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• 28 trace elements were measured in
whole blood (n = 1011) in a
population-based study.

• Geographical area, age, and sex are asso-
ciated to trace element status.

• The marine environment might be a
source of exposure for As, Hg, Se and Br.

• Our study highlights how trace element
levels varies in the general population.
Abbreviation list: AM, arithmetic mean; BMI, bodymas
etry; HUNT, Trøndelag Health Study; IQR, interquartile ran
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Background: Biomonitoring of a cohort within a large health survey can provide reliable information on trace el-
ement status. Themain aims of this studywere 1) to determine the concentrations of 28 trace elements inwhole
blood samples from the general population of the Nord-Trøndelag region, Norway, and 2) to investigate how
trace element concentrations vary with geographical area, lifestyle, and socio-demographic factors.
Methods: Whole blood samples were collected in the third survey of the Trøndelag Health Survey (HUNT3), a
large population-based study in Norway. In total, 1011 whole blood samples from individuals aged
20–91 years were analyzed using high resolution inductively coupled plasma-mass spectrometry (HR-ICP-
MS). We compared trace element concentrations (As, B, Be, Br, Ca, Cd, Cr, Cs, Cu, Ga, Au, In, Fe, Pb, Hg, Tl, Mg,
Mn,Mo, Ni, Rb, Sc, Se, Ag, Sr, Sn,W and Zn) between three geographical areas (coastal, fjord/town, inland/moun-
tain) using multivariable linear regression and assessed differences in trace element concentrations with socio-
demographic and lifestyle factors using general linear models.
Results: Trace element concentrations were generally comparable to levels reported in other recent studies and
suggest low exposure to toxic trace elements in the region.We found geographical differences in concentrations
of 19 trace elements. As, Br, Hg, and Se concentrations were higher on the coast compared to the fjord/town and
inland/mountain areas, suggesting that the marine environment is an important source of exposure for these
Keywords:
Trace elements
Whole blood
HR-ICP-MS
Biomonitoring
Population-based study
HUNT
s index; CI, confidence interval; GM, geometric mean; HR-ICP-MS, high resolution inductively coupled plasma-mass spectrom-
ge; SD, standard deviation.
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trace elements. In addition, socio-demographic and lifestyle characteristics, particularly age and sex, were asso-
ciated with differences in trace element concentrations.
Conclusions:We report concentrations of 28 trace elements in the general population of a rural region with low
exposure to pollution. Whole blood concentrations of trace elements varied with geographical area, the partici-
pants' lifestyle, and socio-demographic characteristics, highlighting the importance of considering these factors
when evaluating trace element status in a population.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Humans are exposed to trace elements from many sources, and for
non-occupationally exposed individuals the major sources are food,
water and air (Elder et al., 2015). Many trace elements are essential, im-
portant for growth and development, and have various biological func-
tions, while others are classified as non-essential or toxic. However,
essential trace elementsmay also be toxic depending on dose, and in ad-
dition, the essentiality of some trace elements is debated (Nielsen,
2014).

Biomonitoring is an important tool to gain information about expo-
sures to essential and non-essential trace elements, and may provide a
baseline for future surveys and help elucidate causes of diseases (Gil
and Hernández, 2015). Additionally, several diseases have been linked
to either trace element imbalances and deficiencies, or to exposure to
toxic trace elements (Nordberg et al., 2015). A better understanding of
how trace element concentrations vary with lifestyle and socio-
demographic characteristics might provide a tool to identify sub-
groups of the population with an increased risk of trace element imbal-
ances or deficiencies, and potentially associated diseases. Trace element
concentrations in humans have been reported in numerous countries
(Alimonti et al., 2011; Baeyens et al., 2014; Bárány et al., 2002; Goullé
et al., 2005; Heitland and Köster, 2006; Nisse et al., 2017;
Saravanabhavan et al., 2017; Snoj Tratnik et al., 2019; Wennberg et al.,
2017; Yedomon et al., 2017; Zhang et al., 2015), including Norway
(Averina et al., 2020; Birgisdottir et al., 2013; Caspersen et al., 2019;
Fløtre et al., 2017;Meltzer et al., 2016), Table 1. However, most previous
studies only report concentrations for a limited number of trace ele-
ments, in cohorts with moderate sample sizes or in segments of the
populationwhichmay not be representative for the general population.
In a recent study from our group (Syversen et al., 2021), we reported
trace element concentrations in a cohort from the HUNT3 Survey. This
cohort consisted of adults aged 50–65 years, thus not representative of
the general population. The main aims of the current study were to de-
termine 28 trace elements in the general population and to identify how
trace element status varies with geographical area, lifestyle and socio-
demographic factors. Whole blood samples were collected, and by ap-
plying a sex-, age-, and area-stratified probability sampling design, we
selected a subset of the cohort, highly representative of the general pop-
ulation of the Nord-Trøndelag region, Norway. This region is predomi-
nantly rural, with low levels of industrial pollution (Langhammer
et al., 2000). Samples were analyzed using high-resolution inductively
coupled plasma mass spectrometry (HR-ICP-MS), paying strict atten-
tion to contamination control in all steps. By using the detailed informa-
tion available through the HUNT Study, and an in-depth statistical
evaluation, we highlight geographical area, lifestyle, and selected
socio-demographic factors as potential determinants of trace element
status in the general population.
2. Materials and methods

2.1. Study population

Non-fasting whole blood samples for trace element analysis were
collected between November 2006 and November 2007 as part of the
2

third survey of the Trøndelag Health Study (HUNT3). The HUNT Study
is a large longitudinal population-based health study conducted since
1984 in the Nord-Trøndelag region, situated in the central part of
Norway (Fig. 1). In HUNT, all inhabitants aged ≥20 years have been in-
vited to participate in four consecutive cross-sectional surveys:
HUNT1 (1984–86), HUNT2 (1995–97), HUNT3 (2006–08) and HUNT4
(2017–19) (HUNT Research Center, 2017), and 50,807 adults (54.1% at-
tendance rate) participated in theHUNT3 Survey (Krokstad et al., 2013).
Data has been gathered through questionnaires, interviews, clinical ex-
aminations and collection of blood and urine samples (Krokstad et al.,
2013).

We selected participants from three geographical areas (coast, fjord/
town, inland/mountain, Fig. 1). Specifically, five municipalities with
coastline towards the Norwegian Sea (Nærøy, Vikna, Flatanger, Leka
and Fosnes) were classified as ‘coast’, while two municipalities
(Levanger and Steinkjer), each with a medium sized town (Levanger
with 10,333 inhabitants and Steinkjer with 12,976 inhabitants
(Statistics Norway, 2021)), situated along the Trondheim Fjord were
classified as ‘fjord/town’. Three municipalities (Røyrvik, Namsskogan
and Grong) have no coastline and were categorized as ‘inland/moun-
tain’municipalities.We applied an sex-, age-, and area-stratified proba-
bility sampling design, and randomly selected equal numbers of men
and women from the three geographical areas and the six 10-years
age categories. Of the 16,808 individuals whomet the eligibility criteria
(age ≥ 20, living in the selected municipalities, and being non-
pregnant), 1016 participants (6.0%) were selected. Individuals living in
the inland/mountain and coastal areas, and those aged 20–39 and ≥70
were over-sampled due to their smaller proportion of the population.
Five individuals were excluded due to low blood volume or missing
samples. In total, 1011 subjects, 505 women and 506 men, were in-
cluded in the study.

Residential information, age, and sex were obtained through infor-
mation from the National Population Register, while information re-
garding i) smoking status, alcohol intake, fatty fish consumption and
ii) current pregnancy status was obtained through questionnaires and
interviews, respectively. Participants' height, weight, and waist circum-
ference weremeasuredwith standardizedmethods at the health exam-
ination sites. We obtained data on education level and income
(specifically, household after-tax income corrected for differences in
household size and household composition) from Statistics Norway.
2.2. Blood sample collection and storage

Whole blood samples were collected at the health examination sta-
tions and transported daily by courier to a state-of-the art biobank at
Levanger Hospital. Blood sampling followed a strict quality protocol
(Krokstad et al., 2013). Five blood samples were collected from each
participant using needles for routine blood collection (Vacuette, Greiner
Bio-One North America, Inc., Monroe, NC, USA). Tominimize the poten-
tial contamination of trace elements originating from the stainless-steel
needles, samples for trace element analysis were collected as the last of
the five vacutainer tubes, in a glass “trace element free” tube containing
sodium heparin (Vacutainer, Becton, Dickinson & Co, Cat. no. 367735,
Franklin Lakes, NJ, USA). Each trace element blood sample was further
divided into seven 0.8 mL aliquots and transferred into 1 mL
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Fig. 1.Map of the Nord-Trøndelag region, Norway, and the selected geographical areas (coast, fjord/town, inland/mountain) in the study.
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polypropylene tubes (Thermo Scientific) and stored at −80 °C at the
HUNT Biobank. The selected sampleswere shipped on dry ice to our lab-
oratory, where they were stored at −20 °C until analysis (~2 months).

2.3. Trace element analysis

The sample preparation was performed in a clean laboratory (ISO
6) to minimize contamination from the surroundings, paying strict at-
tention to contamination control in all steps. Approximately 0.7 mL of
blood was pipetted (Rainin E-Man Hybride, Mettler Toledo, Oakland,
CA, USA) into 20 mL pre-cleaned teflon vessels (TFM PTFE UC). The pi-
pette tips (Bioclean) were washed with ultrapure water (PURELAB
Option-Q, ELGA, UK) before use. The precise mass of each blood sample
was measured (Sartorius balance with Sartorius SartoCollect Software,
Krugersdorp, South Africa) and converted back to volume by using the
average density of whole blood (1.06 g/mL) (Trudnowski and Rico,
1974). Then 1.0 mL ultrapure concentrated nitric acid was added
using a 5 mL bottle-top dispenser (Seastar Chemicals, Sidney, BC,
Canada). The ultrapure nitric acid was produced at NTNU from p.a.
grade nitric acid (Merck, Darmstadt, Germany) using a quartz sub-
boiling distillation system (SubPur, Milestone, Shelton, CT, USA). The
samples were digested using a high-performance microwave reactor
(UltraClave, Milestone, Italy), where the temperature was gradually in-
creased from 20 °C to 220 °C over 30 min, and then left for 20 min at
220 °C. The digested samples were decanted into pre-cleaned 15 mL
polypropylene vials (VWR, European Catalogue no. 525-0461, batch
no. 142CB, PA, USA) and diluted to approximately 15mLwith ultrapure
water to achieve a final acid concentration of 0.6 M. The final weight of
the diluted samples was measured with an analytical balance and con-
verted to volume (density 0.6 M HNO3: 1.0167 g/mL).

Trace element concentrations were measured using high-resolution
inductively coupled plasma mass spectrometry (HR-ICP-MS, Thermo
Finnigan Element 2, Thermo Finnigan, Bremen, Germany). The sample
introduction system consisted of a fully automated sampling system
with inline dilution integrated into the autosampler (SC2-DX-FAST
ESI), a concentric PFA-ST nebulizer combined with a quartz micro-
cyclonic Scott spray chamber with auxiliary gas port, aluminum sample
and skimmer cones, and an O-ring-free quartz torch and 2.5 mm
5

injector (Elemental Scientific, Omaha, NE, USA). The radio frequency
power was set to 1350 W; nebulizer and T-connection sample gas
flow were 0.75 and 0.55 L/min, respectively. Cooling gas flow was
15.5 L/min; auxiliary gas flow 1.1 mL/min and additional gas consisted
of 10% methane in argon with flow rate of 0.01 L/min.

Two multi-element stock solutions (Elemental Scientific, Omaha,
NE, USA) were used for the instrument calibration, one serving as a cal-
ibrating solution and the other as a quality control. Four different dilu-
tions of the calibrating solution were prepared to cover the element
concentration ranges. The solutions were matrix matched for 0.6 M ni-
tric acid and main element concentrations (160 mg/L Na and
115 mg/L K). Na- and K-solutions were prepared from single element
standard solutions (10,000 ppm, Spectrapure Standards AS, Oslo,
Norway). An internal standard containing 1 μg/L of Re was automatically
mixedwith the sample in the prepFAST system. The elementswere deter-
mined at three different resolutions, low (LR 400; Be, Cd, Cs, Au, In, Pb, Hg,
Tl, Sn, andW),medium(MR5000; B, Ca, Cr, Cu, Ga, Fe,Mg,Mn,Mo,Ni, Rb,
Sc, Ag, Sr, and Zn), and high (HR 10000; As, Br, and Se).

2.4. Analytical quality control

To test for possible element leaching and contamination, blood collec-
tion tubes, pipet tips, polypropylene vials, flasks, and ultrapure acid used
in the sample preparations were checked prior to the analysis. In total,
concentrations of 58 elements (Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co,
Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hg, Ho, In, Ir, La, Li, Lu, Mg, Mn, Mo,
Nb, Nd, Ni, Pb, Pd, Pr, Pt, S, Sb, Sc, Se, Sm, Sn, Sr, Ta, Tb, Th, Tl, Tm, U, V,
W, Y, Yb, Zn, and Zr) were measured using HR-ICP-MS. Elements found
to be largely below the limits of detection (LOD) or potentially present
as contaminants (assessed by evaluating results from leakage tests and
blanks) were excluded from the analysis, leaving a total of 28 elements
in the study. To check for instrumental drift, one of the multi-element
standards was analyzed for every 20 samples. In each sample batch
(n = 80 samples), one sample of the certified reference material
Seronorm Level 1 (Sero, Norway, Supplementary Table S1) and two sam-
ples of one healthy volunteer blood specimenwere analyzed to verify the
accuracy of the instrument. In addition, four sample blanks (0.6MHNO3)
were included in each batch. Blanks and control samples had an



Table 2
General characteristics of the study population.

Characteristic Total
(n = 1011)

Men
(n = 506)

Women
(n = 505)

Mean age, years (SD) 50.0 (17.6) 50.2 (17.6) 49.9 (17.7)
Age group (years), n (%)
20–29 167 (16.5) 82 (16.2) 85 (16.8)
30–39 169 (16.7) 86 (17.0) 83 (16.5)
40–49 170 (16.8) 85 (16.8) 85 (16.8)
50–59 168 (16.6) 85 (16.8) 83 (16.5)
60–69 169 (16.7) 84 (16.6) 85 (16.8)
≥70 168 (16.6) 84 (16.6) 84 (16.6)

Geographical area, n (%)
Inland/mountain 335 (33.2) 166 (32.8) 169 (33.5)
Fjord/town 336 (33.2) 169 (33.4) 167 (33.0)
Coastal 340 (33.6) 171 (33.8) 169 (33.5)

Waist circumference (cm), n (%)
Men: <94, Women: <80 296 (29.3) 199 (39.3) 97 (19.2)
Men: 94–102, Women: 80–88 291 (28.8) 162 (32.0) 129 (25.5)
Men: >102, Women: >88 424 (41.9) 145 (28.7) 279 (55.3)

Mean body mass index kg/m2 (SD)a 27.3 (4.5) 24.6 (4.1) 27.0 (4.9)
Body mass index group (kg/m2), n (%)
<25.0 316 (31.4) 125 (24.8) 191 (38.0)
25.0–29.9 438 (43.5) 255 (50.6) 183 (36.5)
≥30 252 (25.1) 124 (25.5) 128 (25.5)

Education (years), n (%)
<10 249 (24.7) 133 (26.4) 116 (23.0)
10–12 524 (52.0) 276 (54.8) 248 (49.2)
≥13 235 (23.3) 95 (18.8) 140 (27.8)

Economic status level, n (%)b

Quartile 1 (lowest) 252 (24.9) 116 (22.9) 136 (26.9)
Quartile 2 239 (23.6) 115 (22.7) 124 (24.6)
Quartile 3 288 (28.5) 154 (30.5) 134 (26.5)
Quartile 4 232 (23.0) 121 (23.9) 111 (22.0)

Mean alcohol intake, g/day (SD) 4.4 (5.4) 5.8 (6.2) 2.9 (4.0)
Alcohol intake in g/day in group, n (%)
Abstainers 280 (27.7) 101 (20.0) 179 (35.4)
<2.7 232 (23.0) 94 (18.6) 138 (27.3)
2.7–6.0 248 (24.5) 135 (26.7) 113 (22.4)
≥6.0 251 (24.8) 176 (34.7) 75 (14.9)

Smoking status, n (%)
Never smokers 433 (42.8) 208 (41.1) 225 (44.5)
Former smokers 373 (36.9) 200 (39.5) 173 (34.3)
Current smokers 205 (20.3) 98 (19.4) 107 (21.2)

Fatty fish consumption, n (%)c

<4 meals monthly 399 (39.5) 206 (40.7) 193 (38.2)
1–3 meals weekly 513 (50.7) 252 (49.8) 261 (51.7)
≥4 meals weekly 99 (9.8) 48 (9.5) 51 (10.1)

a Data available for 504 (99.6%) men and 502 (99.4%) women.
b Data available for 504 (99.6%) men and 504 (99.8%) women.
c Fatty fish includes salmon, trout, herring, mackerel, and redfish.
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alternating position in each batch. The stability of the instrument was
controlled by checking the internal standard concentrations and argon
signals, while the analytical recovery was calculated by dividing the
measured value by the certified value.

2.5. Statistical analyses

To study associations between whole blood trace element concen-
trations and the geographical areas (coastal, fjord/town and inland/
mountain) we applied linear regression models: We adjusted for sex
and age (10-year categories) (“Model 1”), and further adjusted for
socio-demographic factors previously reported to be associated with
trace element blood concentrations: bodymass index (BMI, categorized
according to WHO recommendations as <25.0, 25.0–29.9, and ≥30 kg/
m2), education (<10, 10–12 and ≥13 years), and income (after-tax
equivalent income – EU-equivalent scale, divided into quartiles)
(“Model 2”). Lastly, we adjusted for intercorrelated trace elements
(Spearman's rank correlation coefficient |rs| > 0.5), specifically As-Hg
(rs = 0.61), Ca-Fe (rs = –0.59), Cs-Rb (rs = 0.54), Cr-Ni (rs = 0.77),
Fe-Zn (rs = 0.56), and Hg-Se (rs = 0.54) (“Model 3”). Prior to
statistical analyses, trace elements which showed deviations from
normal distribution (evaluated using histograms) were natural log
transformed. Trace element concentrations < LOD (set equal to 3
times the standard deviation of blank samples) were replaced with a
value equal to LOD/2. We excluded Be, Sc and W from the statistical
models due to concentrations < LOD in over 33% of the samples. The
levels of significancewere corrected using the Bonferronimultiple com-
parisonsprocedure. Because the total number of testswere 50, a p-value
of 0.001 corresponds to a Bonferroni significance value (q) 0.05.

We applied general linear models to estimate marginal effects (to ob-
tain interpretable trace element concentrations), and compared trace ele-
ment blood concentrations for different socio-demographic and lifestyle
categories: crude estimates (“Unadjusted model”), adjusted for sex
and age (“Sex and age adjusted model”), and further adjusted for
geographical area, waist circumference (categorized according to WHO
recommendations (2011), men: <94 cm (normal), 94–102 cm (abdomi-
nal overweight), and >102 cm (abdominal obese), women: <80 cm
(normal), 80–88 cm (abdominal overweight), and >88 cm (abdominal
obese)), BMI, education, income, self-reported smoking status (never
smokers, former smokers and current smokers), self-reported fatty fish
consumption (specifically, salmon, trout, herring, mackerel, and redfish:
<4meals monthly, 1–3 meals weekly and ≥4 meals weekly), and alcohol
intake (divided into quartiles of daily amount of grams of alcohol con-
sumed: 0 (abstainers), 0.2–2.6, 2.7–6.0 and >6.0 g/day (Rasouli et al.,
2013)), based on self-reported consumption of alcohol units (beer, wine
and spirits) and intercorrelated trace elements (“Fully adjusted model”).
Sampling weights based on sex, age, and geographic area, were included
to provide accurate estimates reflecting the population in the three areas.

All statistical analyses were repeated after excluding outliers, in this
study defined asmeasurementswith values<1st quartile− 1.5 × inter-
quartile range (IQR) or >3rd quartile + 1.5 × IQR (essential trace ele-
ments), and >3rd quartile + 1.5 × IQR (non-essential trace elements).
Outliers did not seem to influence the obtained results, and presented
results therefore include all individuals with available trace element
and covariate data. To account for the potential of false discovery due
tomultiple testing, p-values were corrected using the Bonferroni proce-
dure and p-values adjusted formultiple testing (q-values) less than 0.05
was considered statistically significant. Statistical analyses were per-
formed using Stata 16 (StataCorp, TX, USA), SPSS 24 (SPSS, Inc., IL,
USA) and R v3.5.1 (The R Foundation for Statistical Computing, Austria).

2.6. Ethics

The studywas approved by the Regional Committee for Medical and
Health Research Ethics (REK 2010/2947), and all participants gave a
written informed consent.
6

3. Results

Characteristics of the participants are shown in Table 2, while the
distributions of the 28 trace elements are summarized in Table 3.
Trace element concentrations in the current study were generally in
agreement with concentrations reported in 16 recent studies (Table 1).

3.1. Differences in trace element blood concentrations between the geo-
graphical areas

Whole blood trace element concentrations in the three geographical
areas (coastal, fjord/town and inland/mountain) were compared.
Table 4 presents the regression coefficient β (μg/L or mg/L) for the nor-
mally distributed elements, and the percentage of difference (%) for the
non-normally distributed elements. In models adjusted for age and sex,
we found statistically significant (after correction for multiple testing)
differences in 19 trace element concentrations: 12 (As, B, Br, Ga, Au,
Fe, Mg, Hg, Mo, Se, Tl, and Zn) and 17 (As, B, Br, Ca, Cs, Ga, Au, Pb, Mn,
Hg,Mo, Rb, Se, Ag, Tl, Sn, and Zn) trace element concentrationswere dif-
ferent when we compared the fjord/town and the inland/mountain
populations to the coastal population, respectively. Adjusted for sex



Table 3
Whole blood trace element concentrations of 1011 participants (20–91 years) in the HUNT3 Survey. LOD: Limit of detection.

Element LOD <LOD (%) Mean Range Geometric mean Median Percentiles

5% 25% 75% 95%

As (μg/L) 0.46 4.0 4.29 <0.46–70.5 2.64 2.55 0.61 1.36 4.95 14.5
Be (μg/L) 0.0096 81.8 <0.0096 <0.0096–0.0260 <0.0096 <0.0096 <0.0096 <0.0096 <0.0096 0.0122
B(μg/L) 2.2 0 30.0 6.6–144 27.2 27.7 13.1 20.6 36.9 55.2
Br (mg/L) 0.11 0 1.60 0.26–7.10 1.51 1.53 0.86 1.27 1.84 2.37
Cd (μg/L) 0.016 0.1 0.54 <0.016–4.65 0.36 0.31 0.11 0.20 0.56 1.87
Ca (mg/L) 0.14 0 59.1 47.8–71.3 59.0 59.0 52.3 56.6 61.6 65.6
Cs (μg/L) 0.0039 0 4.68 1.45–36.0 4.44 4.38 2.66 3.62 5.39 7.43
Cr (μg/L) 0.40 31.5 0.93 <0.40–46.2 0.58 0.59 <0.40 <0.40 1.08 2.26
Cu (mg/L) 0.0013 0 1.03 0.44–2.18 1.01 1.01 0.82 0.92 1.10 1.27
Ga (μg/L) 0.010 0 0.078 0.020–1.81 0.073 0.073 0.046 0.061 0.085 0.112
Au (μg/L) 0.0057 21.6 0.0147 <0.0057–0.287 0.0097 0.0093 <0.0057 0.0068 0.0142 0.0392
In (μg/L) 0.002 0.1 0.032 <0.002–0.079 0.029 0.029 0.016 0.024 0.037 0.060
Fe (mg/L) 0.133 0 543 378–693 541 541 468 508 575 631
Pb (μg/L) 0.41 0 21.5 3.46–219 18.8 18.6 8.9 13.6 25.4 45.5
Mg (mg/L) 0.015 0 39.7 27.9–61.3 39.6 39.6 33.9 37.3 42.0 45.9
Mn (μg/L) 0.40 0 9.52 3.75–66.4 9.11 8.92 5.81 7.51 10.8 14.9
Hg (μg/L) 0.036 0 3.63 0.24–21.6 2.74 2.73 0.84 1.58 4.66 9.69
Mo (μg/L) 0.43 3.9 0.95 <0.43–8.14 0.83 0.81 0.44 0.62 1.07 1.78
Ni (μg/L) 0.22 11.9 0.71 <0.22–9.71 0.50 0.49 <0.22 0.31 0.85 1.72
Rb (μg/L) 0.16 0 2250 1266–3789 2220 2228 1715 1977 2478 2877
Sc (μg/L) 0.0089 51.1 <0.0089 <0.0089–0.615 <0.0089 <0.0089 <0.0089 <0.0089 0.0112 0.0155
Se (μg/L) 6.5 0 102.0 51.4–255.7 100.2 99.3 75.4 89.5 112.8 136.9
Ag (μg/L) 0.039 16.7 0.160 <0.039–1.019 0.112 0.122 <0.039 0.070 0.202 0.424
Sr (μg/L) 0.13 0 18.6 8.6–62.5 18.0 17.4 12.2 14.9 21.2 29.4
Tl (μg/L) 0.0011 0 0.028 0.009–0.191 0.026 0.026 0.016 0.022 0.031 0.047
Sn (μg/L) 0.10 19.8 0.55 <0.10–5.62 0.24 0.20 <0.10 0.12 0.37 3.13
W (μg/L) 0.022 60.2 <0.022 <0.022–0.541 <0.022 <0.022 <0.022 <0.022 0.027 0.055
Zn (mg/L) 0.004 0 7.5 3.8–11.4 7.5 7.5 5.9 6.8 8.2 9.1

Table 4
Associations betweenwhole blood trace element concentrations and geographical area given as the regression coefficient β (μg/L or mg/L) for the normally distributed elements, and the
percentage of difference (%)a for the non-normally distributed elements (ln-transformed) with 95% confidence intervals (CI), using the coastal area as the reference.

Element Model 1 (n = 1011)b Model 2 (n = 1003)c Model 3 (n = 1003)d

Fjord/town Inland/mountain Fjord/town Inland/mountain Fjord/town Inland/mountain

As (%) −47.2 (−54.5;
−38.7)⁎⁎⁎

−55.5 (−61.7;
−48.4)⁎⁎⁎

−48.6 (−55.9;
−40.1)⁎⁎⁎

−55.5 (−61.8;
−48.3)⁎⁎⁎

−33.1 (−42.0;
−22.8)⁎⁎⁎

−41.0 (−49.0;
−31.7)⁎⁎⁎

B (%) 11.2 (4.0; 18.8)⁎ −13.5 (−19.3; −7.3)⁎⁎⁎ 8.7 (1.6; 16.4)⁎ −13.4 (−19.2; −7.2)⁎⁎⁎ – –
Br (%) −11.8 (−16.2; −7.2)⁎⁎⁎ −11.7 (−15.4; −7.7)⁎⁎⁎ −13.2 (−17.6; −8.6)⁎⁎⁎ −11.6 (−15.4; −7.6)⁎⁎⁎ – –
Cd (%) −13.2 (−17.6; −8.6) −11.6 (−15.4; −7.6) 4.3 (−15.8; 9.2) 6.6 (−6.7; 21.7) – –
Ca (mg/L) −0.13 (−0.67; 0.41) −1.58 (−2.10;−1.06)⁎⁎⁎ −0.23 (−0.78; 0.33) −1.51 (−2.03;−0.99)⁎⁎⁎ 0.19 (−0.33; 0.71) −1.33 (−1.83;−0.83)⁎⁎⁎

Cs (%) 0.3 (−4.3; 5.2) 11.8 (6.2; 17.6)⁎⁎⁎ −0.7 (−5.5; 4.3) 11.7 (6.0; 17.7)⁎⁎⁎ −2.2 (−6.5; 2.3) 2.6 (−2.1; 7.6)
Cr (%) 12.6 (−2.4; 30.1) 10.8 (−4.1; 27.9) 15.5 (−0.4; 34.0) 10.5 (−4.5; 27.9) 5.3 (−4.0; 15.6) −1.3 (−10.3; 8.5)
Cu (μg/L) 18.6 (−2.9; 40.1) 16.0 (−5.1; 37.0) 26.2 (4.0; 48.4)⁎ 16.9 (−3.7; 37.6) – –
Ga (%) 10.5 (5.2; 16.0)⁎⁎⁎ 21.8 (16.5; 27.3)⁎⁎⁎ 11.3 (6.0; 16.8)⁎⁎⁎ 21.6 (16.2; 27.2)⁎⁎⁎ – –
Au (%) 18.0 (4.6; 33.1)⁎ −13.9 (−23.6; −3.0)⁎ 16.2 (2.7; 31.4)⁎ −14.7 (−24.4; −3.7)⁎ – –
In (%) 4.3 (−3.0; 12.2) 6.1 (−11.4; 0.2) 4.5 (−3.2; 12.8) 5.9 (−11.2; 0.5) – –
Fe (mg/L) 11.8 (5.1; 18.4) ⁎⁎ 6.6 (−0.6; 13.8) 13.7 (7.0; 20.4)⁎⁎⁎ 5.9 (−1.3; 13.2) 7.1 (1.6; 12.5)⁎ −3.5 (−9.9; 2.9)
Pb (%) −1.1 (−8.4; 6.9) 15.6 (6.9; 25.0)⁎⁎ 0.0 (−7.4; 8.0) 15.7 (7.0; 25.1)⁎⁎ – –
Mg (mg/L) 0.62 (0.04; 1.21)⁎ 0.13 (−0.44; 0.70) 0.76 (0.16; 1.37)⁎ 0.14 (0.43; 0.72) – –
Mn (%) 4.6 (0.0; 9.5) 5.7 (1.0; 10.6)⁎ 4.1 (−0.8; 9.2) 5.5 (0.7; 10.4)⁎ – –
Hg (%) −29.5 (−36.0;−22.2)⁎⁎⁎ −32.5 (−38.5;−26.0)⁎⁎⁎ −31.4 (−38.1;−24.1)⁎⁎⁎ −33.3 (−39.2;−36.8)⁎⁎⁎ −13.1 (−20.2; −5.4)⁎ −14.7 (−21.3; −7.5)⁎⁎⁎

Mo (%) 11.9 (2.8; 21.9)⁎ 16.4 (7.8; 25.7)⁎⁎ 12.8 (3.4; 22.9)⁎ 18.1 (9.4; 27.6)⁎⁎⁎ – –
Ni (%) 11.9 (−2.2; 28.1) 15.0 (0.0; 32.3) 12.0 (−3.1; 29.4) 14.9 (−0.3; 32.4) 1.4 (−7.5; 11.2) 7.3 (−2.2; 17.7)
Rb (μg/L) 36 (−22; 94) 227 (167; 288)⁎⁎⁎ 41 (−17; 100) 235 (174; 296)⁎⁎⁎ 45 (−8; 98) 178 (123; 232)⁎⁎⁎

Se (%) −4.6 (−7.3; −1.8)⁎ −4.0 (−6.6; −1.0)⁎ −5.8 (−8.2; −2.8)⁎⁎⁎ −3.9 (−6.8; −1.0)⁎ 0.1 (−2.5; 2.6) 2.2 (−0.5; 4.9)
Ag (%) 4.3 (−8.8; 19.3) −32.6 (−41.4;−22.6)⁎⁎⁎ 3.4 (−9.8; 18.5) −33.1 (−41.8;−23.0)⁎⁎⁎ – –
Sr (%) 1.2 (−2.8; 5.4) −0.7 (−4.6; 3.4) 2.3 (−2.0; 6.7) 0.5 (−4.5; 3.7) – –
Tl (%) 8.1 (3.0; 13.4)⁎ 28.1 (21.0; 35.6)⁎⁎⁎ 7.2 (2.1; 12.6)⁎ 27.5 (20.4; 35.0)⁎⁎⁎ – –
Sn (%) 14.6 (−4.0; 36.7) −26.2 (−36.5;−14.1)⁎⁎⁎ 12.9 (−5.8; 35.5) −25.9 (−36.5; −13.6)⁎⁎ – –
Zn (mg/L) 0.28 (0.15; 0.42)⁎⁎⁎ 0.21 (0.07; 0.36)⁎ 0.31 (0.17; 0.45)⁎⁎⁎ 0.20 (0.05; 0.35)⁎ 0.18 (0.05; 0.30)⁎ 0.15 (0.01; 0.29)⁎

a Percentage of difference calculated as 1 subtracted from the anti-ln of the β regression coefficient for ln-transformed trace element blood concentrations.
b Adjusted for sex and age.
c Adjusted for sex, age, body mass index, education. and income.
d Adjusted for sex, age, body mass index, education, income and for moderately/highly intercorrelated trace element concentrations (Spearman's correlation coefficient |rS| > 0.5).
⁎ P < 0.05.
⁎⁎ P < 0.001.
⁎⁎⁎ P < 0.0001.
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and age, both the fjord/town and inland/mountain populations had
lower concentrations of As (–47% and –56%), Br (–12% and –12%), Hg
(–30% and –33%), and Se (–5% and –4%), and higher concentrations of
Ga (+11% and +22%), Mo (+12% and +16%), Tl (+8% and +28%)
and Zn (+0.3 mg/L and +0.2 mg/L), compared to the coastal popula-
tion. Boxplots of unadjusted blood concentrations of As, Hg, Br and Se
are presented in Fig. 2.

Differences in trace element concentrations between the geograph-
ical areas did not change substantially when further adjusted for BMI,
education, and income (Table 4): Lower As (–49% and –56%), Br (–13%
and –12%), Hg (–31% and –33%), and Se (–6% and –4%), and higher
Ga concentrations (+11% and +22%), Mo (+13% and +18%), Tl
(+7% and+28%) and Zn (+0.3 mg/L and+0.2 mg/L) when compar-
ing the fjord/town and the inland/mountain populations to the
coastal population. Additionally, slightly higher concentrations of
Cu (+26 μg/L) were observed in the fjord/town population, com-
pared to individuals on the coast in models adjusted for sex, age,
BMI, education, and income.

Inmodels further adjusted for intercorrelated trace elements (Table 4),
the observed associations remained similar, but were attenuated, except
for Se where there was little evidence for differences in Se concentrations
between the geographical areas: Lower As (–33% and –41%) andHg (–13%
and –15%), and higher Zn (0.2 mg/L and 0.2 mg/L) in the fjord/town and
inland/mountain populations compared to the coast.

3.2. Relationships between trace element concentrations and lifestyle and
socio-demographic factors

Weestimatedmarginal effects from the general linearmodels to ob-
tain interpretable trace element concentrations for selected socio-
demographic and lifestyle categories. The estimated marginal means
with 95% confidence intervals for selected lifestyle and socio-
demographic characteristics (age, sex, smoking, alcohol intake, BMI,
waist circumference, and fatty fish intake) are summarized in Supple-
mentary Tables S2–S26.
Fig. 2.Whole blood concentrations of A) As, B) Hg, C) Br, and D) Se in the three
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3.2.1. Age and sex
Wefounddifferences betweenmenandwomen for 12 trace elements.

In unadjusted models, higher concentrations of Br, Cd, Ca, Cu, and Mn
were found in women, while higher concentrations of Ga, Fe, Pb, Mg,
Rb, and Zn were found in men. These differences were statistically signif-
icant in adjustedmodels, except for Br, Ga, and Zn. In addition, higher con-
centrations of B were found in women in the fully adjusted model.

Differences in trace element concentrations between age categories
were found for 14 trace elements (As, B, Ca, Cd, Cs, Fe, Au, Pb, Hg, Ag, Rb,
Se, Sr, Zn) in unadjusted models. A trend for increasing concentrations
with increasing age was found for As, B, Cd, Cs, Au, Pb, Hg, and Ag. In
fully adjusted models, increasing concentrations with increasing age
remained statistically significant, except for As and Cd.

3.2.2. Smoking
We found Cd and Rb concentrations to be associated with smoking.

In current smokers, the concentration of Cd was more than fourfold
higher compared to the never smokers in the adjusted model, while in
former smokers the Cd concentrations were 50% higher compared to
never smokers. Whole blood Cd concentrations in never smokers, for-
mer smokers and current smokers are shown in Fig. 3A. For Rb, higher
concentrations were found in current smokers compared to never
smokers, while no differences were found between former smokers
and never smokers. Lower B concentrations were found in current
smokers than in never smokers. However, this associationwas only sig-
nificant in the age- and sex-adjusted model.

3.2.3. Alcohol intake
Increasing B, Cs and Pb concentrations were found with increasing

alcohol intake, statistically significant in fully adjusted models. In unad-
justed models, we found higher Se and Fe concentrations with increas-
ing alcohol intake, while Cu concentrations were lower in individuals
with an alcohol consumption in the third quartile compared to ab-
stainers. Similar trends were observed in the fully adjusted models,
but these were not statistically significant.
geographical areas (coast, fjord/town, inland/mountain), by fatty fish intake.



Fig. 3. Whole blood cadmium blood concentrations in never smokers, former smokers, and current smokers by A) 10-years age categories and B) years of education.
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3.2.4. Fatty fish intake
In unadjusted models, increased blood concentrations of As, Hg, and

Sewere foundwith increasing intake of fatty fish, Fig. 2. However, in the
fully adjusted model (including adjustment for intercorrelated trace el-
ements), these differences were not statistically significant.

3.2.5. BMI and waist circumference
For BMI, we foundnegative associations for Br, Ca, and Zn concentra-

tions, and a positive association for Mg. In addition, a positive associa-
tion was found between BMI and waist circumference for Fe
concentrations. However, none of these observations were statistically
significant in the fully adjusted models.

3.2.6. Education and income
Decreasing Cd concentrations (Fig. 3B) were found with increasing

levels of education and income in the unadjusted models. Further, in-
creased concentrations of Cs and Se were found in the highest quartile
of income, compared to the lowest quartile. In individuals with educa-
tion ≥13 years or in the highest quartile of income, we found higher B
concentrations compared to the lowest education level and quartile of
income, respectively. However, these differences were not statistically
significant in the fully adjusted model.

4. Discussion

In this large population-based study, we reportwhole blood trace el-
ement concentrations for 28 trace elements in the Nord-Trøndelag re-
gion, Norway. As the most comprehensive health study in Norway, the
HUNT Study is an excellent source for human biomonitoring studies.
By applying a sex-, age-, and area-stratified probability sampling design,
we obtained a sample highly representative of the general population.
Further, the access to a wide range of variables allowed us to compare
trace element concentrations for a wide range of socio-demographic
and lifestyle factors. In this work we highlight that geographical area,
lifestyle, and selected socio-demographic characteristics are important
factors associated with trace element concentrations.

4.1. Trace element concentrations in Trøndelag, Norway compared to other
recent studies

Trace element concentrations in the regionwere generally compara-
ble to levels reported in other recently published studies (Table 1)
9

(Alimonti et al., 2011; Averina et al., 2020; Baeyens et al., 2014;
Bárány et al., 2002; Birgisdottir et al., 2013; Caspersen et al., 2019;
Fløtre et al., 2017; Goullé et al., 2005; Heitland and Köster, 2006;
Meltzer et al., 2016; Nisse et al., 2017; Saravanabhavan et al., 2017;
Snoj Tratnik et al., 2019; Wennberg et al., 2017; Yedomon et al., 2017;
Zhang et al., 2015). Essential trace elements are generally metabolically
well controlled, but concentrationsmay differ between countries due to
diet, geographical variations, or characteristics of the cohorts. This may
explain the generally minor differences we observed for B, Cr, Cu, Fe,
Mg, Mn, Se, and Zn compared to other studies. For Zn, we detected
slightly higher levels compared to some other studies, but comparable
to our previous work (Syversen et al., 2021), This is likely to be related
to differences in diet between countries, as Zn blood content depends
to a large extent on the diet (Simon-Hettich et al., 2001). Similarly, Cu
levels in HUNT were slightly higher than levels reported in Sweden
(Wennberg et al., 2017) and Slovenia (Snoj Tratnik et al., 2019), while
slightly lower than in a large study of pregnant women in Norway
(Caspersen et al., 2019). However, resultswere similar to those reported
in our previous work (Syversen et al., 2021). Our Mn results agree with
our previous study (Syversen et al., 2021), and are in accordance with
expected Mn levels in a non-occupationally exposed population.

In human biomonitoring studies, focus is often on toxic trace ele-
ments, particularly Cd, Hg, and Pb, due to their negative health effects.
Compared to recent publications, concentrations of Cd and Pb in this
work are in broad agreement with expected levels in individuals with
no or little occupational exposure and suggest low exposure to toxic el-
ements in this region. This is in accordancewith our expectations, as the
Nord-Trøndelag region is largely rural, and the industrial pollution is
considered low (Langhammer et al., 2000). On the other hand, Hg con-
centrationswere slightly higher in our study than in some other studies
(Alimonti et al., 2011; Bárány et al., 2002; Heitland and Köster, 2006;
Nisse et al., 2017; Saravanabhavan et al., 2017; Snoj Tratnik et al.,
2019), but comparable to two previous Norwegian studies
(Birgisdottir et al., 2013; Syversen et al., 2021). Chronic low exposure
to Hg has been linked to an increased risk of neurodevelopmental ef-
fects in infants and children (Ha et al., 2017). Although suggested to
be associated with cardiovascular diseases in adults (Mozaffarian,
2009), later studies have shown conflicting results (Downer et al.,
2017; Mozaffarian et al., 2011). In the current study, in individuals con-
suming 0–3meals of fatty fishmonthly, Hg concentrationswere compa-
rable to those reported in a German population with similar fish intake
(GM1.98 μg/L and 2.0 μg/L, respectively) (Wilhelm et al., 2004). Further,
our Hg results are comparable to those reported in studies among high



A. Simić, A.F. Hansen, T. Syversen et al. Science of the Total Environment 806 (2022) 150875
seafood consumers in e.g., Sweden (Johnsson et al., 2004) and Finland
(Airaksinen et al., 2011). The relatively high Hg concentrations reported
in the HUNT3 participants may therefore reflect the importance of fish
in the Norwegian diet (Birgisdottir et al., 2013; Jenssen et al., 2012).
Hg in fish varies considerably depending on the type of fish and
where it was caught (Jenssen et al., 2012). The fish consumed by
HUNT participants most likely comprise both pelagic and freshwater
fish. However, the HUNT study does not contain detailed data on fish
species consumed or origin of fish, which limited the potential of ex-
ploring these associations further.

4.2. Differences in trace element blood concentrations between geographical
areas

We found geographical residency to be a key factor associated with
trace element concentrations. In total, differences were found for 19
trace elements (As, B, Br, Ca, Cs, Ga, Au, Fe, Pb, Mg, Mn, Hg, Mo, Rb, Se,
Ag, Tl, Sn and Zn) comparing concentrations in the coastal population
to either the fjord/town or the inland/mountain populations. For non-
occupationally exposed individuals, themajor sources of trace elements
are through food, water and air. Although the Nord-Trøndelag region is
mostly rural, there may be regional differences in exposure through in-
halation and from drinking water (Husby, 2014), but these differences
are likely to be minor compared to differences in the diet, which will
be a combination of local, national, and international food products.
The drinking water quality in the Nord-Trøndelag region is considered
good, and mainly to be within the Norwegian and international guide-
lines (Husby, 2014).

Concentrations of As, Br, Hg and Se were lower both in fjord/town
and inland/mountain populations compared to the coastal population,
which might indicate an association between the marine environment
and concentrations of these trace elements. Our findings are in line
with a previous study from Norway, which found higher blood concen-
trations of As, Hg and Se among individuals living on the coast com-
pared to those living in the inland (Birgisdottir et al., 2013). A major
source for these elements in terrestrial ecosystems is transport through
the atmosphere from ocean to land (Steinnes, 2009; Steinnes and
Lierhagen, 2017). Arsenic is present in seawater and is released into
the atmosphere as sea salt aerosols. Previous studies of moss and soil
across Norway have showed large geographical variations for many el-
ements, including higher levels of Br and Se in coastal areas (Steinnes
et al., 2011; Steinnes and Lierhagen, 2017). These results agree with
our findings of higher levels of Br and Se in the coastal population com-
pared to the fjord/town and inland/mountain areas. Higher Br concen-
trations have been found in drinking water close to the coast than in
inland/mountain areas (Husby, 2014), in line with our Br blood results.
Although not likely to affect the observed differences between the geo-
graphical areas, we note that the analytical recovery of Br in this study
was only 35%, due to loss of Br during the acid digestion process
(Mesko et al., 2016).

Fish and seafood are well known dietary sources of As, Br, Hg and Se
(Mergler et al., 2007). Hg levels vary greatly between types and species
of seafoodwith the highest concentration in large predatory fish species
(Jenssen et al., 2012; Mergler et al., 2007). In our study, we did not find
any substantial differences in fatty fish consumption between the three
geographical areas. However, there was a tendency towards a lower
proportion of the population consuming <4 meals of fatty fish monthly
in the fjord/town area compared to the coast and the inland/mountain
area, and a slightly higher proportion of individuals consuming ≥4
meals of fatty fish weekly on the coast compared to the fjord/town
and the inland/mountain region. However, the number of individuals
in the ‘high consuming’ group was limited (only ~20–50 individuals in
each area), making detailed sub-analyses difficult to perform in our
study. To summarize, although intake of fatty fish is important for par-
ticularly As and Hg blood concentrations, our results suggest that the
observed differences in As, Br, Hg and Se blood concentrations may
10
not be explained by intake of fatty fish alone. Previous studies from
New Zealand ('t Mannetje et al., 2021), and Norway (Jenssen et al.,
2012), have suggested that place of residence is a determinant of
blood Hg independent of fish consumption (Jenssen et al., 2012), in
linewith our findings. Additionally, self-capture of fish and the locations
where the fish was caught are potentially significant factors determin-
ing Hg blood levels (Jenssen et al., 2012; Måge and Frantzen, 2009).
The HUNT Study does not contain detailed information regarding fatty
fish consumption (e.g., portion size, type of fish and where it was
caught) which could be important factors explaining the observed re-
gional differences in the current study. Future studies should attempt
to investigate these associations further.

We found As, Se and Hg to be intercorrelated, and therefore we in-
cluded these elements in the fully adjusted models. When adjusted for
Hg, little evidence for regional differences in Se concentrations was
found. This may possibly be explained by Se being an antagonist of Hg,
affecting absorption, distribution and elimination of Hg (Jadán-Piedra
et al., 2017). To address this aspect in more detail, we would need
data for speciation of inorganic and organic Hg. On the other hand, dif-
ferences in As and Hg concentrations between the geographical areas
were only slightly attenuated adjusting for Hg and As and Se concentra-
tions, respectively.

We found 15% higher Pb concentrations in the inland/mountain
compared to the coastal population, also in the fully adjusted models.
Humans are exposed to Pb through food, drinking water, air and dust.
According to the European Food Safety Authority (EFSA), grain prod-
ucts, milk and dairy products, non-alcoholic beverages, and vegetables
are the major dietary lead sources in the general population (EFSA,
2010). However, studies in e.g. Norwayand Sweden have reported asso-
ciations between Pb blood concentrations and lead-shot cervid meat
(Meltzer et al., 2013; Wennberg et al., 2017). Previous studies in
Norway have reported higher consumption of game meat in inland
than in coastal areas (Knutsen et al., 2013; Knutsen et al., 2019). Since
there is no information of consumption of game meat in the HUNT
Study we were not able to further explore this association in our study.

Ga and Tl are widely used in electronics and semiconductors and
may be considered as emerging pollutants (White and Shine, 2016;
Zhao et al., 2020). It is important to establish levels of these trace
elements in general populations before our environment becomes sig-
nificantly contaminated by these elements.We found higher concentra-
tions of Ga and Tl in the fjord/town and inland/mountain populations,
compared to the costal population. To our knowledge, few studies
have reported how Ga and Tl blood levels vary in the general popula-
tion. Compared to previous studies, we found Ga and Tl blood concen-
trations comparable to those reported in healthy volunteers in France
(Goullé et al., 2005), and lower compared to optoelectronic industry
workers in Taiwan (Liao et al., 2004).

4.3. Relationships between trace element concentrations and lifestyle and
socio-demographic characteristics

We found trace element concentrations to vary with lifestyle and
socio-demographic characteristics, including sex, age, education, eco-
nomic status, BMI, waist circumference, alcohol intake, smoking status
and fatty fish intake. Differences in trace element concentrations were
particularly evident between men and women, and across age catego-
ries.

We found the concentrations of B, Br, Cd, Ca, Cu, andMn to be higher
in women, and Ga, Fe, Pb, Mg, Rb, and Zn to be higher in men. We ob-
served similar differences in fully adjustedmodels for all trace elements,
except for Br and Zn. Our results are generally in agreement with previ-
ous studies reporting differences between men and women (Bárány
et al., 2002; Clark et al., 2007; Jain and Choi, 2015; Kim et al., 2014;
Vahter et al., 2007), and suggest sex to be important for trace element
status. Differences in concentrations of some trace elements between
men andwomenmay be due to the lower concentration of erythrocytes
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in women, so elements like Fe and Pb, which are present primarily in
erythrocytes, will generally be lower in whole blood in women than in
men (Iyengar, 1987). Higher Cd and Mn concentrations in women are
in line with earlier reported findings (Alimonti et al., 2011; Bárány
et al., 2005; Clark et al., 2007), and could potentially be explained by
competitive gastrointestinal absorption for Cd, Mn, and Fe, and the
lower Fe stores in women (Vahter et al., 2007).

The elements As, B, Cd, Cs, Au, Pb, Hg, and Agwere found to increase
with increasing age, and we also found differences in some age groups
for Fe, Rb, Se, Sr and Zn. These associations were significant also in
fully adjusted models (except for As, after adjustment for Hg), suggest-
ing age to be associatedwith concentrations ofmany trace elements. In-
creased concentrations with increasing age were particularly evident
for trace elements with a slow elimination from the body, notably Cd
and Pb (Gil and Hernández, 2015).

We found Cd and Rb concentrations to be higher in current smokers
compared to never smokers. Compared to never smokers, former
smokers had ~50% higher Cd concentrations, while current smokers
had more than fourfold higher Cd concentrations than never smokers.
Smoking is a well known source of some trace elements, particularly
Cd (Chiba and Masironi, 1992), and earlier studies have also reported
manifold higher Cd blood concentrations in smokers (Whitfield et al.,
2010).We are not aware of studies investigating howRb concentrations
vary with smoking status. Rb is a non-toxic trace element with no bio-
logical function. However, Rb generally behaves biologically very
much like K, and K levels have been observed to be increased in smokers
(Falk et al., 2021).

Alcohol intake was associated with higher B, Cs, Fe, Pb, and Se, and
lower Cu blood concentrations. These associations were also present
in fully adjusted models for B, Cs, and Pb. A few studies have investi-
gated the association between alcohol consumption and concentrations
of trace elements, and have suggested decreased Cu (Shibazaki et al.,
2017), and increased Pb (Grandjean et al., 1981; Kristiansen et al.,
1997; Whitfield et al., 2010) and Se (Galan et al., 2005; Whitfield
et al., 2010) concentrations with increased alcohol consumption, in
line with our findings.

Increased blood concentrations of As, Hg and Se were found with
increasing intake of fatty fish (salmon, trout, herring, mackerel, and
redfish). However, when further adjusted (including intercorrelated
trace elements), these differences were not statistically significant. It
should be noted that some fish and seafood contain high levels of or-
ganic As which may give transiently increased levels of As in blood,
and this is not a health hazard. As previously discussed, our results
might indicate that geographical residency, specifically proximity
to the coast, is associated with increased concentrations of these
trace elements, although factors including the species of fish con-
sumed, portion size, andwhere the fishwas caught should be consid-
ered in future studies.

We found BMI to be negatively associated with Br, Ca, and Zn, and
positively associated with Mg. In addition, a positive association was
found between Fe and BMI and waist circumference. However, in fully
adjusted models, no differences in trace element concentrations were
observed, suggesting that differences may be linked to other factors
than body composition. Previous studies have suggested an association
between body composition and concentrations of some trace elements,
including Cu, Pb, and Zn (Gu et al., 2020; Rios-Lugo et al., 2020; Wang
et al., 2015).

Increasing Cd and decreasing B, Cs, and Se blood concentrations
were found to be associated with decreasing levels of education and in-
come, in line with previous studies (see below). However, in the fully
adjusted models (including smoking) these associations were attenu-
ated, and not statistically significant after adjustment for multiple test-
ing. B is a trace element that is naturally present in fruit and
vegetables. In HUNT4, participants with higher education levels had a
higher intake of fruit and vegetables than individuals with less educa-
tion (HUNT Research Center, 2019), potentially explaining our findings.
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Previous studies have found lower Cd concentrations to be associated
with higher income (Ahn et al., 2017), and with higher education levels
(Caspersen et al., 2019; Whitfield et al., 2010), while lower concentra-
tions of Se have been reported to be associated with lower socioeco-
nomic status (Jain and Choi, 2015). Additionally, higher serum and
urine concentrations of Cs have been reported in persons with higher
socioeconomic status (Tyrrell et al., 2013).

4.4. Strengths and limitations

The current study aimed to determine trace element concentrations
in the general population in the Nord-Trøndelag region, Norway. We
based our work on the well characterized population in the HUNT3
Survey, which is a major strength of this study. The HUNT Study is a
unique database with information on a wide range of data obtained
through questionnaires, biological measurements, and interviews,
with a large sample size and high attendance rates. This makes HUNT
an excellent source for studying trace element concentrations in the
general population. By applying a sex-, age-, and area-stratified proba-
bility sampling design, we obtained a sample highly representative of
the population.We identified variations in trace element concentrations
with socio-demographic and lifestyle factors, statistically significant
also after stringent correction for multiple testing and adjusted for
potential confounding factors.

The Bonferronimethod for correcting formultiple testing (applied in
this study) is a conservative method, and we recognize that our study
may not have sufficient statistical power to revealminor differences be-
tween subgroups in the population. Although the HUNT Study contains
detailed information on its participants, future studies should aim to in-
clude more details regarding dietary habits (including seafood intake
and game meat consumption), information on drinking water and re-
gional geochemical data, and clinical chemistry measurements
(e.g., hematocrit and transferrin), to better adjust for these factors.
This could provide a deeper understanding of some of the observed as-
sociations found in this study. Although our results suggest trace ele-
ment concentrations to vary with lifestyle and socio-demographic
factors, we emphasize that these results do not necessarily imply cau-
sality.

Whole blood is an excellent sample material for a broad range of
trace elements, but we recognize that other sample materials are better
suited for some trace elements (Gil and Hernández, 2015). Future stud-
ies could therefore include urine, serum, plasma, or tissue samples to
provide complementary biological information on trace element status
and for a better assessment of body burden. Additionally, information
on trace element speciation is important to evaluate the potential bio-
logical effects of some trace elements. In the current study, we aimed
to minimize the potential contamination from the stainless-steel
needles by collecting the sample for trace element analysis as the last
sample tube. However, some residual contamination may still be pres-
ent influencing some of the reported concentrations, particularly Cr
and Ni.

5. Conclusions

In this large population-based study, we reportwhole blood concen-
trations of 28 trace elements in the general population of the Nord-
Trøndelag region, Norway. Trace element concentrations were gener-
ally comparable to those reported in other recent studies and suggest
a low exposure to toxic trace elements for the residents in the region.
We found differences in trace element concentrations between the geo-
graphical areas for As, B, Br, Ca, Cs, Ga, Au, Fe, Pb, Mg,Mn, Hg,Mo, Rb, Se,
Ag, Tl, Sn and Zn, and for the participants' lifestyle and socio-
demographic characteristics, particularly sex (B, Cd, Ca, Cu, Ga, Fe, Pb,
Mg, Rb, and Zn), age (B, Cd, Cs, Au, Fe, Pb, Hg, Rb, Se, Ag, Sr, and Zn),
smoking (Cd and Rb), and alcohol intake (B, Cs, and Pb). These differ-
ences were statistically significant after adjustment for potential



A. Simić, A.F. Hansen, T. Syversen et al. Science of the Total Environment 806 (2022) 150875
confounders and almost all differenceswere still significant after using a
stringent threshold correction for multiple testing. Our study demon-
strates the importance of considering these factors when evaluating
levels of trace elements in the general population.
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