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A B S T R A C T   

Developing a model that can accurately predict the hydrocarbon production by only employing the conventional 
mathematical approaches can be very challenging. This is because these methods require some underlying as-
sumptions or simplifications, which might cause the respective model to be unable to capture the actual physical 
behavior of fluid flow in the subsurface. However, data-driven methods have provided a solution to this chal-
lenge. With the aid of machine learning (ML) techniques, data-driven models can be established to help fore-
casting the hydrocarbon production within acceptable range of accuracy. In this paper, different ML techniques 
have been implemented to build the models that predict the oil production of a well in Volve field. These 
techniques comprise support vector regression (SVR), feedforward neural network (FNN), and recurrent neural 
network (RNN). Particle swarm optimization (PSO) has also been integrated in training the SVR and FNN. These 
developed models can practically estimate the oil production of a well in Volve field as a function of time and 
other parameters: on stream hours, average downhole pressure, average downhole temperature, average choke 
size percentage, average wellhead pressure, average wellhead temperature, daily gas production, and daily water 
production. All these models illustrate splendid training, validation, and testing results with correlation co-
efficients, R2 being greater than 0.98. Moreover, these models show good predictive performance with R2 

exceeding 0.94. Comparative analysis is also done to evaluate the predictability of these models.   

1. Introduction 

Accurate prediction of hydrocarbon production is necessary to 
ensure that the petroleum engineers have useful information to perform 
economic evaluation and optimization routines. Nonetheless, achieving 
high accuracy in production prediction is very challenging due to the 
sophistication of the subsurface conditions. Furthermore, the non- 
linearity between hydrocarbon production and any relevant petro-
physical parameter often adds complexity to the modeling of production 
forecasting. Despite having successfully modeled the relationship be-
tween hydrocarbon production and any of these petrophysical param-
eters, lack of these data in real life raises additional difficulty (Ma and 
Liu, 2018). Therefore, developing a reliable predictive model of hy-
drocarbon production based upon available data has been one of the 
research interests in petroleum domain for few decades. This is because 
with such models, petroleum engineers will have a more profound un-
derstanding of the reservoir performance to solve any reservoir 
management-related issue. 

One of the classical approaches in forecasting the hydrocarbon pro-
duction is the decline curve analysis (DCA). This method was first 
developed by Arps (1945) and its application has been extended in the 
oil and gas industry (Fanchi et al., 2013; Hong et al., 2019; Jochen and 
Spivey, 1996). Due to its simple implementation, it is widely used as 
only historical production data is required. However, this illustrates that 
decline curve model is not robust as other important data, such as bot-
tomhole pressure, wellhead pressure, choke size, etc. that affect the 
production are not considered. Being empirical in nature, it is also 
insufficient to fully reflect the physics of the fluid flow in subsurface and 
might either underestimate or overestimate the production estimate 
(Mohaghegh, 2017, 2020). Apart from DCA, numerical reservoir simu-
lation (NRS) is another alternative applied to forecast the hydrocarbon 
production. Nonetheless, the predictive performance of the NRS is 
highly dependent on how the history matching (HM), which is a labo-
rious task, is done (Liu et al., 2019). Additionally, NRS requires different 
data, including geological data, fluid properties, location of wells, etc. As 
new data is available in real time, the simulation model needs to be 
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updated via HM to have a higher accuracy in production forecasting. 
Thus, the shortcomings of these methods are evident. 

With the advancement of computing technology and data analytics, 
data-driven modeling has become another solution to hydrocarbon 
production forecasting. This method is not only simple to be imple-
mented but can also capture the complex relationship between input and 
output of datasets provided. Data or measurement from real field is a 
representation of the “physics” that deciphers the “actual system” in the 
reservoir (Mohaghegh, 2017, 2020). Therefore, underlying assumption 
is not needed to simplify the physics in building a data-driven model that 
forecasts the production. In this context, the data-driven models learn 
the relationship between hydrocarbon production and other data ob-
tained from real field through machine learning (ML) techniques: arti-
ficial neural network (ANN), support vector regression (SVR), etc. In 
recent years, the coupling of these ML methods with data analytics has 
achieved a great milestone in different domains of reservoir engineering, 
such as prediction of bottomhole pressure (Nait Amar et al., 2018; Nait 
Amar and Zeraibi, 2020), prediction of essential parameters needed in 
CO2-EOR (Nait Amar et al., 2020a; Nait Amar and Jahanbani Ghahfar-
okhi, 2020; Nait Amar and Zeraibi, 2018), optimization in water alter-
nating CO2-EOR (Nait Amar et al., 2020b; Nait Amar and Zeraibi, 2019), 
waterflooding optimization (Ng et al., 2021a, 2021b), and forecast of 
hydrocarbon production (Aydin, 2015; Cao et al., 2016; Elmabrouk 
et al., 2014; Frausto-Solís et al., 2015; Zanjani et al., 2020). 

Apart from these, coupling the application of metaheuristic algo-
rithms with the ML techniques in data-driven modeling is another 
intriguing research domain. Metaheuristic algorithms are generally 
nature-inspired and derivative-free. Hence, their implementation is not 
only considered to be simplistic, but also powerful in terms of conver-
gence to the global optimum (Ezugwu et al., 2020). Their employment in 
data-driven modeling has exhibited positive results as discussed by 
several literatures (Akande et al., 2017; Han and Bian, 2018; Nait Amar 
et al., 2018; Nait Amar and Zeraibi, 2020; Panja et al., 2018). On the 
other hand, a more advanced ANN technique: RNN, which Li et al. 
(2019) termed as deep learning, could also efficiently simulate the 
reservoir behaviors. Alakeely and Horne (2020) successfully imple-
mented these deep learning methods to perform the estimation of bot-
tomhole pressure. Moreover, Calvette et al. (2020) illustrated that RNN 
could be implemented to approximate the smart well production based 
upon a synthetic case study. The robustness of RNN was further 
demonstrated when it could also be coupled with ensemble Kalman filter 
(EnKF) to predict production of a waterflooded synthetic model (Bao 
et al., 2020). Besides, several literatures (Lee et al., 2019; Zhan et al., 
2020) also highlighted the usefulness of RNN in forecasting the pro-
duction from unconventional reservoirs. Thus, the use of ML in reservoir 
engineering shows a great potential. 

Besides reservoir engineering, there are some contemporary works 
done on the employment of ML in the domains of production and drilling 
engineering. About production engineering, Mamudu et al. (2020) 
illustrated a dynamic risk analysis of petroleum production by devel-
oping ANN based on different geological realizations to help predicting 
the production. Bayesian network was also built to evaluate the risk of 
production. Moreover, Kondori et al. (2021) successfully established the 
connectionist models to evaluate the recovery performance of low water 
salinity injection. The connectionist models were developed with least 
squares support vector machine coupled with simulated annealing al-
gorithm and adaptive network-based fuzzy inference system. Syed et al. 
(2020) also discussed how ML methods could be applied to optimize and 
conduct preventive maintenance on the artificial lift system. There are 
also other insightful literatures (Crnogorac et al., 2020; Khamis et al., 
2020; Lin et al., 2020; Zhong et al., 2020) touching upon the imple-
mentation of ML in the production domain. For drilling engineering, 
Adedigba et al. (2018) conducted a risk assessment of offshore drilling 
operations with the help of data-driven model that is the Bayesian Tree 
Augmented Naïve Bayes algorithm. Fundamentally, this model could 
forecast the probability of kick that was updated in real time and utilized 

to model the time dependent blowout risk. Additionally, Ozbayoglu 
et al. (2021) demonstrated the development of ANN by using the 
experimental data gathered and employed this ANN to optimize flow 
rate and speed of pipe rotation under effective cutting transport. 
Furthermore, there are other interesting contemporary literatures (Alali 
et al., 2021; Barbosa et al., 2019; Gan et al., 2020; Muojeke et al., 2020; 
Olukoga and Feng, 2021) about the application of ML in the drilling 
aspect. 

This paper aims at applying different ML methods to develop data- 
driven models for the forecast of hydrocarbon production. Regarding 
the dataset, it is from a real-life well in Volve field (one of the latest 
databases released by Equinor (2020) to the public for research pur-
poses) used to build the models. The details regarding the data will 
follow later. A portion of the data from the well is employed to develop 
the models whereas the remaining part of the data is used as the blind 
case to further verify the predictive performance of the models. About 
the ML methods, we first consider applying SVR and FNN. Also, we have 
employed particle swarm optimization (PSO) in the training of FNN and 
SVR models. Since hydrocarbon production is an example of time series 
data, RNN approach is also considered as it has been proven useful to 
forecast time series data (Alom et al., 2019; Connor et al., 1994; Zhang 
and Xiao, 2000). In terms of RNN modeling in this paper, three different 
types of RNNs: the simple RNN, Long Short-Term Memory (LSTM), and 
Gated Recurrent Units (GRU), are developed. In total, seven data-driven 
models, which comprise FNN with backpropagation algorithm 
(FNN-BP), FNN trained with PSO (FNN–PSO), SVR tuned with 
trial-and-error approach (SVR-TE), hybrid model of SVR and PSO 
(SVR-PSO), simple RNN, LSTM, and GRU, have been established for 
comparative analysis on their respective predictive capabilities. 

The paper is followed by some brief explanations regarding the 
theory of SVR, FNN, PSO, RNN, LSTM, and GRU. The next section dis-
cusses the methodology involved and explains how the available data is 
pre-processed and utilized in developing these models. The procedures 
in the development of the models are also expounded. The results and 
discussion will then follow prior to proceeding to conclusions that 
summarize the main findings of this work. 

2. Theory 

2.1. Support vector regression (SVR) 

SVR is a subset of support vector machine that is an advanced su-
pervised machine learning method that uses data for regression analysis, 
which was proposed by Vapnik (1995). It develops a function that can 
estimate the relationship between the desired outputs y = {y1, y2, …, yk} 
defined on R, and inputs x = {x1, x2, …, xk} in which xj ∈ R and k is the 
number of data points. The function can be formulated as shown below: 

f(x) = w⋅Ψ(x) + b (1) 

Ψ(x) refers to the function that maps the input space vector x into a 
high dimensional feature space to enable the initial non-linear problem 
to be expressed and conveniently solved as a linear regression function. 
w denotes the weight vector whereas b is the bias term. To determine w 
and b, the minimization of the following regularized risk function should 
be done as recommended by Vapnik (1995): 

E(C) =
C
k
∑k

j=1
L
(
f
(
xj
)
− yj

)
+

1
2
‖w‖

2 (2) 

In equation (2), the first term indicates the empirical error, and the 
second term means the degree of flatness of the function. Pertaining to 
this, the constant C acts as the penalty parameter that governs the trade- 
off between the complexity of the model and the empirical error. To 
solve for the empirical error, Vapnik (1995) suggested to use ε-insensi-
tive loss function which is represented below: 
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L(f(x) − y ) =
{

0, if  |f(x) − y| ≤ ε
|f(x) − y| − ε, otherwise (3) 

ε is the error tolerance. Thereafter, the parameters can be optimized 
in the following equation through the formulation of the constrained 
optimization problem (Forrester et al., 2008): 

minC
∑k

j=1

(
ξ−j + ξ+j

)
+

1
2
‖w‖

2

subjectto =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yj − (w⋅Ψ(x) + b ) ≤ ε + ξ+j

(w⋅Ψ(x) + b ) − yj ≤ ε + ξ−j

ξ−j , ξ+j ≥ 0, j = 1, 2,…, k

(4)  

ξ−j and  ξ+j are non-negative slack variables. To solve this constrained 
optimization problem, the optimization function can be transformed 
into dual space by using Lagrange multipliers (Shawe-Taylor and Cris-
tianini, 2004). The obtained solution is shown below: 

f(x) =
∑k

j=1

(
αj − α*

j

)
K
(
xj, xm

)
+ b (5) 

In equation (5), αjandα*
j are Lagrange multipliers which must fulfill 

the constraints of 0 ≤ j and j ≤ C whereas the term K (xj, xm) denotes the 
kernel function. In the literature (Forrester et al., 2008), there are 
different kernel functions available, but the commonly used ones 
include, but not limited to, radial basis function (RBF), polynomial 
function, and Gaussian function as illustrated in several literatures 

(Chiroma et al., 2014; Kavzoglu and Colkesen, 2009; Qu and Zhang, 
2016). In this paper, RBF is used as the kernel function and defined as 
shown below: 

K
(
xj, xm

)
= exp

(
− γ

⃦
⃦xj, xm

⃦
⃦
)

(6)  

where γ is the kernel parameter. The performance and accuracy of SVR is 
heavily influenced by the combination of γ, C, and ε. Therefore, imple-
menting metaheuristic algorithms to optimize these parameters can be 
done to achieve an ideal performance of SVR. In addition, this can also 
overcome any inconvenience due to the use of traditional trial and error 
approach in tuning the parameters. 

2.2. Feedforward neural network (FNN) 

FNN is a ML algorithm that is formulated based on the functionalities 
of the biological neural networks. FNN comprises many calculating units 
which are known as artificial neurons or nodes. It has been demon-
strated to be more successful in approximating the complex non-linear 
relationships between input and output vectors of a database than the 
conventional regression methods (Gharbi and Mansoori, 2005). There 
are different types of activation function used in FNN modeling, but the 
classical ones are the sigmoid function, the hyperbolic tangent, and the 
rectified linear unit (ReLU) function (Buduma and Locascio, 2017). In 
this paper, FNN, which is one of the most widely used ANNs as 
demonstrated in some literatures (Amini and Mohaghegh, 2019; 
Mohaghegh, 2011; Senthilkumar, 2010), is the chosen network with 
ReLU function as its activation function. It is also known as multilayer 
perceptron (MLP) and is made up of three layers, namely the input layer, 
the hidden layer, and the output layer. The topology of an arbitrary FNN 
is shown in Fig. 1. The green node is the bias node between the input and 
hidden layers whereas the orange node is the bias node between the 
hidden and output layers. 

To ensure that the MLP learns the relationship between the input and 
output vectors of the database supplied, the MLP needs to undergo the 
training phase. Fundamentally, this training phase aims at optimizing 
the sets of weights and biases which minimize the pre-defined cost 
function, such as mean squared error (MSE). One of the classical 
methods of training is the backpropagation (BP) approach and it in-
volves use of different algorithms, like steepest descent gradient, the 
Levenberg-Marquardt algorithm, the Powell-Beale conjugate gradient, 
Adam, and so on. In principle, after the forward propagation of the MLP, 
the resulting outputs will be compared with the targeted outputs. Errors 
are propagated back through the MLP in which the weights and biases 
are iteratively tuned and updated to achieve the optimum level. Apart 
from the conventional backpropagation algorithm, the metaheuristic 
algorithms can also be implemented to train the MLP. Therefore, in this 
paper, both backpropagation and metaheuristics algorithms are used to 
do the neural network training. Adam is the chosen backpropagation 
algorithm (Kingma and Ba, 2015) whereas Particle Swarm Optimization 
(PSO) is the metaheuristic algorithm used. 

2.3. Particle swarm optimization (PSO) 

PSO is an example of the metaheuristic population-based optimiza-
tion algorithms that was proposed by Kennedy and Eberhart (1995) 
according to the social behavior of flying birds. The fundamental idea 
regarding the mechanism of PSO is that each particle corresponds to a 
potential solution to an optimization problem. The status of the particle 
is determined based upon its position and velocity in a dimensional 
space that is equal to the number of unknown parameters being opti-
mized. Thereafter, the fitness value of the particle is computed by using 
a cost function such as MSE. Through several iterations, each particle 
updates its position until it converges to the optimum position through 
the minimization of the fitness value. In this context, pbest and gbest are 
determined at every iteration step. pbest refers to the local best position 

Fig. 1. The structure of an FNN model.  
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or the best position of a particle in the dimensional space (the lowest 
fitness value in this case) whereas gbest indicates the global best position 
or the overall best position of a particle hitherto in the entire population. 
The algorithm starts by randomly initializing the position and velocity of 
each particle. Thereafter, the respective fitness of each particle is 
computed in which pbest and gbest are determined and recorded. The 
velocity at current iteration step is then updated based on equation (7). 
The position of a particle for the next iteration step is updated based on 
equation (8). In the subsequent steps, positions and velocities of parti-
cles are updated iteratively by the pbest and gbest. 

vjk,t+1 = ωvjk,t + c1r1
(
pbestjk,t − xjk,t

)
+ c2r2

(
gbestk,t − xjk,t

)
(7)  

xjk,t+1 = xjk,t + vjk,t+1 (8) 

Fig. 2. Illustration of three types of RNN used in this study (a) simple RNN (b) LSTM (c) GRU.  

Table 1 
Data provided for each well in the Volve field.  

Abbreviation from Database Description 

DATEPRD Date of Record 
ON_STREAM_HRS On stream hours 
AVG_DOWNHOLE_PRESSURE Average Downhole Pressure 
AVG_DOWNHOLE_TEMPERATURE Average Downhole Temperature 
AVG_DP_TUBING Average Differential Pressure of Tubing 
AVG_ANNULUS_PRESS Average Annular Pressure 
AVG_CHOKE_SIZE_P Average Choke Size Percentage 
AVG_WHP_P Average Wellhead Pressure 
AVG_WHT_P Average Wellhead Temperature 
BORE_OIL_VOL Oil Volume from Well 
BORE_WAT_VOL Water Volume from Well 
BORE_GAS_VOL Gas Volume from Well 
BORE_WI_VOL Water Volume Injected 
FLOW_KIND Type of Flow (production or injection) 
WELL_TYPE Type of Well (oil production or water 

injection)  

Table 2 
Selected input and output data for data-driven modeling.  

Parameters 

Input Data Units 
Time Days 
On stream hours hours 
Average Downhole Pressure bar 
Average Downhole Temperature ◦C (degree Celsius) 
Average Choke Size Percentage % 
Average Wellhead Pressure bar 
Average Wellhead Temperature ◦C (degree Celsius) 
Gas Volume from Well m3 (daily) 
Water Volume from Well 

Output Data Units 

Oil Volume from Well m3 (daily)  

Table 3 
Mean and standard deviation of input and output parameters of the production 
case considering all the data points.  

Baseline Information 

Input and Output Mean Standard Deviation 

Time 547 315.67 
On stream hours 23.02 3.89 
Average Downhole Pressure 261.01 15.54 
Average Downhole Temperature 99.38 5.14 
Average Choke Size Percentage 90.44 21.88 
Average Wellhead Pressure 30.73 4.21 
Average Wellhead Temperature 86.25 8.47 
Gas Volume from Well 49,263.63 30,342.37 
Water Volume from Well 3171.60 674.34 

Oil Volume from Well 326.88 204.97  
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In equation (7), vjk,t refers to the velocity of the jth particle at iteration 
t in kth dimension whereas xjk,t represents its corresponding position. c1 
and c2 respectively refer to the cognitive and social learning factors 
which govern the local and global search of the best position. They are 
determined by trial-and-error approach. r1 and r2 are random numbers 
retrieved from uniform (0, 1). ω is inertial weight that was recom-
mended by Shi and Eberhart (1998) to enhance the convergence 
performance. 

2.4. Recurrent neural network (RNN) 

RNN is a subset of ANN, which is established to handle the input data 
that has sequential characteristics (Alakeely and Horne, 2020; Alom 
et al., 2019). Examples of these sequential inputs include sets of words or 
sentences, document texts, stock price, etc. Fundamentally, RNN can 
preserve any previous information to the current task and such ability 
widens its application in different aspects, including speech recognition 
(Amberkar et al., 2018; Graves et al., 2013) and language processing 
(Guan et al., 2019; Sutskever et al., 2014). The fundamental mechanism 
of a basic RNN is that information can be preserved and sent from the 
current to the successive step (Alom et al., 2019) as illustrated by its 
architecture as shown in Fig. 2a. Apart from this simple RNN, there are 
also other representations of RNN, such as Hopfield network, Echo state, 
Bi-directional, LSTM, GRU, and so forth. In this paper, we applied three 
examples of RNNs, including the simple RNN, LSTM, and GRU, to 
perform the well production forecast. The details regarding LSTM and 
GRU will be expounded later. The simple RNN used in this study consists 
of one hidden layer and one output layer and the respective mathe-
matical formulation is presented below: 

ht = γ(Whxt + Uhht− 1 + bh) (9)  

yt = γ
(
Wyht + by

)
(10)  

where ht is known as the vector of hidden-state or hidden layer. It is 
computed as shown in equation (9) by summing up three terms and 
placing the summation into the activation function that is represented as 
γ. In this work, the activation function used is the hyperbolic tangent. 
Also, yt is the output vector that is determined by adding two terms into 
the activation function as shown in equation (10). For the other terms, xt 
is the input vectors, W and U represent the weights, and b is the bias 
term. It is important to know that the subscripts t and t-1 correspond-
ingly refer to the current and previous timesteps. The subscript h in-
dicates the properties of the hidden layer whereas the subscript y 
represents those of the output layer. The use of these notations also 
applies to the mathematical formulations of LSTM and GRU in the 
following sections. For LSTM, the subscripts f, i, c, and o correspondingly 
denote the relevant properties of forget gate, input gate, cell state and 
output gate. For GRU, the subscripts u and r respectively mean the 
properties of update gate and reset gate. The pertinent details will follow 
later. 

2.5. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) 

Albeit the simple RNN can be practically robust, it still has a limi-
tation, namely having the problem of vanishing gradient (Alom et al., 
2019; Hochreiter and Schmidhuber, 1997; Li et al., 2019). This limita-
tion circumvents the simple RNN from exploiting the long-term infor-
mation (Alom et al., 2019; Hochreiter and Schmidhuber, 1997; Li et al., 
2019). This implies that it is unable to store large amount of information 
from previous iterations for a more accurate prediction of the outputs. 
Therefore, more complicated versions of RNN, which are LSTM and 
GRU, have been utilized. LSTM was first developed by Hochreiter and 
Schmidhuber (1997) to ensure the long-term dependencies on the pre-
vious information. The architecture of the LSTM employed in this study 
is portrayed in Fig. 2b. The respective formulas are expressed below: 

Fig. 3. Oil production of the well NO159–F–14H.  

Table 4 
Parameters used in neural network training for both Adam and PSO.  

Adam Parameters Values 

Number of iterations 2000 
Learning rate 0.01 
Exponential decay rates for the 1st moment estimates, β1 0.9 
Exponential decay rates for the 2nd moment estimates, β2 0.999 
Numerical stability constant, ε 10− 7  

PSO Parameters Values 

Number of iterations 2000 
Number of particle swarms 100 
Inertial Weight, ω  0.8 
Cognitive Learning Factor, c1 1.05 
Social Learning Factor, c2 1.05  

Table 5 
Optimized hyperparameters in SVR modeling.  

Models γ C ε κ1 κ2 κ3 

SVR-TE 0.5000 89.00 0.001000 – – – 
SVR-PSO 0.4028 89.27 0.001802 0.4072 0.0171 0.5757  

Table 6 
Performance metrics of the results estimated using the training, validation, and 
testing sets.  

Datasets Models R2 RMSE 

Training SVR-TE 0.9951 13.88 
SVR-PSO 0.9944 14.68 
FNN-BP 0.9948 14.00 
FNN-PSO 0.9945 14.92 
Simple RNN 0.9945 14.46 
LSTM 0.9962 12.03 
GRU 0.9962 12.17 

Validation SVR-TE 0.9880 21.37 
SVR-PSO 0.9889 20.79 
FNN-BP 0.9911 19.13 
FNN-PSO 0.9923 15.75 
Simple RNN 0.9921 18.27 
LSTM 0.9910 19.51 
GRU 0.9940 15.75 

Testing SVR-TE 0.9764 30.83 
SVR-PSO 0.9936 16.61 
FNN-BP 0.9936 16.44 
FNN-PSO 0.9898 19.91 
Simple RNN 0.9941 15.37 
LSTM 0.9922 17.64 
GRU 0.9915 18.24  
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ft = σ
(
Wfxt + Ufht− 1 + bf

)
(11)  

it = σ(Wixt + Uiht− 1 + bi) (12)  

c̃t = γ(Wcxt + Ucht− 1 + bc) (13)  

ct = ft × ct− 1 +  it × c̃t (14)  

ot = σ(Woxt + Uoht− 1 + bo) (15)  

ht = ot × γ(ct) (16) 

The fundamental idea of LSTM revolves around a cell state ct (shown 
as the horizontal top line in Fig. 2b) in which the addition or removal of 
any information is conducted through three gates, namely forget gate ft, 
input gate it, and output gate ot (Alom et al., 2019). These gates make 
assessments as if the sequential input data is valuable or not to be kept 
(Alom et al., 2019; Li et al., 2019). By doing so, relevant information can 
be preserved to the downstream. First, the forget gate plays a pivotal role 
to decide if information should be kept or omitted based upon equation 
(11). In this aspect, the information in the form of input and hidden state 
will be discarded (retained) if ft approximates zero (one) (Li et al., 
2019). Pertaining to the input gate, it is computed to update the cell 
state and through this update, the importance of the input being sent to 
the next cell is assessed. Moreover, about the output gate, it determines 
the output for the hidden states as shown in equation (16). It can be 
noticed that the recurrent activation function used in LSTM is a sigmoid 
function that is denoted as σ. 

GRU is another development of RNN, which was initiated by Cho 
et al. (2014), that is employed in this paper. As compared to LSTM, GRU 

Fig. 4. Cross plot of the actual and predicted oil production (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO (e) simple RNN (f) LSTM (g) GRU.  

Table 7 
Performance metrics of the results estimated by using the blind case.  

Datasets Models R2 RMSE 

Blind Validation SVR-TE 0.9476 7.34 
SVR-PSO 0.9644 6.04 
FNN-BP 0.9538 6.89 
FNN-PSO 0.9574 6.61 
Simple RNN 0.9665 5.87 
LSTM 0.9712 5.45 
GRU 0.9700 5.56  
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only consists of two gates, which are the reset gate rt and the update gate 
ut. The function of the reset gate is to evaluate as if new information 
should be passed, which is like those of forget and input gates (Li et al., 
2019). Thereafter, the reset gate decides on how extensively the previ-
ous information should be forgotten. According to the formulas of GRU 
shown below, it can be inferred that its simpler framework enables it to 
be more computationally favorable as compared to LSTM (Alom et al., 
2019). 

ut = σ(Wuxt + Uuht− 1 + bu) (17)  

rt = σ(Wrxt + Urht− 1 + br) (18)  

h̃t = γ(Whxt + Uh[rt × ht− 1] + bh ) (19)  

ht =(1 − ut)× ht− 1 + ut × h̃t (20)  

3. Methodology 

Having a good model that helps predicting hydrocarbon production 
is crucial in reservoir management. As mentioned previously, we have 
developed seven models in this work: FNN-BP, FNN-PSO, SVR-TE, SVR- 
PSO, simple RNN, LSTM, and GRU. To build these data-driven models, 
we need to first know the source of data because it is the main building 
blocks of these models. The details regarding the data will follow. 

Fig. 5. Oil production profile (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO (e) simple RNN (f) LSTM (g) GRU.  

Table 8 
Performance metrics of all seven models considering all data points.  

Datasets Models R2 RMSE 

All SVR-TE 0.9935 16.52 
SVR-PSO 0.9952 14.21 
FNN-BP 0.9956 13.65 
FNN-PSO 0.9952 14.15 
Simple RNN 0.9957 13.51 
LSTM 0.9961 12.69 
GRU 0.9964 12.28  
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3.1. Field data 

In this work, the data from Volve field (Equinor, 2018) on the Nor-
wegian Continental Shelf was utilized. According to the field develop-
ment plan report retrieved from Equinor (2020), Volve field is a 2 km by 
3 km oil-bearing reservoir and is located at a depth between 2750 m and 
3210 m below sea level. It comprises sandstone and has average prop-
erties with permeability of about 1000 mD (from well testing), porosity 
of 0.21, and net-to-gross ratio of 0.93. The water saturation of 
oil-bearing zone is on average 0.2. At the depth of 3060 m, the reservoir 

pressure and temperature are 340 bar and 110 ◦C, respectively. Per-
taining to the characteristics of crude oil from Volve field, according to 
ExxonMobil (2018), the API gravity is 29.1◦, the specific gravity is 
0.881, and the viscosity at 20 ◦C is 22.5 cSt. For more details, kindly 
peruse the crude oil assay released by ExxonMobil (2018). 

Equinor (2018) has released this database to public in May 2018 for 
the purpose of research and development. In this aspect, there are 
different types of data in the database, including seismic data, well log 
data, reservoir simulation model, etc. However, only the real-field 
production data is used in this study. Regarding the production data, 

Fig. 6. Relative effect of each input parameter on the output predicted by each model considering all data points (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO 
(e) simple RNN (f) LSTM (g) GRU. 
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it consists of the data of 7 wells, namely NO15/9-F-1 C, NO15/9-F-11H, 
NO15/9-F-12H, NO159–F–14H, NO15/9-F-15D, NO15/9-F-4AH, and 
NO15/9-F-5AH. Each well consists of the data as shown in Table 1: 

The production data was recorded daily. For illustrative purpose, 
only the well NO159–F–14H is used in this study. For this well, the 
production period lasts from February 2008 to September 2016. How-
ever, for practical purpose, only the data between July 2013 and July 
2016, which lasts for 1093 days, is used. In addition to this, not all the 
data provided will be used and the selected data used for data-driven 
modeling is presented in Table 2. The selection of input and output 
data was done based upon knowledge of reservoir and production en-
gineering, but it can be conveniently done by using feature selection 
method (Zanjani et al., 2020). To further facilitate the readers’ under-
standing of the production scenario, the mean and standard deviation of 
each parameter are determined and presented in Table 3. In addition, 
the oil production profile of the well NO159–F–14H between July 2013 
and July 2016 is plotted in Fig. 3. The dashed vertical line in Fig. 3 will 
be explained later. 

3.2. Model development 

The data needs to be pre-processed before it is used to build the 
models. As explained earlier, there are 10 types of data being utilized 
and each type contributes to 1093 data points. Hence, this sums up to 
10,930 data points. Each data point is then normalized as follows: 

xi,normalized =
xi − xmin

xmax − xmin
(21) 

In equation (21), xi, normalized is the normalized value of xi that is any 
data point out of the 1093 data points under each type of data as shown 
in Table 2 xmax and xmin denote the maximum and minimum values 
under each data type in Table 2. Thereafter, the normalized data points 
are divided into two different sets, namely the modeling set and the 
prediction set, based on a ratio of 7.5:2.5. This implies that the first 8190 
data points out of 10,930 data points will be employed to develop the 
data-driven models whereas the remaining 2740 data points are used as 
the blind case to evaluate the predictive performance of the models. It is 
essential to divulge that the division for modeling and prediction sets is 

Fig. 7. Distribution of errors (a) SVR-TE (b) SVR-PSO (c) FNN-BP (d) FNN-PSO (e) simple RNN (f) LSTM (g) GRU.  
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done arbitrarily for practical purposes. It relies upon the consideration 
of the modeler about the size of the dataset preserved for prediction. For 
a more vivid illustration, the modeling set corresponds to the data points 
on the left of the dashed vertical line in Fig. 3 whereas the prediction set 
corresponds to the right of the line. Besides, 70% of the data points from 
the modeling set is used as the training set and the remaining 30% is 
equally divided into the validation and testing sets. In this context, only 
the training set is utilized to develop and train the models. The valida-
tion set is employed to prevent the overfitting of the models whereas the 
testing set ensures that the models have a good predictive performance 
prior to being verified by the data from the blind case (Mohaghegh, 
2017). The performance of the models is determined by using two 
different metrics, which are the correlation coefficient R2 and the root 
mean squared error (RMSE). The formulas of the performance metrics 
are presented as follows: 

R2 = 1 −

∑N
j  =1

(
qexp

j − qcal
j

)2

∑N
j  =1

(
qcal

j − q
)2 (22)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

j=1

(
qexp

j − qcal
j
)2

√
√
√
√ (23)  

where N means the total number of data, qexp
j is the actual oil production 

at timestep j, qcal
j is the oil production estimated by the models at 

timestep j, and q is the mean actual oil production. For the development 
of FNN-BP, FNN-PSO, and the three RNNs, the data from the training set 
is fed into the neural network to enable the network to learn the rela-
tionship between input and output data. Pertaining to this, the pre- 
defined cost function implemented in the neural network training is 
the MSE. Therefore, during the training phase, the weights and biases 
will be iteratively adjusted as explained to minimize the cost function. 

Pertaining to the specifics of the data-driven models, the architec-
tures of both FNNs are the same, which include one input layer with 9 
nodes, one hidden layer with 30 nodes, and one output layer with only 
one node. For the three RNNs, each of them also comprises only one 
hidden layer and one output layer. Besides that, each of the three RNN 
representations also has 30 hidden nodes and 1 output node. The 
number of hidden nodes and layers for both FNNs and RNNs is deter-
mined by using the trial-and-error approach. The relevant parameters 
used to conduct this neural network training phase are presented in 
Table 4. From Table 4, it is better to reiterate that Adam has only been 
implemented to train all the RNNs and FNN-BP. For FNN-PSO, since 
each of the weights (biases) is represented as one particle, the number of 
particle swarms is the number of sets of particles employed in the 
training phase. 

Regarding the development of SVR and SVR-PSO, it is important to 
achieve the optimum values of the hyperparameters γ, C, and ε to 
develop models with good performance. For SVR-PSO, the hyper-
parameters are tuned such that the objective function will be minimized. 
The objective function consists of the corresponding MSE of the training, 
validation, and testing sets, and it is expressed as shown in equation 
(24). For SVR-PSO, there are three additional parameters to be adjusted, 
namely the weighting factors κ 1, κ 2, and κ 3 for each MSE. To conduct 
the tuning with PSO, 200 iterations and 20 particle swarms are used. 
Furthermore, the inertial weight used here is 0.40 while both learning 
factors are 1.05. Refer to Table 5 for the values of these optimized 
hyperparamters. 

MSESVR− PSO = κ1 × MSETraining + κ2 × MSEValidation + κ3 × MSETesting (24) 

To generate the initial population of the swarm particles, we used the 
distribution of uniform (0.01, 1.5) for γ, uniform (12, 90) for C, uniform 
(0.0001, 0.1) for ε, uniform (0, 0.5) for κ1 and uniform (0, 0.5) for κ 2. 
Without determining the initial κ 3, we optimized it by subtracting the 
sum of optimized κ 1 and κ 2 at each iteration from 1. 

4. Results and discussion 

We have established seven data-driven models to predict the daily oil 
production of a real-field well. To determine if these models will exhibit 
excellent predictive performance, their corresponding training perfor-
mance need to be evaluated first. Pertaining to this, the models with 
excellent training results will generally be able to produce predictions 
within a good level of accuracy. In this work, the training performance 
of each of the seven models is presented in Table 6. In addition to the 
performance metrics computed using the training data, those calculated 
using the validation and testing data are also shown. During the devel-
opment stage, if the models demonstrate good performance with the 
validation data, it implies that the overfitting issue may be eluded. 
Thereafter, the predictability of the models can be evaluated using the 
testing data. It is important to understand that only the training data is 
employed to build the models. The other data is utilized to provide 
useful insights regarding the training process. 

From Table 6, it is inferred all the seven models demonstrate excel-
lent results of training, validation, and testing with R2 exceeding 0.99 
and RMSE being at most 30.83. To be more precise, LSTM has the best 
training performance in terms of R2 and RMSE compared to the other 
models. However, when the models are fed with the validation data, 
GRU exhibits the best results. In addition to this, as the models are 
verified with the testing data, simple RNN performs the best. Therefore, 
RNN-based models generally illustrate better outcomes than both SVR- 
based and FNN-based models in terms of training, validation, and 
testing. Despite these better results exhibited by these RNN-based 
models, the performances of SVR-based and FNN-based models are 
deemed to be practically excellent. Nevertheless, the performance 
metrics shows that all models have undergone an excellent development 
phase. We need to be cognizant that having satisfactory modeling 
outcome does not necessarily imply that the models can directly be used. 
They still must be evaluated by the data from the blind case to further 
verify their robustness. 

The cross-plots of the actual and the predicted oil production are 
presented for SVR-TE in Fig. 4a, SVR-PSO in Fig. 4b, FNN-BP in Fig. 4c, 
FNN-PSO in Fig. 4d, simple RNN in Fig. 4e, LSTM in Fig. 4f, and GRU in 
Fig. 4g. In general, most of the data points lie on the 45◦ line which 
indicates high accuracy. Nevertheless, Fig. 4a exhibits that there is an 
outlier of the validation data being less than zero and another outlier of 
the testing data being highly overestimated. This implies that the overall 
training performance can still be improved albeit the performance 
metrics suggest otherwise. Moreover, Fig. 4d shows that there are some 
outliers from the training data that are underestimated by FNN-PSO. 
These outliers do not greatly affect the overall training performance of 
the model but contribute to the relatively less satisfying training per-
formance compared with FNN-BP. For the RNN-based models, these 
plots generally add more confidence that the overall training perfor-
mance of each of the three models is practically excellent. Additionally, 
there is no obvious outlier being detected in the plots, which are pro-
duced by using these models. 

After the modeling phase is completed, we need to provide data from 
the blind case to justify if the models are ready to be employed. As 
explained, the data from the blind case is retrieved from the data points 
of the remaining 274 days. When these data are supplied into the built 
models, their performance metrics are calculated and recorded in 
Table 7. For a more vivid illustration, all the data points (1093 data 
points of oil production) are plotted alongside the prediction yielded by 
all the seven models in Fig. 5. For clarification, the statistics provided in 
Table 7 only consider the data points on the right side of the vertical 
dashed line in the figures. Based on Table 7, it can be observed that the 
use of PSO improves the predictive performance of the models in this 
work. For SVR, using PSO to tune the hyperparameters improves the R2 

by 1.77% and the RMSE by 17.7%. Therefore, using a metaheuristic 
algorithm to tune the hyperparameters does not only reduce the 
computational effort, but also helps to attain a higher accuracy of 
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prediction. For FNN modeling, when PSO is utilized to conduct the 
training, the R2 and RMSE are respectively enhanced by 0.38% and 
4.06%. Albeit the improvement is not significant, it provides useful 
insight that the application of metaheuristic algorithm is viable in 
modeling FNN and can have a good predictive performance. 

Moreover, it is deduced that LSTM has the best performance with R2 

being greater than 0.97 and RMSE being about 5.4. However, it is also 
important to observe that in this study, the performance of LSTM is 
slightly better than those of GRU and simple RNN. With respect to 
simple RNN, LSTM correspondingly improves R2 and RMSE by 0.49% 
and 7.2% whereas the enhancements induced by GRU are respectively 
0.36% and 5.3%. In other words, the improvement of prediction accu-
racy is not very significant by applying more complicated representation 
of RNN. Therefore, from Fig. 5, the robustness of ML techniques in 
capturing the fluctuating trend of the data is clearly portrayed. In this 
context, the conventional DCA approach is only able to perform the 
“curve fitting” and reflect the general declining trend of the data. In 
addition to this, for the purpose of more comprehensive comparison, the 
performance metrics considering all the 1093 data points are calculated 
and tabulated in Table 8 for each model. As the result shows, GRU 
outperforms the other models. In general, all the models can capture the 
overall trend of the data points. Nonetheless, for SVR-TE, it can be noted 
that there are both overestimation and underestimation of values in two 
of the data points. This corresponds to the outliers mentioned earlier. 
Despite this, SVR-TE still performs reasonably well in estimating the 
output of the data from the blind case. 

Furthermore, the relevancy factor (r) has been implemented to 
evaluate the relative importance of these input variables on the pre-
dicted output by the models. In this case, higher absolute value of r 
indicates more significant relative effect on the output (Chen et al., 
2014; Nait Amar, 2020; Nait Amar et al., 2021). The relevancy factor can 
be mathematically expressed as follows: 

r(Ik,  q)=
∑N

j=1

(

Ik,j − Ij

)
(
qj − q

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

j=1

(

Ik,j − Ij

)2
√

∑N
j=1

(
qj − q

)2

(25) 

In equation (25), the data point index (or timestep in this case) is 
indicated as j, Ik denotes the kth input parameter, and Ik means the 
respective average value. Besides that, q and q correspondingly repre-
sent the predicted output value and its average. The relevancy factor of 
each input parameter is depicted in Fig. 6. As shown, gas volume from 
well (or gas production) has the most influential impact on the output, 
which is oil volume from well (oil production). Distribution of the errors 
corresponding to the predictions (of all data points) performed by all the 
seven models are also demonstrated as histogram in Fig. 7. It can be 
observed that all seven models display a normal distribution that has a 
center being close to errors with zero values. Such distribution provides 
extra confidence to the integrity and robustness of the models developed 
in this paper. 

5. Conclusions 

In this work, SVR-TE, SVR-PSO, FNN-BP, FNN-PSO, simple RNN, 
LSTM, and GRU models have been developed to predict the oil pro-
duction of a well in Volve field. These models have been trained, vali-
dated, and tested to ensure that they have learnt the relationship 
between input and output models before being blind validated. 

Generally, RNN-based models outperformed the SVR-based and 
FNN-based models in terms of training and prediction. To be more 
specific, LSTM outperformed the other six models in the case of training. 
Besides that, GRU performed the best in the validation phase whereas 
simple RNN yielded the best outcome in the testing phase. However, the 
training performance and predictability of SVR-based and FNN-based 
models are still practically excellent. Apart from these, we can infer 

that PSO contributes to the enhancement of SVR modeling in terms of 
training, but not in the case of FNN modeling due to the existence of 
several outliers. Nevertheless, we illustrated that the application of PSO 
in data-driven modeling could induce improvements although such 
improvements might not be significant for FNN modeling. Additionally, 
during the prediction phase, LSTM produced the most accurate results. 
Also, when considering all the data points, the performance metrics 
computed by using the results estimated by GRU were the best. Finally, 
the resemblance of the error distribution produced by each predictive 
model to a normal distribution with center close to zero further dis-
played the reliability of the models built in this work. 
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