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Abstract

In this paper we develop an existence theory for the Cauchy problem to the stochastic Hunter–Saxton 
equation (1.1), and prove several properties of the blow-up of its solutions. An important part of the paper is 
the continuation of solutions to the stochastic equations beyond blow-up (wave-breaking). In the linear noise 
case, using the method of (stochastic) characteristics, we also study random wave-breaking and stochastic 
effects unobserved in the deterministic problem. Notably, we derive an explicit law for the random wave-
breaking time.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

MSC: 35A01; 35L60; 35R60; 60H15

Keywords: Stochastic solutions; Hunter–Saxton equation; Nonlocal wave equations; Wave-breaking; Well-posedness; 
Characteristics

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726

✩ This research was jointly and partially supported by the Research Council of Norway Toppforsk project Waves 
and Nonlinear Phenomena (250070) and the Research Council of Norway project Stochastic Conservation Laws
(250674/F20).

* Corresponding author.
E-mail addresses: helge.holden@ntnu.no (H. Holden), kennethk@math.uio.no (K.H. Karlsen), peter.pang@ntnu.no

(P.H.C. Pang).
URL: https://www.ntnu.edu/employees/holden (H. Holden).
https://doi.org/10.1016/j.jde.2020.07.031
0022-0396/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2020.07.031&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2020.07.031
http://www.elsevier.com/locate/jde
http://creativecommons.org/licenses/by/4.0/
mailto:helge.holden@ntnu.no
mailto:kennethk@math.uio.no
mailto:peter.pang@ntnu.no
https://www.ntnu.edu/employees/holden
https://doi.org/10.1016/j.jde.2020.07.031
http://creativecommons.org/licenses/by/4.0/


H. Holden, K.H. Karlsen and P.H.C. Pang Journal of Differential Equations 270 (2021) 725–786
2. Solutions and a-priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
3. The Lagrangian formulation and method of characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 736
4. Wave-breaking behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743
5. Existence of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746
6. Reconciling different notions of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 763

Appendix A. Lagrangian and Hamiltonian approaches to the Hunter–Saxton equation . . . . . . . . . . 766
Appendix B. A-priori bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 768
Appendix C. The defect measure in the deterministic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

1. Introduction

We consider the Hunter–Saxton equation [19] with noise:

∂tq + ∂x(uq) + ∂x(σq) ◦ Ẇ = 1

2
q2,

∂xu = q.

(1.1)

Here evolution occurs on [0, T ] × R, and over the stochastic basis (�, F , {Ft}t≥0, P ), the 
process W is a standard one-dimensional Brownian motion and ◦ denotes Stratonovich multi-
plication. We also point out that in this paper we ultimately limit ourselves to the assumption 
that σ = σ(x) is linear. This assumption simplifies the analysis considerably, but still allows 
the equation to manifest some stochastic effects. The Cauchy problem is posed with an initial 
condition q|t=0 = q0 ∈ L1(R) ∩ L2(R).

Other stochastic versions of the stochastic Hunter–Saxton equation exist, see [5,4], where the 
noise is introduced as a source term.

In the Itô formulation the stochastic Hunter–Saxton equation reads:

∂tq + ∂x(uq) + ∂x(σq)Ẇ − 1

2
∂x(σ∂x(σq)) = 1

2
q2. (1.2)

The primary aim of this paper is to develop an existence theory for the stochastic Hunter–
Saxton equation under the assumptions above. Our main theorem is Theorem 2.8, stating that 
the equation (1.1) has both conservative and dissipative global solutions when σ is linear. (The 
notions of conservative and dissipative solutions are discussed below.)

Our line of attack relies on the method of characteristics. Stochastic characteristics are used 
widely in the analysis of transport type equations in fluid dynamics and other applications (see 
[13] and [14, Ch. 4] and references there), where corresponding deterministic dynamics are per-
turbed by introducing noise to the characteristics. As explained in Appendix A, the physical 
relevance of this noise derives from its being a perturbation on the associated Hamiltonian of 
the system, following a discussion in [18] for stochastic soliton dynamics, so that the resulting 
equation follows from a variational principle applied to the stochastically perturbed Hamiltonian. 
Our formulation does not conform to the “Euler-Poincaré structure” specified in [18], however, 
except in the σ ′′ = 0 case, to which most of this paper nevertheless pertains. A fuller account of 
the diochotomy and similarities of these formulations is given in Appendix A.

The method of characteristics as applied to (1.1), departs from the regime treated by [13], 
however, as the transport term depends on the solution. This type of equation also falls outside the 
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scope of the related investigation [15], which extended [13] in their use of the kinetic formulation. 
The non-locality of the dynamics of (1.1) means that the transport term depends not only on the 
values of the solution at a point, but on the integral thereof, precluding a “kinetic” treatment of 
well-posedness. A substantial part of this work will be devoted to showing that the characteristics 
can be extended beyond a blow-up that inevitably happens, also in the deterministic case. This 
blow-up, termed “wave-breaking”, is explained in Section 1.1 below.

It turns out that on properly defined characteristics, it is possible to derive explicit solutions. 
As we are employing characteristics and solving equations on characteristics, it is also imper-
ative that we reconcile “solutions-along-characteristics” with solutions as usually defined, and 
which reduces to the familiar weak solutions [20] in the deterministic case σ = 0. Relying on 
this explicit representation of solutions on characteristics, along the way we shall develop other 
aspects of the phenomenology for various solutions to these equations, including a connection 
between the distribution of blow-up times and exponential Brownian processes.

The organisation of this paper is as follows: In the remainder of this section, we describe 
the deterministic theory both to develop intuition about the dynamics of the stochastic Hunter–
Saxton equation, and to give ourselves a template by which to understand corresponding features 
of the stochastic dynamics. Some pertinent calculations in the deterministic theory have been 
relegated to Appendix C. Physical arguments behind our particular choice of the noise, which 
suggest that the case we consider is of physical relevance, are contained in Appendix A.

In the next section we give precise definitions of solutions, and state a-priori bounds. These 
bounds are proven in Appendix B. In Section 3, we set up the method of characteristics frame-
work used in subsequent sections. In particular, we show how the quantity q experiences finite-
time blow-up in L∞. We also describe how this blowup in q is reflected by the behaviour of 
the evolution of its antiderivative, u. In Section 4 we specialise to the case σ ′′ ≡ 0. We derive 
an explicit distribution for the wave-breaking stopping time in certain cases, and describe how 
characteristics behave up to the blow-up of q . In Section 5 we first describe strategies to continue 
characteristics and solutions beyond blow-up. We then prove global well-posedness of charac-
teristics and well-posedness of solutions defined along characteristics, first on special initial data 
for clarity, before extending this to general data in L1(R) ∩ L2(R) in Section 5.3. Finally in 
Section 6, we reconcile various notions of solutions that we use in the article and show that 
the solutions defined along characteristics are included in more traditional partial differential 
equation-type (PDE-type) weak solutions. We postpone details of discussions on uniqueness and 
maximal dissipation that we shall mention in passing in Sections 2 and 6 to upcoming work.

1.1. Background and the deterministic setting

We shall provide here a rough sketch of the deterministic theory of the Hunter–Saxton equa-
tion by which our intuitions are driven and against which our results can be benchmarked. We 
will focus on the analysis of the characteristics following Dafermos [9]. Most of the material in 
this subsection can be found in classical papers by Hunter–Zheng [20,21], and also in [34].

Solutions in the weak sense to the equations

∂tq + u∂xq + 1

2
q2 = 0,

∂ u = q,

(1.3)
x
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can be constructed quite explicitly by approximation with step functions. Approximating an ini-
tial function q0 ∈ L2(R) by

qn
0 (x) =

∞∑
−∞

V n
k 1[k/n,(k+1)/n)(x), V n

k =
(k+1)/n 

k/n

q0(x) dx,

we can confine our discussion to the “box”-type initial condition q0 = V01[0,1). This is true in 
spite of the equation being non-linear, see [20]. Here 1A denotes the characteristic, or indicator, 
function of a set A, and 

ffl
A

denotes the average over a set A, i.e., 
ffl
A

ψ(x) dx = 1
|A|

´
A

ψ(x) dx.
The equation with initial data q0 is solved uniquely for at least a finite time by

q(t, x) = 2V0

2 + V0t
1{2+V0t>0}1{X(t,0)≤x<X(t,1)},

where X(t, x) with x ∈ [0, 1) are the characteristics

X(t, x) = x +
tˆ

0

u(s,X(s, x)) ds = x +
tˆ

0

X(s,x)ˆ

0

q(s, y) dy ds (1.4)

= x + 1

4
(2 + V0t)

2,

with u being the function almost everywhere satisfying ∂xu = q , and the final equality estab-
lished by solving the linear ordinary differential equation using the form of q postulated. A 
calculation gives

u(t, x) = 1{2+V0t>0}

⎧⎪⎨
⎪⎩

0, x ≤ 1
4 (2 + V0t)

2,
2V0x

2+V0t
, 1

4 (2 + V0t)
2 < x ≤ 1 + 1

4 (2 + V0t)
2,

2V0
2+V0t

(
1 + 1

4 (2 + V0t)
2
)
, x > 1 + 1

4 (2 + V0t)
2.

The general solution to the nth approximation can be recovered by summing up these “boxes” 
defined on disjoint intervals at every t , see [20].

From the above we see that where V0 ≥ 0, this solution exists uniquely and globally. If V0 < 0, 
however, there is a break-down time t∗ at which u remains just absolutely continuous in the 
sense of the Lebesgue decomposition as it develops a steeper and steeper gradient over a smaller 
and smaller interval around x = 0, and ‖q‖L∞(R) tends to infinity. This phenomenon, where 
‖u‖L∞(R) remains bounded but ‖q‖L∞(R) = ‖∂xu‖L∞(R) → ∞ is known as wave-breaking.

Up to wave-breaking, the energy ‖q(t)‖L2 is conserved. This means that the characteristics 
X(t, x) starting between x = 0 and x = 1 contract to a point. The failure of X(t) in remaining a 
homeomorphism on R at wave-breaking leads to uncountably many possible ways of continuing 
solutions past wave-breaking, even under the requirement that ‖q(t)‖

H−1
loc

remains continuous in 
time.

At the point of wave-breaking q2(t) passes from L1(R) into a measure. We can think of this 
measure as a “defect” measure storing up the energy (or L2

x-mass of q). It is possible to con-
tinue solutions in various ways past wave-breaking by releasing various amounts of this mass 
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over various durations. The two extremes are generally termed “conservative” and “dissipative” 
solutions [20, p. 320]. Intermediates between these extremes when dissipation is not mandated 
everywhere, entirely, or eternally are also possible [16], as are more non-physical solutions ex-
hibiting spontaneous energy generation. We relegate calculations showing this defect measure to 
Appendix C.

Conservative solutions are constructed by releasing all the mass stored in the defect measure 
instantaneously after wave-breaking. That is, noticing that the formula for q (less the characteris-
tic function 1{2+V 1

0 t>0}) returns to a bounded function of the same — conserved — L2(R)-mass 
immediately post wave-breaking, and continues to satisfy the equation weakly, it is accepted that 
the formula defines a reasonable notion of solution. In particular:

q ∈ L∞([0, T ];L2(R)) ∩ Lip([0, T ];H−1
loc (R)),

u ∈ C([0, T ] ×R),

0 = ∂t (q
2) + ∂x(uq) in the sense of distributions.

(1.5)

Dissipative solutions arise when the “defect measure” stores up all mass eternally, and q is 
simply set to nought after the wave-breaking time t∗. In this case the equations remain satisfied, 
and the previous inclusions remain valid, but

0 ≥ ∂t (q
2) + ∂x(uq) in the sense of distributions,

reflecting the dissipation characterised by the defect measure.
These can be compared to continuation in the general stochastic setting, see Section 5.1.
We propose to approach the problem of well-posedness via the method of characteristics. As 

solutions are non-local, even though we have equations for characteristics dX(t, x) dependent 
on u(t, X(t, x)), and for d(q(t, X)), there is no independent equation for du(t, X(t, x)). One 
of the aspects of this article is making sure that characteristics and functions constructed along 
them are defined without circularity, up to and beyond wave-breaking, where non-uniqueness 
is necessarily introduced into the problem. Whilst our approach reduces to that of [9] in the 
deterministic case, our analysis in the stochastic setting is complicated by the fact that at wave-
breaking, where a choice must be made as to the way that characteristics should be continued 
beyond wave-breaking, the set of wave-breaking times are dependent on the spatial variable x
and on the probability space. This means that wave-breaking occurs on a significantly more com-
plicated set, and whereas in [6,9,10], for example, translating between a wave-breaking time and 
the set of initial points with characteristics leading up to a wave-breaking point at those times 
is a fairly straightforward affair, this operation is much more delicate in the stochastic setting. 
Even the measurability of wave-breaking times in the filtration of the stochastic basis needs to be 
established in order to start a characteristic at wave-breaking and match it up properly to charac-
teristics leading up to that wave-breaking time (on those particular sample-paths). Moreover the 
characteristics themselves are rough, and it is standard that there are correction terms compen-
sating for this roughness in evaluating functions on these characteristics. These issues compel us 
to set forth various notions of solutions to handle different aspects of the problem, and then later 
to reconcile them. We shall do this in the next section.
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2. Solutions and a-priori estimates

2.1. Definition of solutions

In this subsection we give definitions of different types of solutions and state our main the-
orem. As in the deterministic setting, there are two extreme notions of solution on which we 
shall focus. Whereas we have discussed how these arise in the deterministic setting both in Sec-
tion 1.1 above (supplemented by Appendix C below), we shall postpone the discussion regarding 
continuation beyond wave-breaking in the stochastic setting and the resultant non-uniqueness to 
Section 5.1, after we have developed the theory sufficiently before and up to wave-breaking, with 
their supporting calculations.

We are working on a fixed stochastic basis

(�,F , {Ft }t≥0,P ) (2.1)

to which the process W in (1.1) is adapted as a Brownian motion. Next we define weak solutions 
in the PDE sense in the usual way: Note that in Definition 2.1, we only consider time-independent 
test functions.

Definition 2.1 (Weak Solution). A weak solution to the stochastic Hunter–Saxton equation (1.1)
with σ ∈ (C2 ∩Ẇ 1,∞ ∩Ẇ 2,∞)(R) and with initial condition (u0, q0) where q0 ∈ L1(R) ∩L2(R)

and u0 are related by

u0(x) =
xˆ

−∞
q0(y) dy,

is a pair (u, q) of {Ft }t≥0-adapted processes, with u ∈ L2(� × [0, T ]; Ḣ 1(R)) being absolutely 
continuous in x, and in C([0, T ] ×R) ∩ L∞([0, T ]; Ḣ 1(R)), P -almost surely, and q ∈ L2(� ×
[0, T ] × R) and in C([0, T ]; H−1

loc (R)) ∩ L∞([0, T ]; L2(R))), P -almost surely. The solution 
(u, q) satisfies, for any ϕ ∈ C∞

0 (R) and for any t ∈ [0, T ], P -almost surely,

0 =
ˆ

R

ϕq dx

∣∣∣∣
t

0
−

tˆ

0

ˆ

R

(
∂xϕ uq + 1

2
ϕq2) dx ds −

tˆ

0

ˆ

R

∂xϕ σq dx ◦ dW(s), (2.2)

q = ∂xu in L2([0, T ] ×R).

In addition, we require that P -almost surely, limr→−∞ u(r) = 0.

Remark 2.2 (The Itô formulation of the noise). Using the definition of a weak solution (Defi-
nition 2.1), we have the temporal integrability to ensure that the stochastic integral of (2.2) is a 
martingale.

From the definition of the Stratonovich integral we have

tˆ ˆ
∂xϕ σq dx ◦ dW =

tˆ ˆ
∂xϕ σq dx dW + 1

2

tˆ
d

〈ˆ
σq ∂xϕ dx, W

〉
. (2.3)
0 R 0 R 0 R s
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Consider now ψ = σ∂xϕ as a time-independent test function in (2.2) (σ is assumed to be at least 
once continuously differentiable), we find, P -almost surely, that

ˆ

R

(σ∂xϕ q)(t, · ) dx =
ˆ

R

ψq dx

∣∣∣∣
t=0

+
tˆ

0

ˆ

R

(
∂xψ uq + 1

2
ψq2) dx ds

+
tˆ

0

ˆ

R

σq ∂xψ dx ◦ dW

=
ˆ

R

ψq dx

∣∣∣∣
t=0

+
tˆ

0

ˆ

R

(
∂xψ uq + 1

2
ψq2) dx ds

+
tˆ

0

ˆ

R

σq ∂x

(
σ∂xϕ

)
dx dW + 1

2

tˆ

0

d

〈ˆ
R

σq ∂xψ dx, W

〉
s

.

As all terms on the right-hand side except for the stochastic integral, are of finite variation, we 
also have

tˆ

0

d

〈ˆ
R

σq ∂xϕ dx, W

〉
s

=
tˆ

0

d

〈 ( · )ˆ

0

ˆ

R

σq ∂xψ dx dW, W

〉
s

=
tˆ

0

ˆ

R

σq ∂x

(
σ∂xϕ

)
dx ds.

Inserting this is in (2.3), we find

tˆ

0

ˆ

R

∂xϕ σq dx ◦ dW =
tˆ

0

ˆ

R

∂xϕσq dx dW + 1

2

tˆ

0

ˆ

R

σq ∂x

(
σ∂xϕ

)
dx ds. (2.4)

We can put this directly back into (2.2) and conclude that the weak solution as given can also 
be understood as a weak formulation of the Itô equation (1.2):

∂tq + ∂x(uq) + ∂x(σq)Ẇ − 1

2
∂x(σ∂x(σq)) = 1

2
q2.

Weak solutions are non-unique, a fact that shall be further expounded upon in Section 5.1. 
We can refine Definition 2.1 by concentrating on two types with additional properties as in the 
deterministic setting:

Definition 2.3 (Conservative Weak Solutions). A conservative weak solution is a weak solution 
of (1.1) satisfying the energy equality
731
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∂tq
2 + ∂x

((
u − 1

4
∂xσ

2)q2
)

+ ∂x

(
σq2

)
Ẇ+∂xσq2Ẇ − 1

2
∂2
xx

(
σ 2q2

)

= q2
((

∂xσ
)2 − 1

4
∂2
xxσ

2
)
,

(2.5)

in the sense of distributions on [0, ∞) ×R, P -almost surely.

Remark 2.4. Equation (2.5) is derived in Appendix B, for S ∈ W 2,∞(R). Taking S = S�(qε) =
q2
ε ∧ (2�|q| − �2) for a mollified solution qε , and taking ε → 0 before � → ∞ (when S∞(q) =

q2), the conservation in the definition above follows from (B.23). The full calculation can be 
found in Lemma B.3 and the proof of Proposition 2.11 (also housed in Appendix B).

Remark 2.5 (Energy conservation identity). We shall prove in Theorem 5.6 that in the case 
σ ′′ = 0, conservative weak solutions that are also solutions-along-characteristics (Definition 2.9) 
also satisfy the energy identity that, P -almost surely,

ˆ

R

q2(t, x) dx =
ˆ

R

q2
0 (x) exp(−σ ′W(t)) dx. (2.6)

In particular, for a deterministic initial value q0 ∈ L2(R),

E

ˆ

R

q2(t, x) dx = E

ˆ

R

q2
0 (x) exp(−σ ′W(t)) dx

=
¨

R2

q2
0 (x) exp(−σ ′y) γt (dy)dx = ‖q0‖L2(R)e

(σ ′)2t/4, (2.7)

where γt is the one-dimensional Gaussian measure at t .
This shows both that q ∈ L∞([0, T ]; L2(R)), P -almost surely, and, in fact, also the additional 

integrability information in ω, namely that q ∈ L∞([0, T ]; L2(� ×R)). This inclusion holds for 
more general noise (see Proposition 2.11).

Definition 2.6 (Dissipative Weak Solutions). A dissipative weak solution is a weak solution of 
(1.1) satisfying the condition that q(t, x) is almost surely bounded from above on every compact 
subset of (0, ∞) ×R, i.e., on every compact E ⊆ (0, ∞) ×R, for P -almost every ω there exists 
Mω,E < ∞ such that q(t, x) < Mω,E for any (t, x) ∈ E, in particular, M is allowed to depend 
on ω.

Remark 2.7 (Energy dissipation identity and maximal energy dissipation). We shall show in 
Proposition 2.11 that weak dissipative solutions also satisfy the energy inequality

∂tq
2 + ∂x

((
u − 1

4
∂xσ

2)q2
)

+ ∂x

(
σq2

)
Ẇ+∂xσq2Ẇ − 1

2
∂2
xx

(
σ 2q2

)

≤ q2
(

(∂xσ )2 − 1
∂2
xxσ

2
)
,

(2.8)
4
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in the sense of distributions (when integrated against non-negative test functions) on [0, ∞) ×R, 
P -almost surely.

Define the random variable t∗x , parameterised by every x ∈ R that is a Lebesgue point of q0, 
via the equation

−q0(x)

t∗xˆ

0

exp
(− σ ′W(s)

)
ds = 2, (2.9)

or set t∗x = ∞ if this equality never holds. In the case σ ′′ = 0, we shall prove additionally 
in Theorem 5.7 that P -almost surely, dissipative weak solutions that are also solutions-along-
characteristics (Definition 2.9) satisfy the energy identity

ˆ

R

q2(t, x) dx =
ˆ

R

q2
0 (x) exp(−σ ′W(t))1{t≤t∗x } dx. (2.10)

This formula similarly shows that a dissipative weak solution in the σ ′′ = 0 case is in 
L∞([0, T ]; L2(� ×R)) as the integrand on the right is non-negative and cannot be greater than 
(2.6) (again, see Proposition 2.11 for a more general statement).

It was shown in Cieślak–Jamaróz [6] that this final requirement, in the deterministic setting, 
is implied by an Oleinik-type bound from above on q , and equivalent to a maximal energy dissi-
pation admissibility criterion à la Dafermos [8–10]. The energy (in)equality is derived as part of 
the L2-estimate worked out in the next subsection. As we also mention at the end of the paper, 
we shall show in an upcoming work that maximal energy dissipation is given by (2.10), as well 
as uniqueness of these (maximally) dissipative solutions.

Taking σ ≡ 0, we recover the well-known conservative and dissipative solutions, respectively, 
of [20].

The main aim of this paper is to establish the following theorem:

Theorem 2.8. There exist conservative and dissipative weak solutions to the stochastic Hunter–
Saxton equation (1.1) with σ for which σ ′′ = 0 and q0 ∈ L1(R) ∩ L2(R).

As we shall be working on characteristics, in Section 3.1 below we adopt yet another notion 
of solutions.

Definition 2.9 (Solution-along-characteristics). On the stochastic basis (2.1), an {Ft }-adapted 
process Q ∈ L2(� × [0, T ] × R) and Q ∈ C([0, T ]; H−1

loc (R)) ∩ L∞([0, T ]; L2(R)), P -almost 
surely, is a solution-along-characteristics to the stochastic Hunter–Saxton equation (1.1) if there 
exists an {Ft }-adapted process U ∈ L2(� × [0, T ]; Ḣ 1(R)) and in C([0, T ] × R), P -almost 
surely, for which the following stochastic differential equations (SDEs) are satisfied strongly in 
the probabilistic sense and a.e. on [0, T ] ×R:

Q(t, x) : = ∂xU(t, x),
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Q(t,X(t, x)) = q0(x) − 1

2

tˆ

0

Q2(s,X(s, x)) ds −
tˆ

0

σ ′(X(s, x))Q(s,X(s, x)) ◦ dW,

(2.11)

where q0 ∈ L1(R) ∩ L2(R), and where,

X(t, x) = x +
tˆ

0

U(s,X(s, x))ds +
tˆ

0

σ(X(s, x)) ◦ dW(s).

Remark 2.10 (Conservative and dissipative solutions-along-characteristics). The solutions so 
defined are individualised into conservative and dissipative solutions-along-characteristics ac-
cording to how U(t, X(t, x)) (equivalently, X) are extended past a (unique) wave-breaking time 
t∗x indexed by the initial point x = X(0, x), cf. Theorems 5.6 and 5.7. We will in Section 6
provide theorems showing that solutions-along-characteristics are weak solutions.

As we shall see, the SDE (2.11) above is the Lagrangian formulation of the stochastic Hunter–
Saxton equation (1.1). In the linear case σ ′′ = 0 (σ ′ is a constant) there is an explicit formula for 
the process Q =Q(t, x) satisfying

dQ = −1

2
Q2 dt − σ ′(X(t, x))Q ◦ dW,

as we shall demonstrate in Section 3.1. Importantly, this SDE does not depend explicitly on t and 
x (cf. Remark 3.4).

This definition reflects our strategy of proof, which is to postulate a U(t, x), and, using this 
function, define Q(t, x) := ∂xU(t, x) and the characteristics X(t, x) for which

dX(t, x) = U(t,X(t, x)) dt + σ(X(t, x)) ◦ dW,

and then show that Q(t, X(t, x)) coincides with the explicit formula for the process Q(t, x). A 
schematic diagram for our construction is as follows:

construct U(t, x)

Q(t, x) := ∂xU(t, x) dX = U(t,X) dt + σ(X) ◦ dW

Q(t,X(t, x))
?= Q(t, x)
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2.2. A-priori bounds

In the deterministic setting [20, Section 4] (see also [34, Section 2.2.4], and references in-
cluded there) it is known that weak conservative and dissipative solutions satisfy the following 
bounds:

ess sup
t∈[0,T ]

‖q(t)‖L2(R) ≤ ‖q0‖L2(R),

‖q‖2+α

L2+α([0,T ]×R)
≤ CT,α‖q0‖2

L2(R)
,

for t ∈ [0, T ] and 0 ≤ α < 1. In the stochastic setting, the same types of bounds are generally 
available only in expectation. In fact, we have the following result.

Proposition 2.11 (A-priori bounds). Let q be a conservative or dissipative weak solution to 
the stochastic Hunter–Saxton equation (1.1), with σ ∈ (C2 ∩ Ẇ 1,∞ ∩ Ẇ 2,∞)(R), and initial 
condition q(0) = q0 ∈ L1(R) ∩ L2(R). The following bounds hold:

ess sup
t∈[0,T ]

E‖q(t)‖2
L2(R)

≤ CT ‖q0‖2
L2(R)

, (2.12)

E‖q‖2+α

L2+α([0,T ]×R)
≤ CT,α‖q0‖2

L2(R)
, (2.13)

for any α ∈ [0, 1).

Therefore we have

q ∈ L∞([0, T ];L2(� ×R)) ∩ L2+α(� × [0, T ] ×R)

for any α ∈ [0, 1). These bounds are not expected to hold for general weak solutions, because, as 
we shall see, spontaneous energy generation (spontaneous increase in L2-mass even in expecta-
tion) in q is permissible under Definition 2.1.

We shall prove this proposition using renormalisation techniques. Calculations can be found 
in Appendix B. More precisely, we have the t-almost everywhere bounds:

E

ˆ

R

|q|2 dx

∣∣∣∣
t

0
≤E

tˆ

0

ˆ

R

q2
(
(∂xσ )2 − 1

4
∂2
xxσ

2
)

dx ds (2.14)

for L2
ω,x -control, and

1 − α

2
E

tˆ

0

ˆ

R

|q|2+α dx ds ≤ E

ˆ

R

q|q|α dx

∣∣∣∣
t

0
− α(α + 1)

2
E

tˆ

0

ˆ

R

q|q|α(∂xσ )2 dx ds

+ α

4
E

tˆ

0

ˆ

R

∂2
xxσ

2q|q|α dx ds (2.15)

for control in L2+α
ω,t,x , by interpolation.
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Because of the first term on the right-hand side of (2.15) and the use of interpola-
tion/Hölder’s inequality, and because we only have pointwise almost everywhere-in-time bounds 
for E‖q(t)‖L

p
x

with p = 2, we cannot extend these estimates past α < 1 (but see Remark 5.5
regarding possible higher integrability as a manifestation of regularisation-by-noise).

Remark 2.12 (Energy conservation). With respect to (2.14), the equation (∂xσ )2 = ∂2
xxσ

2/4, 
which implies energy conservation, can be solved explicitly by σ(x) = Ae±x or σ(x) ≡ C, the 
first of which does not satisfy our linearity assumption except with A = 0. (See also Remark A.1
for the significance of this σ in a slightly different formulation of the stochastic Hunter–Saxton 
equation.)

3. The Lagrangian formulation and method of characteristics

3.1. Solving q on characteristics

Even though the Hunter–Saxton equation is not spatially local, in the deterministic setting, 
characteristics

∂tX(t, x) = u(t,X(t, x))

essentially fix the evolution of the equations because functions constant-in-space between two 
characteristics remain constant-in-space, and ‖q(t)‖L2 is conserved up to wave-breaking (and 
also beyond — this being one way to characterise continuation of solutions past wave-breaking). 
In the stochastic setting the behaviour between characteristics is more complicated and there is 
no conserved quantity. Nevertheless, taking cue from the classical construction of characteristics, 
much can still be deduced for solutions to the stochastic equations.

The “characteristic equations” from which the stochastic Hunter–Saxton equation arises are
written with Stratonovich noise, as pointed out by [1]:

X(t, x) = x +
tˆ

0

u(s,X(s, x))ds +
tˆ

0

σ(X(s, x)) ◦ dW(s). (3.1)

Assuming that these characteristics are well-posed, via a general Itô–Wentzell formula [24], 
since q(t; ω) takes values in L2(R), one can derive from (1.1) the simpler (Lagrangian variables) 
equation:

dq(t,X(t)) = −1

2
q2(t,X(t)) dt − σ ′(X(t))q(t,X(t)) ◦ dW. (3.2)

As mentioned after Definition 2.9 above, the SDE (3.2) satisfied by q(t, X(t)) (if suitably 
well-defined), can be written without reference to x or to compositions of solution with charac-
teristics as:

dQ = −1

2
Q2 dt − σ ′Q ◦ dW, (3.3)
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and can in fact be solved explicitly without dependence on X, in the case σ ′′ = 0. We shall see 
this in (3.4) of Lemma 3.1.

As in the previous section, since we are working presently on the assumption of well-
posedness, in this section we do not restrict ourselves to σ ′′ = 0. We shall do so starting in 
Section 4. We postpone resolving the issue of the well-posedness of the characteristics equation 
(3.2) to Section 5.1, but record here some properties of the composition q(t, X(t, x)) if it exists 
and is a strong solution of the SDE (3.2):

Lemma 3.1.

(i) Assume that X(t, x) is a collection of adapted processes with P -almost surely continuous 
paths for each x in the collection of Lebesgue points of q0. Suppose that the composition 
q(t, X(t, x)) is a strong solution to the SDE (3.2) with σ ∈ C2(R) ∩ Ẇ 2,∞(R) (i.e., u is 
C2 with bounded second derivative), for each x in the same set. Then q(t, X(t, x)) can be 
expressed by the formula

q(t,X(t, x)) = Z(t, x)

1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds
, (3.4)

where Z(t, x) = exp
(− ´ t

0 σ ′(X(s, x)) ◦ dW
)
, up to the random time t = t∗x defined by

−1

2
q0(x)

t∗xˆ

0

exp
(

−
sˆ

0

σ ′(X(r, x)) ◦ dW(r)
)

ds = 1. (3.5)

(ii) For X as above assume further that X(t) : R → R is a homeomorphism of R. If q0(x) can 
be written as a sum q1(0, x) + q2(0, x) of functions of disjoint support, then

q(t, x) = q1(t,X(t,X(t)−1(x))) + q2(t,X(t,X(t)−1(x))),

and q1(t) and q2(t) have P -almost surely disjoint supports.

Remark 3.2 (Non-associativity of the Stratonovich product). Before we proceed to the proof we 
point out two obvious distinctions

(i) (dq)(t, X(t)) is not d(q(t, X(t))); these are related by the Itô–Wentzell formula:

d(q(t,X(t))) = (dq)(t,X(t)) + (∂xq)(t,X(t)) ◦ dX + 1

2
d〈∂xq(t, y),X(t)〉∣∣

y=X(t)
;

to avoid the over-proliferation of parentheses, we take dq(t, X(t)) always to mean 
d(q(t, X(t))).

(ii) Also, (AB) ◦ dC, for three processes A, B , and C with finite quadratic variation, is not 
A(B ◦ dC). The difference is

(AB) ◦ dC − A(B ◦ dC) = 1
B〈A,C〉.
2
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For notational convenience AB ◦ dC will always denote (AB) ◦ dC, which, as especially 
pointed out in [1, Lemma 3.1], is also equivalent to A ◦ (B ◦ dC).

Proof. No requirements on linearity need be made here, but we remark after the end of this proof 
how formulas derived simplify in an important way in this special case.

Using the change-of-variable q(t, X(t)) �→ h(t) = 1/q(t, X(t)) reduces the above to a linear 
SDE in h(t):

dh = d
1

q(t,X(t))
= −1

q2(t,X(t))
◦ dq(t,X(t))

= −1

q2(t,X(t))
◦
[

− 1

2
q2(t,X(t))dt − σ ′(X(t))q(t,X(t)) ◦ dW

]

= 1

2
dt + σ ′(X(t))h(t) ◦ dW.

From [23, Eq. IV.4.51], the equation for h(t), and hence for q(t, X(t)), can be solved explic-
itly, being the solution of the stochastic Verhulst equation. Setting

Z(t) = Z(t, x) = exp

(
−

tˆ

0

σ ′(X(s, x)) ◦ dW(s)

)
, (3.6)

the linear equation for h and q(t, X(t)) can be solved explicitly:

h(t) = 1

Z(t)

(
h(0) + 1

2

tˆ

0

Z(s) ds
)
,

because

d

[
1

Z(t)

(
h(0) + 1

2

tˆ

0

Z(s) ds
)]

= 1

Z(t)
◦ 1

2
Z(t) dt −

(
h(0) + 1

2

tˆ

0

Z(s) ds
)

◦ (
1

Z2(t)
◦ dZ(t))

= 1

2
dt −

(
h(0) + 1

2

tˆ

0

Z(s) ds
) 1

Z(t)
◦ (−σ ′(X(t)) ◦ dW)

= 1

2
dt + σ ′(X(t))h ◦ dW

as sought. Here we used the rule A ◦ (B ◦ dC) = (AB) ◦ dC repeatedly. And consequently,
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q(t,X(t, x)) = Z(t, x)

1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds
,

proving (3.4).
Since Z > 0 everywhere, and X(0, x) = x, blow-up of q(t, X(t, x)) occurs at t = t∗x at which

−1

2
q0(x)

t∗xˆ

0

exp
(

−
sˆ

0

σ ′(X(r, x)) ◦ dW(r)
)

ds = 1. (3.7)

It is immediate that if q0(x) = 0, then q(t, X(t, x)) = 0. This implies that initial conditions 
with disjoint support give rise to solutions that have disjoint support, up to wave-breaking. �
Remark 3.3 (Pathwise formulation for constant σ ). It is similarly immediate that if σ ′ = 0 (σ
constant), then the blow-up time coincides with that arising from deterministic dynamics. In 
fact, before we proceed to the next section, we point out that the case σ ′ = 0 is effectively the 
deterministic equations because in a “frame-of-reference” given via a path-wise transformation 
x �→ x + σW , see [15, Prop. 2.6] and [13, Section 6.2], then modulo measurability concerns,

U(t, x) = u(t, x + σW(t)), V (t, x) = q(t, x + σW(t))

solve the deterministic Hunter–Saxton equation

0 = ∂tV + U∂xV + 1

2
V 2,

V = ∂xU,

exactly when q and u solve (1.1) with constant σ . In fact, this is true for all equations of the form

0 = ∂tu +B[u] + σ∂xu ◦ Ẇ ,

in which B is an integro-differential functional in the spatial variable (but not directly dependent 
on the same) as these operations are invariant in x-translations. See also Remark 4.2.

Remark 3.4 (The special case σ ′′ = 0). Referring to (3.4), (3.5), and (3.7), consider the case 
of linear σ . Since then σ ′ is a constant, we conclude that q(t, X) and the wave-breaking time 
depend on x only through q0 — and not also cyclically through X(t, x), and in (3.4), Z(t, x) =
exp(−σ ′W(t)) is independent of x altogether.

The expression (3.4) can this case be written as

Q(t, x) = e−σ ′W(t)

1
q0(x)

+ 1
2

´ t

0 e−σ ′W(s) ds
. (3.8)

As mentioned after Definition 2.9, we shall define Q(t, x) up to t∗x in subsequent discussions 
where σ ′′ = 0, as a family of processes indexed by x by equation (3.8), and not as the composition
of some yet unknown q(t, x) with a yet unknown X(t, x) (that is, for example, the expression 
q(t, X(s, x)) has no meaning for us yet where s �= t).
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Remark 3.5 (An application of the theory of Bessel processes). As an aside, we mention that it 
is possible to represent Q as (a simple function of) a time-changed squared Bessel process of 
dimension 1 when σ ′′ ≡ 0 (that is, as the absolute value of some Brownian motion W̃ ).

A result of Lamperti [25], see also [31, XI.1.28], showed that there exists a Bessel process 
R(ν) of index ν, i.e., of dimension d = 2(ν + 1), for which

exp(W(t) + νt) = R(ν)
( tˆ

0

exp
(
2(W(s) + νs)

)
ds

)
.

By a slight modification of Lamperti’s result, it can be shown that there exists a squared Bessel 
process Z(δ)(t) of dimension d = 1 + 2c/(σ ′)2 for which

2

(σ ′)2 exp(−σ ′W + ct) = Z(δ)(〈M,M〉(t)),

M(t) = −
tˆ

0

1√
2

exp
(1

2

(− σ ′W(s) + cs)
)

dW(s).

We can see this as follows. A squared Bessel process of dimension d (starting at λ) satisfies:

Z(δ)(t) = λ + 2

tˆ

0

√
Z(δ) dB + δt.

Letting B be the Brownian motion for which

B(〈M,M〉(t)) = M(t)

under the Dambis–Dubins–Schwarz theorem,

Z(δ)(〈M,M〉(t)) = λ + 2

tˆ

0

√
Z(δ)(〈M,M〉(s)) dM(s) + δ〈M,M〉(t). (3.9)

Expanding 〈M,M〉(t) = 1
2

´ t

0 exp(−σ ′W(s) + cs) ds, we find that with

λ = 2

(σ ′)2 , δ = 2c

(σ ′)2 + 1,

the ansatz Y(t) = λ exp(−σ ′W(t) + ct) satisfies the equation

dY(t) = −2√
2

√
Y(t) exp

(−σ ′W(t) + ct

2

)
dW(t) + δ

2
exp(−σ ′W(t) + ct) dt,

which is (3.9) above with Y(t) = Z(δ)(〈M,M〉(t)).
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Therefore choosing c = 0 above, there exists a squared Bessel process Z of dimension one 
(the absolute value of a Brownian motion) for which

exp(−σ ′W(t)) = Z(
1

2

tˆ

0

exp(−σ ′W(s)) ds),

and hence,

q(t,X(t, x)) = Z( 1
2

´ t

0 exp(−σ ′W(s)) ds)

1
q0(x)

+ 1
2

´ t

0 exp(−σ ′W(s)) ds
.

Finally we prove our main technical lemma, which will be useful in establishing well-
posedness later. This lemma is important because it describes the main feature of wave-breaking 
— that u gets steeper and steeper as q nears wave-breaking, but the jump is actually smaller and 
smaller, so that in the limit, around the point of wave-breaking, u remains absolutely continuous, 
but (∂xu)2 = q2 passes into a measure.

Lemma 3.6 (Absolute continuity of u at wave-breaking). Let t∗x be the wave-breaking time de-
fined by (3.5) indexed by the Lebesgue points x of q0. Assume that X(t, x) is a collection of 
adapted processes with P -almost surely continuous paths for each x in the collection of Lebesgue 
points of q0. Suppose that the composition q(t, X(t, x)) is a strong solution to the SDE (3.2) for 
each x in the same collection. Set

u(t, x;ω) = u(t, x)

:= q(t,X(t, x)) exp
( tˆ

0

q(s,X(s, x)) ds +
tˆ

0

σ ′(X(s, x)) ◦ dW(s)
)
. (3.10)

It holds that for such x ∈ R as aforementioned,

P − a.s., lim
t↗t∗x

u(t, x) = 0.

Remark 3.7. The quantity (3.10) ought to be thought of heuristically as

q(t,X(t, x))
∂X

∂x
,

and will be integrated in x to construct a function U(t, x), defined on characteristics (cf. (5.18)). 
The exponential is a P -almost surely finite quantity up to blow-up because we assume that σ ′ is 
bounded (and then constant in Section 4). Furthermore up to blow-up (if there is blow-up) there 
is always an upper bound on q(t, X(t, x)) depending on q0(x) and σ ′. In the case σ ′′ = 0, we 
can define u as a well-defined quantity with Q(t, x) given by (3.8) in the place of q(t, X(t, x)), 
sans assumptions on q and X, so that u is expressible as
741



H. Holden, K.H. Karlsen and P.H.C. Pang Journal of Differential Equations 270 (2021) 725–786
u(t, x) := Q(t, x) exp
( tˆ

0

Q(s, x) ds + σ ′W(t)
)
, (3.11)

which, as we shall see in the proof, cf. (3.13), reduces to

q0(x)
(

1 + 1

2
q0(x)

tˆ

0

e−σ ′W(s) ds
)
. (3.12)

It is easily seen from the preceding formula that in the deterministic case, where the integral 
reduces further to t/2, we recover the linear term familiar in the deterministic theory.

Proof. Let Z(t, x) = exp(− ́ t

0 σ ′(X(s, x)) ◦ dW(s)). Using the expression (3.4), we have

u(t, x) = q(t,X(t, x)) exp

( tˆ

0

q(s,X(s, x)) ds +
tˆ

0

σ ′(X(s, x)) ◦ dW(s)

)

= Z(t, x)

1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds

× exp
( tˆ

0

Z(s, x)

1
q0(x)

+ 1
2

´ s

0 Z(r, x) dr
ds +

tˆ

0

σ ′(X(s, x)) ◦ dW(s)
)

= Z(t, x)

1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds

× exp
(

2

tˆ

0

d

ds
log

(− 1

q0(x)
− 1

2

sˆ

0

Z(r, x) dr
)

ds +
tˆ

0

σ ′(X(s, x)) ◦ dW(s)
)

= Z(t, x)

1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds

(
− 1 − 1

2
q0(x)

tˆ

0

Z(s, x) ds
)2

e
´ t

0 σ ′(X(s,x))◦dW(s)

= Z(t, x) exp
( tˆ

0

σ ′(X(s, x)) ◦ dW(s)
)
q0(x)

(
1 + 1

2
q0(x)

tˆ

0

Z(s, x) ds
)

= q0(x)
(

1 + 1

2
q0(x)

tˆ

0

Z(s, x) ds
)
. (3.13)

By the definition of t∗x given in (3.7), this quantity vanishes exactly at t = t∗x . �
Although the result derived above holds for general σ ∈ W 1,2, we emphasize again that when-

ever σ ′ is a constant, Z(t, x) only depends on x through q0. In the case σ ′ is constant, a closer 
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look at (3.6) and (3.4) confirms that Z(t, x) is independent of x, so if q0 is constant over an 
interval I ⊆ R, then for x, y ∈ I , until the blow-up time,

Q(t, x) = Q(t, y), (3.14)

just as in the deterministic setting. Therefore the point of the Lemma 3.6 is that where we start 
with q0 = V0 1x∈[0,1], we have Q(t, x) = Q(t, 12 ) for x ∈ [0, 1], and u(t, x) should be a constant 
multiple of the value of u(t, x). We next explore finer properties concerning blow-up time.

4. Wave-breaking behaviour

4.1. Explicit calculation of the law of wave-breaking time using exponential Brownian motion

In this section we provide an expression for the distribution of the blow-up time t∗x defined in 
(3.5), under the condition that σ ′′ = 0, from which we are also assured of its measurability. This 
is of independent interest as it describes the (random) time of wave-breaking precisely.

Where σ ′ is a constant, the blow-up condition (3.5) simplifies to

−1

2
q0(x)

t∗xˆ

0

exp
(−σ ′W(s)

)
ds = 1.

Exponential Brownian functionals such as the one above have been studied in detail by Yor 
[33] and others (see also the surveys [27,28]). The distribution for the blow-up can be explicitly 
computed:

Let

A(t) := 1

2

tˆ

0

exp
(−σ ′W(s)

)
ds,

A(μ)(t) :=
tˆ

0

exp(2μs + 2W(s)) ds. (4.1)

In [27, Theorem 4.1] (originally derived in another form in [32]) it was shown that

P (A(μ)(t) ∈ dχ) = dχ

χ

ˆ

R

eμr−μ2t/2 exp
(

− 1 + e2r

2χ

)
ϑ
(er

χ
, t
)

dr, (4.2)

where the integral is taken against dr , and

ϑ(y, t) = y√
2π3t

eπ2/(2t)

∞̂
e−ξ2/(2t)e−y cosh(ξ) sinh(ξ) sin

(
πξ

t

)
dξ.
0
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We shall apply the explicit formula for the distribution of A(μ) to give a similarly explicit 
formula for the distribution of the blow-up time t∗x .

Proposition 4.1. Let t∗x be defined as in (3.5), and let A(μ) be defined as in (4.1). Then

P ({t∗x ≥ t}) = P

({
A(0)

(
(σ ′)2t

4

)
≤ −(σ ′)2

2q0(x)

})
. (4.3)

Proof. In the following we use “∼” to denote equality in law under P .
We can use the scaling invariance of Brownian motion to show that

A(t) ∼ 2

(σ ′)2 A(0)

(
(σ ′)2t

4

)
, (4.4)

which gives us the distribution of A(t) explicitly:

A(0)(t) =
tˆ

0

exp(2W(s)) ds =
4t/(σ ′)2ˆ

0

exp
(

− σ ′ −2

σ ′ W
( τ

(2/σ ′)2

))
d

τ

4/(σ ′)2

∼ (σ ′)2

4

4t/(σ ′)2ˆ

0

exp(−σ ′W̃ (τ )) dτ

= (σ ′)2

2
A
(
4t/(σ ′)2).

Here W̃ is another standard Brownian motion, by the scaling invariance of the process.
We know that A(0) = 0 because it is an integral of a continuous process. It is also an in-

creasing process because the integrand is positive. This implies that the supremum process 
A∗(t) = sups≤t A(s) is simply A(t). Finally, − 1

q0(x)
> 0. Therefore,

P ({t∗x ≥ t}) = P ({A(t) ≤ − 1

q0(x)
}). �

Remark 4.2 (Consistency in the limit σ ′ → 0). With regards to Remark 3.3, it is instructive to 
see that if (σ ′)2/4 is treated as a parameter and taken to nought, then of course

A(t) = 1

2
t,

or alternatively,

lim
(σ ′)2/4→0

2

(σ ′)2 A(0)

(
(σ ′)2t

4

)
= 1

2
lim
c→0

1

c

ctˆ

0

exp(2W(s)) ds = 1

2
t,
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by the Lebesgue differentiation theorem, and this matches the deterministic dynamics of wave-
breaking exactly. This again verifies that the σ ′ = 0 setting cannot result in random blow-up.

4.2. Meeting time of characteristics

We turn our attention now to the characteristics themselves, described by (3.1) and reproduced 
below:

X(t, x) = x +
tˆ

0

u(s,X(s, x))ds +
tˆ

0

σ(X(s, x)) ◦ dW(s).

Consider again the explicit “box” example with initial condition

q0 = V0 1[0,1] ≤ 0, V0 ∈ (−∞,0). (4.5)

We seek to prove that in the case σ ′′ = 0, wave-breaking only occurs when characteristics 
meet, and when characteristics meet, wave-breaking occurs. This allows us later to use charac-
teristics to capture precisely the behaviour of wave-breaking.

As mentioned after (3.14), in the case of “box” initial conditions (4.5), by (3.8) and reproduced 
here:

Q(t, x) = e−σ ′W(t)

1
q0(x)

+ 1
2

´ t

0 e−σ ′W(s) ds
,

we see from the dependence on x only via q0(x) that Q is piecewise constant over x. In particular, 
this means Q(t, x) =Q(t, 12 ) over x ∈ (0, 1).

We shall show that it is possible to construct a function U(t, x) from this information, and 
characteristics from U(t, x) in the next section. For now we assume that characteristics as defined 
by dX = U(t, X) dt + σ(X) ◦ dW exist and that (∂xU)(t, X(t)) — the composition of (∂xU)

with a characteristic at the same time — is equal to the process Q above. We shall establish this 
existence in Section 5.2 below.

Proposition 4.3 (Characteristics meet at wave-breaking). Let σ ′′ = 0, and suppose X(t, x) is a 
strong solution to the equation (3.1), for which (∂xu)(s, X(t, x)) = Q(t, x) for each x ∈ R, with 
q0 = V01[0,1]. Then the first meeting time of any two characteristics X(t, x) and X(t, y),

τx,y := inf{t > 0 : X(t, x) = X(t, y)}, x, y ∈ [0,1],

is P -almost surely equal to the wave-breaking time t∗1/2 defined by (3.5).

Remark 4.4. In particular, the explicit formula for the distribution of the meeting time of char-
acteristics is also given by (4.3). In the case σ ′′ �≡ 0, we cannot immediately extract an explicit 
form for u and thereby one for X as in [1], because of nonlocality.
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Proof. Recall that in the linear case, Q is given via (3.8) as the process

Q(t, x) = e−σ ′W(t)

1
q0(x)

+ 1
2

´ t

0 e−σ ′W(s) ds
.

If x, y ∈ [0, 1], then

u(s,X(s, x)) − u(s,X(s, y))

X(s, x) − X(s, y)
= Q(s, x) = Q(s, y) = Q(s,

1

2
), (4.6)

and similarly,

σ(X(s, x)) − σ(X(s, y))

X(s, x) − X(s, y)
= σ ′,

as both q and σ ′ are constant in space over the interval [X(s, 0), X(s, 1)]. This leads us to

X(t, x) − X(t, y) = (x − y) +
tˆ

0

Q(s,
1

2
) (X(s, x) − X(s, y)) ds

+ σ ′
tˆ

0

(X(s, x) − X(s, y)) ◦ dW(s),

for x, y ∈ [0, 1]. This is eminently solvable:

X(t, x) − X(t, y) = (x − y) exp
( tˆ

0

Q(s,
1

2
) ds + σ ′W(t)

)
. (4.7)

Since ‖q(t)‖2
L2 is P -almost surely bounded, the first meeting time τ0,1 cannot occur after the 

blow-up time t∗x of Q(t, x) on the characteristic X(t, x) (which, again, by (3.14) is the same for 
any x ∈ [0, 1] — we have chosen x = 1

2 for concreteness). The meeting time also cannot occur 
before the blow-up time, so that dissipation (instantaneous in the conservative case) cannot occur 
without wave-breaking.

To see this it suffices to ask how the exponential in (4.7) can possibly become nought — it 
cannot become so before Q(t, 12) blows up to −∞. �

The fact that the exponential does become nought when this happens gives us a rate in time at 
which Q(s, x) blows up, which may otherwise have been difficult to extract from (3.8).

5. Existence of solutions

5.1. Solutions post wave-breaking: a discussion

This subsection consists solely of a discussion on different ways characteristics, and solu-
tions defined along them, can be continued past wave-breaking. We shall not limit ourselves to 
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σ ′′ = 0. This is a question of cardinal importance because here as in the deterministic setting, 
non-uniqueness turns on there being various ways in which to continue solutions past wave-
breaking. Accurately prescribing this continuation will allow us both to prove global existence 
of individual characteristics and thereby, on them, of q .

As noted following (3.7) in Lemma 3.1, if q0(x) = 0, then along a characteristic starting at 
x, we expect q(t, X(t, x)) = 0. Therefore as in the deterministic setting, it should be possible 
to patch solutions together: That is, if q1(0), q2(0) are two L2(R)-valued random variables (or 
simply L2(R) functions, if invariant over all but a measure zero set of �) of compact and disjoint 
support on R, then the solution q with initial condition q0 = q1(0) + q2(0) is simply q(t) =
q1(t) +q2(t). Furthermore, from (3.5), the non-negativity of the exponential function also shows 
that there ought not to be blow-up along X(t, x) if q0(x) ≥ 0. These heuristics imply that, as in 
the deterministic setting, “box”-type initial conditions given (4.5) should retain special interest 
in the stochastic setting.

As discussed in Section 1.1 there are two extreme ways by which solutions are continued past 
wave-breaking. They give rise to “conservative” and “dissipative” solutions.

In the deterministic setting, conservative solutions are constructed by simply extending the 
definition by explicit formulas to times t > t∗x , as, in the example of the box, the explicit formula 
is undefined only at the point of wave-breaking, and reverts immediately to being well-defined 
thereafter. Seeing as t �→ ´ t

0 exp(−σ ′(X(s, x))W(s)) ds is P -almost surely an increasing func-
tion in t for each fixed x, simply allowing q(t, X(t)) to be defined by (3.4) is similarly admissible 
in the stochastic setting (if the characteristics X(t, x) are properly defined). Of course, continuity 
of q(t) in suitable norms, and that of X(t), requires proof. We also stress that there is no con-
servation of L2(R) even in expectation in the general stochastic setting — however, on taking 
σ = 0, we shall be able to recover the well-studied deterministic conservative solutions.

Alternatively, one can mandate dissipation by setting all concentrating L2(R)-mass to nought 
at wave-breaking. This is the “dissipative solution”. In the stochastic setting (complete) dissipa-
tion can also be replicated, though this is again predicated on proofs of continuity, for example, of 
the H−1

loc norms of q . Suppose all characteristics X(t, z) for z ∈ [x, y] meet at the stopping time 
t∗z . This is a stopping time by Proposition 4.1. Assuming σ ′ is locally bounded, as we always do, 
by the standard existence and uniqueness theorem for SDEs, these can be continued as

dX(t∗x + t,X(t∗x , x)) = σ(X(t∗x + t,X(t∗x , x))) ◦ dW̃ , (5.1)

where W̃ is the Brownian motion starting at t∗x , at the initial point W(t∗x ).

5.2. Well-posedness for box initial data

We focus again on the σ ′′ = 0 case. Here we use the “box”-type initial condition (4.5) to 
illustrate the derivation of well-posedness, and the chief aspects of the general well-posedness 
theorem will appear here. We shall extend these results to the general data case in Section 5.3. In 
this subsection all solutions refer to conservative or dissipative solutions-along-characteristics.

Recall that by (3.14), for the case described by (4.5) the wave-breaking time t∗x defined in 
(3.7) is uniform in x ∈ [0, 1]. Thus, we denote this time simply by t∗:

−1

2
q0(

1

2
)

t∗ˆ

0

exp
(

−
sˆ

0

σ ′ ◦ dW(r)
)

ds = 1. (5.2)
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The result of Lemma 3.6 then states that P -almost surely, as t → t∗ from below,

u(t;ω) = u(t) := Q(t,
1

2
) exp

( tˆ

0

Q(s,
1

2
) ds + σ ′W(t)

)
→ 0, (5.3)

where Q(s, x), given explicitly by (3.8), is also uniform in x ∈ [0, 1] because it only depends on 
x through the initial condition.

Next we proceed to the focus of this subsection — to resolve the primary questions of exis-
tence and uniqueness concerning the characteristics defined in (3.1), including the continuation 
of them past wave-breaking. This will in turn lead us to different ways of continuing Q(t, x)

(given by (3.8) in the “box”-type initial data case) past wave-breaking.
Our plan of attack is as follows (cf. diagram at the end of Section 2.1):

(i) Postulate a U(t, x), and use it to find characteristics X(t, x) satisfying

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s). (5.4)

(ii) Show that for Q(t, x) = ∂xU(t, x), the process Q(t, X(t, x)) agrees with Q(t, x), P -almost 
surely, up to t = t∗, and remains a strong solution to (3.2):

dQ̃(t) = −1

2
Q̃2(t) dt + σ ′Q̃(t) ◦ dW.

(iii) Finally we extend U and Q past wave-breaking in ways that preserve their continuity point-
wise and in H−1

loc (R), respectively.

Our goal in this subsection is to prove the following two theorems:

Theorem 5.1 (Conservative Solutions: Box Initial Data). Suppose σ ′′ = 0 and q0 = V0 1[0,1], 
V0 ∈ R. There exists a U ∈ C([0, ∞) × R), P -almost surely, absolutely continuous in x, such 
that for each x ∈ R, the following SDE is globally well-posed:

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s).

For Q(t, x) = ∂xU(t, x), the process Q(t, X(t, x)) agrees P -almost surely with Q(t, x), de-
fined in (3.8), up to t = t∗ and can be represented globally as

Q(t,X(t, x)) = exp(−σ ′W(t))

1
V0

+ 1
2

´ t

0 exp(−σ ′W(s)) ds
1[0,1](x).

We have Q(0, x) = q0(x). In particular, Q̃(t) = Q(t, X(t, x)) satisfies (3.3) strongly and glob-
ally:
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dQ̃(t) = −1

2
Q̃2(t) dt + σ ′Q̃(t) ◦ dW.

Similarly, for the dissipative solutions-along-characteristics, we have:

Theorem 5.2 (Dissipative Solutions: Box Initial Data). Suppose σ ′′ = 0 and q0 = V0 1[0,1], V0 ∈
R. There exists a U ∈ C((0, ∞) ×R), P -almost surely, absolutely continuous in x, such that for 
each x ∈R, the SDE

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s)

is globally well-posed.
For Q(t, x) = ∂xU(t, x), the process Q(t, X(t, x)) agrees P -almost surely with Q(t, x) as 

given by (3.8), up to t = t∗ and can be represented globally in time as

Q(t,X(t, x)) =
⎧⎨
⎩

exp(−σ ′W(t))
1

V0
+ 1

2

´ t
0 exp(−σ ′W(s)) ds

1[0,1](x), t < t∗,

0, t > t∗.
(5.5)

We have Q(0, x) = q0(x). In particular, Q̃(t) = Q(t, X(t, x)) satisfies (3.3) strongly and glob-
ally (in time):

dQ̃(t) = −1

2
Q̃2(t) dt + σ ′Q̃(t) ◦ dW.

We relegate the computation of H−1
loc to Section 5.3 where it is done in the general context (see 

also Remark 5.10). Theorems 5.1 and 5.2 are proved in similar fashion and we shall present one 
in full and sketch out the other. In both of them the bulk of the work rests on a proper construction 
of U . Obviously in both proofs we shall be making heavy use of (3.8) and on our main technical 
result, Lemma 3.6.

For dissipative solutions we can also show the one-sided Oleinik-type estimate (cf. discussion 
following Definition 2.6):

Corollary 5.3 (One-Sided Estimate: Box Initial Data). Suppose σ ′′ = 0 and q0 = V0 1[0,1], 
V0 ∈ R. Then the dissipative solution Q(t, x) with initial condition Q(0) = q0 satisfies P -almost 
surely the following one-sided bound:

Q(t, x) ≤ exp(−σ ′W(t))

1
max(V0,0)

+ 1
2

´ t

0 exp(−σ ′W(s)) ds
.

Because of [27, Theorem 4.1], the law of the right-hand side is known.

We now present the proofs of the above theorems, starting with the conservative case.

Proof of Theorem 5.1. We divide the proof into two parts:
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(1) We postulate U and construct globally (in time) extant characteristics X(t, x).
(2) We show that (∂xU)(t, X(t, x)) satisfies (3.3).

1. Construction of U and global characteristics.

Using (3.8), Q(t, x) is constant over x ∈ [0, 1] for time up to t = t∗1/2 (= t∗0 = t∗1 by this 
constancy). Therefore we simply construct U(t, · ) to be the piecewise linear function taking 
the value U(t, x) = 0 for x < X(t, 0) and U(t, x) = Q(t, 12 )(X(t, 1) − X(t, 0)) for x > X(t, 1). 
(Because U(t) is piecewise linear by construction, Q(t) will be constant between X(t, 0) and 
X(t, 1).) This definition can be extended to all times t ≥ 0 by taking Q(s, 12 ) in the definition of 
u (cf. (5.3)) to mean:

Q(t,
1

2
) = exp(−σ ′W(t))

1
V0

+ 1
2

´ t

0 exp(−σ ′W(s)) ds
.

The only difficulty is that U so defined depends on X(t, 0) and X(t, 1) in a circular fashion. 
To rectify this circularity, we take one more step back and define characteristics X(t, 0) and 
X(t, 1), which will later self-evidently be solutions to (5.4) at x = 0 and x = 1.

For x ≤ 0 or x ≥ 1, set

X(t, x) = x + 1{x≥1}
tˆ

0

u(s) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s), (5.6)

which has a global unique strong solution in the space of adapted process with P -almost 
surely continuous paths by the basic theorem on well-posedness of SDEs (see, e.g., [31, Thm. 
IX.II.2.4]), and by the boundedness of u ensured by the formula (3.12). The function u here has 
been defined explicitly in (3.12).

We now postulate the ansatz U(t, x) for u(t, x):

U(t, x) =

⎧⎪⎨
⎪⎩

0, x ≤ X(t,0),
x−X(t,0)

X(t,1)−X(t,0)
u(t), x ∈ (X(t,0),X(t,1)),

u(t), x ≥ X(t,1),

(5.7)

where U is defined pointwise in (t, x), P -almost surely.
In the σ ′′ = 0 case, u(t) (given in (3.11)) does not depend on any characteristic.
Now we define X(t, x) by the equation

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW. (5.8)

(We re-use the symbol X from above as this equation simply augments equation (5.6).) By taking 
a spatial derivative, we see that this SDE also has an explicit solution: for x ∈ [0, 1], t < t∗,
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∂X(t, x)

∂x
= eσ ′W(t)

(
1 +

tˆ

0

e−σ ′W(s)

X(s,1) − X(s,0)
u(s) ds

)
,

and consequently,

X(t, x) = X(t,0) + xeσ ′W(t)
(

1 +
tˆ

0

e−σ ′W(s)

X(s,1) − X(s,0)
u(s) ds

)
x ∈ [0,1], t < t∗.

Again, by direct differentiation of the equation above, we can see that the derivative ∂X/∂x

is independent of x,

∂X(t, x)

∂x
= X(t,1) − X(t,0). (5.9)

It is also signed, since alternatively to (3.13) we also have

u(s) = Q(s,
1

2
) exp

( sˆ

0

Q(r,
1

2
) dr + σ ′W(s)

)

= eσ ′W(s) d

ds
exp

( sˆ

0

Q(r,
1

2
) dr

)
, (5.10)

so solving the SDE for X(t, 1) − X(t, 0),

X(t,1) − X(t,0) = eσ ′W(t)
(

1 +
tˆ

0

e−σ ′W(s)u(s) ds
)

= exp
( tˆ

0

Q(s,
1

2
) ds + σ ′W(t)

)
≥ 0, (5.11)

with strict inequality except at t = t∗.
We record the fact that characteristics do not cross except at wave-breaking as a lemma, see 

Lemma 5.4 after this proof.
The global well-posedness for the end-point characteristics X(t, 0) and X(t, 1), and (5.9), 

allow us to extend X(t, x) globally (beyond t∗) via

X(t, x) − X(t,0)

X(t,1) − X(t,0)
= x. (5.12)

2. Verifying properties of ∂xU .
Setting

Q(t, x) = ∂xU(t, x),
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we shall proceed to show that up to t = t∗, P -almost surely,

Q(t,X(t, x)) = Q(t, x),

and that we have the (global) explicit formula:

Q(t,X(t, x)) = exp(−σ ′W(t))

1
V0

+ 1
2

´ t

0 exp(−σ ′W(s)) ds
1x∈[0,1].

By construction U was built by integrating Q(t, 12 ) in time. Using (5.7), (5.3), and (5.11)
directly, it comes as no surprise that:

∂xU(t, x) =

⎧⎪⎨
⎪⎩

0, x ≤ X(t,0),
u(t)

X(t,1)−X(t,0)
, x ∈ (X(t,0),X(t,1)),

0, x ≥ X(t,1),

=

⎧⎪⎨
⎪⎩

0, x ≤ X(t,0),

Q(t, 1
2 ), x ∈ (X(t,0),X(t,1)),

0, x ≥ X(t,1),

which, by differentiating directly, yields

dQ(t,X(t, x)) = −1

2
Q2(t,X(t, x)) dt + σ ′Q(t,X(t, x)) ◦ dW.

We emphasise once again that no conservation of any norms of Q is proven or even 
claimed. �

We state for clarity the following result, which simply re-establishes Proposition 4.3 without 
the unproven assumption concerning the existence of characteristics.

Lemma 5.4 (Stochastic Flow of Diffeomorphisms before Wave-breaking). Let q0 = V0 1[0,1] be 
a “box”-type initial data. Let σ ′′ = 0 and {X(t, x)}x∈R be defined by (5.7), (5.8). Then up to t∗
defined by (5.2), φt : x �→ X(t, x) is a flow (i.e., a one-parameter semi-group in t) of diffeomor-
phisms of R.

And for given (t, x), t �= t∗, there is a unique random variable y : � →R for which X(t, y) =
x.

We now turn to the proof in the dissipative case.

Proof of Theorem 5.2. First we notice that by construction and Lemma 3.6, at the wave-
breaking time t∗, U(t∗, · ) ≡ 0, P -almost surely. Since we have unique paths up to t∗, the pair of 
equations

{
dX(t, x) = U(t,X(t, x)) dt + σ(X(t, x)) ◦ dW(t),t∗ > t ≥ 0,

dX(t∗ + t, x) = σ(X(t∗ + t, x)) ◦ dW(t∗ + t), t ≥ 0,
(5.13)
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gives unique global solutions X(t, x) for each x that are continuous in t . These equations rep-
resent stopping the characteristic at the time t∗, and then starting it again where U(X) becomes 
nought. Measurability is not an issue as W is strong Markov, and t∗ was shown to be a stop-
ping time in Section 4.1. Lemma 3.6 in fact guarantees that U(X) tends continuously to zero at 
wave-breaking.

In effect we have postulated a truncated Ũ(t, x) in place of U in (5.7), to wit:

Ũ (t, x) =
{

U(t, x), t < t∗,
0, t ≥ t∗,

and used the result of Lemma 3.6.
By defining

Q(t, x) =
{

∂xU(t, x), t < t∗,
0, t ≥ t∗.

It is clear that as in the previous proof, Q(t, x) and Q(t, X(t, x)) still satisfy

dQ(t,X(t, x)) = −1

2
(Q(t,X(t, x)))2 dt − σ ′Q(t,X(t, x)) ◦ dW

over t < t∗, and that this holds trivially thereafter, as sought. �
Proof of Corollary 5.3. This follows directly from (3.8), and from (5.5) in Theorem 5.2. �
Remark 5.5 (Optimality of higher integrability for the case σ ′′ = 0). As we can extend solutions 
to and past wave-breaking, using (3.8), (3.13), and (4.7) it is possible to compute ‖q(t)‖L2 ex-
plicitly for the “box”-type initial condition (4.5) in the conservative case, because q(s), as in the 
deterministic case, does not vary over the interval (X(s, 0), X(s, 1)):

‖q(t)‖2
L2 = (X(t,0) − X(t,1))Q2(t,

1

2
)

= Q(t,
1

2
)u(t, x)

= Z(t, x)

1
q0(x)

+ 1
2

´ s

0 Z(r, x) dr

( 1

q0(x)
+ 1

2

sˆ

0

Z(r, x) dr
)

= Z(t, x) = exp(−σ ′W(t)).

It may be hoped that if the distribution of t∗ is sufficiently dispersed, then at any deterministic 
time t , only a P measure zero set of paths experience wave-breaking and higher integrability 
beyond L3−ε(� × [0, T ] × R) proven in Proposition 2.11 may be achieved. This hope proves 
false, however, as we shall now show:
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By the preservation of boxes under the flow of the equations in the case σ ′′ ≡ 0,

E‖q‖p

Lp([0,T ]×R)
= E

T̂

0

|Q(t,
1

2
)|p(X(t,1) − X(t,0)) dt

= E

T̂

0

|Q(t,
1

2
)|p−1|u(t)| dt.

With Q(t, x) again given by (3.8) and (3.13), we can simplify the integrand as follows:

|Q(t,
1

2
)|p−1u(t) = |Z(t)|p−1

| 1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds|p−1

( 1

q0(x)
+ 1

2

sˆ

0

Z(r, x) dr
)

= |Z(t)|p−1

| 1
q0(x)

+ 1
2

´ t

0 Z(s, x) ds|p−2
.

Therefore,

E
(|Q(t,

1

2
)|p−1|u(t)|)

=
ˆ

ξ∈[0,∞)

ˆ

r∈R

| exp(−σ ′r)|p−1

| 1
V0

+ χ |p−2
P

({
W(t) ∈ dr,

1

2

tˆ

0

exp(−σ ′W(s)) ds ∈ dχ

})
.

This law is almost given in [27, Theorem 4.1] (see also [32]), where using the notation estab-
lished in Section 4.1, it was shown that for

A(μ)(t) =
tˆ

0

exp(2μs + 2W(s)) ds,

one has

P ({A(μ)(t) ∈ dχ, W(t) ∈ dr}) = dχ

χ
eμr−μ2t/2 exp

(
− 1 + e2r

2χ

)
ϑ
(er

χ
, t
)

dr,

where again,

ϑ(y, t) = y√
2π3t

eπ2/(2t)

∞̂
e−ξ2/(2t)e−y cosh(ξ) sinh(ξ) sin

(πξ

t

)
dξ.
0
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It is possible simply to scale time in both A(μ)(t) and W(t) simultaneously as in (4.4):

P ({A(0)(t) ∈ dχ, W(t) ∈ dr})

= P

({
(σ ′)2

4

4t/(σ ′)2ˆ

0

exp(−σ ′W̃ (τ )) dτ ∈ dχ, W(t) ∈ dr

})
,

so that

P ({A(0)(t) ∈ dχ, W(t) ∈ dr})

= P

({
(σ ′)2

4

4t/(σ ′)2ˆ

0

exp(−σ ′W̃ (τ )) dτ ∈ dχ, −σ ′

2
W̃

(
4t/(σ ′)2) ∈ dr

})
,

and

P

({ tˆ

0

exp(−σ ′W̃ (s)) ds ∈ dχ, W̃ (t) ∈ dr

})

= −σ ′

2

dχ

χ
exp

(
− 2(1 + e−σ ′r )

(σ ′)2χ

)
ϑ

(
4e−σ ′r/2

(σ ′)2χ
,
(σ ′)2t

4

)
dr.

Finally integrating in time we find

T̂

0

E
(|Q(t,

1

2
)|p−1|u(t)|) dt =

T̂

0

ˆ

R

∞̂

0

exp(−(p − 1)σ ′r)
|1/V0 + χ |p−2

× −σ ′

2
exp

(
− 2(1 + e−σ ′r )

(σ ′)2χ

)
ϑ
(4e−σ ′r/2

(σ ′)2χ
,
(σ ′)2t

4

) dχ

χ
dr dt.

As can be seen, there is no bound for the blow-up of this quantity in the small ball χ ∈
Bε(−1/V0) except if p − 2 < 1. However, it is still conceivable that there is higher integrability 
if σ ′′ �= 0). Under the principle that “boxes” are preserved under the flow, the spatial dimension 
is essentially lost in the triple integral (in space, time, and probability), but freeing up the spa-
tial variable from this constraint gives us, effectively, an extra dimension to integrate, opening 
the possibility that the integral remains bounded at a higher exponent than 3 − ε. This can be 
understood as an effect of regularisation-by-multiplicative noise if indeed it holds [13].

5.3. Well-posedness for general data

Using the same procedure outlined after (5.3), we now extend our analysis to general data. We 
work directly with L2(R) ∩ L1(R)-valued random variables. The following does not generalise 
easily beyond the linear σ case, again because in the σ ′′ = 0 case, there is no dependence of 
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Q(t, x) on x through characteristics X(t, x). In particular, as mentioned in Remark 3.4, Q(t, x)

is simply defined up to wave-breaking via (3.8):

Q(t, x) = e−σW(t)

1
q0(x)

+ 1
2

´ t

0 e−σW(s) ds
. (5.14)

In this subsection, all solutions refer exclusively to conservative or dissipative solutions-along-
characteristics.

Theorem 5.6 (Conservative Solutions: General Initial Data). Suppose σ ′′ = 0 and q0 ∈ L2(R) ∩
L1(R). There exists a U ∈ C([0, ∞) ×R), absolutely continuous in x, P -almost surely, such that 
for each x ∈R, the following SDE is globally well-posed:

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s).

For Q(t, x) = ∂xU(t, x), the process Q(t, X(t, x)) agrees P -almost surely with Q(t, x) as 
given by (3.8) up to t = t∗ and can be represented globally as

Q(t,X(t, x)) = exp(−σ ′W(t))

1
q0(x)

+ 1
2

´ t

0 exp(−σ ′W(s)) ds
.

In particular, Q̃(t) = Q(t, X(t, x)) satisfies (3.3):

dQ̃(t) = −1

2
Q̃2(t) dt + σ ′Q̃(t) ◦ dW.

Furthermore, Q ∈ L2(� × [0, T ] × R) and in C([0, T ]; H−1
loc (R)), P -almost surely, and the 

energy can be expressed P -almost surely as

ˆ

R

Q2(t, x) dx =
ˆ

R

Q2(0, x) exp(−σ ′W(t)) dx. (5.15)

Similarly, for the dissipative solutions-along-characteristics, we have:

Theorem 5.7 (Dissipative Solutions: General Initial Data). Suppose σ ′′ = 0 and q0 ∈ L2(R) ∩
L1(R). There exists a U ∈ C([0, ∞) × R), absolutely continuous in x, P -almost surely, such 
that for each x ∈ R, the SDE

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s)

is globally well-posed.
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For Q(t, x) = ∂xU(t, x), the process Q(t, X(t, x)) agrees P -almost surely with Q(t, x) up to 
t = t∗x and can be represented globally as

Q(t,X(t, x)) =
⎧⎨
⎩

exp(−σ ′W(t))
1

q0(x)
+ 1

2

´ t
0 exp(−σ ′W(s)) ds

, t < t∗x ,

0, t > t∗x .
(5.16)

Here t∗x is given by (2.9).
In particular, Q̃(t) = Q(t, X(t, x)) satisfies (3.3):

dQ̃(t) = −1

2
Q̃2(t) dt + σ ′Q̃(t) ◦ dW.

Furthermore, Q ∈ L2(� × [0, T ] × R) and in C([0, T ]; H−1
loc (R)), P -almost surely, and the 

energy can be expressed P -almost surely as

ˆ

R

Q2(t, x) dx =
ˆ

R

Q2(0, x) exp(−σ ′W(t))1{t≤t∗x } dx. (5.17)

This generalises the main theorem in [9, Thm. 4.1] to the stochastic setting.

Remark 5.8. The inclusions preceding (5.15) and (5.17) are implied by the respective equations. 
This was already shown in Remarks 2.5 and 2.7, respectively.

5.4. Conservative solutions

In the case σ ′′ = 0, Q(t, x) in (3.8) is independent of X(t, x), and only depends on x via q0(x). 
It becomes possible, if q0 ∈ L2(R) ∩ L∞(R), to define U(t, X(t, x)) as the spatial integral of u. 
However, in order to avoid cyclic dependencies when U is used to define X via an SDE analogous 
to (3.1), we define first an auxiliary function which should be thought of as U(t, X(t, y)):

�(t, y) =
yˆ

−∞
u(t, x) dx. (5.18)

Recall that u is explicitly given in (3.12) and depends on x only via q0. In the conservative 
construction we extend this definition by the same formula to t > t∗x as we did in the specific 
cases of “box”-type data.

Define the characteristics via the equation:

X(t, x) = x +
tˆ

0

�(s, x) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s), (5.19)

which is straightforward as σ is linear and �(t, y) is a well-defined process, being dependent 
only on u, which in turn is defined explicitly in (3.12), as, analogous to (4.7), the derivative
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∂X(t, x)

∂x
= exp

( tˆ

0

Q(s, x) ds + σ ′W(t)
)

(5.20)

is well-defined and non-negative, the right-hand side again being dependent on x only through 
q0.

This allows us to define

U(t, x) := �(t, y), X(t, y;ω) = x,

as long as t �= t∗y (cf. (3.7)). Such a y exists because ∂X/∂x is P -almost surely bounded, and 
strictly positive. The function U is well-defined even though y as a random variable may not be 
unique because U only depends on y via X(t, y). The variable y is therefore a device for shifting 
stochasticity back-and-forth between x and X(t, y), and depends on the Jacobian ∂X(y)/∂y

being non-singular. To expand on this point we record a general version of Lemma 5.4:

Lemma 5.9 (“Stochastic Flow of Diffeomorphism” before Wave-breaking for General Data). 
Given t and x deterministic, there is a random variable y : � → R such that X(t, y) = x, P -
almost surely. If there are two such random variables y1 and y2 that satisfy this equation, then 
y1 − y2 is supported on the set {ω : t∗y1

= t} ∩ {ω : t∗y2
= t} in the sense that on the full P -measure 

of the complement, the difference is nought.

We emphasize here the hierarchy of dependencies, being that U depends on X, which depends 
on � in the above. The function � in turn depends on u, which in the σ ′′ = 0 case, is given 
explicitly by formula (3.12), derived using the similarly explicit formula (3.8) for the process 
Q(t, x).

The definition of U ensures that

U(t,X(t, x)) = �(t, x)

and consequently

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW(s).

It remains for us to check that, P -almost surely,

(i) Q(t, X(t, x)) = (∂xU)(t, X(t, x)) satisfies (3.3), and
(ii) Q ∈ C([0, T ]; H−1

loc (R)).

By continuity in H−1
loc we mean that for every pre-compact B ∈ R, ‖Q(t)‖H−1(B) is continu-

ous. In turn, the space H−1 is defined as the dual space of compactly supported H 1 functions. It 
is norm-equivalent to L2 of the anti-derivative on compact sets.

Proof of Theorem 5.6. By construction, (i) is already satisfied. We can take the spatial deriva-
tive easily enough:
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(∂xU)(t, x) = ∂x

yˆ

0

Q(t, z)
∂X

∂z
dz

= Q(t, y)
∂X

∂y

∂y

∂x

= Q(t, y).

Putting X(t, x) in the place of x, we can put x in the place of y, giving us:

(∂xU)(t,X(t, x)) = Q(t, x).

To prove (5.15) we again invoke Lemma 3.6 (in particular, (3.13)) and (5.20):

ˆ
|Q(t, x)|2 dx =

ˆ
|Q(t,X(t, y))|2 ∂X(y)

∂y
dy

=
ˆ

Z(t, y)

1
Q(0,y)

+ 1
2

´ t

0 Z(s, y) ds
Q(t,X(t, y))

× exp

( tˆ

0

Q(s,X(s, y)) ds + σ ′W(t)

)
dy

=
ˆ

Q(0, y)2Z(t, y) dy

=
ˆ

Q(0, y)2 exp(−σ ′W(t)) dy,

where again we have used the notation Z(t, y) = exp
(´ t

0 σ ′ dW
) = exp(σ ′W(t)).

Finally to see (ii), we consider the almost sure continuity of ‖U(t)‖2
L2(B)

over a pre-compact 
set B ⊆ R:

ˆ

B

|U(t, x)|2 dx =
ˆ

B

∣∣∣∣
xˆ

−∞
u(t, y) dy

∣∣∣∣
2

dx. (5.21)

As was shown in (3.12), (3.13) in Lemma 3.6,

u(t, y) = q0(y)
(

1 + q0(y)

2

tˆ

0

exp(−σ ′W(s)) ds
)
, (5.22)

which is path-by-path continuous in time for each fixed y that is a Lebesgue point of u. The 
boundedness of the integral on the right in (5.21) is then a result of the assumption q0 ∈ L2(R) ∩
L1(R). Therefore,
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‖U(t) − U(s)‖2
L2(B)

=
ˆ

B

∣∣∣∣
xˆ

−∞
u(t, y) dy −

xˆ

−∞
u(s, y) dy

∣∣∣∣
2

dx

=
ˆ

B

∣∣∣∣
xˆ

−∞

q2
0 (y)

2

∣∣∣∣
2

dx ×
( tˆ

s

exp(−σ ′W(τ)) dτ

)2

. (5.23)

The same boundedness of integral of u, and continuity of u( · , y) in time means that the limit as 
s → t is almost surely 0. This shows the continuity of ‖Q(t)‖

H−1
loc

in time. �
Remark 5.10 (Temporal continuity of ‖Q(t)‖2

H−1(B)
). From second factor in the integral with 

respect to x of the foregoing calculation, (5.23), upon comparison with (5.22), it can be seen that 
in fact ‖Q(t)‖2

H−1(B)
is P -almost surely in C1/2−0, and not simply continuous. Even though on 

taking the square root ‖Q(t)‖H−1(B) possesses strictly higher regularity-in-time than simply P -
almost sure inclusion in C(R), this still contrasts with the local Lipschitz continuity of ‖q(t)‖

H−1
loc

that deterministic solutions q possess (cf. (1.5)).

5.5. Dissipative solutions

We proceed directly to the proof of Theorem 5.7.

Proof of Theorem 5.7. By dissipative we mean solutions for which

Q(t,X(t, x)) =
{

exp(−σ ′W(t))
( 1

q0(x)
+ 1

2

´ t

0 exp(−σ ′W(s)) ds
)−1

, t < t∗x ,

0, t > t∗x .

Again, as σ ′′ = 0, the right-hand side only depends on x via q0.
Defining U(t, X(t, x)) as before, we can write

U(t,X(t, x)) =
xˆ

−∞
Q(t,X(t, y))

∂X

∂x
dy

=
xˆ

−∞
q0(y)

(
1 + q0(y)

2

tˆ

0

exp(−σ ′W(s)) ds
)
1{t<t∗y } dy. (5.24)

Therefore, again, there is no dependence of U(t, X(t, x)) on X(t, x), and U(t, X(t, x)) is 
explicitly known. From this and the boundedness of U it is clear that we can find a global solution 
to

X(t, x) = x +
tˆ
U(s,X(s, x)) ds +

tˆ
σ(X(s, x)) ◦ dW.
0 0
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It follows as in the conservative solution that

(i) X(t, x) also satisfies

dX(t, x) = U(t,X(t, x)) dt + σ(X(t, x)) ◦ dW

up to t = t∗x , and remains well-defined beyond this time, and
(ii) Q(t, X(t, x)) = (∂xU)(t, X(t, x)) satisfies (3.3).

To prove (5.17) we invoke Lemma 3.6 (in particular, (3.13)) and (5.20) exactly as in the proof 
immediately foregoing:

ˆ
|Q(t, x)|2 dx =

ˆ
|Q(t,X(t, y))|2 ∂X(y)

∂y
dy

=
ˆ

exp(−σ ′W(t))

1
Q(0,y)

+ 1
2

´ t

0 exp(−σ ′W(t)) ds

× 1{t≤t∗y }Q(t,X(t, y)) exp
( tˆ

0

Q(s,X(s, y)) ds + σ ′W(t)
)

dy

=
ˆ

Q(0, y)2 exp(−σ ′W(t))1{t≤t∗y } dy.

We also show Q ∈ C([0, T ]; H−1
loc (R)) by showing that ‖U(t)‖L2(B) is continuous in time. As 

before we have

ˆ

B

|U(t, x)|2 dx =
ˆ

B

∣∣∣∣
xˆ

−∞
q0(y)

(
1 + q0(y)

2

tˆ

0

exp(−σ ′W(s)) ds
)
1{t<t∗y } dy

∣∣∣∣
2

dx.

Continuity follows as in part (ii) of the proof of Theorem 5.6. The only difference is continuity 
at wave-breaking. This in turn follows from Lemma 3.6, where this time we invoke its main 
conclusion that at t∗y , the integrand of the inner integral, u(t, y), tends P -almost surely to nought. 
In dissipative solutions, we continue U past wave-breaking by simply setting ∂xU(t, x) to be 
nought after t = t∗y for a y where X(t, y) = x. �

Finally, as in the case of “box”-type initial data, we retain the Oleinik-type one-sided estimate:

Corollary 5.11. Suppose σ ′′ = 0 and q0 ∈ L1(R) ∩ L2(R). Then the dissipative solution Q with 
initial condition Q(0) = q0 in L1(R) ∩ L2(R) satisfies P -almost surely the following one-sided 
bound:

Q(t,X(t, y)) ≤ exp(−σ ′W(t))

1
+ + 1 ´ t exp(−σ ′W(s)) ds

.

max(q0(y),0 ) 2 0

761



H. Holden, K.H. Karlsen and P.H.C. Pang Journal of Differential Equations 270 (2021) 725–786
Remark 5.12 (Discrete approximations). From Lemma 3.1 (ii), it may be possible first to con-
sider well-posedness in the space of step functions, and thereafter to extend this by a limiting 
procedure to more general compactly supported L2(R) functions. As in the deterministic setting, 
see e.g., [34], it is enough to add the boxes together:

Let P = (x0, . . . , xn) be a partition of [x0, xn] ⊂ R, and q0 be the function

q0(x) =
n∑

i=1

V i
01(xi−1,xi+1)(x), V i

0 ∈R.

For i = 1, . . . , n, let t∗i be the wave-breaking time for the ith box. These are obviously not 
dependent on one another. Where V i

0 ≥ 0, we put t∗i = ∞, P -everywhere.
As neighbouring intervals are almost disjoint on R the analysis on any one box can be ex-

tended to show that where Ui(t, x) is counterpart of (5.7),

Ui(t, x) =

⎧⎪⎨
⎪⎩

0, x ≤ X(t, xi−1),
x−X(t,xi−1)

X(t,xi )−X(t,xi−1)
ui (t), x ∈ (X(t, xi−1),X(t, xi)),

ui (t), x ≥ X(t, xi),

with (Recall that the left-hand side does not actually depend on some X(s, 12(xi−1 + xi)), but 
only on the value q0(

1
2 (xi−1 + xi)).)

ui (t) := Q(t,
1

2
(xi−1 + xi)) exp

( tˆ

0

Q(s,
1

2
(xi−1 + xi)) ds + σ ′W(t)

)
,

we can write the solution u(t, x) as the sum

u(t, x) =
n∑

i=1

Ui(t, x).

This can be extended to an L2(R) initial condition q0 by setting

V i
0 =

xi 

xi−1

q0(x) dx,

so that the approximation with the partition P is

qP
0 (x) =

n∑
i=1

V i
01(xi−1,xi+1)(x).

Next, suppose one can find spaces on which the set {uP , qP }‖P‖>0 is weakly compact, and on 
which the associated collection of laws {μP }‖P‖>0 is correspondingly tight (see Ondreját [29]
for conditions giving compact embeddings into spaces of functions weakly continuous in time, 
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and Wk,p

loc (R) in space). Invoking the Jakubowski–Skorohod theorem [22] in taking the limit of a 
subsequence as ‖P ‖ → 0, one obtains a limit process whose law on a new stochastic basis is the 
same as that of the weak-star limit μ of the tight sequence {μP } on the original stochastic basis, 
that is, the same conclusions as for the conventional Skorohod theorem, but applied to function 
spaces without the requisite separability.

It then only behooves one to conclude the argument by showing that the stochastic integrals 
against dW̃ , where W̃ is the representation of the original Brownian motion in the new stochastic 
basis, remain martingales, in the manner of [2,11].

6. Reconciling different notions of solutions

Finally we complement the results concerning conservative and dissipative solutions-along-
characteristics by reconciling them with conservative and dissipative weak solutions, respec-
tively, which are more traditional to the subject of partial differential equations. These notions of 
solutions are all defined in Section 2.1.

Proposition 6.1 (Existence of Conservative Weak Solutions). Suppose q0 ∈ L1(R) ∩ L2(R) and 
σ ′′ = 0. For processes given by

U(t,X(t, x)) =
xˆ

−∞
q0(y)

(
1 + q0(y)

2

tˆ

0

exp(−σ ′W(s)) ds

)
dy,

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW,

Q(t,X(t, x)) = exp(−σ ′W(t))

[
1

q0(x)
+ 1

2

tˆ

0

exp(−σ ′W(s)) ds

]−1

,

the function defined by

q(t, x) = Q(t,X(t, y)),

where y ∈ R satisfies x = X(t, y), is a conservative weak solution.

Proposition 6.2 (Existence of Dissipative Weak Solutions). Suppose q0 ∈ L1(R) ∩ L2(R) and 
σ ′′ = 0. For a collection {t∗x } of random variables defined by

−q0(x)

t∗xˆ

0

exp
(− σ ′W(s)

)
ds = 2,

indexed by the Lebesgue points x of q0(x), and processes given by
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U(t,X(t, x)) =
xˆ

−∞
q0(y)

(
1 + q0(y)

2

tˆ

0

exp(−σ ′W(s)) ds
)
1{t<t∗y } dy,

X(t, x) = x +
tˆ

0

U(s,X(s, x)) ds +
tˆ

0

σ(X(s, x)) ◦ dW,

Q(t,X(t, x)) =

⎧⎪⎨
⎪⎩

exp(−σ ′W(t))

[
1

q0(x)
+ 1

2

´ t

0 exp(−σ ′W(s)) ds

]−1

, t < t∗x ,

0, t > t∗x ,

the function defined by

q(t, x) = Q(t,X(t, y)),

where y ∈ R satisfies x = X(t, y), is a dissipative weak solution.

Proof of Proposition 6.1. Since the process Q̃(t) = Q(t, X(t, y)) satisfies (3.3),

dQ̃(t) = −1

2
Q̃2(t) dt − σ ′Q̃(t) ◦ dW,

up to t < t∗y , pointwise for y in the set of Lebesgue points of q0, by the Itô formula it manifestly 
holds that up to the same stopping time,

dQ̃2(t) = −Q̃3(t) dt − 2σ ′Q̃2(t) ◦ dW. (6.1)

On P -almost every path, except at the time t = t∗y , we have shown that these equations re-
main valid. This is possible because we are only concerned with the Lebesgue points of q0, 
which is a deterministic, time independent object. Let ϕ ∈ C∞

0 (R). First we observe that since 
∂X(t, y)/∂y > 0 for almost every (t, y) ∈ [0, T ] × R, P -almost surely, it holds that for almost 
every t , P -almost surely,

ˆ

R

Q2(t,X(t, y))ϕ(X(t, y)) X(dy) =
ˆ

R

Q2(t, x)ϕ(x) dx, (6.2)

where we have used X(dy) instead of dX(y) to denote the deterministic differential to emphasise 
integration in the spatial, and not the temporal variable. We can disregard the measure zero set 
in t (wave-breaking only occurs once along each characteristic) as we shall be integrating over t .

By (5.20), in the sense of Itô, we have the P -almost sure equality

d

(ˆ

R

Q2(t,X(t, y))ϕ(X(t, y)) X(dy)

)

= d

(ˆ
Q2(t,X(t, y))ϕ(X(t, y))

∂X(t, y)

∂y
dy

)

R

764



H. Holden, K.H. Karlsen and P.H.C. Pang Journal of Differential Equations 270 (2021) 725–786
=
ˆ

R

dQ2(t,X(t, y)) ◦
(
ϕ(X(t, y))

∂X(t, y)

∂y

)
dy

+
ˆ

R

Q2(t,X(t, y)) ◦ d
(
ϕ(X(t, y))

∂X(t, y)

∂y

)
dy. (6.3)

We already know how to expand dQ2(t, X(t, y)) from (6.1). Therefore we inspect the sec-
ond summand in the final line of the foregoing calculation. Since ϕ is a smooth, deterministic 
function, by the regular chain rule,

d
(
ϕ(X(t, y))

∂X(t, y)

∂y

)

= dϕ(X(t, y)) ◦ ∂X(t, y)

∂y
+ ϕ(X(t, y)) ◦ d

∂X(t, y)

∂y

= ∂X(t, y)

∂y
◦
(
∂xϕ(X(t, y)) ◦ dX(t, y)

)
+ ϕ(X(t, y)) ◦ d

∂X(t, y)

∂y
.

Recalling Remark 3.2, and using (5.20) and the equation for the characteristics in the theorem 
statement,

d
(
ϕ(X(t, y))

∂X(t, y)

∂y

)

= ∂X(t, y)

∂y
∂xϕ(X(t, y)) ◦ dX(t, y) + ϕ(X(t, y)) ◦ d

∂X(t, y)

∂y

= ∂xϕ(X(t, y))U(t,X(t, y))
∂X(t, y)

∂y
dt

+ ∂xϕ(X(t, y))σ (X(t, y))
∂X(t, y)

∂y
◦ dW

+ ϕ(X(t, y)) ◦
(
Q(t,X(t, y))

∂X(t, y)

∂y
dt + σ ′ ∂X(t, y)

∂y
◦ dW

)
.

Inserting this into (6.3) and using (6.1) and (6.2), we recover the weak energy balance (2.5), 
where ∂2

xxσ = 0 in the linear σ case. �
For dissipative solutions, we shall be multiplying by an extra factor of 1{t<t∗y } in the proof 

below. The selection of y for times t > t∗y has in fact been dealt with in Section 5.2, where we 
have shown how to extend characteristics globally through a wave-breaking point.

Remark 6.3. If it can be shown that any conservative weak solution (u, q) can be used to con-
struct characteristics

dX(t, y) = u(t,X(t, y)) dt + σ(X(t, y)) ◦ dW
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that are for almost every t ∈ [0, T ] and P -almost surely a C1 surjection of R for which 
∂X/∂x ≥ 0, then the calculations of the foregoing proof can be done in reverse to attain the re-
verse implication that conservative weak solutions are necessarily conservative solutions-along-
characteristics. This would imply uniqueness of solutions. We relegate this proof to an upcoming 
work.

Proof of Proposition 6.2. The proof here essentially follows the one for Proposition 6.1 with 
the exception that there is a defect measure arising from the temporal derivative, and we employ 
(6.1) in evaluating the quantity:

d(Q2(t,X(t, y))1{t≤t∗y }) = 1{t≤t∗y } dQ2(t,X(t, y)) − Q2(t,X(t, y))δ(t − t∗y )dt,

understood in the weak sense. (See Appendix C for the deterministic analogue, along with a 
discussion of this “defect measure”.)

Since Q2δ ≥ 0, the inequality replaces the equal sign when this measure is suppressed. This 
is the weak energy inequality (2.8). See also (C.10) for the deterministic analogue.

Almost sure boundedness from above is given by Lemma 5.11. Except on the set {ω : t∗x ≥ t}, 
for P -almost every ω there exists a unique y such that X(t, y) = x. On that set we know that 
Q(t, x) can be bounded by 0. Since every x = X(t, y) can be reached from some y at t = 0 on a 
characteristic, the one sided estimate holds for Q(t, x) in the general case. �
Remark 6.4 (Maximal dissipation of energy). With regards to comments following Defini-
tion 2.6, we intend to show in an upcoming work that maximal energy dissipation is given by 
(2.10), as well as the uniqueness of dissipative weak solutions.

Appendix A. Lagrangian and Hamiltonian approaches to the Hunter–Saxton equation

Here we motivate the stochastic Hunter–Saxton equation (1.1) that we study in this paper.
From Hunter–Zheng [20] we know that the evolution part of the Hunter–Saxton equation is 

given by

∂tu = D−1 δH(u)

δu
, (A.1)

where the Hamiltonian reads

H(u) = 1

2

ˆ
u(∂xu)2 dx,

and D−1 = ´ x . We find that

δH(u)

δu
= 1

2
(∂xu)2 − ∂x(u∂xu),

which yields

∂x(∂tu + u∂xu) = 1
(∂xu)2.
2
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Note that we can write (A.1) as

∂tq = δH(u)

δu
.

If we perturb the Hamiltonian as in, e.g., [18], by

H̃ (u) = H(u) + 1

2

ˆ
σ(∂xu)2 ◦ Ẇ dx, (A.2)

we find

δH̃ (u)

δu
= 1

2
(∂xu)2 − ∂x(u∂xu) − ∂x(σ∂xu) ◦ Ẇ ,

which yields

∂x(∂tu + u∂xu) = 1

2
(∂xu)2 − ∂x(σ∂xu) ◦ Ẇ , (A.3)

and this is the stochastic Hunter–Saxton equation.
An alternative approach is based on a Lagrangian formulation. Let L = L(u, ∂tu, ∂xu) denote 

the Lagrangian. If we take the first variation

δ

¨
L(u, ∂tu, ∂xu) dx dt,

we find that the Euler–Lagrange equation reads

∂

∂x

∂L

∂(∂xu)
+ ∂

∂t

∂L

∂(∂tu)
− ∂L

∂u
= 0.

Introduce [20]

L(u, ∂tu, ∂xu) = ∂xu∂tu + u(∂xu)2 + σ(∂xu)2 ◦ Ẇ .

Then we find again that

∂x(∂tu + u∂xu) = 1

2
(∂xu)2 − ∂x(σ∂xu) ◦ Ẇ . (A.4)

Remark A.1 (The Euler-Poincaré structure). The perturbation (A.2) can be compared with the 
way that [7,18] treated Camassa–Holm and Hunter–Saxton equations, emphasising the geometric 
“Euler-Poincaré structure” to which these related equations conform, manifested in the determin-
istic setting as

0 = ∂tm + ∂x(mu) + m∂xu,
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with m = u − ∂2
xxu for the Camassa–Holm equation and m = ∂2

xxu for the Hunter–Saxton 
equation. To “stochasticise” these equations whilst respecting the Euler-Poincaré structure, 
[7,17,18]replaced u by u + σẆ , and replaced all simple products by the Stratonovich product.

This amounted to perturbing the Hamiltonian by

H̃ [m] = H [m] +
ˆ

(mσ) ◦ Ẇ dx

and leads to the equation

0 = ∂tm + ∂x(mu) + m∂xu + (
∂x(mσ) + m∂xσ

) ◦ Ẇ .

In the Hunter–Saxton case, by setting m = ∂2
xxu = ∂xq , one formally arrives at

0 = ∂x

(
∂tq + ∂x(uq) − 1

2
q2

)
+ (∂x (∂xqσ ) + ∂xq ∂xσ ) ◦ Ẇ .

Taking an antiderivative, we see that the noise agrees with our equation (1.1) in the σ ′′ = 0 case. 
The analytic properties do not at first look as easy to exploit in the general case where the noise 
formulated as above. Since ∂xq∂xσ is not a full derivative, one may be forced to work on the 
“level” of ∂t (∂xq) for noises of this form with general σ .

Nevertheless, Crisan-Holm [7] showed heuristically that the stochastic Camassa–Holm equa-
tion thus derived, respecting the Euler-Poincaré structure, can be understood as a compatibility 
condition for the deterministic Camassa–Holm isospectral problem and a stochastic evolution 
equation for its eigenvalue if one had σ(x) = Aex + Be−x + C for A, B, C ∈ R. This σ is of 
some heuristic interest for our formulation as well, as noted in Remark 2.12. (Note that there is 
a calculation error in (2.13) of [7] that invalidates Theorem 16 there — see also Remark 3.3 and 
Section 4.1 for genuinely stochastic wave-breaking.)

Appendix B. A-priori bounds

In this appendix we shall establish the a-priori estimates of Proposition 2.11, which we re-state 
below:

Proposition B.1 (A-priori bounds). Let q be a conservative or dissipative weak solution to the 
stochastic Hunter–Saxton equation (1.1), with σ ∈ (C2 ∩ Ẇ 1,∞ ∩ Ẇ 2,∞)(R), and initial condi-
tion q(0) = q0 ∈ L1(R) ∩ L2(R). The following bounds hold:

ess sup
t∈[0,T ]

E‖q(t)‖2
L2(R)

≤ CT ‖q0‖2
L2(R)

, (B.1)

E‖q‖2+α

L2+α([0,T ]×R)
≤ CT,α‖q0‖2

L2(R)
, (B.2)

for any α ∈ [0, 1).
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Consider a standard mollifier defined by Jε(x) = 1
ε
J
(

x
ε

)
where

0 ≤ J ∈ C∞
c (R), supp (J ) ⊆ [−1,1], J (−x) = J (x),

ˆ

R

J (x)dx = 1.

We write

hε := Jε � h

for the (spatial) convolution of a function h. We prove the following technical lemma on molli-
fiers.

Lemma B.2 (Regularisation Lemma). Let q be a weak solution to the stochastic Hunter–Saxton 
equation (1.1) with σ ∈ (C2 ∩ Ẇ 1,∞ ∩ Ẇ 2,∞)(R). The mollified equation holds pointwise in R
over t < T , in the sense of Itô that:

dqε = −Jε � ∂x(uq) dt + 1

2
Jε � q2 dt − Jε � ∂x(σq) dW + 1

2
Jε � ∂x(σ∂x(σq)) dt. (B.3)

In particular, for fixed ε, there is a representative of qε (also called qε) such that for each 
ω ∈ �,

qε(ω) ∈ C([0, T ];C∞(R)).

Proof. The main point is to check that there qε is P -almost surely pointwise continuous in time, 
so that there are no dissipative effects when an entropy is applied to it, and so that Itô’s formula 
can be applied pointwise in x.

By the Burkholder–Davis–Gundy inequality, for β, θ > 0 and deterministic times s, t ∈ [0, T ],

E

∥∥∥∥∥∥
tˆ

s

Jε � ∂x(σq) dW

∥∥∥∥∥∥
θ

H
β
loc

≤ CE

⎛
⎝ tˆ

s

∥∥∥Jε � ∂x(σq)

∥∥∥2

H
β
loc

dr

⎞
⎠

θ/2

= CE

⎛
⎝ tˆ

s

∥∥∥(∂β+1
x Jε) � (σq)

∥∥∥2

L2
loc

dr

⎞
⎠

θ/2

≤ CE

⎛
⎝ tˆ

s

∥∥∥(∂β+1
x Jε) � (σq)

∥∥∥2

L∞
loc

dr

⎞
⎠

θ/2

≤ Cβ,ε,θ,T ,σ |t − s|θ/2,

By Kolmogorov’s continuity theorem, for fixed ε > 0, we have a C1/2−0([0, T ]; Hβ

loc(R))

representative of the martingale
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Jε �

tˆ

0

∂x(σq) dW =
tˆ

0

Jε � ∂x(σq) dW.

By the Sobolev embedding theorem on R, for β ≥ 1, we have spatial continuity to arbitrary order.
All the other temporal integrals are integrals of finite variation, and hence continuous in t , 

with integrands that are convolutions against a fixed, smooth function, and hence smooth in x. 
This means that

qε(t) − qε(0) = −
tˆ

0

Jε � ∂x(uq) ds − 1

2
Jε � q2 ds − Jε �

tˆ

0

∂x(σq) ◦ dW

is also pointwise continuous. This means there is no dissipation arising from the mollified equa-
tion for fixed ε > 0.

Moreover, since

Jε �

tˆ

0

∂x(σq) dW

has a C1/2−0([0, T ]; Hβ

loc(R)) continuous representative, we can write its cross-variation with W
as

〈
Jε �

( · )ˆ

0

∂x(σq) dW,W

〉
t

= Jε �

tˆ

0

∂x(σq) ds.

Therefore the normal Itô formula is sufficient to establish equivalence of the Stratonovich and 
Itô formulations. �
Lemma B.3 (Mollification error bounds). On the same assumptions as Lemma B.2, the mollified 
equation (B.3) can be re-written as

dqε + ∂x(uεqε)dt + ∂x(σqε)dW − 1

2
∂x(σ∂x(σqε)) = 1

2
q2
ε dt + (rε + ρε)dt + r̃ε dW, (B.4)

where the mollification error

rε :=
(
∂x(uεqε) − ∂x

(
uq

)
� Jε

)
+ 1

2

(
q2 � Jε − q2

ε

)
(B.5)

tends to zero in L1([0, T ]; L1(R)) as ε → 0, P -almost surely,

r̃ε :=
(
∂x(σqε) − ∂x

(
σq) � Jε

)
(B.6)

tends to zero in L2([0, T ]; L2(R)) as ε → 0, P -almost surely, and, for any S ∈ C1,1(R) with 
supr∈R(|S′(r)| + |S′′(r)|) < ∞,
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T̂

0

ˆ

R

(
− S′(qε)ρε + 1

2
S′′(qε)

(
(∂x(σqε))

2 − (
∂x(σq) � Jε

)2
))

dx dt

tends to zero as ε → 0, P -almost surely, where

ρε := 1

2

(
∂x

(
σ∂x(σq)) � Jε − ∂x(σ∂x(σqε))

)
. (B.7)

Proof. By Definition 2.1, for a weak solution (u, q) to the stochastic Hunter–Saxton equation 
(1.1), q ∈ L∞([0, T ]; L2(R)), and u ∈ L∞([0, T ]; Ḣ 1(R)) with unit P -probability. This fact will 
be implicitly invoked along with the dominated convergence theorem, among other instances, in 
the following tripartite calculations.

1. Estimate of rε .
We can decompose ∂x(uεqε) − ∂x

(
uq

)
� Jε as follows:

∂x(uεqε)−∂x

(
uq

)
� Jε

= (
∂x(uεqε) − ∂x(uqε)

)+ (
∂x(uqε) − ∂x

(
uq

)
� Jε

)
.

We estimate the above in L1(R) term-by-term.
Treating the L1

loc(R) integral as an Ḣ 1(R) – H−1(R) pairing between |u −uε| and |∂xqε|, we 
have

‖∂x

(
(u − uε)qε

)‖L1(R) ≤ C
(‖u − uε‖L∞(BR) + ‖q − qε‖L2(R)

)‖qε‖L2(BR)

as ε → 0, by standard results on convolutions, P -almost surely.
The second term tends to nought in L1(R) for almost every t ∈ [0, T ], P -almost surely by 

[26, Lemma 2.3] (also see [12, Lemma II.1]).
The final part of rε is

q2 � Jε − q2
ε = q2 � Jε − q2 + q(q − qε) + (q − qε)qε.

It tends to nought in L1(R) for almost every t ∈ [0, T ], P -almost surely by standard theo-
rems on convolutions. By the P -almost sure inclusion q ∈ L∞([0, T ]; L2(R)) for weak solu-
tions, P -almost surely the L1(R) norm of the expression above can be uniformly bounded by 
C supt∈[0,T ] ‖q(t)‖2

L2(R)
. This expression is of course integrable over [0, T ]. Therefore, by the 

dominated convergence theorem, P -almost surely, the L1([0, T ]; L1(R)) convergence follows 
from the pointwise-in-t convergence to zero of

‖q2(t) � Jε − q2(t)‖L1(R) + ‖q(q − qε)‖L1(R) + ‖(q − qε)qε‖L1(R),

as ε → 0.
By the estimate

‖∂x(uqε)(t) − ∂x(uq)(t) � Jε‖ 1 ≤ C‖q(t)‖2
2 ,
Lloc(R) L (R)
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also established in [26, Lemma 2.3], it again follows from the P -almost sure inclusion 
‖q(t)‖L2(R) ∈ L∞([0, T ]) via the dominated convergence theorem that

T̂

0

‖rε(t)‖L1(R) dt ≤ CT,ε

T̂

0

‖q(t)‖2
L2(R)

dt, (B.8)

where CT,ε is a quantity independent of t , vanishing as ε → 0, and therefore rε → 0 in 
L1([0, T ]; L1

loc(R)), P -almost surely.

2. Estimate of r̃ε .
This is treated similarly to the second term above, with σ in place of u.
Since σ ∈ Ẇ 1,∞ and q ∈ L∞([0, T ]; L2(R)), it holds that ∂x(σq) ∈ L∞([0, T ]; L2

loc(R))

with unit P probability. Therefore this time we have slightly higher spatial integrability, allowing 
us to conclude via [26, Lemma 2.3] that

r̃ε(t) = ∂x(σqε)(t) − ∂x(σq)(t) � Jε → 0

in L2(R) for almost every t ∈ [0, T ], P -almost surely, as ε → 0.
Next, by an application of the dominated convergence theorem in a manner previously demon-

strated, we can conclude that

T̂

0

‖r̃ε(t)‖2
L2(R)

dt ≤ CT,ε

T̂

0

‖q(t)‖2
L2(R)

dt, (B.9)

where CT,ε depends on the continuity properties of σ and its derivatives, in additional to 
ε, for which we have the limit CT,ε → 0 as ε → 0, P -almost surely. Hence r̃ε → 0 in 
L2([0, T ]; L2(R)), P -almost surely.

3. Estimate of ρε .
The estimate of ρε takes inspiration from the proof of [30, Prop. 3.4]. However, whereas they 

considered the commutator between the operators σ̃f := σ∂xf and jεf := f � Jε , we shall have 
to consider the analogous question for σf := ∂x(σf ) and jε .

Recall that here, we seek not to show that ρε vanishes but that the following quantity does:

T̂

0

ˆ

R

(
− S′(qε)ρε + 1

2
S′′(qε)

(
(∂x(σqε))

2 − (
∂x(σq) � Jε

)2
))

dx dt.

We can write ρε as

ρε := 1

2

(
∂x

(
σ∂x(σq)) � Jε − ∂x(σ∂x(σqε))

)

= 1

2

(
jεσσq − σσ jεq

)
= 1(

jεσσq − σ jεσq + σ jεσq − σσ jεq
)

2
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= 1

2

([
jε,σ

]
(σq) + σ

[
jε,σ

]
(q)

)
, (B.10)

where

[
jε,σ

]
(q) = jεσq − σ jεq.

Similarly, we can write the remaining part of the integrand as

(∂x(σqε))
2 − (

∂x(σq) � Jε

)2 = (
(σ jεq)2 − (jεσq)2). (B.11)

Therefore, following the calculations in [30, p. 655], we find that

1

2
S′′(qε) · (B.11) = 1

2
S′′(qε)

(
σ jεq − jεσq

)(
σ jεq + jεσq

)
= −1

2
S′′(qε)

([
σ , jε

]
(q)

)2 + S′′(qε)(σ jεq)
[
σ , jε

]
(q)

= −1

2
S′′(qε)

([
σ , jε

]
(q)

)2 + S′′(qε)∂xσqε

[
σ , jε

]
(q)

+ σ∂x(S
′(qε))

[
σ , jε

]
(q)

= −1

2
S′′(qε)

([
σ , jε

]
(q)

)2 + S′′(qε)∂xσqε

[
σ , jε

]
(q)

+ ∂x

(
σS′(qε)

[
σ , jε

]
(q)

)− S′(qε)∂x

(
σ
[
σ , jε

]
(q)

)
= −1

2
S′′(qε)

([
σ , jε

]
(q)

)2 + S′′(qε)∂xσqε

[
σ , jε

]
(q)

+ ∂x

(
σS′(qε)

[
σ , jε

]
(q)

)− S′(qε)σ
[
σ , jε

]
(q),

by invoking the definition of σ .
Adding this to (B.10), we find that

−S′(qε) · (B.10) + 1

2
S′′(qε) · (B.11)

= −1

2
S′′(qε)

([σ , jε](q)
)2 + S′′(qε)∂xσqε

[
σ , jε

]
(q) + ∂x

(
σS′(qε)

[
σ , jε

]
(q)

)
− S′(qε)σ

[
σ , jε

]
(q) − 1

2
S′(qε)

([jε,σ ](σq) + σ
[
jε,σ

]
(q)

)
= −1

2
S′′(qε)

([σ , jε](q)
)2 + S′′(qε)∂xσqε

[
σ , jε

]
(q)

+ ∂x

(
σS′(qε)

[
σ , jε

]
(q)

)+ 1

2
S′(qε)

([σ , jε](σq) − σ [σ , jε](q)
)

= −1

2
S′′(qε)

([σ , jε](q)
)2 + S′′(qε)∂xσqε

[
σ , jε

]
(q)

+ ∂x

(
σS′(qε)

[
σ , jε

]
(q)

)+ 1

2
S′(qε)

[[
σ , jε

]
,σ

]
(q). (B.12)
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We have already established that 
[
σ , jε](q) = r̃ε → 0 in L2([0, T ]; L2(R)) as ε → 0.

Therefore, we focus on the double commutator, which, for clarity, is[[
σ , jε

]
,σ

]
(q) = [

σ , jε
]
(σq) − σ

[
σ , jε

]
(q)

= 2σ jεσq − jεσσq − σσ jεq. (B.13)

Term-by-term in this commutator we have

2σ jεσq(x) = 2
ˆ

R

∂2
xxJε(x − y)σ (x)σ (y)q(y) dy (B.14)

+ 2
ˆ

R

∂xJε(x − y)∂xσ (x)σ (y)q(y) dy, (B.15)

jεσσq(x) =
ˆ

R

∂2
xxJε(x − y)σ 2(y)q(y) dy (B.16)

−
ˆ

R

∂xJε(x − y)σ (y)∂yσ (y)q(y) dy, (B.17)

and

σσ jεq(x) =
ˆ

R

Jε(x − y)∂x

(
σ(x)∂xσ (x)

)
q(y) dy (B.18)

+ 3
ˆ

R

∂xJε(x − y)σ (x)∂xσ (x)q(y) dy (B.19)

+
ˆ

R

∂2
xxJε(x − y)σ 2(x)q(y) dy. (B.20)

There are more terms here than in [30] because we do not necessarily have the divergence-free 
condition ∂xσ = 0.

Now we can estimate (B.14) to (B.20) above by considering the sums

I1 := (B.15) − (B.17) − (B.19),

I2 := (B.14) − (B.16) − (B.20),

and finally the stand-alone integral (B.18), where from (B.13), we see that[[
σ , jε

]
,σ

]
(q) = I1 + I2 − (B.18). (B.21)

We shall use [12, Lemma II.1] to establish that this sum above tends to nought in an appropri-
ate topology. Estimating these integrals separately, we have
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‖I1‖L2(R) =
∥∥∥∥
ˆ

R

∂xJε( · − y)
(

2σ(y)∂xσ ( · ) + σ(y)∂yσ (y) − 3σ( · )∂xσ ( · )
)
q(y) dy

∥∥∥∥
L2(R)

=
∥∥∥∥
ˆ

R

∂xJε( · − y)

×
(

2
(
σ(y) − σ( · ))∂xσ ( · ) + (

σ(y)∂yσ (y) − σ( · )∂xσ ( · )))q(y) dy

∥∥∥∥
L2(R)

≤
∥∥∥∥
ˆ

R

|∂xJε( · − y)|

×
(

2|σ(y) − σ( · )| |∂xσ ( · )| + |σ(y)∂yσ (y) − σ( · )∂xσ ( · )|
)
|q(y)| dy

∥∥∥∥
L2(R)

≤ C

∥∥∥∥
ˆ

R

1

ε
| · −y|Jε( · − y)

×
(

2

∣∣∣∣σ(y) − σ( · )
y − · ∂xσ ( · )

∣∣∣∣+
∣∣∣∣σ(y)∂yσ (y) − σ( · )∂xσ ( · )

y − ·
∣∣∣∣
)

|q(y)| dy

∥∥∥∥
L2(R)

≤ C
(
‖∂xσ‖2

L∞(R) + ‖σ∂xσ‖L∞(R)

)∥∥∥∥
ˆ

R

1

ε
| · −y|Jε( · − y)|q(y)| dy

∥∥∥∥
L2(R)

≤ C
(
‖∂xσ‖2

L∞(R) + ‖σ∂xσ‖L∞(R)

)∥∥1

ε
| · |Jε( · )∥∥

L1(R)

∥∥q∥∥
L2(R)

≤ C
(‖∂xσ‖2

L∞(R) + ‖σ∂xσ‖L∞(R)

)‖q‖L2(R).

Here we used that |∂xJε| � ε−1Jε and Young’s inequality for convolutions. Similarly we find 
that

‖I2‖L2(R) =
∥∥∥∥
ˆ

R

∂2
xxJε( · − y)

(
2σ( · )σ (y) − σ 2( · ) − σ 2(y)

)
q(y) dy‖L2(R)

=
∥∥∥∥
ˆ

R

∂2
xxJε( · − y)

(
σ( · ) − σ(y)

)2
q(y) dy

∥∥∥∥
L2(R)

≤
∥∥∥∥
ˆ

R

|∂2
xxJε( · − y)|∣∣2σ( · )σ (y) − σ 2( · ) − σ 2(y)

∣∣ |q(y)| dy‖L2(R)

≤ C

∥∥∥∥
ˆ

R

1

ε2 ( · − y)2Jε( · − y)

∣∣∣∣σ( · ) − σ(y)

y − ·
∣∣∣∣
2

|q(y)| dy

∥∥∥∥
L2(R)

≤ C‖∂xσ‖2
L∞(R)

∥∥∥∥
ˆ

1

ε2 ( · − y)2Jε( · − y)|q(y)| dy

∥∥∥∥
L2(R)
R
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≤ C‖∂xσ‖2
L∞(R)

∥∥ 1

ε2 ( · )2Jε( · )∥∥
L1(R)

∥∥q∥∥
L2(R)

≤ C‖∂xσ‖2
L∞(R)‖q‖L2(R).

We also have

‖(B.18)‖L2(R) ≤ C‖Jε‖L1(R)‖∂x(σ∂xσ )‖L∞(R)‖q(t)‖L2(R).

Now for smooth functions q ,

I2 =
ˆ

R

∂2
xxJε(x − y)

(
2σ(x)σ (y) − σ 2(x) − σ 2(y)

)
q(y) dy

= −2
ˆ

R

∂2
xxJε(x − y)

(x − y)2

2

(
σ(y) − σ(x)

(y − x)

)2

q(y) dy

= −2(∂xσ )2q(x)

ˆ

R

z2

2
∂2
zzJε(z) dz + o(ε).

A similar calculation can be done for I1, where there is only one derivative on the mollifier, and 
which can be found directly in the proof of [12, Lemma II.1].

The limit of (B.18) as ε → 0 for smooth q is standard.
Reasoning then as in the proof of [12, Lemma II.1], we find that

I1 → ∂x(σ∂xσ )q + 2(∂xσ )2q, I2 → −2(∂xσ )2q, −(B.18) → −∂x(σ∂xσ )q,

in L2(R) almost everywhere in time, P -almost surely as ε → 0. Adding these together, with 

reference to (B.21), we can conclude that 
[[

σ , jε
]
, σ

]
(q) → 0 in L2([0, T ]; L2(R)) P -almost 

surely as ε → 0.
Recall (B.12). We have the P -almost sure bound,

∣∣∣∣
T̂

0

ˆ

R

[
− S′(qε)ρε + 1

2
S′′(qε)

(
(∂x(σqε))

2 − (
∂x(σq) � Jε

)2
)]

dx dt

∣∣∣∣

=
∣∣∣∣

T̂

0

ˆ

R

(
− S′(qε) · (B.10) + 1

2
S′′(qε) · (B.11)

)
dx dt

∣∣∣∣
≤ CT,σ,ε‖q‖L2([0,T ]×R), (B.22)

where CT,σ,ε → 0 as ε → 0. �
Next we prove Proposition 2.11:

Proof of Proposition 2.11. We carry out this proof in three steps:
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(1) We first renormalise the mollified equation, finding an equation for S(qε) with S ∈ C1,1.
(2) Using the renormalisation in (1) prove the explicit L2-bound (2.12).
(3) Exploiting the explicit L2-bound, we demonstrate the L2+α-bound (2.13).

1. Renormalisation.
Since convolution commutes with differentiation in x,

∂xuε = qε.

For any non-negative S ∈ C2(R), we can use Itô’s formula to write

0 = dqε + (
∂x(uεqε) − 1

2
q2
ε

)
dt + ∂x(σqε) dW

− 1

2
∂x

(
σ∂x(σqε)

)
dt − (rε + ρε) dt − r̃ε dW.

Furthermore,

0 = dS(qε) + S′(qε)

(
∂x(uεqε) − 1

2
q2
ε − 1

2
∂x(σ∂x(σqε))

)
dt + S′(qε)∂x(σqε) dW

− 1

2
S′′(qε)

(
∂x(σqε) − r̃ε

)2 dt − S′(qε)(rε dt + ρε dt + r̃ε dW)

= L− 1

2
S′′(qε)

(
∂x(σqε) − r̃ε

)2 dt − S′(qε)(rε dt + ρε dt + r̃ε dW).

For the first term L we find

L = dS(qε) + S′(qε)
(
∂x(uεqε) − 1

2
q2
ε

)
dt + S′(qε)∂x(σqε)dW − 1

2
S′(qε)∂x(σ∂x(σqε))dt

= dS(qε) + (
∂x(uεS(qε)) − qεS(qε) + 1

2
S′(qε)q

2
ε

)
dt − 1

2
S′(qε)∂x(σ∂x(σqε))dt

+ ∂x(σS(qε))dW + ∂xσ
(
qεS

′(qε) − S(qε)
)

dW,

and the last term on the first line can be further expanded in order to maximise the number of 
terms in divergence form:

L = dS(qε) + (
∂x(uεS(qε)) − qεS(qε) + 1

2
S′(qε)q

2
ε

)
dt

+ ∂x(σS(qε))dW + ∂xσ
(
qεS

′(qε) − S(qε)
)

dW

− 1

2
∂2
xx(S(qε)σ

2)dt + 1

4
∂x(S(qε)∂xσ

2)dt + 1

4
∂x

(
(S(qε) − S′(qε)qε)∂xσ

2)dt

+ 1

2
S′′(qε)(σ∂xqε)

2 dt + 1

4
S′′(qε)∂xσ

2qε∂xqε dt.

Re-arranging the terms, one arrives at:
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L = dS(qε) + ∂x

(
uεS(qε) + 1

4
∂xσ

2S(qε)
)

dt + ∂x(σS(qε))dW

+ ∂xσ
(
qεS

′(qε) − S(qε)
)

dW − 1

2
∂2
xx

(
σ 2S(qε)

)
dt −

(
qεS(qε) − 1

2
S′(qε)q

2
ε

)
dt

− 1

4
∂2
xxσ

2(qεS
′(qε) − S(qε)

)
dt − 1

2
S′′(qε)

(
(∂x(σqε))

2

− (σ∂xqε)
2)dt + 1

2
S′′(qε)(∂x(σqε))

2 dt.

Introducing GS(v) = vS′(v) − S(v), we can simplify the above as:

L = dS(qε) + ∂x

(
uεS(qε) + 1

4
∂xσ

2S(qε) − 1

2
∂xσ

2GS(qε)

)
dt − (

qεS(qε) − 1

2
q2
ε S′(qε)

)
dt

−
[

1

2
∂2
xx

(
σ 2S(qε)

)+ 1

2
qεG

′
S(qε)(∂xσ )2 − 1

4
∂2
xxσ

2GS(qε)

]
dt

+ ∂x(σS(qε))dW + ∂xσGS(qε)dW + 1

2
S′′(qε)(∂x(σqε))

2 dt.

There is no pathwise energy estimate in the stochastic setting because of the term ∂xσGS(qε) dW , 
which is not an exact spatial derivative.

Putting back in rε , ρε , and r̃ε , we arrive at

0 = dS(qε) + ∂x

(
uεS(qε) + 1

4
∂xσ

2S(qε) − 1

2
∂xσ

2GS(qε)

)
dt − (

qεS(qε) − 1

2
q2
ε S′(qε)

)
dt

−
[

1

2
∂2
xx

(
σ 2S(qε)

)+ 1

2
qεG

′
S(qε)(∂xσ )2 − 1

4
∂2
xxσ

2GS(qε)

]
dt

+ ∂x(σS(qε))dW + ∂xσGS(qε)dW

+ 1

2
S′′(qε)

(
(∂x(σqε))

2 − (
∂x(σq) � Jε

)2
)

dt − S′(qε)(rε dt + ρε dt + r̃ε dW),

(B.23)
where we have used

∂x(σq) � Jε = ∂x(σqε) − r̃ε.

This puts most terms of the equation in divergence form and also sets up the mollification 
term ready for an application of Lemma B.3.

2. The L2-bound.
The L2-bound follows directly from the requirement (2.5) of Definition 2.3 for conservative 

weak solutions.
We show that the weak energy balance (2.8) holds for weak dissipative solutions, from which 

shall follow the L2-bound (2.12).
We can estimate ‖q(t)‖2

L2
x

using the entropies:

S(v) = S�(v) :=
{

v2, |v| ≤ �,

2�|v| − �2, |v| > �.
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This ensures that S� has bounded first and second derivatives for � < ∞, and allows us to exploit 
the convergences in ε → 0 of rε , ρε , and r̃ε proven in Lemma B.3. In particular,

S′
�(v) =

{
2v, |v| ≤ �,

2� sgn(v), |v| > �,
S′′(v) = 21{|v|≤�}.

Furthermore, we have

GS(v) = vS′
�(v) − S�(v) = v2 ∧ �2, G′

S(v) = vS′′
� (v) = 2v1{|v|≤�},

and

qεS�(qε) − 1

2
q2
ε S′(qε) = �qε(|qε| − �)1{|qε |>�}.

Inserting these into (B.23) and integrating in x and s, we are left with

0 =
ˆ

R

S(qε) dx

∣∣∣∣
t

0
−

tˆ

0

ˆ

R

�qε(|qε| − �)1{|qε |>�} dx ds +
tˆ

0

ˆ

R

∂xσGS(qε) dx dW

−
tˆ

0

ˆ

R

q2
ε

(
(∂xσ )2 − 1

4
∂2
xxσ

2)1{|qε |≤�} dx ds + 1

4

tˆ

0

ˆ

R

�2∂2
xxσ

21{|qε |>�} dx ds

+
tˆ

0

ˆ

R

1{|qε |≤�}
(
(∂x(σqε))

2 − (
∂x(σq) � Jε

)2
)

dx ds −
tˆ

0

ˆ

R

S′
�(qε)ρε dx ds

−
ˆ

R

tˆ

0

S′
�(qε)(rε dt + r̃ε dW) dx.

(B.24)

We provide further bounds for the terms

tˆ

0

ˆ

R

�qε(|qε| − �)1{|qε |>�} dx ds, (B.25)

and

1

4

tˆ

0

ˆ

R

�2∂2
xxσ

21{|qε |>�} dx ds, (B.26)

which cannot immediately be dealt with by Gronwall’s inequality.
By splitting qε into positive and negative parts of essentially disjoint support, i.e., qε = q+

ε +
q− so that q− ≤ 0 ≤ q+, we see that
ε ε ε
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(B.25) =
tˆ

0

ˆ

R

�(q+
ε + q−

ε )(|qε| − �)1{|qε |>�} dx ds ≤
tˆ

0

ˆ

R

�q+
ε (|qε| − �)1{|qε |>�} dx ds.

We shall be taking the limits in the order ε → 0 first and then � → ∞ later. Using the upper-
boundedness of weak dissipative equations mandated in Definition 2.6, we can take ε → 0 and 
conclude that there is always a sufficiently large � beyond which the term (|qε| − �)1{|qε |>�}
simply vanishes.

Secondly, by Markov’s inequality,

|(B.26)| ≤ ‖∂2
xxσ

2‖L∞

4

tˆ

0

ˆ

R

|qε|21{|qε |>�} dx ds.

Finally, by Lemma B.3, equations (B.8), (B.9), and (B.22), the last two lines of (B.24) are 
bounded by Cε,T , where Cε,T → 0 as ε → 0. This means all terms can either be handled by 
Gronwall’s inequality or are bounded. First integrating against dP , we then take the limits ε → 0
and � → ∞ and use Fatou’s lemma in order to get the limit energy inequality

E

ˆ

R

|q|2 dx

∣∣∣∣
t

0
≤E

tˆ

0

ˆ

R

q2
(
(∂xσ )2 − 1

4
∂2
xxσ

2
)

dx ds (B.27)

for almost every t ∈ [0, T ].
3. The L2+α-bound.
For the L2+α-bound, with α ∈ [0, 1), we use the entropies S� defined by

S(v) = S�(v) :=

⎧⎪⎨
⎪⎩

1
2α�2−αv3 + 1

2 (2 − α)�−αv, |v| ≤ �−1,

v|v|α, �−1 < |v| ≤ �,

(1 + α)v�α − α�1+αsgn(v), |v| > �.

In this way,

S′
�(v) =

⎧⎪⎨
⎪⎩

3
2α�2−αv2 + 1

2 (2 − α)�−α, |v| ≤ �−1,

(1 + α)|v|α, �−1 < |v| ≤ �,

(1 + α)�α, |v| > �,

and

S′′
� (v) =

⎧⎪⎨
⎪⎩

3α�2−αv, |v| ≤ �−1,

α(1 + α)|v|α−1sgn(v), �−1 < |v| ≤ �,

0, |v| > �.

The values for S�(v) in the interval [−�−1, �−1] are the Hermite interpolation polynomial, match-
ing the values and first derivatives of v|v|α at the end-points v = ±�−1, so that S′

� and S′′
� stay 

bounded for fixed �, as we require them to do.
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Using these to compute GS(v) := vS′
�(v) − S�(v) and its derivatives, we find

GS(v) =

⎧⎪⎨
⎪⎩

α�2−αv3, |v| ≤ �−1,

αv|v|α, �−1 < |v| ≤ �,

α�1+αsgn(v), |v| > �,

and

G′
S(v) := vS′′

� (v) =

⎧⎪⎨
⎪⎩

3α�2−αv2, |v| ≤ �−1,

α(1 + α)|v|α, �−1 < |v| ≤ �,

0, |v| > �,

≤ 3α|v|α.

Moreover,

vS�(v) − 1

2
v2S′

�(v) =

⎧⎪⎨
⎪⎩

− 1
4α�2−αv4 + 1

4 (2 − α)�−αv2, |v| ≤ �−1,
1
2 (1 − α)|v|α+2, �−1 < |v| ≤ �,
1
2 (1 + α)v2�α − α�1+α|v|, |v| > �.

Clearly, S�(v) → v|v|α and GS(v) → αv|v|α as � → ∞.
We can re-arrange (B.23), and integrate in x and s to get

E

tˆ

0

ˆ

R

(
qεS(qε) − 1

2
q2
ε S′(qε)

)
dx ds

≤E

ˆ

R

S(qε) dx

∣∣∣∣
t

0
−E

tˆ

0

ˆ

R

[
1

2
qεG

′
S(qε)(∂xσ )2 − 1

4
∂2
xxσ

2GS(qε)

]
dx ds

+ 1

2

tˆ

0

ˆ

R

S′′(qε)
(
(∂x(σqε))

2 − (
∂x(σq) � Jε

)2
)

dx ds −
tˆ

0

ˆ

R

S′(qε)ρε dx ds

−
ˆ

R

tˆ

0

S′(qε)(rε ds + r̃ε dW) dx,

and insert the definitions of S� and GS , and their derivatives.
By inspection, S′

� and S′′
� are uniformly bounded on R for fixed �, so again by Lemma B.3, and 

Eqs. (B.8), (B.9), and (B.22), the last two lines of (B.24) are bounded by Cε,T , where Cε,T → 0
as ε → 0. We then take the limits ε → 0 and � → ∞ and use Fatou’s lemma in order to get the 
limit energy inequality
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1

2
(1 − α)E

tˆ

0

ˆ

R

|q|2+α dx ds ≤ E

ˆ
q|q|α dx

∣∣∣∣
t

0
− 1

2
α(α + 1)E

tˆ

0

ˆ

R

q|q|α(∂xσ )2 dx ds

+ α

4
E

tˆ

0

ˆ

R

∂2
xxσ

2q|q|α dx ds (B.28)

for almost every t ∈ [0, T ]. From the second part of this proof, we have the inclusions q ∈
L2(� ×[0, T ] ×R) and q ∈ L∞([0, T ]; L2(� ×R)). This allows us to interpolate between L2

t,x

and L1
t,x or between L2

x and L1
x to bound the integrals on the right, thereby allowing us to control 

E‖q‖2+α

L2+α
x,t

as well.

This concludes the proof. �
Appendix C. The defect measure in the deterministic setting

Here we construct explicit and easily verifiable solutions in the manner of [34] to a problem 
with step functions as the initial distribution, and show explicitly how blow-up and a defect mea-
sure recording that blow-up, arise. This is to complement the discussion on the defect measure 
in Section 1.1.

Let [a, b] be evenly partitioned into n intervals, with endpoints xi = a + i(b − a)/n for i =
0, . . . , n.

First we approximate q0 by defining

V n
0,i =

xi 

xi−1

q0(x) dx,

and setting

qn
0 (x) =

n∑
i=1

V n
0,i1(xi−1,xi ), qn

0 (b) = V n
0,n.

Next we postulate the following characteristics:

Xn
i (t) = a + (b − a)

4n

i∑
j=1

(2 + V n
0,j t)

21{t≥0:2+V n
0,j t>0}. (C.1)

Notice that two characteristics Xn
i−1 and Xn

i coincide and remain coincident after t = −2/V n
0,i

if V n
0,i < 0.

Setting

qn(t, x) =
n∑ 2V n

0,i

2 + V n t
1{Xn

i−1(t)<x<Xn
i (t),2+V n

0,i t>0}, (C.2)

i=1 0,i
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un(t, x) =
xˆ

−∞
qn(t, y) dy =

xˆ

Xn
0 (t)

qn(t, y) dy, (C.3)

we have by direct substitution of (C.3) in (C.1),

dXn
i (t) = un(t,Xn

i (t)) dt + σdW.

For simplicity we set qn(t, Xn
i (t)) = 0 on the (finitely many) characteristics Xn

i , thereby defin-
ing qn(t) pointwise, and so that from the definition, if and when two characteristics eventually 
meet, there is no mass concentrated along their coincident path. This is the defining feature of a 
dissipative solution — that L2

x -mass is completely and eternally annihilated at wave-breaking — 
on which we shall expound further below.

From the definition of qn in (C.2), we have

∂tq
n + un∂x(q

n) = −1

2
(qn)2 (C.4)

in the sense of distributions — to wit, from (C.2):

∂t (q
n)(t, x) =

n∑
i=1

[ −2(V n
0,i )

2

(2 + V n
0,i t)

21{Xn
i−1<x<Xn

i ,2+V n
0,i t>0}

− 2V n
0,i

2 + V n
0,i t

1{Xn
i−1(t)<x<Xn

i (t)}δ(2 + V n
0,i t) (C.5)

− 2V n
0,i

2 + V n
0,i t

1{2+V n
0,i t>0}

(
δ(x − Xn

i−1)u
n(t,Xn

i−1) − δ(x − Xn
i )un(t,Xn

i )
)]

,

∂x(q
n)(t, x) =

n∑
i=1

2V n
0,i

2 + V n
0,i t

(
δ(x − Xn

i−1) − δ(x − Xn
i )
)
1{2+V n

0,i t>0}, (C.6)

(qn)2(t, x) =
n∑

i=1

∣∣∣∣ 2V n
0,i

2 + V n
0,i t

∣∣∣∣
2

1{Xn
i−1<x<Xn

i ,2+V n
0,i t>0}. (C.7)

The quantity

2V n
0,i

2 + V n
0,i t

1{Xn
i−1(t)<x<Xn

i (t)}δ(2 + V n
0,i t)

in the equation for ∂t (q
n)(t, x) means

lim
ε→0

2V n
0,i

2 + V n
0,i t

1{Xn
i−1(t)<x<Xn

i (t)}
1

ε
η
(1

ε
(t + 2/V n

0,i + ε)
)
, (C.8)
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where η is a symmetric smooth bump of unit L1-mass, supported on [0, 1]. The limit is taken 
in the topology of distributions on [0, T ] ×R. We can interpret the expression thus, as differen-
tiation is continuous in the topology of distributions. The limit evaluates to nought in the sense 
of distributions because Xn

i (t) − Xn
i−1(t) is proportional to (2 + V n

0,i t)
2. Nevertheless a similar 

term is enormously important in the equation for ∂t(q
n)2 because dissipation arises from this 

term, which characterises dissipative solutions.
From the expression for the difference Xn

i (t) − Xn
i−1(t) in (C.1), and as mentioned there, we 

see that the difference is zero for 2 + V n
0,i t ≤ 0. Therefore by the expression for (qn)2, (C.7), we 

can compute that, P -almost surely,

ˆ

R

(qn)2(t, x) dx = b − a

n

n∑
i=1

1{t≥0:2+V n
0,i t>0}(V n

0,i )
2 ≤ b − a

n

n∑
i=1

(V n
0,i )

2 =
ˆ

R

(qn
0 (x))2 dx,

(C.9)

a constant.
We can record the dissipation of ‖qn(t)‖2

L2(R)
as a defect measure:

mn(dt,dx) =
n∑

i=0

b − a

n
(V n

0,i )
2δ(x − Xn

i (t))δ(t + V n
0,i/2) dx dt. (C.10)

From this measure we see that dissipation gives rise to the admissibility condition in [20, 
Definition 2.2],

∂t (q
n)2 + ∂x(u

n(qn)2) = −mn(dt,dx)

dt dx
≤ 0.

We carry out this computation explicitly below:

∂t (q
n)2 =

n∑
i=1

[ ∣∣ 2V n
0,i

2 + V n
0,i t

∣∣2(δ(x − Xn
i )u(Xn

i ) − δ(x − Xn
i−1)u(Xn

i−1)
)
1{2+V n

0,i t>0}

−
(

2V n
0,i

2 + V n
0,i t

)3

1{Xn
i−1<x<Xn

i ,2+V n
0,i t>0}

− (2V n
0,i )

2

(2 + V n
0,i t)

21{Xn
i−1(t)<x<Xn

i (t)}δ(2 + V n
0,i t)

]
,

∂x(u
n(qn)2) = un∂x(q

n)2 + (qn)3

= un(x)

n∑
i=1

[ ∣∣ 2V n
0,i

2 + V n
0,i t

∣∣2(δ(x − Xn
i−1) − δ(x − Xn

i )
)

+
(

2V n
0,i

2 + V n
0,i t

)3

1{Xn
i−1<x<Xn

i ,2+V n
0,i t>0}

]
.
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Therefore again with due consideration for the difference Xn
i (t) − Xn

i−1(t) = (2 + V n
i,0t)

2(b −
a)/4n,

∂t (q
n)2 + ∂x(u

n(qn)2) = −
n∑

i=1

b − a

n
(V n

0,i )
2δ(x − Xn

i (t))δ(2 + V n
0,i t),

where we understand the expression

(2V n
0,i )

2

(2 + V n
0,i t)

21{Xn
i−1(t)<x<Xn

i (t)}δ(2 + V n
0,i t)

as in (C.8) above.
The times at which (L2

x -)mass is released from this defect measure and returned to the so-
lution, with a necessary corresponding determination of how characteristics Xn

i (t) are to be 
continued past {t : 2 + V n

0,i t > 0}, determines the types of solution one seeks. When it is never 
returned (when the indicator function in (C.10) attains unity for all t sufficiently great), the so-
lutions are “dissipative”; when the measure only retains mass instantaneously, as in [3] in for 
the similar Camassa–Holm equation, solutions are “conservative”. There are uncountably many 
possibilities between these extremes.
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