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Abstract

Background: Problem-solving is a multidimensional and dynamic process that

requires and interlinks cognitive, metacognitive, and affective dimensions of learning.

However, current approaches practiced in computing education research (CER) are

not sufficient to capture information beyond the basic programming process data

(i.e., IDE-log data). Therefore, how cognition and affect intertwine and unfold over

time in programming problem-solving activities are rarely investigated.

Objectives: In this study, we examined how the theory-informed measures from mul-

timodal data that we have selected as proxies for cognitive and affective dimensions

of learning, are associated with student performance, and in comparison, to prior-

knowledge.

Methods: A high-frequency temporal data was collected with a camera, an electroen-

cephalogram, and an eye-tracker from 40 computer science students (bachelor and

master studies) in the context of a code-debugging activity. To study the cognitive

processes associated with learning we focused on cognitive load theory (CLT) and

the human information processing model. In addition, we complemented CLT with

the model of affective dynamics in learning to avoid the machine reductionism

perspective.

Results: Our findings demonstrated that attention, convergent thinking, and frustra-

tion were positively correlated with students' successful code-debugging (i.e., perfor-

mance), and frequently manifested by high performing participants. Cognitive load,

memory load, and boredom were negatively correlated with students' performance,

and typically manifested by low performing participants.

Implications: Extending the context of analysis in reference to student cognitive pro-

cesses and affective states, affords educators not just to identify lower performers,

but also to understand the potential reasons behind their performance, making our

method an important contribution in the confluence of CER and the learning technol-

ogy communities. In addition, the insights extracted from our analyses allow us to

Received: 10 December 2020 Revised: 26 April 2021 Accepted: 13 June 2021

DOI: 10.1111/jcal.12590

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2021 The Authors. Journal of Computer Assisted Learning published by John Wiley & Sons Ltd.

40 J Comput Assist Learn. 2022;38:40–59.wileyonlinelibrary.com/journal/jcal

https://orcid.org/0000-0002-7853-0429
https://orcid.org/0000-0003-3364-637X
mailto:katerina.mangaroska@ntnu.no
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/jcal
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjcal.12590&domain=pdf&date_stamp=2021-09-06


discuss potential avenues for improving learning design and the design of interactive

learning systems to support the development of students' problem-solving skills.

K E YWORD S

code-debugging task, cognitive-affective states, higher education, multimodal data,
multimodal learning analytics

1 | INTRODUCTION

In the last 10 years, higher education has witnessed a substantial

increase in the number of learning technologies as a support to the

more traditional classroom environments. Contemporary learning tech-

nologies afford novel ways for students to learn and instructors to

teach, anywhere (across digital and physical settings) and at any time

(Clark & Mayer, 2016). As students are free and flexible to choose how

they will use learning technologies (e.g., synchronous or asynchronous

e-learning), learning in technology-rich settings requires students to

apply a diverse set of skills and self-directed learning strategies to suc-

cessfully assimilate a learning content (Santhanam et al., 2008). How-

ever, the different level of skills development, and the various cultural

and pragmatic constraints, can cause some students to experience vari-

ous cognitive challenges (Chew & Cerbin, 2021) and feelings of frustra-

tion, boredom, or confusion with the learning content and the tasks, a

behaviour that cannot be easily noticed by the instructors in digital set-

tings. Moreover, even if the students care to communicate the chal-

lenges and the obstacles they face when learning with technology, the

communication is often not in real time (e.g., in a form of a submission,

an email). One the one hand, the lag in communication makes it difficult

for the instructors to understand the moment when for example, confu-

sion was triggered, for how long, and how frequent during the learning

activity. On the other hand, learning technologies rarely have appropri-

ate interventions or feedback mechanisms for the cognitive and affec-

tive struggles students face and experience during learning activities.

Thus, the benefits from learning technologies in supporting learning and

instruction, depend on the extent to which they are compatible with the

human affective and cognitive learning processes (Clark &

Mayer, 2016). Therefore, increasing our understanding how students'

cognition, affect, and behaviour intertwine and span throughout the

learning activities, can provide us with valuable insights that can guide

the learning design and the development of novel learning technologies.

Whilst important achievements have been obtained in the last

decades by mining clickstreams and keystrokes collected through

online learning activities (Li et al., 2016; Mousavinasab et al., 2018),

learning is ultimately a complex, multimodal process that involves lin-

guistic, gestural, visual, and physical interaction of students with educa-

tional systems, learning artefacts, learning spaces, peers, and educators

(Kress, 2001; Oviatt et al., 2017; Ritella & Hakkarainen, 2012). Thus,

the combination of multiple modalities (e.g., gazing, typing, gesturing)

that students employ when learning and communicating, generates rich,

objective, and relevant data, comprising of measures that can be

assigned as proxies for cognitive and affective dimensions of learning,

in the context of problem solving. Problem solving is defined as a ‘cog-
nitive processing directed at achieving a goal when no solution method

is obvious to the problem solver’ (Mayer & Wittrock, 1996, p. 47). The

ability to solve complex problems is affected by many factors

(e.g., prior-knowledge, type of learning activity, students' set of skills),

and requires and interlinks cognitive, metacognitive, and affective

dimensions of learning (Mayer, 1998; Spering et al., 2005). However,

how these dimensions intertwine and unfold over time in a problem-

solving activity are rarely investigated. Thus, to strengthen our under-

standing how cognition and affect co-exist in situ, and impact the per-

formance of students, we have selected and explored theory-informed

learning constructs (e.g., expertise, convergent thinking) salient to prob-

lem solving.

In our approach, we have focused on measures extracted from

multimodal data, as significant proxies for measuring learning-related

constructs (e.g., cognitive load, frustration) in relation to performance.

The measures were extracted from students' biomarkers1 collected

with three sensors: an eye-tracker, an electroencephalogram (EEG), and

a camera. This way we managed to explore the process of problem

solving from two dimensions, that is, cognitive and affective, utilizing

measures extracted from the electro- physiological activity of the brain,

the facial expressions, the typing and the gaze modality. Moreover, due

to the high-frequency of the collected temporal data, we were able to

investigate the moment-by- moment tracking of clicks, actions, cogni-

tion, gaze, and facial expressions, thereby showing the potential to

understand problem solving as a process of change over time. Conse-

quently, our work addresses the following research questions:

1. ‘To what extent and how measures extracted from multimodal

data that act as proxies for cognitive and affective dimensions of

learning are associated with student performance?’
2. ‘To what extent prior-knowledge (e.g., expertise) is associated with

student performance in comparison to the measures extracted

from multimodal data?’
3. ‘How measures from multimodal data can inform and influence

changes in the learning design?’

In sum, the contribution of the paper is three-fold: Conceptual –

to advance the discussion on expanding the context and impact of

learning analytics research by posing new techniques (i.e., multimodal

learning analytics) that can inform and influence changes in the

learning design; Operational – to deconstruct and investigate a

problem-solving learning activity at a fine level of details by utilizing

multimodal learning analytics; and Empirical – to validate the benefits
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of augmenting (i.e., enriching) programming process data (i.e., IDE-log

data) with sensor data (e.g., gaze data, facial expressions, EEG data) in

the context of learning design.

2 | BACKGROUND

2.1 | Multimodal data and learning

Multimodal data provide information about learners' behavioural

(e.g., non-verbal behavioural cues expressed through visual or kines-

thetic channels), physiological (e.g., heart rate variability), and mental

processes (e.g., cognitive load) that occur during learning activities,

and are impossible to be observed and captured with the human eye

(Oviatt et al., 2018). Multimodal data can be collected in non-invasive

ways using affordable sensor technologies (e.g., eye trackers, wrist-

mounted devices, kinetic sensors, electroencephalograms) that moni-

tor variations in different modalities (e.g., speaking, gesturing, gazing,

typing) (Lazar et al., 2017). Some applications of sensor technologies

in education include: fine-grained analyses of collaborative learning

(Malmberg et al., 2019; Martinez-Maldonado et al., 2019), develop-

ment of real-time feedback mechanisms (Ochoa et al., 2018;

Martinez-Maldonado, Echeverria, Schulte, et al., 2020), investigation

of self-regulated learning (Azevedo & Gaševi�c, 2019), capturing and

studying learning phenomena in classrooms (Chan et al., 2020; Donn-

elly et al., 2016; Martinez-Maldonado, Mangaroska, Schulte,

et al., 2020), teachers' opportunities for reflective practices in relation

to data generated from their biomarkers (Prieto et al., 2018), students'

emotions in e-learning (Shen et al., 2009; D'Mello et al., 2014) and

intelligent tutoring systems (Taub & Azevedo, 2019; Mills et al., 2019).

It has been proposed that multimodal learning analytics (MMLA)

has the potential to enable development of models that account for the

complexity of the learning process with the purpose of providing real-

time feedback (Ochoa et al., 2018), relevant and timely interventions

(Blikstein, 2013; Blikstein & Worsley, 2016; Drachsler &

Schneider, 2018), and creation of multimodal interfaces (Echeverria

et al., 2019; Martinez-Maldonado, Echeverria, Fernandez Nieto, &

Buckingham Shum, 2020), to name a few. In fact, there are MMLA

studies that have been focusing on modelling student gaze to identify

group synchrony as a proxy of collaboration effectiveness

(Schneider, 2020); capturing physiological cues to investigate group

regulation strategies (Noroozi et al., 2019) and individual achievement

(Pijeira-Díaz et al., 2018); utilizing computer vision systems to identify

incorrect postures in healthcare training (Di Mitri, 2019); creating hand

tracking algorithms to predict group work quality (Spikol et al., 2018);

and using positioning trackers to identify teaching strategies in physical

classrooms (Martinez-Maldonado, Mangaroska, Schulte, et al., 2020;

Martinez-Maldonado, Echeverria, Schulte, et al., 2020).

The findings from all these studies demonstrate that MMLA can

derive a more comprehensive view of learners' behaviours, actions,

cognitive and affective states, as well as model meaningful learning

constructs from commonly intertwined data-markers (e.g., heart rate,

gaze, cognitive workload, stress level, and arousal) salient to learning.

However, most of these studies portray phenomena without suffi-

cient use of theory (Gaševi�c et al., 2015), and without analysing the

learning activity at the level of details we have considered in this

study. To that end, the work in this paper focuses on: (1) measures

informed by literature and grounded in theory, to minimize the risk of

establishing weak concepts or missing to identify other important pat-

terns in the data; and (2) exploring problem solving as a dynamic pro-

cess and not an outcome, by tracking clicks, actions, cognition, gaze,

and facial expressions from moment-to-moment.

2.2 | Problem solving and learning

Problem solving is a dynamic process that unfolds in different phases

over time. A recent fMRI study has established the existence of three

learning phases, namely encoding, solving, and responding (Tenison

et al., 2016). Problem solving is considered to be the bridge between

learning and performance (Anderson, 1993), because it entails many

behavioural and cognitive multi-step activities (governed by meta-

cognitive awareness and emotions), that convert what is learned into

behaviour and towards performance (e.g., goal attainment; Dörner &

Funke, 2017).

When solving a problem, learners are required to apply higher-

order cognitive skills, such as divergent and convergent thinking

(Johnson, 1997). Divergent thinking is used to generate ideas to a par-

ticular problem; however, without convergent thinking, learners cannot

select and organize the information to converge on a correct solution

(Csikszentmihalyi, 1996; Chang et al., 2016). To do so, the learner's

mind requires sustained attention (i.e., concentration) and mental capac-

ity to process new information considering the working memory con-

straints (Wang et al., 2013). To avoid ‘overloading’ their cognitive

system, learners direct their attention to specific parts [e.g., area of inter-

est (AOI) du- ration] to select relevant information, guided by their cog-

nitive strategies and metacognitive awareness. However, if there is a

discrepancy between the memory load2 and the mental effort,3 a learner

can experience increase in the cognitive load4 (Sweller et al., 2019). In

other words, cognitive load is not affected only by the characteristics

of the task (i.e., the learning design and the interface design), but also

by the characteristics of the subject performing the task, and the inter-

action between the two (Paas & Van Merriënboer, 1994).

To describe the cognitive processes associated with learning

(Paas & Van Merriënboer, 1994; De Jong, 2010) and to model the

cognitive aspects of human behaviour (Hollender et al., 2010),

researchers in the field of instruction and learning often look into cog-

nitive load theory (CLT). On the one hand, furthering our understand-

ing about problem solving in digital settings through exploration and

measurement of cognitive processes (Anderson, 2013;

Razoumnikova, 2000), can reveal what measures from various modali-

ties can be mapped back to pertinent learning constructs, thereby

establishing measures grounded in theory. Such mapping of measures

and constructs can influence and enable improvements in the learning

design, that can bring on the development of learning activities to

extend the human cognitive capacities and learning abilities during
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problem solving (Paas & Van Merriënboer, 1994; Mayer &

Wittrock, 1996). On the other hand, such measures can be set for

estimating learners' cognitive load and mental load in computer-

mediated learning activities, which can have a practical value for

future design of human-centred adaptive and interactive learning sys-

tems (Chen & Epps, 2014; Haapalainen et al., 2010).

Although the constructivist view of learning focuses on cognitive

changes within learners, problem solving requires and interlinks cogni-

tive, metacognitive, and emotional dimensions of learning (Mayer &

Wittrock, 1996; Jackson et al., 1996; Spering et al., 2005; Dörner &

Funke, 2017). Hence, we have extended our approach for selection of

learning constructs salient to problem solving, to the model of affective

dynamics in learning proposed by D'Mello & Graesser (2012). This

model emphasizes the role of cognitive disequilibrium in learning and

problem solving. According to this model, when learners solve complex

problems and face an error or are uncertain what to do next, they enter

in a state of cognitive imbalance which is accompanied by the affective

state of confusion (D'Mello & Graesser, 2012). The state of confusion

triggers reasoning and reflection, so that learners can restore the state

of cognitive equilibrium. If the learners cannot resolve the issue, they

experience frustration, which if it is persistent, it can easily transition

into boredom, a point when learners disengage from the learning pro-

cess (D'Mello & Graesser, 2012). On the other hand, a learner in a state

of flow and engagement, often exhibits high degree of satisfaction

(i.e., delight), a positive affective state that has complementary effect on

broadening the scope of attention (Fredrickson & Branigan, 2005).

Building on CLT (De Jong, 2010) and the model of affective

dynamics in complex learning activities (D'Mello & Graesser, 2012), we

have selected theory-informed learning constructs (summarized in

Table 2) to further our understanding how cognition and affect co-exist,

and impact the performance of students, thereby extending our knowl-

edge of problem solving in digital settings, and informing the learning

design and the design of computer-mediated learning environments.

2.3 | Psychophysiology and problem solving

Psychophysiology is the study concerned with ‘the measurement of

physiological responses as they relate to behaviour (e.g., problem solving,

information processing)’ (Andreassi, 2010, p. 44). Psycho- physiological
measures carry many challenges with respect to privacy, invasiveness,

sensitivity, interpretability, and generalizability (Andreassi, 2010); thus,

their broad application in learning and teaching is yet to be seen.

One early example of employing psycho-physiological measures to

investigate problem solving, is the study by Aula & Surakka (2002) who

explored the effect of emotional feedback on human behaviour in a

computerized problem-solving math task. They found that positive

feedback triggers significantly faster decrease in the pupil diameter

(which is a measure linked to cognitive load) than negative or neutral

feedback. Such insights can lead towards the design of methods for

emotions regulation in humans for e-learning. Yoon & Narayanan (2004)

used gaze-related measures to explore trajectories of users' visual

attention strategies during problem solving. The insights from this study

have practical implications for designing user interfaces that can guide

users' visual attention and reduce the cognitive load inherent in mental

imagery, by providing additional information that reduces the response

time and increases accuracy (i.e., improves users' problem-solving per-

formance). Similar to Yoon & Narayanan's (2004) study, Mangaroska

et al. (2018) utilized gaze data to explore visual attention strategies

among novices and experts in problem-solving programming activity.

Their findings showed that measures from multimodal data can be used

to develop tools that can orchestrate basic behaviour regulation

(e.g., how a user processes information or interacts with visual informa-

tion), and as such, guide students to attend the right information at the

right time to maximize the understanding of relevant concepts.

Considering the relation between task dependency and gaze pat-

terns, Kaller et al. (2009) conducted a study to gain a better under-

standing of visuospatial problem solving. The results demonstrated

task- dependent eye-movement patterns, supporting a sequential

model of problem solving as internalization, planning, execution, and

verification. More recently, Tenison et al. (2016) conducted an fMRI

study in which they established the existence of three qualitatively

distinct learning phases during problem solving utilizing brain-related

measures. The authors advanced the understanding of skill acquisition

when solving a novel complex math problem with repetitions that

eventually can help with pre- and post-training study designs.

All these studies advance the current body of knowledge in the

context of problem solving, by studying problem solving as a dynamic

process of change and by deriving insights obtained with sensor data,

as data highly representative for the human affective and cognitive

learning processes. This brings the community closer to understand

the evolution and the sequence of different phases of problem solv-

ing, as well as the co-existence of cognitive, affective, metacognitive,

and motivational dimensions of learning.

3 | METHODOLOGY

This section presents the design of the study, the methods used to

collect and process the data, and the employed analysis approach

to address the research questions.

3.1 | Research design

The research design of our study is a single-group time series

design (Ross & Morrison, 2004) involving repeated measurement of a

group with the experimental treatment induced. Our study consists of

a debugging as the treatment, continuous measures (via behavioural

log data and the multimodal data shown in Table 2) as predictor vari-

ables, and the performance captured thought students' progress with

the task as the dependent variable. We decided to use single-group

time series because the collected observations were gathered through

repeated measurements over time (i.e., the measures from multimodal

data presented in Table 2 were tracked, monitored, and aggregated

over time). The time series design is suitable for detecting unstable
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and temporal behaviour patterns. Moreover, the effect of our experi-

mental treatment is likely to be more apparent in a repeated measure-

ment design due to the unsystematic variance that can be caused by

the changes in students' behaviour over time, while keeping the

‘noise’ to a minimum. In particular, we designed and implemented a

code-debugging task to explore learning constructs associated with

problem solving, that are informed from theory and literature, and fre-

quently applied indicators in education and problem-solving research.

The main task covered debugging a Java class named Person (that

manages parent-child relationships), accompanied with five questions,

written right after the code, presented as a part of the main method.

The code provided to the participants tried, but failed to ensure con-

sistent object relationships (Figure 1).

3.2 | Deconstructing the code-debugging learning
activity

To further our understanding about problem solving, we deconstructed

the code-debugging process in three main phases: understanding,

changing-testing (i.e., finding bugs and testing the code), and fixing. This

decomposition corresponds to a recent fMRI study, that established

the existence of three qualitatively distinct learning phases during prob-

lem solving, namely encoding, solving, and responding (Tenison

et al., 2016). For each of the phases we looked into the programming

process data, that is, IDE-log data (i.e., behavioural dimension) and the

fixation-duration on the defined AOIs (i.e., behavioural dimension). On

top of the behavioural log data, we added the measures we extracted

from the multimodal data (see Table 2).

Next, we defined two types of behavioural actions: reading

(R) and writing (W) episodes. The reading episodes covered actions

when students were reading the code, the output, or the assigned

questions, while the writing episodes covered actions when students

where editing the code to check the output or the questions

(e.g., students were commenting the questions or writing notes for

themselves). To map these actions back to the three phases of the

code-debugging process, we divided the episodes into initial reading

(Ri) and writing (Wi) episodes, and later (i.e., subsequent)

reading (Rn) and writing (Wn) episodes. The initial episodes were the

first 10% time duration for each debugging question (see Figure 2 for

computation of the initial and later R-W episodes). Consequently, Ri

and Wi were mapped onto the first stage (i.e., understanding), where

students were reading throughout the code and the questions (Ri),

and were making small edits in the code or the print statements in the

questions (i.e., Wi) to check the initial output. Rn and Wn were

mapped onto (1) the second stage (i.e., changing-testing) where stu-

dents were demonstrating the continuous ‘loop’ of changing the

code, evaluating the hypotheses, and testing their written solutions by

running the main method; and (2) the third stage (i.e., fixing) where

students were changing the code to fix the already located bugs. The

research design is shown in Figure 3

3.3 | Participants and procedure

During the spring semester 2019, the experiment was performed at a

contrived computer lab at the Norwegian University of Science and Technol-

ogy (NTNU), with 46 students (8 females and 38 males), age between

F IGURE 1 Graphical representation of the code-debugging task. The consistencies that were absent from the original version of the code.
(1) Gender consistency: the mother should be a female and the father should be male. (2) Child-parent consistency: if Jens is the child of Merit,
Merit should be the mother of Jens; and vice-versa. (3) The removal of a child-parent relationship from either a parent or a child should also apply
to the whole family. (4) Adoption consistency: the child-parent (addition and removal) and the gender consistencies should be maintained in the
case of an adoption
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20 and 25 (M = 22.1, SD = 1.46). The students were recruited from all

study years of the computer science major degree via mailing list. We did

not recruit students in their first year because they had not taken yet a

course in object-oriented programming (OOP). All recruited students had

used Eclipse IDE during their OOP course. The experiment ran for a week

� a total of 20 non-repeat sessions, where each session had two students

at a time, on two separate computers. The students were instructed not

to talk to each other, which was verified through the video data recorded

with the cameras. At the end of the experiment, students received a gift

voucher equivalent to 30 euros for their participation.

Upon arrival in the lab, the students were briefed about the

experiment following the basic ethical principles suggested by

the Department of Health (2014). The briefing included the follow-

ing: (1) the experiment is based on a voluntary participation; thus,

students could opt-out at any moment; (2) there is no risk of harm

(physical or psychological) from using the sensors; (3) their privacy

will be protected and guaranteed; and (4) their individual data will

be anonymized and aggregated before any analyses could material-

ize. Detailed information about the experiment was also provided in

the consent form, that the students signed following the briefing.

Then, the lead researcher explained the sensors that were used dur-

ing the experiment, and placed an EEG ENOBIO cap on students'

heads. Next, the eye-trackers were calibrated using a 5-point cali-

bration process, while the EEG was calibrated using the off-the-

shelf ENOBIO EOG correction software.5 After the calibration pro-

cess, the students were asked to finish three small code-debugging

assignments (easy, medium, difficult) within 20 min. We considered

this as a pre-task test, which was used to decide the students'

expertise. Then, the students were given 40 min to solve the main

task. The code for the main task contained no syntactic errors, and

the students were notified about this fact. The stages are shown in

Figure 5 and the whole set-up of the experiment is presented in

Figure 4.

3.4 | Data collection

During the learning activity (pre-task and main-task), we collected

data from four sources: an EEG device (i.e., brainwave signals), an eye-

tracker (i.e., gaze data), a camera (i.e., video data with participants'

faces), and programming process data (an IDE-log data). The collected

data included activity (e.g., logs), neural (e.g., electrophysiological

activity of the brain), and natural communication patterns (i.e., gaze

data, facial expressions) (Oviatt et al., 2018). All sensor data were syn-

chronized by having all devices' clocks synchronized with the com-

puters that participants were using. Table 1 shows the dimensions of

the physiological data.

The data collection process for each of the data streams is

described in the following:

1. EEG data: The EEG signals were recorded with a 20-channel

ENOBIO device following the international 10–20 system, as

shown in Figure 4. The raw EEG signal data were recorded at a

500 Hz using a portable EEG cap, and divided into the following

F IGURE 3 Outline of the research design

F IGURE 2 The approach
used to calculate initial and later
R-W episodes
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band powers: theta – θ (4–7 Hz), alpha – α (8–12 Hz), and beta – β

(18–30 Hz; Haapalainen et al., 2010). The Fz electrode was used

as a signal reference electrode, two channels were used for EOG

correction, one channel for electric reference, and three Channels

Accelerometer with sampling rate at 100 Hz.

2. Gaze data: To record students' gaze, we used a Tobii X3-120

eye-tracking device at a 120 Hz sampling rate and using a

5-point calibration. The device is non-invasive and mounted at

the bottom of a computer screen. The screen resolution was

1920 x 1080 and the students were 50–70 cm away from

screen. All students sat on a non-wheeled chair in front of the

computer screen.

3. Facial expression data: To capture face expressions from the stu-

dents, we used LogiTech web camera, pointed straight at the

students from the screen, capturing video at 30 frames-per-second

(FPS). The web camera focus zoomed at 150% onto the faces of

the students. During the tasks, the students exhibited a minimal

body and gesture interaction; hence, the video recordings hold

high quality data from students' facial expressions. The video reso-

lution was 640 x 480.

4. Log data: An Eclipse plug-in, that is, an exercise view (Trætteberg

et al., 2016), was used to gather the reading and writing behaviour

of the students. This plug-in captures the state of the programme

every time a student saves the programme, either by clicking on

the ‘save’ button or by pressing ‘CTRL+S’.

3.5 | Data pre-processing

The raw data from the sensors' recordings contain artefacts as a result

of (1) the blinks (e.g., gaze data); and (2) the adjustments of the EEG

cap, the jaw movements, and the blinks (e.g., EEG data). To prevent

distortions in the analysis and to ensure validity, we were required to

detect and remove such artefacts. Due to missing data, calibration

errors, and temporal mismatch, we removed six participants from the

F IGURE 4 Design of the experiment. (a) The set-up, (b) the EEG electrode layout of 20 channels, and (c) the defined AOIs in Eclipse. The
standard electrode layout shows the coloured electrodes that are being used in the experiment, and the white electrodes that ENOBIO provides
option for. AOI, area of interest; EEG, electroencephalogram

F IGURE 5 The three stages
of the experiment

TABLE 1 Dimensions of the physiological data (Andreassi, 2010)

Source Data Units Sampling frequency

EEG Alpha – α Hz 8–12 Hz

EEG Beta – β Hz 18–30 Hz

EEG Theta – θ Hz 4–7 Hz

Eye-tracking Pupil diameter mm 120 Hz

Eye-tracking Fixations ms 120 Hz

Eye-tracking Saccades ms 120 Hz

Abbreviation: EEG, electroencephalogram.
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data set. For the rest of the participants we have cleaned the data in

the following manner:

1. EEG data: First, an independent component analysis (ICA) was used

to remove the noise from the jaw movements.6 This was accom-

plished using separation of the signal into signal and noise, where

the noise was set to be coming from the jaw movements of the

students. We also applied an EOG filter (in-build function in

the ENOBIO software for neural data processing) to remove the

noise from the blinks and the eye-brow movements, and an addi-

tional filter to remove the noise from the tongue movements. A

60 Hz line filter was also used to remove any noise coming from

the interference within the EEG wires.

2. Gaze data: Tobii's default algorithm (i.e., in-build function in the

Tobii software for gaze data processing) was used to identify fixa-

tions and saccades (for details please see Olsen, 2012). A filter

(i.e., in-build function in the Tobii software) was used to remove

the raw gaze points that were classified as blinks.

3. Facial expression data: In most of the frames in the video record-

ings only one face was visible. However, sometimes the lead

researcher appeared in the field of view of the camera. Due to

the settings of the experimental space, the researcher could only

appear to the right side of the student. Moreover, the algorithm

in the OpenFace recognition software gave each face in the

frame an ID from left to right. This means that in the frames

where both the researcher and the student were present, the

student's face ID was always zero. For frames with two faces

(as this was the highest number of faces in any frame) the

researcher's face that had an ID value of one was systematically

removed.

Another important issue with physiological data is the suscepti-

bility of the data to various personal and contextual biases. Examples

of these biases include: time of the day, physical health condition of

the participants, gender, age, and an overnight sleep quality. All data,

except the facial expression data, were normalized using the first

30 s of the data streams, to remove the subjective and contextual

bias. Thus, for normalization, every data point was expressed as a

proportion of the means of the first 30 s. Further, the pupil dilation

was also normalized with the darkest and the brightest screen shots

in the whole interaction for each student (Armato et al., 2013).

Finally, the time series were normalized using the MinMax normali-

zation.Next, the data were divided into small episodes of up to 30 s

each. Then, all measures (shown in Table 2) were computed. Consid-

ering the behavioural dimension of learning, AOIs were calculated as

a proportion of the time students spend looking at the different

areas of the screen, and the R-W episodes were computed

depending whether they lasted more or less than 30 s. Considering

TABLE 2 Theory-informed learning constructs

Learning

constructs Meaning

Learning

dimension Measures Data stream

Attention State of arousal when humans selectively

concentrate on a discrete aspect of

information.

Cognitive α band power EEG

Convergent

thinking

Convergent processing of internal attention

directed to one correct task solution.

Cognitive upper β band power EEG

Memory load Composite of demands placed on the working

memory capacity by the task during

memory retention.

Cognitive θ band power EEG

Cognitive load The load that performing a task imposes on

the cognitive system of a learner,

considering casual and assessment factors.

Cognitive index of pupilary activity computed as discrete

wavelet transform of the pupil diameter

Eye tracking

AOI duration Interaction time with the IDE. Behavioural proportion of time looking at the screen. Eye tracking

Delight High degree of satisfaction. Affective AU4, AU7, AU12, AU25, AU26 Face

Frustration Dissatisfaction or annoyance from being stuck. Affective AU12, AU43 Face

Boredom Being weary or restless through lack of

interest.

Affective AU4, AU7, AU12 Face

Confusion Lack of understanding and being unsure how

to proceed.

Affective AU1, AU4, AU7, AU12 Face

Reading

episode

Reading lines of code. Behavioural >30 s, mean and s.d. IDE-logs

Writing

episode

Editing lines of code using the keyboard. Behavioural <30 s, mean and SD IDE-logs

Note: Reference for the borrowed method: attention (Cooper et al., 2006; Klimesch et al., 1998), convergent thinking (Shemyakina & Dan'ko, 2007; Zhou

et al., 2019), memory load (Jensen & Tesche, 2002; Grunwald et al., 1999), index of pupilary activity (Duchowski et al., 2018), AOI duration (Holmqvist

et al., 2011), expressions from action units (Baltrušaitis et al., 2016), affective states (McDaniel et al., 2007), reading-writing episodes (Sharma et al., 2018).

Abbreviation: EEG, electroencephalogram.
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the cognitive dimension, we computed the band power of each fre-

quency band (i.e., α, upper β, and θ) in each time window, while the

cognitive load was calculated as the index of the pupilary activity

(Duchowski et al., 2018). To get to the band power, first we per-

formed a Fast Fourier Transform (FFT), and then we blocked all the

frequencies higher or lower than the bandwidth (using a band pass

filter). Then, we converted the remaining signal to time domain by

using an inverse FFT, to compute the band power as the root mean

square of the amplitudes. At last, considering the affective dimension,

we computed the action units that corresponded to each of the

learning-related constructs (i.e., delight, confusion, frustration, and

boredom) (McDaniel et al., 2007). All computed measures (see

Table 2) were aggregated based on where the student was looking

(i.e., AOI) and whether it was a reading or a writing episode. The fea-

tures were computed in a temporal manner, and to correspond to

the deconstructed code-debugging process we chose to summarize

them. This way we kept the short (in time) intricacies and compare

them over a longer period of similar behaviour. Each data point cor-

responds to one student for each of the AOI (reading/writing) epi-

sode; thus, we kept the analysis of variance (ANOVA) assumption

about the independent sampling.

3.6 | Variables

The variables we have selected to explore are theory-informed and in

relation to the relevant body of work (please see Table 2). All variables

are continuous and frequently applied in education and problem-solving

research (please see Section 2). We have selected the debugging perfor-

mance (from here on performance) to be our dependent variable. More-

over, as expertise is a complex phenomenon that is highly contextualized

and develops over time (McCauley et al., 2008), it was necessary to exam-

ine if expertise has influence on students' performance and how much

explanation power added it to the models. The following are the rest of

the variables, which we have selected to be the experimental variables:

Expertise: The expertise of the students was decided from the

pre-task which consisted of three small code-debugging tasks. Each

task contained three bugs with the same level of difficulty. We

expected students to remove all bugs within 20 min. The expertise

ranged between 0 and 3, depending on the number of tasks success-

fully solved by the students. For example, three bugs per assignment

needed to be fixed, so that the assignment could be counted as

solved. The following are the percentages of the students that solved

none, one, two, or three tasks: 0–40%; 1–25%; 2–27.5%; 3–7.5%.

3.6.1 | Debugging performance

To finish the main code-debugging task the students were required to

solve the five questions in a particular order. Students were given

40 min to complete the main task. At the end of the 40 min, they

were asked to stop, and the number of solved questions at that point

of time, was taken to be the measure of performance. The

performance ranged between 0 and 5, depending on the number of

solved questions by the students. The following is the percentage of

the students that solved none, one, two, three, four, or five questions:

0–17.5%; 1–2.5%; 2–17.5%; 3–10.0%; 4–32.5%; 5–20%.

3.6.2 | Individual areas of interest

Eclipse IDE was divided into seven functional AOIs (these are the

basic panels in the interface of the IDE) shown in Figure 4. For

the analysis, we have computed the proportion of time students spent

on three AOIs: Code, Output, and Questions, as previous studies have

shown these AOIs to be particularly important in code-debugging

tasks (Bednarik, 2012; Mangaroska et al., 2018). Moreover, project

explorer and toolbar did not include any information important for

comprehending and solving a task; DebugView was not used by any

of the students, and VariableView was used only by few students.

3.6.3 | Code reading and writing episodes

The reading-writing actions depict the difference between the time

when students are editing, versus the time when they are only reading

the code. The writing episodes were detected using the activity of the

keystrokes. An uninterrupted typing (with breaks smaller to 30 s) seg-

ment was annotated as a writing episode, while no typing activity lon-

ger than 30 s (i.e., a data-driven threshold), was annotated as a

reading episode. We computed mean and standard deviation for these

reading-writing actions.

3.6.4 | Theory-informed learning constructs

Table 2 summarizes the constructs that were computed from the mul-

timodal data. The table provides the learning constructs, their mean-

ings, the learning dimension each construct covers, how they have

been measured, the data stream employed, and the respective litera-

ture source from where the constructs have been adopted. In particu-

lar, attention, convergent thinking, and memory load were computed

using the different frequency bands of the EEG data. Cognitive load

was computed using the eye-tracking data, and the facial expressions

(i.e., delight, frustration, boredom and confusion) were computed

using the facial video data. All these measurements either capture a

specific process during learning and/or problem solving, or have been

found to be related to learning/problem-solving performance. For

example, convergent thinking is often correlated with performance in

tasks that have closed-ended solutions (e.g., debugging, programme

comprehension, puzzles) as compared to the open-ended tasks

(e.g., creative tasks and brainstorming; Zhang et al., 2020). The upper

beta band (18–30 Hz) of EEG increases with the increase in the con-

vergent thinking in various tasks (Zhou et al., 2019; Shemyakina &

Dan'ko, 2007). Similar to convergent thinking, attention has been

found to be positively correlated with learning performance in several
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studies (Chen & Wu, 2015; Sharma et al., 2014). When specifically

measured with EEG (Benedek et al., 2014; Cooper et al., 2006) it was

found that the alpha band (8–13 Hz) power increases with partici-

pants' attention in tasks, thereby, showing that the alpha band power

is also related to attention specific errors (Carp & Compton, 2009). On

the other hand, memory load and cognitive load have been negatively

correlated to the learning performance (Sprague et al., 2014; Wang

et al., 2018). Higher cognitive and memory load might trigger disen-

gagement from a task (Boekaerts, 2017; Gordon et al., 2014) and in

turn, be detrimental for the performance (Bergdahl et al., 2020).

Finally, the affective dimensions (i.e., delight, boredom, frustration

and confusion) have been related to various learning processes

(D'Mello & Graesser, 2012). During learning/problem solving, confusion

occurs when the groups have to reinforce their pre-existing mental

models with new information (Clarebout & Elen, 2001; D'Mello &

Graesser, 2012). On the other hand, frustration, during learning sessions,

was found to be eminent in online interaction (Capdeferro &

Romero, 2012) and in online discussion forums (Chen &

Caropreso, 2004). Frustration and confusion were shown to lead to

impasses in problem solving (VanLehn et al., 2003). Lastly, when the prob-

lem at hand is far too easy or repetitive, boredom was the emotion that

was mainly observed in past studies (Panitz, 1999; Baker et al., 2010).

Based on a selective meta-analysis with 21 studies (D'Mello, 2013), in this

paper, we decided to focus on these expressions because they were

found to be most prominent for complex learning activities.

3.7 | Data analysis

To answer RQ1, we have created two linear models (Table 3, model

1 and model 3), with the performance as the dependent variable and

three sets of independent variables: (1) the measures from multimodal

data (Table 2); (2) the gaze on the different AOIs; and (3) the initial

episodes (reading/writing) for the first model, and the later episodes

(reading/writing) for the second model. To answer RQ2, along with

the first set of models, we have created another set of two models

(Table 3, model 2 and model 4), which include a new independent var-

iable, that is, the expertise. To find the relation between the expertise

and the performance we have used Pearson correlation. In all the

models, the significance of the coefficients was tested using a two-

tailed t-test.

The models that we have created were based on the segmenta-

tion of the eye-tracking (i.e., AOIs) and the IDE-log (i.e., R-W episodes)

data streams. The segments were based on two factors. First, whether

the learners were reading or writing, and second, which AOIs they

were looking at. Hence, we segmented the whole interaction in initial

and later (i.e., subsequent) R-W sessions based on the AOI durations,

and we have created four linear regression models (including the

models with the expertise as an independent variable). For all models,

the debugging performance was the dependent variable, and the

selected measures shown in Table 2 were the independent variables.

To answer RQ3, we have analysed the most significant multi-

modal data measures from the above-mentioned models. Considering

previous findings outlined in the cognitive and affective research, and

the findings from our study, we have proposed learning design guide-

lines that can aid educators to scaffold the code debugging process

and thereby, augment students' debugging performance.

4 | RESULTS

First, we analysed the relation between expertise and performance.

Because there was a positive and significant correlation between

expertise and performance (r(40) = 0.56, p = 0.0001), the rest of the

analysis focused on the performance as a dependent variable. We also

compared the models with and without expertise, as an additional inde-

pendent variable. Table 4 shows the adjusted R-squared values

(adjusted for the additional estimation of the parameters) for each of

the four models. One can observe that including expertise as an addi-

tional independent variable did not add much extra information to

explain the variance in the performance, which supports our decision to

discard the expertise as an independent variable from the models.

Although one might argue that multimodal data models are as good as

expertise and thus, use expertise as a distinguishing variable; having a

pre-test to measure expertise is not always possible or practiced by the

instructors. Therefore, we propose to use the models without expertise

and with the features extracted from the multimodal data streams.

Tables 5 and 6 are showing the most significant results from the

linear regression, calculated for the two models according to the initial

and later R-W episodes and the AOI durations, in relation to perfor-

mance. As one can notice, when the students were in the understand-

ing phase (i.e., encoding), once they started encoding, most of the

TABLE 3 Details for the different models

Model
ID

Independent
variables Predictors

Model

1

Debugging

performance

Measures from Table 2, AOI being

looked at, Initial episode type

(reading/writing)

Model

2

Debugging

performance

Measures from Table 2, AOI being

looked at, Initial episode type

(reading/writing), Expertise

Model

3

Debugging

performance

Measures from Table 2, AOI being

looked at, Later episode type

(reading/writing)

Model

4

Debugging

performance

Measures from Table 2, AOI being

looked at, Later episode type

(reading/writing), Expertise

Abbreviation: AOI, area of interest.

TABLE 4 Adjusted R2 for the four models with and without
expertise for modelling performance

Adj. R2 W/O expertise With expertise

Model 1 and Model 2 0.71 0.74

Model 3 and Model 4 0.74 0.76
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cognitive-affective states they displayed were related to performance,

except memory load and confusion. As they progressed towards read-

ing the questions (Ri) and making small edits in the code (Wi), we

observed a negative correlation between memory load and perfor-

mance, and a positive correlation between confusion and performance

when students looked in the console AOI for the outcomes of those

small edits in the code. Convergent thinking was positively correlated

to the performance, and was observed in all AOIs (i.e., code, question,

console) in the initial R-W episodes, which we have considered it as a

sign that the students were actively engaged in solving the task. Frus-

tration was positively correlated to the performance, and demon-

strated by the high-performing participants as a sign that they were

more actively engaged in solving the code-debugging task than the

low-performing participants.

In the later R-W episodes, which include the changing-testing

(i.e., solving) and fixing (i.e., responding) phases, the students contin-

ued to demonstrate their active engagement with the code-

debugging task, as we have observed the positive correlation

between convergent thinking and performance when they were

reading and editing/checking the code in the code and console

AOIs. Cognitive load was negatively correlated to the performance,

and observed when students were reading and editing/checking

the code and the questions, both in the initial and the later R-W

episodes. In the solving and responding phases, confusion and frus-

tration were again positively correlated to the performance, and

only observed when students were reading the questions. On the

other hand, boredom which was negatively correlated to the perfor-

mance, was observed in the later R-W episodes in the code and

the question AOIs, similar as in the initial R-W episodes. At last,

contrary to our expectations, delight was negatively correlated to

the performance in both, initial and later R-W episodes, when stu-

dents were reading and making edits in the code.

In Table 7, we present how cognition and emotion co-exist among

the students, which we have classified as low and high performing par-

ticipants. The main difference in the initial R-W episodes is in the fre-

quently displayed high levels of attention, convergent thinking and

frustration by the high performing participants, compared to the cogni-

tive load, memory load, and boredom displayed by the low performing

participants. Once the students entered in the hypothesis verification

loop, that is, the changing-testing phase, and the final stages of fixing

the bugs, we have observed that they did not deviate from the behav-

iour they demonstrated in the encoding phase. The high performing

TABLE 5 Results from the linear regression based on initial R-W episodes

Initial R-W episodes AOI Learning-related construct Estimate SE t-Value p-Value

(Intercept) 0.40 0.25 0.53 0.52

Initial reading episode Code Cognitive load �1.01 0.0051 �2.07 0.05

Attention 1.27 0.0016 2.49 0.01

Convergent thinking 1.56 0.0002 2.08 0.05

Boredom �2.95 0.0388 �2.79 0.01

Delight �1.81 0.0303 �2.96 0.01

Frustration 1.13 0.07 2.13 0.05

Memory load �2.68 0.0052 �2.03 0.05

Question Attention 3.56 0.0026 3.53 0.001

Convergent thinking 0.78 0.0062 1.97 0.05

Boredom �0.79 0.0271 �2.16 0.05

Console Convergent thinking 1.69 0.0042 2.06 0.05

Delight �0.81 0.0530 �2.19 0.05

Frustration 1.17 0.0667 2.37 0.05

Initial writing episode Code Cognitive load �1.22 0.0168 �2.32 0.05

Memory load �1.08 0.0012 �2.01 0.05

Attention 1.17 0.0022 2.17 0.05

Convergent thinking 0.98 0.0001 2.92 0.01

Boredom �1.40 0.0518 �2.70 0.01

Delight �0.90 0.0303 �2.97 0.01

Frustration 1.52 0.0642 2.33 0.05

Question Cognitive load �2.05 0.0079 �2.70 0.01

Convergent thinking 1.85 0.0066 2.05 0.05

Boredom �1.71 0.0919 �2.58 0.01

Console Confusion 0.75 0.0158 2.17 0.05

Convergent thinking 3.65 0.0006 2.93 0.01
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participants continued to display convergent thinking while reading and

editing the code in the code and console AOIs, and attention while

reading and editing the code or the questions. Convergent thinking was

not significant when the students were reading and editing the ques-

tions during the later R-W episodes. The low performing participants

continued to demonstrate cognitive load and memory load when reading

or editing the code or the print statements in the questions, during the

solving and the responding phases. These students also did not deviate

from the boredom state that they have originally exhibited in the initial

R-W episodes, while reading and editing the code or the questions.

5 | DISCUSSION AND CONCLUSION

5.1 | Interpretation of the results with respect
to RQ1

The findings from our experiment demonstrate that particular

cognitive-affective states are relevant and influential to both, the

cognitive process of problem solving and the performance of stu-

dents. Starting with the cognitive dimension, our findings demon-

strate that convergent thinking and attention were positively

TABLE 6 Results from the linear regression based on later R-W episodes

Initial R-W episodes AOI Learning-related construct Estimate SE t-Value p-Value

(Intercept) 0.57 0.5173 0.13 0.84

Later reading episode Code Cognitive load �0.88 0.0076 �2.01 0.05

Convergent thinking 1.35 0.0003 2.34 0.05

Attention 1.57 0.0016 1.98 0.05

Boredom �0.97 0.0161 �2.06 0.05

Delight �0.72 0.0021 �2.02 0.05

Question Memory load �1.68 0.0007 2.522 0.05

Boredom �1.46 0.0693 �2.54 0.05

Confusion 1.98 0.0988 1.98 0.05

Frustration 2.26 0.0103 �2.15 0.05

Console Convergent thinking 1.51 0.0010 3.003 0.01

Later writing episode Code Cognitive load �2.61 0.0061 �2.18 0.05

Attention 2.13 0.0006 2.58 0.01

Convergent thinking 0.56 0.0018 1.98 0.05

Delight �0.62 0.0054 �1.99 0.05

Question Cognitive load �3.08 0.0056 �2.61 0.01

Attention 2.32 0.0005 2.59 0.01

Boredom �0.81 0.0039 �2.44 0.05

Console Convergent thinking 0.65 0.0013 1.973 0.05

TABLE 7 Significant variables as per R-W episodes compared to performance

R-W episodes

Code Question Console

Positive Negative Positive Negative Positive Negative

Initial reading Attention Boredom Attention Memory load Convergent thinking Delight

Convergent thinking Delight Convergent thinking Boredom Frustration

Frustration Cognitive load

Initial writing Attention Cognitive load Convergent thinking Cognitive load Convergent thinking

Convergent thinking Memory load Boredom Confusion

Frustration Boredom

Delight

Later reading Attention Cognitive load Frustration Memory load Convergent thinking

Convergent thinking Boredom Confusion Boredom

Delight

Later writing Attention Cognitive load Attention Cognitive load Convergent thinking

Convergent thinking Delight Boredom
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correlated to the performance, while memory load and cognitive

load were negatively correlated to the performance for the entire

code-debugging activity. Although these findings support the previ-

ous fundamental conclusions from instructional research regarding

cognition and performance (Clark & Mayer, 2016; Mayer, 2002,

2003), our results provide new insights in the context of learning

design for problem-solving activities in digital settings

(Mayer, 1987, 1998).

Convergent thinking was an expected cognitive state in the

encoding phase of problem solving, because during this phase, stu-

dents usually recall specific problem-solving examples and check to

see if they have a stored answer for the task at hand

(Anderson, 1993; Tenison et al., 2016). This cognitive state is accom-

panied by emotions caused by pleasure or displeasure of performing a

task (Shemyakina & Dan'ko, 2007). In our case, the low performing

participants exhibited boredom, which suggests that this negative

emotional induction caused decrease in the beta band

(i.e., convergent thinking), which also led to decrease in the perfor-

mance. Such situations can be downscaled if the learning activities

and content are personalized to students' interests (Cordova &

Lepper, 1996) and adapted to their proficiency (Mangaroska

et al., 2019). Memory load, a task-centred dimension, was negatively

correlated with the performance, and was observed in the initial read-

ing of the questions and the small edits in the code, and later when

students were reading the questions. One explanation might be that

the design of the questions could have imposed load on students'

working memory that caused adverse effects on the problem-solving

performance for low performing participants. However, this might

also be an indicator that the low performing participants had gaps in

their domain-specific knowledge (i.e., knowledge in programming) or

lacked knowledge of problem-solving methods. For example, there is

a chance that the low performing participants had gaps in their

syntax-based knowledge, because syntactic knowledge (i.e., the

knowledge of how words can be combined in meaningful sentences,

phrases, or utterances) is the only memory-related aspect in the code-

debugging activity. In addition, syntactic knowledge is necessary for

fixing bugs and for efficient coding in general (McCauley et al., 2008).

Therefore, low-performing participants displaying high memory load is

an opportunity for designing personalized content and scaffolds that

would not cause adverse effects on the to-be-learned skills.

The implications from our method articulate the benefits of using

MMLA as sufficiently sensitive technique to capture the complexities

of cognitive engagement (compared to the long standing self- report

measures; Greene, 2015), utilizing process-related data generated

with sensors from the moment to moment tracking of clicks, facial

expressions, gaze, and EEG activity of the brain. As advocated by

Sinatra et al. (2015, p. 2), such grain-sized continuum at which

engagement can be conceptualized, observed, and measured, ranges

from the micro-level (i.e., individual in the moment, task, and learning

activity) to the macro-level (e.g., group of learners in a class or a

course), or from person-centred to context-centred, supporting the

clarification for some of the various measurement and definition

issues with the concept of engagement (Azevedo, 2015).

Considering the affective dimension, our findings demonstrate

that confusion and frustration were positively correlated to the perfor-

mance, while delight and boredom were negatively correlated to the

performance for the entire code-debugging activity. Frustration was

observed in the initial reading and editing of the code, while confusion

was observed when students were checking the output in the console

AOI based on the small edits in the code, and when reading the ques-

tions in the later R-W episodes. Frustration and confusion are natural

and unavoidable states that learners demonstrate when engaged in

deep learning (Meyer & Turner, 2006; Baker et al., 2010). In our case,

we argue that frustration and confusion resulted from the ‘checking’
students did on the recalled problem-solving examples, when they

became aware of the discrepancies between their knowledge and the

problem in the task at hand, causing cognitive imbalance. Thus, as long

as these states result from the cognitive processing and are not cau-

sed by an external stimulus, an intervention is not need it (Baker

et al., 2010).

Boredom was present in the initial and later reading and editing of

the code, but not when students were reading the output in the con-

sole AOI. We assume that the observed state of boredom, as a state of

low arousal, was not cause because students were not challenged, but

because these students (who also demonstrated low performance)

might have felt being ‘stuck’ early on, which might have been caused

by the gaps in their domain-specific knowledge (i.e., knowledge of

programming) or due to the lack of problem-solving skills. At last,

although delight has a positive valence and a high level of arousal, in

our experiment we observed a negative correlation with the perfor-

mance. This relation seems as counter-intuitive; however, we argue

that delight might occur at the beginning of the problem solving

(i.e., encoding stage) as a successful outcome from the initial small

fixes in the code, which in turn might induce overconfidence in

learners. This overconfidence can result in an overall slow progress,

creating a negative effect on the performance.

Considering the effects from the affective, cognitive, and behav-

ioural dimension of learning on the performance of students, our

method has implications for educators and learning designers in the

struggle to overcome the one-size-fits-all approach when it comes to

developing and disseminating learning and assessment content

(Gaševi�c et al., 2015). Our method provides researchers and educators

a set of multimodal data measures which have been extracted from

related works (see Table 2) and allows them to account for students'

cognitive, affective and behavioural processes. We agree that this list

is not exhaustive, but provides a set of measures that are widely

accepted in the learning technology literature, and offers certain impli-

cations. For example, it allows us to identify when students demon-

strate behavioural engagement without strong cognitive engagement

required for particular tasks. This is particularly important since behav-

ioural engagement is often associated with assignments based on sim-

ple recall of lecture attendance, and is not a good indicator for

achievement if higher order processing skills are expected to be devel-

oped. This can help educators to understand when and how students

engage cognitively, and what affective and behavioural states comple-

ment particular cognitive states.
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5.2 | Interpretation of the results with respect
to RQ2

Expertise is one of the factors that affect student performance. In

fact, modern educational psychology research suggests that learning

outcomes result from the dynamic interaction of intra-individual fac-

tors, such as prior knowledge, motivation, cognition, emotions, and

the contexts surrounding learners (Bronfenbrenner et al., 1998;

National Academies of Sciences, 2018). Therefore, we have included

expertise as one of the variables in our models to explain the

debugging performance. Looking at the results shown in Table 4, one

can notice that adding expertise (i.e., prior-knowledge) did not add

much extra information to explain the variance in the performance.

This result supports the decades of research work in educational psy-

chology, which presents performance as a complex emulsion of

potential (i.e., intra-individual factors) and opportunities (i.e., context).

However, the models that are built using measures from multimodal

data explain more than 70% of the variance in student performance,

and thus, deserve more attention in future re- search. Such models

can have profound implications for perspective inferences how stu-

dents learn and what obstacles they face in computer-mediated learn-

ing environments, that instructors can utilize it to optimize instruction,

content, and resources in relation to student potentials. Moreover,

models build utilizing multimodal data can also aid to conceptualize,

reveal, and measure constructs important for learning (e.g., mind wan-

dering, Mills et al., 2020; convergent thinking, Razoumnikova, 2000),

that could otherwise remain latent, but are important for students

(not solely instructors) to become aware of their own capacities and

behaviours. Yet, one key implication of these models is the support in

the development of dynamic assessment models that can foster edu-

cational equality among students that have experienced different

learning opportunities early in life (Alexander et al., 2009; Dumas

et al., 2020), by not treating expertise as the most important factor in

someone's performance, as well as include learning phenomena

(e.g., intelligence (Thorndike, 1924), nonlinear improvement in student

performance (Dumas & McNeish, 2017)) that educational psycholo-

gists have long struggled to study.

5.3 | Interpretation of the results with respect
to RQ3

In the context of learning design, we posit that cognitive load and

memory load, possibly caused by the discrepancy between the task

processing demands and the processing capacities of the participants'

who performed poorly (Paas & Van Merriënboer, 1994), should be

supervised and managed through tailored interventions early on in the

problem-solving activity. Managing memory load and cognitive load via

actionable interventions (e.g., solutions with explanation, corrections

of detected misconceptions), and encouraging active thinking by

prompting learners to reason and to reflect (i.e., metacognitive aware-

ness), can be seen as promising approaches towards design of actionable

feedback mechanisms (e.g., cognitive feedback) that can prevent low

performance (Van Merriënboer & Kirschner, 2017). Instead of focus-

ing solely on corrective feedback (detection and correction of errors),

instructors should be encouraged to consider designing cognitive feed-

back (i.e., feedback on the problem-solving process) to stimulate

learners to critically reflect and improve their metacognitive awareness

(Van Merriënboer & Kirschner, 2017; Hartman, 2001). Failure to teach

metacognitive skills leads to ‘vicious cycles’ which occur when stu-

dents are ‘stuck’ in certain states (e.g., boredom) and cannot move to

more positive states (e.g., flow) during the learning activity. Our find-

ings support the previous research (Hartman, 2001) that educators

often focus on modelling cognition (i.e., how to perform a task) with-

out modelling metacognition (i.e., how learners should think about

and monitor their performance), demonstrating the many limits in

education, in teaching students to be creative problem solvers

(Mayer, 1998, Mayer, 1987).

Boredom and delight are states that also require to be managed

early on in the learning activity and thereby, planned for in the learn-

ing design. Although humans are able to manage their emotions, the

degree of success frequently depends on many factors, some of which

are the situation, humans' management skills, and humans' tempera-

ment (Kagan, 1984). Hence, our recommendation to focus on boredom

and delight early on is particularly important for learners who have

lower domain-specific knowledge (in the particular topic) and skills to

self-regulate their behaviour and emotions. Moreover, as previous

research has shown boredom to be the most persistent and difficult to

deal with emotional state (Baker et al., 2010), which also has profound

effects on learning-related constructs such as productivity, engage-

ment, performance, and stress (Gross & Muñoz, 1995), it should

receive a greater research attention in the field of educational tech-

nology than any other affective state salient to learning.

Although frustration and confusion were observed to be positively

correlated with the performance, these states need to be managed in

the learning design to avoid negative cognitive loops and annoyance

from being ‘stuck’ in learning situations for too long. In general, frus-

tration and confusion are considered to be states that accompany deep

learning if managed productively (Meyer & Turner, 2006;

Dweck, 2002). For example, in our study we posit that confusion was

demonstrated during the hypothesis verification stage when the stu-

dents became metacognitively aware of discrepant events, and a sign

of progress for the high performing participants that managed the

state of confusion productively. Therefore, being aware that some

level of frustration and confusion are critical for optimal learning (Craig

et al., 2004; D'Mello et al., 2014; Lodge et al., 2018) and cannot be

avoided in complex learning activities (D'Mello et al., 2014), suggests

that these concepts salient to learning need to be considered in the

learning design. Moreover, these insights also welcome design of

interventions (with sufficient scaffolds to support learners to resolve

the confusion) for particular groups of students, that can induce con-

fusion to promote metacognitive awareness about the state of

learners' knowledge, as suggested by Mandler (1990) interruption (dis-

crepancy) theory.
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5.4 | Limitations

Although our methods present the potential of multimodal data to cap-

ture constructs connected with learners' cognition and affective states

during problem-solving activity, it is also subjected to certain limita-

tions. First, we like to acknowledge the uniformity in student majors,

suggesting that these findings do not apply to students from other

majors. In other words, the problem solving was explored through a

programming task, which requires domain-specific knowledge in com-

puter science. The constructs connected with learners' cognition and

affect might differ in other domains, such as the social sciences. Sec-

ond, our students were performing the activity individually, which

reflects a certain learning context. This means that the measurement of

these constructs might vary in collaborative learning contexts. Third,

our study privileged computer-mediated learning, where our students

were engaged with a computing device for the entire activity. In future,

we plan to explore the same constructs in a problem-solving activity

that will require less focus on computing devices. Fourth, the study was

performed in a controlled environment that might affect the ecology of

the study, because the participants were aware of the physiological

data collection, which may cause increase in desire ‘to perform’ and
generate good biomarker metrics. Finally, to measure complex internal

conditions within individuals emphasizing the natural sequence of

events, we utilized objective multimodal data collected with sensors.

Therefore, some might argue that other subjective measures generated

from think aloud protocols or self- report measures such as invested

mental effort, should be used in parallel, as they might shed light to out-

comes different than the ones generated from the multimodal data.

This limitation can be addressed in future studies when we can allow

for the necessary disruptions (e.g., filling a questionnaire every 15 min)

during a learning activity.

5.5 | Implications for the learning design and the
development of learning systems

It has been widely acknowledged that learning in digital settings with-

out an instructor or automated support that can distinguish between

cognitive and affective difficulties, might cause an experience where

students can easily give in to confusion, get frustrated or bored, and

completely disengage from a learning activity (D'Mello &

Graesser, 2012; Clark & Mayer, 2016; Van Merriënboer &

Kirschner, 2017). In terms of potential implications for future research

in the learning design and the development of learning systems, we

posit that insights such as the ones we presented in this paper promise

to support identification and modelling of variability in humans' natural

behaviours. Some insights might be practical for designing educational

interventions that intentionally puzzle learners to facilitate meta-

cognitive awareness and teach the importance of reasoning and reflec-

tion during problem solving, compared to learning environments where

students comfortably accumulate declarative knowledge without chal-

lenges (Hartman, 2001). Moreover, empirically verified multimodal

proxies of cognitive and affective dimensions of problem solving can

aid instructors to apply personalization of content and instruction

enough to induce a learner to engage but not detract from the lesson.

Other insights may advance automation in learning technologies to

sense behaviours, cognitive and affective states, so that the system can

adapt assessment (Mangaroska et al., 2019), interaction (Yoon &

Narayanan, 2004), or regulate behaviour and emotions in humans

through an interactive affect-support agents (Klein et al., 2002;

Hone, 2006). In other words, the future research in design of learning

technologies that are intuitive, easy to learn, and adaptable can lever-

age from users' knowledge, experience, and their engrained behavioural

and language patterns (Oviatt, 2006). Furthermore, specific proxies

from multimodal data promise to support the development of flexible

and adaptive multimodal interfaces that can aid users in ‘self-managing

their cognitive load and minimizing related performance errors while

solving complex real-world tasks’ (Oviatt, 2006, p. 872). Such empiri-

cally verified proxies can shed light how, when, and why humans shift

to more multimodal communication as their cognitive load increases

during the different phases of information processing (Camp

et al., 2001; Oviatt et al., 2004). This is especially important as future

interfaces in education are expected to be designed to minimize cogni-

tive load so that users can focus on the intrinsic difficulty of the tasks

(e.g., in mathematics or programming), accommodating users' existing

practices, and minimizing interruptions and distractions.

At last, going back to the contributions we provisionally

established in the introduction, we like to posit that teaching declara-

tive (i.e., knowing ‘about’) and procedural (i.e., knowing ‘how-to’)
knowledge is not enough when teaching problem solving

(Schraw, 1998), because this approach ignores the problem solver's

affective states and interest in the problem (i.e., motivation). Hence,

the instructional application is that the improvements in the learning

design need to account not just for the physiological bases of cogni-

tion, but also the affective bases, as well as the social and cultural con-

text of cognition (Mayer, 2003). This is what Van Merriënboer &

Kirschner (2017) call holistic learning design that integrates declara-

tive, procedural, metacognitive, and affective learning, and facilitates

transfer of learning across contexts (i.e., application of previous

knowledge and skills in new situations; Alexander & Winne, 2006).
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ENDNOTES
1 Generally, biomarker is anything that can be used as an indicator of

some physiological state of an organism.
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2 Memory load is a task-centred dimension: the load imposed on working

memory by the task (Sweller et al., 2019).
3 Mental effort is a human-centred dimension: the amount of capacity or

resources a learner allocates to accommodate the task demands (Sweller

et al., 2019).
4 Cognitive load is a multidimensional construct representing the level of

perceived mental effort for thinking and reasoning while performing a

particular task (Paas et al., 2003).
5 https://www.neuroelectrics.com:3001/downloads/NEU

MP.1EN2.7EN.pdf
6 ICA is typically used for multiple source separation when there is a

mixed signal (Xue et al., 2006). It is a powerful computational tech-

nique that divides the multisource signal into individual subcompo-

nents on which further applications can be performed. ICA is also

pertinent to blind source separation (BSS) or blind signal separation

(Vorobyov & Cichocki, 2002), that is, when the source of a specific sig-

nal is not known (e.g., some noise in EEG data that is not from jaw

movement).
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