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Argininosuccinate lyase is a metabolic vulnerability in breast
development and cancer
Sigurdur Trausti Karvelsson 1, Qiong Wang1, Bylgja Hilmarsdottir2, Arnar Sigurdsson 3, Siver Andreas Moestue 4,5,
Gunhild Mari Mælandsmo 2, Skarphedinn Halldorsson1,6, Steinn Gudmundsson1,7 and Ottar Rolfsson 1✉

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We
hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic
phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT
was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast
epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed
using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic
data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the
proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following
EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the
proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492
EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine
metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we
demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and
can be utilized as a tool for the functional interpretation of high throughput clinical data.
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INTRODUCTION
Roughly 90% of all cancer-related deaths are believed to be
caused by secondary metastatic tumors1. Multiple enzymes have
been identified that support cancer cell dissemination in breast
cancer through alterations of core metabolic pathways. These
include the glycolytic enzymes HK1 and PKM22,3, IDH1 involved in
the tricarboxylic acid (TCA) cycle4, ACLY in fatty acid synthesis5,
and PRODH from proline synthesis6. Definitive metabolic patterns
that differentiate between invasive and non-invasive cancer cells
however remain elusive7.
One way that epithelial cells gain invasive properties is through

the developmental process known as epithelial-to-mesenchymal
transition (EMT). When localized breast cancer epithelial cells go
through EMT, they gain invasive and apoptosis-resistant proper-
ties that contribute to their ability to migrate through the
extracellular matrix and form secondary tumors through
mesenchymal-to-epithelial transition (MET)8–10. Metabolic altera-
tions are believed to be a hallmark of cancer and tumor
progression11 and thus, an overall understanding of the metabolic
changes that accompany EMT and MET in breast tissue may help
to recognize potential biomarkers and drug targets associated
with cancer progression.
Genome-scale metabolic models (GSMMs) have been success-

fully used to analyze and interpret changes to cancer metabolism
based upon high-throughput datasets12–14. GSMM-based studies
have revealed significant alterations in the reducing potential
during breast tumor development where NADPH is increasingly
directed towards reactive oxygen species (ROS) defenses15.

Furthermore, the predicted metabolic variability between patients
has been utilized successfully for their prognosis14. These
studies14,15 were based on transcriptomic or proteomic data
obtained from the cell lines or tumors of interest but lacked direct
measurements of uptake/secretion rates that constrain metabolic
flux as these measurements are challenging to obtain in a clinical
setting. Directly incorporating metabolic measurements is
expected to provide more accurate predictions than clinical
breast cancer data alone.
We hypothesize that GSMMs representing the metabolic

plasticity of EMT may help define the metabolism of breast tissue
and contribute to the identification of metabolic vulnerabilities for
breast cancer diagnostic or therapeutic purposes. The epithelial-
derived D492 cell EMT model is comprised of two cell lines (D492
and D492M) that allow metabolic differences that occur following
spontaneous EMT in cell culture to be investigated16. Similar cell
models previously used to study EMT include HMLE and the
PMC42 EMT cell models17–19.
In order to describe the metabolic plasticity of EMT we recently

reported the metabolism of D492 and its mesenchymal-like
counterpart D492M by integrated analyses of extracellular
metabolomic- and transcriptomic data within tailored GSMMs.
The metabolic alterations that occur following EMT in D49216

mirrored results from a comprehensive analysis of EMT metabo-
lism20 and anchorage-independent growth21. A decrease in
glycolysis and changes to mitochondrial oxidation of amino acids,
specifically glutamine, threonine, arginine and lysine were
observed. Those analyses were limited to transcriptomic and
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extracellular metabolomics data prompting the question of how
proteomic data would alter the predictions of D492 metabolic
network activity given the nonlinear relationship of transcription
and translation22,23.
Here, we extend the D492 EMT GSMM, now termed iBreast2886,

to include differences in protein levels, further formulating the
metabolism of EMT and investigate the models ability to describe
breast tissue metabolism. In order to capture the intracellular
metabotypes that accompany EMT in D492 and identify biomar-
kers that discriminate between the two phenotypes, we used
constraint-based modeling and comparative metabolic analysis. In
order to reconcilidate the predicted differences in metabolic
phenotypes based on the different data types, we carried out
enzyme inhibitor assays, 1-13C-glutamine tracer analyses, and
siRNA knockdown experiments in vitro to determine the actual
phenotypes D492 and D492M cells. Finally, we demonstrate how
iBreast2886 can be used as a tool for functional interpretation of
tumor gene expression data from breast cancer patients.

RESULTS
Direct comparison of different data types reveals their low
overlap
In order to determine the consistency of the three different types
of data used in this study (microarray, RNA sequencing (RNA-seq)
and proteomic) for D492 epithelial cells and D492M mesenchymal
cells, we compared the three data types by calculating the
Spearman correlation of the log-fold differences between D492M
and D492 (Fig. 1a).
The correlation between RNA-seq and proteomic data was the

highest (ρ= 0.46) and the correlation between the two gene
expression methods was lowest (ρ= 0.28). By comparing only the
metabolic identifiers, the correlation between the dataset did not
change (Fig. 1b).
To compare the datasets on a more functional metabolic level,

we investigated and compared their ability to infer metabolic
activity of D492 and D492M using constraint-based metabolic
modeling24. In order to achieve this, we used the different
datasets as constraints on our previous reconstruction of breast
metabolism, which we refer to hereafter as iBreast2886.

True metabolic flux is reflected in cell-specific metabolic
networks from proteomic data but not other data types
For the comparative metabolic analysis, we constructed GSMMs
based on RNA-seq and proteomic data from the epithelial D492
and mesenchymal D492M and compared these to microarray-
based GSMMs built previously16 and iBreast2886 GSMMs where
only the extracellular constraints were applied. Henceforth, these
will be referred to as the RNA-seq GSMMs, protein GSMMs,
microarray GSMMs, and media GSMMs.
In order to compare the EPI and MES models in all pairs of

GSMMs, representative flux values (flux profiles) for all reactions
that obey the GSMM steady-state assumptions for all models were
obtained through random sampling of the solution space25, where
the median values for reactions were used to represent their
activity. The relative differences between EPI and MES in all four
GSMM pairs are summarized in Fig. 2a–d. Hierarchical clustering of
the GSMMs flux profiles revealed highest similarity between the
RNA-seq- and proteomic-constrained models on a phenotype-
specific level (Supplementary figure 1). Upon closer inspection, it
was clear that reaction similarity was different in the various
subcellular compartments. Specifically, the flux similarity of the
RNA-seq- and proteomic-constrained models was compartment
specific, where the endoplasmic reticulum (ER) had the highest
correlation of EMT-linked differences in reaction activity, followed
by the cytosol and mitochondria (Supplementary table 1).
As the ground truth for the comparative analysis of pathway

activity within our GSMMs, we used isotope labeling patterns from
1-13C-labeled glutamine experiments. This tracer is capable of
quantifying the contribution of glutamine, one of two major
carbon sources of D492 and D492M16, to citrate, malate, and
aspartate through reductive carboxylation (Fig. 3a) and to the
synthesis of proline and glutathione. The contributions from
glutamine to the aforementioned metabolites are not whole
metabolic pathways but subsets of reductive glutaminolysis and
will be referred to as metabolic routes. Some of these metabolic
routes occur in more than one cellular compartment. Reductive
glutaminolysis is therefore a good representation of the
compartment-based complexity of eukaryotic cellular metabolism.
It is challenging to infer metabolic pathway activity by

observing multiple, individual reactions (c.f Fig. 2). Therefore, we
utilized an activity measure that quantifies metabolic route activity
in compartmentalized GSMMs based on random sampling results.
From the metabolic route activity calculations, we observed that
the different omics-constrained GSMMs had different predictions

Fig. 1 Correlation of the log-fold differences in D492 and D492M of common gene identifiers between RNA sequencing, microarray and
proteomic data. a Correlation of log-fold differences of all common gene identifiers (n= 2271). b Correlation of log-fold differences of
common metabolic gene identifiers (n= 395). Spearman’s rank correlation coefficient was used. The asterisks represent a significant
correlation (p < 0.001).

S.T. Karvelsson et al.

2

npj Systems Biology and Applications (2021)    36 Published in partnership with the Systems Biology Institute

1
2
3
4
5
6
7
8
9
0
()
:,;



of the production of metabolites derived from glutamine (Fig. 3b).
According to the 1-13C-labeled glutamine results, there was
relatively higher citrate derived from glutamine in D492M than
D492, indicating increased flow through reductive carboxylation
of glutamine and/or the decreased condensation of oxaloacetate
and acetyl-CoA (Fig. 3a). The proteomic GSMMs were the only
ones to predict both routes correctly (Fig. 3c and Supplementary
figure 2) along with the other four routes that were investigated.
The microarray-constrained GSMMs correctly predicted the
relative difference in metabolic route activity for only two routes,
the RNA-seq GSMMs for three routes, and the GSMMs constrained
only with extracellular uptake and secretion rates predicted
correctly for four routes in total. Thus, the results indicated the
relatively higher validity of the proteomics-constrained GSMMs
compared to the other data types for intracellular, compartmen-
talized flux predictions.

Results from GSMMs constrained with proteomic data reveal
metabolic vulnerabilities of EMT
For the investigation of EMT-specific metabolic remodeling, we
utilized the same methodology as before16 to identify reactions
whose activity specifically requires alteration in order to switch
from a epithelial flux profile (EPI) to a mesenchymal one (MES). As
the proteomics-constrained GSMMs had the most accurate flux
predictions, we used them for this analysis. Briefly, we used a
hypergeometric test to identify whether the altered reactions
were enriched with any subsystems (e.g. the metabolic pathway
families with specific functional roles) within iBreast2886. The
results showed that two out of the top four enriched reaction sets
among EMT-linked reactions are within cholesterol metabolism
(highlighted in red in Fig. 4a).
Statins are a class of drugs that are broadly prescribed to

patients with hypercholesterolemia. They work by inhibiting HMG-
CoA reductase (Fig. 4b), the rate-limiting step in cholesterol
synthesis26. We treated the D492 and D492M cells with lovastatin
and found that following the successful inhibition of cholesterol
synthesis in both cell lines (Fig. 4c), it was apparent that the D492
cells were more sensitive to the drug in terms of survival (Fig. 4d).
Thus, in addition to being the most accurate model in terms of

intracellular fluxes, the analysis of the proteomic iBreast2886
GSMMs proved useful in identifying the differences in cholesterol
metabolism in D492 and D492M. On the same note, we performed

gene essentiality analysis of the proteomic GSMMs and found the
essential genes for EPI and MES, respectively. Focusing particularly
on the mesenchymal GSMM due to its metastatic involvement, we
found that there were nine genes essential for the MES model.
These were Argininosuccinate Lyase (ASL), Ornithine Aminotrans-
ferase (OAT), Pyruvate Dehydrogenase Complex Component X
(PDHX), Proline Dehydrogenase 1 (PRODH), Renin binding protein
(RENBP), Isocitrate Dehydrogenase 2 (IDH2), Guanylate Kinase 1
(GUK1), 6-Phosphogluconolactonase (PGLS) and Cystathionine
Gamma-Lyase (CTH).
In order to narrow down the list of genes to verify in vitro, we

evaluated the genes‘ relationship to survival of patients with
claudin-low breast cancer, which is representative for the
mesenchymal-like phenotype of breast cancer that expresses
high levels of EMT markers27. This we achieved by measuring the
concordance index (C-index) for the genes, which is a metric for
predictive ability of survival models based on gene expression
levels28. ASL had the highest C-index (and lowest associated p
value) among the genes (Fig. 5a) and was chosen for in vitro
survival analysis.
After lowering ASL expression by 75% using small interfering

RNAs (siRNA), the survival of D492M cells was significantly
diminished whereas the survival of D492 cells was not altered
(Fig. 5b and c). The same effect was observed when GUK1, the
gene with third-lowest p value, was silenced in the cells using
siRNA (Supplementary figure 3). Importantly, no effect on survival
was observed after silencing the gene coding for the neighbor
reaction of ASL, argininosuccinate synthase (ASS1) (Supplementary
figure 3).

iBreast2886-dependent analysis of breast cancer proteome
reveals subtype-specific vulnerabilities
Building on the verification of the gene essentiality predictions, we
next validated the ability of iBreast2886 to identify growth
vulnerabilities in breast cancer that could potentially be exploited
for diagnostic or therapeutic purposes. To achieve this, we used
proteomic data from breast tumors29 as constraints for the model.
Again, we chose proteomic data (instead of available transcrip-
tomic data) based on our preliminary constraint-based analysis
with D492 and D492M data which showed its relatively higher
accuracy in capturing intracellular flux phenotypes compared to
transcriptomic data.

Fig. 2 Relative differences in reaction activity in EPI and MES models constrained in four different ways. a Only extracellular constraints,
(b) Microarray, (c) RNA-seq and (d) Proteomic data. The pathways shown are glycolysis, TCA cycle, and pentose-phosphate pathway. Red
represents higher activity in MES whereas blue represents higher activity in EPI, represented by log-fold differences in median activity from
random sampling of the models.
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We hypothesized that we would identify subtype-specific
metabolic vulnerabilities of breast cancer, i.e. genes specifically
essential for estrogen-receptor positive (ER-positive) and ER-
negative tumors. The status of the estrogen receptor has
repeatedly been shown to be a significant prognostic marker,
where patients with ER-negative tumors generally have shorter
survival times. After creating 55 patient-specific proteomic
GSMMs, we performed gene essentiality analysis on all models.
Subsequently, the ER-negative and ER-positive patient GSMMs
were tested for over-representation of essential genes using
empirical p value calculations (see Materials and Methods).
A single essential gene was identified for ER-negative patients:

Argininosuccinate Lyase (ASL) (empirical p value= 0.0419). In
order to confirm these results, we acquired the metadata for the

patients through the Gene Expression Omnibus (GEO) and
performed survival analyses using survival in months as time
and cancer-related death as event.
Univariate and multivariable Cox proportional hazard models

were constructed using age and ASL separately for patients with
ER-positive and ER-negative tumors. The Cox analyses (shown in
Table 1) revealed that although ASL protein levels were a predictor
of death in the univariate models of patients with both ER-positive
and ER-negative tumors (HR= 1.16 and 1,12; p= 0.067 and 0.049,
respectively), the inclusion of age in the multivariable models
attenuated the effects of ASL in the ER-positive patients (HR=
1.08, p= 0.44) but not in ER-negative patients (HR= 1.12, p=
0.062). Thus, after adjusting for confounding effector age we
observed that ASL was a marginally significant predictor of cancer-

Fig. 3 Predicted and measured metabolic route activity in D492 and D492M cells. a A carbon tracing map of 1-13C-labeled glutamine
describing the flow and fate of labeled carbons in the glutamine carbon skeleton. Metabolites in bold are the end metabolites within the
pathways we quantified. Red circles represent the 13C- carbon isotopes. The mitochondria is indicated by shaded grey. b Density plots of the
calculated metabolic route activitiy (MRA) of five different routes of reductive glutamine metabolism from the total random sampling matrix
(n= 5800 flux vectors) for all GSMMs. The blue distributions represent MRA within the epithelial GSMMs whereas red represents MRA within
the mesenchymal GSMMs. The dashed line represents the median MRA value. Higher (i.e. more positive) values represent more active routes.
All distributions were significantly different in (b) (p < 0.001) based on a Kolmogorov–Smirnov test. c Measured total contribution (TC) from
1-13C-glutamine to selected metabolites (after 6 h of cell culture) which represent the same metabolic routes as in (b). Results in (c) are shown
as mean+ SEM from three experiments (shown with dots). Student’s t-test was used to estimate significance.
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related death of only ER-negative patients, which confirms the
results from the gene essentiality analysis using breast cancer
proteomic data and iBreast2886.
There were no genes significantly enriched for ER-positive

patients, likely due to the heterogeneity of this breast cancer
subtype which might require further stratification based on the
status of the progesterone and HER2 receptors or genes within the
PAM50 panel30.

DISCUSSION
High-throughput molecular screening can serve to focus experi-
mental efforts on understanding the functional consequences of
molecular variation. Here we have used genome-scale metabolic
network modeling to reverse this classification and prioritization
strategy. Rather than using high-throughput clinical data as the
basis for network analysis of generic metabolic models, we used
GSMMs constrained with data from cells in culture whose
metabolic phenotypes resemble breast gland development to
describe the metabolic landscape of breast epithelium and
identify changes in metabolism associated with breast cancer.
A comparison of the different omics data from the breast

epithelial cells D492 and their mesenchymal isogenic cell line
D492M revealed a low correlation of the mRNA and protein levels,
compatible with literature reports on the correlation of these data
types22,31–33. There was an even lower correlation of the two
different mRNA quantification methods microarray and RNA
sequencing (Fig. 1) which is in accordance with the previous
studies34.
The correlation of transcriptomic and proteomic data can be

compartment-specific due to the different spatiotemporal nature

of the molecules35. Accordingly, after constraining iBreast2886
with all the different omics data, we found that the differences in
fluxes between the proteomic- and RNA-seq-constrained models
were indeed highly compartment-specific (Supplementary table
1). Three compartments (cytosol, mitochondria, and the ER) had a
significant correlation of ρ > 0.37, with the ER having the highest
value of 0.54. A plausible explanation is that mRNA is synthesized
in the nucleus, but is subsequently exported to the rough ER
where protein translation takes place. Therefore, the ER displaying
high correlation of reaction activity based on proteomic and
transcriptomic data is unsurprising36,37.
Multiple factors influence the consistency of proteomics and

transcriptomics data, not only technical ones like experimental
discrepancies and different data-producing platforms, but also
biological factors like gene regulation, post-translational modifica-
tion, different rates of synthesis, and availability of resources35.
Our findings support that these are different based on the type of
cellular compartment and show that the accuracy of GSMMs flux
predictions from extracellular uptake and secretion measurements
is dependent upon the transcriptomic and proteomic profiles of
the cellular compartment of interest.
The compartment-dependent correlation results highlight that

care must be taken in the interpretation of metabolic phenotypes
from high-throughput data as these may fail to accurately
represent the most fundamental parts of energy metabolism.
Indeed, it was apparent that the predicted relative activity
between EPI and MES was highly data type-dependent (Fig. 2)
with the proteomic-constrained GSMMs predicting flux pheno-
types most similar to measured pathway activity using a
1-13C-glutamine tracer (Fig. 3). Further analysis of the proteomic
GSMMs was successful in proposing valid changes to D492

Fig. 4 Integrated analysis of all data-type based GSMMs reveals EMT-related differences in cholesterol metabolism. a Enrichment analysis
of reactions that need alterations for the EPI to take on a MES flux phenotype in all proteomic GSMMs. This approach helps to identify reaction
sets (i.e., families of pathways) which need to be altered for EMT-related changes in flux profiles. Reaction sets shown are ones with FDR-
corrected p value less than 0.01. The scale (Enrichment score) represents the fraction of set reactions within the EMT reactions. The p values
are FDR-adjusted p values from a hypergeometric test for enrichment of reaction sets. The two reaction sets highlighted in red are cholesterol-
related. b The mechanism of inhibition of cholesterol synthesis by lovastatin. Dashed arrows represent more than one metabolic reaction.
c Both D492 and D492M were treated with various concentrations of lovastatin, an inhibitor of cholesterol synthesis. The figure shows the
cholesterol concentration in D492 and D492M cells after treatment with lovastatin. d Survival of D492 and D492M cells after treatment 5 µM
concentration of lovastatin. Results in c) and d) are shown as mean+ SEM from three experiments (shown with dots). Student’s t-test was used
to estimate significance and p values were adjusted using the Benjamini–Hochberg approach.
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metabolism following EMT. The EMT-linked reaction list was
enriched particularly with reactions taking part in cholesterol and
squalene metabolism (Fig. 4a). As a confirmation of these
predictions, we found that the cholesterol-inhibiting drug
lovastatin had a significantly stronger effect on the survival of
D492 than D492M cells (Fig. 4d). Cholesterol has previously been
shown to be a promoter of EMT38 and the cholesterol-inhibiting
drug statin has been shown to inhibit cancer invasion and
metastasis39–41. Importantly, the differences in cholesterol meta-
bolism of D492 and D492M were not captured by a general KEGG
pathway enrichment analysis of the significantly different proteins
in the cell lines (Supplementary figure 4), suggesting the presence
of emergent properties of the iBreast2886 network that are
biologically relevant and cannot be elucidated using a generic
differential expression analysis.
Similarly, the gene essentiality analysis for the proteomics-

constrained MES model suggested that argininosuccinate lyase
(ASL) would be essential for D492M which was confirmed by
in vitro siRNA knockdown experiments (Fig. 5). Upon knockdown

of the gene, there was a 22.1% reduction in survival of D492M
cells on average in contrast to only 7% in D492 cells. This level of
survival reduction in D492M is comparable to results from
validations in previous studies using similar methodology
proposing metabolic targets, where 10-80% reduction in survival
have been observed upon in vitro knockdown of the main
metabolic target genes14,42. A manual investigation of the GSMM
flux profiles revealed three likely reasons for the essentiality of ASL:
1) compromised proline synthesis via OAT accompanied by 2)
decreased fumarate production for the TCA cycle and 3)
decreased OAA to aspartate conversion that compromises
aminotransferase activity and therefore anaplerotic fueling of
the TCA cycle. In addition to ASL, we identified six other significant
targets from the gene essentiality analysis, most of which have
been associated with poor cancer survival6,43–45. For example,
increased expression of the IDH2 gene has been shown to be
overexpressed in endometrial, prostate, testicular, and advanced
colon cancer46–48, and we have recently demonstrated that IDH2

Fig. 5 Selection and knockdown of MES-essential genes. a Concordance index (C-index) of proteomic MES essential genes for overall
survival prediction of patients with claudin-low breast tumors. Lines represent 95% confidence intervals and p values are from the calculation
of the C-index using Noether’s method79. Genes are plotted in descending order based on the p values. b Expression levels of ASL in D492 and
D492M after siRNA-mediated knockdown of the gene. Two different siRNA constructs were used for ASL (ASL-1 and ASL-2) (c) siRNA-mediated
knockdown of ASL and its effects on the 96 h survival of D492 and D492M. Results in (b) and (c) are shown as mean+ SEM from three
experiments (shown with dots). Student’s t-test was used to estimate significance and p values were adjusted using the Benjamini–Hochberg
approach.

Table 1. Univariate and multivariable Cox proportional hazard models suggest proteomic levels of ASL are significantly associated with survival of
ER-negative breast cancer patients.

Univariate Multivariable

ER-status Variables HR 95% CI p value HR 95% CI p value

Positive ASL 1.16 0.99–1.35 0.067 1.08 0.89-1.31 0.44

Age 1.07 1.03–1.12 0.0022 1.06 1.02-1.11 0.0086

Negative ASL 1.12 1.00–1.25 0.049 1.12 0.99-1.25 0.062

Age 0.99 0.94–1.05 0.77 1.00 0.95-1.05 0.93

The models were created using age (in years) and ASL protein levels. The event used in the survival analysis was cancer-related death.
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indeed fuels reductive glutaminolysis and fatty acid synthesis in
the D492 and D492M cells in an accompanying study49.
Several studies have carried out metabolic network analysis on

a compendium of clinical transcriptomic or proteomic data to
extract and prioritize metabolic features of importance14,15,50–52.
Using our breast metabolic GSMM iBreast2886, we analysed
publically available breast tumor proteomic data from 55 breast
cancer patients and identified ASL as a metabolic vulnerability of
the aggressive ER-negative breast cancer.
Thus, we found that ASL was both essential for D492M cell

growth and related to the worse prognosis of ER-negative breast
cancer patients. The enzyme coded by ASL, argininosuccinate
lyase, produces fumarate and arginine from the breakdown of
argininosuccinate. Arginine is a non-essential proteogenic amino
acid involved in nitrogen detoxification and the generation of
nitric oxide (NO) which is important for invasion and metastasis in
various cancer types6,53. Downregulation of ASL has been shown
to inhibit the growth of breast cancer tumors in vitro and in vivo54.
Rabinovich et al.55 reported that downregulation of ASS1, an
enzyme directly upstream of ASL, increased pyrimidine synthesis
and cancer cell proliferation but did not see the same connection
with ASL. The different effect of siRNA knockdown of ASL and ASS1
on D492 and D492M survival reported here support a mutually
exclusive relationship of ASL and ASS1 as only ASL and not ASS1
was found to be essential for growth of D492M (Fig. 5c and
Supplementary figure 3). This however does not explain the
observed differences in the context of linear pathway flux within
iBreast2886. A possible explanation is a secondary function of ASL,
as it has been shown to influence cyclin A2 levels by direct
binding in hepatocellular carcinoma, independent of its enzymatic
activity within the ASS1-ASL node that also promoted anchorage-
independent growth56. Intercellular exchange of argininosucci-
nate between ASL- and ASS1-deficient cells, as demonstrated by
Davidson et al.57, furthermore indicates that the two enzymes
need not be co-regulated within a single-cell type. This type of
tissue-level metabolic crosstalk would not be captured by our
single-cell metabolic reconstruction iBreast2886. Nevertheless, the
components of the ASS1-ASL node, citrulline, and fumarate, have
been reported to be significantly lower and higher, respectively, in
ER-negative breast cancer compared to ER-positive which
supports altered activity within the ASS1-ASL metabolic node58.
The findings additionally support more studies that have shown
that metabolic vulnerabilities of breast cancer lie within arginine
metabolism54,59,60.
Taken together, the study demonstrates that the metabolism of

EMT captured within iBreast2886 is practical for data integration
and analysis and that proposed phenotypes are in agreement
both with prior investigations of EMT/metastasis and ER-negative
breast cancer metabolism. The iBreast2886 reconstruction is first
and foremost a metabolic model descriptive of the steady-state
metabolic phenotypes that the D492 EMT cell model can achieve
based upon the integration of mRNA transcription, protein
translation, and metabolite uptake and secretion rates. The
integrated analysis of multiple iBreast2886 GSMMs constrained
with separate data types collectively yielded more accurate
predictions than each individual GSMM, as shown here with the
EMT-related changes in cholesterol metabolism and ASL
essentiality.
Limitations of iBreast2886 include lack of actual measurements

of fatty acid oxidation and cholesterol uptake/secretion rates
which might further increase predictive accuracy of iBreast2886.
Genes involved in the oxidation of fatty acids are known to
correlate with reduced cancer patient survival14,61,62 and the
relationship of cholesterol to EMT and metastasis has been
discussed here above38–41. The robustness and plasticity of breast
tissue metabolism are also more complex than is captured by
iBreast2886, which is solely based upon one EMT cell culture
model and media constraints that may not accurately reflect the

breast tissue microenvironment63 and lack flux extremities that
may arise from kinetic regulation. Steps towards further under-
standing of EMT metabolism could be performed by expanding
iBreast2886 to account for additional cell lines alongside focused
studies aimed at addressing metabolic gaps and network
inconsistencies whose presence was demonstrated in this study
using isotope tracer analysis. In this way, biochemically accurate
descriptions of EMT metabolism in breast tissue to aid in
translational cancer research may be pushed forward.

MATERIALS AND METHODS
Cell culture
D492 and D492M were cultured in a serum-free H14 medium at 37°C and
5% CO2 as previously described19. H14 is a fully defined medium
comprised of DMEM/F12 base with 250 ng/ml insulin, 10 µg/ml transferrin,
10 ng/ml EGF, 2.6 ng/ml sodium selenite, 10-10 M estradiol, 1.4 µM
hydrocortisone, 7.1 ng/ml prolactin, 100 IU penicillin, 0.1 mg/ml strepto-
mycin and 2mM glutamine. Medium was changed every 48 h while
propagating cells, and experiments were performed within four passages.
D492 and D492M cells were kindly provided by the Stem Cell Research
Unit, University of Iceland, and were screened for Mycoplasma infections
monthly using PCR-based tests at the Biomedical Center, University of
Iceland.

Origin of iBreast2886 GSMM for breast metabolism
Genome-scale metabolic model construction and analysis were carried out
in MATLAB using the COBRA Toolbox64. The genome-scale breast tissue
metabolic model from Halldorsson et al.16 was used as a base model.
Briefly, RNA sequencing data from both the D492 and D492M cell lines19

was used to create a metabolic model specific for breast tissue. To achieve
this, the human metabolic reconstruction Recon 2 was employed65. All
genes in the RNA sequencing data with expression values exceeding a
fixed cut-off value (1 RPM) in either cell line were identified. To identify the
metabolic reactions associated with the list of genes, the Gene-Protein
Rules (GPRs) of Recon 2 were used. The FASTCORE model building
algorithm66 was subsequently applied to build a functional metabolic
network from the list of identified reactions. The resulting network,
referred to as the iBreast2886 model, was manually curated to ensure no
metabolites or pathways were blocked or missing.

Construction and analysis of cell-type-specific epithelial and
mesenchymal GSMMs
The iBreast2886 reconstruction was used to create cell-type-specific
models of epithelial D492 and mesenchymal D492M based on microarray,
proteomic, and RNA sequencing (RNA-seq) data. The workflow of the
model construction is outlined in Supplementary figure 5. Briefly, the
genes/proteins from each dataset (along with cell-type-specific uptake and
secretion rates of multiple metabolites in the media) were used to
constrain iBreast2886 to create two models (EPI for epithelial D492, and
MES for mesenchymal D492M). Furthermore, the fourth pair of EPI and MES
was added that did not contain any intracellular constraints imposed by
omics data, but only the cell-type-specific uptake and secretion rates. This
gave rise to four pairs of EPI and MES models, where each EPI model
shared the same stoichiometry and uptake/secretion rates but had
different intracellular reaction constraints based on the different datasets.
The same applied to the MES models. See Supplementary information for
details.

Stable isotope tracing analysis
D492 and D492M cells were cultured until confluent as described above.
The medium was then changed to a complete H14 containing
1-13C-labeled glutamine (Cambridge Isotope Laboratories, Inc., MA, USA).
After 6 h of culturing with the 13C-labeled carbon source, cell metabolism
was quenched using cold methanol and intracellular metabolites were
extracted using ACN extraction67. Analyses were performed on a UPLC
system as described in Rolfsson et al.68. Results were presented as the total
contribution (TC) of carbon sources to measured metabolites69:

TC ¼
Pn

i¼0 i �mi

n
(1)
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Where n is the number of C atoms in the metabolite, i represents the
isotopologues and m is the relative fraction of the isotopologues.

Comparison of GSMM flux predictions and 13C-labeling
profiles
Individual flux distributions from constraint-based modeling of GSMMs
were used to estimate the relative contribution of extracellular metabolites
to intracellular metabolites of interest. This approach is suitable to measure
the flow of carbons between metabolites within GSMMs to ultimately
quantify the total activity of specific metabolic routes within pathways that
can subsequently be directly compared to definitive results from stable
isotope tracer analyses. A schematic explaining the metabolic route activity
measure is shown in Supplementary figure 6. A single flux distribution
represent the flux values of all reactions within a GSMM which is subject to
the constraints applied to the model. In order to calculate the relative flux
value vrel from metabolite mi to miþ1 within a pathway of interest, we first
identify all consuming reactions of metabolite mi using the stoichiometric
matrix S. Then, for a single flux distribution, one can calculate the sum of
consuming flux of metabolite mi , and the relative flux that is used to
produce only metabolite miþ1, which we will call vrel . If k is a consuming
reaction of a particular metabolite of interest, then the vrel value for k is
calculated from the raw flux value of k divided by the sum of the fluxes of
all K reactions consuming the same metabolite as k. Therefore, the vrel of k
(or vrelðkÞ) in a single flux vector is calculated as follows:

vrelðkÞ ¼ vðkÞ
PK

i¼1 vðiÞ
wcomp (2)

Where wcomp is the weight given to the relative flux value based on the
relative abundance of the compartment it takes place in, since some
reactions take place in more than one compartment. The vrelðkÞ values for
all transport reactions were assumed to be 1. The weights for the
compartments were as follows: Cytosol 0.54, mitochondria 0.22, ER 0.12,
nucleus 0.06, golgi apparatus 0.03, peroxisomes and lysosomes 0.01, and
are representative of their relative volume within cells in general70.
Using the relative consumption values for a list of reactions within a

single flux vector, it is possible to calculate the metabolic route activity
(MRA). To calculate the MRA from metabolitem tom+ k, calculate the sum
of the log of relative flux values (from Eq. (2)) within that route:

MRA ¼
Xk�1

i¼1

log vrel miþ1ð Þð Þ (3)

Where the first reaction is the consumption of metabolite mi to produce
metabolite miþ1. The MRA of multiple flux vectors (e.g., within a random
sampling matrix) can be calculated to get a distribution of MRA within a
specific constrained GSMM.

Lovastatin assay
D492 and D492M cells were treated with 5, 10, and 100 µM concentration
of lovastatin (Tocris Bioscience, Bristol, UK) for 24 h after which both
cholesterol abundance and cell numbers were assessed. The cholesterol
was measured using Amplex™ Red Cholesterol Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA) according to manufacturers protocol. The
cell numbers were assessed using crystal violet staining. Briefly, after 24 h
of treatment, the cells were fixed using ice-cold methanol and stained with
crystal violet (0.5%). The stain was subsequently released using 10% acetic
acid and absorption was measured at 570 nm.

Scoring of in silico gene essentiality candidates
The METABRIC breast cancer clinical dataset71 was downloaded from
cBioPortal72,73. The clinical metadata includes information about the
claudin-status of the tumors in the data. Using only patients with tumors
classified as claudin-low and available survival data (n= 199), we
performed a survival analysis. In short, patients were split into two groups
based on the best-splitting expression level (as identified through
R-package survminer’s surv_cutpoint() function) of a gene of interest. The
prognoses of the groups were then examined by calculating the
concordance index (C-index)28, which provides an overall measure of
predictive accuracy of the genes’ expression level with right-censored
survival data.

Small interfering RNA (siRNA) knockdown experiments
For the knockdown experiments, Silencer Select siRNAs (Thermo) were
used (Negative Control No 1 #4390843), ASL (s1669 and s1671), and ASS1
(s1684). Cells were seeded at density of 3000 cells/well in a 96 well plate.
Prior to seeding, the 96 well plates were coated with siRNA and
Lipofectamine RNAiMAX (Thermo) for 15min. Final concentration of siRNA
in each well, after addition of cells, was 10 nM. Transfected cells were
incubated at 37 °C and 5% CO2 for 96 h at the end of which cell survival
and gene expression were assessed. To measure cell survival, CellTiter Glo
Luminescent Cell Viability Assay (Promega, Madison, WI, USA) was used
according to instructions of the manufacturer. SpectraMax plate reader
was used to measure luminescence at 560 nm. To measure the gene
expression, real time quantitative polymerase chain reaction (qPCR)
was used.

Real-time PCR
Total RNA was isolated using TRI-Reagent (Thermo) according to the
manufacturer’s instructions. RNA concentration was measured using
NanoDrop One (Thermo). 0.4 to 1 ug RNA was reverse transcribed to
cDNA using High-Capacity cDNA Reverse Transcription kit (Thermo). Real-
time quantitative PCR reactions were carried out using Luna Universal
qPCR Master Mix (New England Biolabs, Ipswich, MA, USA) according to
manufacturer’s instructions on a BioRad CFX384 Touch™ Real Time System
(BioRad Laboratories, Hercules, CA, USA). Gene expression levels were
determined with CFX Manager Software (BioRad). Primers were designed
using the Primer3 software74. Primers spanning exon junctions were
chosen to ensure specificity. Differences in relative expression were
estimated using the 2ΔΔCt method. The primer sequences used for
quantifying the gene expression were: ASL-fwd 5‘-GGAAGCTGTGTTTGAA
GTGTCA-3‘, ASL-rev 5‘-CCATGTTCTCTTGGTGAATCTG-3‘, ASS1-fwd 5‘-CAGG
AAAGGGGAACGATCAGGT-3‘, ASS1-rev 5‘-CGTGTTGCTTTGCGTACTCCAT-3‘,
GUK1-fwd 5‘-CTTCATCGAGCATGCCGAGTTC-3‘, GUK1-rev 5‘-GAACCTGTATG
GCACGAGCAAG-3‘, ACTB-fwd 5‘-CTTCCTGGGTGAGTGGAGACTG-3‘ and
ACTB-rev 5‘-GAGGGAAATGAGGGCAGGACTT-3‘.

Analysis of clinical breast cancer data using iBreast2886
Proteomic breast cancer data were acquired from Tang et al.29. After
removing identifers with missing data in more than 20% of samples, the
data were imported into MATLAB for constraint-based modeling.
Patient-specific GSMMs were constructed from iBreast2886, where the

reactions were only constrained in a patient model if their associated
protein levels were below the 60th percentile in all patients. The same
amount of constraint was applied to the selected reactions as for the EPI
and MES models (as described above). The median percentage of
constrained reactions in the patients was 3.8%. Gene essentiality analysis
was carried out using FBA as described above.
Essential genes that were over-represented in the GSMMs of estrogen

receptor (ER) negative (n1= 33) and positive patients (n2= 32) were
identified by randomly sampling n1 and n2 patient-specific GSMMs 1000
times from the whole GSMM list. Then, an empirical p value (p̂) was
calculated for each gene in the ER-negative and ER-positive patient subsets
using the formula from North et al.75:

p̂ ¼ r þ 1
nþ 1

(4)

Where p̂ is the empirical p value, n is the number of resampled sets
(1000 in this case) and r is the number of times the resampled sets have an
equal or greater number of an essential gene compared to the ER-negative
or ER-positive patient sets.
Genes with a p̂ < 0.05 were identified and their proteomic levels29 were

tested as subtype-specific survival predictors using the patient metadata
acquired from GEO (GSE37751). The metadata used were cancer-related
death and survival in months that were acquired using the R-package
GEOquery76. To assess the effects of genes and confounding variables on
patient survival, Cox-proportional hazard models were employed using the
R-package survival77.

Statistical analysis
For comparison of two groups, a two-sided Student’s t-test was employed
unless when the data did not follow a normal distribution, when the non-
parametric Mann–Whitney U-test was used. When more than a single
treatment was compared in the cell lines, the treatments were all
compared to the negative control using two-sided Student’s t-test and
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subsequently, the p values were adjusted for multiple comparisons using
the Benjamini–Hochberg approach. For the comparison of two distribu-
tions (e.g., in the metabolic route activity measurements), a
Kolmogorov–Smirnov test was used. Presented data were from at least
three independent experiments (represented by dots) and were summar-
ized using mean+ standard error. The asterisks in each figure represent
the p values (*<0.05, **<0.01, ***<0.001, ****<0.0001, ns= not significant).
Statistical methods used for GSMM analysis of breast cancer patients are
described in the Analysis of clinical breast cancer data using
iBreast2886 section. All statistical analysis was carried out using the R
programming language78.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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