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To determine the stress–strain curve of a ductile material up to the fracture from a tensile test, the necking
contour is measured by an optical measurement technique. The radius of the minimal cross-sectional area
and the radius of curvature are used as input for analytical necking corrections of the stress–strain curve, as
well as for finite element inverse simulations. Due to the increasing surface roughness that develops during
testing, a precise determination of the specimen contour is very challenging. This is crucial, since the second
derivative is required for estimating the radius of curvature. A dedicated contour-tracking algorithm was
developed to deal with the surface roughness and a specimen painted white with black background was
found to provide enough contrast. The new algorithm was implemented in a software, which is made
available as open source. Tests were made for an isotropic, commercially pure aluminum alloy and for an
axisymmetric, peak aged AA6082 alloy, based on image recording by a digital camera and synchronized
force measurements. Modeling by finite element simulations was performed to assess the accuracy of
analytical corrections of the stress–strain curves by inverse modeling and for designing a robust contour-
tracking algorithm.
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1. Introduction

The precise determination of the stress–strain relationship
up to large strains is one of the challenges for accurate
modeling of several forming operations involving large strains,
as well as for the precise characterization of ductility and
plasticity of nanostructured metals (Ref 1, 2). The equivalent
stress–strain curve can easily be derived for the uniform tensile
deformation up to the onset of diffuse necking in a tensile test.
After this point, there will be a triaxial stress mode with non-
uniform pressure distribution across the necking region. The
measurement of the stress–strain curve after the onset of
necking is far more complex, as the geometry of the neck must
be accounted for (Ref 3).

Commonly, modern tensile machines are equipped with
cameras. These are used for digital image correlations to
estimate strains during testing. By recording the necking, they
can also be used for the purpose of making necking corrections
and thereby extend the strain range obtained by the tensile test.
A robust algorithm is then required to extract the information
about the necking contours from the images.

Inverse modeling analysis using finite element (FE) simu-
lations is the general method for making stress corrections due

to necking, see, e.g., for a specimen with round cross section
(Ref 4, 5), for a rectangular cross section (Ref 6, 7), and works
on notched specimens (Ref 8-11). The strength of the inverse
modeling approach is that it can deal with anisotropic materials,
complex cross sections and notched geometries. However, with
increased complexity and accuracy, a complex calibration of an
anisotropic yield surface is required for precise FE simulations,
and the mesh must be sufficiently fine. Furthermore, the inverse
modeling needs well-defined targets based on measured
quantities that are to be matched by the simulation. Matching
the measured change of the force and the minimum cross-
sectional area as functions of the post-necking elongation do
not always correspond to only one possible stress–strain curve.
Ideally, a more precise measured neck geometry should also be
a target, and the weighting of the different targets must be
carefully chosen. Such an inverse model requires many
simulations to be run in an iterative manner to determine the
stress–strain curve of the model, requiring a considerable
computing time.

Alternatively, simplified analytical solutions can be applied
for the necking correction. Such solutions exist for an isotropic
material and an axisymmetric specimen geometry. The classic
analytically derived correction factor by Bridgman (Ref 12), for
estimating the stress–strain curve after onset of necking, is
based on a simplified solution. Similar analytical solutions have
been proposed (Ref 13–15) applying slightly different mathe-
matical simplifications to derive first-order analytical approx-
imate solutions. Gromada et al. (Ref 16) recently proposed a
necking correction based on a higher order, more complex,
analytical solution. In common for all these analytical solutions
is that their corresponding correction factors require measured
radius of the minimal cross-sectional area a, and radius of
curvature of the necking contour R, as input, i.e., these two
must be measured during the test.

As an alternative to measuring R, Bridgman (Ref 17)
suggested to measure only a and use an experimental observed
approximate relation between a=R and the strain. Based on

Feng Lu, Tomáš Mánik, Ida Lægreid Andersen, and
Bjørn Holmedal, Department of Materials Science and Engineering,
Norwegian University of Science and Technology, NO-7491
Trondheim, Norway. Contact e-mail: bjorn.holmedal@ntnu.no.

JMEPEG (2021) 30:4240–4253 �The Author(s)
https://doi.org/10.1007/s11665-021-05777-2 1059-9495/$19.00

4240—Volume 30(6) June 2021 Journal of Materials Engineering and Performance

http://crossmark.crossref.org/dialog/?doi=10.1007/s11665-021-05777-2&amp;domain=pdf


tensile tests of steels, bronze and brass, Bridgman tabulated and
plotted such a relation for tensile tests of axisymmetric bars up
to 400% strain, suppressing fracture by a high hydrostatic
pressure. It is noted from his results that for e � 1, his curve is
almost linear. He also reported more detailed results for necking
of thin-walled tubes, for which he reported a linear relationship
a=R ¼ 0:83 e� euð Þ. Later, Le Roy et al. (Ref 18) reported a
similar approximately linear relationship a=R ¼ 1:1 e� euð Þ for
the case of solid samples made of carbon steels. This relation
can be applied, e.g., in combination with the Bridgman
correction (Ref 19, 20). The measurement of a may be
performed during a tensile test, e.g., by a sweeping laser-based
extensometer (Ref 21–23) or by image-based measurements
(Ref 24–26). Tu et al. (Ref 27) measured the necking contours
during tensile testing in two orthogonal plane mirrors, using
one camera. Their contour tracking algorithm was not suffi-
ciently precise to estimate the curvature radius of the contour R,
instead estimated they used the simplified Le Roy approxima-
tion.

Vilamosa et al. applied a high-speed camera for recording
Split-Hopkinson tension tests at elevated temperatures (Ref 28).
The images were analyzed with an edge detection algorithm by
Hopperstad et al. (Ref 24). La Rosa et al. (Ref 29) evaluated the
influence of the approximations in the Bridgman necking
correction method by comparing FE modeling and experimen-
tal results from camera-based measurements of the necking
profiles. A. Sancho et al. (Ref 30) applied a similar setup with a
camera recording images of a specimen being painted white
with a black background. Here, Bridgman�s method was used
for necking corrections, where the radius of curvature of the
contour was estimated from the pictures by fitting osculating
circles to the contours. A complex approach by Siegmann et al.
(Ref 31) estimated both a and R with an advanced setup,
applying a high-resolution camera, utilizing fringe projection as
well as digital image correlation, acquiring three-dimensional
geometry information of the necking region. When needing to
make necking corrections to obtain precise stress–strain curves,
the present authors found that the quality of the setup and the
algorithms were not sufficiently well documented in the works
so far, which motivates this work, where also a corresponding
open source software with a user friendly graphical user
interface is made available for this purpose, see (Ref 32).

External cameras or built-in cameras in the tensile test
machine have high resolution and enough image quality and are
no longer the bottle neck of image-based measurements of
necking during tensile testing. However, even with sharp
images at perfect light condition, the surface of the specimen
will be roughened during testing, mainly due to the deforma-
tion, making the contour tracking increasingly challenging as
the strain increases. The main challenge is to estimate R, which
requires a smooth estimate of the second derivative of the
contour in the neck. The main goal of this work is to design a
robust and precise image processing algorithm that can be
applied to extract contours from each necking image, recorded
by one or more cameras during testing. It aims at measuring not
only a, but also R with enough accuracy for the purpose of
necking corrections. Hence, the stress–strain curve can be
estimated up to fracture.

The paper is organized as follows: Section 2 provides a
description of the experimental setup. In section 3, the
variations of a and R are estimated by a finite element model
of the tensile test. Simulation results are used for aiding the
design of the algorithms for precise extraction of contour

information from the images. The FE model is also applied for
inverse simulations. Section 4 explains the detailed procedures
of extracting the specimen contours from the images in order to
estimate a and R, from which the analytical necking corrections
can be performed. In section 5, the methodology is applied to
tensile tests for a soft, ductile commercially pure aluminum
alloy and for a strong, peak hardened AA6082 aluminum alloy
with earlier onset of necking. An assessment of the classical
method by Bridgman (Ref 12, 17) and the recent method by
Gromada (Ref 16) are made, where the accuracy of necking-
corrected results is discussed in terms of the FE simulations and
in terms of the experimental error sources. Finally, conclusions
are made in section 6.

2. Experimental Procedures

2.1 The Tensile Test Specimen

A commercially pure aluminum alloy (wt:% ¼ 99:7%)
received from Hydro Aluminum as a DC-cast round extrusion
ingot with 228 mm diameter, and an extruded AA6082 round
bar with 30 mm diameter, received from Neuman Aluminum
Raufoss, were the materials used in this investigation. Tensile
test specimens were machined from the center region of both
the round ingot and the extruded bar, with tensile axis in the
axial direction. Figure 1 illustrates the cylindrical tensile test
specimen, where the parallel part has a cross-sectional diameter
of 6 mm and a length of 18 mm. Note that this length is shorter
than according to the standard (Ref 33). The reason for this was
to obtain an optimal image resolution. An alternative approach
when measuring longer specimens, would be to machine a
tapered specimen, i.e., impose a slight thickness variation to
trigger the necking at a given position.

The commercially pure aluminum specimens were heated at
a rate of 100�C/h, homogenized at 550�C for 6 hours and air
cooled afterward. This did not affect the random as-cast texture.
The extruded AA6082 specimens were solution heat treated in
a salt bath at 540�C for 12 minutes, then water-quenched to
room temperature. After 10 minutes storage at room temper-
ature, the samples were artificially aged in an oil bath for 3
hours (peak aged) at 180�C, and subsequently water cooled.
Due to the manganese-based dispersoids, the extruded AA6082
alloy did not recrystallize during the heat treatments, and still
had the axisymmetric fiber texture from the extrusion, illus-
trated by the inverse pole figure in Fig. 2, measured using an
XRD goniometer in a Siemens D5000 XRD machine and
calculated using the Bruker Texeval 2.5 software and the
MATLAB toolbox MTEX. For more details, see, e.g., the book
by Randle and Engler (Ref 34).

2.2 Experimental Setup and Data Acquisition

Figure 3 illustrates the experimental setup for image and
force-data acquisition during the tensile testing. AWalter + Bai
multipurpose Servo hydraulic universal testing machine was
used. A National Instrument multifunctional I/O device was
used for converting the analogue force signal into a digital
signal and transferring it to a computer. A high-resolution
5120� 3840 monochrome CMOSIS CMV20000 mono 5K
industrial camera was employed for image acquisition. The side
of each pixel measured about 5lm. The camera was equipped
with a Canon EF 100 mm f/2.8L Macro IS USM lens. A large-

Journal of Materials Engineering and Performance Volume 30(6) June 2021—4241



bandwidth fiber cable connected the camera to the computer for
transferring raw image data.

Good light conditions are important to ensure a high image
quality with evenly distributed light on the specimen to ensure
clear contrast when tracking the specimen contours. The light
conditions and the quality of the image need to remain
stable during the test. A black PVC photographic background
sheet was used as a backdrop in the testing machine, as
illustrated in Figure 3. For enhancing the contrast between the
specimen and the background, the tensile specimen was painted
using ‘‘Hard Hat Topcoat Matt White 2190’’ spray from Rust-
oleum. The painting had a good ductility and deformed along
with the specimen without cracking and without losing
adhesion when the surface roughness increased during defor-
mation. The camera was mounted on a tripod in front of the
specimen, and the focus was optimized for the distance to the
two edges of the specimen. Two DC-powered white LED
panels equipped with white light diffusers, were applied as light
sources, being symmetrically mounted, providing equal light on
both sides of the specimen. The specimen was vertically
aligned using a laser leveler. The specific position where the
necking occurs is not known in advance. Hence, the entire
parallel length was included in the picture, taking into account
some increased length for the elongation of the specimen
during the test (for details, see section 4.2).

Both black and white painting of the specimen were tested,
with white and black background, respectively, see Fig. 4. Due
to the reflections of the light by the specimen, the round
specimen may have a bright zone close to its contours, as seen
in Fig. 4(b). Since this makes the border bright, a dark
background is beneficial for identifying the contour. A
combination of black background and white specimen provided
optimal contrast.

The test was started by that a control signal was sent from
the computer, both to the camera and to the force acquisition
port. The image data and the digital force signal were acquired
simultaneously at the same frequency of 1 Hz. The maximum
image acquisition frequency of the system was 120 Hz. Tensile
tests were conducted at room temperature with a crosshead
speed of 0.54 mm/min, corresponding to a nominal strain rate
of 5 � 10�4s�1, which is typical for tensile testing, and which
provides time for capturing images during the test. Approxi-
mately 900 images were captured for the AA6082 alloy, and
2500 images for the commercial pure aluminum during each
test. There is one image for each point on the stress–strain

Fig. 1 Geometry of the specimens for uniaxial tensile tests (measured in mm)

Fig. 2 Inverse pole figure of the extruded and peak aged AA6082
alloy. The color map shows the extrusion axis direction, where the
value indicates multiples of random distribution

Fig. 3 Schematic diagram of the uniaxial tensile test setup, seen
from above
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curve. In most cases, fewer points than this will be sufficient for
a good resolution of the stress–strain curve.

3. FE Simulations

A uniaxial tension test of a cylindrical specimen was
simulated using the finite element software Abaqus Standard
2017. Figure 5(a) shows the mesh for the specimen in an
axisymmetric model with a stress-free outer surface. Nodes at
one end were fixed, while the nodes on the opposite end had a
prescribed velocity along the tensile axis but were free to move
radially. The dimensions of the FE model are given in Fig. 1.
The gauge region was meshed with linear four-node axisym-
metric elements, CAX4, applying full integration. Elements of
type CAX3 were used for the rest of the tensile specimen. The
element size was 5� 150lm2, resulting in 3600 elements along
the tensile direction and 20 elements in radial direction. The
element length in the tensile direction corresponds to the typical
pixel size in the pictures taken by the camera. For the inverse
modeling (section 3.2), the element size was increased to 50�
150lm2 in order to increase the computational efficiency, while
not compromising the accuracy. Isotropic elastoplastic material
behavior was modeled, using Young modulus E ¼ 70GPa and
Poisson�s ratio m ¼ 0:3 for the elastic part. The rate insensitive
von Mises model, with or without isotropic hardening, was
applied for the plastic part. See section 3.2 on more details on
the work hardening law used and the way inverse modeling was
performed.

Figure 5(c-d) shows a simulated contour of a well-devel-
oped neck in a simulation of pure aluminum, with the
corresponding distribution of the plastic von Mises strain
shown in Fig. 5(b). In principle, for a given contour, the
minimum specimen radius, a, is found as the minimum distance
between the contour and the center axis. The radius of
curvature of the contour can be calculated by

R ¼
1þ y

02
� �3

2

y00j j ðEq 1Þ

Here, y
0
xð Þ is the first derivative and y

00
xð Þ is the second

derivative of the contour line. As seen in Fig. 5(e), the radius of
curvature R is smallest at the center of the neck and increases
rapidly with increasing distance from this point. In the necking
correction procedures, it is this minimum R that is of interest;
hence, it is very important to have a precise description of the
specimen contour line.

The use of the FE model in this work is twofold. Firstly, it is
used to improve the algorithm for calculating the radius R by

analyzing the error made by the contour fitting algorithm.
Secondly, inverse modeling of the material tensile curve is
performed based on the least-square fit of the measured stress,
F=pa2.

3.1 The Fitting Length L Required to Estimate R

In order to calculate the radius R in the thinnest part of the
neck, a second-order polynomial was fitted for each measured
strain, in the least-square sense, to a contour interval of a certain
axial length L, containing the minimum thickness of the neck.
The estimated radius R is sensitive to the fitted length L. For the
ideal, smooth and noise-free contour from an FE simulation, a
very short L can be applied, providing a precise estimate of R.

Figure 6 shows how R, estimated from the simulated
contour, increases with increasing L. For this calculation, the
model was applied without work hardening, which gives fastest
development of the neck. For real contours containing noise
and other structural irregularities, a too short fitting interval L
will lead to poor determination of R. This can clearly be seen
from the red curve in Fig. 6, where additive white Gaussian
noise with a standard deviation of 5lm, similar to the measured
scattering, was superposed to the smooth simulated contour.
The same polynomial fit was made as for the smooth contour.

With increasing L, on the other hand, R is increasingly
overestimated, as seen from Fig. 6. The FE model was used to
assess the increase of R with increased fitted region . Choosing
very low L would lead to a result strongly affected by the noise
of the contour. Choosing a larger L will make the fit less
sensitive to the noise at the expense of an overestimated R. The
maximum length, L10% for which the overestimation of R was
less than 10%, was calculated as a function of the strain. Curves
for L10% and L3% and are compared in Fig. 7. It is clear from
Fig. 6 that L10% is a suitable choice when the noise is controlled
by the pixel size, as in this case. A higher image resolution may
allow a stricter curve, e.g., L3%, while a larger may be required
when the surface is rougher.

3.2 Inverse Simulation of the Uniaxial Tensile Test

In order to assess the performance of the proposed
experimental technique, inverse modeling of the material
work-hardening model was carried out using the FE model.
The target to be matched by the simulations, in a least-square
sense, was the measured force divided by the minimum cross-
sectional area as a function of the logarithmic strain. The strain
was based on the minimum cross-sectional area of the neck and
was measured for strains up to fracture. Von Mises plasticity
was applied, and an extended Voce hardening law, given in
Eq. 2, was fitted to represent the work hardening of the

Fig. 4 Light conditions and reflections with (a) dark background and white specimen and (b) white background and black specimen
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material. However, the work hardening in Abaqus is repre-
sented by a piece-wise linear stress–strain curve through points
specified in a table. Hence, instead of using the Abaqus
optimization software, the Powell�s hybrid optimization algo-
rithm was run in a python script, from which tabulated stress–
strain curves were fitted to the Voce curves as input to Abaqus
simulations, which were run iteratively by the script. The force
and the minimum cross-sectional area of the neck were returned
by Abaqus, and the script modified the stress–strain curve to
optimize the fit of the measured, uncorrected stress as a
function of the logarithmic strain, as shown in Fig. 8. The fitted
parameters of the extended Voce hardening law are given in
Table 1.

R eð Þ ¼ R0 þ Rs
1 1� exp � e

es1

� �� �
þ Rs

2 1� exp � e
es2

� �� �

þ he

ðEq 2Þ

4. Processing the Images

A python code was programmed to process the images and
the corresponding force data. The program runs an algorithm to
extract the contours from the bitmap images. In the region close
to the minimum specimen thickness in the neck, a polynomial
is fitted to the contour, from which the radius of the minimal
cross-sectional area, a, and the radius of curvature, R, of the
necking-contour are estimated from each image. The detailed
algorithms are described below.

4.1 Images Pre-Processing

The first image after loading and the latest image before
fracture were first cropped manually, in order to remove the
specimen heads from the images, see Fig. 9(a) and (d). One of
the ends of the specimen is moving during elongation; hence,
the neck is moving relative to the image area. The position of
the thinnest part of the neck is identified at the last image before
fracture; then, its position is traced back to the onset of necking.

Fig. 5 (a) Finite element mesh of the gauge area, upper symmetric part; FE simulation at a tensile strain of 0.5. (b) von Mises plastic
equivalent strain. (c) The surface contour of the specimen in (b). (d) A close up of the selected contour from (c). (e) The radius of curvature R
as a function of x for the contour in (d)
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The images are cropped to an identical image size, so that the
whole neck is always within the images, as illustrated in Fig. 9.

4.2 Contour Tracking Algorithm

The black background is utilized to determine the speci-
mens� outer contour. To avoid single white spots on the black
background, a median filter with a 595 pixels window was
firstly applied to the images. The distortion of the specimen
edge by this median filter is small as compared to the surface
roughness and does very little affect the further identification of
the edge. All lines, of one-pixel width, in the radial direction
across the specimen, are considered. An example is illustrated
by the blue line in Fig. 10(a). The gray-scale intensity in the
picture is in the range from zero (black) to 256 (white). In
Fig. 10(b) the intensity distribution along the blue line in
Fig. 10(a) is shown. For each such line the intersections with
the two contours of the specimen must be identified, in the
transition between the black low-intensity background and the
brighter specimen. In the following, an algorithm is suggested
to identify the pixel position of the two borders of the specimen

for each line across the specimen for a given image. The basic
idea is to estimate the background intensity level of the black
region outside the specimen and perform a line search inward to
identify the first pixel that has a gray-scale intensity that
significantly deviates from the background level outside.

Firstly, a rough estimate is made for the radial position
corresponding to the transition between the black background
and the white specimen. For this purpose, the maximum
intensity along each transverse pixel line is found by a scan
through all its pixels, i.e., along the y-direction in Fig. 10(a)
(the blue line). Next, two line searches are performed, starting
from each their outer end of the transverse line and moving
pixel by pixel inward toward the tensile specimen. The
accumulated average intensity of all pixels scanned so far on
the way inward toward the specimen is used as the estimate of
the background intensity. Once the next pixel probed exceeds
this level by more than a factor f1 times the difference between
the maximum intensity level and the background intensity
level, this pixel provides the first estimate of the contours� y-
location, and the scan is terminated. Since the transition
between the black background and the white specimen is quite
sharp, the range 0:1< f1 < 0:7 will provide sufficiently good
first estimates. In this work f1 ¼ 0:2 is applied. The two
resulting points on each side of the specimen are shown as
green points on the scanned line in Fig. 10(b). The locations of
these two points along the y-axis are denoted y

1ð Þ
1 and y

2ð Þ
1 . The

first estimate of the diameter of the specimen along the
considered line is d1 ¼ jy 2ð Þ

1 � y 1ð Þ
1 j.

Next, a more refined estimate of the background intensities
at the two sides is made. The first estimate of the contour

Fig. 6 Radius of curvature R as a function of the fitting interval
length L at a strain of 0.67. The red curve is calculated from the
smooth simulated contour with additive white Gaussian noise with
standard deviation of 5 lm

Fig. 7 Fitting region L, with 10% and 3% error on the radius R,
determined from the simulation of the rigid plastic case. The curves
fitted by Eq. (3) are dashed

Fig. 8 Measured force as function of the logarithmic strain based
on the measured minimum cross-sectional radius a, for the pure
aluminum and for the AA6082. The dashed curves show the
calibrated FE model calculations

Table 1 Fitted parameters of the extended Voce
hardening law for both pure aluminum and AA6082

Voce parameters Pure aluminum AA6082
R0, (MPa) 379.7 16.5
Rs
1, (MPa) 68.3 57.1

Rs
2, (MPa) � 27.9 28.8

es1 0.037 0.177
es2 0.411 0.018
h, (MPa) 6.9 164.9
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location is used to narrow the region required for estimating the
background level intensity. The nearest regions outside the first
estimated contour lines are excluded by disregarding a small
length, f2d1 outside each side of the firstly estimated contour
locations. The factor f2 must be sufficiently large to capture the
background level, 0:05< f2 < 1 will give about similar results.
In this work f2 ¼ 0:2 is applied. A length equal to the first
estimate of the specimen diameter d1 is now considered for
estimating the background intensity on each side of the
specimen. A least-square fit of a linear trend line for the
intensity as a function of y is made in this interval. The standard
deviations of the background intensities in these intervals are
calculated. To ensure a level significantly above the background
intensity, the trend lines are shifted upward by a factor f3 times
the difference between the maximum intensity and the average
background intensity of the trend line within the considered
interval. Ideally, f3 should be as small as possible but
sufficiently large to exceed the noise level. In this work f3 ¼
0:08 was applied. A larger value might be required in cases
where the noise of the background level is stronger. The trend
lines and the shifted ones are shown as green lines in Fig. 10(c).
To avoid detecting pixels caused by noise in the background
region, it is ensured that the lines always are shifted at least five
times their standard deviations.

New refined estimates of the contour borders are obtained
similar as for the first estimates, by searching inward along the
transverse line. However, the search can now start quite close to
the specimen, from the innermost position in the region where
the background level was fitted, i.e., a distance f2d1outside each
side of the firstly estimated contours. Once the intensities of the
next two pixels both exceed the level given by the shifted trend
line, an interpolation between the next pixels point and the
considered one is made, and its crossing point with the shifted

trend line is determined. These locations, i.e., the two red points
in the close up in Fig. 10(c), are taken as the improved final
estimates of the contour locations yð1Þand yð2Þfor the considered
blue line at axial position xi in Fig. 10(a), where i is the pixel
number in the axial direction in the image.

Now, for a given image, i.e., a given tensile strain, the two
contour lines along the tensile axis, i.e., the x-direction, can be
found by the collection of all contour points from all transverse
radial lines. An example of such contour lines is plotted in
Fig. 11.

4.3 Specimen Radius and Radius of Curvature
of the Contour

For strains up to necking, the parallel region of the tensile
specimen remains uniform. At the uniform strain, before
necking has occurred, a small rotation of the reference
coordinate system is made if required, ensuring that the
average direction of the two straight contour lines is parallel
with the x-axis. All contour lines are then estimated in this
coordinate system.

The contour lines extracted from the images, consist of a
collection of points and are not completely smooth. Smoothed
first and second derivatives are required for calculating a and
Rmust be estimated numerically. This can be achieved by an
interpolating polynomial curve that is fitted by the least square
method. A high-order polynomial will give high accuracy for a
smooth curve, but it is sensitive to oscillations due to influence
of the noise. A second order polynomial has a constant second
derivative, but the fitted interval of length L must be small in
order to obtain the desired accuracy. The latter approach is
more robust and was chosen. The normalized length L=a
required for a satisfactory accuracy of R, varies with increasing

Fig. 9 Images from the AA6082 test, (a) and (d) show uniform deformation before necking (b) and (e) show a pronounced neck and (c) and
(f) show the specimen right after fracture. (d-f) show the cropped images used to extract the contours
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post-uniform strain, e� eu as the neck becomes more pro-
nounced with increasing strain, where e is the equivalent strain,
and eu is the strain at onset of necking, corresponding to the
maximum load. This was investigated by finite element
simulations of a tensile test without work hardening, The
following expression, with f4 ¼ 1, fits well the curve for the
10% error as shown in Fig. 7 in section 3.1.

L

a
¼ min 2; f4 1:579

1

e� eu

� � 1
10

þ0:2754 e� euð Þ2�0:963

 ! !

; e> eu

ðEq 3Þ

Curves with different errors of R scales with this relation,
e.g., the curve with 3% error of R is very close with a factor of
f4 ¼ 0:56. Both curves are shown in Fig. 7. In this work, f4 ¼ 1

was applied for peak aged AA6082, while f4 ¼ 1:5 was applied
for the pure aluminum, due to the higher ductility with more
noise from the deformed surface in the neck at the largest
strains.

Knowing the fitting length from Eq. (3), the estimates for a
and R were conducted for each image. Each sample has one
contour on each side, which are treated as two contours with the
centerline in common. The contours were extracted from
bitmap-formatted images with the number of image pixels as
unit. The following procedure was used to estimate a and R at
the neck for one contour:

1. A first search provides an estimate of the minimum diam-
eter by identifying the pixel line xi which corresponds to
the smallest distance min y 1ð Þ � y 2ð Þ�� ��� �

between its two
contours. The corresponding axial position is xmin. How-
ever, right after necking the position of the neck is very
difficult to determine. In such cases, when e� eu < 0:05,
the first guess for the axial position, xmin, is back extrap-
olated from the images at slightly higher strains.

2. Based on the estimated necking position, xmin, a second
order polynomial is fitted to each of the contour line
point representations yð1Þ and yð2Þ in the interval
xmin � L=2. For each of the two contours, an improved
estimate y

1;2ð Þ
min for and the corresponding position xmin are

made by the minimum points of the two fitted polynomi-
als. If the new minimum is at one of the ends of the fit-
ted polynomial, step 2 is repeated based on this position
as an updated estimate for . However, one iteration is in
most cases enough. The radius is in common for the two
contours and is estimated as aL ¼ y

2ð Þ
min � y

1ð Þ
min

���
���=2. The ra-

dius of curvature RL is calculated individually for each
contour from its second order polynomial, at each their
minimum point.

3. Based on the estimate of the necking position from step
2, a new second order polynomial is fitted to each con-
tour line in a twice as large interval xmin � L. Corre-
sponding estimates of the radius and the radius of
curvature R2L for each contour follow from these second
order polynomials.

4. The estimate for a=R converges quadratically with
decreasing L=a. Hence, if this relation is smooth, an im-
proved estimate can be obtained by extrapolation to L =
0.

a

R
¼ aL

RL
þ 1

3

aL
RL

� a2L
R2L

� �
ðEq 4Þ

5. It is expected that a2L=R2L < aL=RL. However, in cases
where the noise is influencing the estimate, sometimes
this does not hold. In such cases, the estimate based on
the smallest range is influenced by the noise and must be
rejected and a=R ¼ a2L=R2L is used instead.

The change of units from number of pixels to physical
dimensions requires that the pixel size is precisely determined.
This is done by that the specimen average diameter is measured
before the tensile test, and the corresponding average number of
pixels between the two specimen contour lines is found from
the first captured image. The estimated a and R from the images
were converted from pixels to millimeters, allowing the stress
to be calculated.

Fig. 10 (a) Example of estimated contours. (b) The intensity along
the blue transverse line in (a) with the first estimate of the contours
by the proposed algorithm. (c) A close up of (b), showing the final
determination of the contour points as the interceptions with the
shifted, dashed line of the background noise
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4.4 The Strain

The transverse strain component in the neck is calculated
from the radius a as err ¼ ln a0=að Þ, where a0 is the initial
radius of the specimen However, the strain of interest is the
equivalent strain, i.e., e ¼ ezz ¼ ln l=l0ð Þ, which is the strain that
are commonly measured in uniaxial tensile tests (without
necking), wherein l is the elongated length of an extensometer
of initial length l0 This strain ezz, can be decomposed into an
elastic part eelzz and a plastic part eplzz.

When the strain is small, the contribution from the elastic
part of the strain is significant. Hooks law of elasticity is
assumed

ezz ¼ eplzz þ eelzz ¼ eplzz þ
rzz
E

ðEq 5Þ

err ¼ eplrr1 þ eelrr2 ¼ eplrr � m
rzz
E

ðEq 6Þ

Here, E is Young�s modulus and m is Poisson�s ratio. For
axisymmetric specimens, the radial plastic strain eplrr will be
equal in all transverse directions. The trace of the plastic strain
tensor vanishes due to volume conservation.

eplzz þ 2eplrr ¼ 0 ðEq 7Þ

It follows from Eq. (5), (6) and (7) that

ezz ¼ 1� 2mð Þ rzz
E

� 2err ðEq 8Þ

The elastic strain component should be included at small
strains close to the elastic transition

ezz ¼ 1� 2mð Þ F

Epa2
� 2 ln

a

a0

� �
ðEq 9Þ

At larger strains, the elastic strain component is
neglectable and e ¼ ezz � 2ln a0=að Þ.

4.5 Stress Corrections

From the onset of necking the stress triaxiality changes in
the necking region, and the changed distribution of the
hydrostatic pressure must be accounted for. Based on a

simplified analytical solution, Bridgman (Ref 12) suggested
the following stress correction.

r ¼ F

pa2 1þ 2R
a

� �
ln 1þ a

2R

� � ðEq 10Þ

Recently, a more complex simplified solution was proposed
by (Ref 16), being based on a higher-order series expansion of
the displacement field in the neck.

r ¼ F

pa2n
ðEq 11Þ

n ¼ 9

7
� 5K
7 1þ 5Kð Þ �

2 1� 6Kð Þ
7 1þ 5Kð Þ þ

30K 8K� d� 5dKð Þ
49d 1þ 5Kð Þ2

þ 3 8K� d� 5dKð Þ
7d 1þ 5Kð Þ

2 1� 6Kð Þ
7 1þ 5Kð Þ �

2

7
� 30K 8K� d� 5dKð Þ

49d 1þ 5Kð Þ2

 !

ln 1þ 7 1þ 5Kð Þ
3 8K� d� 5dKð Þ

����

����

ðEq 12Þ

d ¼ a

R
;K ¼ 1� a0

a
ðEq 13Þ

5. Results and Discussion

The necking-correction methodology was implemented into
an open source software (Ref 32) and tested for two alloys. The
DC-cast and homogenized commercially pure aluminum alloy
had random grain orientations, which was confirmed by x-ray
diffraction, and the stress is therefore isotropic. This alloy was
expected to have considerable work hardening and a high local
fracture strain in the neck. The extruded AA6082 had the fiber
texture shown in Fig. 2, hence the stress is axisymmetric. In the
peak hardened condition, it is expected to have limited work
hardening and to fracture at a lower local strain in the neck.

The measurement of the elastic part of the stress–strain
curve of the peak aged AA6082 alloy is not a target by this
technique. Small elastic strains can precisely and more easily be
measured by an extensometer. However, it is calculated and
shown in Fig. 12 to show the accuracy of the strain
measurements by this image-based technique. Since the

Fig. 11 (a) Necking position obtained by a polynomial of order 2 fitted on a contour interval of length L. (b) a/R as function of e� eu. In both
(a) and (b) the green dashed curve is obtained with an interval L, the blue dashed curve with interval 2L, and the red curve by extrapolation
toward zero L (Color figure online)
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elasticity of aluminum alloys is nearly isotropic, Young�s
modulus was not iteratively determined from the measured
stress–strain curve, but rather E ¼ 70GPa was applied in the
strain calculation by Eq. (9). As shown in Fig. 12, the measured
curve fits reasonably well the measured elastic part of the curve,
confirming the validity of the guessed Young�s modulus. The
image resolution allows the radius to be resolved by about 500
pixels; hence, the error seen in Fig. 12 corresponds to
measuring the radius within one-pixel size precision, i.e.,
approximately 5lm. Compared to the initial radius, this
corresponds to a strain of about 10�3. Compared to the large
strains beyond necking, for which this technique is developed,
this is a very small error.

The estimation of the radius of curvature R, from the image
data, requires the second derivative of the contour line, which is
sensitive to noise. The radius of curvature was estimated based
on the images, both for the left and the right contour of the
same specimen. For one selected test of each alloy, the resulting
two a=R curves for each side of the specimen, are shown in
Fig. 13(a) and (c), respectively.

In addition, inverse FE modeling results are included in the
plots in Fig. 13. Note, that the stress–strain curves were
calibrated by the inverse modeling to obtain the measured
force-elongation curve, while neither the radii nor the detailed
specimen contour were calibrated. The resulting calibrated
model parameters are listed in Table 1. For the AA6082 alloy,
necking occurred at eu ¼ 0:06. For this case, the inverse
modeling follows the measured a=R to a strain e� eu � 0:35.
At larger strains than this, the measured a=R points are slightly
lower than from the simulation. The two curves from each side
of the specimen are very similar, indicating that the noise due to
surface roughness is not significantly influencing the result in
this case.

The difference between equivalent and uncorrected stress–
strain curves is strikingly for the AA6082 in Fig. 13(b), for
which the FE simulation and the equivalent curve with
Gromada�s formula show softening, while the uncorrected
curve shows significant work hardening. It is assumed that the
FE simulation here provides the best estimate. An approxi-
mately flat stress–strain curve beyond the uniform strain for
AA6082 in the peak aged condition was recently reported also
by (Ref 35), performing well-lubricated compression tests.
Note that the Bridgman correction is not sufficient, showing a
weak work hardening in this case. In Fig. 13(b), the Bridgman
correction gives a difference of approximately 7% as compared

to the inverse modeling at a strain e � 0:5, while Gromada�s
correction gives less than 3% difference. Furthermore, the
stress–strain curve in Fig. 13(b) has the same shape as from FE
simulation with Gromada�s correction. This correction is close
to the inverse simulation result and therefore significantly better
than the Bridgman correction.

For the pure aluminum specimen, necking occurred at a
larger strain, eu ¼ 0:29, and the measured a=R curves from the
two contours of the same specimen in Fig. 13(c) do not overlap
precisely. Still, they follow the inverse modeling curve
reasonably well, within the experimental spread, up to a strain
of e � 1. At larger strains, the inverse modeling estimates a
slightly smaller slope of the a=R curve than can be seen for the
one estimated from the images. Since the specimen is
axisymmetric, the spread between the a=R curves for the two
contours of the same specimen is mainly caused by the surface
roughness.

It is interesting to note the almost linear asymptotic behavior
of a=R as function of strain in Fig. 13, for both cases, similar as
reported by Bridgman at even larger strains, and with a slope
close to 1.1, as proposed by Le Roy et al. However, in both
cases, a transition in behavior occurs between the onset of
necking at the uniform strain and the asymptotic linear
relationship at larger strains. Note that this transition and the
linear Le Roy asymptotic behavior of the a/R curves can also be
seen for other metals in the works by La Rosa et al. (Ref 29)
and by Siegmann et al. (Ref 31). For the AA6082 alloy, this
transition occurs after the onset of necking during a strain
interval up to e� eu � 0:1, while for the pure aluminum it lasts
until e� eu � 0:7. Only after this nonlinear transition, a=R
follows the linear asymptotic relation, until fracture occurs. The
difference between the two alloys in the shape of the a=R
curves is related to the difference in the post-necking work
hardening and is verified by the inverse simulations, also
included in Fig. 13.

Note the difference in ductility. The peak aged AA6082
fractures ef � 0:55 at while the commercially pure aluminum
fractures at ef � 1:3. At this strain, damage evolution, e.g.,
voids, is expected to contribute to lowering the stress. The
specimen surface roughness increases with increasing strain.
Due to the large uniform and fracture strains of the commer-
cially pure alloy, its contours suffer from a significant amount
of noise. Close to fracture, the necking contour is strongly
influenced by the surface distortions. This is illustrated in
Fig. 14(b), showing an image of the neck at a strain of e � 1:1,
taken for the one among the parallel tests with the largest
difference a=R of between its two contours, as seen in
Fig. 14(a). In general, the larger strain for this alloy results in
a significantly larger experimental spread of the a=R curves
than for the peak aged AA6082, as seen in Fig. 15, where all
measured curves are included. At the largest strains, as in
Fig. 15(b), the required fitting length L becomes similar to the
typical wavelength of the surface noise, which lowers the
precision. As seen from the influence of the simulated noise in
Fig. 6, the radius can randomly be over- or underestimated with
a too small value of L.

Similar as for the analytical corrections, an isotropic
material is assumed in the FE modeling. This is strictly valid
only for the commercially pure aluminum. The analytical
solutions, on which Bridgman�s and Gromada�s corrections are
based, only consider the stress mode and the hydrostatic
pressure distribution in the smallest cross section of the neck.Fig. 12 Experimentally obtained elastic part of the stress–strain

curve of the AA6082 alloy
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Here the loading mode remains uniaxial tension, also during
necking. Hence, the same loading mode is the case in these
regions both before and after necking, i.e., the solution remains
mainly on the same point on the yield surface. However, in the
regions away from the minimum cross section of the neck,
shear strains are invoked. In this region, an axisymmetric
material, or an isotropic material with a higher yield surface
exponent than the quadratic von Mises criterion, might respond
differently than the isotropic von Mises model used in the FE
simulation, influencing the shape of the neck. This is a higher
order effect that is not included in the FE simulations of the
AA6082. However, the close match of a=R to the experiments
in Fig. 15(a) indicates that the radius is predicted well with the
isotropic assumption, also for the axisymmetric tests.

While the analytical methods are restricted to materials
without sensitivity to strain rate and temperature, such depen-
dencies can be included in an FE simulation. A proper
calibration would then require additional material tests. The
simulations of the pure aluminum show that the strain rate in
the neck became about ten times higher in the neck at the
largest strains obtained in the test. Since the strain rate
sensitivity for aluminum is low at room temperature, correc-
tions were not made. In a well conducting material as
aluminum, there will be time for the heat diffusion away from
the neck and the temperature will not rise much during testing
at low strain rates, while in high-speed tests deformation

heating might soften the neck. Precautions should be made in
such cases, which were not covered by this work.

Stress–strain curves for all parallel tests performed are
shown in Fig. 15(c). The experimental spread is reasonably
low, within a few percent for both alloys. It can be seen from
Fig. 13(d) and Fig. 15(c), that for the curves of pure aluminum,
Gromada�s correction provides stress–strain curves following
the inverse simulation up to a strain of about unity. From
Fig. 13(d), it is realized that the Bridgman correction is too
small, hence the stress is overestimated by 5-10%. At larger
strains, there is a significant spread of the a=R curves, as can be
seen from Fig. 15(b). However, for the AA6082 case, the
surface quality remains much better due to the smaller strain,
hence, the a=R curves in Fig. 15(a) show a small spread and
match the FE curve well.

In Fig. 8, the inverse modeling approach was able to match
the measured F=pa2 curve very well. It also managed to
capture the experimental a=R behavior for both alloys in
Fig. 15(a) and (b). Note that the quality of the inverse modeling
relies on two important aspects. Firstly, high computational cost
is necessary for the inverse model to converge, making the
computation last several tens of hours (for the cases tested).
Secondly, a rather advanced scripting is required to orchestrate
the whole iteration process, including FE model updating, post
processing and making a new guess. Figure 15 proves that the
experimental method proposed here, using a camera to record

Fig. 13 Comparison of experimental and inverse modeling ratio a=R versus equivalent strain of (a) peak aged AA6082 alloy and (c) pure
aluminum. Comparison on Bridgman and Gromada corrected equivalent stress–strain curves and inverse modeling result of (b) peak aged
AA6082 alloy, and (d) pure aluminum
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the tensile test and Gromada�s analytical formula for the
necking correction, provides a solution which is very close to
the one obtained by inverse modeling. The stress–strain curve
up to large strains can thus be very accurately calculated by
Gromada�s analytical formula by a negligible computational
cost as compared to the inverse FE modeling.

6. Conclusion

In the present work, algorithms were developed for making
precise necking corrections of the stress, based on images
recorded during tensile testing of axisymmetric specimens. A

Fig. 14 (a) Ratio a=R versus e� eu obtained from contour 1 and 2 of the pure aluminum specimen. (b) The necking region of the pure
aluminum specimen at strain e� eu � 0:8

Fig. 15 Measured a=R obtained from all parallel specimens of (a) the peak aged AA6082 alloy and (b) the pure aluminum. (c) Comparison of
inverse modeling results and corresponding equivalent stress–strain curves by Gromada�s correction for the peak aged AA6082 alloy and the
pure aluminum
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white specimen with a black background was found to provide
an optimal contrast. An algorithm is formulated for extracting
the two contours of the specimen from the series of bitmap
images. The contours are further processed by another algo-
rithm, developed for estimating the minimum cross-sectional
radius of the specimen and the radius of curvature of the
necking contour. This algorithm was designed, based on FE
simulations, to handle the noise that occurred due to limited
image resolution and increasing surface roughness during the
test. Inverse FE modeling was conducted to verify the accuracy
and robustness of the technique and to compare and assess
Bridgman�s and Gromada�s stress corrections during necking.
The algorithms were tested for two different alloys. The
commercially pure aluminum was soft, ductile, with consider-
able work hardening to large strains. The peak hardened
AA6082 was strong, less ductile, and showed weak work
softening at large strains. In both cases, Gromada�s stress
correction was found to be significantly closer to the FE
simulations than Bridgman�s correction.
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