
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Sander Støle Hageli

Post-quantum cryptography

Bachelor’s thesis in Mathematical Sciences
Supervisor: Kristian Gjøsteen
December 2021

Ba
ch

el
or

’s
th

es
is

Sander Støle Hageli

Post-quantum cryptography

Bachelor’s thesis in Mathematical Sciences
Supervisor: Kristian Gjøsteen
December 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

In this bachelor’s thesis, we are taking a look at CRYSTALS Kyber, a CCA2
quantum-resistance Key Encapsulation Mechanism, how it is constructed and
its security. We are also looking at the Module Learning With Error Problem
and how it relates to Kyber.

With quantum computers having the possibility of becoming powerful enough
in the near future to efficiently factoring integers and finding solutions to the
discrete logarithm problem, and by the fact that NIST made a call for defining
a new standard for public-key encryption, there has been an increased interest
in post-quantum cryptography.

One of the finalists to NIST’s call for proposals are CRYSTALS Kyber: a
CCA2-secure KEM, whose security is based on the hardness of solving the
Module Learning With Error Problem. Kyber is the result of a slightly tweaked
Fujisaki–Okamoto transform of a CPA-secure scheme called Kyber.CPA.

Kyber.CPA consists of three algorithms: a key generation, an encryption and
a decryption algorithm. The outputs of these algorithms are compressed to
make the public-key and ciphertext smaller with respect to the amount of bits
required to store them.

Contents

1 Introduction 3

2 Definitions and notations 4

3 Construction 5
3.1 Compressing and Decompressing 5
3.2 Algorithms . 7

4 Security 9
4.1 MLWE-problem . 9
4.2 IND-CPA security . 11

5 KEM 13
5.1 Algorithms . 13
5.2 IND-CCA security . 14

6 References 16

1 Introduction

Many of the cryptosystems in use today base their security on hard mathe-
matical problems such as integer factorization or the discrete logarithm problem.
While there are no efficient methods to solve these problems with today’s classi-
cal computers, a powerful enough quantum computer may solve these problems
in polynomial time. This might be done using Shor’s algorithm [1].

Today’s quantum computers are not powerful enough to solve the problems
mentioned above, but if they do one day become powerful enough, then it is
advantageous to already have secure systems against them. This is why NIST,
the U.S. National Institute of Standards and Technology, wanted to define a new
post-quantum standard for public-key encryption [2]. They started a process
to evaluate different quantum-resistant public-key algorithms. One of the most
promising type of problems to base these algorithms on are lattice-based ones.

One of the finalists to NIST’s call for proposals are CRYSTALS, the ”Crypto-
graphic Suite for Algebraic Lattices” [3]. CRYSTALS Kyber is their public-key
Key Encapsulation Mechanism, which is IND-CCA2 secure, and its security is
based on the hardness of solving the Module Learning With Error Problem. It
is a generalization of the Learning With Error Problem, where instead of only
restricting the problem to real numbers, vectors of polynomials in a quotient
ring are used.

The construction of Kyber is built upon a CPA-secure scheme, called Ky-
ber.CPA. The algorithms in Kyber.CPA are made to compress their output.
This sacrifices some correctness, but it makes the public-key and ciphertext
smaller with respect to the amount of bits required to store them. This error
in correctness could be made very small by choosing the right parameters.

Kyber.CPA is transformed into Kyber via a slightly tweaked Fujisaki–Okamoto
transform. Making it possible for two parties to share a secret-key between each
other over a public network. The security of Kyber can be expressed in terms of
the security of Kyber.CPA, both with classical and quantum adversaries, even
though this expression changes from a classical to a quantum adversary.

There are reductions, in both directions, between the Module Learning With
Error Problem and the Module Shortest Independent Vector Problem. One of
these reductions is a quantum reduction, making the problems equally hard for
a quantum computer to solve. It is believed that the latter of these problems is
hard to solve, and so the Module Learning With Error Problem is also believed
to be hard to solve.

3

2 Definitions and notations

Vector notation Here non-bold lowercase letters represent scalars or poly-
nomials, bold lowercase letters represent vectors, while bold uppercase letters
represent matrices. A vector a with elements from a set S will be written as
a ∈ Sn, while n×m matrices A with elements from a set S will be written as
A ∈Mn×m(S). All vectors will be column vectors.

Randomly chosen notation When the notation a ← S is used, it should
be interpreted as a being chosen uniformly random from the set S. If a is a
vector (or A is a matrix), then a ← Sn (A ← Mn×m(S)), denotes that all the
elements in a (A) are uniformly random chosen from S.

Groups and rings The ring R will be the quotient ring Z[X]/(Xn+1) of poly-
nomials with integer coefficients. Rq will denote the quotient ring Zq[X]/(Xn+
1) of polynomial with coefficients from Zq, the group of integers modulo q.

Binomial distribution The set Bν is the collection {Σνi=1(ai−bi) | (ai, bi)←
{0, 1}2}. So when u ← Bν , it means that u = Σνi=1(ai − bi), where (ai, bi) ←
{0, 1}2 for all i. If u ∈ R, then u← Bν means that each coefficient of u is chosen
from Bν .

Norm For an element w = w0 + w1X + w2X
2 + ... + wn−1X

n−1 ∈ Rq, the
norm will be defined as ‖w‖∞ = maxi(‖wi‖∞), where all wi ∈ Zq. The norm
of an element w ∈ Zq will be ‖w‖∞ = |w mod±q|, where w mod±q denotes the
integer w′ in the range (− q2 ,

q
2] if q is even, and [− q−1

2 , q−1
2] if q is odd, such

that w′ is congruent to w modulo q.

Rounding The notation dac means to round a to the nearest integer. d·e is
the ceiling function that rounds up, and b·c is the floor function that rounds
down.

Cryptosystem A cryptosystem is a tuple consisting of three algorithms: A
key generation algorithm, an encryption algorithm, and a decryption algorithm.

Correctness A cryptosystem is δ-correct if the decryption, with the secret-
key, of the encryption, with the corresponding public-key, of a message return
the same message in δ · 100% of the cases. If δ = 1 then the cryptosystem is
simply called correct.

XOF An extendable output function (XOF) is a hash function that maps
a finite amount of bits into an infinite amount of bits. The output can be
interpreted as bits describing a vector, or the output can be bits describing a
matrix.

4

IND-CPA security In a public-key Indistinguishable Chosen Plaintext At-
tack (IND-CPA) secure setting, an adversary sends two messages to a chal-
lenger. The challenger only encrypts a random of these two messages and
sends this back to the adversary. The cryptosystem is called IND-CPA se-
cure if Advcpa(A) = |Pr(Adversary guessing correctly) − 1

2 | is negligible, with
respect to a security parameter λ, for any efficient adversary A.

IND-CCA2 security In a public-key Indistinguishable Chosen Ciphertext
Attack 2 (IND-CCA2) secure setting, an adversary and challenger go through
all the same steps as in the IND-CPA setting. In addition, the adversary may
get the decryption of any ciphertext that is not the challenge ciphertext. The
cryptosystem is called IND-CPA secure if |Pr(Adversary guessing correctly)− 1

2 |
is negligible with respect to a security parameter λ.

Random Oracle Model In a Random Oracle Model (ROM), when the oracle
is asked for a query, it outputs a random element. If the oracle is asked for the
same query again, the output will be the same random element.

3 Construction

When constructing a cryptosystem, the system will consist of a key genera-
tion, an encryption and a decryption algorithm. It is preferable that this system
is as correct as possible, while also making it as secure and efficient as possible.

3.1 Compressing and Decompressing

In the key generation algorithm, the public-key will be compressed. This
is to make the key size smaller with respect to the amount of bits required
to store the information about the key. The output of the encryption and
decryption algorithms will also be compressed to make their output smaller.
For a prime q, an integer x ∈ Zq and an integer d < dlog2(q)e, the compression
and decompression functions will be defined as follows:

Compressq(x, d) =

⌈
2d

q
x

⌋
mod 2d (1)

Decompressq(x, d) =
⌈ q

2d
x
⌋

(2)

The compression function will take an element, x, from Zq into Z2d . Since
d < dlog2(q)e and d being an integer, then d < log2(q). So Z2d is a proper
subset of Zq, for any prime q. The decompression function is intended as an
inverse of the compression function. It takes an element, x, from Z2d into Zq,
with d and q being the same as for the compression function. When applying
the compress and decompress functions to elements in Rq or Rkq , the functions
are applied to each coefficient individually.

5

The compress function can be interpreted as scaling an x ∈ Zq by some c < 1,
making cx a decimal number. The rounding of cx will consequently remove the
decimals of cx. When decompressing this compressed x, dcxc is scaled by the
multiplicative inverse of c. This means that some information about x is lost.
A parallel can by drawn from base-ten, where an integer can be represented
as x = a01 + a110 + 12102 + ..., when scaling x by 1

10d , it would result in

a0
1

10d +a1
1

10d−1 + ...+ad−1
1
10 +ad1+ad+110+ Rounding this number would

give ad1 + ad+110 + ..., and scaling it back results in ad10d + ad+110d+1 +
So, by scaling, rounding and scaling back, the d first digits of x is lost. While
this is the case in base-ten, the d first digits are not lost in the same way when

scaling by 2d

q .

The relation between the error of compressing and decompressing, and the
values of d and q, is described by the following lemma.

Lemma 1. Let q be a prime, x ∈ Zq and d an integer such that d < dlog2(q)e.
Let x′ = Decompressq(Compressq(x, d), d). Then∣∣x− x′ mod±q

∣∣ ≤ ⌈ q

2d+1

⌋
.

Proof. The rounding of any y ∈ Q can be written as dyc = y+c, for a c ∈ (− 1
2 ,

1
2],

where c is the distance between y and the nearest integer. Then∣∣∣∣x− ⌈ q2d
(⌈

2d

q
x

⌋
mod 2d

)⌋
mod±q

∣∣∣∣ =

∣∣∣∣x− ⌈ q2d
(

2d

q
x+ c mod 2d

)⌋
mod±q

∣∣∣∣
=

∣∣∣∣x− ⌈ q2d
(

2d

q
x+ c− n2d

)⌋
mod±q

∣∣∣∣
=
∣∣∣x− ⌈x+

cq

2d
− nq)

⌋
mod±q

∣∣∣
=
∣∣∣x− (x+

cq

2d
− nq + e

)
mod±q

∣∣∣
=
∣∣∣ cq
2d
− nq + e mod±q

∣∣∣ =
∣∣∣ cq
2d

+ e mod±q
∣∣∣

=
∣∣∣ cq
2d

+ e
∣∣∣ .

Here, e is the difference between x+ cq
2d − nq and the nearest integer, and since

x and nq are integers, e will consequently be the difference between cq
2d and the

nearest integer. This will result in∣∣∣ cq
2d

+ e
∣∣∣ =

⌈ cq
2d

⌋
≤
⌈ q

2d+1

⌋
since |c| is at most 1

2 .

6

3.2 Algorithms

In the following algorithms, q will be a prime and the function f will be an
extended output function, meaning that depending on the input, the output of
the function may be on different forms, i.e., the output may be a vector, or a
matrix.

The first algorithm defined will be the key generation algorithm, Gen, where
dt will be a positive integer less than dlog2(q)e, and the function f is a XOF.

Key generation algorithm (1)
Input: (No input)

1: s1, s2 ← {0, 1}256

2: A = f(s1) ∈Mk×k(Rq)
3: (s, e) = f(s2) ∈ Bkν ×Bkν
4: t = Compressq(As + e, dt)
5: return ((t, s1), s)

Here (t, s1) is used as a public-key, while s is the private-key. The public-key
consists of t, which is a compression of As + e, and the seed s1 for generating
the matrix A. It is more efficient to return the 256-bit seed value for the matrix
instead of the whole k × k matrix.

The second algorithm will be the encryption algorithm, Enc. Let dt be as
above, and let du and dv be positive integers less than dlog2(q)e.

Encryption algorithm (2)
Input: (public-key=(t, s1), message=m)

1: r ← {0, 1}256

2: t = Decompressq(t, dt)
3: A = f(s1) ∈Mk×k(Rq)
4: (r, e1, e2) = f(r) ∈ Bkν ×Bkν ×Bν
5: u = Compressq(A

T r + e1, du)
6: v = Compressq(t

T r + e2 +
⌈
q
2

⌋
m, dv)

7: return (u, v)

The output (u, v) is the ciphertext.

In the decryption algorithm, Dec, as for Enc, let dt, du and dv be as above.

7

Decryption algorithm (3)
Input: (secret-key=s, ciphertext=(u, v))

1: u = Decompressq(u, du)
2: v = Decompressq(v, dv)
3: return Compressq(v − sTu, 1)

These three algorithms, Π = (Gen,Enc,Dec), are the Kyber.CPA cryptosys-
tem. Since the value d used in compressing is 1, the output of the decryption
algorithm has Z2[X]/(Xn+ 1) as its range. The following theorem will describe
the correctness of this system. The proof for this theorem follows the proof in
[4], but with additional elaboration.

Theorem 1. The cryptosystem Π is 1− ε correct, where

ε = Pr
(
‖eT r + kTt r + e2 + kv − sTe1 − sTku‖∞ ≥

⌈q
4

⌋)
for e, e1, r, s ← Bkν , e2 ← Bν , kt ← Θk

dt
, ku ← Θk

du
and kv ← Θdv . The distri-

bution Θd is the error distribution x−Decompressq(Compressq(x, d), d) mod±q,
from compressing and decompressing an uniformly random x← Rq.

Proof. We want to compare the output of the decryption algorithm (3) to the
original message. In the decryption algorithm, v is decompressed from a com-
pressed v′ = tT r + e2 +

⌈
q
2

⌋
m. Then v = Decompressq(Compressq(v

′)) =

tT r + e2 + d q2cm + kv for a kv ∈ Rq from the distribution Θdv . The same can
be done for u and t:

u = Decompressq(Compressq(A
T r + e1)) = AT r + e1 + ku

t = Decompressq(Compressq(As + e)) = As + e + kt

for some ku,kt ∈ Rkq from the distributions Θk
du

and Θk
dt

respectively. Then

v = (As)T r + eT r + kTt r + e2 + d q2cm + kv, and v − sTu = eT r + kTt r + e2 +

d q2cm + kv − sTe1 − sTku, as (As)T r = sT (AT r). Let w denote eT r + kTt r +
e2 + kv − sTe1 − sTku, so the expression v − sTu becomes w + d q2cm, and let
m′ = Compressq(v − sTu, 1). Then

‖v − sTu−Decompressq(m′, 1)‖∞ = ‖v − sTu−
⌈q

2

⌋
m′‖∞

= ‖w +
⌈q

2

⌋
m−

⌈q
2

⌋
m′‖∞

which is less than d q4c by Lemma 1. With this inequality, the difference of m
and m′ can be determined:∥∥∥⌈q

2

⌋
(m−m′)

∥∥∥
∞

= ‖w − w +
⌈q

2

⌋
(m−m′)‖∞

≤ ‖w +
⌈q

2

⌋
(m−m′)‖∞ + ‖−w‖∞

= ‖w +
⌈q

2

⌋
(m−m′)‖∞ + ‖w‖∞ < 2

⌈q
4

⌋

8

if ‖w‖∞ < d q4c. Then the inequality becomes ‖d q2c(m−m
′)‖∞ < 2d q4c.

Since q is an odd integer, it can either be expressed as q = 4k+1 or q = 4k+3,
for an integer k. In the case that q = 4k+ 1, then d q2c = d2k+ 1

2c = 2k+ 1 and
2d q4c = 2dk + 1

4c = 2k. Then the norm of d q2c(m−m
′) becomes:∥∥∥⌈q

2

⌋
(m−m′)

∥∥∥
∞

= max
i

(∥∥∥⌈q
2

⌋
(mi −m′i)

∥∥∥
∞

)
=
∣∣∣⌈q

2

⌋
(mj −m′j) mod±q

∣∣∣
= |(2k + 1)(mj −m′j) mod±4k + 1|
= |(−2k)(mj −m′j)| = 2k|mj −m′j |

which is strictly less than 2d q4c = 2k. The only integer that satisfies this in-
equality is 0, meaning that mj = m′j .

For the case that q = 4k + 3, d q2c = d2k + 1 + 1
2c = 2k + 2 and d q4c =

dk+ 3
4c = k+1. Then the inequality becomes (2k+2)|mj−m′j | < 2k+2, which

is, again, only possible for |mj −m′j | = 0. Meaning that the biggest difference
between m and m′ is zero, that is m = m′ for all odd integers q. Thus, by
letting ε = Pr(‖w‖∞ ≥ d q4c), the cryptosystem will be correct (1− ε) · 100% of
the time.

4 Security

The security of the cryptosystem Π is based on the hardness of solving the
Module Learning With Error Problem, MLWE. The MLWE-problem is a gener-
alization of the LWE-problem from working over R to working over a R-module
M ⊆ Rn, for a ring R.

4.1 MLWE-problem

The decision LWE-problem is about distinguishing between (ai, bi)← Znq ×T,
where T = ([0, 1) ⊆ R,+mod 1), the group of reals under addition modulo 1,
and (ai,

1
qa

T
i s + ei), where ai, s ← Znq and ei is chosen accordingly to some

probability density function over T, for i = 1, ...,m. s remains the same for all
i. This problem can also be interpreted as distinguishing between (A,b) and
(A, 1

qAs+e), where A is the matrix obtained from setting aTi = (ai1, ai2, ..., ain)

as the i-th row, s← Znq and e = (e1, e2, ..., em)T , where every ei is chosen the in

the same way as above. The lattice comes in the sense of 1
qAs being the lattice

point, and 1
qAs + e being interpreted as a small circle about this lattice point

with radius ‖e‖. The problem is to determine if a b is uniformly random, or on
the form b = 1

qAs + e.

9

This problem can be expanded into the Ring LWE-problem, RLWE, where
a1, a2, ..., am are ring elements of Rq. The problem becomes to distinguishing
between (ai, bi) and (ai, (ai · s) + ei), where s and ei are small in the sense their
norm is small. ai · s is the ring multiplication between ai and s. Since the ring
Rq = Zq[X]/(Xn+1), the ring multiplication ai ·s, can be written as the matrix
multiplication

ai0 −ai(n−1) · · · −ai1
ai1 ai0 · · · −ai2
...

...
. . .

...
ai(n−1) ai(n−2) · · · ai0




s0

s1

...
sn−1

 =


c0
c1
...

cn−1

 = c

where the coefficients are given by ai = ai0 + ai1x + . . . + ai(n−1)x
n−1 and

s = s0 +s1x+. . .+sn−1x
n−1, then ai ·s = (1, x, x2, . . . , xn−1)c. By denoting the

matrix generated from the polynomial ai as Rot(ai) and writing the matrix A =
(Rot(a1),Rot(a2), . . . ,Rot(am)), the problem can be expressed as distinguishing
between uniformly random chosen b, and b = As + e.

The RLWE-problem can further be generalized into the Module LWE-problem.
The MLWE-problem is to distinguishing between uniformly random chosen
(ai, bi) and (ai, 〈ai, s〉+ ei), where all ai’s are random elements from Rdq , which

is to be treated as an R-module, s is the same small polynomial from Rdq for all
i = 1, . . . ,m, and ei are small error polynomials from Rq. This problem can then
be written as (A,As + e), where the i-th row of A is aTi = (ai1, ai2, . . . , aid)

T .
In the same way as for RLWE the polynomial multiplication can be represented
by matrix multiplication, so the matrix A can be expressed as the m× d block
matrix: 

Rot(a11) Rot(a12) · · · Rot(a1d)
Rot(a21) Rot(a22) · · · Rot(a2d)

...
...

. . .
...

Rot(am1) Rot(am2) · · · Rot(amd)


MLWE’s relation to other problems The following two reductions, along-
side the converse directions, are described in [5]. Here, only the ”easy” directions
are included.

The MLWE-problem can be reduced into the Module Shortest Integer Solu-
tion (MSIS) problem. The MSIS-problem is for a given matrix A ∈Mn×m(Rq)
and a parameter β, to find a vector z ∈ Rm such that Az = 0 mod q and
0 < ‖z‖ ≤ β. If z is the MSIS-solution for the matrix AT , where A is obtained
from the MLWE-problem, then the inner product 〈As + e, z〉 = (As + e)T z =
sTAT z + eT z = eT z. Since the error term is small, this inner product will also
be small. The inner product of z and a b← Rdq is not necessarily small, which
means that (A,As + e) can be distinguished from (A,b) with high probability,
meaning that the MLWE-problem will be solved.

10

Furthermore, the MSIS-problem can be reduced into the Module Shortest
Independent Vector Problem (Mod-SIVP). The Mod-SIVP problem is given a
lattice basis B, find n = dim(L(B)), linear independent vectors s1, s2, · · · , sn
such that maxi‖si‖ ≤ γ‖u‖, for a γ ≥ 1, where u is any of the shortest vectors
in L(B). This is done by looking at the lattice L(B) = {x ∈ Rm | ATx = 0}. If
the Mod-SIVP-problem is solved in this lattice for a given γ, then that answer
is also the answer for the MSIS problem. Then there exists a reduction from
MLWE to Mod-SIVP, there also exists a reduction in the other direction as
described in [5]. Thus, MLWE is as hard as Mod-SIVP, which is assumed to be
hard to solve.

4.2 IND-CPA security

To show the security of Π, we will first consider a modified cryptosystem,
where the public-key is not compressed in algorithm 1: it will just return ((As+
e, s1), s). The public-key input in line 2 of algorithm 2 will not be decompressed.
The decryption algorithm will remain the same. This cryptosystem will be
denoted by Π′ = (Gen′, Enc′, Dec). The following proof follows the proof from
[4], but with additional elaboration.

Theorem 2. If the MLWE-problem is hard, then the cryptosystem Π′ is IND-
CPA secure.

Proof. Define game G0 as follows:

1. The challenger, C, generates a public-key, using Gen′,
and sends it the the adversary, A.
2. A may preform a polynomial amount of encryptions.
3. C chooses a bit, b, randomly between 0 and 1.
4. A sends two messages, m0 and m1, to C.
5. C encrypts mb, using Enc′(pk, ·), and sends it back to A.
6. A may perform a polynomial amount of additional en-
cryptions.
7. A sends back a guess, b̂, of b.

We can similarly define a game G1, where all the steps are the same except from
1., where instead of the public-key being generated from Gen′, it is randomly
chosen from Rkq . Then we can define the advantage of an adversary, A, in G0

as |P (b̂ = b : G0)− 1
2 |, which is also the advantage of an adversary, A, in Π′.

Considering the expression |P (b̂ = b : G0)− P (b̂ = b : G1)|. Then

|P (b̂ = b : G0)− P (b̂ = b : G1)| = |P (b̂ = b ∩ b = 0 : G0) + P (b̂ = b ∩ b = 1 : G0)

− P (b̂ = b ∩ b = 0 : G1)− P (b̂ = b ∩ b = 1 : G1)|

= |P (b̂ = 0 ∩ b = 0 : G0) + P (b̂ = 1 ∩ b = 1 : G0)

− P (b̂ = 0 ∩ b = 0 : G1)− P (b̂ = 1 ∩ b = 1 : G1)|.

11

By using the fact that Pr(B ∩A) = Pr(A∩B) = Pr(B)Pr(A | B) and Pr(b =

1 | b̂ = 1) = 1
2 , we can deduce that

|Pr(b̂ = b : G0)− Pr(b̂ = b : G1)| = 1

2
|(Pr(b̂ = 1 : G0)− Pr(b̂ = 1 : G1)

+ (Pr(b̂ = 0 : G0)− Pr(b̂ = 0 : G1))|

≤ 1

2
|Pr(b̂ = 1 : G0)− Pr(b̂ = 1 : G1)|

+
1

2
|Pr(b̂ = 0 : G0)− Pr(b̂ = 0 : G1)|.

The first term, 1
2 |P (b̂ = 1 : G0) − P (b̂ = 1 : G1)| = 1

2Adv
mlwe
k,k,ν (B), for an

adversary B. The second term, 1
2 |P (b̂ = 0 : G0) − P (b̂ = 0 : G1)|, is equal

to the first term, since |P (b̂ = 0 : G0) − P (b̂ = 0 : G1)| = |(1 − P (b̂ = 1 :

G0)) − (1 − P (b̂ = 1 : G1))| = |P (b̂ = 1 : G0) − P (b̂ = 1 : G1)|. Thus

|P (b̂ = b : G0) − P (b̂ = b : G1)| ≤ Advmlwek,k,ν (B) ≤ Advmlwek+1,k,ν(C), for an adver-
sary C. An adversary can’t be worse when given an extra sample; the adversary
could simply ignore it to get the same advantage as for k samples.

Define a game G2 that’s the same as G1 but in the encryption algorithm, the
values for u and v are chosen uniformly random from Rkq and Rq respectively.
If the same probability calculation as above is done with respect to G1 and G2,
it will result in |Pr(b̂ = b : G1)−Pr(b̂ = b : G2)| ≤ |Pr(b̂ = 1 : G1)−Pr(b̂ = 1 :
G2)| ≤ Advmlwek+1,k,ν(A), for an adversary A. The reason for getting k + 1 is that

(u, v) is treated as an element from Rk+1
q . Furthermore, since u and v are ran-

dom in G2, then Pr(b̂ = 1 : G2) = 1
2 and |Pr(b̂ = 1 : G1)− 1

2 | ≤ Adv
mlwe
k+1,k,ν(A).

These terms can be expanded into:

AdvΠ′

cpa(A) =

∣∣∣∣P (b̂ = b : G0)− 1

2

∣∣∣∣
=

∣∣∣∣P (b̂ = b : G0)− P (b̂ = b : G1) + P (b̂ = b : G1)− 1

2

∣∣∣∣
≤
∣∣∣P (b̂ = b : G0)− P (b̂ = b : G1)

∣∣∣+

∣∣∣∣P (b̂ = b : G1)− 1

2

∣∣∣∣
≤ 2Advmlwek+1,k,ν(C)

for an adversary C. Since the MLWE-problem is assumed to be hard to solve, the
MLWE-advantage will be negligible, and thus Π′ will be IND-CPA secure.

The security of Π′, does not imply that Π is also secure. In despite of this, it
is still believed that Π keeps this security. The problem lays in the distribution
of

t = Decompressq(Compressq(As + e, dt), dt)

12

no longer being uniform in Rkq . Then the MLWE-assumption is no longer valid,

and so the distribution of the encryption tT r+e2+d q2cm, is no longer guaranteed
to be computationally indistinguishable from a uniformly random distribution.
This can however be fixed by adding a small error, e′, depending on the values of
t and dt, to the encryption algorithm so thatDecompressq(Compressq(t, dt), dt)+
e′ is uniformly random.

By adding more error to the scheme, it will become less correct. This is simply
because the value of ε mentioned in Theorem 1 will be slightly greater, since
by introducing more error will make the percentage of the error terms being
greater than or equal to d q4c greater. As it turns out, it might not be necessary
to add this error. By choosing the right value of dv the compress function will
”lose” this error term anyway [4]. That is for some values of dv, the following
equation holds:

Compressq

(
tT r + e2 +

⌈q
2

⌋
m, dv

)
= Compressq

(
(t + e′)T r + e2 +

⌈q
2

⌋
m, dv

)
This is a result of the rounding in the compression function. If a small term, e,

is to be added to x, then the function will round 2d

q (x+ e) and since e� x, the

rounding of 2d

q x+ 2d

q e will be the same as the rounding of 2d

q x.

5 KEM

A Key Encapsulation Mechanism (KEM) is a mechanism that allows two
parties A and B to share a common secret-key. Furthermore, A and B can only
communicate through a public network, so every message they send to each
other can be read by a third party C. The two parties A and B may want
to share a common key to use for symmetric encryption, which is much more
efficient than using an asymmetric cryptosystem.

5.1 Algorithms

There is a Key Encapsulation Mechanism that can be constructed from the
cryptosystem, Π = (Gen,Enc,Dec), discussed in section 3. This KEM will also
use two hash functions, G : {0, 1}∗ → {0, 1}2×256 and H : {0, 1}∗ → {0, 1}256.

Encapsulation algorithm (4)
Input: (public-key=pk)

1: m← {0, 1}256

2: (k̂, r) = G(H(pk),m)
3: (u, v) = Enc(pk,m; r)

4: k = H(k̂, H(u, v))
5: return ((u, v), k)

13

Instead of writing the public-key as (t, s1), it will be denoted as pk. The notation
Enc(pk,m; r) means that instead of generating a random r, as in the first line of
the encryption algorithm 2, the algorithm will use the value of r from the hash-
functions. By not generating a random element in the encryption algorithm,
and using this predetermined r, the encryption algorithm will be deterministic.

Decapsulation algorithm (5)
Input: (secret-key=s, ciphertext=(u, v))

1: m′ = Dec(s, (u, v))

2: (k̂′, r′) = G(H(pk),m′)
3: (u′, v′) = Enc(pk,m′; r′)
4: if (u′, v′) = (u, v):

5: return k = H(k̂, H(u, v))
6: else:
7: return k = H(z,H(u, v))

Here we choose to not have the public-key as an input as it is public, and
should be known, for all users on a network. In the case that re-encryption
fails in line 3, the algorithm will output a key based on a random z. This Key
Encapsulation Mechanism described in (4) and (5) is Kyber, it will be denoted
as Ψ = (Gen,Encap,Decap).

With algorithms (4) and (5), two parties A and B can share a common secret-
key. This is done by A first using the key generation algorithm (1) to generate a
public-key and a private-key. A sends the public-key to B. Then B uses the the
key encapsulation algorithm (4) to generate a key, k, and a ciphertext (u, v). B
sends this ciphertext back to A, and A can then use the decapsulation algorithm
(5) with the secret-key and the ciphertext as inputs. The algorithm will then
give A the same key, k, as B have. A third party C needs to have the secret-key
in order to get the key, k. If C tries decapsulate the ciphertext using another
key than the secret-key, the decapsulation algorithm (5) will output a key based
on the ciphertext and a random element z.

5.2 IND-CCA security

The following theorem describes the correctness of Ψ. Here ε is defined as in
Theorem 1.

Theorem 3. If the cryptosystem Π is 1− ε correct, then the key encapsulation
mechanism Ψ will be 1− ε correct.

Proof. Let pk, sk ← Gen(). When using pk in Encap, the algorithm will com-

pute the ciphertext (u, v) = Enc(pk,m; r) and the key k = H(k̂, H(u, v)), and
outputs these two. When using Decap with sk and (u, v) as input, the algorithm
will first compute m′ = Dec(sk, (u, v)) = Dec(sk,Enc(pk,m). From Theorem

14

1, m′ is equal to m in (1 − ε)100% of the cases. Then k̂′, r̂′ in (5) will be the

same as k̂, r as in (4) and (u′, v′) = (u, v). So (5) will return k = H(k̂, H(u, v)),
which is the same key outputted from (4).

On classical computers, the security of Ψ can be expressed as in the following
theorem. Here, the hash functions, H and G, are modelled as random oracles.
The bound for the CCA-advantage is provided from [6], where ε is defined as in
Theorem 1.

Theorem 4. If the cryptosystem Π is IND-CPA secure, then Ψ will be IND-
CCA secure. More precisely, for any classical adversary A, making at most qRO
queries to the random oracles H and G, there exists an adversary B such that:

AdvΨ
cca(A) ≤ 3AdvΠ

cpa(B) + qRO · ε+
3qRO
2256

When the random oracles H and G are modelled as quantum random oracles,
there exists a bound described in [4] on AdvΨ

cca expressed as the square root of
AdvΠ

cpa plus some qRO-terms. This makes Ψ a quantum-resistant cryptosystem,
but to achieve some desired bit-security, Π has to have double the bit-security,
i.e., for Ψ to have 128-bit security, then Π has to be 256-bit secure. In practice,
for Ψ to be used as a quantum resistant cryptosystem, the running times will
be longer than if it is used for classical computers.

15

6 References

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms and
factoring,” in 35th Annual Symposium on Foundations of Computer Science.
Santa Fe, NM, USA: IEEE Computer Society Press, Nov. 20–22, 1994, pp.
124–134.

[2] NIST, “Post-quantum cryptography,” 2017. [Online]. Available: https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography

[3] CRYSTALS, “Kyber,” 2017. [Online]. Available: https://pq-crystals.org/
kyber/

[4] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, and D. Stehlé, “CRYSTALS – Kyber: a CCA-secure module-
lattice-based KEM,” Cryptology ePrint Archive, Report 2017/634, 2017,
https://eprint.iacr.org/2017/634.

[5] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for module
lattices,” Cryptology ePrint Archive, Report 2012/090, 2012, https://eprint.
iacr.org/2012/090.

[6] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the
Fujisaki-Okamoto transformation,” in TCC 2017: 15th Theory of Cryptog-
raphy Conference, Part I, ser. Lecture Notes in Computer Science, Y. Kalai
and L. Reyzin, Eds., vol. 10677. Baltimore, MD, USA: Springer, Heidelberg,
Germany, Nov. 12–15, 2017, pp. 341–371.

16

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://pq-crystals.org/kyber/
https://pq-crystals.org/kyber/
https://eprint.iacr.org/2017/634
https://eprint.iacr.org/2012/090
https://eprint.iacr.org/2012/090

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Sander Støle Hageli

Post-quantum cryptography

Bachelor’s thesis in Mathematical Sciences
Supervisor: Kristian Gjøsteen
December 2021

Ba
ch

el
or

’s
th

es
is

	Introduction
	Definitions and notations
	Construction
	Compressing and Decompressing
	Algorithms

	Security
	MLWE-problem
	IND-CPA security

	KEM
	Algorithms
	IND-CCA security

	References

