as 

 ( )0 0E M T M= =  (2.4) 

where ( )0M T   is the zero-order temporal moment. This moment is defined as the 
integral of the signal squared. It is independent of any reference time. Thus, it is 
referred to as the energy of the signal. The central time, T , is the first normalized 
central moment, which is defined as 

 1MT
E

=  (2.5) 

where the basic moment, 1M , is established from the first-order temporal moment, 
( )1M T  using Equations (2.1) and (2.2): 

 ( ) ( ) ( )2
1 0M T t T y t dt

+∞

−∞

= − =∫  (2.6) 

The normalization with respect to E  provides the time where the centroid of the 
energy is located, i.e. the centroid of the area under the squared signal amplitudes. 
By considering the distribution of energy over time, this moment represents the 
point where half of the energy has passed and half is to arrive at the sensor. A 
similar normalization is provided for the higher moments. The mean-square 
duration, 2D , is the second normalized central moment defined as 

 ( )22 M T
D

E
=  (2.7) 

where ( )2M T  is the second-order temporal moment defined according to Equation 
(2.1). The mean-square duration describes the dispersion of the energy in the signal 
about the central time, T . The root-mean-square duration, D , is obtained by 
taking the square root of the expression in Equation (2.7). Due to the 
normalization, this expression provides the time of the energy dispersion. The most 
significant part of the energy is expected to be around the central time. The mean-
square and root-mean-square (RMS) durations are analogous to the variance and 
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standard deviation of regular statistical moments, respectively. The central 
skewness, tS , is the third normalized central moment defined as 

 ( )33
t

M T
S

E
=  (2.8) 

where ( )3M T  is the third-order temporal moment defined according to Equation 
(2.1). Skewness normalized by the RMS duration provides a non-dimensional 
measure and is defined as 

 tSS
D

=  (2.9) 

Skewness describes the shape of the signal energy in terms of symmetry. 
Symmetry about the central time T , or centroid, indicates zero skewness. A 
transient signal with high amplitudes to the left and a corresponding low-amplitude 
tail on the right side of the centroid has a positive skewness. Similarly, the opposite 
provides a negative skewness. The central kurtosis, tK , is the fourth normalized 
central moment defined as 

 ( )44
t

M T
K

E
=  (2.10) 

where ( )4M T  is the fourth-order temporal moment defined according to Equation 
(2.1). Like skewness, kurtosis normalized by the RMS duration provides a non-
dimensional measure and is defined as 

 tKK
D

=  (2.11) 

Kurtosis describes the tail shape of the signal energy. More precisely, kurtosis 
provides a measure for the outliers in the signal that are represented in the tails of 
the area under the squared signal amplitudes. In general, a low value of kurtosis 
indicates few and less extreme outliers, whereas a high value indicates several and 
more extreme outliers. Hence, a high value of kurtosis indicates more area in the 
tails. The root energy amplitude, EA , is an alternative way to describe the energy 
and is defined as 

 E
EA
D

=  (2.12) 

This expression is simply the square root of the energy normalized by the RMS 
duration. Table 2.1 summarizes the central moments in terms of the temporal 
moments. 
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Table 2.1: Definition of central and normalized central moments. 

Parameter Moment Moment order Definition Units 

E  Energy 0 0E M=  ( )22/m s s  

T  Central time 1 1M
T

E
=  s 

D  RMS duration 2 ( )2M T
D

E
=

 
s 

tS  Central 
skewness 

3 ( )33
t

M T
S

E
=

 
s 

S  Normalized 
skewness 3 tS

S
D

=
 

- 

tK  Central kurtosis 4 ( )44
t

M T
K

E
=

 
s 

K  Normalized 
kurtosis 4 tK

K
D

=
 

- 

EA  Root energy 
amplitude - E

E
A

D
=

 
( )2/m s  

 
The following two clarifications should be noted. First, a central moment is 

simply a temporal moment with respect to the reference time T when the first-
order temporal moment is zero. All central moments of order 1 through 4 are 
normalized by the basic moment E , which is the zero-order temporal moment. 
Consequently, the units become seconds. Additionally, a second normalization by 
the RMS duration, D , provides an alternative measure of the third- and fourth-
order central moments with non-dimensional units. Second, considering the 
definition provided in Equation (2.1), it is obvious that the integral of the signal 
squared is the total energy of the signal, or the area of the defined signal squared. 
The signal squared represents a distribution, which is analogous to a probability 
density function in regular statistical theory. Hence, the central moments are 
statistical moments of this distribution, also representing how the energy of the 
signal is distributed in time.  
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2.2.2 Temporal moments in discrete time signals 
The ith-order temporal moment defined by Equation (2.1) about the central time T  
can be approximated for a discrete signal of finite duration as 

 ( ) ( )
2

2 2
1

0

1 0.5
2

N i
i j j

j
M T t j T t y y

−

+
=

 ≈ ∆ + −  ∆ +   ∑  (2.13) 

where t∆  is the time increment between two response measurements and the 
sample index is defined to run from 0 to 1N −  as commonly used in digital signal 
processing. Furthermore, the general integral 

 ( ) ( )
2

2 2 2
1

0 2

N

j j
j

ty t dt y y
+∞ −

+
=−∞

∆
≈ +∑∫  (2.14) 

is based on the trapezoidal rule. The application of Equation (2.13) numerically 
provides the basis for establishing the central and normalized central moments. The 
normalized central moments in terms of the basic moments provide an alternative 
way of establishing the five temporal moments and can be utilized with Equation 
(2.13): 
 0E M=  (2.15) 

 1

0

MT
M

=  (2.16) 

 
2

2 2 1

0 0

M MD
M M

   
= −   

   
 (2.17) 

 
3

3 3 2 1 1
2

0 0 0

3 2t
M M M MS
M M M

     
= − +     

     
 (2.18) 
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4 3 14 2 1 1
2 3

0 0 0 0

4 6 3t
M MM M M MK

M M M M
       

= − + −       
       

 (2.19) 

The derivations of these relationships can be established by considering the 
temporal moments according to Equation (2.1) about the reference time T  in 
combination with Equation (2.2) and the provided definitions of the central 
moments in Table 2.1. 

For the application of temporal moments in this study, the signals analysed are 
acceleration response measurements or time histories. However, the application is 
also valid for the transient part of the response obtained using other measures, such 
as strain, force, displacement or velocity [24]. The implementation of temporal 
moments numerically is made available [27].  
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2.2.3 Feature vectors 
The central and normalized central moments given in Table 2.1 can be established 
as statistical parameters of a transient signal. In the following, these parameters are 
also referred to as features, which are defined as quantities established from 
response measurements that can be used to indicate damage [26]. All features 
constitute a feature vector, which is defined as 

 [ ]m E t tE T D A S S K K=d  (2.20) 

where the subscript m  denotes the joint number. 

2.3 Bridge description and experimental study 

2.3.1 Bridge description 
The Hell Bridge Test Arena is a full-scale, steel riveted railway truss bridge taken 
out of service and moved to foundations on land, as shown in Figure 2.1. The 
bridge is 4.5 m wide and has a total span of 35 m. It serves as a full-scale 
laboratory for research within SHM, damage detection, bridge inspection and 
service life estimation. Figure 2.2 shows a simplified 3D model of the main 
structural steel in the Hell Bridge Test Arena. 
 

Figure 2.1: Hell Bridge Test Arena. 

The bridge deck consists of longitudinal stringers connected to transverse 
girders (floor beams). The stringer-to-girder connections are made using double 
angle connections that are mechanically fastened with rivets. These are designed as 
shear connections, transferring the stringer end forces to the girder. Two 
mechanisms are commonly reported in this type of connection [1]: rotation of the 
stringer ends associated with bending and overlooked interactions between the 
bridge deck structural system and the main load carrying structure. These 
mechanisms are generated by deformation-induced secondary effects causing 
fatigue cracking [11]. In the following sections, the stringer-to-girder connections 
are referred to as both joints and joint connections. 

There are two known damages in the joint connections in the bridge deck 
structural system of the Hell Bridge Test Arena. These damages are located on one  
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Figure 2.2: Simplified 3D model of the main structural steel in the Hell Bridge Test Arena. 
(a) 3D perspective view including a detailed bridge section. (b) Vertical wall (top) and plan 

view of the bridge deck (bottom). 

side of the middle of the bridge, which was retrofitted during the initial part of the 
bridge lifetime. Despite the retrofit, all joint connections have the same loadbearing 
function. The damages were not found during routine interval inspections while the 
bridge was operational. These damages were originally discovered during a 
measurement campaign prior to the bridge being taken out of service, in which 
strain measurements were performed only on a selection of the joint connections. 
The damages result in unwanted vertical movement of the respective stringers 
when the bridge is subjected to operational loads. Consequently, the result is a 
severe reduction in the loadbearing capacity. 

2.3.2 Damage detection strategy 
A structure that can function satisfactorily but is no longer operating in an ideal 
condition is defined as a damaged structure [28]. In the most basic term, damage is 
defined as a change in the structural system that affects the performance of the 
structure [18]. Such a change can be in the material properties, geometry, boundary 
conditions or connections of the structural system. Determining the damage state 
can be accomplished according to a hierarchical structure, or levels, where 
increased knowledge of the damage state is represented in the given order of levels. 
These are defined as 1) existence, 2) localization, 3) type, 4) extent and 5) 
prediction of damage [28], [29]. 

Assessing damage requires a comparison between two different states of a 
system [30]. In this study, all relevant joint connections are investigated to 
establish damage in the bridge deck. A baseline, representing the normal and 
undamaged condition, is established from statistical parameters using all joints. 
Damage is then assessed based on the comparison of the results of individual joints 
to the baseline. As such, damaged joint connections are identified by comparing 
results to nominally identical connections and localized utilizing the 
instrumentation setup. 

2.3.3 Experimental study 
An instrumentation setup and systematic monitoring procedure was established in 
the experimental study. Sensors were placed symmetrically about an impact  
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Figure 2.3: Instrumentation setup of the Hell Bridge Test Arena bridge deck (plan view). 
(a) Joint numbering with known damaged joints highlighted in red. (b) Sensor and impact 

locations. 

location to effectively assess the joint connections. Figure 2.3 shows an overview 
of the bridge joints subject to investigation and the full bridge deck 
instrumentation, including all sensor and impact locations. 

A symmetric instrumentation setup about the geometric centre of the bridge 
deck was made using 32 sensor locations, denoted S01–S32, and 9 impact 
locations, denoted X1–X9. Both sensor and impact locations were accessible from 
the bridge deck. Altogether, 64 joints, labelled J01–J64, were assessed utilizing the 
instrumentation setup. This included 8 joints per impact location from X2–X8 and 
4 joints per impact location X1 and X9. The known damaged joints in the bridge 
deck were labelled J29 and J31. The geometric centre of the bridge coincides with 
impact location X5. 

The testing was performed using 16 Dytran 3583BT tri-axial accelerometers 
and a PCB large-sledge modal impulse hammer (model 086D50). The 
accelerometers were mounted at the mid-span of the stringers. Data acquisition was 
performed using a CompactRIO 9036 from National Instruments with 8 input 
modules (model 9234 C Series Sound and Vibration) at a sampling frequency of 
2048 Hz. A minimum of 5 impacts were systematically induced at the predefined 
impact locations. To obtain a strong transient signal, the testing was performed 
using a hard-plastic hammer tip (model 084A32), which gave a high-frequency 
excitation. Measurements were recorded in the z-direction only. The preprocessing 
of the time series mainly consisted of three steps: first, sensor sensitivity was 
included; second, the time series were optimized by synchronization using the peak 
value of each signal and then trimmed to the desired length; and finally, linear 
trends were removed by detrending the signals. From the preprocessing, each 
recording resulted in a time series of 1.0 s, where 0.1 s was recorded prior to the 
impact and 0.9 s was recorded after the impact. 

The number of sensors to be applied is not of significant importance. The 
methodology allows the use of one sensor only as a minimum. Repeated testing by 
moving the sensors to the predefined sensor locations provides the required 
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measurements. However, to reduce the number of impacts, a minimum of 8 sensors 
is recommended. This setup also ensures that the maximum number of joints is 
analysed using the same input, which increases the accuracy of the results. 

By utilizing the symmetry of the instrumentation setup and the systematic 
monitoring procedure, acceleration response measurements can be established with 
the fewest number of sensors and impacts. This approach provides information 
about the transmissibility of the signal in the time domain, where the 
transmissibility represents the signal from the impact location and through the joint 
to be assessed. 

2.4 Results 

2.4.1 General 
Acceleration response measurements, together with the average absolute peak 
acceleration response, provide a basic description of the response from the joints 
considered. The results from the experimental study are investigated using two 
approaches: first, the most relevant statistical parameters, i.e. features, are plotted 
and compared individually for all joints from the acceleration response 
measurements; second, a damage indicator matrix is established based on the 
correlation between the feature vectors for each joint analysed. 

2.4.2 Basic response description 
A comparison of the time histories of the acceleration response measurements for 
all joints in the middle part of the bridge is shown in Figure 2.4. All joints 
connected to the same girder specified by the impact location are presented in the 
vertical columns, where the response is shown for the same impact. All response 
measurements show the main transient response for one impact occurring in the 
time interval of 0.09-0.16 s. 

From these plots, a general trend in the response measurements of the joints is 
observed: each response is characterized by a distinct peak followed by an 
exponential decay in the signal amplitudes. In general, the curves in each plot 
follow each other fairly well considering the shape of the transient response, 
including the decay. This finding is expected since most of the joints are in fact 
assumed to be identical and undamaged. However, exceptions are observed 
particularly for impact locations X5 and X6. The relevance of these deviations with 
respect to damage is best evaluated using statistical parameters. 

A comparison of all joints for the average absolute peak acceleration response 
of 5 impacts per impact location is shown in Figure 2.5. A large variation is 
observed when comparing all joints and the joints within the same impact location. 
However, the average peak value for J29 deviates from that of the other joints, 
indicating that this joint behaves differently than the others. 

The average absolute peak value can provide a distinction in the results, but it 
is not an adequate feature for identifying damage. This inadequacy is mainly due to  
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Figure 2.4: Comparison of the acceleration response measurements based on one impact 
for the joints in the middle part of the bridge. 

Figure 2.5: Average absolute peak acceleration response. 

two reasons. First, this feature is a sensitive measure and is strongly dependent on 
the sampling frequency, placement of sensors and input force. For transient 
vibration, sampling at high frequencies can more reliably capture the actual peak 
acceleration than sampling at low frequencies. Furthermore, small deviations in 
sensor placements are common when performing field measurements on large 
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structures. Sensitive features can provide large deviations in results caused by 
operational and environmental variability and not just from the presence of 
damage. Second, this feature only provides one measure of a signal that generally 
contains a vast amount of information 

Making observations that may identify damaged joints is challenging due to the 
general similarity observed in the acceleration response measurements and the 
large variability in the average absolute peak acceleration values. Hence, 
establishing statistical parameters of the signals to quantify characteristics of the 
acceleration response measurements is needed to provide reliable information and 
increase confidence in results. 

2.4.3 Statistical parameters 
The results of analysing the main statistical parameters are shown in Figure 2.6 and 
Figure 2.7 by moment order. Energy ( E ), central time (T ) and RMS duration ( D ) 
are presented in Figure 2.6, whereas central skewness ( tS ), central kurtosis ( tK ) 
and root energy amplitude ( EA ) are presented in Figure 2.7. 

Figure 2.6: Analysis results of the central and first two normalized central moments from 
the average of 5 impacts. 
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Figure 2.7: Analysis results of the normalized central moments and the root energy 
amplitude from the average of 5 impacts. 

In both figures, each marker in the plots represents the average value obtained 
from 5 impacts. The short-dashed grey vertical lines separate the impact locations, 
and all markers within each impact location represent results obtained from the 
same impacts. The dashed horizontal lines represent the upper and lower outlier 
limits. To find these limits, the interquartile range (IQR) for each of the data sets 
with the statistical parameters is established. The IQR is a measure of variability 
and divides the data considered into quartiles. The IQR is the range between the 
75th and 25th percentiles of the data and consequently contains the middle portion 
or 50%. The outlier limits are defined as 1.5 times the IQR length from the upper 
and lower percentile, which is considered a common criterion for outliers [31]. 
Values outside of this range are extreme data values. All plots show both the upper 
and lower limit, i.e. limU  and limL , except for the energy. Here, the lower limit is 
less than zero, representing a negative area or energy not considered realistic. 

For the known damaged joint connections, the most obvious results are 
obtained for J29. For J29, all statistical parameters except for energy are outliers; 
however, for energy, J29 has the lowest value of all joints. For J31, outliers are 
observed for RMS duration, central skewness and central kurtosis, but otherwise, 
the statistical parameters are within the IQR. 

For the undamaged joint connections, J41 and J45 are represented with outliers 
in energy and central time but otherwise have values well within the IQR. Joints 
J33 and J36 have values very close to or exceeding the outlier limits for central 
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skewness and central kurtosis. Additionally, high values are observed for RMS 
duration. J25 has outliers for energy and root energy amplitude. An interesting 
observation is made for joints J18 and J19. The statistical parameters are observed 
to be within the IQR. However, the values are close to the outlier limits for all 
statistical parameters. 

Detailed results of all statistical parameters for the abovementioned joints are 
summarized in Table 2.2. Values exceeding the outlier limits are highlighted. 
Additionally, the lower and upper limits, arithmetic mean and median values are 
included in this table. 

Table 2.2: Detailed results of the statistical parameters for relevant joint connections. 

Joint E  
((m/s2)2s) 

T  
(s) 

D  
(s) 

tS  
(s) 

tK  
(s) 

EA  
(m/s2) 

J18 4.21 0.108 0.023 0.055 0.097 13.47 
J19 4.66 0.109 0.022 0.053 0.096 14.60 
J25 29.35 0.103 0.010 0.028 0.059 54.90 
J29 0.71 0.123 0.061 0.116 0.175 3.40 
J31 4.60 0.105 0.027 0.068 0.117 13.11 
J33 7.46 0.104 0.022 0.059 0.105 18.24 
J36 10.39 0.106 0.021 0.057 0.101 22.74 
J41 32.34 0.112 0.021 0.035 0.060 39.63 
J45 32.34 0.112 0.019 0.032 0.055 41.03 

Mean 13.94 0.106 0.017 0.042 0.077 28.67 
Median 13.21 0.105 0.016 0.038 0.073 28.88 

Llim - 0.100 0.009 0.023 0.047 6.76 
Ulim 28.65 0.111 0.025 0.057 0.102 49.07 

 
In summary, the analysis results show that the two known damaged joint 

connections, J29 and J31, can be identified with outliers in all and several of the 
statistical parameters, respectively, except for energy. Furthermore, joints J25, J33, 
J36, J41 and J45 have outliers in two of the statistical parameters shown. Finally, 
J18 and J19 have no outliers; however, these joints have values close to the outlier 
limits for all statistical parameters. 

2.4.4 Damage indicator matrix 
The damage indicator matrix provides a comparison of all joints using the 
statistical parameters. The damage indicator, DI , is related to the correlation 
coefficient, 

m n
ρd d , and is defined as 

 1 1 m n

m n

m n

DI
σ

ρ
σ σ

= − = − d d
d d

d d

 (2.21) 

Here, md  and nd  are the feature vectors defined according to Equation (2.20) of 
joints m and n respectively. Correspondingly, 

m
σd  and  

n
σd  are the standard 

deviations of md  and nd , respectively, whereas 
m n

σd d  is the covariance matrix. 
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The damage indicator provides a non-dimensional measure based on the correlation 
of the feature vectors. By systematically establishing damage indicators result in 
the damage indicator matrix; a statistical comparison of all joints based on the 
measure of correlation. 

Correlation describes the degree of linearity, or linear dependence, between 
two variables or vectors. Thus, the damage indicator provides a measure of 
similarity in the behaviour of joints. If two variables are independent, the 
correlation coefficient is 0, whereas it will be in the range between -1 and 1 if one 
of the variables is partially linearly dependent on the other. The latter depends on 
the strength of the linear dependence. As such, for the damage indicators, a low 
value will indicate similar behaviour between joints, whereas higher values will 
indicate different behaviour. The majority of the joints are undamaged and exhibit 
similar structural behaviour; thus, these joints have similar statistical parameters. 
Consequently, the correlation between their respective feature vectors is expected 
to be close to 1, resulting in a DI  value close to 0. 

The normalized damage indicator matrix for all joints is shown in Figure 2.8.  

Figure 2.8: Normalized damage indicator matrix. 
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This figure shows that the damaged joint J29 is clearly indicated. Additionally, 
weak indications are observed for J31. However, indications of damage are also 
observed for undamaged joints, particularly J41 and J45 but also J18 and J19. The 
figure shows that the normalized DI  values of J29 to both J41 and J45 are high, 
and the most obvious reason for this outcome is due to the energy. Energy ( E ) is 
simply the area of the signal squared within the defined time of the acceleration 
response recording. Low energy implies a weak or damped transient vibration. 
Little or no transmissibility of the signal between the impact location and the 
sensor is the most obvious cause resulting in low energy. This implies that the 
signal must travel a longer distance before it is recorded by the sensor, and due to 
inherent material and structural damping, the signal amplitudes become lower 
resulting in a loss of energy. This phenomenon in turn provides an indication of 
structural damage. In contrast, high energy implies strong transient vibration. 

For the joints evaluated, there is no obvious explanation for the results of high 
energy. Hence, a new normalized damage indicator matrix for all joints is 
established based on feature vectors where the energy is excluded, as shown in 
Figure 2.9. From this figure, the damaged joint J29 is clearly indicated. 

Figure 2.9: Normalized damage indicator matrix. Energy ( E ) is excluded from the feature 
vector. 
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An indication of damage is also observed for the damaged joint J31. Furthermore, 
false-positive indications, i.e. indication of damage when no damage is present, are 
seen for joints J18 and J19. The non-normalized mean DI values of these joints are 
established in Table 2.3. The mean DI value of each joint compared to other joints 
identifies the joints that, on average, have feature vectors that correlate less with 
others. 

Table 2.3: Non-normalized mean DI values. 

Joint Average DI 

J29 0.224 
J31 0.020 
J18 0.015 
J19 0.014 

 
Based on the results obtained, it is observed that 1) most of the joints are well 

correlated, 2) damage in a joint connection can, but must not necessarily be, well 
reflected in the correlation between the feature vectors, and 3) the damage indicator 
is not a measure of the degree of any damage. A discussion of the statistical 
parameters related to the structural understanding is provided in the following 
section to conclude on the results obtained. 

2.5 Discussions 

2.5.1 Importance of statistical parameters on structural damage 
identification 

The known damage in the joint connections of the bridge deck results in unwanted 
vertical movement and consequently a reduction in the loadbearing capacity of the 
stringers. Due to damage, the connectivity of the joints is changed by reduced 
stiffness. This, in turn, is expected to result in a change in the signal 
transmissibility for the joint considered between the impact location and the sensor. 
This change caused by damage is mainly expected to reduce the transmissibility of 
the signal. 

As described in the previous section, low energy ( E ) is caused by low 
transmissibility of the signal. The root energy amplitude ( EA ) normalizes the 
energy by the RMS duration and is an alternative energy feature. Low values of 
both energy features are expected to be caused by damaged joint connections. 
Central time (T ) measures the time at which the centroid of the energy is located. 
In general, the central time is expected to be located shortly after the peak of the 
signal occurring at 0.1 s. There are two main explanations for obtaining high values 
of this feature: weak decay of a strong transient signal or generally weak transient 
signal behaviour. The first is not due to damage. A low local structural damping 
affects a strong transient signal resulting in low decay. Similarly, any reflection of 
signals from the surrounding structure affects the transient part of the signal and 
consequently increases the central time. However, a generally weak transient signal 
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behaviour is expected to be caused by damage. As such, high values for the central 
time can occur for both damaged and undamaged joints. RMS duration ( D ) 
measures the dispersion of the energy in a signal. Strong transient signals with high 
transmissibility have low dispersion, whereas weak transient signals with low 
transmissibility have high dispersion. Hence, RMS duration characterizes the 
signal well and is consequently a good feature for indicating damage. Central 
skewness ( tS ) describes the shape of the distribution, or the signal itself, in terms 
of symmetry. Regardless of the presence of damage, all joints considered will have 
a positive skewness because high amplitudes are located to the left of the central 
time with a corresponding low-amplitude tail on the right. Damaged joints, 
characterized by low transmissibility, will obtain a larger skewness than 
undamaged joints and are expected to be characterized by this feature. The same 
applies for central kurtosis ( tK ), which measures the outliers in the signal energy. 
A high number of outliers in a signal indicates damage. 

The results clearly show that RMS duration, central skewness and central 
kurtosis best describe the damaged joint connections. Consequently, these are 
considered the most relevant features. The significance of the energy features in 
relation to damage is important. However, these features do not clearly describe 
both damages. Furthermore, the energy feature results in three outliers with high 
values, which is not well understood. The root energy amplitude provides better 
results; however, one outlier with a high value is still observed. Central time 
clearly indicates one damaged joint but shows outliers for undamaged joints. 

By excluding energy, the remaining features can be included in the context of 
observing any trends that can strengthen the indication of damage. This is evident 
by performing an evaluation using the damage indicator matrix. 

2.5.2 Effect of sampling frequency 
Sampling at high frequencies instead of low frequencies includes more information 
in the transient signals. Establishing an appropriate sampling frequency with 
respect to damage identification is deemed important. Hence, the effect of 
sampling frequency on the main statistical parameters are investigated and shown 
in Figure 2.10. In this figure, the average value of all impacts for all joint 
connections, including J29 and J31, are analysed and compared with the average 
value of J29 and J31 for different sampling frequencies. Five cases are included. 
The first case considers the original sampling frequency with no filter applied, 
whereas the other cases include the original and a systematic reduction in sampling 
frequency with a filter applied. Data are analysed by resampling the signals after 
applying an 8th order Bessel antialiasing filter at 80% of the Nyquist frequency. 
The ability to handle rapid changes in the signal from one value to another, which 
is characterized in the step response, is optimized with the Bessel filter in contrast 
to other antialiasing filters [32]. This characteristic is favoured for the analysis of 
transient vibration in the time domain. However, the Bessel filter reduces the 
amplitudes in the passband due to the roll-off quality of the filter, which explains 
the reduction in results for energy and root energy amplitude from a sampling 
frequency of 2048 Hz with no filter to 2048 Hz with a filter applied. 
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Figure 2.10: Analysis results for different sampling frequencies. 

The absolute value of the percentage change in the damaged joints to the value 
of all joints is summarized in Table 2.4. Figure 2.10 and this table show that 
lowering the sampling frequency in general decreases the identifiability of known 
damaged joints from the average of all joints when considering the statistical 
parameters, except for central time. Information is lost for the resampled signals. 
This lost information in turn provides a weaker indication of damage. Lower 
sampling frequencies result in fewer high amplitudes in the signal representations. 
This is clearly seen when considering the analysis results of the energy features. 
The central time increases, and the centroid of the signals moves away from 0.1 s. 
In general, the dispersion of the signals increases with lower sampling frequencies, 
and the distinction of damaged joint connections appears to be unaffected. 
However, this is not the case when considering the absolute value of the percentage 
change for the RMS duration, which shows that the percentage change is lowered 
with decreasing sampling frequency. For central skewness and central kurtosis, it is 
apparent that the identification of damage is more difficult with lower sampling 
frequencies both when considering the analysis results and the absolute value of 
percentage change. 

By considering the parameters most relevant for the identification of damage, it 
is clearly seen that a reduction in sampling frequency reduces the identifiability of 
damage, except when considering central time. A higher sampling frequency 
provides a better representation of the transient signals and includes more 
information. The values of the statistical parameters strongly depend on the 
sampling frequency and, as such, can only be used for the purpose of comparison. 

The obtained results show that an adequate sampling frequency is needed to 
identify damage. A minimum sampling frequency of 2048 Hz is recommended for 
this case. However, it should be noted that using lower sampling frequencies does 
not exclude the possibility of identifying damage. 
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Table 2.4: Absolute value of percentage change in the damaged joints to the value of all 
joints. 

  Percentage change for different sampling frequencies (%) 

Statistical 
parameter Joint 2048 Hz 

(no filter) 2048 Hz 1024 Hz 512 Hz 256 Hz 

E  J29 95 92 55 35 25 
J31 67 56 30 48 0 

T  J29 16 27 27 47 31 
J31 1 1 19 9 13 

D  J29 259 221 78 48 21 
J31 59 64 61 17 15 

tS  J29 176 143 47 21 6 
J31 62 57 37 9 7 

tK  J29 127 99 34 15 5 
J31 52 44 27 6 6 

EA  J29 88 84 51 34 18 
J31 54 49 36 13 4 

2.5.3 Summary 
Experience obtained from the experimental study leads to the following general 
observations: 

• There are two known damaged joint connections, J29 and J31. From the 
proposed methodology, a clear identification of J29 is established, whereas 
a weak indication of J31 is observed. Although the methodology identifies 
both damaged joint connections, the distinction between J31 and the 
undamaged joint connections J18 and J19 is low, resulting in two false-
positive indications of damage. 

• When considering the statistical parameters only, the RMS duration, 
central skewness and central kurtosis are of primary interest. Additionally, 
root energy amplitude is important due to its significance related to the 
damage configuration studied. 

• The damage indicator matrix provides a statistical comparison of all joints 
based on the measure of correlation using feature vectors. From the results 
obtained, three undamaged joint connections obtained high energy. No 
reasonable explanation of this phenomenon is found. When excluding this 
statistical parameter from the feature vectors, an improved damage 
indicator matrix is obtained. 

• A high sampling frequency is required. High sampling frequency provides 
better results and more clear identification of damage due to increased 
information included in the signals analysed. 

• An adequate number of joint connections is needed to obtain a basis for 
comparison. A high number of identical joints forming the baseline 
provides a more reliable result. This is clearly observed when comparing 
results from one impact location to the results of all impact locations. 
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• The possibility that changes in the statistical parameters are caused by 
inconsistent input, i.e. excitation, cannot be eliminated. Inconsistent input 
can be limited to the best extent possible by using the average of multiple 
impacts. The results obtained in this study show that using 5 impacts per 
impact location is considered adequate for this purpose. 

 
The proposed methodology establishes damaged joint connections in the bridge 

deck and is based on the transmissibility of the signal from the impact location to 
the sensor and through the joint connection to be assessed. All joint connections 
have the same loadbearing function. The location of any damaged joints, or the 
distance between any damaged joints, does not affect the indication of damage 
since the evaluation is based on local response and not on the global response of 
the structure. Damaged joint connections are identified by comparing statistical 
parameters based on temporal moments to nominally identical connections. The 
damaged joint connections are localized utilizing the instrumentation setup and a 
systematic monitoring procedure. The baseline is established from the statistical 
parameters evaluated for all joint connections. The observation made in the first 
bullet point leads to the conclusion that the methodology can only clearly identify 
one damaged joint connection. However, from an inspector’s perspective, such a 
result should lead to the further investigation of all four joints with the assumption 
of damage being present. Further investigation should be to carry out a full visual 
inspection or consider a long-term SHM system using strain measurements for 
bridges in operation. 

2.6 Conclusion 
This paper presented a new methodology for detecting damage in stringer-to-girder 
connections from the bridge deck of existing steel bridges. The methodology is 
based on combining the use of temporal moments to establish statistical parameters 
from response measurements with an appropriate instrumentation setup and a 
systematic monitoring procedure. An experimental study on a full-scale steel 
bridge identified and localized two damaged joint connections in the bridge deck 
by 1) investigating statistical parameters from response measurements and 2) 
establishing a damage indicator matrix by comparing feature vectors using 
correlation analysis. The importance of high sampling frequency to obtain the best 
possible identification of damaged joint connections was shown through a 
sensitivity analysis. A minimum sampling frequency of 2048 Hz is recommended 
for similar applications. 

The main limitation of the methodology presented herein is the need for an 
adequate number of joint connections or similar structural components to obtain a 
baseline for comparison. The baseline for comparison can be affected in cases 
where many damages are present in the structural system. Nevertheless, the 
methodology presented in this paper demonstrates that structural damage in joint 
connections can be effectively established. The proposed methodology is easy to 
implement, both in a technical and practical manner. Limited technical equipment 
is needed. Furthermore, this methodology can be applied to components that are 
difficult to access without the need for temporary installation of access support. As 
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such, the established methodology can contribute to improving the identification of 
critical damage during scheduled inspection of existing open-deck highway and 
railway bridges in service with no, or limited, downtime. Further investigation 
should be to 1) test the methodology on bridges in service and 2) use the 
established methodology but consider structural response obtained from vehicles 
on damage detection for potential automation purposes. 
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Abstract 
There are many uncertainties related to existing bridges that are approaching or 
have exceeded their original design life. Lifetime extension analysis of bridges 
should be based on validated numerical models that can be effectively established. 
This paper presents a new procedure to obtain an optimal solution from sensitivity-
based model updating with respect to an improvement in the modal properties, 
such as the natural frequencies and mode shapes, based on realistic parameter 
values. The procedure combines variations in the ratios of overdetermined systems 
with different definitions of local parameter bounds in a structured approach using 
a sensitivity analysis. The feasibility of the procedure is demonstrated in an 
experimental case study. Model updating is performed on a full-scale steel bridge 
using the natural frequencies and modal assurance criterion (MAC) numbers, 
where the numerical model is established by considering general uncertainties and 
model simplifications to reduce the model complexity. From the optimal solution 
for the case study considered, an improvement in modal parameters is obtained 
with highly reliable parameter values. The proposed procedure can be applied to 
similar case studies, irrespective of the structure under consideration and the 
corresponding parameterization to be made, to effectively obtain a validated 
numerical model. 
 
Keywords: Finite element model updating; sensitivity method; parameter bounds; 
experimental study; steel bridge; lifetime extension; structural health monitoring. 
  



 

68 

  



 

69 

Chapter 3 

3.1 Introduction 
There are increasing demands on existing infrastructure with respect to traffic loads 
and intensity. Many highway and railway bridges are still in use despite that they 
are approaching or have exceeded their original design life. Although many 
uncertainties related to ageing, deterioration and damage accumulation are present 
in these bridges, lifetime extension is the preferred option to ensure continuous 
operation. Considering the requirements for precise numerical models in lifetime 
extension analyses of bridges, analyses should be carried out using validated 
models that adequately represent the current state given inherent uncertainties 
present in these structures. 

Structural health monitoring (SHM) systems can provide updated information 
regarding the current state of a bridge condition. SHM, defined as the process of 
implementing an automated and online strategy for damage detection in a structure 
[1], can be utilized for lifetime extension purposes. There are two main approaches 
in SHM: model-based and data-based [2], [3]. The model-based approach is an 
inverse problem, where a numerical model of the structure is established, and the 
relation to changes in the measured data from the structure to changes in the 
numerical model are investigated. The data-based approach relies on the use of 
machine learning for the identification of damage and ideally requires training data 
for all considered structural states, healthy and damaged, which can be challenging 
for bridges in service. However, the effective use of a numerical model can be 
made in a hybrid approach, which takes principles from both the model-based and 
data-based approaches into consideration by integrating a numerical model, 
experimental data and machine learning. In the SHM approaches where a 
numerical model is utilized, a validated numerical model is inevitable. 

Finite element (FE) model updating is the process of calibrating the parameters 
of a numerical FE model based on vibration test data, where the aim of model 
updating is to reduce the discrepancy between the numerical model and available 
measurement data [4]. Model updating is essential for obtaining a validated 
numerical model. A validated numerical model can reduce model uncertainty in a 
reliability framework to improve the estimation of the remaining service life, where 
model uncertainty is quantified by the stress ratio between the structure (actual 
stress) and the numerical model (estimated stress). Furthermore, a validated 
numerical model can increase the accuracy of predictions in analysis related to the 
(1) structural response to the type of loads other than that used in the vibration test, 
(2) structural system behaviour in a different frequency range or in degrees of 
freedom (DOFs) different from those used in the model updating process and, (3) 
effects of structural modifications and structural damage [5]. For the latter, several 

3 Improved finite element model updating of a full-scale 
steel bridge using sensitivity analysis 
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case studies are performed with respect to SHM and damage detection based on 
model updating [6]–[12]. Comprehensive reviews of model updating techniques 
and relevant methods are available in the literature [5], [13]–[16]. With the 
increasing establishment of SHM systems on bridge structures and the considerable 
improvement in numerical models that can be obtained from model updating, 
applications on several case studies are reported in the literature. These studies 
include applications on highway and railway bridges [17]–[24], footbridges [25], 
[26], cable-stay bridges [27]–[33], suspension and floating bridges [34]–[37], and 
relevant test structures [38]–[40]. 

Of the many model updating applications on bridges, several different 
approaches can be found. Sensitivity-based model updating considering 
parameterized models is a preferred method for full-scale bridges [37]. Model 
updating can provide large improvements in the modal properties such as the 
natural frequencies and mode shapes. However, it is still a requirement that the 
modelling errors are minimized and that the improvements are based on reasonable 
parameter values to consider the model validated. In sensitivity-based model 
updating, an overdetermined system should be considered, allowing for a unique 
solution to be obtained [5]. Depending on (1) the overdetermined system and (2) 
the constraints enforced on the parameters of the numerical model, large variations 
in parameter values can render improved modal properties, irrespective of the type 
of model parameterization. Constraining the parameters is necessary when dealing 
with large models. Furthermore, the overdetermined system depends on the model 
parameterization and available modes from the system identification. Therefore, 
several choices can be made for how overdetermined the system should be and the 
size of the constraints to enforce on the parameters, or how these should be 
combined in the model updating. These choices require careful consideration and a 
structured approach in the model updating process. There are no studies in the 
literature where this problem has been addressed or fully considered in model 
updating of bridges. 

Model updating should be performed by considering a detailed numerical 
model, to a level different from a conventional numerical model, to adequately 
represent the geometric and structural form [41], [42]. However, there is a trade-off 
between a validated detailed numerical model in good agreement with 
measurements and a validated numerical model being computationally efficient for 
numerical simulations. For many engineering considerations, it is desirable to 
effectively obtain a validated numerical model that can be considered for several 
analysis purposes where the complexity of the model is left to a minimum but is 
still in acceptable agreement with measurements. Overall, the goal of model 
updating is to obtain improved modal properties based on reasonable and realistic 
parameter values. With the increased demand for validated models in lifetime 
extension analysis and a large number of ageing bridges, a procedure irrespective 
of the model parameterization is needed to effectively establish validated models 
based on model updating. 

This paper investigates the effects of using a sensitivity analysis for improved 
model updating. A new procedure based on a structured approach is proposed to 
obtain an optimal solution from sensitivity-based model updating with respect to an 
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improvement in the modal properties combined with reasonable parameter values. 
The procedure is demonstrated on a full-scale steel bridge, a case study 
representative of many bridges still in service. The paper is organized in three 
parts. In the first part, the theory of the model updating framework is presented, 
including the theory of local parameter bounds to be included in the optimization 
algorithm. The implementation of the theoretical framework using ABAQUS and 
Python is made available [43]. The second part of the paper presents the 
experimental case study and outlines the proposed procedure. A numerical model is 
established and parameterized considering general uncertainties and model 
simplifications, where the model simplifications are introduced to reduce 
complexity. The effects from a sensitivity analysis are investigated by considering 
different ratios of overdetermined systems combined with two definitions of local 
parameter bounds. The results based on the optimal solution from the sensitivity 
analysis are presented. The final part presents a discussion of the proposed 
procedure. Based on the presented work, general recommendations are made with 
respect to the applicability to similar bridges in service. 

3.2 Finite element model updating theory 

3.2.1 General theoretical framework 
The sensitivity method is used for performing the model updating. The main 
theoretical framework implemented is presented in the following section according 
to [5], with a similar notation. It is assumed that q  measured outputs are available 
and the model is considered to be parameterized in p  parameters. In general, the 
number of output measurements should be larger than the number of parameters in 
the model, i.e., q p> , yielding an overdetermined system with a unique solution. 
In this study, an overdetermined system is considered using both the identified 
measured natural frequencies and the modal assurance criterion (MAC) numbers as 
the objective for the calibration of parameters in the numerical model. The model 
updating is performed by perturbation analysis. 

 The sensitivity method is based on a linearization of the difference between the 
measured and analytically predicted outputs: 
 ( )z m= −ε z z θ  (3.1) 

where mz  is the measured output and ( )z θ  is the analytically predicted output as a 
function of the vector of parameters, θ . By reformulating the analytically predicted 
output, this becomes 

 ( )| |( ( ) ) ( )
i iz m i i i m i i i= =≈ − + ∆ = − − ∆θ θ θ θε z z θ G θ z z θ G θ  (3.2) 

The final form of the system equation is given as 
 | iz i i i=≈ − ∆θ θε r G θ  (3.3) 

where ( )i m i= −r z z θ  is the residual, | ii =θ θG  is the sensitivity matrix and i∆θ  is the 
parameter increment vector. The index i  denotes the point of linearization 
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occurring at each iteration. The linear system, described in Equation (3.3), is 
established for q  measured outputs (representing the rows) and p  parameters 
(representing the columns) and is scaled: 
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 (3.4) 

The frequencies are represented in the upper half of the sensitivity matrix, whereas 
the MAC numbers are represented in the lower half. The subscript zero denotes the 
scaling factors; i.e., 0θ  is the initial parameter value, and 0z  is the initial output 
value. The initial output value is taken as the analytically predicted value for the 
frequencies obtained from the initial numerical model and is 1 for the MAC 
numbers. The advantage of scaling is particularly to avoid large numerical values 
in the sensitivity matrix, which reduces potential ill-conditioning or matrix 
singularity. The terms in the sensitivity matrix can be established using an 
analytical approach or using numerical approximations by the perturbation 
procedure. For the latter, 

 , ,

, ,

pert
q i q i q

pert
p i p i p

z z z

θ θ θ

∂ = −

∂ = −
 (3.5) 

where the perturbed value is indicated with a superscript. The goal is to minimize 
the objective function, defined as 

 ( ) T
i z zJ ε∆ =θ ε W ε  (3.6) 

where εW  is the symmetric weighting matrix. The weighting matrix is established 
as a diagonal and normalized matrix taking into consideration both natural 
frequencies and MAC numbers. In evaluating the minimization, the objective 
function is reformulated as a weighted sum of the normalized residual squared: 

 ( ) [ ]
2

* , ,
,

1 0,

q
m j i j

i j j
j j

z z
J

zε
=

 −
∆ =   

 
∑θ W  (3.7) 

For the overdetermined system, the objective function defined in Equation (3.6) is 
minimized with respect to i∆θ  at each iteration to give an improved parameter 
estimate of i∆θ . The model is then updated to give 
 1i i i+ = + ∆θ θ θ  (3.8) 

Significant changes in parameters can occur during the minimization, particularly 
during the first iteration steps. Hence, the parameters are constrained by 
establishing bounds in the minimization problem to obtain a model improvement 
with reasonable changes in the defined parameters. 
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3.2.2 Local parameter bounds 
The parameters are constrained by implementing lower and upper bounds in the 
minimization problem, i.e., 
 min 1 maxi+≤ ≤θ θ θ  (3.9) 

Introducing Equation (3.8) and rearranging, the bounds at iteration, i , become 
 ,min ,maxi i i i≤ + ∆ ≤θ θ θ θ  (3.10) 

 ,min ,maxi i i i i− ≤ ∆ ≤ −θ θ θ θ θ  (3.11) 

Considering the sensitivity matrix, the bounds must be scaled accordingly. The 
final scaled lower and upper bounds to be used in the minimization become: 
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∆ =

−
∆ =

θ θ
θ

θ
θ θ

θ
θ

 (3.12) 

The objective function can be minimized by solving the linear least squares 
problem with the defined bounds on the parameters. The bounds defined in 
Equation (3.12) are established as lower and upper allowable limits on the 
parameters per iteration and are referred to as local bounds. 

3.2.3 Global parameter bounds 
Global bounds are considered as the final lower and upper allowable limits for the 
parameters. The global bounds ensure that the parameters always attain values that 
are within a reasonable range from an engineering point of view. Ideally, these 
limits are never exceeded during the iterations in the model updating process. The 
local bounds mainly ensure that the parameter step is not too large in each iteration. 
These limits are established as a percentage of the given parameter value in the 
current iteration. The lower and upper local bounds have the same percentwise 
change for each iteration step. Local bounds “move” together with the updated 
parameter values within the global bounds. Figure 3.1 shows the relation between 
the local and global bounds. 

Figure 3.1: Relation between the local and global bounds. 
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3.2.4 Optimization 
The optimization problem to be solved is, on a general form, 

 2

2

1min ,
2

lb ub−    ≤ ≤
x

Ax b x  (3.13) 

where A  is the design matrix, b  is the target vector and x  is the vector of 
parameters to be optimized subject to the lower and upper bounds, lb and ub , 
respectively. The subscript 2 denotes the Euclidean norm. By introducing Equation 
(3.3) into Equation (3.6), utilizing that the weighting matrix is diagonal and thus 
symmetric, the objective function can be written as 

 ( ) 21 2 1 2

2i i iJ ∆ = − ∆ +θ W G θ W r  (3.14) 

with 1 2
i= −A W G , i= ∆x θ  and 1 2

i= −b W r . Note that A  is a q-by-p matrix and 
b  is a vector of q elements. The subscript ε  from the weighting matrix is removed 
for brevity. The bounds defined in Equation (3.12) are used directly as lower and 
upper bounds. Equation (3.14) is solved using the scipy.optimize.lsq_linear 
function in Python [44]. The optimization problem defined in Equation (3.14) is 
convex. Hence, the found minimum of the bounded linear least squares problem is 
expected to be global. However, the final solution of the model updating can 
depend on the initial parameter values and the parameter bounds. Consequently, 
the model updating can converge to a local minimum and there is as such no 
guarantee of convergence to a global minimum. 
 Constraining parameters can be useful when dealing with complex models 
parametrized in a fair number of parameters, although at the cost of finding an 
optimal theoretical solution. Constraining parameters are mainly introduced to 
avoid large and non-realistic parameter changes. The constraints can provide some 
numerical stability since the unconstrained iterative optimization based on first-
order gradients sometimes can take too large steps, possibly stepping out of the 
area of interest. A similar effect can be obtained by applying a small amount of 
regularization to the objective function defined in Equation (3.6), see [5]. 

3.2.5 Mode identification 
A mode match index (MMI) is introduced to ensure the identification of correct 
modes during model updating [14]: 

 ( ) ,1 m n
m n

m

f f
MMI MAC

f
γ γ

−
= − −  (3.15) 

where γ  is a value between 0 and 1 that provides the weighting to be considered 
between the MAC numbers and natural frequencies, f . The subscripts m  and n  
are denoted for the measured and numerical modes, respectively. Furthermore, the 
MAC number is defined as [45], [46]  
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( )( )

2

,

T
m n

m n T T
m m n n

MAC =
Φ Φ

Φ Φ Φ Φ
 (3.16) 

where mΦ  and nΦ  are the measured and numerical mode shape vectors, 
respectively, and the superscript T  denotes the transpose. The MMI is also utilized 
as an indicator to measure the overall performance of the model updating results. 

 The order of modes changes during the model updating, particularly for 
systems with closely spaced modes. Hence, an equal weighting obtained by setting 

0.5γ =  is considered effective for the MMI. 

3.2.6 Implementation of the theoretical framework 
The theoretical framework is implemented using Python version 3.7.2, including 
SciPy version 1.3.2 [44], in combination with ABAQUS [47]. The implementation 
is validated through a numerical case study and is made available [43]. 

3.3 Experimental case study 

3.3.1 Bridge description 
The Hell Bridge Test Arena, shown in Figure 3.2, is an open-deck steel riveted 
truss bridge with a main span of 35 m and width of 4.5 m. The bridge was formerly 
in operation as a train bridge for more than 100 years before it was taken out of 
service and moved to concrete foundations on land. The bridge serves as a full-
scale laboratory for research and development for damage detection and SHM [48]. 
 All cross sections, connections and details of the bridge were originally made 
using steel plates connected by rivets. The bridge has no upper lateral bracing, i.e., 
no lateral stiffening connected to the top girder of the bridge walls. Hence, the 
bridge cross section is formed as a U-section. The lateral bracing system is located 
below the bridge deck and provides a stiffening of the bridge in the lateral 
direction. The bridge deck structural system is made of longitudinal stringers 
connected to transverse girders with double angle connections. 
 

Figure 3.2: Hell Bridge Test Arena. 
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3.3.2 Experimental study and system identification 
Figure 3.3 shows an overview of the bridge, including the sensor locations used in 
the experimental study. The results obtained from ambient vibrations considering 
wind only are used. Data from 18 triaxial accelerometers were sampled at 400 Hz. 
The data were detrended, then low-pass filtered using an 8th order Butterworth 
filter with a cut-off frequency at 40 Hz and resampled to 100 Hz before it was used 
for analysis. A 30 min long time series was selected as the basis for performing the 
system identification. The wind was in the range of 5-8 m/s with wind gusts up to 
12 m/s during the measurement period. 

 System identification was performed using the frequency domain 
decomposition (FDD) method [49]. A Welch average was used for estimating the 
power spectral density. The first three singular values of the acceleration response 
spectrum and the modes identified are shown in Figure 3.4. All peaks in the 
acceleration response spectrum are evaluated, but only modes corresponding with 
the initial numerical model are used for FE model updating purposes. Altogether, 
21 modes are established: 13 global modes and 8 semi-global modes. The global 
modes are related to modes in the lateral, vertical, torsional and longitudinal 
directions, whereas the semi-global modes are related to modes including mainly 
the bridge walls and to some extent the bridge deck. Modes 1-4 and 13-21 are 
global, whereas modes 5-12 are semi-global. No local modes identified are 
considered. The identified natural frequencies are given in Table 3.6. 
 Closely spaced modes are observed in the system, specifically related to the 
higher vertical and torsional modes. However, the modes established in the system 
identification are generally considered well separated. 

Figure 3.3: Overview of the bridge, including the sensor locations. 
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Figure 3.4: The first three singular values of the acceleration response spectrum. The 
identified modes are highlighted and numbered. 

3.3.3 Model updating procedure 
In model updating considering experimental case studies, there are several choices 
that can be made for how overdetermined the system is and the size of the 
constraints to enforce on the parameters. These choices depend on how the model 
is parameterized and the number of outputs available. Such considerations affect 
the results in the model updating and should be included in a sensitivity analysis. 
The following procedure is established as a structured approach to obtain an 
improved model updating: 

1. Model parameterization and definition of global parameter bounds. A 
numerical model is established, and model parameterization is performed 
by considering general uncertainties and model simplifications. 

2. Definitions of local parameter bounds. Two definitions of local parameter 
bounds are defined: rigid and semi-rigid. These definitions represent the 
different sizes of the constraints to enforce on the parameters. 

3. Considerations of the overdetermined system ratios. The overdetermined 
system ratios are based on the model parameterization and available 
outputs from the system identification. 

4. Establishing underlying assumptions. The underlying assumptions are 
needed as common criteria for the analysis cases defined in the sensitivity 
analysis. These assumptions include considerations of the model quality 
assessment, the weighting of updating modes, the maximum number of 
iterations to perform and other assumptions. 

 
From bullet points 2 – 4, the effects of the sensitivity analysis can be 

investigated based on a given model parameterization. The overdetermined system 
ratio is defined as 

 ,    1.0os os
qr r
p

= >  (3.17) 

where q  is the number of measured outputs and p  is the number of parameters. 
Furthermore, the requirement for the overdetermined system is that 1.0osr > . A 



Chapter 3 

78 

low overdetermined system ratio implies updating on a small number of modes, 
whereas a high overdetermined system ratio implies updating on a large number of 
modes for the system considered. 
 Model quality assessment is an important consideration for the underlying 
assumptions. Determining the model quality requires the use of control modes, i.e., 
modes that are not used to update the parameters [4]. The quality of the underlying 
model is thus indicated by the correlation between the results obtained for the 
control modes of the updated model and the measurements. 
 The model updating procedure is included to depend on both the natural 
frequencies and MAC numbers as the modal properties of the structural system. It 
should be noted that performing model updating on large structures, often 
rendering complex models with high parameterization, using natural frequencies 
only, can result in a significant improvement in natural frequencies but no 
improvement or even a decrease in the MAC numbers. Including both natural 
frequencies and MAC numbers in the model updating is advantageous for several 
reasons: it can preferably improve but most importantly avoid a decrease in MAC 
numbers; it ensures stability in the model updating procedure through improved 
mode identification; and it ensures more representative parameter values in the 
final updated model. 

3.4 Finite element model and updating parameters 

3.4.1 Finite element model 
The numerical model is established using the FE software ABAQUS [47]. The 
main structure of the bridge is included in the model, which consists of four major 
parts: two vertical walls, including wall diagonals and wall stiffeners, the bridge 
deck and the lateral bracing system. Secondary steel and non-structural items are 
represented as lumped point masses on the bridge deck to ensure proper mass 
distribution. Specifications provided by technical drawings and site inspections are 
used as the basis for constructing the model. Figure 3.5 shows the numerical 
model. 
 A beam element model representation is established using two-node 
Timoshenko linear beam elements (B31) for the main structure and two-node 
connector elements (CONN3D2) for connections between beam elements of the 
main bridge parts. Three different connection types are utilized with different 
DOFs activated. The connection types account for local geometry and particularly 
joint details such as gusset plate design. The bridge is modelled as simply 
supported with pinned boundary conditions on one end (global translational x, y 
and z-direction constrained) and rolled boundary conditions on the other end 
(global translational x-direction partly constrained by spring elements and global 
translational y and z-direction constrained). The model is divided into 3035 
elements, with a total of 8906 nodes and 15590 DOFs. Altogether, the model is 
established using a straightforward modelling procedure with several 
simplifications included based on engineering judgement. 
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Figure 3.5: Numerical model. 

3.4.2 Updating parameters 
The updating parameters are based on the understanding of the local and global 
structural behaviour of the bridge. Parameters are chosen to mainly account for (1) 
modelling inaccuracies, including model simplifications, such as general 
uncertainties related to modelling and differences in the geometry of the model 
compared to the real structure, and (2) uncertainties in the bridge structural 
properties. The parameters represent regions of the structure where modelling 
inaccuracies and general uncertainties might cause discrepancies in the predictions. 
In this study, four different parameter types are chosen: density, stiffness, mass and 
spring stiffness. The parameter types are related to the material properties of the 
bridge, mass of non-structural items and boundary conditions. 

 The numerical model is parameterized in a total of 10 parameters. Table 3.1 
summarizes the parameters used in the model updating, together with the global 
upper and lower parameter bounds. Engineering judgement is required to set the 
bounds, particularly for complex cases where large uncertainties are inherent in the 
parameters. Two parameters related to the density are included. The density of 
steel, steelρ , is introduced to account for any uncertainty in the mass of the 
structure. This parameter is valid for all the main steel, and consequently, the 
global and semi-global modes of the bridge are sensitive to this parameter. The 
lower part of the wall verticals is originally designed with complex plate geometry 
but is simplified in the numerical model using dummy beam elements with 
increased stiffness. The density of the lower part of the wall verticals, wvlρ , is 
included to account for the underestimation of the mass and is as such expected to 
increase. This parameter mainly influences the global modes of the structure. 

Six stiffness parameters are included in the parameterization. The stiffness of 
the lateral bracing, lbE , is included mainly to account for the simplifications 
introduced in the numerical model, i.e., continuous beam element modelling. The 
stiffness of the bridge deck, bdE , is included to account for both the uncertainties 
and model simplifications. A reasonable engineering simplification is to exclude 
the substructure on the bridge deck from the model, i.e., the rails and wooden 
sleepers. This substructure is connected to the bridge deck structural system by 
steel hooks between the sleepers and the top flange of the longitudinal stringers. 
The substructure represents some additional stiffness to the bridge deck, which is 
initially not considered. This stiffness is highly difficult to estimate due to the large  



Chapter 3 

80 

Table 3.1: Parameters used in the model updating, including global lower and upper 
bounds. 

Parameter Type Location Reference 
value, 0θ  

Global 
lower 
bound, 

minθ  

Global 
upper 
bound, 

maxθ  

Unit 

steelρ  Density 
Main  
steel 

structure 
7850 7065 8635 3kg m  

wvlρ  Density 
Wall 

verticals, 
lower 

7850 6280 15700 3kg m  

lbE  Stiffness Lateral 
bracing 2.10E+11 

 
1.68E+11 

 
2.52E+11 2N m  

bdE  Stiffness Bridge 
deck 2.10E+11 

 
1.47E+11 

 
2.73E+11 2N m  

wgE  Stiffness 
Wall girders, 

top and 
bottom 

2.10E+11 1.68E+11 2.52E+11 2N m  

wdE  Stiffness Wall 
diagonals 

2.10E+11 
 

1.68E+11 
 

2.52E+11 2N m  

wvuE  Stiffness 
Wall 

verticals, 
upper 

2.10E+11 1.68E+11 2.52E+11 2N m  

wvlE  Stiffness 
Wall 

verticals, 
lower 

1.05E+12 2.10E+11 2.10E+12 2N m  

bdm  Mass 
Substructure, 

bridge 
deck 

18500 9250 37000 kg  

xk  Spring 
stiffness 

End 
Support 

BC 
1.00E+06 1.00E+05 1.00E+08 N m  

 
variability observed in the remaining functionality of the connections within the 
substructure and the connections of the substructure to the bridge deck. 

The profiles constituting the truss beams of the bridge are made of riveted 
plates. For the top and bottom wall girders particularly, the profiles are tapered in 
parts of the beam lengths and especially towards the joints for strengthening 
purposes. The profiles are represented as equivalent beam element profiles in the 
numerical model, and any uncertainty with this representation is taken into account 
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by the stiffness of the top and bottom wall girders, wgE . The stiffness of the wall 
diagonals, wdE , is included in the model due to the uncertainty of the joint 
flexibility in the upper and lower parts of the diagonals. Diagonals are connected to 
the wall joints using gusset plate details. The rotational out-of-plane stiffness of 
these diagonals are released in both ends in the numerical model to account for 
these details. Although this is considered a common engineering simplification, the 
true joint stiffness is represented somewhere in the middle of a full release and no 
release. 

The stiffness of the upper and lower wall verticals, i.e., wvuE  and wvlE , 
respectively, represent uncertainties related to model simplifications. The upper 
wall verticals are well represented in the model; however, the lower wall verticals 
are represented by dummy beam elements with estimated stiffness since secondary 
steel is excluded. Since these two parts of the wall verticals are connected, the 
relatively high uncertainty in the lower part may affect the upper part. 
Consequently, either an increase or decrease in parameter values is expected to 
occur for both. All stiffness parameters are sensitive to both the global and semi-
global modes of the structure. Figure 3.6 shows the parameterization of the 
numerical model with respect to the density and stiffness parameters. 

The mass of the bridge deck substructure, bdm , is introduced to account for the 
mass estimation error. This parameter is mostly sensitive to the global modes. 
Furthermore, there is a high degree of general uncertainty related to the spring 
stiffness, xk , representing the roller boundary conditions. No information is 
available on how much functionality remains in the boundary conditions with 
respect to friction. Hence, it is important to include this parameter, although it has 
the least influence on the modes of all parameters included. Figure 3.7 shows the 
parameterization of the numerical model with respect to the spring stiffness 
parameter. The sensitivity of all the updating parameters on the natural frequencies 
and MAC numbers is shown in Figure 3.9. 

In addition to the abovementioned, additional uncertainties inherent in the 
model parameterization of the chosen parameter types are considered. First, all 
secondary steel and structural details are excluded or represented as mass in the 
numerical model. Second, all joints in the bridge are riveted. However, the 
flexibility of these joints is prone to high uncertainty based on operational wear 
during the bridge service life. An imprecision in the rivet connections and a 
deviation in the intended behaviour of individual rivets caused by damage result in 
unwanted joint flexibility and the possibility of nonlinear behaviour during loading. 
Third, unwanted joint behaviour and damage in the structural details of the bridge, 
particularly in the bridge deck, is likely caused by fatigue damage, which is 
common in these types of bridges [50]. Fourth, effective beam lengths comprise 
uncertainty. Last, the material properties of steel that is more than 100 years old 
comprise uncertainty. Notably, there is a systematic error due to the difference 
between the measurements and the numerical model caused by meshing. 
Altogether, these uncertainties are also taken into consideration through the model 
parameterization. Several of the uncertainties mentioned are difficult to quantify 
and thus represent in a numerical model, resulting in the need for introducing 
model simplifications.  
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Figure 3.6: Parameterization of the numerical model considering the material properties. 
The specific parameterized area is highlighted in red. (a) Density parameters. (b) Stiffness 

parameters. 

Figure 3.7: Parameterization of the numerical model considering the spring stiffness 
parameter. 

3.5 Sensitivity analysis 

3.5.1 Basis for evaluation 
Table 3.2 shows the average values of the frequency error, MAC and MMI 
considering the different number of modes before model updating. Table 3.2 shows 
that for all 21 modes, the average frequency error is 5.22 % with an average MAC 
and MMI of 0.72 and 0.33, respectively. It is also observed that the average values 
of the frequency error, MAC and MMI are better for 10 and 12 modes than the 
average values when more modes are considered. This observation clearly 
indicates that the lower modes of the initial numerical model compare better with 
the measured modes from the system identification than the higher modes. 
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Table 3.2: Average values of the frequency error, MAC and MMI before model updating. 

Modes errorf∆  MAC MMI 

10 4.22 % 0.86 0.41 
12 4.85 % 0.83 0.39 
14 5.24 % 0.77 0.36 
15 5.45 % 0.77 0.36 
16 5.39 % 0.77 0.36 
17 5.11 % 0.78 0.36 
All 5.22 % 0.72 0.33 

3.5.2 Underlying assumptions for the sensitivity analysis 
The sensitivity analysis is performed by considering different sets of definitions for 
the local parameter bounds and ratios of overdetermined systems. Two definitions 
for the parameter bounds are considered: rigid (R) and semi-rigid (SR). The semi-
rigid definition provides less constraints on the parameters than the rigid definition. 
However, both definitions ensure that overly large steps are avoided in each 
iteration. The scaled local lower and upper parameter bounds for the rigid and 
semi-rigid definitions, together with the scaled global bounds, are summarized in 
Table 3.3. 

Table 3.3: Scaled local parameter bounds for the rigid and semi-rigid definitions. 

    Rigid (R) Semi-rigid (SR) 

Para-
meter 

Reference 
value 

Global 
lower 
bound 

(scaled)1 

Global 
upper 
bound 

(scaled)1 

Local 
lower 

allowable 
change2 

Local 
upper 

allowable 
change2 

Local 
lower 

allowable 
change2 

Local 
upper 

allowable 
change2 

p 0θ  min,scaledθ  max,scaledθ  ,min,i scaled∆θ  ,max,i scaled∆θ  ,min,i scaled∆θ  ,max,i scaled∆θ  

steelρ  7850 0.90 1.10 -3 % 3 % -3 % 3 % 
wvlρ  7850 0.80 2.00 -10 % 10 % -15 % 15 % 
lbE  2.10E+11 0.80 1.20 -5 % 5 % -10 % 10 % 
bdE  2.10E+11 0.70 1.30 -5 % 5 % -10 % 10 % 
wgE  2.10E+11 0.80 1.20 -5 % 5 % -10 % 10 % 
wdE  2.10E+11 0.80 1.20 -5 % 5 % -10 % 10 % 
wvuE  2.10E+11 0.80 1.20 -3.5 % 3.5 % -5 % 5 % 
wvlE  1.05E+12 0.20 2.00 -10 % 10 % -15 % 15 % 
bdm  18500 0.50 2.00 -15 % 15 % -25 % 25 % 
xk  1.00E+06 0.10 100.00 -50 % 400 % -50 % 900 % 

1 Scale factor of the specific parameter reference value. 
2 Allowable change of the specific parameter value in the current iteration, unless a global 
bound is reached. 
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Altogether, 12 analysis cases are included by considering six different ratios 
and two definitions of the parameter bounds. A set of underlying assumptions are 
included as a basis. First, both natural frequencies and MAC numbers are used 
consistently in the model updating. Second, model updating is performed by 
considering model quality assessment. Two considerations are made when 
choosing control modes: modes 11 and 12 are chosen for general model quality 
assessment, whereas higher end modes are chosen as additional indicators of model 
performance with respect to the structural response outside of the measurement 
frequency range. Hence, for all cases, the model updating is performed by 
including the lowest modes and excluding the control modes from the updating 
algorithm. The largest number of updating modes is 17, leaving a minimum of 4 
control modes. Third, the weighting, εW , is set equal for all considered cases. All 
modes are considered equally important and consequently given equal weighting. 
Natural frequencies are prioritized and weighted 2/3 per mode, whereas MAC 
numbers are weighted 1/3 per mode. Fourth, a maximum of 8 iterations are used in 
each case. If a global bound is exceeded, then the parameter value is set equal to 
the limit of this bound before the minimization is carried out. To avoid model 
updating with parameters exceeding their global bounds, the analysis is terminated 
if the global bound of a parameter is exceeded two consecutive times. Last, to 
improve mode identification both during the perturbation analysis and during the 
iterations, local numerical modes are filtered out before performing the mode 
matching. A total of 250 modes are extracted in each numerical analysis. 
Combining the filtering of the local numerical modes with the MMI in the model 
updating process is effective, particularly for numerical model representations 
resulting in many local modes. 

3.5.3 Results 
The results obtained from the sensitivity analysis are summarized in Table 3.4 and 
Table 3.5 for the rigid and semi-rigid definitions, respectively. Average values of 
the frequency error, MAC and MMI in addition to the change in the objective 
function, ( )*J θ∆ , and the number of iterations used are shown for the 12 cases 
considered. The results obtained are based on iterations in the updating algorithm 
until a fair stabilization of the objective function is reached. 

Table 3.4: Results from the sensitivity analysis for the rigid parameter bounds definition. 

  errorf∆  (%) MAC MMI   

Modes Ratio 
osr  

Updating 
modes 

All 
modes 

Updating 
modes 

All 
modes 

Updating 
modes 

All 
modes 

Change 
in J* 

No. of 
iterations 

10 2.0 4.38 % 5.21 % 0.89 0.74 0.42 0.34 -23.5 % 3 
12 2.4 4.27 % 4.25 % 0.88 0.76 0.42 0.36 -49.9 % 6 
14 2.8 5.59 % 4.82 % 0.81 0.73 0.38 0.34 -36.7 % 3 
15 3.0 5.34 % 5.63 % 0.84 0.77 0.39 0.36 -50.4 % 7 
16 3.2 4.66 % 5.21 % 0.81 0.74 0.38 0.35 -37.4 % 8 
17 3.4 4.51 % 4.46 % 0.80 0.74 0.38 0.35 -15.3 % 3 
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Table 3.5: Results from the sensitivity analysis for the semi-rigid parameter bounds 
definition. 

  errorf∆  (%) MAC MMI   

Modes Ratio 
osr  

Updating 
modes 

All 
modes 

Updating 
modes 

All 
modes 

Updating 
modes 

All 
modes 

Change 
in J* 

No. of 
iterations 

10 2.0 3.76 % 4.24 % 0.91 0.74 0.44 0.35 -43.7 % 7 
12 2.4 3.60 % 3.85 % 0.86 0.72 0.41 0.34 -45.6 % 7 
14 2.8 4.81 % 5.12 % 0.82 0.71 0.39 0.33 -38.3 % 5 
15 3.0 4.76 % 4.07 % 0.83 0.75 0.39 0.35 -51.5 % 3 
16 3.2 3.89 % 3.84 % 0.80 0.75 0.38 0.35 -30.8 % 6 
17 3.4 3.88 % 3.99 % 0.82 0.75 0.39 0.35 -42.8 % 7 

 
From Table 3.4 and Table 3.5, it is clearly seen that the choice of definition for 

the parameter bounds affects the results. An evaluation of the results is performed 
by considering both the decrease in the objective function and the overall results in 
the modal properties, i.e., the average frequency error, MAC and MMI. The 
decrease in the objective function is based on the updating modes only. Hence, to 
fully assess the model quality, the evaluation of the results is mainly based on the 
overall modal properties considering all modes, which takes into consideration 
both the updating modes and the control modes. 
 Two general observations are made. First, analysis cases using a semi-rigid 
definition generally provide better results for the modal properties than cases using 
a rigid definition. By considering all modes, the average frequency errors obtained 
for analysis cases using the semi-rigid definition are all lower than for cases using 
the rigid definition, except when considering the case 2.8osr = . Furthermore, there 
is little variation in the average MAC and MMI considering all modes for the 12 
cases considered, ranging from 0.71 to 0.77 for MAC and 0.33 to 0.36 for MMI. 
Second, a large variability in the results can be obtained considering a specific 
overdetermined system ratio but using different parameter bounds definitions. This 
is particularly observed in the case 3.2osr = , where the results obtained for the 
MAC and MMI are similar, considering all modes for the rigid and semi-rigid 
definitions. However, a large difference in the results is obtained considering the 
average frequency error. For this analysis case, using the rigid definition provides 
practically no improvement in the average frequency error, whereas using the semi-
rigid definition provides the best improvement of all 12 cases considered, 
compared to the initial numerical model. 
 For the cases 2.0osr = , 3.0osr = , 3.2osr =  and 3.4osr = , the best results are 
obtained using the semi-rigid definition when considering the overall results in the 
modal properties. Similarly, for the cases 2.4osr =  and 2.8osr = , the best results 
are obtained using the rigid definition. Furthermore, a majority of the 
overdetermined system ratios obtain a larger decrease in the objective function for 
the semi-rigid definition compared to the corresponding rigid definition. For the 
cases rendering the best results, the significance of the overdetermined system ratio 
is seemingly small considering the improvement in the modal properties of the  
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Figure 3.8: Ratio of parameter values. 

updated models. As such, improved results by evaluating the modal properties only 
can be obtained with variations in the overdetermined system ratio and different 
parameter bound definitions. However, the change in parameter values for the 
updated models is of importance. Many of the parameters affect the system in a 
similar way, and several combinations of parameters can solve the optimization 
problem. Hence, the choice of final system overdetermined ratio to use should be 
based on the improvement in the overall modal parameters combined with how the 
parameter values are changed in the model updating. 
 The ratio of the parameter values obtained for the analysis cases with the best 
results are shown in Figure 3.8. From this figure, Table 3.4 and Table 3.5, it is 
observed that a large variability in updated parameter values can be obtained 
despite fairly similar results in the modal properties. Parameters that are expected 
to obtain small changes are the density of steel, steelρ , and the stiffness of the wall 
girders and wall diagonals, i.e., wgE  and wdE , respectively. All cases obtain 
reasonable results with respect to these parameters. The density of the lower wall 
verticals, wvlρ , and mass of the bridge deck, bdm , can both increase or decrease 
and can cancel each other out in the optimization. However, a large reduction in 
both parameters is unlikely, which excludes the case 3.4( )osr SR= . The bridge 
deck stiffness, bdE , can be used as a control parameter. Based on prior discussions, 
an increase in this updated parameter value is expected. Two cases obtain an 
increase in the bridge deck stiffness: 3.2( )osr SR=  and 2.8( )osr R= . For the latter, 
the other parameter values obtained are also acceptable; however, the overall 
results in the modal properties are not satisfactory. The remaining cases, i.e., 

2.0( )osr SR= , 2.4( )osr R=  and 3.0( )osr SR= , all result in a decrease in the bridge 
deck stiffness. Furthermore, less realistic values for the other parameters are 
obtained for these cases than for the case 3.2( )osr SR= . 
 From the sensitivity analysis, the analysis case 3.2( )osr SR=  clearly provides 
the most reasonable parameter values. Moreover, this case also renders the best 
results of the modal properties, particularly considering the natural frequencies that 
were weighted higher than the MAC numbers in the model updating. It is, 
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however, observed that this case has the smallest decrease in the objective function 
of all cases for the semi-rigid definition, and it has less decrease in the objective 
function than the corresponding analysis case for the rigid definition. This 
discrepancy is due to two low MAC values from modes 4 and 6 that penalize the 
objective function result. However, it has little effect on the average MAC result 
and is thus not reflected in the results presented in Table 3.5. A further evaluation 
of the results for this case is provided in the following section. 

3.6 Model updating results 

3.6.1 Parameter sensitivities and weighting 
For the analysis case 3.2( )osr SR= , 16 modes are used, resulting in a total of 32 
outputs. The remaining 5 modes are used as control modes for the assessment of 
the model quality. Two small changes in the parameter bounds have been 
implemented for the analysis case compared to Table 3.3. The stiffness of the 
lateral bracing, lbE , is decreased from 10 % to 5 %, and the upper bound of the 
spring stiffness is decreased from 900 % to 400 %. These changes have minor 
effects on the results. 
 Normalized sensitivity plots of the natural frequencies and MAC numbers with 
respect to the updating parameters are shown in Figure 3.9. The normalized 
sensitivity plots illustrate how the parameters influence the natural frequencies and 
MAC numbers of the modes used in the model updating. The sensitivity plots 
change for each iteration in the model updating process. In Figure 3.9, the 
sensitivity plots for the initial model are shown. It is observed that all parameters  

Figure 3.9: Normalized sensitivity plots of the frequencies (left) and MAC numbers (right) 
for the updating modes. The plots are normalized with respect to the frequencies and MAC 

individually.  
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Figure 3.10: Weighting of the modes in the model updating. 

influence both the natural frequencies and MAC numbers, except for xk , which is 
shown to have a minor influence. Although this parameter has little influence in the 
initial part of the model updating, all parameters are included in the model updating 
process. 

The weighting implemented for the updating modes is shown in Figure 3.10. 
The weighting is given as 0.04167 and 0.02083 for the natural frequencies and 
MAC numbers per mode, respectively, and sum to 1 by considering the outputs of 
all modes. 

3.6.2 Model updating results 
Altogether, six iterations in the analysis are performed. The final value of the 
objective function decreased from 0.0302 to 0.0209, resulting in a decrease of 30.8 
%. The average absolute frequency errors for the initial and updated models are 
shown in Figure 3.11. The dashed horizontal lines represent the average absolute 
frequency error considering all modes for the initial and updated model, which is 
decreased from 5.22 % to 3.84 %. By considering the updating modes only, a 
decrease in the average absolute frequency error from 5.38 % to 3.89 % is 
obtained, whereas a decrease from 4.67 % to 3.69 % is obtained by considering the 
control modes only. 
 Figure 3.12 shows the MAC numbers between the measured and numerical 
modes for the initial and updated models. In general, the average MAC increased 
from 0.72 to 0.75 for all modes, whereas it increased from 0.77 to 0.80 and from 
0.54 to 0.58 for the updating modes and control modes, respectively. An 
improvement in the MAC numbers is particularly seen for higher modes, i.e., from 
modes 11 to 21. 
 The MMI is used to assess the overall performance of the modal properties in 
the model updating. An identical match in the natural frequency and MAC between 
the numerical model and the measurements results in the maximum MMI value of 
0.5. The MMIs for the initial and updated models are shown in Figure 3.13. The 
dashed horizontal lines represent the average MMI considering all modes for the 
initial and updated model, which is increased from 0.33 to 0.35. By considering the 
updating modes and control modes separately, an increase in the MMI from 0.36 to 
0.38 and from 0.25 to 0.27 is obtained, respectively. It should be noted that the  
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Figure 3.11: Average absolute frequency error for the initial and updated model. Control 
modes are highlighted in red. 

Figure 3.12: MAC numbers between the measured and numerical modes with control 
modes highlighted in red. (a) Initial model. (b) Updated model. 

Figure 3.13: MMI for the initial and updated model. Control modes are highlighted in red. 
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MMI is generally higher for the lower modes, indicating a larger difficulty in 
obtaining a good correspondence between measurements and numerical models for 
the higher modes. 

Detailed results for the natural frequencies, MAC numbers and MMI before 
and after the model updating are summarized in Table 3.6. In summary, the results 
show that good improvement is obtained from the model updating when 
considering all modes. The best improvement is obtained when considering the 
reduction in the average absolute frequency error, as expected. A fair improvement 
is obtained in the MAC numbers, which in general are less sensitive than the 
natural frequencies. 

Table 3.6: Natural frequencies, MAC and MMI for the initial and updated model. 

 Frequency, f (Hz) MAC MMI 

Mode Mea-
sured Initial Error Up-

dated Error Initial Up-
dated Change Initial Up-

dated 

1 3.15 3.23 2.63 % 3.25 3.13 % 0.99 0.99 0.00 0.48 0.48 
2 6.20 6.55 5.60 % 6.22 0.25 % 0.89 0.89 0.00 0.42 0.45 
3 6.90 6.38 -7.55 % 6.62 -4.04 % 0.78 0.93 0.15 0.35 0.44 
4 7.29 8.17 12.17 % 7.78 6.68 % 0.77 0.60 -0.17 0.32 0.26 
5 7.41 7.35 -0.76 % 7.03 -5.09 % 0.92 0.82 -0.10 0.46 0.38 
6 8.07 7.86 -2.60 % 7.51 -6.92 % 0.85 0.66 -0.19 0.41 0.29 
7 8.72 9.15 4.98 % 8.71 -0.08 % 0.92 0.91 -0.01 0.44 0.45 
8 9.36 9.49 1.33 % 9.03 -3.60 % 0.92 0.91 -0.01 0.45 0.44 
9 10.66 10.73 0.67 % 10.45 -1.90 % 0.92 0.93 0.01 0.46 0.45 

10 10.85 10.43 -3.91 % 10.08 -7.15 % 0.66 0.65 -0.01 0.31 0.29 
11 12.50 13.62 8.99 % 12.35 -1.20 % 0.38 0.65 0.27 0.15 0.32 
12 12.82 13.25 3.39 % 12.69 -1.02 % 0.61 0.79 0.17 0.29 0.39 
13 14.20 15.18 6.93 % 14.43 1.63 % 0.47 0.76 0.29 0.20 0.37 
14 15.96 17.39 9.02 % 16.47 3.22 % 0.86 0.85 -0.02 0.39 0.41 
15 17.08 16.30 -4.55 % 15.97 -6.46 % 0.45 0.63 0.18 0.20 0.28 
16 18.95 20.96 10.66 % 20.08 6.01 % 0.40 0.59 0.19 0.15 0.26 
17 23.60 25.56 8.34 % 24.64 4.42 % 0.79 0.77 -0.02 0.35 0.36 
18 24.01 25.08 4.47 % 24.40 1.60 % 0.79 0.87 0.08 0.37 0.43 
19 26.71 26.89 0.70 % 29.01 8.60 % 0.82 0.74 -0.08 0.40 0.33 
20 28.44 30.46 7.09 % 29.47 3.62 % 0.37 0.35 -0.02 0.15 0.16 
21 31.81 32.83 3.18 % 33.09 4.01 % 0.53 0.40 -0.13 0.25 0.18 

 
An improvement in both the average absolute frequency error and MAC is 

obtained for the control modes, which indicates good model quality. By 
considering the overall assessment of the modal properties shown by the MMI, 
altogether 16 modes improve or exhibit no or a negligible decrease (i.e., less than 
or equal to 0.02 decrease). The best improvement is obtained for the higher modes; 
for modes 11 to 21, improvement is obtained in all modes, except for modes 19 and 
21. Less improvement is obtained in the lower modes, i.e., modes 1 to 10, where 3 
modes improve and 4 modes demonstrate no or a negligible decrease. Although all 



3.6 Model updating results 

91 

modes are considered equally important in this study, obtaining improvement in the 
higher modes is a good result considering the overall assessment. 

The results of the updated parameter values, including the change from the 
initial parameter values, are summarized in Table 3.7. For the density parameters, a 
modest change in the parameter values is obtained. The density of the steel, steelρ , 
highly influences all modes, and an increase of 2.3 % is obtained. This is a 
reasonable change, considering the material property itself but also considering all 
details of the structure such as the rivets and plates not being included in the 
numerical model. The density of the lower part of the wall verticals, wvlρ , 
increased 5.8 %. This increase is highly relevant since this part of the structure 
consists of steel plates but is simplified in the numerical model using dummy beam 
elements. 

Table 3.7: Parameter values from the initial and updated model, including change. 

Parameter Reference 
value Updated value Change Percentage 

change 

steelρ  7850 8032 182 2.3 % 
wvlρ  7850 8305 455 5.8 % 
lbE  2.10E+11 1.89E+11 -2.14E+10 -10.2 % 
bdE  2.10E+11 2.46E+11 3.57E+10 17.0 % 
wgE  2.10E+11 2.02E+11 -8.20E+09 -3.9 % 
wdE  2.10E+11 2.20E+11 9.87E+09 4.7 % 
wvuE  2.10E+11 1.89E+11 -2.14E+10 -10.2 % 
wvlE  1.05E+12 7.72E+11 -2.78E+11 -26.5 % 
bdm  18500 20963 2463 13.3 % 
xk  1.00E+06 1.00E+08 9.90E+07 9900.0 % 

 
For the stiffness parameters, reasonable changes in the parameter values are 

obtained. The stiffness of the lateral bracing, lbE , decreased by 10.2 %. This 
reduction can be attributed to the continuous beam element modelling made; the 
pin connections in all bracing cross points are excluded in the numerical model. An 
increase in the bridge deck stiffness, bdE , of 17.0 % is obtained. This increase is as 
expected due to the engineering simplification made of excluding the substructure 
of rails and wooden sleepers on the bridge deck, adding stiffness that initially is not 
taken into consideration. The wall girder stiffness, wgE , obtained a decrease of 3.9 
%, well within reasonable changes. This change is attributed to simplifications 
from representing the model with equivalent beam element profiles. The stiffness 
of the wall diagonals, wdE , obtained an increase of 4.7 %. This increase in stiffness 
is reasonable considering that the rotational out-of-plane stiffness of all diagonals 
are released in both ends in the numerical model by accounting for the gusset plate 
details. 

The largest changes in stiffness values are obtained for the lower and upper 
vertical wall stiffeners, with a decrease of 10.2 % for the upper part, wvuE , and a 
decrease of 26.5 % for the lower part, wvlE . The stiffness parameter for the lower 
part has the largest uncertainty of all stiffness parameters, and the initial 
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assumptions based on estimation were clearly too stiff. However, the change is 
within the defined global limit. Furthermore, this change clearly also affects the 
stiffness of the upper part, and it is thus reasonable to reduce the stiffness of the 
upper part when a reduction in the lower part is obtained. 

The mass of the bridge deck substructure is increased by 13.3 %, well within 
the limits defined. Uncertainty is inherent in the estimation of this mass, especially 
related to the density of the wooden sleepers and the total mass of structural details 
such as the rivets, bolts and steel hooks. The largest change is observed for the 
spring stiffness parameter, xk , which reaches its upper global limit. There are two 
main explanations for this change: first, there is a high uncertainty in this 
parameter; and second, this is the parameter with the least influence on the natural 
frequencies and MAC numbers, and consequently, large changes are required to 
influence the modal properties. The global limits could be extended; however, it is 
unlikely that the boundary conditions that were originally designed as rollers with 
little or no friction in the longitudinal direction completely lost their function. As 
such, this parameter change is accepted, but caution should be taken in accepting 
this as the definite result. 

In summary, a fair improvement in the modal properties is obtained from 
model updating. The improvement is obtained based on the development of 
parameter values that are highly realistic and generally accepted. A further 
improvement can as such only be obtained with a different parameterization of the 
model. 

3.7 Discussion 
From the sensitivity analysis, the following general observations are made: 

• Semi-rigid local bounds on the parameters are preferred over rigid local 
bounds. Less constraints on the parameters, however, within reasonable 
values, allow for larger parameter adjustments in each iteration. This is 
more likely to ensure convergence towards an optimal solution rather than 
a suboptimal solution, although the solution may be based on a local 
minimum of the objective function. Moreover, including both local and 
global parameter bounds increases the control of the parameters in the 
updating process. 

• Using a low overdetermined ratio, by updating on a few modes, improved 
the modal properties of all modes on average; however, it did not provide 
the best improvement in the modal parameters or reasonable parameter 
values. Using a high overdetermined system ratio yielded reasonable 
parameter values and the best improvement in the modal properties 
considering all modes on average, particularly for the higher modes of the 
structure. 

• By considering the proposed procedure in a structured approach, allowing 
for an extensive number of analysis cases to be evaluated, the optimal 
solution for the model updating with respect to an improvement in modal 
properties is established with high confidence. Further improvement in 
modal properties would require a different model parameterization. 
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• A large variability in the parameter values can be obtained when 
considering different combinations of overdetermined system ratios and 
rigidity of parameter bounds, leading to adequate results in terms of 
improved modal properties. These effects clearly demonstrate that care 
should be taken in allowing the model updating algorithm to decide upon 
the final parameter values without any predefined expectation or 
knowledge of what the final updated parameter values should be. These 
effects also demonstrate the importance of the sensitivity analysis for 
improved model updating results. 

 
Many uncertainties are present for bridges that are approaching or have 

exceeded their initial design life. The numerical model is established using a 
straightforward modelling procedure with several simplifications included based on 
engineering judgement. As a result, there is a certain expectation on the outcome of 
the parameter values from the model updating, which strongly depends on the 
model parameterization. For the considered case study, the validated model is 
intended for hybrid SHM using machine learning for detecting relevant damages of 
existing steel bridges that are approaching or have exceeded their original design 
life. As such, the reduced complexity of the validated model is beneficial for the 
large number of numerical simulations to be performed. 
 In general, the goal is to obtain an updated model with the best possible 
improvement in the modal properties combined with the most reasonable and 
realistic parameter values. Improved modal properties and realistic parameter 
values depend on the overdetermined system ratio and rigidity of the local 
parameter bounds. From the sensitivity analysis, cases with a high overdetermined 
system ratio combined with a semi-rigid parameter bounds definition provided the 
best results. Although a high overdetermined system ratio was found to provide the 
best results in this case study, it does not necessarily need to be valid for other case 
studies. The overdetermined system ratio strongly depends on the number of 
parameters for the model considered and the number of modes that are available 
from the system identification. As such, a generalization of the overdetermined 
system ratio to use cannot be made since this is highly system specific. 
Nevertheless, it is recommended to start with a high overdetermined system ratio in 
the model updating process, as this can ensure a good improvement in modal 
properties combined with acceptable parameter values, in addition to obtaining an 
updated model that is likely to be improved over a wide frequency range. For 
parameter bounds, a semi-rigid definition is generally preferred over a rigid 
definition. Establishing parameter bounds definitions depends on the type of 
parameters and the uncertainty associated with these, the number of parameters and 
model parameterization. Furthermore, setting parameter bounds requires 
engineering judgement to a large extent. 

 As such, for structures with similar applications as presented in this study, 
where higher modes are relevant and a wide frequency range in the modal 
properties are of interest for future applications, it is recommended to include a 
structured approach using a sensitivity analysis by combining the assessment of 
high overdetermined system ratios with a corresponding general semi-rigid 



Chapter 3 

94 

definition for parameter bounds in model updating. Furthermore, it is advised to 
include a verification of the final numerical model using other results such as 
strain, if such data are available, for increased model validation purposes. 

3.8 Conclusion 
This paper presented a procedure to obtain an optimal solution from sensitivity-
based model updating with respect to an improvement in the modal properties, 
such as the natural frequencies and mode shapes, combined with realistic parameter 
values. The procedure consists of performing a sensitivity analysis, which 
considers variations in the overdetermined system ratios combined with local 
parameter bounds definitions, in a structured approach. 

 An experimental study and system identification of a full-scale steel bridge 
identified 21 modes to be used in the model updating process. The numerical 
model was parameterized in a total of 10 parameters taking into consideration 
general uncertainties and model simplifications to obtain a model with reduced 
complexity. Sensitivity-based model updating was performed based on the natural 
frequencies and MAC numbers, and the effects from the sensitivity analysis were 
investigated. The effects showed that considering a high overdetermined system 
ratio with a corresponding general semi-rigid definition for parameter bounds 
provides an optimal solution for the model updating with respect to the 
improvement in modal properties based on realistic and acceptable parameters. 
From the optimal solution, the average absolute frequency error decreased from 
5.22 % to 3.84 %, and the MAC numbers improved from 0.72 to 0.75 considering 
all modes, including the control modes. By considering the uncertainties inherent 
in the structure and the subsequent establishment of the numerical model with 
model simplifications, the results obtained are in acceptable agreement with the 
measurements. 
 The main limitation of the procedure presented is the need for an adequate 
number of modes established from the system identification to be included in the 
model updating. Depending on the case study considered, many analysis cases may 
be required to find the optimal solution with respect to improved modal properties 
combined with reasonable parameters. Nevertheless, the procedure presented in 
this paper demonstrates that an optimal solution can be effectively established. The 
procedure can be applied to similar case studies, irrespective of the structure under 
consideration and the corresponding parameterization to be made. Furthermore, the 
procedure is applicable to case studies for model updating in a wide frequency 
range where the numerical model is parameterized in a fair number of parameters 
and an adequate number of modes are available from the system identification. 
Through the experimental case study, it is demonstrated that for an existing bridge 
with considerable uncertainties, a numerical model with several simplifications can 
be established, and a subsequent validated model with acceptable improvement 
from the model updating can be achieved. 
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Part 3 
 
The content of this part is submitted to an international peer-reviewed journal: 
 
Svendsen, B. T., Øiseth, O., Frøseth, G. T., and Rønnquist, A. (2021). A hybrid 
structural health monitoring approach for damage detection in steel bridges under 
simulated environmental conditions using numerical and experimental data. 

Abstract 
This paper presents a novel hybrid structural health monitoring (SHM) framework 
for damage detection in bridges using numerical and experimental data. The 
framework is based on the hybrid SHM approach and combines the use of a 
calibrated numerical finite element (FE) model to generate data from different 
structural state conditions under varying environmental conditions with a machine 
learning algorithm in a supervised learning approach. An extensive experimental 
benchmark study is performed to obtain data from a local and global sensor setup 
on a real bridge under different structural state conditions, where structural damage 
is imposed based on a comprehensive investigation of common types of steel 
bridge damage reported in the literature. The experimental data are subsequently 
tested on the machine learning model. It is demonstrated that relevant structural 
damage can be established based on the hybrid SHM framework by separately 
evaluating different cases considering natural frequencies, mode shapes and mode 
shape derivatives. Consequently, the work presented in this study represents a 
significant contribution toward establishing SHM systems that can be applied to 
existing steel bridges. The proposed framework is applicable to any bridge 
structure in which relevant structural damage can be simulated and experimental 
data obtained. 
 
Keywords: Structural health monitoring (SHM), hybrid approach, damage 
detection, machine learning, support vector machine (SVM), finite element (FE) 
model, statistical model development, experimental study, bridge, system 
identification, stochastic subspace identification (SSI), modal parameters, fatigue. 
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Chapter 4 

4.1 Introduction 
The aim of structural health monitoring (SHM) systems is to identify damage at an 
early stage to avoid the failure of structural components or systems. For bridges, 
SHM systems can be used to increase life-safety benefits through continuous 
monitoring and economic benefits through improved inspection efficiency and 
minimized unplanned downtime. The many bridges in need of lifetime extension 
comprise a major concern worldwide, while demands on operational conditions 
such as traffic loads, speed and intensity are increasing. For steel and composite 
bridges, the most common damage types are related to fatigue occurring in or 
below the bridge deck [1]. Furthermore, variability in the operational and 
environmental conditions affects the structural response and can mask changes 
caused by damage [2]. With the large number of existing steel and composite 
bridges in the infrastructure, there is a need for SHM systems that can detect both 
local and global structural damage while taking the variability in the operational 
and environmental conditions into consideration. To further develop the 
possibilities of employing SHM systems for such bridges, research should be 
focused on tests of real structures in their operating and environmental conditions 
rather than numerical or laboratory studies of representative structures [2]–[5]. 
 SHM, defined as the process of implementing an automated and online strategy 
for damage detection in structures [6], has traditionally been performed using two 
main approaches: model-based and data-based [7], [8]. In the model-based 
approach, a numerical finite element (FE) model is established, and model 
updating is performed in two stages. In the first stage, an initial numerical model is 
updated based on data from the undamaged condition to obtain a validated 
numerical model or reference model. In the second stage, the reference model is 
updated based on data from the damaged condition. Damage detection can then be 
performed based on the change in the updating parameters. Although, according to 
the hierarchical structure of damage states [9], [10], the model-based approach 
allows for level I (existence), level II (location) and level IV (extent) damage 
detection, there are several disadvantages with this approach. First, a numerical 
model must be developed, parameterized and validated. Parameterizing the 
numerical model can be challenging, particularly for the selection of the parameters 
associated with damage. Second, there are inherent uncertainties in the application 
of numerical models for damage detection due to modeling inaccuracies, including 
model simplifications and uncertainties in the structural properties. Third, 

4 A hybrid structural health monitoring approach for 
damage detection in steel bridges under simulated 
environmental conditions using numerical and 
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variability in operational and environmental conditions affecting the structural 
response may mask the changes caused by damage, inducing uncertainty in the 
model updating process. Last, the model updating process depends on the 
measured outputs including, but not limited to, the modal properties. The 
sensitivities of the damage detection results to the number of measured outputs and 
the accuracy and weighting of these outputs in the model updating are limitations. 
Applications of the model-based approach have been reported by considering 
relevant structural damage in concrete bridges [11]–[15]. Furthermore, Behmanesh 
and Moaveni successfully applied the model-based approach using simulated 
damage in a composite steel-concrete footbridge [16]. From these applications, 
large damage resulting in a significant global effect on the structures has been 
considered. However, due to the many disadvantages and limited possibilities for 
detecting local structural damage, the model-based approach is considered 
impractical in the context of SHM for large and complex structures such as bridges. 
 In the data-based approach, however, a statistical model based only on 
experimental data is established using machine learning algorithms. Damage 
detection can be performed by analyzing the distribution of damage-sensitive 
features using unsupervised or supervised learning, referred to as statistical model 
development [17]. In the context of SHM, unsupervised learning refers to the 
situation where data are available only from the undamaged condition of the 
structure, while supervised learning refers to the situation where data are available 
from both undamaged and damaged conditions. Although there are no 
requirements for developing and validating a numerical model in the data-based 
approach, there are two main challenges that remain, both of which are related to 
the lack of data. First, unsupervised learning is often required. This challenge is 
evidenced by the lack of data from the damaged conditions, which are rarely 
available for bridges. Second, data normalization, referred to as the process of 
separating changes caused by operational and environmental conditions from 
changes caused by structural damage [18], must be considered. This challenge is 
evidenced either by the lack of baseline data from the undamaged condition, which 
requires response measurement data where all operational and environmental 
variations are included, or by the lack of direct measurement data from the 
parameters related to the operational and environmental conditions. There are 
several applications of the data-based approach that use numerical models or test 
structures that are relevant to bridges and where variability in the operational and 
environmental conditions are considered [19]–[22]. Moreover, applications have 
been applied to the Z24 prestressed concrete bridge by considering relevant 
structural damage [23]–[25]; however, these are currently the only examples of 
applications to real bridges. From the applications of the data-based approach, it is 
evident that unsupervised learning algorithms are primarily applied, allowing for 
level I (existence) and, to some extent, level II (location) damage detection. 
Furthermore, the performance of unsupervised learning algorithms strongly 
depends on the amount and variability of the data. These observations can be 
viewed as limitations of the data-based approach. Consequently, to further develop 
the field of SHM for application to bridges, a framework that can overcome these 
limitations is needed. 
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 The hybrid SHM approach, which takes principles from the model-based and 
data-based approaches into consideration, can be used to overcome such 
limitations. There are different ways to utilize this approach; however, a common 
understanding is that numerical model(s), experimental data, and machine learning 
are integrated in some way. There are few studies in the literature that have 
considered this approach. Malekzadeh et al. [26] proposed a hybrid approach using 
supervised learning, but the experimental study was carried out using a bridge 
structure in the laboratory, where variability in the operational and environmental 
conditions was not included. On the other hand, Figueiredo et al. [27] presented a 
hybrid approach for damage detection in bridges by considering the variability in 
the operational and environmental conditions. This approach consisted of using a 
numerical model to enrich the monitoring data from the undamaged condition to 
improve damage detection using an unsupervised learning algorithm. This study 
was based on data from the Z24 bridge. In general, most practical applications of 
the SHM approaches are based on concrete bridges, particularly on the Z24 
benchmark study. Consequently, in the literature, there is a need for studies in 
which SHM approaches are tested experimentally on steel bridges. 

This paper presents a novel hybrid SHM framework for damage detection in 
bridges. The framework is based on the hybrid SHM approach and combines the 
use of a numerical model to generate data from different structural state conditions 
under varying environmental conditions with machine learning algorithms. As 
such, the numerical model is used as a proxy for the experimental structure to 
generate training data on which statistical model development can be performed; 
the test data acquired experimentally can subsequently be used to diagnose the 
structure. An extensive experimental benchmark study is carried out on a full-scale 
steel bridge where relevant structural damage is implemented. Supervised learning 
is performed, allowing for level I (existence), level II (location) and level III (type) 
damage detection. The feasibility of the framework is discussed with respect to its 
potential for detecting local and global structural damage and its applicability to 
similar bridges that are currently in service. 

4.2 The hybrid SHM framework 

4.2.1 Operational and environmental variability 
Variability in the operational and environmental conditions is one of the main 
challenges in deploying an SHM system for bridges in operation. For bridges, the 
operational conditions mainly include live loads that are typically caused by traffic, 
while environmental conditions include wind loading, temperature effects and 
humidity. 
 The most influential source of variability in the modal properties is due to 
temperature effects. Several studies have reported the variation in the modal 
properties of bridges caused by temperature. In general, variations within 5–10% of 
the fundamental natural frequencies can be expected on a daily and seasonal basis 
[5], [28]–[31]. However, several studies in the literature have reported larger 
variations in the natural frequencies [32]–[36]. The bridges experiencing large 
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variations in the natural frequencies include certain concrete and composite steel-
concrete highway and railway bridges located in cold climates. A step-like 
variation in the natural frequencies can be obtained for such bridges during a yearly 
season, particularly around or below the freezing point. Such changes in the natural 
frequencies are explained by a contribution to the global stiffness of the structure, 
generally generated by the asphalt layer in highway bridges and the ballast in 
certain types of railway bridges. 
 Commonly, changes in the lower modes of the structure are reported, typically 
the first 2–6 modes, and the general observation is that the natural frequencies 
decrease with increasing temperatures. With the variability in operational and 
environmental conditions presenting a challenge for deploying SHM systems for 
bridges, this effect and the subsequent influence on damage detection must be 
addressed in the hybrid SHM framework. 

4.2.2 The hybrid SHM framework 
The proposed hybrid SHM framework consists of several steps that are conducted 
with the aim of determining whether damage is present in the structure. The 
framework concept, shown in Figure 4.1 simulates all possible outcomes for the 
relevant damage states of the structure based on a calibrated numerical FE model, 
including simulations of the variations in the operational and environmental 
conditions, and uses the outcome of the simulations as an input to obtain a machine 
learning model. Experimental data are subsequently tested on the machine learning 
model to provide decision support or structural diagnosis of the structure, i.e., to 
determine whether damage is present in the structure. Herein, a damage state 
includes a relevant damage type at a specific location in the structure. 

The hybrid SHM framework assumes the existence of an initial period for 
structural monitoring. The purpose of the structural monitoring step is twofold. 
First, structural monitoring provides data as an input for model updating to obtain a 
calibrated FE model. Such a calibrated FE model that accurately represents the 
structure is needed to produce meaningful data. Second, structural monitoring 
provides data to the machine learning model for subsequent structural diagnosis. 
Such data can be obtained from a global or a local sensor system, or both, on the 
structure. It is acknowledged that data enrichment, although not considered in this 
study, can be applied to improve the machine learning model. As such, the 
presented framework can be used as a dynamic learning process if the machine 
learning model is updated continuously with undamaged data, i.e., if the structural 
diagnosis results in true negative (TN) indications of damage. The presented 
framework is applicable to new and existing bridge structures. 

In this study, the hybrid SHM framework is demonstrated through damage 
detection of a bridge. As such, the remainder of the paper is organized into three 
parts. In the first part, represented by the left side of the hybrid SHM framework 
flowchart, an extensive experimental benchmark study performed on a full-scale 
steel bridge to obtain acceleration time series from a global and local sensor setup 
is presented. Measurements are obtained before and after relevant structural 
damage is imposed on the bridge. Operational modal analysis (OMA) is performed 
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Figure 4.1: Flowchart of the hybrid SHM framework. The dashed lines indicate a possible 
connection. 

as a part of the feature extraction process to obtain the modal parameters of the 
bridge. The data obtained from the experimental study provide samples for the test 
set in the machine learning model. The second part, represented by the right side of 
the hybrid SHM framework flowchart, describes the process for generating training 
data and obtaining the machine learning model. A numerical FE model is first 
established, and model updating is performed to obtain a calibrated FE model. 
Different damage types are imposed on all the relevant locations in the FE model, 
and numerical simulations that take variations in the environmental conditions into 
consideration are carried out to obtain data from the damage states. Importantly, 
numerical simulations of the baseline, or undamaged condition, are performed. 
Furthermore, the feature extraction process and the machine learning algorithm 
applied are described. In the final part, the results from the structural diagnosis are 
presented, and an evaluation of the hybrid SHM framework is provided. 
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Figure 4.2: The Hell Bridge Test Arena. 

4.3 Experimental study 

4.3.1 The Hell Bridge Test Arena benchmark study 
The Hell Bridge Test Arena, shown in Figure 4.2, is a steel riveted truss bridge 
formerly in operation as a train bridge. The bridge is used as a full-scale damage 
detection test structure [37]. Figure 4.3 shows an overview of the bridge structural 
system, which is composed of the two bridge walls, bridge deck and lateral 
bracing. The bridge was used for an extensive experimental benchmark study 
carried out in 2020, where it was damaged in a number of damage scenarios while 
structural monitoring was performed. Table 4.1 summarizes the different structural 
state conditions, including the environmental conditions experienced during the 
benchmark study period. 

Figure 4.3: Overview of the Hell Bridge Test Arena. (a) Bridge structural system, sensor 
layout and location of the modal vibration shaker (MVS). (b) Damage states introduced to 

the bridge deck and lateral bracing. 
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Table 4.1: Overview and descriptions of the structural state conditions, including the 
environmental conditions, during the experimental benchmark study period. 

Label State 
condition 

Category1 Type Description Weather Temp. 
(°C) 

Wind 
speed 
(m/s) 

UDS Un 
damaged - Baseline 

condition 

 
- 
 

Cloudy 
and 

rainy 
10–11 1–2 

DS1 Damaged Local 
Stringer-to-
floor-beam 
connection 

Single 
connection 
damaged 

Cloudy 12 4–8 

DS2 Damaged Local 
Stringer-to-
floor-beam 
connection 

Multiple 
connections 

damaged 
Cloudy 10 4–8 

DS3 Damaged Local Stringer cross 
beam 

Main part of the 
single cross 

beam removed 

Cloudy 
and 

rainy 
10 1–4 

DS4 Damaged Local 
Stringer cross 

beam 

Main parts of 
multiple cross 

beams removed 
Rainy 10 1–4 

DS5 Damaged Global Lateral bracing 
connection 

Single 
connection 
damaged 

Cloudy 9 1–4 

DS6 Damaged Global Lateral bracing 
connection 

Single 
connection 
damaged 

Cloudy 11 2–6 

DS7 Damaged Global Lateral bracing 
connection 

Multiple 
connections 

damaged 
Cloudy 12 1–6 

DS8 Damaged Global 

Connection 
between the 

floor beam and 
main load-
carrying 
member 

Single 
connection 
damaged 

Sunny 15 2–6 

1 Local: damage to the secondary steel structure. Global: damage to the primary steel 
structure. 

4.3.2 Experimental setup 
Figure 4.3a shows an overview of the sensor setup used in the experimental 
benchmark study. An instrumentation system from National Instruments consisting 
of multiple cRIO-9036 controllers was used to acquire data from accelerometers in 
a local and global sensor setup involving sensor groups 1 and 2, respectively. 
Synchronous sampling was ensured by global positioning system (GPS) timing of 
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the individual controllers. Sensor group 1 (SG1) consisted of 40 single-axis 
accelerometers (Dytran 3055D3) for measuring the local response of the bridge 
deck in the vertical direction (global z-direction), whereas sensor group 2 (SG2) 
consisted of 18 triaxial accelerometers (Dytran 3583BT and 3233A) for measuring 
the global response of the bridge in both the lateral and vertical directions (global y 
and z-directions). Data were sampled at 400 Hz. The data were detrended, low-pass 
filtered and resampled to 100 Hz prior to analysis. The bridge was excited in the 
vertical direction using a modal vibration shaker (APS 420) located at 
approximately one-third of the bridge span to excite as many structural vibration 
modes as possible. The modal vibration shaker was operated in the sine sweep 
mode by applying a band-limited sinusoidal load in the range of 2–55 Hz with a 
logarithmic sweep speed of 1 Oct/min. 
 Figure 4.3b shows an overview of the type and location of the damage 
introduced in the bridge. Four different damage types were considered: stringer-to-
floor-beam connections; stringer cross beams; lateral bracing connections; and 
connections between the floor beams and main load-carrying members. These are 
the most common and frequently reported damage types in the literature [1]: 
fatigue damage occurring in and below the bridge deck. Furthermore, these are the 
most severe but relevant damage types for the type of bridge considered in this 
study. The damage types are evaluated with respect to the likelihood of occurrence 
and summarized in Table 4.2. The undamaged state of the bridge was represented 
by the baseline condition, whereas the damaged states were represented by the 
different damage types with varying degrees of severity. To represent different 
degrees of severity, each damage type was introduced at one or more locations in 
the bridge. For each damage state, damage was introduced, measurements were 
performed, and the damage was then repaired. In this way, measurements were 
obtained both before and after introducing damage to the bridge. 

Table 4.2: Evaluation of damage states based on [1]. 

Damage type Abbreviation Damage state(s) Likelihood of 
occurrence 

Stringer-to-floor-
beam connection 

 
DT1 

 
DS1, DS2 Moderate 

Stringer cross 
beam 

 
DT2 

 
DS3, DS4 Moderate 

Lateral bracing 
connection 

 
DT3 

 
DS5, DS6, DS7 Low 

Connection between 
the floor beam and 
main load-carrying 

member 

DT4 DS8 High 

 



4.3 Experimental study 

111 

Damage was introduced by replacing existing rivets with bolts. Moreover, the 
damage types were imposed by temporarily removing the bolts. Each damage state 
comprised highly progressed damage, representing large cracks or loose 
connections that open and close under dynamic loading, typically caused by traffic 
or large environmental loads. Consequently, the damage was considered by 
removing all bolts in each state condition. This damage progression leads to a 
redistribution of forces that would be demanding on the structure over time; 
however, it is not considered critical to the instant structural integrity due to the 
structural redundancy of the bridge. One test was performed for each state 
condition. For each test, time series data were generated from 75 sensor channels, 
i.e., 40 channels from sensor group 1 and 35 channels from sensor group 2. Note 
that one channel in the lateral direction was excluded from sensor group 2. 

Of the four damage types considered in the experimental study, damage types 1 
and 4, i.e., the stringer-to-floor-beam connections and the connections between the 
floor beams and main load-carrying members, are of major importance with respect 
to traffic loading and structural integrity. Furthermore, damage types 2 and 3, i.e., 
the stringer cross beams and lateral bracing connections, ensure the stability of the 
bridge against lateral and torsional loads, mainly during environmental loading, 
and are of minor importance with respect to traffic loading and immediate 
structural integrity. Therefore, damage types 1 and 4, shown in Figure 4.4, are 
considered in this study. Details of the damage types, including the underlying 
mechanisms, can be found in [1]. 

Operational and environmental variabilities impose difficulties on the damage 
detection process. The environmental conditions for the different structural state 
conditions are summarized in Table 4.1. Considerable variability in the weather 
occurred during the experimental study, with moderate variabilities in the 
temperature and wind speed range. These variabilities, which are highly 
representative of the climate where the bridge is located, can affect the structural 
response and mask changes caused by damage. Furthermore, such variabilities 
complicate the damage detection process and challenge the machine learning 
model, which is established based on numerical simulations only. No sources of 
variability were considered for the operational condition, which was limited to the 
operation of the modal vibration shaker. 

Figure 4.4: The damage types imposed on the bridge before and after damage. (a) Damage 
type 1. (b) Damage type 4. 
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4.3.3 Operational modal analysis 
OMA was performed to obtain the modal properties, such as the natural 
frequencies and mode shapes, of the bridge in the different damage states. Apart 
from the general aim of establishing as many modes as possible, there were two 
main challenges in modal identification: first, distinguishing all relevant modes 
between the different damage states; and second, correctly identifying closely 
spaced modes in frequency. To solve these challenges, three methods for output-
only system identification were considered: frequency domain decomposition 
(FDD) [38], [39], data-driven stochastic subspace identification (data-SSI) [40], 
and covariance-driven stochastic subspace identification (cov-SSI) [41]. The cov-
SSI was found to be the most appropriate method, particularly for distinguishing 
the relevant modes between the different damage states. 
 Data from SG1 and SG2 (75 channels) were used in the analyses. The results 
from the cov-SSI analyses are highly dependent on the input parameters and the 
selection of such parameters, including the number of blockrows, order and 
stabilization criteria. Satisfactory results were obtained by setting the number of 
blockrows equal to 200 and defining the range of order between 0–200 with 100 
evenly spaced values and a maximum order of 200. Furthermore, for the selection 
of stable poles to include in the stabilization diagram, a frequency deviance of 1%, 
a damping deviance of 5% and a modal assurance criterion (MAC) threshold of 
95% were used. Additionally, a stability level of 4 was used. For further details of 
the stabilization criteria, refer to Kvåle et al. [42], [43]. The cov-SSI parameters 
were set to be equal for all damage states. 

 Figure 4.5: Stabilization plots for the cov-SSI analysis of the different damage states. 
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Figure 4.6: Mode shapes used in the hybrid SHM framework obtained from the cov-SSI 
analysis in the undamaged state. The following abbreviations are used: H (horizontal), V 

(vertical) and T (torsional). Linear interpolation of the mode shapes is performed for 
illustration purposes. 

Damage categorized as global is expected to have a larger influence on the 
structural response than damage categorized as local. The stabilization plots from 
the different damage states in the 0–25 Hz frequency range are presented in  Figure 
4.5. The stabilization plot changes with different damage states, which is a 
challenge in the system identification process. This is observed particularly for 
DS8, where new modes appear due to the global damage imposed on the structural 
system. Hence, a manual evaluation was performed to ensure that the correct 
modes were established. With reference to the undamaged state, more than 40 
physical modes up to a frequency of approximately 40 Hz were identified from the 
cov-SSI analysis. From these modes, the six most relevant modes within the 0–25 
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Hz frequency range were chosen to be used in the hybrid SHM framework. Figure 
4.6 shows the mode shapes along with the natural frequencies, damping ratios and 
MAC values between the experimental and numerical mode shape vectors from the 
calibrated FE model for SG1 and SG2. The reasoning behind the choice of these 
modes is included in Section 4.4.1. The OMA can be considered as feature 
extraction to obtain the experimental test set, which is then input to the machine 
learning model. 

4.4 Numerical model and simulations 

4.4.1 Calibrated FE model 
The purpose of model updating is to obtain a validated numerical FE model that is 
in good agreement with the measurements and a validated FE model being 
computationally efficient for numerical simulations. The initial FE model and the 
calibration of the FE model using an improved sensitivity-based finite element 
model updating procedure are described in a separate study by Svendsen et al. [44], 
[45]. A description of the FE model is included below for convenience. 
 The FE model is established using the FE software ABAQUS with site 
inspections and specifications from technical drawings as the basis. The primary 
structure of the bridge is included in the model, i.e., the vertical walls, the bridge 
deck, and the lateral bracing. The secondary structure is included in the modeling 
of the bridge deck to obtain an accurate structural representation for damage 
detection purposes. Other secondary structure and nonstructural items are 
represented by lumped point masses on the bridge deck to obtain a proper mass 
distribution. A beam element model representation is used, and the bridge is 
modeled as simply supported on one end (global translational x, y and z-direction 
constrained) and rolled boundary conditions on the opposite end (global 
translational x-direction partly constrained by spring elements and y and z-
direction constrained). As such, the FE model is obtained with reduced complexity. 
Figure 4.7 shows the FE model of the bridge. The calibrated FE model is referred 
to as the reference model. 

Three criteria are applied to select the modes for the hybrid SHM framework. 
First, the modes should represent global modes in both the horizontal and vertical 
directions. Second, the modes should represent a wide frequency range, be well 
identifiable from the output-only system identification (stable poles in the cov-SSI) 

Figure 4.7: FE model. 
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Table 4.3: Comparison of the modal properties between the experimental results and the 
calibrated FE model. 

  Frequency, nf  (Hz)  MAC 

Mode Description Experimental Numerical Abs. diff 
(%) 

SG1 SG2 

1 H1 3.11 3.25 4.37 % 0.97 1.00 
2 H2 6.15 6.22 1.17 % 0.93 0.89 
3 V1 6.72 6.62 1.47 % 1.00 0.91 
4 V2 16.93 15.98 5.64 % 0.99 0.95 
5 T2 23.92 24.64 3.01 % 0.98 0.88 
6 V3 24.10 24.39 1.23 % 0.95 0.52 

 
and be identifiable by considering ambient vibrations from wind. Third, the modes 
should be identifiable in the calibrated FE model based on changes made during all 
relevant numerical simulations. Based on this, six modes are chosen. The detailed 
results for the natural frequencies and MAC values from the experimental study 
and the calibrated FE model are summarized in Table 4.3. The average absolute 
frequency error is 2.81%, and the average MAC values of the local and global 
sensor setups are 0.97 and 0.86 for the considered modes, respectively. 

4.4.2 Modeling of damage 
The damage types are each represented using no connectivity between the elements 
in the numerical model at the specific damage locations. There are two main 
advantages of this damage representation: first, the complexity of the numerical 
model is minimized by avoiding spring elements or similar complex linear or 
nonlinear damage modeling; and second, this is an accurate and realistic 
representation of loose structural connections. A comparison of the results obtained 
from the numerical and experimental analyses of the damage states is performed to 
visualize the effect of introducing damage in the structure and verify the 
introduction of damage in the numerical model. Figure 4.8 shows the percentage 
change in the natural frequencies for all damage states from the undamaged state, 
as evaluated for all modes. Furthermore, Figure 4.9 and Figure 4.10 show the MAC 
values between the mode shape vectors of the undamaged state and the damage 
states for the local and global sensor setups. 

Figure 4.8, Figure 4.9 and Figure 4.10 provide information on how the 
imposed damage changes the natural frequencies and mode shapes of the bridge 
compared to the baseline condition (undamaged state). It is observed that 
increasing the damage severity of DT1 (DS1 and DS2) induces increasing changes 
in both the natural frequencies and MAC values for the experimental and numerical 
analyses. Furthermore, the local damage, represented by DT1, generally influences 
the changes in the natural frequencies and MAC values less than the global 
damage, represented by DT4 (DS8). Consequently, it is concluded that (1) there is 
consistency in the results for the different damage states upon considering the 
experimental and numerical analyses separately, and (2) there is adequate 
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Figure 4.8: The percentage change of the natural frequencies for all damage states based on 
the undamaged state (UDS) for all modes, considering the experimental and numerical 

analyses. 

correspondence in the change of the natural frequencies and MAC values between 
the experimental and numerical analyses. Furthermore, an important observation is 
that the most significant changes in the natural frequencies are generally within a 
range that can be expected due to variations in operational and environmental 
conditions. 

4.4.3 Numerical simulations 
Numerical simulations are performed that represent all relevant damage states of 
the structure based on the calibrated FE model, which includes likely variations in 
the environmental conditions. The purpose of the numerical simulations is to 
generate training data for the machine learning model. Consequently, the modal 
properties obtained from the numerical simulations are used as damage-sensitive 
features in the machine learning model. Two datasets are generated through 
numerical simulations using the calibrated FE model. The basic information in the 
datasets is summarized in Table 4.4. Each dataset contains the same total number 
of simulations; however, different assumptions regarding the variation in the 
environmental conditions for the damage types are introduced. As such, the 
datasets represent how long the damage is assumed in the structural system; dataset 
1 assumes a shorter presence of damage in the structural system than dataset 2. The 
variation is targeted based on the natural frequencies of the bridge and is further 
described in Section 4.4.4 below. 
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Figure 4.9: MAC values between the mode shape vectors of the undamaged state (UDS) 
and the damage states in the experimental study. 

Figure 4.10: MAC values between the mode shape vectors of the undamaged state (UDS) 
and the damage states in the numerical study. 

 
Table 4.4: Simulation information. 

Damage type 
Possible 
damage 

locations 

Total no. of 
simulations 

Simulation variation1 

Dataset 1 Dataset 2 
UDS - 1000 ±5% ±5% 

DT1(1) 80 240 ±0.5% ±2% 
DT1(2) 40 240 ±0.5% ±2% 

DT4 22 264 ±0.5% ±2% 
1 Simulated variation in the environmental conditions. 
 

In the datasets, the variation in each damage type (class label) is based on (1) 
the number of simulated damage locations and (2) the simulated change in the 
environmental conditions. For each damage type, damage is successively 
introduced in all possible locations in the bridge. The stringer-to-floor-beam 
connections (DT1), which are introduced with damage in both single and multiple 
connections to represent increasing severity, are denoted as DT1(1) and DT1(2), 
respectively. Altogether, 1744 simulations are performed for each dataset. For each 
simulation, an eigenvalue analysis is performed, and the natural frequencies along 
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with the normalized mode shape values for each mode from the local (SG1) and 
global (SG2) sensor setups are extracted. A total of 250 modes are extracted for 
each simulation. To ensure the correct identification of modes for each simulation, 
a mode match index (MMI) is used 

 ( ) ,1 r s
r s

r

f f
MMI MAC

f
γ γ

−
= − −  (4.1) 

where γ  is a value between 0 and 1 that provides the weighting for consideration 
between the MAC values and the natural frequencies, f . The subscripts r  and s  
denote the modes obtained from the numerical reference model and the numerical 
model under consideration in the simulation run, respectively. The reliable 
identification of modes is obtained by setting 0.5γ = . 

4.4.4 Environmental variation in the numerical simulations 
Variability in the environmental conditions must be included to obtain realistic 
training data as an input to the machine learning model. Considering environmental 
conditions is particularly important for the baseline condition. The most influential 
source of variability in the modal properties is due to temperature effects. In 
general, changes in temperature affect the global material properties and system 
characteristics and have a considerable influence on the natural frequencies of a 
bridge structure. 

 Variation in the environmental conditions is simulated by varying the steel 
density parameter ρ  of the numerical model because it has the most significant 
influence on the modal parameters. The parameter is changed within a specific 
range from the reference model to obtain the desired variation in natural 
frequencies for the undamaged and damaged states. A variation up to 
approximately 10% (±5%) targeted based on the natural frequencies is assumed in 
the baseline condition. Furthermore, variations of approximately 1% (±0.5%) and 
4% (±2.0%) targeted based on the natural frequencies are assumed for datasets 1 
and 2, respectively, for the different damage types. To obtain the total number of 
simulations for each damage type, evenly distributed parameter values within the 
specific ranges are generated and used as input for the numerical simulations. 

Table 4.5 presents the maximum and minimum changes obtained in the natural 
frequencies for the relevant modes in the baseline condition, which is obtained by 
changing the ratio of the steel density parameter by ±10% of the reference value. 
The table shows that varying this parameter provides an almost uniform change in 
the natural frequencies for the relevant modes considered. As such, the simulations 
performed mainly represent the environmental change because no other variations 
in the operational and environmental conditions are included. Note that it is 
assumed that a step-like variation in natural frequencies, which is typically 
obtained around or below the freezing point, can be disregarded in the 
representation of environmental change. This assumption is considered valid 
because the structural and nonstructural components are not expected to 
significantly affect the stiffness of the bridge around or below the freezing point, 
particularly considering that the bridge has timber sleepers and hence no ballast. 
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Table 4.5: Minimum and maximum changes in natural frequencies from variation from the 
environmental conditions in the baseline condition. 

 Natural frequency (Hz) 
Change in frequency from 
the reference model (%) 

Mode Ref. model 
(1.0ρ ) 

Lower 
( 0.9ρ ) 

Upper 
(1.1ρ ) 

Lower 
( 0.9ρ ) 

Upper 
(1.1ρ ) 

1 3.248 3.396 3.118 4.55 % -4.01 % 
2 6.217 6.534 5.942 5.09 % -4.43 % 
3 6.619 6.946 6.328 4.94 % -4.38 % 
4 15.976 16.569 15.442 3.71 % -3.34 % 
5 24.644 25.812 23.661 4.74 % -3.99 % 
6 24.394 25.279 23.546 3.63 % -3.47 % 

4.5 Feature extraction and machine learning 

4.5.1 Feature extraction 
In the context of SHM, machine learning is applied to associate the damage-
sensitive features with the state of the structure to distinguish between the 
undamaged and damaged states. In this study, modal properties such as the natural 
frequencies and mode shapes, including mode shape derivatives, are used as 
damage-sensitive features in the machine learning model. The underlying 
assumption associated with the use of modal properties as damage-sensitive 
features is that the imposed damage will somehow change the stiffness, mass or 
energy dissipation characteristics of the structure. 

 Natural frequencies provide a high-level assessment of the structural dynamic 
characteristics, mainly allowing for level I (existence) damage detection. Mode 
shapes, including the mode shape derivatives, provide spatial information about the 
structural dynamic characteristics and allow for level I (existence) and level II 
(location) damage detection. Mode shape information is particularly useful for 
structures with regular geometry, such as bridges, that are equipped with an 
appropriate number of sensors. 

 The natural frequencies and mode shapes, including mode shape derivatives, 
are considered useful as damage-sensitive features in the hybrid SHM framework 
for three main reasons: first, the natural frequencies and mode shapes are 
straightforward to establish both experimentally and numerically; second, for a 
numerical model, the natural frequencies and mode shapes are obtained by solving 
the eigenvalue problem, which is computationally efficient and consequently 
suitable for a large number of simulations; and third, the possibility of level I 
(existence), level II (location) and level III (type) damage detection is enabled 
when combined with supervised learning. 
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4.5.2 Mode shape derivatives 
The mode shape derivatives can be used to enable a high sensitivity to localized 
damage. The mode shape curvature κ  is established using the central difference 
approximation to the second derivative of the mode shape vector φ  as [46] 

 1 1
2

2i i i
i h

ϕ ϕ ϕ
κ − +− +

=  (4.2) 

where h  is the length between the equally spaced sensor locations i . The 
curvature at the ends is approximated using backward and forward difference 
approximations. The summed absolute mode shape curvature difference makes it 
possible to consider multiple modes and is defined as 

 
1

u d

R

j j
j=

∆ = −∑κ κ κ  (4.3) 

where R  is the total number of considered modes. Furthermore, the subscripts u  
and d  refer to the undamaged and damaged structures, respectively. The summed 
absolute mode shape curvature difference is normalized between 0 and 1 before 
being used as an input for the machine learning model to make the experimental 
and numerical results conform. The derivative process related to the mode shape 
curvature amplifies any discontinuities in the mode shapes caused by damage. 
 The following clarifications should be noted. First, the mode shape curvature, 
which is based on a beam formulation, is applied to the local sensor setup (SG1). 
The setup is divided into four parts in the longitudinal direction of the bridge to 
establish the full formulations for all sensors. The formulation for each part is 
applied separately and subsequently concatenated. Second, the FE model is used to 
represent the undamaged state of the bridge for the experimental (test) and 
numerical (training) data. This representation is equivalent to assuming that the 
SHM system can be installed at any time during the bridge lifetime. This approach 
is beneficial for existing bridges; however, it requires a precise FE model. 
Furthermore, since the undamaged state is represented in the calculations of the 
mode shape curvature, this method is used here only for predicting the damage 
states in the structural diagnosis of the structure. Consequently, in the structural 
diagnosis of the structure, the prediction of the undamaged state is excluded. 

4.5.3 Machine learning 
In supervised training, labeled data are available. Supervised learning is made 
possible through the numerical generation of training data with the relevant 
damage types included. Supervised learning allows for level I, II and III damage 
detection and is considered for group classification only. A training matrix 

n p×∈X   with n  samples and p  features and a test matrix m p×∈Z   with m  
samples are composed of data from both the undamaged and damaged conditions. 
The target variable 1n×∈y   is a vector containing the class labels y . 1 p

i
×∈x   

and 1 p
i

×∈z   refer to arbitrary samples with an index i  from the training and test 
matrices, respectively, and have a corresponding class label iy . The data obtained 
from the numerical simulations provide samples for the training set in the machine 
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learning model, whereas the data obtained from the experimental study provide 
samples for the test set. 
 In this study, the support vector machine (SVM) algorithm is applied [47]. The 
SVM algorithm is computationally efficient and capable of performing linear and 
nonlinear classification, making it highly suitable for SHM applications. The 
training data are divided into 80% for training and 20% for testing. A grid search 
with 5-fold cross-validation is performed on the training data to find the optimal 
hyperparameters and increase the ability of the SVM algorithm to generalize to 
unseen data. The regularization parameter C, the kernel functions, and the 
corresponding kernel coefficients γ  are considered the most important 
hyperparameters of the SVM algorithm and are consequently used as input in the 
grid search. The grid search conducts an extensive search over the specified 
hyperparameters to obtain the best cross-validation score. Furthermore, the 
combination of hyperparameters that provides the best cross-validation score is 
chosen accordingly. 

4.6 Results 

4.6.1 General 
The hybrid SHM framework for damage detection is evaluated using three 
different cases. The cases are used to consider natural frequencies, mode shapes 
and mode shape derivatives separately as damage-sensitive features. All sensor 
channels from each sensor group are taken into consideration. Furthermore, a total 
of 1744 numerical and 4 experimental observations are included. Hence, the 
training matrix 1744 6×X  and test matrix 4 6×Z  are used for the natural frequencies. 
For the mode shapes and mode shape derivatives, the training matrices 1744 40×X  and 

1744 35×X  are used for the local (SG1) and global (SG2) sensor setups, respectively, 
with corresponding test matrices 4 40×Z  and 4 35×Z . The features are scaled to zero 
mean and unit variance to improve the performance of the SVM algorithm. 
 In the cases considering natural frequencies and mode shapes, the damage 
detection performances are evaluated in terms of level I and III damage detection. 
For the level I damage detection performance, the evaluation is performed in terms 
of Type I and Type II errors, which are referred to as false positive (FP) and false 
negative (FN) indications of damage, respectively. For the level III damage 
detection performance, the evaluation is performed in terms of the correct damage 
predictions for the different damage types. The damage detection performances are 
also evaluated in terms of level II damage detection in the case considering mode 
shape derivatives. 

 Additionally, the machine learning performances are included in the evaluation 
of the results. Machine learning performance can be a possible source of 
uncertainty in the results and is evaluated by means of the cross-validation score 
(CV score), the area under the curve (AUC) and the fraction of correct predictions 
(score). The AUC value refers to the area under the receiver operating 
characteristics (ROC) curve, which represents the relative trade-offs between true 
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positives (TPs), or the probability of detection, and FPs, or the probability of false 
alarms [48]. 

4.6.2 Case 1 – Natural frequencies 
In the case considering natural frequencies, damage detection is investigated by 
considering datasets 1 and 2 with different ranges of environmental variability in 
the undamaged state (baseline). Figure 4.11 and Figure 4.12 show the results from 
the prediction of the experimental test set and the corresponding performances of 
the machine learning algorithm for datasets 1 and 2, respectively. The true label is 
denoted on the x-axis of the result matrices. The correct predictions are highlighted 
in the figures, whereas the Type I and Type II errors, including the total number of 
errors, are summarized in Table 4.6. 

 Three general observations are made from the results presented in Figure 4.11, 
Figure 4.12 and Table 4.6. First, the total number of Type I and Type II errors 
decreases with decreasing variability in the environmental conditions. Hence, it 
becomes more difficult to perform level I and level III damage detection with 
increasing variability in the environmental conditions. Second, it is observed from 
the results of dataset 1 that all the damage types are established. DT1 was detected 
with the lowest variability in the environmental conditions (±1%), DT4 was 
detected with a slightly higher variability (±2%), and UDS was detected for the 
remaining variability in the environmental conditions. Third, the machine learning 
performances are generally considered acceptable. However, the performances are 
lower for dataset 2 than dataset 1. As such, it becomes more difficult for the 
machine learning algorithm to make correct predictions when large changes in 
environmental conditions affect the damage states. However, the generally high 
machine learning performances indicate that the different damage states can be 
separated under variability in the environmental conditions. Overall, the results 
clearly show that changes in the environmental conditions mask damage, resulting 
in Type II errors. Consequently, using natural frequencies as damage-sensitive 
features in this study results in low damage detection capabilities for high 
variability in the environmental conditions. 

Figure 4.11: Prediction results including the performances of the machine learning 
algorithm for dataset 1 in the case considering natural frequencies. 
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Figure 4.12: Prediction results including the performances of the machine learning 
algorithm for dataset 2 in the case considering natural frequencies. The UDS (±1%) is 

excluded due to the variation of ±2% for the different damage types in dataset 2. 

 
Table 4.6: Damage detection results obtained by considering Type I and Type II errors for 
different ranges of environmental variability in the undamaged state (baseline) of datasets 1 

and 2. 

 Dataset 1 Dataset 2 

UDS 
simulation 

Type I 
(FP) 

Type II 
(FN) 

Total Type I 
(FP) 

Type II 
(FN) 

Total 

UDS (±5%) 0 3 3 0 3 3 
UDS (±4%) 0 3 3 0 3 3 
UDS (±3%) 0 2 2 0 3 3 
UDS (±2%) 1 0 1 1 0 1 
UDS (±1%) 1 0 1 - - - 

4.6.3 Case 2 – Mode shapes 
To investigate the damage detection capabilities in the case considering mode 
shapes, analyses are performed separately for each mode. Figure 4.13 and Figure 
4.14 show the results from the prediction of the experimental test set and the 
corresponding performances of the machine learning algorithm for the local (SG1) 
and global (SG2) sensor setups of datasets 1 and 2, respectively. Here, the damage 
prediction results obtained per mode are arranged horizontally, whereas those 
obtained per sample in the test set are arranged vertically. The Type I and Type II 
errors are summarized in Table 4.7, and the damage predictions for the different 
damage types are summarized in Table 4.8. 

From the results obtained for Case 2, two important observations are made. 
First, all the damage types can be predicted. In general, although Type I errors are 
reported, there are few Type II errors that indicate strong level I damage detection 
capabilities. Furthermore, local damage represented by DT1 is best identified by 
the higher modes, whereas global damage represented by DT4 is best identified by 
the lower modes. Second, the local sensor setup (SG1) performs better than the 
global sensor setup (SG2). SG1 obtains better prediction results than SG2 in terms 
of the total number of correct damage type predictions and the ability to detect 
different damage types (including the undamaged state). 
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Table 4.7: Damage detection results obtained by considering Type I and Type II errors for 
datasets 1 and 2. 

 Dataset 1 Dataset 2 

 Local Global Local Global 

Mode Type I 
(FP) 

Type II 
(FN) 

Type I 
(FP) 

Type II 
(FN) 

Type I 
(FP) 

Type II 
(FN) 

Type I 
(FP) 

Type II 
(FN) 

Mode 1 1 0 1 0 1 0 1 0 
Mode 2 1 0 1 0 1 0 1 0 
Mode 3 1 0 1 0 1 0 1 0 
Mode 4 0 1 1 0 0 1 1 0 
Mode 5 1 1 1 0 0 1 1 0 
Mode 6 1 0 1 0 1 0 1 0 
 

Figure 4.13: Prediction results including the performances of the machine learning 
algorithm for the local (SG1) and global (SG2) sensor setups with dataset 1 in the case 

considering mode shapes. 

Furthermore, by comparing the results obtained for the different datasets, it is 
observed that SG1 is not affected by a change in the environmental conditions of 
the damage types. Conversely, SG2 obtains lower damage prediction results with 
increasing variability in the environmental conditions of the damage types. 
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Figure 4.14: Prediction results including the performances of the machine learning 
algorithm for the local (SG1) and global (SG2) sensor setups with dataset 2 in the case 

considering mode shapes. 

 
Table 4.8: Correct damage prediction results for the different damage types in datasets 1 

and 2. 

Dataset Sensor group UDS DT1 DT4 Total 

Dataset 1 
Local (SG1) 1 5 4 10 
Global (SG2) 0 4 4 8 

Dataset 2 Local (SG1) 2 5 3 10 
Global (SG2) 0 4 2 6 

 
It should also be noted that the machine learning performances are generally better 
for the higher modes (modes 4–6) than the lower modes (modes 1–3), which might 
be a possible explanation for the generally low damage detection capability of the 
lower modes. Overall, from the results obtained, using mode shapes as damage-
sensitive features provides strong damage detection capabilities, with the best 
performance obtained using the local sensor setup (SG1). 
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4.6.4 Case 3 – Mode shape derivatives 
Based on the results obtained for Case 2, the damage detection capabilities are 
investigated by considering only the local sensor setup (SG1) in the case 
considering mode shape curvatures. Therefore, level I damage detection is 
assumed. Figure 4.15 and Figure 4.16 show the prediction of the experimental test 
set and the corresponding performances of the machine learning algorithm with 
datasets 1 and 2, respectively. Similar results are presented in Figure 4.17 and 
Figure 4.18 for three different configurations of summed absolute mode shape 
curvature difference. Since the undamaged state is represented in the mode shape 
curvature calculations, the prediction of the undamaged state is excluded. 
Consequently, the results presented consider only the damage types with imposed 
damage on the structure. 

Figure 4.15: Prediction results including the performances of the machine learning 
algorithm for each mode in dataset 1 in the case considering mode shape curvatures. 

Figure 4.16: Prediction results including the performances of the machine learning 
algorithm for each mode in dataset 2 in the case considering mode shape curvatures. 

  



4.6 Results 

127 

Figure 4.17: Prediction results including the performances of the machine learning 
algorithm for the configurations of summed modes in dataset 1 in the case considering 

mode shape curvatures. 

Figure 4.18: Prediction results including the performances of the machine learning 
algorithm for the configurations of summed modes in dataset 2 in the case considering 

mode shape curvatures. 

From the results obtained in Figure 4.15 and Figure 4.16, it is observed that the 
damage prediction is strong. DT1 and DT4 are predicted well, with particular 
prediction improvements for the lower modes. Furthermore, modes 1 (H1), 4 (V2) 
and 5 (T2) predict all damage types correctly when considering both datasets. It is 
also observed that the mode shape curvatures are little affected by the difference in 
the datasets, and the machine learning performances are nearly optimal for all 
modes. The configurations of the summed absolute mode shape curvature 
difference provide an effective means of evaluating several modes together. From 
the results obtained in Figure 4.17 and Figure 4.18, it is clear that all damage types 
are correctly predicted in the vertical configuration when considering both datasets, 
whereas only DT4 is correctly predicted in the other configurations. Consequently, 
when the damage is not severe, as with DT1, inaccurate predictions are made if 
modes that are not significantly affected by damage are included in the calculations 
of the mode shape curvatures. It should also be noted that the machine learning 
performances are optimal. 

 To evaluate the performance in terms of level II damage detection, the 
experimental and numerical inputs to the machine learning model for the summed 
absolute mode shape curvature difference are compared in Figure 4.19 considering 
the vertical and horizontal configurations. The inputs are normalized between 0 and 
1. The relevant peaks of the curvature related to the damage types are labeled with 
the corresponding sensor names. The experimental and numerical input conform 
for DT1 and DT4 in the vertical configuration and for DT4 in the horizontal 
configuration. These results correspond well with the results presented in Figure 
4.17 and Figure 4.18. 



Chapter 4 

128 

Figure 4.19: Comparison of the numerical and experimental input to the machine learning 
model considering the summed absolute mode shape curvature difference for the vertical 

and horizontal configurations. 

Furthermore, and most importantly, the sensors representing the peaks are located 
nearest to the damaged areas of the bridge deck. Consequently, the damage types 
are successfully localized. 
 Two additional important observations are made. First, the experimental results 
are jagged and unclear compared to the numerical results. This observation is 
explained by the differentiation process, which amplifies high-frequency noise. 
Normalization is performed after the differentiation process, resulting in higher 
mean values of the experimental curvature than the numerical curvature. The 
experimental results are noisy, and the damage is less distinct from these results. 
On the other hand, the numerical results are less noisy and more distinct where the 
damage is represented for both configurations, clearly illustrating the difficulties in 
working with experimental data. Second, the machine learning model is able to 
recognize DT1(1) in the vertical configuration despite the noise in the data from 
the experimental study. This observation clearly demonstrates the superior abilities 
of the machine learning model in distinguishing damage. 

4.7 Discussion 
From the results obtained for the different cases investigated in the hybrid SHM 
framework, the following general observations are made: 

• Relevant structural damage in steel bridges can be found under a simulated 
variation in the environmental conditions. All the damage types 
considered, including the undamaged state (baseline), can be established in 
this way. Moreover, level I (existence), level II (location) and level III 
(type) damage detection can be performed by separately evaluating 
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different cases of natural frequencies, mode shapes and mode shape 
derivatives. 

• The case considering natural frequencies generally provides Type II errors 
or false negative indications of damage, whereas the case considering 
mode shapes generally provides Type I errors or false positive indications 
of damage. Furthermore, using natural frequencies provides low damage 
detection capabilities for high variability in environmental conditions. 
Consequently, using mode shapes is more reliable for detecting damage. 
Moreover, the cases considering mode shapes and mode shape derivatives 
increase the damage detection capabilities. 

• The local sensor setup (SG1) performed better than the global setup (SG2) 
with respect to the damage detection of both local and global damage 
types. Using a local sensor setup that consists of a grid of sensors covering 
the part of the bridge where damage is most commonly experienced, i.e., 
the bridge deck, allows for increased damage detection capabilities. As 
such, the local sensor setup should be used for damage detection purposes, 
whereas the global sensor setup should be used for system identification 
and model updating purposes. The results clearly demonstrate the effect 
that a dense sensor setup has on the increased damage detection 
capabilities, particularly for performing level II damage detection. 
Consistent level II damage detection covering all possible damage 
locations of the imposed damage types cannot be performed without a 
systematic, and preferably dense, sensor network. A sparse sensor network, 
however, is not considered a limitation for applying the hybrid SHM 
framework. 

• Datasets 1 and 2 consider low and high variations in the environmental 
conditions of the damage types compared to the baseline, respectively. The 
datasets thus represent how long damage is assumed to persist in the 
system: dataset 1 assumes that damage has been present for a short time 
period, while dataset 2 assumes that damage has been present for a long 
time period. From the cases considering mode shapes and mode shape 
derivatives, the local sensor setup (SG1) was not affected by the difference 
in the datasets. However, from the case of mode shapes, the global sensor 
setup (SG2) obtained lower damage detection capabilities with dataset 2. 

 
The deviations between the numerical and experimental results, resulting in 

reduced classification results, are caused by uncertainties. There are several 
uncertainties related to the different parts of the hybrid SHM process. In particular, 
such uncertainties are related to (1) the representation of the FE model and 
numerical simulations, (2) the estimation of modal parameters using OMA and the 
corresponding system identification method(s), (3) the performance of the machine 
learning algorithm and (4) the statistical representation of the experimental data. 
Furthermore, for the representation of the FE model and numerical simulations, the 
uncertainties are related to simplifications in the numerical modeling, the model 
updating procedure, the modeling of damage and the representation of 
environmental variability in the numerical simulations. As such, this part of the 
hybrid SHM process is essential. Reducing the identified uncertainties in the 
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different parts of the hybrid SHM process can further enhance the damage 
detection process and enable improved classification results. 

The advantage of using natural frequencies as damage-sensitive features is that 
they are straightforward to establish both numerically and experimentally. 
Furthermore, few sensors are required. However, natural frequencies are sensitive 
to changes in the operational and environmental conditions and insensitive to local 
structural damage (particularly associated with the global modes of the structure). 
Consequently, the low sensitivity of the frequency shifts to damage requires either 
a very precise numerical model, precise measurements, or significant levels of 
damage for them to be an effective damage indicator. These requirements were not 
fulfilled in this study. However, there are several advantages of using mode shapes 
and mode shape derivatives as damage-sensitive features. Mode shapes and mode 
shape derivatives are less affected by variation in the environmental conditions 
than natural frequencies, and they can perform level I, II and III damage detection. 
Although more effort and more sensors are needed to establish mode shapes and 
mode shape derivatives than natural frequencies, they provide increased damage 
detection capabilities, which is also demonstrated in this study. 

From the hybrid SHM framework presented, experimental data can be applied 
by considering the OMA from ambient vibration or vibration from regular loading 
conditions. Traffic-induced vibration is not necessary but can be beneficial with 
respect to operational variability. Using OMA, or output-only system 
identification, requires only response measurements; this is clearly beneficial for 
large structures such as bridges, structures in service and structures with an SHM 
system that typically provide data based on undamaged conditions. 

4.8 Conclusion 
This paper presented a novel hybrid SHM framework for damage detection in 
bridges. The framework is based on the hybrid SHM approach and combines the 
use of a numerical model to generate data from different structural state conditions 
under varying environmental conditions with machine learning algorithms to 
obtain a machine learning model. Based on the machine learning model, 
experimental test data can be applied to provide decision support or diagnose the 
structure in a supervised learning approach. The supervised learning approach 
allows for level I, II and III damage detection. 
 The hybrid SHM framework was demonstrated through damage detection of a 
full-scale steel bridge. A machine learning model was established by simulating all 
possible outcomes of the relevant damage states for the structure using a calibrated 
FE model, including simulations of environmental conditions. An extensive 
experimental benchmark study of the bridge was performed to obtain data from a 
local and global sensor setup under different structural state conditions. The data 
obtained from the experimental study provided samples to the test set in the 
machine learning model. Three different cases of damage-sensitive features were 
evaluated. Based on the evaluation of the different cases, different levels of damage 
detection were performed. All the damage types considered were established. As 
such, by considering the uncertainties related to the hybrid SHM framework, 
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damage detection and structural diagnosis were successfully performed. In 
conclusion, the hybrid SHM framework is demonstrated to work. 
 The main limitation of the hybrid SHM framework is the need for a precise 
numerical model for successful classification. There is a trade-off between a 
calibrated numerical model in good agreement with measurements and a calibrated 
numerical model being computationally efficient for numerical simulations. 
Nevertheless, the hybrid SHM framework presented in this paper demonstrates that 
damage detection can be successfully performed using a numerical model with 
reduced complexity. Relevant structural damage can be found in steel bridges. 
Moreover, the framework is applicable to any bridge structure in which relevant 
structural damage can be simulated and experimental data obtained. Further 
investigation should be conducted to (1) reduce the identified uncertainties in the 
hybrid SHM framework for sharper classification, (2) incorporate data enrichment 
into machine learning and (3) implement more damage types and increase the 
statistical representation of the experimental data. 
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Abstract 
There is a need for reliable structural health monitoring (SHM) systems that can 
detect local and global structural damage in existing steel bridges. In this paper, a 
data-based SHM approach for damage detection in steel bridges is presented. An 
extensive experimental study is performed to obtain data from a real bridge under 
different structural state conditions, where damage is introduced based on a 
comprehensive investigation of common types of steel bridge damage reported in 
the literature. An analysis approach that includes a setup with two sensor groups 
for capturing both the local and global responses of the bridge is considered. From 
this, an unsupervised machine learning algorithm is applied and compared with 
four supervised machine learning algorithms. An evaluation of the damage types 
that can best be detected is performed by utilizing the supervised machine learning 
algorithms. It is demonstrated that relevant structural damage in steel bridges can 
be found and that unsupervised machine learning can perform almost as well as 
supervised machine learning. As such, the results obtained from this study provide 
a major contribution towards establishing a methodology for damage detection that 
can be employed in SHM systems on existing steel bridges. 
 
Keywords: Structural health monitoring (SHM), damage detection, machine 
learning, statistical model development, receiver operating characteristics (ROC) 
curves, experimental study, bridge, fatigue. 
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Chapter 5 

5.1 Introduction 
For bridges, structural health monitoring (SHM) systems provide information 
regarding the state of the bridge condition, with the aim of increasing the economic 
and life-safety benefits through damage identification. Many highway and railway 
bridges in Europe and the US, which experience increasing demands with respect 
to traffic loads and intensity, are approaching or have exceeded their original 
design lives. A large part of these bridges are steel and composite steel-concrete 
bridges. Based on an overview and comprehensive investigation of the common 
damage types experienced by such bridges that are reported in the literature [1], it 
is found that most damages are caused by fatigue and most frequently occur in or 
below the bridge deck. With the large number of existing bridges in infrastructure, 
lifetime extension is the preferred option for ensuring continuous operation. 
Consequently, there is a need for reliable SHM systems that can detect both local 
and global structural damage in such bridges. 

 SHM is referred to as the process of implementing an automated and online 
strategy for damage detection in a structure [2], [3]. There are two main approaches 
in SHM: model-based and data-based [4], [5]. In the model-based approach, a 
numerical finite element model is continuously updated based on new 
measurement data to identify damage. The data-based approach, however, builds a 
statistical model based on experimental data only and generally relies on, but are 
not limited to, machine learning algorithms for damage identification. Additionally, 
a hybrid approach to SHM can be made that takes principles from both the model-
based and data-based approaches into consideration. The analysis of the 
distributions of damage-sensitive features by machine learning algorithms, either 
supervised or unsupervised learning algorithms, is referred to as statistical model 
development [6]. Here, and in the context of SHM, supervised learning refers to the 
situation where data are available from both the undamaged and damaged 
conditions of the structure, whereas unsupervised learning refers to the situation 
where data are available only from the undamaged condition. For bridges in 
operation, data from both the undamaged and damaged conditions are rarely 
available, and consequently, unsupervised learning is often required. Furthermore, 
bridges are subjected to changes in operational and environmental conditions, 
which complicate the detection of structural damage. One of the fundamental 
challenges in SHM is the process of separating changes caused by operational and 
environmental conditions from changes caused by structural damage, referred to as 
data normalization [7]. However, prior to including data normalization, principal 
knowledge about the damage detection possibilities of existing steel bridges must 

5 A data-based structural health monitoring approach for 
damage detection in steel bridges using experimental data 
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be established by considering relevant structural damage during stable operational 
and environmental conditions. 

Applications of statistical model development have received increasing 
attention in the technical literature in recent years. In the absence of data from 
actual bridges, numerical models or test structures are commonly applied [8]–[11]. 
A significant contribution is the work performed by Figueiredo et al. [12], where 
damage detection under varying operational and environmental conditions is taken 
into consideration using the Los Alamos National Laboratory (LANL) test 
structure. Further work using the same test structure is performed by Santos et al. 
[13]. There are, however, inherent uncertainties in using a numerical model for 
damage detection, not only in the establishment of the numerical model itself but 
also in the modelling of structural damage. Similarly, damage introduced to 
laboratory test structures must be based on several assumptions and can, at best, be 
only a moderate representation of actual structural damage. Nevertheless, in the 
presence of data from actual bridges, important contributions to statistical model 
development related to damage detection studies on the Z24 prestressed concrete 
bridge [14] have been reported [15]–[18]. These studies mainly investigate the 
effects of operational and environmental conditions on damage detection using 
natural frequencies as damage-sensitive features. However, the relevant structural 
damage introduced to this bridge is mostly applicable to concrete bridges. Similar 
works with other bridge applications that are considered important contributions 
within this topic are found in [19], [20]. Except for [14], [21]–[26], few 
experimental studies have been reported in the literature where relevant structural 
damage is imposed on bridges. Furthermore, there are currently no studies in the 
literature where statistical model development is performed based on experimental 
studies on steel bridges. 

 This paper presents a data-based SHM approach for damage detection in steel 
bridges. The aim is to detect relevant structural damage based on the statistical 
model development of experimental data obtained from different structural state 
conditions. The Hell Bridge Test Arena, a steel riveted truss bridge formerly in 
operation as a train bridge and therefore representative of the many bridges still in 
service, is used as a full-scale damage detection test structure [27], [28]. An 
extensive experimental study is performed to obtain acceleration time series from 
the densely instrumented bridge under different structural state conditions during 
stable operational and environmental conditions. As such, relevant structural 
damage is implemented, the bridge is excited using a modal vibration shaker for 
simulating ambient vibration, and measurements are obtained from a setup 
containing two sensor groups to capture both the local and global responses of the 
bridge. The damage types chosen, including their locations, are based on the most 
common and frequently reported damage types in the literature: fatigue damage 
occurring in and below the bridge deck. The damage is considered highly 
progressed, representing loose connections and large cracks that open and close 
under dynamic loading. Autoregressive (AR) parameters are used as damage-
sensitive features. The use of AR parameters has proven to be beneficial mainly 
because they are sensitive to the nonlinear behaviour of damage [29], which is a 
typical behaviour resulting from fatigue damage. Statistical model development is 
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performed by considering both supervised and unsupervised machine learning. 
Four supervised machine learning algorithms are applied to test the abilities of 
different machine learning algorithms to detect structural damage, learn the 
structure of the data and determine how well the different damage types can be 
classified. The Mahalanobis squared distance (MSD), shown to be a highly suitable 
data normalization approach in terms of strong classification performance and low 
computational effort [12], is implemented as an unsupervised machine learning 
algorithm by novelty detection. Finally, the performances of the machine learning 
algorithms are assessed via both receiver operating characteristics (ROC) curves 
and confusion matrices. 

Two novel contributions to the field of SHM regarding its application to 
bridges are made in this paper. First, statistical model development provides insight 
into the performances of several supervised machine learning algorithms based on 
a unique dataset established from a real-world application and allows for a study on 
the detectability of different damage types. Although these results have limited 
practical significance since data from both undamaged and damaged conditions are 
rarely available for bridges in operation, such information is invaluable for the 
SHM process and in the design of SHM systems. Second, a comparison between 
supervised and unsupervised learning algorithms is made. The implication of this 
insight provides a major contribution towards establishing a methodology for 
damage detection that can be employed in SHM systems on existing steel bridges. 

The outline of this paper is as follows. Section 5.2 provides a description of the 
experimental setup, including the damage introduced to the bridge and the 
operational and environmental conditions experienced during the measurements. 
Section 5.3 describes the feature extraction and the process of selecting the 
appropriate AR model order in addition to giving a brief overview of the 
supervised and unsupervised machine learning algorithms applied in this study. 
Section 5.4 presents the utilized analysis approach and the results obtained from 
the statistical models developed using the supervised and unsupervised machine 
learning algorithms. Finally, Sections 5.5 and 5.6 summarize the work, discuss the 
analysis results obtained and suggest further work. 

5.2 Experimental study 

5.2.1 Experimental setup 
The Hell Bridge Test Arena, shown in Figure 5.1, is used as a full-scale damage 
detection test structure. The structural system of the bridge is composed of two 
bridge walls, the bridge deck and the lateral bracing. Figure 5.2 shows a schematic 
overview of the bridge. 
 An instrumentation system from National Instruments consisting of three 
cRIO-9036 controllers was used to acquire data from 58 accelerometers. The 
accelerometers were divided into a setup containing two sensor groups. Sensor 
group 1 consisted of 40 single-axis accelerometers (Dytran 3055D3) located below 
the bridge deck to measure the vertical response (global z-direction). Sensor group 
2 consisted of 18 triaxial accelerometers (Dytran 3583BT and 3233A) located   
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Figure 5.1: The Hell Bridge Test Arena. 

Figure 5.2: Overview of the Hell Bridge Test Arena. (a) Bridge layout, including the 
locations of the modal vibration shaker (MVS) and sensors. (b) Damage introduced to the 

bridge deck and lateral bracing. 

above the bridge deck, i.e., on the bridge walls, to measure the lateral and vertical 
responses (global y and z-directions). Data were sampled at 400 Hz. The data were 
detrended, filtered and resampled to 100 Hz before they were used for analysis. 
The bridge was excited in the vertical direction using a modal vibration shaker 
(APS 420) located at the bridge midspan. A band-limited random white noise in the 
range of 1-100 Hz with a maximum peak-to-peak excitation amplitude (stroke) of 
150 mm was applied to simulate ambient vibration. The location of the modal 
vibration shaker and the sensor positions on the bridge are shown in Figure 5.2(a). 
 Ten different structural state conditions were considered, as summarized in 
Table 5.1. The structural state conditions were categorized into two groups: 
undamaged and damaged states. In the first group, the reference structural state of 
the bridge was represented by the baseline condition. Two baseline conditions were 
established under similar environmental conditions. In the second group, the 
damage states of the bridge were represented by different damage types with 
varying degrees of severity. Altogether, eight different damage states were 
established by considering four different damage types: stringer-to-floor-beam 
connections; stringer cross beams; lateral bracing connections; and, connections 
between floor beams and main load-carrying members. The variation in the degree 
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of severity was considered by introducing each damage type at one or more 
locations in the bridge. The damage states were established consecutively in a 
sequence: damage was introduced, measurements were performed, and the damage 
was subsequently repaired. The damage types were chosen based on two 
considerations: first, these are the most common and frequently reported damage 
types in the literature [1]; and second, these are the most severe but relevant 
damage types for this type of bridge. An overview of the damage types introduced 
in the bridge, including their locations, is shown in Figure 5.2(b). 

Table 5.1: Overview and descriptions of the structural state conditions. 

Label State 
condition 

Categorization1 Type Description 

UDS1 Undamaged 
 
- 
 

Baseline 
condition 

Before all damage 
state conditions 

UDS2 Undamaged 
 
- 
 

Baseline 
condition 

After all damage 
state conditions 

DS1 Damaged 
 

Local 
 

Stringer-to-floor-
beam connection 

Single connection 
damaged 

DS2 Damaged Local Stringer-to-floor-
beam connection 

Multiple 
connections 

damaged 

DS3 Damaged 
 

Local 
 

Stringer cross beam Main part of single 
cross beam removed 

DS4 Damaged Local Stringer cross beam 
Main parts of 
multiple cross 

beams removed 

DS5 Damaged 
 

Global 
 

Lateral bracing 
connection 

Single connection 
damaged 

DS6 Damaged 
 

Global 
 

Lateral bracing 
connection 

Single connection 
damaged 

DS7 Damaged Global Lateral bracing 
connection 

Multiple 
connections 

damaged 

DS8 Damaged Global 

Connection between 
the floor beam and 
main load-carrying 

member 

Single connection 
damaged 

1 Local: damage to the secondary steel structure. Global: damage to the primary steel 
structure. 
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Figure 5.3: The damage types imposed on the bridge. (a) Stringer-to-floor-beam 
connection. (b) Stringer cross beam. (c) Lateral bracing connection. (d) Connection 

between the floor beam and main load-carrying member. 

The damage types, shown in Figure 5.3, were imposed by temporarily 
removing the bolts. All bolts were removed in each damage state condition. The 
damage types considered involved highly progressed damage, representing loose 
connections and large cracks that open and close under dynamic loading. As such, 
each damage represented a fully developed crack resulting from fatigue, leading to 
a total loss of functionality of the considered connection or beam. Such damage 
progression, which leads to a redistribution of forces, would be demanding on the 
structure over time but not critical to the immediate structural integrity due to the 
redundancy inherent in the design of the bridge. Details regarding the damage 
types, including the associated mechanism, can be found in [1]. 

80 tests were performed for each state condition, resulting in a total of 800 
tests. For each test, time series data were generated over 10.24 sec, and data were 
obtained from a total of 75 sensor channels (40 channels from sensor group 1 and 
35 channels from sensor group 2). Note that one channel in the lateral direction 
from sensor group 2 was excluded. Accelerometers were included in sensor groups 
1 and 2 to capture the local and global responses of the bridge, respectively. 

5.2.2 Operational and environmental conditions 
Variability in the operational and environmental conditions imposes difficulties on 
the damage detection process. In general, operational conditions mainly include 
live loads, whereas environmental conditions include temperature effects, wind 
loading and humidity. During the measurements, no sources of variability were 
considered for the operational condition, which was limited to the operation of the 
modal vibration shaker only. The environmental conditions were logged during the 
measurements and summarized in Table 5.2. 

 The environmental conditions were stable during the measurement period, 
which gives confidence that any changes observed in the results are caused by the 
damage imposed in the different damage states. An increase in the temperature 
occurred during the testing of DS3 and DS4; however, this temperature change was 
found to have little impact on the damage detection process. 
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Table 5.2: Environmental conditions during the measurement period. 

State Temperature (°C) Wind speed (m/s) Weather 

UDS1 10-11 1-2 Cloudy 
UDS2 13 0-2 Partly cloudy and sunny 
DS1 14 0-2 Partly cloudy and sunny 
DS2 13 0 Partly cloudy and sunny 
DS3 21 0-2 Sunny 
DS4 22 0-2 Sunny 
DS5 13 0-2 Partly cloudy and sunny 
DS6 13 0-2 Partly cloudy and sunny 
DS7 13 0-2 Partly cloudy and sunny 
DS8 11 0-2 Partly cloudy and sunny 

5.3 Feature extraction and machine learning algorithms 

5.3.1 Feature extraction 
In the context of SHM, machine learning is applied to associate the damage-
sensitive features derived from measured data with a state of the structure; the 
basic problem is to distinguish between the undamaged and damaged states. In this 
study, an AR model is used to extract damage-sensitive features from time series 
data. For a specific time series, the AR( p ) model of order p  is given as [30] 

 
1

p

t j t j t
j

y yφ ε−
=

= +∑  (5.1) 

where ty  is the measured response signal, jφ  denotes the AR parameter(s) to be 
estimated and tε  is the random error (residual) at the time index t . The use of AR 
parameters has proven useful for SHM applications regarding civil infrastructure 
mainly for three reasons [12], [29]: first, the parameters are sensitive to the 
nonlinear behaviour of damage, which is a typical behaviour resulting from fatigue 
damage; second, feature extraction depends only on the time series data obtained 
from the structural response; and third, the implementation is simple and 
straightforward. 

 To determine the appropriate order for a time series, two model selection 
criteria are commonly used: the Akaike information criterion (AIC) and the 
Bayesian model criterion (BIC). The AR model with the lowest AIC or BIC value 
gives the optimal order p . 

5.3.2 AR model order selection 
To find a common AR model order that can be applied to all time series, a model 
selection evaluation is performed. Analyses are performed for a selection of time 
series by considering the AIC and BIC values obtained by AR( p ) models of 
increasing order p . The root mean square (RMS) values of the residuals are also 
considered as a heuristic approach, where the residuals are the differences between 
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the model’s one-step-ahead predictions and the real values of the time series. The 
results are based on the average results of all sensor channels, which are obtained 
by performing analyses of 80 tests in the undamaged state condition (40 tests from 
UDS1 and UDS2, respectively). Analyses of the AR parameters are performed 
using the statsmodels module in Python [31]. 
 Figure 5.4 shows the results obtained by considering the normalized AIC and 
BIC values in addition to the RMS values of the residuals. The optimal order, p , is 
determined by the lowest values or by the convergence point of the values for a 
varying order. It is observed that the curves generally follow each other well and 
that the curves decrease rapidly for the lowest model orders. Although the AR 
models of order 8 or higher prove to be close to optimal representations of the time 
series, a lower-order model is used in this study. The choice of AR model order is 
important, not only because the optimal order provides the best representation of 
the time series but because the AR parameters are used as inputs for the machine 
learning algorithms in a concatenated format, affecting the dimension of the feature 
space. A high AR model order increases the dimension of the feature space. 
Consequently, there is a trade-off between obtaining the optimal time series 
representation and reducing the uncertainty of dealing with high-dimensional data. 
Data with high dimensionality may lead to problems related to the curse of 
dimensionality [32]; as the feature space dimension increases, the number of 
training samples required to generalize a machine learning model also increases 
drastically. Although a lower-order model is arguably not the optimal 
representation, it can still provide a good representation of the time series for use 
with all state conditions, and it reduces the uncertainty associated with high-
dimensional data for the considered analysis approach. Therefore, for each test of 
each state condition, AR(5) models are established for the time series obtained 
from all sensor channels. The features are used as inputs to the machine learning 
algorithms for supervised and unsupervised learning. 

Figure 5.4: Average AIC, BIC and RMS values for AR( p ) models of increasing order p  
from all sensor channels for a selection of time series from the undamaged state condition. 

  



5.3 Feature extraction and machine learning algorithms 

147 

5.3.3 Supervised learning 
For supervised learning, a training matrix n k×∈X   with n  samples and k  features 
and a test matrix m k×∈Z   with m  samples are composed of data from both the 
undamaged and damaged conditions. The target variable 1n×∈y   is a vector 
composed of the class labels y . 1 k

i
×∈x   and 1 k

i
×∈z   denote arbitrary samples 

with an index i  from the training and test matrices, respectively, with a 
corresponding class label iy . Note that k  here is the total number of features to be 
included. 
 Supervised machine learning algorithms are considered for group classification 
only. The supervised machine learning algorithms are applied to test the abilities of 
different machine learning algorithms to detect structural damage, learn the 
underlying structure of the data and determine how well the different damage types 
can be classified. For this purpose, four common supervised machine learning 
algorithms are chosen: the k-nearest neighbours (kNN), the support vector machine 
(SVM), the random forests (RF) and the Gaussian naïve Bayes (NB) algorithms. 
Each algorithm yields different properties with respect to complexity, 
computational efficiency, and performance in terms of the size of the training data 
and dimensionality of the feature space. In the context of SHM, the presented 
algorithms have never before been applied in supervised learning for damage 
detection on actual bridges, and only a few applications have been reported with 
respect to numerical studies or experimental studies using test structures [33], [34]. 
The theoretical backgrounds of the presented algorithms can be found in [35], [36], 
and practical examples (including implementations) can be found in [37], [38]. 

5.3.4 Unsupervised learning 
For unsupervised learning, a training matrix n k×∈X   with n  samples and k  
features is composed of data from the undamaged condition only, and a test matrix 

m k×∈Z   with m  samples is composed of data from both the undamaged and 
damaged conditions. Unsupervised learning by novelty detection is implemented to 
take into consideration that data from the structure are generally only available in 
the undamaged condition. Novelty detection occurs when only training data from 
the undamaged state condition, i.e., the normal condition, are used to establish if a 
new sample point should be considered as different (an outlier). Consequently, if 
there are significant deviations, the algorithm indicates novelty. For SHM 
applications, several unsupervised machine learning algorithms have been reported 
in the literature [8], [12], [13], [17], [18], [33]. However, the MSD is found to be a 
highly suitable data normalization approach in terms of strong classification 
performance and low computational effort [12]. 

 The MSD is a normalized measure of the distance between a sample point and 
the mean of the sample distribution and is defined as 

 ( ) ( )1 T
i i iDI −= − −z x C z x  (5.2) 

where 1 k
i

×∈z   is the new sample point and potential outlier, 1 k×∈x   is the mean 
of the sample observations (sample centroid) and k k×∈C   is the covariance 
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matrix. Both x  and C  are obtained from the training matrix X . The MSD is used 
as a damage index, which is denoted as DI . 
 To determine if a sample point is an inlier or outlier, a threshold value can be 
established using Monte Carlo simulations. The procedure of this method is 
adopted from [39] and summarized by the following steps for a 1% threshold: 

1. A ( )n k×  matrix is constructed, where each element is a randomly 
generated number from a normal distribution with zero mean and unit 
standard deviation. The MSD for all n  samples is calculated and the 
largest value is stored. 

2. Step 1 is repeated for a minimum of 1000 trials. The array with all of the 
largest MSD values is structured in descending order. 

3. The threshold value is established by considering the MSD values in the 
structured array in which 1% of the trials occur. 

 
The threshold value is dependent on the numbers of observations and 

dimensions for the considered case. 

5.4 Experimental analysis and results 

5.4.1 Analysis approach 
In the analysis approach used in this study, all sensor channels from each sensor 
group are taken into consideration simultaneously. The features are concatenated 
and applied as inputs for the machine learning algorithms. Hence, the setups for 
sensor groups 1 and 2 yield feature vectors with dimensions of 200 ( )40 5×  and 
175 ( )35 5× , respectively. Statistical model development is performed based on 
the experimental study using both supervised and unsupervised learning for each 
setup separately. 

5.4.2 Supervised learning 
In supervised learning, labelled data are available. The supervised machine 
learning algorithms presented in Section 5.3.3 are implemented. The features are 
scaled to zero mean and unit variance for the algorithms, where relevant, to 
improve their performances. 
 The data are divided into 75% for training and 25% for testing. Consequently, 
the training matrix X has dimensions of 600 200×  and 600 175×  for sensor 
groups 1 and 2, respectively. The two baseline conditions (UDS1 and UDS2) are 
merged for the undamaged state condition (UDS) and include a total of 120 tests, 
whereas 60 tests are included for each damage state condition (DS1-DS8). Hence, a 
total of nine different class labels are included for evaluation. To find the optimal 
hyperparameters and increase the abilities of the machine learning algorithms to 
generalize to unseen data, a grid search with 5-fold cross validation is performed 
on the training data. The grid search conducts an exhaustive search over the 
specified hyperparameters to obtain the best cross-validation score. The 
hyperparameters of each algorithm, together with the final values obtained from the 
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grid search, are summarized in Table 5.3. The test matrix Z  has dimensions of 
200 200×  and 200 175×  for sensor groups 1 and 2, respectively. Since the 
undamaged state condition is merged, it includes a total of 40 tests, whereas 20 
tests are included for each damage state condition. For evaluation purposes, each 
sample from the test data is classified into one of the nine classes, resulting in a 
multi-class classification approach. 

 To evaluate the performances of the machine learning algorithms, also referred 
to as classifiers, ROC curves are established. The ROC curves represent the 
relative trade-offs between true positives (TP), or the probability of detection, and 
false positives (FP), or the probability of a false alarm [40]. Figure 5.5 shows the 
averaged ROC curves, including the areas under the curves (AUCs), by 
considering all the classifiers for sensor groups 1 and 2. Each averaged ROC curve 
represents the micro-average of all classes, i.e., the contributions from all classes 
are aggregated to compute the average. To compare the classifiers, the ROC 
performances are reduced to scalar AUC values that represent the expected 
performances. Hence, a perfect classification is represented by the point (0, 1) with 
an AUC value of 1.0. Consequently, from the plots in Figure 5.5, it is concluded 
that all classifiers perform well; however, the SVM outperforms the other 
classifiers and obtains perfect classification results for both sensor groups. 
Table 5.3: Specified hyperparameters for the supervised machine learning algorithms. The 
final values of the hyperparameters are provided in parentheses for sensor groups 1 and 2. 

Details of the hyperparameters are specified in [37], [38]. 

 Hyperparameters 

Algorithm Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 

SVM 
Regularization 

strength 
(0.1, 0.01) 

Kernel type 
(linear, 
linear) 

Kernel 
coefficient 
(NA, NA)1 

 
 
- 
 
 

- 

RF 
Number of 

trees 
(200, 100) 

Node 
impurity 
criterion 
(Entropy, 

Gini) 

Maximum 
tree depth 

(10, 6) 

Minimum 
leaf node 
samples 

(4, 4) 

Maximum 
number of 
features for 

best split 
(14, 7) 

NB2 
 
- 
 

- - - - 

kNN 
Number of 
neighbours 

(1, 5) 

Leaf size 
(1, 1) 

Parameter 
for the 

Minkowski 
metrics 
(1, 1) 

- - 

1 The kernel coefficient is not applicable (NA) for the linear kernel. 
2 One parameter can be tuned in the NB algorithm; however, the default value was chosen. 
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Figure 5.5: Averaged ROC curves for the machine learning algorithms. (a) Sensor group 1. 
(b) Sensor group 2. 

To obtain a more detailed view of the results, normalized multi-class confusion 
matrices for each classifier are established and shown in Figure 5.6. By considering 
both sensor groups, it is clearly seen that the class labels are mostly incorrectly 
classified within each damage type, with a few exceptions. In particular, damage in 
the stringer cross beams, represented by the class labels DS3 and DS4, and damage 
in the lateral bracing connections, represented by DS5, DS6 and DS7, represent the 
majority of the incorrect predictions made. Accordingly, DS3 is incorrectly 
classified as DS4 or vice versa, and DS5 is incorrectly classified as DS6 or DS7, or 
vice versa. Interestingly, the stringer-to-floor-beam connection type of damage, 
represented by DS1 and DS2, and the connection between the floor beam and main 
load-carrying member type of damage, represented by DS8, are correctly classified 
by all classifiers. It is also seen that the naïve Bayes classifier performs worst for 
the stringer cross beam and lateral bracing connection types of damage relative to 
all classifiers, which is not very well reflected in the averaged ROC curves. There 
are two main explanations for the results obtained. First, damage in the stringer 
cross beams is categorized as local damage, and consequently, it is expected that 
introducing this type of damage generally has little influence on the structural 
response and thus makes it difficult to classify. Second, damage in the lateral 
bracing connections is categorized as global damage and is expected to have a 
global effect, rather than a local effect, on the structural response. Additionally, 
these two damage types influence the structural response mainly in the lateral 
direction of the bridge, which also explains the differences in the results obtained 
between sensor groups 1 and 2, since sensor group 1 only measures the response in 
the vertical direction. 

 An important part of the statistical model development process for supervised 
learning is to characterize the type of damage that can best be detected. Information 
regarding the damage types that are most difficult to detect when using the analysis 
approach considered is valuable information for bridge owners. In doing so, the 
true positive rate (TPR) (or recall) and positive predictive value (PPV) (or 
precision) are good measures. These measures are defined as 

 TPTPR
TP FN

=
+

 (5.3)  
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Figure 5.6: Normalized confusion matrices obtained from supervised learning by 
considering both sensor groups. For each confusion matrix, the predicted label is on the x-

axis, and the true label is on the y-axis. 

 TPPPV
TP FP

=
+

 (5.4) 

where TP  denotes the true positives, FN  represents the false negatives and FP  
signifies the false positives for a specified class. The TPR  measures the 
proportions of correctly identified positives, whereas PPV  measures the 
proportions of positive results. Additionally, the 1F  score is the harmonic mean of 
the recall and precision. Table 5.4 summarizes the mean values of the TPR , PPV  
and 1F  scores of the four classifiers for all class labels. 
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Table 5.4: Mean values of the TPRs, PPVs and F1 scores of the four classifiers. 

Class 
label 

Sensor group 1 Sensor group 2 

TPR PPV F1 score TPR PPV F1 score 
UDS 0.957 0.958 0.956 1.000 0.988 0.994 
DS1 1.000 1.000 1.000 1.000 1.000 1.000 
DS2 1.000 1.000 1.000 1.000 1.000 1.000 
DS3 0.805 0.836 0.811 0.938 1.000 0.966 
DS4 0.822 0.827 0.820 1.000 0.967 0.983 
DS5 0.790 0.837 0.808 0.976 1.000 0.988 
DS6 0.752 0.709 0.722 1.000 0.983 0.991 
DS7 0.718 0.733 0.722 0.985 1.000 0.992 
DS8 1.000 1.000 1.000 1.000 1.000 1.000 

 
From the results obtained, and by specifically considering the TPR , it is 

concluded that, on average, damage in the stringer-to-floor-beam connections and 
the connection between the floor beam and main load-carrying member are 
classified best, followed by damage in the stringer cross beams and the lateral 
bracing connections. Furthermore, a higher degree of stringer cross beam damage 
(DS4) is classified better than a lower degree (DS3); however, a similar conclusion 
cannot be made about the damage in the lateral bracing connections, with no 
obvious explanation. Nevertheless, and most importantly, by using an appropriate 
classifier such as the SVM, all damages can be correctly classified. The results 
from the SVM, based on the grid search, were obtained using a linear kernel for 
both sensor groups, proving that the dataset is linearly separable. 

5.4.3 Unsupervised learning 
In unsupervised learning, no labelled data are available. The MSD algorithm 
presented in Section 5.3.4 is implemented as a novelty detection method. 
 To obtain a reasonable amount of data from the undamaged state condition, the 
training matrix X  is based on the measured data with a level of noise added. Thus, 
to establish the training matrix, 80 tests from the undamaged state condition are 
used as basic training data, i.e., 40 tests from each of the two baseline conditions 
(UDS1 and UDS2). The basic training data are copied 20 times, and each copy is 
subsequently corrupted with white Gaussian noise. Noise is added with a signal-to-
noise ratio (SNR) equal to 20 using the definition 

 SNR µ
σ

=  (5.5) 

where µ  is the mean of the absolute value of each individual feature considering 
all the samples in the basic training data and σ  is the standard deviation (or RMS) 
of the noise. Notably, the statistics of each feature in the feature vector are taken 
into consideration during noise generation. The result is a suitable mean vector x  
and covariance matrix C  representing the undamaged state condition. Adding 
training data corrupted with noise improves and stabilizes the MSD algorithm and 
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is found to be a good solution in situations where adequate measured training data 
are not available [39]. Consequently, the training matrix X  has dimensions of 
1600 200×  and 1600 175×  for sensor groups 1 and 2, respectively. The test matrix 
Z  is composed of the remaining data from the undamaged state condition (UDS), 
i.e., 80 tests from the two baseline conditions (UDS1 and UDS2), and 80 tests from 
each of the damage state conditions (DS1-DS8). Thus, the test matrix has 
dimensions of 720 200×  and 720 175×  for sensor groups 1 and 2, respectively. 
For evaluation purposes, each sample from the test data is classified as either 
undamaged or damaged, resulting in a binary classification approach. 
 Figure 5.7 shows the ROC curves for the MSD algorithm, including the AUC 
values, obtained by considering both sensor groups. From this figure, it is 
concluded that the algorithm performs well: good classification results are obtained 
for sensor group 1, and perfect classification results are obtained for sensor group 
2. The performance of the classifier regarding the 1% threshold is shown in Figure 
5.8, where the damage indices (DIs) from the state conditions are established for 
both sensor groups. Additionally, the state conditions of the respective test 
numbers are added for informative purposes at the top of the plots. In the binary 
classification approach, FP  (false positive indications of damage) and FN  (false 
negative indications of damage) are referred to as Type I and Type II errors, 
respectively. Type I errors are observed in all the tests based on the undamaged 
state condition (black markers) that are above the threshold, whereas Type II errors 
are observed in all the tests based on the damaged state condition (grey markers) 
that are below the threshold. For quantification purposes, these errors are 
summarized in Table 5.5 for both sensor groups with respect to the considered 
thresholds. 

Figure 5.7: ROC curves yielded by the MSD algorithm by considering both sensor groups. 
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Figure 5.8: Damage indices (DIs) yielded by the MSD algorithm for the undamaged 
(black) and damaged (grey) state conditions with respect to the threshold value (dashed 

line) established from the Monte Carlo simulations. (a) Sensor group 1. (b) Sensor group 2. 

Table 5.5: Type I and II errors for both sensor groups yielded by the MSD algorithm. 

Setup 
Error 

Type I (FP) Type II (FN) Total 
Sensor group 1 5 (6.3%) 26 (4.1%) 31 (4.3%) 
Sensor group 2 39 (48.8%) 0 (0.0%) 39 (5.4%) 

 
The results show that the setup for sensor group 1 yields the best performance 

with regard to avoiding false positive indications of damage (6.3%). The setup for 
sensor group 2 has a very low performance regarding false positive indications of 
damage (48.8%); however, it has an excellent performance when detecting damage 
(0.0%). Overall, the total misclassification rate obtained is lower for sensor group 1 
(4.3%) than for sensor group 2 (5.4%). Nonetheless, these are good results for a 
novelty detection method. Additionally, an interesting observation in Figure 5.8(a) 
is the clear trend showing that larger degrees of severity for each damage type also 
provide generally larger damage indices: DS2 > DS1, DS4 > DS3 and DS7 > DS6 
and DS5. Although this is not observed in Figure 5.8(b), it clearly shows that the 
MSD algorithm performs well, particularly for the sensor group 1 setup. 

5.4.4 Sensitivity analysis 
To investigate the effect of a dense sensor network on the classification results, a 
sensitivity analysis is performed in the unsupervised learning with a reduced 
number of sensors in sensor group 1. Two cases are considered. In case 1, the 
sensors located in positions P1 and P2 in the longitudinal direction of the bridge are 
included, shown in Figure 5.2, whereas the sensors in positions P3 and P4 are 
included in case 2. As such, only 20 sensors are included in each case, and the 
sensors located closest to the damage state conditions DS1, DS2 and DS8 are 
included in case 1. Figure 5.9 and Figure 5.10 show the ROC curves and 
performance of the classifier regarding the 1% threshold for both cases, 
respectively. The Type I and II errors are summarized in Table 5.6. 
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Figure 5.9: ROC curves yielded by the MSD algorithm by considering both cases in sensor 
group 1. 

Figure 5.10: Damage indices (DIs) yielded by the MSD algorithm for the undamaged 
(black) and damaged (grey) state conditions with respect to the threshold value (dashed 

line) established from the Monte Carlo simulations. (a) Case 1 in sensor group 1. (b) Case 2 
in sensor group 1. 

Table 5.6: Type I and II errors for both cases in sensor group 1, including the original case, 
yielded by the MSD algorithm. 

Case 
Error 

Type I (FP) Type II (FN) Total 
Original 5 (6.3%) 26 (4.1%) 31 (4.3%) 
Case 1 1 (1.3%) 141 (22.0%) 142 (19.7%) 
Case 2 1 (1.3%) 101 (15.8%) 102 (14.2%) 

 
From the results obtained, and through a comparison with the original case in 

sensor group 1 where all sensors are included, the effect of a dense sensor network 
can be clearly observed. Particularly, two important observations are made. First, 
although the performance regarding false negative indications of damage for case 1 
(22.0%) is higher than that for case 2 (15.8%), case 1 shows more distinct results 
for damage state conditions DS1, DS2 and DS8 than case 2. These results indicate 
the positive effect of sensors being located near the damage locations. Second, the 
total misclassification rates of cases 1 (19.7%) and 2 (14.2%) are higher than that 
in the original case (4.3%). The low performance of both cases regarding outliers, 
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or false negative indications of damage, is more unfavourable than that of 
incorrectly diagnosing inliers, or false positive indications of damage. Hence, 
reducing the number of sensors drastically increase the false negative indications of 
damage, which clearly demonstrates the importance of a dense sensor network. 

5.5 Summary and discussion 
From the statistical model development in supervised learning, three major 
observations are made. First, relevant structural damage in steel bridges can, in 
fact, be found. More specifically, by considering the hierarchical structure of 
damage identification [3], [41], level I (existence) and level III (type) damage 
detection can be performed. Second, how well structural damage can be classified 
strongly depends on the machine learning algorithm being applied. The machine 
learning algorithms perform differently; however, the SVM achieves perfect 
classification results and outperforms the other algorithms, including those that can 
capture complex nonlinear behaviours. Third, a study on the detectability of the 
different damage types, based on the average performances of the classifiers, 
shows that damage to the lateral bracing connections is most often misclassified, 
followed by damage to the stringer cross beams. The other damage types are 
perfectly classified and represent the damage types that can best be detected. Such 
information is invaluable for the design of SHM systems with respect to 
instrumentation setup and sensor placement, and it provides insight into which 
damage types can generally be expected to be difficult to detect and those that are 
not for a similar analysis approach. 

 Data from both the undamaged and damaged conditions are generally not 
available for bridges in operation. Hence, unsupervised learning is required, where 
data from only the undamaged condition are available. Consequently, the results 
obtained from unsupervised learning are emphasized in this study. From the 
statistical model development, it is observed that the MSD algorithm performs well 
for the considered analysis approach with respect to minimizing the number of both 
false positive and false negative indications of damage. This algorithm has a high 
classification performance, is computationally efficient, and does not require any 
assumptions or tuning of parameters, although training data are added numerically 
to obtain improved performance. As such, the results obtained in this study, 
particularly by comparing supervised and unsupervised learning, are of major 
importance. Specifically, the unsupervised learning algorithm performs almost 
equally as well as the best supervised learning algorithms. This not only 
demonstrates that relevant structural damage in steel bridges can be classified using 
unsupervised learning but also shows that a methodology for damage detection can 
be employed on existing bridges. 

In this study, variability in the operational and environmental conditions was 
not taken into consideration using data normalization. To include data 
normalization, a larger variability in the environmental conditions than that 
experienced during the measurements is needed for the baseline data that represent 
the undamaged state condition. As such, periodic measurements that take all 
seasonal variations into consideration should be a minimum requirement. This is 
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not included in the scope of this study, and future work should assess whether 
changes caused by damage can be separated from changes caused by any 
operational and environmental conditions. Such an assessment will reduce the 
uncertainty in the process of damage state assessment. Furthermore, it is 
acknowledged that for a future assessment based on long-term monitoring where 
data normalization is included, unsupervised learning methods such as the auto-
associative neural network (AANN) and Gaussian mixture models (GMMs) should 
be considered, particularly in the presence of nonlinear effects caused by variability 
in the operational and environmental conditions [17]. 

There are several advantages of the analysis approach presented in this study. 
The approach is computationally efficient from a machine learning perspective 
because many sensors can be evaluated simultaneously. Consequently, both 
supervised and unsupervised learning (novelty detection) can easily be performed. 
Furthermore, the approach allows for level I (existence) and level III (type) damage 
detection (the latter is only for supervised learning) but limits the possibility of 
performing level II (location) damage detection in unsupervised learning due to the 
large number of sensors widely distributed over the structure. The importance of a 
large number of sensors in a dense sensor network is demonstrated through a 
sensitivity analysis. The dense sensor network ensures a low total misclassification 
rate and enhances the damage detection capabilities. The main disadvantage of the 
analysis approach, however, is the high dimension of the feature space, which 
limits the number of features that can be included per sensor channel. From a 
general perspective, this limitation can be solved by increasing the number of 
samples in the training data or by performing dimension reduction techniques. 
From the results obtained in this study, despite this limitation, damage detection 
can still be successively performed. 

AR parameters were found to be excellent damage-sensitive features in this 
study, and an AR(5) model was considered adequate. A low-order model was 
primarily used to reduce the dimension of the feature space for the analysis 
approach considered but also because low variations in the environmental and 
operational conditions were experienced during the measurements. The AR(5) 
model was able to capture the underlying dynamics of the structure and to 
accurately discriminate the undamaged and damaged states when applied as inputs 
for the machine learning algorithms under both supervised and unsupervised 
learning. However, it is important to note that environmental and operational 
conditions can introduce changes in the structural response. Furthermore, such 
changes can mask changes in any responses related to damage when a low model 
order is used, as shown by Figueiredo et al. [29]. This awareness is needed when 
using low-order models. Increasing the model order can easily be done when 
appropriate training data are available. 

As a final note, the dataset used in this study was a result of measurements 
obtained using a dense instrumentation setup that was widely distributed over the 
structure, to capture both the local and global structural responses. Additionally, 
different damage types and degrees of severity were considered, and the 
operational and environmental conditions were logged. Consequently, the dataset 
obtained is unique in the context of performing damage detection in steel bridges. 



Chapter 5 

158 

5.6 Conclusion 
The primary motive of SHM is to design a system that minimizes false positive 
indications of damage for economic and reliability concerns and false negative 
indications of damage for life-safety issues. For bridges, such a system should 
primarily be considered in an unsupervised learning approach, where data from 
only the undamaged condition are available. 

 This paper presented a data-based SHM approach for damage detection in steel 
bridges. The results obtained from an extensive experimental study proved that 
relevant structural damage in steel bridges, which is typically caused by fatigue, 
can be established using unsupervised learning. As such, this study provides a 
major contribution towards establishing a methodology for damage detection that 
can be employed in SHM systems on existing steel bridges. Future work will assess 
data normalization, where changes caused by damage can be separated from 
changes caused by any operational and environmental conditions, to reduce the 
uncertainty in the resulting damage state assessment. 
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