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ORIGINAL PAPER

Simulating emergency patient flow during the COVID-19 pandemic
Thomas Reiten Bovima, Anders N. Gullhava,b, Henrik Anderssona, Jostien Dalec and Kjetil Karlsenc

aDepartment of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Trondheim, 
Norway; bCenter for Health Care Improvement, St. Olav’s Hospital, Trondheim, Norway; cDepartment of Emergency Medicine and 
Prehospital Services, St. Olav’s Hospital, Trondheim, Norway

ABSTRACT
The work presented in this paper is based on two projects that were conducted at St. Olavs 
Hospital (Norway) when preparing for the COVID-19 pandemic. Three discrete event simulation 
models are provided to evaluate the resource requirements during the peak of the pandemic. 
First, we estimate the number of beds needed in the emergency department (ED). In the 
second model, we estimate the number of ambulances required to maintain prepandemic 
response times for emergency patients. The third model is a coupling of the two former 
models, and it is used to study the effects of ED boarding time for COVID-19 patients. The 
resource needs are analysed under different COVID-19 testing policies. A strict testing policy 
increases the bed requirements in the ED, while it has the opposite effect for ambulances. Two 
distinct mechanisms causing boarding time are found. The effects from boarding time are most 
prominent during night and weekends.
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1. Introduction

The COVID-19 pandemic has put the health care 
sector in many countries under pressure. In Norway, 
societal restrictions, such as closing down public insti
tutions and instructing social distancing, were 
imposed on the 12th of March 2020. Moreover, the 
hospitals reduced the elective patient activity to free 
resource capacity, resulting in a decrease in the num
ber of inpatient stays in March and April by 39% 
compared with the same period in 2019. 
Furthermore, presumably due to less accidents and 
the fact that people are reluctant towards seeking 
medical assistance in danger of becoming infected, 
the activity related to emergency patients decreased 
by 19% in the same period compared with 2019 (The 
Norwegian Directorate of Health, 2020).

The main contribution of this paper is to 
demonstrate how discrete event simulation (DES) 
can be used to provide decision support for the 
hospital management when preparing for the pan
demic. The second contribution is a novel 
approach to model boarding time in the emergency 
department (ED). Boarding occurs when down
stream units are not able to serve patients at the 
rate at which the patients are ready to leave the ED, 
causing additional demands for beds in the ED. 
Boarding time is defined as the time between the 
decision made by a physician to admit a patient 
and the time the patient leaves the ED to an inpa
tient unit (Tang et al., 2015).

St. Olavs Hospital is a university hospital located in 
Trondheim, Norway, treating about 60,000 inpatients 
each year. The work presented in this paper is based 
on two projects that were conducted at St. Olavs 
Hospital between the 17th of March and the 29th of 
March 2020. The first project was conducted for the 
ED, and the second for the ambulance services. In each 
project, one DES model was developed, and eventually 
these were implicitly combined into a third model. 
During this period of time, the hospital management 
proposed that all COVID-19 suspected patients that 
enter the hospital should be tested for COVID-19 in 
the emergency department (ED). Furthermore, these 
patients must be transported by ambulance when 
going to the hospital, and this also applies to patients 
that are not confirmed to be COVID-19 negative upon 
departure from the hospital. To evaluate these propo
sals, the hospital management required to estimate the 
need for both additional beds in the ED, and addi
tional ambulances during the peak of the pandemic.

On the 12th of March 2020, the Norwegian 
Institute of Public Health (NIPH) released 
a “recommended planning scenario” for the evolve
ment of the COVID-19 pandemic in Norway, which 
aimed to provide the Norwegian hospitals with sup
port when preparing for the pandemic. On the 24th of 
March 2020, the recommended planning scenario was 
updated with a higher number of COVID-19 patients 
hospitalised at peak of the pandemic. Both scenarios 
were used as input for our three models.
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The rest of the paper is outlined as follows. In 
Section 2, relevant literature is presented to provide 
a context for our contribution. Then, in Section 3 we 
present the objectives of the study, the basic assumptions, 
the logic of the models and the data used to perform the 
studies. The scenarios considered for analysis are pre
sented in Section 4, while the simulation results are 
provided in Section 5. Finally, in Section 6 we discuss 
the main implications of our findings and conclude the 
paper.

2. Literature

ED crowding, a consequence of a simultaneous increase 
in the demand for health care and a deficit in available 
hospital and ED beds, has become a significant public 
health problem (Bair, Song, Chen, Morris et al., 2010a). 
A growing body of evidence suggests that ED crowding is 
linked to adverse quality of care, such as medication 
errors, patient dissatisfaction and staff burnout 
(Valipoor et al., 2021). One cause of ED crowding is 
boarding patients that experience a delay in transfer to 
hospital wards (Tang et al., 2015). Only 7% of the papers 
reviewed by Vanbrabant et al. (2019) include boarding 
time as a key performance indicator, but they were all 
published in the last 10 years. This confirms the growing 
interest in ED boarding as a research topic within opera
tions research.

To model ED boarding time, downstream units 
should be regarded. However, this adds modelling 
complexity, and some authors sample boarding times 
to omit this complexity (Bair, Song, Chen, Morris 
et al., 2010b; De Boeck et al., 2019; Carmen et al., 
2014). Other contributions, like Kolb et al. (2007); 
Kolb et al. (2008) explicitly include the inpatient unit 
to obtain realistic boarding patterns. Kolb et al. (2007) 
investigate the effect of the inpatient unit utilisation on 
ED crowding, while Kolb et al. (2008) evaluate the 
effect of different buffer concepts. Wood and Murch 
(2020) develop a continuous Markov chain to model 
a stroke pathway with different units. Unit capacities 
are part of the model formulation, and capacity short
age induces delays in patient transfer.

In this paper, we model ED boarding through an 
implicit coupling of two models, where output data 
from one model is used as input for the other. This 
data is used to model the downstream ward capacity 
through simple counting rules, allowing us to obtain 
realistic boarding patterns in the ED, and maintain 
a low model complexity.

DES has also been used to evaluate ambulance 
systems. Aboueljinane et al. (2013) review the litera
ture on simulation models applied to such systems and 
find that most simulation studies focus on medium- 
term decisions such as the deployment problem and 
long-term decisions such as dimensioning of 
resources. Lam et al. (2014) use DES to evaluate 

different strategies for reducing ambulance response 
times, defined as the time it takes for a dispatched 
ambulance to arrive on scene. Lutter et al. (2016) use 
DES to compare different strategies for ambulance 
location planning. They compare five optimisation 
models that are used to facilitate ambulance location, 
and use simulation to compare the solutions in terms 
of the proportion of calls that are served within the 
time threshold.

Currie et al. (2020) address how simulation model
ling can help reduce the impact of COVID-19. The 
authors present different problems where simulation 
can be used as decision support. One of the problems 
they highlight is related to capacity of inpatient hospi
tal beds and critical care.

Several authors apply DES to provide decision sup
port in relation to the COVID-19 pandemic. Wood 
(2020), and Melman et al. (2021) both consider the 
trade-offs related to decreasing the activity for 
nonCOVID-19 patients during the pandemic. Mallor 
et al. (2020) aim to predict the number of beds needed 
by COVID-19 patients both in the Intensive Care Unit 
and in the rest of the hospital for the coming weeks. In 
addition to estimating the bed requirements imposed 
by the COVID-19 patients, Le Lay et al. (2020) also 
evaluate different policies for managing the increased 
demand for beds. Wood et al. (2020) aim to predict the 
number of deaths, which they divide into capacity- 
dependent and capacity-independent deaths, caused 
by the COVID-19 pandemic. They analyse different 
scenarios with regards to both the loading of COVID- 
19 positive patients and the number of intensive care 
beds available. Finally, Asgary et al. (2020)apply DES 
to evaluate different settings related to a drive-through 
facility for mass vaccination.

This paper adds to the literature on how DES can be 
a viable tool for decision support when preparing for 
a state of pandemic. In addition, we extend on the 
literature on ED boarding by proposing a new method 
for modelling a downstream ward and the ambulance 
waiting time experienced by inpatients leaving this 
ward. In this specific problem, two sources of ED 
boarding are identified and quantified, but we believe 
that similar methods can be applied to identify and 
quantify mechanisms that cause boarding in other 
systems.

3. Materials and methods

Three cases are considered in this paper; the ED, the 
ambulance and the combined case, and one DES model 
is developed for each case. These are referred to as the 
ED model, the ambulance model and the combined 
model. Before describing the models, the objectives of 
the study and a set of basic assumptions are presented. 
To describe the three DES models, the STRESS guide
lines proposed by Monks et al. (2019) are used.
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3.1. The objectives of the study

The purpose of the study is to provide decision 
support for the hospital management when prepar
ing for a state of pandemic. The first objective is to 
estimate the number of beds that must be present 
in the ED to host COVID-19 suspected patients 
that wait for a COVID-19 test result (the ED 
model). The second objective is to estimate the 
number of ambulances required to obtain similar 
response times for the most urgent patients as in 
a prepandemic state (the ambulance model). We 
here define response time as the time it takes 
from the transport request emerges to an ambu
lance is assigned the mission. The third objective is 
to estimate the additional number of (boarding) 
beds required in the ED when considering the 
delayed transfer of patients from the ED to the 
COVID-19 ward, due to the lack of available beds 
in the COVID-19 ward (the combined model). All 
estimates should reflect the demand during the 
peak of the pandemic, and different COVID-19 
testing policies.

3.2. Basic assumptions

In this section, we specify the assumptions that were 
made at the time when the two projects were 
performed.

3.2.1. Patient groups
In all three cases, the emergency patients are consid
ered. We define that the patients are divided into two 
groups: those that require a stay at the hospital due to 
their COVID-19 disease, and the rest. In Figure 1, the 
groups are labelled as the COVID-19 positive and the 
nonCOVID-19 population, respectively.

As we cannot know to what group a patient 
belongs before receiving the test results, the patients 
arriving at the hospital are divided into two 

categories: those with a COVID-19 suspicion and 
those without. All patients that are labelled as 
COVID-19 suspects must be treated as if they 
belong to the COVID-19 positive population until 
they are potentially clarified as belonging to the 
nonCOVID-19 population. We assume that all 
patients in the COVID-19 positive population have 
symptoms that place them in the COVID-19 suspi
cion category. In addition, we assume that a share of 
the patients that belong to the nonCOVID-19 
patient population have symptoms that qualify for 
placing them in the COVID-19 suspicion category. 
The testing policy is decided on by the hospital 
management, and a strict testing policy implies 
that the threshold for testing is low and that 
a large share of patients are labelled as COVID-19 
suspects. The red dashed line in Figure 1 illustrates 
how the nonCOVID-19 patient population is sepa
rated into either COVID-19 suspects or nonsuspects.

3.2.2. The development of the pandemic
When regarding the development of the pandemic 
over time, initially, the number of COVID-19 posi
tive admissions increases. At a point in time, 
a peak period of activity is reached, followed by 
a period of decreasing incidence. At the time when 
the projects were conducted, we did not know for 
how long the peak period would last. To obtain 
a conservative estimate of the resource require
ments, we assumed a peak period lasting longer 
than the average patient LOS. This implies that 
there is a stationary period when the number of 
COVID-19 admissions is equal to the number of 
COVID-19 patients leaving the hospital, and this 
period represents the peak of COVID-19 positive 
patients present in the hospital simultaneously. In 
comparison to the arrival peak, this peak is delayed 
by the time equal to the average patient LOS, and 
we refer to it as the delayed peak period.

# of COVID-19 positive 
admissions

Peak period Time

COVID-19 
positive 

population

nonCOVID-
19 

population

COVID-19 
suspects

nonsuspects

Figure 1. The two patient populations considered, and how they are divided into COVID-19 suspects and nonsuspects. All COVID- 
19 positive patients are COVID-19 suspects when arriving at the hospital, so is a share of the patients from the nonCOVID-19 
patient population.
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In addition to the two “recommended planning 
scenarios”, NIPH provided estimates of the average 
LOS of the COVID-19 positive patients. Based on this 
information, and since we assume a stationary system 
(with days as the time resolution) during the delayed 
peak period, Little’s formula (Little, 1961) is used to 
derive the daily arrival rate of COVID-19 positive 
patients entering the hospital.

3.2.3. The flow of patients through the hospital
All COVID-19 suspects are admitted to the COVID-19 
area upon arrival at the ED, where testing is per
formed. If the test results indicate a COVID-19 dis
ease, the patient is transferred to a hospital ward for 
treatment. If no beds are available in the downstream 
ward, patients remain in the ED until a bed becomes 
vacant. This additional waiting time is referred to as 
the boarding time, and patients require a bed while 
waiting to be admitted in the downstream ward. As 
a simplification, we aggregate the total bed capacity 
devoted for the COVID-19 positive patients to 
a common resource, referred to as the COVID-19 
ward. The COVID-19 positive patients stay in the 
COVID-19 ward until they leave the hospital by 
ambulance. Furthermore, each patient that is not con
firmed to be COVID-19 negative in the ED requires an 
ambulance upon departure, also those that were 
labelled as nonsuspects upon arrival at the ED.

At the time when the projects were conducted, it was 
decided by the hospital management to assume that the 
bed capacity for treating COVID-19 patients is sufficient 
during the peak period. The total bed capacity at St. Olavs 
Hospital is approximately 1000 beds, and elective patient 
activity will be adjusted to provide beds for the COVID- 
19 positive patients. We therefore assume that the bed 
capacity in the COVID-19 ward is sufficient and constant 
during the delayed peak period.

3.2.4. The arrival process of COVID-19 positive 
patients
Even though the number of COVID-19 patients 
resting in the COVID-19 ward is assumed to be 
stationary during the delayed peak period (on 
a daily basis), the number of COVID-19 patients 
present in the ED is non-stationary (on a hourly 
basis). We assume that patients arrive indepen
dently of each other and with varying intensity, 
and we therefore model the patient arrival pro
cesses as nonhomogeneous Poisson processes. We 
assume that the arrival process of COVID-19 posi
tive patients to the ED is similar to the arrival 
process of semi-urgent patients, who mainly arrive 
at the ED during daytime. This is based on the 
assumption that the progression of symptoms is 
gradually increasing, which makes it possible to 
avoid travelling during night.

The arrival processes of requests in the ambulance 
model are also modelled as nonhomogeneous Poisson 
processes. We assume that all patients that will prove 
to be COVID-19 positive are transported with an 
ambulance to the ED. Together with the assumption 
that the time between a request for ambulance and the 
arrival at the ED is generally small, this justifies the 
choice to model the arrival process of patients belong
ing to the COVID-19 positive population with the 
same process as we used to generate the arrival of 
these in the ED model. The patients that are not 
confirmed to be COVID-19 negative upon departure 
are assumed to be discharged mainly during daytime, 
and the the same process is used again to model the 
discharge process. Even though the processes are the 
same, the intensities are adjusted to fit the associated 
expected arrival/ discharge rates.

3.3. The logic of the models

In this section, the logic of the three models are 
presented.

3.3.1. The ED model
In the ED model, we consider the flow of emergency 
patients with a COVID-19 suspicion entering the ED. 
These patients must be isolated from the nonsuspects, 
and enter an area referred to as the COVID-19 area.

In Figure 2, the system considered in the ED model 
is illustrated. There is a number of beds available in the 
COVID-19 area, and each patient is assigned a room 
and a bed upon arrival. A COVID-19 test is performed 
just after the arrival, and the patients must remain in 
the COVID-19 area until their test results are ready. If 
a patient enters the ED, and no beds are available in 
the COVID-19 area, the patient is escorted to a buffer 
area, referred to as the tent area, with additional beds. 
Tests are also performed in the tent area, and the 
process is not delayed for patients that stay in these 
beds. We assume that patients who are placed in the 
tent area are not transferred to the COVID-19 area if 
beds become vacant there.

The COVID-19 test samples are batched together, 
and analysed in a machine. Only one machine is 
available, and only one batch can be analysed at 
a time. This means that patients that enter just after 
a batch is initiated must wait to have their tests ana
lysed until this batch is done.

We assume that all ED activities required by the 
patients are undertaken while the patients wait for the 
test results. When the test results are ready, the 
patients leave the ED. After a patient leaves, the 
room must be sterilised independently of the test 
result.

The entities of the simulation model are the 
COVID-19 suspected patients entering the ED, while 
the resources are the beds in the COVID-19 and the 
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tent area, and the machine for analysing the COVID- 
19 tests. The state of the system is given by the number 
of patients in the COVID-19 and the tent area. The 
events in the simulation model are patients arriving at 
the COVID-19 area, patients being assigned to a bed 
either in the COVID-19 or the tent area, starting the 
analysis of a COVID-19 test batch, ending the analysis 
of a COVID-19 test batch, patients leaving the 
COVID-19 or the tent area, starting the cleaning of 
a room after a patient has left and finishing the clean
ing of a room.

3.3.2. The ambulance model
The system modelled in the ambulance case is pre
sented in Figure 3. There are two categories of patient 
transports considered: the normal and the COVID-19 
transports. All patients that are either COVID-19 sus
pects when going to the hospital or that are not con
firmed to be COVID-19 negative upon departure, 
require a COVID-19 transport. Patients that are not 
confirmed to be COVID-19 negative constitute of 
those that were confirmed to be COVID-19 positive, 

and those that were not tested for COVID-19 in the ED 
(the nonsuspects). The remaining transports are normal 
transports.

A COVID-19 transport requires additional 
transportation time, because the ambulance work
ers must wear an anti-infection coat, and the 
ambulance must be cleaned after the delivery of 
the patient. All transports are characterised by an 
urgency level and a required service time. If two 
patients request an ambulance at the same time, 
and only one ambulance is vacant, the most urgent 
patient is served first. We do not consider the 
position of the ambulances or the pick-up destina
tions in the model, but the service times are sto
chastic to reflect a variation in driving distances.

There is a number of ambulance cars available 
for patient transportation. Each car can only trans
port one patient at a time, and a car is unavailable 
for new missions during the entire service time of 
the patient that it is carrying. The ambulance per
sonnel are not explicitly considered in the model, 
but the number of ambulances available through 

Figure 2. The system modelled in the ED case. The dashed arrows illustrate the flow of tests that are taken immediately after the 
patient is assigned a bed. The tests queue up in front of the analysis machine, and patients cannot leave the ED before receiving 
the outcome of the test analysis.

Figure 3. The system modelled in the ambulance case.
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the day depends on the number of ambulance 
personnel on duty at different times during the 
week.

The entities of the simulation model are the trans
port requests, and the resources are the ambulances. 
The state of the system is given by the number of 
patients in transportation and the number of patients 
waiting to be assigned an ambulance (number of 
patients in queue). The events are a new transport 
request, an ambulance being assigned a patient, 
a patient leaving the ambulance, starting the cleaning 
of an ambulance after a COVID-19 transport and 
finishing the cleaning of an ambulance.

3.3.3. The combined model
This model extends the ED model, and the system 
under consideration is illustrated in Figure 4. After 
initial testing in the ED, all COVID-19 positive 
patients are transferred to the COVID-19 ward to 
receive treatment, while the COVID-19 negative 
patients leave the system. If no beds are available in 
the COVID-19 ward, the COVID-19 positive patients 
must wait in a boarding bed in the ED until a bed 
becomes vacant.

Under the assumption that a stay in a boarding bed 
does not extend the LOS of a patient, we do not have 
to model the individual patients stay in the COVID-19 
ward. However, it is sufficient to know the number of 
beds available at a given point in time, and keep track 
of the relative difference from this point as patients 
enter and leave the COVID-19 ward. This saves com
putational effort, as the length of stay of COVID-19 
patients is typically in the range of days and weeks, 
while the stay in the ED is in terms of hours.

Both the number of patients present in the board
ing beds and the COVID-19 ward beds are handled 
via counting. At the beginning of the simulated time, 
a given number of beds are available in the COVID- 
19 ward. This is represented with a counter that is set 
to equal the number of available beds. If a patient is 
transferred from the ED to the COVID-19 ward, the 

counter is decreased by 1 as one less bed becomes 
vacant. There is also a counter for the boarding beds, 
representing the number of patients resting in 
a boarding bed. If the counter representing the 
COVID-19 ward is 0 (no beds available), and yet 
another patient should be transferred to the 
COVID-19 ward, the boarding bed counter is 
increased by 1.

When a COVID-19 positive patient is no longer in 
need of hospital services, an ambulance is requested to 
transport the patient out. Then, following a delay, an 
ambulance arrives to transport the patient home. 
When a patient leaves the COVID-19 ward, the corre
sponding counter is increased by 1, as one more bed 
becomes vacant. If there are patients resting in the 
boarding beds when a patient leaves the COVID-19 
ward, one patient is transferred from a boarding bed to 
the vacant bed in the COVID-19 ward. The net change 
of patients in this process is −1 in the boarding beds, 
and 0 in the COVID-19 ward. At the same time, the 
boarding time of the patient who has stayed in 
a boarding bed the longest is recorded.

Two mechanisms that cause boarding are identi
fied. First, having many patients ready to leave the ED 
at the same time (following a test batch) may cause 
prolonged boarding time if not enough beds are 
vacant in the COVID-19 ward. We refer to this as 
excessive-flow-induced boarding. Second, additional 
boarding time might occur when patients that are 
ready to leave the COVID-19 ward cannot leave 
because no ambulance is available. This is referred to 
as ambulance-induced boarding.

3.4. Data and experimentation

In the following we present the input data and specify 
the number of replications used to conduct the stu
dies. The outcome variables that we want to study are 
referred to as the dependent variables, while the input 
variables that affect the dependant variables and that 
we alter through the sensitivity analysis are called the 

Figure 4. The system modelled in the combined case. The discharge time from the COVID-19 ward and the the ambulance 
response time are both sampled from the ambulance model output database.
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independent variables. Before performing the simula
tion study, preliminary testing is performed to decide 
on the length of warm-up necessary to avoid transient 
effects, and the number of replications needed to 
ensure accurate results (Law, 2015).

3.4.1. The ED model
The expected arrival rate of the nonCOVID-19 
patients at different hours of the week is calculated 
based on historical data from St. Olav’s Hospital, 2019. 
The weeks 37–47 were chosen by the ED management 
to represent normal weeks. As stated in Section 3.2, 
the arrival process of semi-urgent emergencies is used 
to model the arrival process of COVID-19 positive 
patients. The intensity is however altered to make 
sure that the weekly number of arrivals equals the 
estimates provided by the NIPH scenarios.

There are 27 beds available in the COVID-19 area. 
Since we want to estimate the need for additional beds 
required in the ED, the tent area is treated as having 
infinite capacity. The analysis machine is used for 
evaluating tests taken both in the ED and in other 
locations in the region. Each batch has a capacity of 
approximately 100 test samples, and the tests per
formed in the ED are prioritised. Even during the 
peak period, the test intensity in the ED will not 
require the entire batch capacity. We therefore assume 
that a test batch has infinite capacity with regards to 
the tests performed in the ED. Each batch is analysed 
for 4 hours before receiving the results. The cleaning 
of a room after a patient has left the ED takes 
30 minutes.

For each scenario presented in Section 4, 200 repli
cations of one simulated week are performed, and one 
week warm-up is applied. In each replication, the out
put data is aggregated to an hourly resolution, imply
ing that we calculate the average number of beds used 
during each hour of the simulated week. Based on the 
200 samples, we calculate the hourly mean and hourly 
90th percentile bed loading during a week. The inde
pendent variable is the arrival intensity of COVID-19 
suspects, while the dependent variable is the number 
of beds used in the tent area.

3.4.2. The ambulance model
Six subgroups of transport requests are considered in 
the model, and each subgroup is associated with an 
urgency level. Sorted by decreasing urgency, the levels 
are red, yellow, green and planned transports. For the 
nonCOVID-19 patient population, we consider red 
(37%), yellow (36%), green (9%) and planned trans
ports (18%) going to the hospital. The fifth subgroup 
are patients that will prove to be COVID-19 positive 
when tested in the ED. These patients request 
a transport to the ED due to experiencing COVID-19 
related symptoms, and they are categorised as yellow 
transports. The last subgroup are patients that are not 

confirmed to be COVID-19 negative when leaving the 
hospital, and these are categorised as planned trans
ports. In Figure 5, the subgroups are displayed, and we 
include whether they require a normal or a COVID-19 
transport.

The expected arrival rate of requests generated by 
the nonCOVID-19 population at different hours of the 
week is calculated based on historical data from 
St. Olav’s Hospital, 2019. The weeks covering 
January to March were chosen by the management at 
the ambulance services to represent a normal period. 
As stated in Section 3.2, to generate requests from 
subgroups five and six, the arrival process of semi- 
urgent (green) emergencies to the ED is used. The 
intensity is however altered to fit the scenarios of the 
sensitivity analysis.

To obtain realistic transport durations, the time 
spent for each transportation is sampled from the set 
of historical transport durations from 2019. For 
COVID-19 transports, 45 minutes are added to the 
sampled duration to include the cleaning of the ambu
lance. The number of ambulances available during the 
week is identical to the ambulance schedule that was 
present when the project was conducted.

For each scenario presented in Section 4, 300 repli
cations of one simulated week are performed, and one 
week warm-up is applied. For each patient request, the 
response time is recorded. The records are used to 
calculate the mean response times for patients within 
each urgency category. The independent variables are 
the arrival intensity of transport requests and the 
number of ambulances available, while the dependent 
variable is the ambulance response time.

3.4.3. The combined model
All input data used for the ED model is also applied 
in the combined model. In addition, two input para
meters are used to model the discharge process of 
patients leaving the COVID-19 ward: the desired 
discharge time of patients and the corresponding 
ambulance response time. This data is collected 
from running the ambulance model for one week 
(following one week warm-up) with the number of 
ambulances necessary to obtain prepandemic wait
ing times for red and yellow emergency patients. 
The ambulance model is run 500 times, producing 
a data set containing 500 replications of both the 
desired discharge times and the corresponding 
ambulance response times through the week. The 
data is stored according to the simulated replication 
(1 to 500) and weekday (1 to 7). For example, on 
Tuesday in replication 30 there may be 18 COVID- 
19 positive patients leaving the COVID-19 ward. 
Patient 13 is discharged at 15:00 and gets an ambu
lance at 15:20, yielding an ambulance response time 
of 20 minutes for this patient.
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For each simulated day in the combined model, one 
replication is sampled, and the data from the correspond
ing weekday in the sampled replication is used to gen
erate the discharge time of patients in the COVID-19 
ward, and the corresponding ambulance waiting time.

One adjustment is made to the input data of the 
ambulance model when producing the data base. 
Recall that the last subgroup of patients introduced 
in Section 3.4.2 contains both the COVID-19 positive 
patients resting in the COVID-19 ward, and patients 
that were not tested for COVID-19 in the ED. In the 
combined model, we are not interested in the latter 
group of patients. To exclusively model the requests 
coming from the COVID-19 ward, the last subgroup 
of patients introduced in Section 3.4.2 is therefore split 
in two when collecting and storing data from the 
ambulance model. Furthermore, since we model the 
delayed peak period, identical distributions are used to 
generate COVID-19 positive patients entering the ED 
and COVID-19 positive patients that are discharged 
from the COVID-19 ward. As we want to estimate the 
need for boarding beds during the peak of the pan
demic, we model the boarding bed capacity as unlim
ited and evaluate the usage of these.

For each scenario presented in Section 4, 200 repli
cations of one simulated week are performed with the 
combined model. The independent variables are the 
arrival intensity of COVID-19 suspects, the departure 
intensity from the COVID-19 ward and the ambu
lance response time, while the dependent variable is 
the boarding bed requirement. In contrast to previous 
simulations, we are here interested in the transient 
period starting with the delayed peak, so warm-up is 
not applied. Furthermore, each simulated replication 
is initiated at 0 in the night with no patients in the 
COVID-19 area and 3 vacant beds in the COVID-19 
ward. The experiment is run for two modes. In the first 
mode, the ambulance response time is set to zero, 
implying that we only observe excessive-flow- 
induced boarding time. In the second mode, ambu
lance response time is added.

4. Implementation and the setup of the 
sensitivity analysis

An Intel(R) Core(TM) i7-8550 U CPU @ 1.80 GHz, 16 
GB RAM computer is used when performing the 
simulations. The simulation models are written in 

Figure 5. The six patient subgroups and what transport they require.
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Python 3.7 and the package SimPy. To perform the 
random sampling, the algorithms included in Python 
is used. To reduce output variance, common random 
numbers are applied when performing sensitivity ana
lysis. In the first replication, a seed is set, and it is then 
increased by one for each subsequent replication.

A scenario tree is constructed to guide the sensitiv
ity analysis. The tree contains three parameters that 
represent aspects of uncertainty that are common for 
the cases:

• The number of COVID-19 positive patients arriv
ing for the ED each day

• The size of the nonCOVID-19 population
• The testing policy, defining the share of 

nonCOVID-19 patients that will be labelled as suspects
In the first branching, the daily arrival rate of COVID- 
19 positive patients to the hospital during the peak 
period is represented. In the second branching, the 
loading intensity of patients that belong to the 
nonCOVID-19 patient population, in relation to the 
reference loading, is represented. The reference load
ing is the expected number of emergency patients that 
entered the ED or required an ambulance each day in 
a normal prepandemic week. The third branching 
represents the testing policy, describing the threshold 
of categorising patients as COVID-19 suspects. In 
reality, the threshold can be related to what symptoms 
that should trigger a test. The policy levels are given as 
the percentage of individuals from the nonCOVID-19 
patient population that are labelled as COVID-19 sus
pects when entering the ED or requesting an ambu
lance to the hospital.

One split is applied in the first and the second branch, 
while we have four levels of testing policies in the third 
branch. The split in the first branch reflects the two 
scenarios provided by NIPH, with 12 and 21 COVID- 
19 positive patients entering each day respectively. The 
split in the second branch was discussed with the hospi
tal management, and set to be 80% and 100%. Also the 
last split was discussed with the hospital management, 
and the values 33%, 50%, 67% and 100% were applied to 

cover a wide range of testing policies. In total this yields 
16 scenarios. The scenarios are listed in Table 1. For each 
scenario we obtain the expected number of both 
COVID-19 suspects arriving for the ED, and transport 
requests each day. Note that there are intra-day varia
tions in the expectations, but these are not shown in the 
table. For more information on how the the expected 
number of both COVID-19 suspects arriving for the ED 
and transport requests are calculated, see Appendix B.

5. Results

In this section, the results from all three models are 
presented. The hospital management was mostly 
interested in the scenarios with the high COVID-19 
positive patient loading, which are represented by 
scenarios 9 to 16. These are therefore emphasised in 
the following. The main results for all scenarios are 
presented in Table A1 in Appendix A.

5.1. Results for the ED case

Figure 6 provides results for the ED bed loading in 
scenarios 9 to 12, which differ in the testing policy. 
The light shaded area represents the beds in the 
COVID-19 area, while the dark shaded area is the 
beds in the tent area. The borders of the shaded areas 
indicate the mean and the 90th percentile measures for 
each hour of the week. The mean represents the mean 
bed requirement over the 200 replications, while the 
90th percentile indicates a threshold where only 20 out 
of 200 measured bed requirements for a given hour of 
the week equal or exceed the threshold.

Note how the testing policy impacts the number of 
beds that must be established in the tent area. In 
scenario 12, all patients are tested upon arrival to the 
ED. In this case, the tent capacity should be similar to 
the capacity of the COVID-19 area. Furthermore, the 
need for additional beds is much less during the week
ends. In all scenarios, the use of a tent area emerges at 

Table 1. The 16 scenarios applied in the models.
Scenario # of COVID-19 nonCOVID-19 relative Share of suspects

positive (μC19) to normal (α) from nonCOVID-19 pop. (β) E½suspects� E½transports�

1 12 80% 33% 31 96
2 12 80% 50% 41 88
3 12 80% 67% 51 81
4 12 80% 100% 70 67
5 12 100% 33% 36 114
6 12 100% 50% 48 105
7 12 100% 67% 60 96
8 12 100% 100% 84 78
9 21 80% 33% 40 114
10 21 80% 50% 50 106
11 21 80% 67% 59 99
12 21 80% 100% 79 85
13 21 100% 33% 45 132
14 21 100% 50% 57 123
15 21 100% 67% 69 114
16 21 100% 100% 93 96
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around 12:00 (noon) and the peak number of patients 
in the tent area is observed between 16:00–19:00. The 
number of patients in the COVID-19 area falls 
towards the evening, implying that the patients rest
ing in the tent area can be moved inside (although 
this is not done in the simulation model). The total 
number of additional beds needed, if we allow for 
patients to transfer from the tent area to the COVID- 
19 area, can be derived from the simulated results. 
This is done by adding the beds used in the COVID- 
19 area and the tent area, and subtract the capacity of 
27 beds (if this becomes negative, the value is set to 
zero). The resulting number of additional beds in the 
90th percentile level can be seen as the solid red line 
in Figure 6. Depending on the testing policy and the 
size of the nonCOVID-19 population at the peak of 
the pandemic, there is a need for between 0 to 41 
additional beds during the weekdays, and 0 to 13 
additional beds in the weekend.

5.2. Results for the ambulance case

For each scenario, we estimate the minimum number of 
additional ambulances required to ensure mean response 
times for red and yellow emergency patients that are 
equal to or shorter than those of the prepandemic state. 
To represent the prepandemic situation, the model is first 
run for a base case. That is, we only include requests from 
the nonCOVID-19 patient population and apply the 
ambulance capacity available in a prepandemic situation.

Figure 7 illustrates the mean utilisation of ambu
lances and the mean response time for different 
patient categories during the week from simulating 
the base case. During the weekdays, except from 
Friday, the ambulance capacity is satisfying yielding 
short response times. On Friday, the combination of 
more requests and less capacity available during the 
evening causes significant waiting times. The waiting 
times are also prolonged during the weekend because 
less ambulances are available.

Figure 6. Results from the ED model: The bed loading in the COVID-19 area (dashed lines) and the tent area (solid black lines) 
through the week for scenarios 9 to 12. The bands cover the area between the mean and the 90th percentile. The solid red line 
indicate the 90th percentile bed requirement in the tent area if patients can be transferred from the tent area to the COVID-19 
area. The horizontal dashed line indicates the planned bed capacity in the COVID-19 area.
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To obtain the preferred response times in the 16 
scenarios, the ambulance resources are added flat. That 
is, for each additional ambulance, the resource is available 
through the entire week. When the number of ambu
lances is increased, the response time decreases towards 
the base level. The resulting number of additional ambu
lances needed in scenarios 9 to 16 is presented in Table 2. 
In general, because of the queue prioritisation rules, the 
base level response times for the most urgent patient 
groups are easier obtained compared with the less urgent 
patients. Adding more ambulances than what is sug
gested from just regarding the response times for red 
and yellow requests should be considered, as it dramati
cally decreases the expected response time for the 

planned requests. If we consider Scenario 13, going 
from 6 to 12 additional ambulances yields a decrease in 
mean response time for planned patients from 585 to 
63 minutes. The corresponding values for red and yellow 
patients are 11 to 3, and 21 to 4 minutes respectively.

As for the ED case, the results in the ambulance 
case are sensitive to the testing policy. The planned 
patient category is most sensitive to the policy level. 
A strict testing policy yields fewer COVID-19 trans
ports leaving the hospital, causing relatively short 
response times for planned patients in these scenarios 
since the demand for planned transports is reduced. 
Conversely, in the ED case, a strict testing policy yields 
a high demand for additional beds in the ED, making 
those scenarios more demanding.

5.3. Results for the combined case

When generating the ambulance waiting time data, 5 
and 6 additional ambulances were added to scenarios 
9 to 12 and 13 to 16 respectively. Furthermore, we 
assume that the boarding beds are located in the ED.

Figure 8 illustrates, for scenarios 9 and 12, the 90th 
percentile number of additional beds needed in the ED 
when considering ED boarding and compares it with 

Figure 7. Results from the ambulance model: The base case. Top: Mean utilisation of the ambulance capacity. Bottom: Mean 
response time during the week.

Table 2. Results from the ambulance model: The number of 
ambulances added in scenarios 9 to 16 to obtain similar mean 
response times as in the base case.

Scenario Red Yellow Green Planned

9 5 5 6 10
10 5 5 6 10
11 5 5 6 9
12 5 5 6 7
13 6 6 7 12
14 6 6 7 12
15 6 6 7 11
16 6 6 7 9
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Figure 8. Results from the combined model: 90th percentile number of additional beds when considering boarding for scenarios 9 
and 12. The label Tent represents the number of beds needed in the tent area. Tent + Flow is the number of additional beds when 
adding the excessive-flow-induced boarding. Tent + Flow + Ambulance represents the number of additional beds when also 
adding the ambulance-induced boarding.

Figure 9. Results from the ED model and the combined model: Comparison of bed usage when boarding is considered and not for 
scenarios 9–12. The results illustrate the 90th percentile number of additional beds required in the ED when allowing for patients 
to transfer from the tent area and the buffer beds to the COVID-19 area.
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the result when boarding is disregarded. The results 
clearly indicate the need for excessive bed capacity in 
the ED when entering the peak period. The excessive- 
flow-induced boarding results in an increased bed 
loading primarily during night, as the patients must 
wait until the next morning for beds to become vacant 
in the COVID-19 ward. When adding ambulance 
waiting time, the problems related to boarding starts 
earlier in the day because patients leaving the COVID- 
19 ward during the day are delayed. During night, the 
ambulance waiting time is short and the effect of 
ambulance-induced boarding is less prominent. Note 
that because Friday is a busy day for the ambulance 
service (see Figure 7), the ambulance-induced board
ing is most prominent on this day. Finally, the effect of 
ambulance-induced boarding is less in scenario 12, 
caused by shorter ambulance waiting times due to 
the strict testing policy.

Figure 9 illustrates the requirement for additional 
beds if we allow for a transfer of patients from the tent 
area and the buffer beds to the COVID-19 area in 
scenarios 9–12, and compares it with the results 
when boarding is disregarded. As the simulations 
with boarding are run without a warm-up period 
and starting from an empty system, the results cannot 
be directly compared. However, they illustrate some 
important aspects, like the fact that excessive ED 
boarding will cause an additional need for beds both 
during the late evening and in the weekends. 
Furthermore, we see that the difference between the 
results when regarding boarding and not is larger for 
scenario 9 compared with scenario 12, reflecting the 
shorter ambulance response times in scenario 12.

5.4. Managerial implications

The results from the ED and the ambulance model were 
used to inform the hospital management, partly through 
presentations for the hospital pandemic committee and 
partly as input for a managerial report on how to per
form the ambulance planning through the pandemic. 
Based on these results, the following decisions were 
made when preparing for a state of pandemic:

• Outpatient clinic examination rooms close to the ED 
were used to provide additional bed capacity for 
COVID-19 suspects that required testing in the ED.

• Additional resources for transporting patients to 
and from the hospital were established, including 
Red Cross ambulances, and military ambulances 
operated by the Home Guard.

In August 2020, some months after the first peak in 
Norway, the management requested updated analysis 
on the bed requirements in the the ED. At this point in 
time, new testing regimes had become available, 
including the option to buy tests that could provide 
answers within 90 minutes instead of 4 hours. The 

management wanted to know how the bed require
ments would change given different levels of available 
90-minutes-tests. To provide decision support, the ED 
model were extended and new results were presented 
for the hospital management.

6. Discussion

In this paper we have shown how a set of DES models can 
be applied to provide decision support for the hospital 
management when time is limited. Even if the models 
presented are rather simple, the analyses performed 
proved to be of great value to the hospital management. 
The results are highly sensitive to the NIPH planning 
scenarios, and the relative loading of emergency patients 
compared with the prepandemic situation. In contrast to 
the testing policy, these cannot be controlled by the 
hospital management.

When regarding the number of beds needed in the ED, 
the results are very sensitive to the testing policy. A strict 
testing policy increases the need for additional beds in the 
ED considerably, and consequently the number of nurses 
required. As a consequence, resources must be reallocated 
from elective activity, or the capacity must be increased. 
When regarding the ambulance response times of red and 
yellow transports, these decrease with a strict testing pol
icy. However, the differences are small and the number of 
ambulances required to obtain prepandemic response 
times are not affected by the testing policy. Based on 
these observations, a less strict testing policy seems reason
able. However, the consequences of admitting a COVID- 
19 positive patient into a non COVID-19 ward can be 
fatal, and the costs related to increased resource capacity 
must be weighted against the potential of ignoring 
a COVID-19 positive patient in the ED.

When boarding is considered, the bed requirement 
increases, especially during night and in the weekends. 
If a less strict testing policy is implemented, the board
ing time is to a large extent affected by the ambulance 
response times of patients discharged from the COVID- 
19 ward, that are categorised as planned transports. 
Based on this observation, increasing the ambulance 
capacity further to decrease the waiting times for 
planned transports seems reasonable. This will have 
less effect if a strict testing policy is implemented.

We have demonstrated how boarding can be modelled 
with simple counting rules. This saves computational 
effort, as we can omit the explicit modelling of patient 
stay in the downstream ward. Furthermore, initiating the 
model is very simple, as the vacant bed capacity is set by 
a single number. We assumed that the rate of patients 
leaving the COVID-19 ward was equal to the rate of 
patients entering the ward. This assumption implies 
that a stay in a boarding bed does not affect the LOS, 
meaning that we regard the boarding beds as a server and 
not as a queue, and consider an infinite server system. In 
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the opposite case, where a stay in the boarding bed delays 
the healing process, the boarding beds should be consid
ered as a queue for service at the ward. Then, the rate of 
patients leaving the COVID-19 ward depends on the bed 
capacity and we may have rates that are unequal.

The counting approach is not appropriate if extended 
boarding affects the LOS of patients. Extended boarding 
can sometimes cause misplacement of patients and delay 
the treatment process. However, boarding time is often 
measured in the range of minutes and hours, while the 
LOS is typically several days. In many cases it should 
therefore a fair assumption that the LOS is not affected 
by extended boarding time.
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Appendix A Main results for the three cases

Appendix B. Calculating the expected number 
of suspects and transports

Here, we describe how we calculate the expected number of 
both COVID-19 suspects arriving for the ED and transport 
requests each day.

B.1. Scenarios for the ED and the combined case

The ED and the combined cases share the same scenario 
tree, and the expected number of COVID-19 suspects that 
enter the ED each day in each scenario is calculated by the 
following formula: 

E½suspects� ¼ μC19 þ μNon � α � β (B1) 

Here, μC19 is the expected number of COVID-19 positive 
patients entering the ED each day at the peak of the pandemic, 
and μNon is the expected number of emergency patients belong
ing to the nonCOVID-19 patient population that enter the ED 
each day. This number depends on the weekday. The parameter 
α is used to adjust the expected patient activity (the second 
branching), while β represents the share of patients belonging 
to the nonCOVID-19 patient population that are categorised as 
COVID-19 suspects (the third branching). Note that since μNon 

depends on the weekday, the expected number of suspects 
given here represents the average day, but the number varies 
between weekdays.

B.2. Scenarios for the ambulance case

To calculate the daily total number of ambulance transports 
in each scenario, the following equation is used: 

E½transports� ¼ ðμNon;A � α � βÞ þ ðμNon;A � α � ð1 � βÞÞ
þ2μC19 þ ðμNon;A � α � ð1 � βÞÞ
¼ 2μNon;A � α 1 � β

2

� �
þ 2μC19;A

(B2) 

Here, μNon;A is the expected number of patient transports to 
the hospital generated by the nonCOVID-19 patient popula
tion, and its value depends on the weekday. The parameters α, β 
and μC19 have the same interpretation as in the ED case. The 
first term represents the expected number of COVID-19 trans
ports to the hospital generated by the nonCOVID-19 patient 
population, while the second term is the number of normal 
transports generated by the same population. The COVID-19 
positive patients require a Covid transport both to and from the 
hospital, which is ensured by the third term. The final term 
represents the transportation of COVID-19 suspects from the 
nonCOVID-19 patient population that require an ambulance 
when leaving the hospital. Note that this equals the second term 
and represents the fact that all patients that are not tested for 
COVID-19 in the ED require an ambulance when leaving the 
hospital.

Table A1. Main results for the three cases, scenarios 1 to 16. 
For the ED and the combined case, the maximum 90th per
centile number of additional beds both during the week and 
the weekend is presented. For the ambulance case, the num
ber of additional ambulances required to maintain base case 
response times are included. In the combined case, the ana
lysis is performed with the number of additional ambulances 
as given in the table.

Scen.
Max 
beds Max beds Additional Max beds Max beds

week weekend ambulances week 
(boarding)

weekend 
(boarding)

1 0 0 4 5 0
2 7 0 4 16 3
3 15 0 4 26 6
4 28 2 3 37 13
5 5 0 5 13 2
6 15 0 5 26 8
7 23 0 5 33 11
8 38 9 4 46 18
9 9 0 5 23 10
10 16 0 5 31 13
11 23 0 5 38 15
12 32 8 5 45 18
13 12 0 6 31 18
14 22 0 6 39 19
15 29 3 6 41 21
16 41 13 6 51 23
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