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Preface 

 

 

 
This thesis is submitted to the Norwegian University of Science and Technology (NTNU) to 

partially fulfill the requirements for the degree of Doctor of Philosophy. The main work of the 

Ph.D. thesis was carried out at the Department of Mechanical and Industrial Engineering 

(MTP) of the Faculty of Engineering in Trondheim, Norway. The work was accomplished 

under the supervision of Associate professor Yiliu Liu and Professor Mary Ann Lundteigen 

(current affiliation: Department of engineering cybernetics at NTNU).   

This work’s target readers include researchers and practitioners interested in the following 

fields: reliability engineering, safety engineering, risk management, and oil and gas industry 

engineering. It is assumed that the readers have basic knowledge of reliability, preferably 

related to safety instrumented systems. 

 

 

 

 

 

 

Trondheim, Norway 

September 2021 

Lin Xie 
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Hope is the thing with feathers 

 

“Hope” is the thing with feathers- 

That perches in the soul- 

And sings the tune without the words- 

And never stops-at all- 

 

And sweetest-in the Gale-is heard- 

And sore must be the storm- 

That could abash the little bird 

That kept so many warm- 

 

I’ve heard it in the chilliest land- 

And on the strangest sea- 

Yet-never-in extremity, 

It asked a crumb-of me. 

 

      --Emily Dickinson (1862) 
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Summary 

 

 

 
Technical systems are becoming more and more complex. They often consist of many 

components with a degree of dependencies. These dependencies cannot be adequately 

predicted, understood, and analyzed. In addition, failures due to dependencies are often not 

expected to be single but multiple. As a result, in complex systems, such dependency issues 

can significantly reduce system reliability and cause catastrophes without proper prevention 

and mitigation. Therefore, a variety of control measures, such as safety barriers, are necessary 

to be adopted against dependent failures and ensure the safety of technical systems. They are 

related to implementing safety functions to avoid, prevent, control, and mitigate the effects of 

dependent failures. 

As a type of safety barrier, safety instrumented systems (SISs) are widely installed to prevent 

or mitigate the consequences of accidents in the process industries and other sectors. In 

practice, SISs are often employed to prevent dependent failure from occurring and alleviate 

their severe consequences. The operation and performance of SISs are thus of great 

significance to ensure the safety of production systems. Although however, independence is an 

essential performance requirement to make SISs effective and practical, such equipment is 

rarely fully independent from the operational context. In many cases, SISs may inevitably 

suffer from dependency issues, such as dependent failures that include common cause failures 

(CCFs) and cascading failures (CAFs).  

In the current literature, neither the effects of dependent failures within safety barriers nor the 

effects of SISs against dependent failures have been well studied. It seems that most attention 

has been directed to CCFs and in specific for SISs where redundancy is used to enhance 

reliability. Thus, it is desirable to analyze and model the effects of safety barriers in complex 

systems considering some dependency issues, such as dependency between safety barriers and 

the environment, dependent failures within safety barriers, and safety barriers against 

dependent failures. 

This Ph.D. thesis bridges safety barriers and complex systems by considering the dependency 

issues between them. The aim is broken into four specific objectives addressed in five journal 

articles and three conference articles. The thesis contributes to strengthening the link between 

safety barriers and complex systems by proposing:  

• A clarification of differences and similarities between two categories of dependent 

failures. Based on that, safety barrier strategies to protect against dependent failures are 

discussed. The research may increase the awareness and treatment of dependent failures 

in design and operations. 

• A new framework for identifying significant influencing factors from the environment 

and complex systems. It is expected to present new ideas and insights to update failure 

rates in performance analysis of safety barriers and model the effects of dependent 

failures in complex systems.   
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• Models and approaches for assessing the performance of safety barriers considering 

CAFs. This thesis presents new perspectives and approaches to deal with CAFs within 

or between safety barriers.   

• Models and approaches for assessing the performance of safety barriers to prevent 

CAFs. It concerns the reliability of complex systems and the durability of safety barriers 

during demands. Thus, it provides guidelines for efficient mitigations for a given 

resource situation and limited budget.   

From an academic perspective, this thesis suggests models and approaches for assessing the 

effects of dependent failures and safety barriers against dependent failures. The proposed 

approaches and models serve two purposes. The first one is related to provide a holistic 

performance analysis of safety barriers in preventing dependent failures. The second purpose 

is to establish some guidelines for safety designers to improve the performance of complex 

systems.   

From the application perspective, this thesis reminds both designers and operators to recognize 

the effects of dependent failures in complex systems, notably the effects of cascading failures. 

The thesis opens a new view of safety barriers in the context of dependent failures. It offers 

practical approaches to evaluate the performance of safety barriers, and they can be 

implemented in safety barriers and other systems with similar operational characteristics.  

The work identifies many challenges that can be research lines in the future. For example, one 

area is implementing new approaches and models to existing industry practices or complex 

technical systems, such as network, hierarchical, and dynamic systems. Another area is 

developing and improving approaches and models to account for the operations, such as 

maintenance and testing. 
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Chapter 1 

 
1. Introduction  

This chapter briefly introduces the background for this Ph.D. thesis and presents the objectives, 

scope and limitations, and structure.  

1.1 Background 

Technical systems are becoming more and more complex due to the increasing integration of 

communication technologies and the extensive use of digital infrastructure [1]. These complex 

systems often consist of many components with a degree of interrelationships and 

interdependencies. Such systems may not be designed but may become complex through 

changes and coupling [2]. The components are gradually developed to be logically or 

physically interactive and interdependent. Based on the current knowledge, it is challenging to 

understand and predict the interactions fully. Such complex systems can be found in diverse 

industrial systems, including, but not limited to, railway signaling systems, industrial control 

systems, information processing systems, and energy distribution networks.  

In a complex system, failures are not expected to be single but multiple and often dependent. 

Dependent failures occur in more than one component, resulting in extensive damage to the 

entire system. Dependent failures mainly include CCFs and CAFs. CCFs refer to the failures 

resulting from one or more events due to shared causes, whereas CAFs are defined as the 

failures of an item resulting from a root cause, which then causes other failures of the same or 

different item [3]. Past accidents and near misses have indicated that dependent failures are 

significant threats to complex systems [4, 5]. For example, CCFs are essential contributors to 

the unavailability of safety systems in the oil and gas industry [6]. Electricity loss or attacks 

can lead to the cascading interruption of communications and a blackout in power systems [7, 

8]. CAFs greatly impact internet systems due to the interactions and dependencies between 

devices in function and structure [9]. Many infrastructure systems such as water distribution 

networks and transportation also often suffer from CAFs [10, 11]. 

Dependent failures may cause catastrophes in complex technical systems without proper 

prevention and mitigation [12]. Therefore, safety barriers are necessary to be installed against 

dependent failures. Safety barriers are the physical or non-physical means to prevent, control, 

or mitigate undesired events or accidents [13]. The functions of safety barriers are commonly 

related to prevention to reduce accident probability, control deviation, and mitigation of 

accident developments [13]. However, safety barriers also have a significant mitigation 

potential in controlling the risk induced by dependent failures. A typical example of such safety 

barriers is applying a heat-resistant coating on process equipment to avoid its catastrophic 

failure due to fire exposure [4]. 

SISs as safety barriers are widely installed to reduce accidents in the process industries and 

other sectors. An SIS typically applies electrical/electronic/programmable electronic (E/E/PE) 

technologies to detect and act upon hazardous situations arising in the assets. The assets can be 

humans, equipment, or process sections, and they are called equipment under control (EUC) in 
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the generic standards for SISs IEC 61508 and IEC 61511 [14, 15]. An industrial facility usually 

is equipped with many SISs. For example, process shutdown (PSD) systems can stop 

production in case of process upsets, while emergency shutdown (ESD) systems are designed 

to reduce the escalation of uncontrolled events like leakages by depressurizing [16]. SISs can 

also be found in many transportation systems like railway signaling systems, where SISs 

provide light signals and operate switches [17].  

The operation of SISs is of great significance to ensure the safety of EUC systems, and thus, 

the performance of SISs is particularly critical. Performance assessment is used to qualify SIS 

for a specific application with the given functional requirement and may have different 

indicators. The indicators may include specificity, functionality, reliability, response time, 

capacity, durability, robustness, audit-ability, and independence [18]. Reliability is the most 

important one guiding SIS design, construction, and operation [17]. Therefore, when an SIS is 

put into operation, its operational data should be collected, and the SIS must be demonstrated 

to meet reliability requirements.  

Even though independence is also an essential requirement for SISs to ensure that safety 

barriers are effective and practical, they are rarely fully independent [19]. Sometimes, SISs 

may inevitably suffer from both CCFs and CAFs [18], even though they are used to prevent 

these dependent failures from occurring within EUCs. CCFs commonly exist in SISs where 

redundancy is used to enhance reliability actively. It is thus required to consider the 

contributions of CCFs in quantitative reliability analyses. Many models have been introduced 

for this purpose, incorporating the traditional reliability analysis approaches, such as fault tree 

analysis, Markov methods, and event tree analysis [1]. The defenses to CCFs are typically 

removing the causes and introducing measures to reduce the effects of CCFs. 

SISs can also be vulnerable to CAFs originating from shared loads, shared maintenance 

resources, hazardous events, and dependent functions [1, 9]. However, neither the effectiveness 

of safety barriers protecting EUC from CAFs nor the effects of CAFs on safety barriers have 

been well studied in the current literature [19]. There are some challenges for this research. For 

example, some dependency issues in a complex system, such as influencing factors or 

dependent failures within the components, have not been well studied. In addition, the critical 

concepts related to CAFs in safety barriers are not defined and thoroughly explored. There is a 

lack of comprehensive comparison on CCFs and CAFs to distinguish two failures from 

concepts, causes, mechanisms, and consequences. Safety barrier designers still lack the 

guidance to set up efficient ways to prevent or mitigate the CAFs effect. Further, there seem to 

be insufficient attempts to analyze and model the effects of safety barriers in complex systems, 

considering dependent failures, particularly for CAFs. 

This Ph.D. project is therefore intended to analyze safety barriers in a context with CAFs. First, 

it is necessary to distinguish the effects of CCFs and CAFs. The effects of CAFs in terms of 

safety barriers also have different impacts. The effects of CAFs can be within or between the 

components in safety barriers. CAFs within safety barriers mean that the barriers suffer from 

CAFs that reduce system safety and reliability. The effects of CAFs can also impact the 

functions of safety barriers that are employed to prevent CAFs. The challenging question is 

how to identify these safety barriers against CAFs and evaluate these effects of CAFs on safety 

barriers.  
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1.2 Objective  

Based on the background for the research, the main objective of this thesis is to improve the 

understanding and modeling of safety barriers with dependent failures in complex systems, 

with a particular focus on the effects of CAFs.   

To realize the overall objective, we will conduct the following specific tasks: 

1. Study the effects of dependency issues in complex systems considering influences and 

dependent failures.  

2. Discuss the differences between CCFs and CAFs, and distinguishing safety barriers 

strategies to protect against or mitigate the effects of the two failures. 

3. Propose models and approaches for evaluating the impacts of CAFs in complex systems 

and investigating the effects of safety barriers against CAFs. 

4. Provide new insights into the design and deployment of safety barriers to prevent CAFs. 

1.3 Scope and limitations  

The motivation of the thesis is to improve the basic understanding of safety barriers with 

dependent failures and the effects of safety barriers in protecting complex systems. The 

approaches and models in this thesis are applied to SISs and EUC systems, but they can also 

be adopted in safety barriers in other systems. The research is mainly carried out in the oil and 

gas and energy industry. However, the results could be relevant for other industries.  

The results in this thesis are encouraging both in qualitative and quantitative analysis. However, 

the effectiveness of safety barriers is affected by many factors, and it is not easy to consider all 

the factors; thus, the relevant discussion is restricted. In addition, with the increasing 

complexity of systems, dependencies between the components grow exponentially. Therefore, 

the efficiency of the proposed approaches and models is expected to be improved.  

1.4 Structure of the thesis 

The thesis consists of two parts: Part Ⅰ introduces the research background and research 

framework and highlights the research questions and contributions of the thesis. Part Ⅱ is a 

collection of articles that represent the outcomes of the research.  

The remainder of Part Ⅰ is organized as follows: Chapter 2 summarizes the theoretical 

background of the research to understand the behaviors of safety barriers with dependent 

failures and reviews the models for analyzing the performance of safety barriers. Chapter 3 

describes the objectives of the thesis and main research questions. Then, in Chapter 4, the 

research methodology and work process are elaborated. Finally, the main results and further 

works are discussed and summarized in Chapters 5 and 6. 

Part Ⅱ includes eight research articles that have been published or submitted during the Ph.D. 

project in international journals or conference proceedings. The articles are listed in Table 1. 
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Table 1 List of articles in part Ⅱ 

No. Type Article Reference 

Ⅰ Conference Xie, Lin; Lundteigen, Mary Ann; Liu, Yiliu. Common 

cause failure and cascading failures in technical systems: 

similarities, differences, and barriers. Proceedings of the 

28th European Safety and Reliability Conference 

(ESREL), June 17-21, 2018, Trondheim,  Norway. 

[3] 

Ⅱ Conference Xie, Lin; Lundteigen, Mary Ann; Liu, Yiliu. Safety barriers 

against common cause failure and cascading failure: 

literature reviews and modeling strategies. Proceedings of 

IEEE International Conference on Industrial Engineering 

and Engineering Management (IEEM), December 16-19, 

2018, Bangkok, Thailand. 

[20] 

Ⅲ Journal Xie, Lin; Håbrekke, Solfrid; Liu, Yiliu; Lundteigen, Mary 

Ann. Operational data-driven prediction for failure rates of 

equipment in safety instrumented systems: A case study 

from the oil and gas industry. Journal of Loss Prevention 

in the Process Industries (2019); Volume 60. s. 96-105. 

[16] 

Ⅳ Journal Xie, Lin; Lundteigen, Mary Ann; Liu, Yiliu. Reliability and 

barrier assessment of series-parallel systems subject to 

cascading failures. Proceedings of the Institution of 

Mechanical Engineers. Part O, Journal of Risk and 

Reliability (2020); Volume 234. (3) s. 455-469. 

[21] 

Ⅴ Journal Xie, Lin; Lundteigen, Mary Ann; Liu, Yiliu. Performance 

assessment of K-out-of-N safety instrumented systems 

subject to cascading failures. ISA transitions (2021); 

Volume 118. s. 35-43.  

[22] 

Ⅵ Conference Xie, Lin; Lundteigen, Mary Ann; Liu, Yiliu. Performance 

Assessment of Safety-instrumented Systems Subject to 

Cascading Failures in High-demand Mode. Proceedings of 

the 29th European Safety and Reliability Conference 

(ESREL), September 22-26, 2019, Hannover, Germany. 

[23] 

Ⅶ Journal Xie, Lin; Lundteigen, Mary Ann; Liu, Yiliu. Performance 

analysis of safety instrumented systems against cascading 

failure during prolonged demand. Reliability Engineering 

and Safety System (2021); Volume 216. s. 107975. 

[24] 

Ⅷ Journal Xie, Lin; Ustolin, Federico; Lundteigen, Mary Ann; Li, 

Tian; Liu, Yiliu. Performance analysis of safety barriers 

against cascading failures in a battery pack. Submitted to 

Reliability Engineering and Safety System.  

[25] 
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Chapter 2 

 
2 Theoretical background  

This chapter reviews the theoretical literature related to complex systems, safety barriers,  and 

dependent failures. The motivation behind this is twofold: 1) to provide highlights of concepts 

and methodologies that are the basis for this dissertation; 2) to establish research questions by 

understanding the state of the field and revealing the challenges. The review starts with 

discussions of the complex system perspective, followed by definitions and causes of 

dependent failures. Then, it continues with models of dependent failures and methodologies of 

safety barriers for preventing dependent failures. The last part of the review focuses on a 

specific safety barrier SISs.  

2.1  Complex system 

Over the past decade, the interest in complex systems has grown by introducing systems 

engineering techniques rather than separate components. However, there is no universal and 

concise definition of a complex system. Instead, researchers in different fields attempt to define 

a complex system in various ways. For example, Perrow claimed that some technical systems 

are characterized by high interactive complexity [26]. MIT [27] also defines complex systems 

as systems with numerous components and interconnections or dependencies.  

Rausand and Haugen [2] classified a system into three categories: simple, complicated, and 

complex. Both complicated systems and complex systems have many components with a 

degree of interrelationships and interdependencies between components. The difference 

between complicated and complex systems is that the interactions in the latter are not entirely 

understandable using all current knowledge. As a result, the performance of a complex system 

cannot be adequately predicted by linear relationships. Generally, complex systems are 

challenging to describe, understand, predict, manage, design, and change, not only because 

they consist of many components but also because the interconnections among components are 

complex. The two terms, complicated- and complex systems, are not strictly distinguished. 

Therefore, we use the term complex systems, considering the two sub-categories into one 

group.  

Complex systems may have many attributes, such as complexity, system states, functions, 

dependence, the realm of existence, origin, and boundary. Furthermore, due to complexity and 

dependencies, complex systems are likely to show their multiplicity, diversity, and interactivity 

[28]. Therefore, this thesis focuses on complex systems’ characteristics: complexity and 

dependency explained in the following sections. 

2.1.1 Complexity 

Complexity is defined as a scientific theory that the systems that display behavioral phenomena 

are completely inexplicable [2]. Complexity is related to the amount of information needed to 

describe the system, the number of elements in the system, and the number of interconnections 

[27]. Sammarco [29] listed some technological or organizational attributes of complexity, e.g., 

the proximity of physical components, unintended feedback loops, interacting control 

parameters, incomplete information, and limited understanding of the system. Many technical 

systems are becoming more complex, and they often exhibit dynamic complexity (e.g., multi-
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state of components), structural complexity (e.g., various structures), functional complexity 

(e.g., new functions), and complex environments (e.g., many performance influences). It is 

challenging to identify the influences of the environment and predict their performance 

considering the changes. 

2.1.2 Dependency  

Dependency is defined as the relationship between two elements in which a change to one 

element may affect or supply information needed by the other element [30]. The dependency 

of a complex system concerns its structure, economic factors, resources, performance, and 

failures. Existing literature usually distinguishes three dependencies: structural, stochastic 

dependence, and economic dependence [31, 32]. Structural dependence relates to the 

degradation of components in operation, and the lifetime distributions of components will be 

affected [33]. Stochastic dependence refers to the cases that one component is dependent on 

the state of one or more other components [32]. In addition, economic dependence applies for 

cases when the combined maintenance of several components leads to a different cost [32].  

We mainly focus on the structural and stochastic dependence in this work, meaning that one 

component's deterioration process depends on the state of one or more other components. 

Traditional approaches cannot analyze a complex system since it is more than a sum of its 

components due to dependency [2]. In other words, in complex systems, the failure of two or 

more components interacts unexpectedly due to connections and interrelationships which 

involve systems and their environment. 

2.2 Dependent failure 

A dependent failure may arise from stochastic dependence between components and 

subsystems in a complex system. Dependent failures can significantly reduce the system's 

reliability, wherein the system often consists of many components.  

2.2.1 Basic concepts of dependent failure 

One observation from the literature is that there is no universal definition for dependent 

failures. According to the standards IEC 61511 and IEC 61508, dependent failures are defined 

as the failures whose probability cannot be expressed by unconditional probabilities of the 

individual event [14, 15]. In addition, ISO 26262 defines dependent failures as the failures that 

may hamper the required independence between given components [34]. Dependent failures 

occur in several components that are influenced or affected by either external or internal 

impacts, for example, hazardous events, environmental factors, shared resources, and 

dependent functions. On the contrary, independent failures are failures with the occurrence 

probabilities not affected by other components, such as an age-related failure. Even though an 

independent failure does not result from other failures, it can influence other components and 

start more dependent failures. 

Generally, dependent failures may mainly be classified into negative and positive dependencies 

[12]. Negative dependencies refer to single failures that reduce the likelihood of failure of other 

components, but they are usually not relevant and are harmful to reliability applications. On 

the other hand, positive dependencies, including CCFs and CAFs, mean that the components 

are positively correlated. Hence, they are primarily relevant in the reliability analysis. That is 

the reason that only CCFs and CAFs are considered in this Ph.D. work.  

CCFs refer to the failures resulting from one or more events, causing concurrent failures of two 

or more separate channels [14]. CAFs are defined as the failures of an item resulting from a 
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root cause, which then causes other failures of the same or different item [34]. CAFs are 

identified in the literature in similar terms with a different focus, such as induced failures [35], 

domino failures [36], propagated failures [37], escalating failures [38], and interaction failures 

[39]. Both CCFs and cascading failures result from some common vulnerabilities of more than 

one component. Furthermore, the two types of failures are interrelated in some cases. For 

example, CAFs could be one of the possible root causes of CCFs, but CCFs cannot be CAFs 

[34].  

2.2.2 Causes and classifications of dependent failures 

Studying the reasons for dependent failures is associated with identifying the causes and 

problems. Therefore, such a study can help one concentrate on the possible causes and relevant 

measures to avoid dependent failures. Therefore, it is required to investigate the causes of CCFs 

and CAFs separately. 

It is common to split CCF causes into root causes and coupling factors[1]. A root cause of a 

failure is the most fundamental cause, whereas a coupling factor explains why several items 

are affected by the shared root cause. The root causes may be split into trigger events, 

conditioning events, and proximate causes [40]. If the root causes of CCFs are corrected, it will 

prevent similar failures. A coupling factor is a property that makes multiple components 

susceptible to failure from a single shared cause. CCFs often occur in the system with a high 

degree of redundancy because the components have the same properties. According to the 

report [41], the properties of CCFs concerns root causes and coupling factors, as illustrated in 

Figure 1. The root causes may be internal components, inadequate design and manufacture, 

human actions, maintenance, inadequate procedure, and abnormal environmental stress. 

Coupling factors emphasize the same properties that may overlap with root causes, e.g., same 

hardware design, similar operational conditions, and same maintenance staff [42] [6].  

 

Figure 1 Causes of CCFs and CAFs 

As for CAFs, the root causes can be categorized into behavioral and environmental factors [9]. 

The behavioral factors include overload (e.g., redistribution of loads due to one component's 

failure [43]), dependency (e.g., structural dependence [5]), and attacks (e.g., cyber-attacks 

[44]). In addition, CAFs can also be triggered due to coupling factors like environmental 

factors, such as natural disasters (e.g., fire and earthquake [45, 46]), extreme conditions (e.g., 

heat waves [47]), and dynamic conditions (e.g., elevated temperature [48]). Because of these 



10 
 

coupling factors in complex systems, a failure in one or more components may lead to CAFs, 

which may have catastrophic consequences on the system function.  

Another way of classifying CAFs stems from the idea that the components are susceptible to 

some dependencies. From the definitions listed in Table 2, it is found that the dependencies 

associated with CAFs are different. Therefore, CAFs are distinguished into three types 

considering the dependence links: functional, hazardous event, and load-sharing. In this thesis, 

we focus mainly on the first two categories of CAFs. 

• Functional CAFs refer to those failures that propagate between components whose 

functions are dependent on neighbors. For example, the state of a node depends on the 

state of others, which implies that a failing node will cause its neighbors to fail. This 

functional dependency between components could be not only direct but also indirect. 

• Hazardous event CAFs correspond to hazardous events, like fire, explosion, and 

disease. The failures propagate within a cluster of components. The primary scenario 

may escalate their effect to other components, triggering one or several secondary 

failures spatially or temporally. Damage of hazards may be dependent on the distance 

between the components. 

• Load-sharing CAFs are related to the flow or load in interdependent networks, like 

power grids, transportation networks, and traffic flow. When an overloaded node fails, 

the flow or load will choose an alternative path to other nodes, resulting in a 

redistribution of the load in the system and thereby causing the neighbors to fail. 

Table 2 Definition and classifications of CAFs 

Authors  Definition Classification Ref. 

Genserik 

Reniers & 

Valerio 

Cozzani 

An accident in which a primary unwanted event 

propagates within the equipment or/and to 

nearby equipment, sequentially or 

simultaneously, triggering one or more 

secondary unwanted events, in turn possibly 

triggering other unwanted events, resulting in 

overall consequences more severe than those of 

the primary event. 

Hazardous 

event  

[49] 

Rausand & 

Øien 

Cascading failures are multiple failures initiated 

by the failure of one component in the system 

that results in a chain reaction or domino effect 

Hazardous 

event  

[50] 

Motter & Lai Any failure leads to a new redistribution of 

loads. As a result, subsequent failures can occur. 

This systematic process is what we call a 

cascading failure. 

Load-sharing  [51] 

Rausand & 

Høyland 

When several components share a common 

load, failure of one component may lead to 

increased load on the remaining components 

and consequently to an increased likelihood of 

failure 

Load-sharing  [12] 

Buldyrev et al. In interdependent networks, when nodes in one 

network fail, they cause dependent nodes in 

another network to fail, which may happen 

recursively and lead to a cascade of failures. 

Functional  [5] 
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Cozzani et al. Accidental sequences have three common 

features: (1) a primary accidental scenario, 

which initiates the domino sequence;  (2) 

propagation of the primary event, due to “an 

escalation vector ” generated by physical effects 

of the primary scenario, that results in the 

damage of at least one secondary equipment 

item;  (3) one or more secondary events. 

Hazardous 

event  

[52] 

Lees An event at one unit that causes a further event 

at another unit 

Functional  [53] 

Baldick et al. A sequence of dependent failure of individual 

components that successively weakens the 

power system 

Functional  [54] 

Watts & Ren The cascade model has N identical components 

with random initial loads within the load limits. 

Components fail when their load exceeds a 

certain threshold. When a component fails, a 

fixed load is transferred to the other 

components, leading to a cascade of failures. 

Load-sharing 

cascading 

[55] 

 

In sum, CCFs highlight a direct cause-effect relationship, whereas cascading failures involve 

the interactions or dependencies between the components. The differences between CAFs and 

CCFs have been discussed in [3], which is one of the objectives of this thesis. 

2.2.3 Modeling dependent failures 

A wide range of models has been developed to study the mechanism and analyze dependent 

failures during the last 20 years. These models aim to include the effects of dependent failures 

in reliability analysis, but they are not always suitable approaches for the reliability analysis of 

complex systems. Moreover, it is difficult to model the dependent failures and incorporate them 

as basis events [17].   

The models for CCFs can be broadly classified as direct estimate models (e.g., square root 

model [56]), ratio estimate models (e.g., C-factor model and β-factor model [12, 57]), and 

shock models (e.g., binomial failure rate model [58]). These models have been incorporated 

into the traditional reliability analysis approaches, such as fault tree analysis [59, 60], Markov 

methods [61], and Bayesian networks [62]. 

The models applied for CAFs differ from the ones for CCFs. They can be categorized as 

topological (e.g., complex network models [51, 63] and graph theory models [64, 65]), 

probabilistic (e.g., risk analysis models [66, 67] and reliability analysis models [37, 68]), state-

transition (e.g., Markov processes[69], Petri nets[70], and Bayesian networks [66, 71]), and 

simulations (e.g., Monto Carlo simulations [72, 73]). These models focus on either the 

mechanism and behavior of CAFs or the effects of CAFs [9]. The effects of CAFs can also be 

considered from the component-level (e.g., [74, 75]), system-level (e.g., [21, 68, 76]), or their 

combinations (e.g., [77]).   

A comparison of the models for two failures were performed based on the classifications above. 

Table 3 summarizes the illustrations, advantages, and disadvantages. In this Ph.D. work, the 

main focuses lie on the reliability analysis models considering CCFs and CAFs. 
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Table 3 A comparison of the models for CCFs and CAFs 

Type  Category  Model Basics Pros Cons 

CCF Direct 

estimate 

models 

Square 

root 

model 

 

 

 

 

𝑞𝐿
= P(𝐴1)P(𝐴2) 
𝑞𝑈
= min{P(𝐴1) , P(𝐴2)} 

𝑄 = √𝑞𝐿𝑞𝑈 

P(𝐴𝑖) : 

unavailability of 

component 𝑖 
𝑄 : unavailability 

of the system 

• Can easily 

obtain the 

geometric 

mean value  

• Cannot 

consider 

various 

degrees of 

coupling 

between 

components 

Ratio  

estimate 

models 

C-factor 

model, 

β-factor 

model 

 

 

 

 

 

𝛽 =
𝜆(𝑐)

𝜆
 

𝛽: common cause 

factor 

𝜆(𝑐) : failure rates 

for common 

causes 

𝜆: failure rates 

• Can 

incorporate 

fault tree 

analysis, 

Markov 

models.  

• Factor 

checklist can 

be used. 

• Can not allow 

a certain 

fraction of the 

components to 

fail 

• Slight 

conservative 

results 

Shock 

models 

binomial 

failure 

rate 

model 

 

 

 

 

 

 

 

 

 

𝜆 = 𝜆(𝑖) + 𝑝𝑣 

 

𝜆: failure rates 

𝜆(𝑖) : failure rates 

for independent 

failure 

𝑝 : failure 

probability due to 

shocks 

𝑣: occurrence rate 

of shocks 

• The 

components 

can fail 

independentl

y of each 

other 

• Rather 

complicated, 

difficult to 

define a 

fraction of the 

shocks 𝑝. 
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CAF Topologi

cal 

models 

Complex 

network 

models, 

graph 

theory 

models 

 

 

 

 

 

𝑃(𝑘) = 𝑘−𝑟 

 

𝑘: the connection 

to other nodes 

𝑃(𝑘): the fraction 

of nodes 

• Can 

incorporate 

topological 

features 

• Can 

incorporate 

network 

graph models 

and network 

reliability 

analysis 

• Limited 

capability in 

modeling 

dependent and 

dynamic 

behaviors 

• Limited 

capability in 

modeling 

repair and 

maintenance 

Probabili

stic 

models 

Risk 

analysis 

models, 

Reliabilit

y analysis 

models, 

Bayesian 

networks 

 

 

 

𝜆 =
𝜆0𝑃(𝐴)𝑃(𝐵)𝑃(𝐶) 
𝜆  : end 

consequence 

frequency  

𝜆0 : initiating 

event frequency  

𝑃(𝐴): conditional 

probability of 

events 

 

 

 
 

𝑅𝑆 =∑𝑃(𝐹𝑖)

∙ 𝑃𝑟 

𝑅𝑆 : system 

reliability 

𝑃(𝐹𝑖) : failure 

probability of 

component 𝑖 
𝑃𝑟 : cascading 

probability 

• Computation 

efficient 

• Can apply for 

some specific 

types of the  

distributions 

• Inefficient for 

large-sized 

systems 

• Limited 

capability in 

modeling 

repair and 

maintenance 
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State-

transition  

Markov 

models, 

Petri nets,  

 

 

 

 

 

 

 

𝐹 = 1 −∑𝑃(𝑖) 

𝐹 : failure 

probability of the 

system 

𝑃(𝑖) : the 

probability of 

steady states 

• Flexible 

• Can 

incorporate 

repair and 

maintenance 

• Inefficient for 

large-sized 

systems 

• Limited to 

exponential 

distribution 

Simulatio

ns 

Monto 

Carlo 

simulatio

ns 

 

 

 

 

 

𝑃𝐷𝐹 : probability 

density function 

• Flexible 

• Can apply for 

large-size 

systems 

• Time-

consuming 

• Mistakes or 

statistical 

errors may be 

made during 

estimation 

2.3 Safety barrier  

In most technical systems, protective measures or equipment are employed to prevent or 

mitigate the effects of failures and protect people, the environment, and other assets. These 

measures or equipment can be called safety barriers. In this section, we will summarize the 

theories concerning safety barriers.  

2.3.1 Concept of safety barrier 

Although there is no universal definition of a safety barrier, they are regarded as those physical 

or non-physical means planned to prevent, control, or mitigate undesired events or accidents 

[13]. Safety barriers are also called countermeasures, defenses, layers of protection, and 

safeguards in the literature [2]. The basic idea of safety barriers is that the barriers are a means 

to avoid losses by separating or protecting vulnerable assets from hazards. In the ARAMIS 

project report, safety barriers are related to how to implement safety functions that can be 

divided into “to avoid”, “to prevent”, “to control”, and “to limit, reduce, or mitigate” [78]. 

Using electric, electronic, and programmable electronic technologies, SISs are regarded as 

specific safety barriers [14]. 

The concept of a safety barrier is often used in risk analysis [79]. Risk analysis is related to the 

probability of something going wrong, the negative consequences if it does, and the frequency 

of the accidents. First, one must identify the possible hazards and estimate their impacts and 

likelihood in the risk analysis. Then, to avoid risk, protection layers or safety barriers are added 

to reduce the probability and frequency of accidents and mitigate negative consequences.  

In IEC 61508 [14], it is recommended to use a functional safety lifecycle to control risk. The 

safety lifecycle is composed of 16 steps in analysis, realization, and operation phases. The 

analysis phase of the lifecycle deals with identifying and specifying the safety needs for the 

system. Notably, in the step of overall safety requirement allocation, it is required to decide 

𝑃𝐷𝐹 
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whether SISs are needed as safety barriers and, if so, to determine the required safety integrity 

levels (SILs). SISs are not the only means to protect EUC from accidents. Protections may be 

provided by other safety barriers as well as SISs. As illustrated in Figure 2, the initial risk is 

defined concerning EUC and specific scenarios. The acceptable risk is a tolerable criterion, 

meaning that risk should be required to enter an as low as reasonably practicable (ALARP) 

level. The difference between EUC and acceptable risk is the necessary risk reduction that SISs 

or other safety barriers should allocate.    

 

Figure 2 The risk reduction process [14] 

2.3.2 Classification of safety barriers 

Safety barriers can be classified in different ways. One acknowledged classification based on 

the bow-tie model distinguishes proactive barriers from reactive barriers [2]. Proactive barriers 

are applied for preventing or reducing the probability of a hazardous event, whereas reactive 

barriers are employed to avoid or reduce the relevant consequences. Furthermore, safety 

barriers can be classified as physical, technical, operational, and organizational barriers [19]. 

In addition, Kjellen [80] proposed two categories of barriers: add-on barriers and inherent 

design barriers. Apart from them, Sklet [13] provided a systematic classification of safety 

barriers in the literature, as shown in Figure 3.  

Barrier functions are related to the functions planned to prevent, control, or mitigate accidents, 

which are realized by barrier systems. Generally, the barrier systems are divided into two 

groups: passive and active. Technical barriers can further be broken down to SIS, safety-related 

systems, and external risk reductions among active barriers. In this dissertation, we emphasize 

those technical barriers that are defined as add-on barriers. Such barriers are added to the 

systems or components due to safety considerations. For example, SISs are typical add-on 

technical barriers concerning safety issues. 

 

Figure 3 Classification of safety barrier [13] 
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2.3.3 Barrier performance 

Performance assessment of safety barriers is necessary since it reflects how well safety barrier 

perform their functions. Scholars have proposed different performance measures to assess 

safety barriers. For example, Sklet [13] recommended some attributes to assess safety barriers: 

effectiveness, reliability (availability), response time, robustness, and triggering event. 

Johansen and Rausand [18] highlighted that the requirements for safety barriers include 

specificity, functionality, reliability, response time, capacity, durability, robustness, audit-

ability, and independence. Rausand [1] also stated that a barrier's confidence level should be 

evaluated based on the following criteria: specificity, adequacy, independence, dependability, 

robustness, and audibility. Prashanth et al. [81] identified 17 types of variables to evaluate the 

performance of safety barriers.  

However, not all proposed attributes or criteria are relevant for some types of barriers. 

Therefore, this dissertation's performance of safety barriers is delimited to the 

functionality/effectiveness, reliability/availability, and durability. The effectiveness is linked 

to the ability of a safety barrier to prevent accidents or achieve proper function [19]. For 

example, a safety barrier is installed to reduce a specific risk with hazardous event frequency, 

λH. The hazardous event frequency is reduced at λE using the safety barrier, as shown in Figure 

4. A measure, the risk reduction factor (RRF), is introduced to define the effectiveness of the 

safety barrier: 

                                                                𝑅𝑅𝐹 =
𝜆𝐻

𝜆𝐸
                                                              (1)                           

 

Figure 4 The risk reduction of a safety barrier [1] 

Safety barriers can be classified as perfect barriers and imperfect barriers considering their 

performances. Perfect barriers are the barriers that can be activated if needed and prevent 

accidents completely once installed, which implies that RRF should be equal to infinity. 

However, in most cases, safety barriers are not perfectly effective and fully functional. It means 

that some failures may occur on safety barriers, such as response failures when needed and 

operational failures to stop its functions. Therefore, they can be called imperfect barriers. The 

purpose of such classification is to distinguish the effects of failures on safety barriers. 

Furthermore, imperfect barriers may also be concerned with dependent failures, namely CCFs 

and CAFs. That means, in some cases, it is required to consider the effects of CCFs and CAFs 

on imperfect barriers.   

Availability (reliability) of barriers depends not only on the inherent reliability of equipment 

acting as barriers but also on operational and maintenance strategies. Availability expresses the 

ability of a safety barrier to perform its required functions at a specific time [12]. For example, 

IEC 61508 defines the average probability on demand of an SIS to describe the performance 

of an SIS [14]. The event upon which an SIS is activated is considered a demand [1]. The 

difference between effectiveness and availability is that effectiveness deals with how much a 
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barrier is expected to reduce risk, whereas availability measures how well the barrier can affect 

response to the demand for its safety function.  

Durability is another performance measure, representing how long a safety barrier can perform 

its safety functions and withstand demand in this context. It is often assumed that demands are 

instantaneous, but this is not always the case [1]. For example, fires can last a few seconds or 

several days, depending on many factors. An automatic fire extinguishing system, thus, must 

operate for a specified period to suppress fires. Another example is an emergency shutdown 

valve. It must also withstand stress for an uncertain period to prevent the spread of flammable 

substances. Such a period is defined as a prolonged demand duration. Thus, durability is related 

to safety barrier performance during prolonged demands.  

2.3.4 Barrier analysis 

A barrier analysis aims to identify administrative, management, and physical barrier that can 

prevent or minimize the probability and severity of an accident [2]. Evaluating safety barriers 

depends on an analysis to explain why accidents occur and understand how they can be 

prevented. A barrier analysis is applied for preventing accidents by having proper barriers in 

the right place.  

Numerous qualitative and quantitative models have been proposed for barrier analysis. 

Qualitative models for barrier analysis include hazard barrier matrices, safety barrier diagrams, 

Swiss cheese model, bow-tie diagram, and energy flow/barrier analysis. Quantitative models 

for barrier analysis include probabilistic models (e.g., event tree analysis (ETA), fault tree 

analysis (FTA), and reliability block diagram (RBD)) and state-transition models (e.g., Markov 

model, Bayesian network, and Petri net). In addition, some so-called semi-quantitative barrier 

models combine qualitative and quantitative analysis, such as layers of protection analysis 

(LOPA) and barrier and operational risk analysis (BORA), to identify risk scenarios and 

determine possible barriers. A comparison of these models is listed in Table 4. 

Table 4 A comparison of some models for barrier analysis 

Type  Models Basics Pros Cons Ref 

Qualit

ative 

Hazard 

barrier 

matrix 

 

 

 

 

 

Barrier effectiveness 

 
Most effective → Least 

effective 

• Simple 

qualitative 

method 

• Provide a 

degree of 

completeness in 

the 

identification of 

hazards and 

barriers 

 

• Limited 

ability to 

rank 

quantitative 

efficiency 

and 

effectiveness 

of the 

barriers 

[2, 

82] 

Safety 

barrier 

diagram 

 

 

 

 

Barriers are activated on 

demands  

• Better for 

communication 

with non-expert 

• Easily illustrate 

the sequence 

and causal of 

accident 

scenario 

• The 

simplificatio

n could lead 

to loss of 

information 

[83, 

84] 
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• Logical 

AND/OR gates 

can be used in 

the diagram 

• Dependency of 

the barriers can 

be represented 

in the diagram 

Swiss 

cheese 

model 

 

 

 

 

 

Failures penetrate a series 

of safety barriers and lead 

to accidents 

 

 

• Easy to 

visualize the 

notion of the 

accidents 

• Draws upon a 

general, easy to 

remember, and 

adaptable 

graphical 

representation  

• A simplistic 

vision of 

accidents 

• The limited 

degree of 

generality 

[85-

87] 

Bow-tie 

diagram 

 

 

 

 

 

A bow-tie model is 

commonly used to depict 

the relationships between 

hazardous events, causes 

and consequences, and 

the barriers 

 

• Simple to read 

and understand  

• Structured in a 

division 

between 

proactive and 

reactive barriers 

• Suitable for risk 

management 

• It can be used 

together with 

fault tree and 

event tree 

• Require 

depth 

knowledge 

regarding 

systems 

• Barriers in 

the model 

should be 

independent 

[78, 

88, 

89] 

Energy 

flow/bar

rier 

analysis 

 

 

 

 

 

Identify all possible paths 

from energy sources to 

vulnerable assets and 

barriers 

 

• Simple to 

understand and 

use 

• Systematic and 

easily 

recognized 

• Suitable in 

combination 

with other 

methods 

• Difficult to 

identify all 

the energy 

sources 

• Poor at 

identifying 

all hazards 

• Poor on 

reproducibilit

y 

[90, 

91] 
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Semi-

quantit

ative 

BORA  

 

 

 

 

 

Analyze proactive and 

reactive barriers in the 

operational phase 

 

• It can be used to 

determine the 

installation of 

specific risk 

• Contribute to a 

better 

understanding 

of the safety 

barrier 

• It gives a better 

insight into the 

risk influencing 

factors 

• Requires 

access to 

extensive 

data 

• Determine 

importance 

and weights 

of risk 

influence 

factors 

without 

proper 

justification 

[92, 

93] 

LOPA  

 

 

 

 

Decide whether existing 

safety barriers are 

adequate or if additional 

barriers are needed 

 

• Focus on the 

most critical 

protection 

layers 

• Reveal process 

safety issues 

• Requires less 

time and fewer 

resources 

• Can comply 

with IEC 61511 

• Excessive for 

simple or 

low-risk 

decisions 

• Overly 

simplistic for 

complex 

systems 

• Requires risk 

tolerance 

criteria 

[2, 

79, 

94] 

Quanti

tative 

Probabil

istic 

models 

 
Fault tree analysis, 

Event tree analysis, 

Reliability block diagram 

Bayesian network 

• Computationall

y efficient 

• With random 

variables and 

probability 

distributions 

• Inefficient 

for very 

large-sized 

systems 

[4, 

95-

97] 

State- 

transitio

n models 

 

 

 

 

 

 

Markov model, Petri net, 

Monte Carlo simulations 

• Flexible 

• Suitable for 

stochastic 

process 

• Inefficient 

for large-

sized systems 

[98-

100

] 

2.4 Safety instrumented system 

As a safety barrier, a safety instrumented system is frequently deployed to reduce risk in many 

industries, such as oil and gas, energy, and railway industries. An SIS is characterized as a 

system that relies on electrical/electronic/programmable electronic technologies to detect 

abnormal situations.  
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2.4.1 The basic concept of SIS 

An SIS generally consists of three main subsystems: sensors (e.g., level transmitters, gas 

detectors, and push buttons), logic solvers (e.g., programmable logic controller and industrial 

computer), and final elements (e.g., shutdown valves and circuit breakers). As showed in 

Figure 5,  when a sensor detects possible abnormal situations, a signal is sent to the logic solver. 

Then, an instruction for the action of the final element is created as a response to the detected 

abnormal situation. Finally, a final element performs safety-instrumented functions (SIFs) 

according to the inputs.  

A SIF refers to a function intended to achieve or maintain a safe state for the EUC against 

hazardous events [14]. An SIS can perform one or more SIFs, and a facility can be equipped 

with several SISs. For example, a process shutdown (PSD) system stops production if the 

process is upset. Meanwhile, an emergency shutdown (ESD) system can also be installed to 

reduce the escalation of uncontrolled events such as leakages by depressurizing and removing 

electrical ignition sources. 

 

Figure 5 A general configuration of an SIS and EUC 

2.4.2 SIS operation and failures  

An SIS is often a passive barrier that is activated only when demand occurs. The demand is 

also called a process upset or process deviation [15]. According to the demand rates, SISs can 

be distinguished as low-demand and high/continuous demand modes [14]: 

• Low-demand mode. A safety barrier operates in low-demand mode when its function 

is demanded no more than once per year. 

• High-/continuous-demand mode. A safety barrier is said to operate in high-/continuous- 

demand mode when it is demanded more often than once per year, or its function is 

continuously required. 

Some safety barriers that operate in low-demand mode include an ESD, fire and gas detection 

in a process plant and an airbag system in an automobile. Safety barriers that operate in high-

/continuous-demand mode can be dynamic positioning systems for ships, signaling systems for 

railways, and anti-lock braking systems in an automobile. Liu and Rausand have discussed the 

effects of distinctive demand modes for reliability analysis in the studies [101].  

The reason to distinguish operational modes for SISs is that they have different performance 

measures due to different kinds of failures. A failure is defined as the termination of the ability 

of an item to perform a required function [102]. Failures of an SIS can be classified according 
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to numerous criteria, such as systematic and random hardware failures, critical, degraded, and 

incipient failures. In this thesis, we employ the classification based on the consequence and 

detectability according to IEC 61508. It splits the failures of SISs into four groups: dangerous 

detected (DD), dangerous undetected (DU), safe detected (SD), and safe undetected (SU) 

failures, as shown in Figure 6 [14]. DD failures are dangerous failures that are detected 

immediately by diagnostic testings when they occur. DU failures are dangerous failures that 

prevent activation on demand and are revealed only by testing or the occurrence of a demand.  

 

Figure 6 A often used classification of SIS failures [14] 

Both DD and DU failures are dangerous failures that are critical for the functionality of the 

equipment. The difference between DD and DU failures lies in how the two types of failures 

are revealed. DU failures are latent and only occasionally revealed upon demands, periodic 

testings, or inspections, while automatic diagnostics reveal DD failures once they occur. Since 

DU failures cannot be detected immediately and cannot be fixed until the periodic testing, these 

failures contribute the most to the unavailability of SIS equipment.  

It is noted that, for the low-demand mode of SISs, a demand may occur while a DU failure is 

present. As illustrated in Figure 7, for a single component, a DU failure may occur before a 

proof testing. There is a chance that demand occurs before a DU failure is revealed and 

corrected such that a hazardous event happens. Hence, DU failures are of concern in most 

reliability studies for the low-demand mode operating SISs.  

 

Figure 7 A demand may occur while a DU failure is present in low-demand systems [1] 

Apart from failures, the concept of failure rate is also crucial for the reliability analysis of SISs. 

A failure rate is defined as the average failure frequency, i.e., a few failures per unit of time 

[103]: 

                             𝜆 =
𝑀𝑒𝑎𝑛𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑖𝑛𝑎𝑡𝑖𝑚𝑒𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑜𝑓𝑙𝑒𝑛𝑔𝑡ℎ𝑡

𝑡
                                (2)                           

Failure rates can be used to reflect how SISs perform their SIFs in a specific period. Failure 

rates are generally classified into three groups, generic, manufacturer-provided, and user-

provided failure rates, depending on how they have been derived [1]. In the oil and gas industry, 

generic failure rates for SIS equipment performing SIFs are presented in databases and 
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handbooks, such as Offshore and Onshore Reliability Data (OREDA) [104], Safety Equipment 

Reliability (EXDIA) [105], and Reliability Data for Safety Instrumented Systems (PDS) [106]. 

Databases of OREDA rely on the failures reported from multiple operating companies, while 

the PDS data handbook relies on a combination of data from OREDA, expert judgment, and 

manufacturer information. Generic failure rates are mainly applied in reliability analysis during 

the design phase. Manufacturer-provided data are, meanwhile, based on analyses of specific 

products and laboratory testing. User-provided failure rates are based on aggregated time in 

service and the number of reported failures at one or more specific facilities owned by the same 

operating company. It is often seen that manufacturer-provided failure rates are lower than 

what is experienced in operation. 

The standards and regulations have given specific requirements concerning the failure rates. 

For example, IEC 61508 states that the failure rate used in a reliability analysis should have a 

confidence level of at least 70% [14]. Furthermore, the uncertainty of the estimated failure rates 

is required to be considered in OREDA, e.g., a 90% confidence level [104]. In addition, 

SINTEF suggests that operational time should exceed 3·106 hours, allowing it to use 

operational experience [107]. Therefore, many oil and gas facilities invest time and resources 

to record failures to estimate failure rates in this context.  

Failure rates may be affected by the influencing factors. Influencing factors are the internal and 

external parts of a system that act on its reliability or failures. The term influencing factor is 

more general than failures cause, and it relates to the indirect explanatory factors, for example, 

equipment attributes (e.g., sizes and types), operational environment (e.g., temperature, 

pressure, and loads), manufacturing activities (e.g., manufacturers and procedures), facility 

(e.g., location), maintenance (e.g., test interval), and the activities of the end-user. 

2.4.3 SIS performance measures 

Performance measures of SISs are mainly linked to functionality/effectiveness and 

reliability/availability [19]. Functionality/effectiveness refers to the ability of an SIS to perform 

a specified function with a specific requirement and given conditions [13]. For example, a 

shutdown valve has a specific response time to be activated, reflecting the SIS's effectiveness. 

Reliability/availability refers to the ability of SISs to perform the required SIFs within a period 

[12]. This Ph.D. thesis focuses on the reliability measures involving SIS design, operation, 

maintenance, and testing. Several quantitative measures can be used for the reliability of an 

SIS, including the average probability of failure on demands (PFDavg) for low-demand modes 

and the average frequency of dangerous failure (PFH) for high-demand modes.  

SISs are a kind of system whose SIFs are only activated upon abnormal situations. Since SISs 

are not running in the low-demand operational mode, many DU failures cannot be detected 

immediately after their occurrences. Periodical proof testing, such as once per year, are 

conducted in many process plants to reveal DU failures of SISs but with noticeable delays. 

Performance assessment of SISs operated in low-demand modes thus needs specific measures, 

such as PFDavg. PFDavg is the most used reliability measure for an SIS. It is defined as the 

average probability that a component (i.e., SIS, subsystem, voted group, or channel) cannot 

perform its specified safety function if demand should occur. PFDavg can also be interpreted as 

a mean proportion of time of which the item cannot perform its specified SIF in a certain period 

[14]: 

                                                      𝑃𝐹𝐷𝑎𝑣𝑔 =
1

𝜏
∫ 𝑃𝐹𝐷(𝑡)𝑑𝑡
𝜏

0
                                                  (3)                           

where PFD(t) is the probability of failure on demand as a function of time. 𝜏 is a test interval. 

PFDavg is related to the internal properties and the frequency of proof testing. These 
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particularities distinguish SISs from production or general systems and impede the adaption of 

the existing approaches for CAF analysis to SISs. If a component can be as good as new after 

each proof test, the long-term average PFD(t) is equal to the average of PFD(t) over a test 

interval [1].   

In contrast, PFH is used as a reliability measure for SISs operated in high/continuous-demand 

mode. PFH at time t is defined as: 

                                          𝑃𝐹𝐻(𝑡) = 𝜔𝐷(𝑡) = lim
∆𝑡→0

Pr[𝐷𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠𝑖𝑛(𝑡,𝑡+∆𝑡)]

∆𝑡
               (4)                           

where 𝜔𝐷(𝑡) is the frequency of item failures in the time interval (𝑡, 𝑡 + ∆𝑡). IEC 61508 

requires the average PFH to be used for SISs operated in high/continuous-demand modes, but 

it does not specify the time interval at which the average should be determined [14]. Hence, 

the average PFH in the time interval (t1, t2) is defined as: 

                                               𝑃𝐹𝐻(𝑡1, 𝑡2) =
1

𝑡2−𝑡1
∫ 𝜔𝐷(𝑡)𝑑𝑡
𝑡2
𝑡1

                                        (5)                           

An SIS's reliability requirement describes the safety integrity requirement, starting with how 

well the SIS is required to perform. The requirement is often assigned to each SIF. SIFs must 

fulfill the specified safety integrity levels (SILs) to achieve the necessary risk reduction. Safety 

integrity is the probability of an SIS satisfactorily performing the required SIFs under all the 

stated conditions within a specific period [1]. For example, in IEC 61508 and IEC 61511 [14, 

15], four discrete SILs are defined, as shown in Table 5, ranging the safety integrity from SIL 

1 (the lowest level) to SIL4 (the highest level). 

Table 5 Intervals of the PFDavg and PFH corresponding to the SILs 

SILs Low demand mode High/continuous demand mode 

4 10-5 ≤ PFD < 10-4 10-9 ≤ PFH < 10-8 

3 10-4 ≤ PFD < 10-3 10-8 ≤ PFH < 10-7 

2 10-3 ≤ PFD < 10-2 10-7 ≤ PFH < 10-6 

1 10-2 ≤ PFD < 10-1 10-6 ≤ PFH < 10-5 

 

In operations, SIS performance is of great significance to ensure the safety of EUC systems. 

Hence, it is of interest to examine whether an SIS is reliable while responding and how an SIS 

performs after activation. The former is related to SIS reliability, whereas the latter is related 

to SIS durability. SIS reliability expresses the ability of an SIS to protect EUC systems at a 

specific time and is related to the ability to respond on-demand as expected. SIS durability 

represents how long an SIS can perform its SIFs and withstand stress during prolonged 

demands. SISs are often exposed to high stress during prolonged demand, resulting in intensive 

degradations and failures before complete demand. Therefore, it is vital to examine whether a 

safety barrier is reliable and performs during demand. 

2.4.4 SISs considering dependent failures 

Although independence is a critical requirement for SISs, they are rarely fully independent and 

often subject to CCFs and CAFs [18]. The effects of CCFs in SISs have been widely studied 

because CCFs commonly occur in SISs with redundant structures [6]. Redundancy is a means 

to enhance system reliability, but meanwhile, it often leads to CCFs due to the same 

components, environment, or shocks in redundant structures. CCFs may reduce the effects of 

redundancy. It is noteworthy that CCFs are the main contributors to the unavailability of SISs 

[107, 108].  
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There have been two main strategies suggested for incorporating defenses against CCFs in 

design. One is to carry out analyses to identify and remove causes, and the other is to introduce 

measures to reduce the effects of CCFs in case they occur. The suggested approaches include 

cause-defense matrices, common cause analysis, and zonal analysis. The defenses to CCFs are 

typically identified in design. However, measures in the operational phase are also necessary 

[6]. Even for an excellent system design, there will always remain a risk of CCFs. It is, 

therefore, required to include the contribution of CCFs in quantitative analyses used to 

demonstrate adequate reliability. 

The reliability measures, PFDavg and PFH, can be calculated based on several methods: 

simplified formulas based on fault tree analysis, IEC 61508 formulas, PDS method, and 

Markov methods [1]. The effects of CCFs can be modeled and incorporated with these 

methods. Simplified formulas are the most time-efficient method to obtain reliability measures. 

However, CCFs are assumed to occur on all the redundant components simultaneously. The 

different effects of various voting configurations are considered in the PDS method by 

introducing a modification factor. IEC 61508 may give the most conservative results since the 

effects of DU and DD failures are considered, but this method is challenging to be understood 

and explained. Furthermore, Markov methods can include dynamic and multiple states of SISs, 

but the analysis is a time-consuming process. A comparison of these methods is listed in Table 

6 that also shows their strength and weakness. 

Table 6 A comparison of some models for SISs considering CCFs  

Models Basics Pros Cons Ref. 

Simplified 

formulas 

 

𝑃𝐹𝐷𝑎𝑣𝑔 = 𝑃𝐹𝐷𝑎𝑣𝑔
(𝑖) +

𝛽𝜆𝐷𝑈𝜏

2
 

 

where, 

𝛽: beta factor for CCFs 

𝜆𝐷𝑈: DU failure rates 

𝜏: test interval 

• Simple method 

• Time-efficient 

• Easy to be 

understood 

 

• Not consider 

different voting 

configurations 

• CCFs are 

assumed to 

occur 

simultaneously 

[1, 

109] 

PDS 

method 

 
𝑃𝐹𝐷𝑎𝑣𝑔 = 𝑃𝐹𝐷𝑎𝑣𝑔

(𝑖)

+ 𝐶𝑘𝑜𝑜𝑛 
𝛽𝜆𝐷𝑈𝜏

2
 

 

where, 

𝐶𝑘𝑜𝑜𝑛 : modification factor 

for CCFs 

• The effects of 

various voting 

configurations 

are considered  
• Easily obtain 

the result  

• The 

simplification 

could lead to 

loss of 

information 

[107] 

IEC 61508 

formulas 

 
𝑃𝐹𝐷𝑎𝑣𝑔

(𝐺) = 𝜆𝐷,𝐺𝑡𝐺𝐸 

 

where, 

𝜆𝐷,𝐺 : the group failure 

frequency of dangerous 

failures, 

𝑡𝐺𝐸 : the group-equivalent 

mean downtime 

• Provides 

conservative 

results 

• Can consider 

both DD and 

DU failures  

• It is difficult to 

be understood 

and explained 

the parameters 

in the model 

[14, 

109, 

110] 
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Markov 

models 

 

 

 

 

 

 

 

where, 

State 0: two components are 

functioning 

State 1: one DU failure 

State 2: two DU failures, and 

the system is down 

• Can include 

dynamic and 

multiple states 

of SISs 

• Can consider 

both DD and 

DU failures 

• Time-

consuming 

• The model 

complexity 

increases along 

with an 

increasing 

number of states 

[111, 

112] 

 

SISs may also be vulnerable to CAFs originating from the reliance on shared loads, testing and 

maintenance resources, hazardous events, and dependent functions [22]. For example, several 

components are configured in parallel in a flow transmission system sharing maintenance 

resources. The failure of one component may occupy the maintenance resource, decrease the 

possibilities of maintenances on other components, and then trigger more failures. Another 

example is a fire water supply system where the pumps operate in a K-out-of-N (KooN) 

configuration. When one of the pumps fails, the corresponding pipeline is closed, and other 

pumps must carry the whole load. The probabilities of failures-to-start of the other pumps thus 

increase.  

CCFs are the first-in-line failures and are directly linked to the failure causes, while the 

propagation of CAFs follows a series of interactions. Thus, CCFs and CAFs are two types of 

distinctive failures. Therefore, models for assessing the performance of SISs with CCFs are not 

applicable for SISs with CAFs [23].  

However, it seems that the most attention has been directed to CCFs. The effects of CAFs, in 

specific, for safety barriers are seldom explored. The current models in the literature for 

reliability analysis are insufficient to evaluate the overall effects of CAFs in terms of safety 

barriers. Hence, there is a lack of studies on the approaches and models for providing precise 

and holistic performance analysis of safety barriers.  

2.5 Summary 

To summarize, the theories reveal the basic concepts, causes, and various models for dependent 

failures and safety barriers in complex systems. As Tugnoli et al. pointed out, when the inherent 

design is not enough, safety barriers are necessary to eliminate dependent failures, such as 

CCFs and CAFs [113]. Both failures can coincide and influence multiple components, leading 

to devastating consequences. Therefore, the two kinds of failures should be equally paid 

attention to in the reliability analysis of safety barriers. Nevertheless, the effects CAFs among 

components within safety barriers have not been well studied. 
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Chapter 3 

 
3 Research questions and objectives  

The theoretical background review in Chapter 2 reveals that dependent failures are crucial and 

have received increasing interest in recent years. The focus is mainly on CCFs in safety 

barriers. Nevertheless, in many cases, CAFs can also have a significant impact on system 

reliability. This chapter highlights the specific research questions to fulfill this gap and 

proposes the objectives of the Ph.D. project. 

3.1  Research questions 

The specific challenges and questions in this thesis have been identified. They are mainly 

related to complex systems, dependent failures, and safety barriers.     

3.1.1 Dependency issues 

As mentioned in Section 2.1, a complex system is challenging to describe and predict due to 

complexity. Moreover, with the increasing complexity of technical systems, some dependency 

issues arise, such as dependent failures and dependence between the system and environment.  

Research gap: Definition of dependent failure categories 

Dependent failures can be a significant concern in complex systems. They can coincide on 

multiple components quickly, resulting in devastating consequences and damages. For 

example, CCFs are the main contributors to failures in the safety systems of the oil and gas 

industry. CAFs may also propagate within the same sub-structure and between different sub-

structures in a complex system. Such propagation brings multiple possibilities of CAFs in 

complex systems and challenges the current analysis approaches.  

Although many researchers have studied CCFs and CAFs, there is little comparison between 

the two concepts. Indeed, one can differentiate CAFs from CCFs, covering failure causes, 

mechanisms, and characters. Moreover, the models that are applied to CCFs are not suitable to 

handle CAFs. Accordingly, safety barrier strategies to avoid or reduce the effects of the two 

failure categories should also be distinctive. It is thus interesting to investigate the similarities 

and differences between CCFs and CAFs and propose relevant barrier strategies to prevent the 

two failures.  

Research gap: Modeling dependencies between systems and the environment 

Furthermore, in a complex system, the dependency issues may also include the fact that many 

influencing factors directly or indirectly impact the system's performance. For example, the 

items within a group are assumed to have similar functions and the same performance. 

Nevertheless, similar components can experience different failure rates and distributions since 

their design (e.g., measuring principle), location, and environment can differ. For example, a 

review of failure data collected from six oil and gas facilities in Norway indicates that one 

failure mode, fail to open, is strongly affected by the temperature of the medium in the valves. 

The term “significant influencing factors” is thus introduced for those with the most substantial 

effects on performance. The significant influencing factors may include equipment attributes, 

the operational environment, manufacturing, maintenance, and activities.  



28 
 

However, it is still a question of which influencing factors are the most significant influences 

and how to identify them to explain the differences. Most traditional statistical models rely on 

data for a large group of equipment. The influencing factors can be analyzed using traditional 

statistical models; however, data-driven approaches could also be suitable. Therefore, it is 

required to address how to model dependencies between systems and the environment based 

on data-driven models. 

Therefore, there is a need for a study on the dependency issues in complex systems: 

Q1: How to distinguish between CCFs and CAFs in terms of concept, causes, mechanisms, and 

consequences? How to prevent and mitigate the effects of CAFs? What kind of considerations 

can be made to handle CAFs?  

Q2: How to identify influencing factors for system performance?  How to model the identified 

influencing factors and dependent failures between components in system performance 

analysis?  

3.1.2 Safety barriers 

In a complex system, safety barriers are vital since they can avoid accidents by protecting 

vulnerable assets from hazards. However, the safety functions of safety barriers are impacted 

by dependency issues. Such impacts stem from dependent failures, which can be different, 

including the effects of dependent failures within safety barriers and the effects of dependent 

failures when safety barriers are employed to prevent them.  

Research gap: Modeling dependent failures within safety barriers 

Redundancy of safety barriers is often applied in a complex system to enhance the ability to 

detect and respond to hazardous events. However, redundancy increases the fault tolerance and 

remains vulnerable to dependent failures. Therefore, reliability analysis of safety barriers 

involves the impact of dependent failures, including both CCFs and CAFs.  

IEC 61508 and the relevant literature primarily focus on CCFs as dependent failures. However, 

SISs can also be vulnerable to CAFs. For example, several components are configured in 

parallel in a flow transmission system sharing maintenance resources. The failure of one 

component may occupy the maintenance resource, decrease the possibilities of maintenance on 

other components, and then trigger more failures. Another example is a fire water supply 

system where the pumps are operating in a KooN configuration. When one of the pumps fails, 

the corresponding pipeline is closed, and other pumps must carry the whole load. The 

probabilities of failures-to-start of the other pumps thereby increase. Unfortunately, the used 

approaches mainly focus on CCFs, and the performance assessment of SISs subject to CAFs is 

seldom explored.  

Since SISs are not always running in the low-demand operational mode and only be activated 

upon abnormal situations, many failures cannot be detected immediately after their 

occurrences. Therefore, periodical proof testing, such as once per year, are conducted in many 

process plants to reveal hidden failures of SISs but with noticeable delays. Performance 

assessment of SISs thus needs specific measures, such as PFDavg for low demand modes and 

PFH for high/continuous demand modes. They are not only related to the internal properties of 

an SIS but also related to the frequency and effectiveness of proof testing. These particularities 

distinguish SISs from production or general systems and impede the adaption of the existing 

approaches for CAF analysis to SISs. Therefore, it is required to introduce approaches and 

models for incorporating CAFs into the performance assessment of SISs operating in low 

demand modes and high/continuous modes. 
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Research gap: Modeling safety barriers against dependent failures  

Safety barriers like SISs are often installed in many industries for dependent failures, namely 

CCFs and CAFs, to alleviate the effects of shared failures and suspend failure propagation. 

However, little attention has been paid to the impacts of SISs employed to prevent cascading 

failures in the literature. In addition, the currently defined SIS reliability is insufficient to 

evaluate the overall SIS performance in preventing and mitigating CAFs. That is because the 

demands on SISs for preventing or mitigating CAFs may not be instantaneous. Thus, even 

though an SIS can respond to demands, it may fail afterward. For example, fires can last few 

seconds or several days, and AFESs must operate for a specified period to suppress fires. 

During this period, SISs are often exposed to high stress and thereby have more chances to fail. 

In other words, SISs that are employed against CAFs may suffer from intensive degradations 

and failure before demands are complete. 

Therefore, it is of interest to examine whether an SIS is reliable while responding and how an 

SIS performs after activation. The former is related to SIS reliability, whereas the latter is 

related to SIS durability. The reliability is the ability to respond on-demand as expected, 

expressed by the failure probability on demand, PFDavg. Nevertheless, durability represents 

how long an SIS can perform its SIFs. It lacks studies and relevant models. Furthermore, it is 

challenging to use straightforward approaches to evaluate SISs against CAFs considering 

reliability and durability. Hence, the models involving SISs to prevent against CAFs should be 

tailor-made. 

Relevant questions regarding safety barriers suffering from CAFs include:  

Q3: How to quantify the effects of CAFs within safety barriers and how to reduce or mitigate 

their impacts?  How to evaluate the effects of CAFs within SISs operating in low demand 

modes and high/continuous modes? 

Q4: What type of reliability modeling and calculation approaches are suitable for safety barriers 

that are employed to prevent against CAFs? How to apply the models and approaches to 

practical cases? 

3.2 Research objectives 

The primary objective of this thesis has been to improve the understanding of dependent 

failures in complex systems and model safety barriers with dependent failures, with a particular 

focus on the effects of cascading failures.   

Based on the main objective and research questions, the specific objectives have been to: 

Objective 1: Discuss the differences and similarities between CCFs and CAFs and distinguish 

safety barrier strategies to protect against or mitigate the effects of dependent failures, 

particularly for CAFs. 

Objective 2: Propose approaches and models for evaluating the impacts of dependency issues 

in complex systems and investigate their effects. 

Objective 3: Propose approaches and models for evaluating the impacts of CAFs in safety 

barriers, including SISs operating in high-demand and low-demand modes. 

Objective 4: Provide new insights for SISs that are employed to prevent CAFs and propose 

models for evaluating the performance of such SISs and illustrate their applications. 



30 
 

The relationships between the research questions, research objectives, and research gaps are 

presented in Figure 8. Four specific objectives have been formulated considering the research 

questions regarding dependency issues and safety barriers in complex systems. 

 

Figure 8 Relationships between research questions and research objectives 
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Chapter 4 

 
4 Research principles and approaches  

The rationale for pursuing this Ph.D. degree has been to acquire new knowledge and develop 

research skills by formulating research problems, preparing research plans, writing scientific 

articles, and presenting research results. The overall research process and principles, as well as 

research approaches, are outlined in this chapter. 

4.1 Research principles 

It is often the case that research makes one feel like swimming in the sea and not knowing 

which direction to turn [114]. Thus, the first and fundamental question for doing research is 

understanding what is meant by "research". Research is defined as a process of steps used to 

collect and analyze information to increase our understanding of a topic or issue [115]. Thus, 

research is finding out something one does not know. In other words, research is studying a 

particular topic to discover more information or reach a new understanding.   

There are several dimensions to classifying research based on their applications, purposes, and 

methods. Traditionally, research can be classified into basic research and applied research [116, 

117]. The former is theoretical or experimental work to acquire new knowledge of foundations 

of phenomena and observable facts, while the latter emphasizes application or practical use.  

A threefold classification of research was also proposed by Phillips and Push based on research 

purposes, namely exploratory, testing-out, and problem-solving [118]. Exploratory research is 

related to studying a new problem with little knowledge and providing new insights by 

developing or using existing methodologies. Testing-out research is to find the limits of 

previously proposed generalizations and improving them. The third kind of research focuses 

on a particular problem in the real world and discovers solutions. 

Another dimension of classification of research is related to research approaches. Research can 

generally be quantitative, qualitative, and a combination of the two. Quantitative research 

emphasizes qualification in the collection and analysis of data, whereas qualitative research 

emphasizes words [119]. 

This project should be classified as applied research since it focuses on studying the behaviors 

and performance of safety barriers in a complex system. As to the project's purpose, the 

research needs to clarify theories and concepts and develop new models for analyzing safety 

barriers with dependent failures in complex systems. Therefore, research is both exploratory 

and problem-solving. In addition, the research approaches in this project involve qualitative 

and quantitative research. Qualitative research in this project provides new insight into safety 

barriers and develops relevant theoretical models and concepts. In contrast, quantitative 

research is conducted to develop new models for analyzing the effects of safety barriers based 

on existing approaches. 

4.2 Research approach 

High-quality research requires systematic design and planning. A research project should 

answer initial questions,  develop or propose new approaches, and highlight their application 
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areas. It may include identifying the research context and perspective, discussing research 

problems, identifying main assumptions, describing theoretical basis, and presenting new 

approaches and applications.  

Generally, this Ph.D. project includes three main phases: (1) research plan, (2) theoretical 

study, (3) model development, and (4) research results. The Ph.D. project process and how they 

related to the research results are illustrated in Figure 9: 

 

Figure 9 Overall process of the Ph.D. research project 

(1) Research plan. The project started with identifying the research context and 

perspectives, relating the initial research gaps, and formulating research problems and 

questions. Then, the activity continued with making a research plan that includes 

project descriptions, formulation of research questions, and research execution plan. 

The details of the research execution plan are presented in Table 7. 

(2) Theoretical research. The activities in this stage started with a systematic literature 

review, which is a fundamental task. The review is based on research material available 

in the NTNU database Oria, covering articles published in journals, conference papers, 

reports, and books. The Ph.D. courses guided conducting the research and generating a 

solid theoretical basis for the project, especially for achieving objective 1. Therefore, 

the courses related to the safety-critical system, applied statistics, system engineering, 

multivariate data modeling, and research methodology were undertaken during the 

Ph.D. period. Then, two articles that focused on the theory of dependent failures and 
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barriers against the failures were written for developing a theoretical basis at this stage. 

I was also involved in assisting and holding lectures on relevant areas, which was a way 

to improve the understanding of fundamental issues within safety barriers and 

reliability research. 

(3) Approaches and model development. One crucial part of this Ph.D. project was 

developing analysis approaches and models based on previous works and existing 

literature. Model-based and data-driven-based approaches were considered in the 

project. New approaches and models were developed, depending on the collected data 

and formulated assumptions. In addition, applications of these models and approaches 

were considered in a specific industry or application area, such as the battery industry. 

A case regarding a battery pack with CAFs and relevant safety barriers was studied.  

(4) Research results. Research results should be presented, including the developed models 

and approaches, discussion about constraints, suggestions for new perspectives, and 

new ideas for future work. The preliminary results of this project have been presented 

in conferences and seminars such as ESREL and IEEM. Participating in conferences 

and seminars allows one to open their eyes and learn the vision of new ideas in the field. 

The project results have also been presented to the academic world through 

international journals and conference proceedings. The last step of the Ph.D. project is 

to summarize the findings and contributions in the thesis and prepare for doctoral 

defense.   

Table 7 Research execution plan for the PhD project  

Year 2017 2018 2019 2021 

Semester: (S=Spring, F=Fall) F S F S F S F 

PhD Courses 

IFEL8000 - Introduction to research methodology              

TK8116 - Multivariate data and Metamodeling               

PK8210 - System engineering               

BA8618 - Applied statistics in civil and transport             

PK8201 - System reliability             

Research process 

Research plan              

Theory study              

Model development              

Research results              

Research publications 

Conference articles              

Journal articles        

Thesis and defense        

 

An essential part of the quality assurance was carried out by publication in international 

journals and conferences. In addition, the publications have been subject to extensive peer 

review and have been revised based on the reviewer's suggestions and comments. 
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Chapter 5 

 
5 Main results  

This chapter presents and describes the main results of this Ph.D. project that are documented 

in the form of eight articles. The purpose is to evaluate to what extent the research objectives 

have been met.   

5.1  Overview 

The research articles aim to address the research questions that have been identified in Chapter 

3. Four articles were published in relevant international journals, and one is currently under 

review. In addition, another three articles have been presented in peer-reviewed international 

conferences and have been published in conference proceedings.  

The overview of the contributions and relevant research objectives are listed in Table 8.  There 

are two articles related to each research objective. Article Ⅰ and Ⅱ focus on the performance of 

complex systems with dependency issues. Articles Ⅵ and Ⅶ have highlighted the theoretical 

basis of CCFs and CAFs and modeled the two categories of failures. The effects of CAFs 

involve two levels, CAFs within safety barriers and CAFs prevented by safety barriers, which 

have been investigated in Articles Ⅲ, Ⅷ, Ⅵ, and Ⅴ.  

Table 8 Overview of the contributions and relevant objectives   

Contribution Research objective Article Main topic  

1 Objective 1 Article Ⅰ 

Article Ⅱ 

Theoretical basis and models studies 

regarding CCFs and CAFs  

2 Objective 2 Article Ⅲ 

Article Ⅳ 

The performance analysis with 

dependency issues 

3 Objective 3 Article Ⅴ 

Article Ⅵ 

The effects of CAFs within safety 

barriers  

4 Objective 4 Article Ⅶ 

Article Ⅷ 

The effects of safety barriers against 

CAFs 

   

5.2 Main contributions 

5.2.1 Contribution 1 

The first objective of this Ph.D. project was to compare two types of dependent failures and 

distinguish different safety barriers strategies to protect against or mitigate the failure effects. 

The two articles are related to this objective: 

Article Ⅰ: Common cause failure and cascading failures in technical systems: similarities, 

differences, and barriers. 

Article Ⅱ: Safety barriers against common cause failure and cascading failure: literature 

reviews and modeling strategies. 
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1. Article Ⅰ investigated the similarities and differences of these two dependent failures, 

focusing on the conditions of initiations and propagation of such failures. This exploration 

facilitates one to understand the initiations, consequences, and mitigations of the failures. 

2. Article Ⅱ explored the functions of safety barriers against dependent failures based on 

extended bow-tie models. As illustrated in Figure 10, barrier B1 for CCFs separates all the 

components from root causes or coupling factors, whereas barrier B2 for CAFs prevents 

failure propagation from hazardous event 1. 

 

 
 

Figure 10 Safety barriers for CCFs and CAFs in extended bow-tie model 

The main findings are summarized as follows: 

1. By comparing the two failures, the articles have highlighted that CCFs are the "first-in-

line" failures and are directly linked to the failure causes, whereas the propagation of CAFs 

depends on a series of interactions, as illustrated in Figure 11. In other words, CCFs are 

characterized by the simultaneous failures of two or more components due to a shared 

cause, while cascading failures reflect the multiple failures initiated by one component's 

failure that led to a chain reaction or a domino effect. 

 

Figure 11 Illustration of the similarities and differences between CCFs and CAFs 

 

2. Article Ⅱ clarified distinctive safety barrier strategies against dependent failures and 

provided new insights into the barriers for reducing and mitigating the effects of dependent 

failures. It is required to distinguish the safety barriers against CCFs and those against 

CAFs. The bow-tie model is extended to illustrate the difference between these two kinds 

of safety barriers. Table 9 lists some examples of safety barriers that are applied for 

preventing CCFs and CAFs. This paper provided empirical evidence for root cause analysis 

for the two failures. 
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Table 9 Examples of safety barriers against CCF and CAF  

Failure Effect Description Safety barrier  Category 

FTO a 

PSVs b 

Root cause  

The heating cable in the 

pilot line is disconnected 

due to a short circuit 

Implement regular 

quality check of 

heating cable 

B1 

Coupling 

factor 

Same design from one 

supplier 

Replacing the  existing 

cables with the ones 

from another company 

B1 

Fire 

Root cause  

The cable is overheating 

due to a short circuit, 

which leads to the fire and 

explosion 

Redesign and regular 

check 
B2 

Coupling 

factor 

Fire and explosion 

propagating 

Firewall to prevent fire 

explosion 
B2 

a FTO: fail to open; b PSV: pressure safety valves;  

5.2.2 Contribution 2 

The first research question is related to the dependency issues in complex systems. Quantifying 

the effects of these dependency issues, like the influencing factors and dependent failures 

between the components in a complex system, is thus the first focus of the Ph.D. project. The 

contributions include a framework based on data-driven approaches for identifying critical 

influencing factors and an approach for analyzing the impacts of CAFs on the reliability in 

series-parallel complex systems. These contributions are related to two articles: 

Article Ⅲ: Operational data-driven prediction for failure rates of equipment in SISs: A case 

study from the oil and gas industry 

Article Ⅳ: Reliability and barrier assessment of series-parallel systems subject to cascading 

failures 

1. Article Ⅲ demonstrated the application of the proposed framework for identifying 

influencing factors. The main reason to investigate the effects of influencing factors is that 

similar types of equipment may experience different failure rates. Therefore, it is necessary 

to identify critical influencing factors and predict failure rates based on the reported 

failures. Consequently, Article Ⅰ illustrated a case study with the data collected from six 

Norwegian onshore and offshore oil and gas facilities. As illustrated in Figure 12, the 

framework consists of three main steps: 1) data collection, including a selection of 

equipment, collection, and pre-processing data; 2) identification of significant influencing 

factors to find hidden correlations; and 3) failure rate prediction by determining the weights 

and scores of the factors. 
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Figure 12 Framework for identifying critical influences and predicting failure rates 

2. Article Ⅳ presented a recursive aggregation approach based on the extended reliability 

block diagram models for analyzing the impacts of CAFs on the reliability of series-parallel 

complex systems. The fundamental idea for modeling CAFs is introducing a measure γij (t) 

ϵ [0,1]to denote the ease of failure propagation, as illustrated in Figure 13. It was defined 

as: 

  𝛾𝑖𝑗(𝑡) = Pr(C𝑗fails|C𝑖hasfailedbytime𝑡)                             (5) 

 

Figure 13 RBD with a CAF between component i and j 

Two articles handle dependency issues in complex systems. The main findings can be found in 

the articles: 

1. The framework combines data-driven models and statistical models for predicting failure 

rates. It helps us identify the most significant factors on failure rates and decide the weights 

and scores of identified factors. 

2. The proposed approach to investigate the effects of CAFs can help one obtain holistic 

system reliability and decide the efficient way to allocate safety barriers to reduce and 

mitigate the consequence of CAFs. 

5.2.3 Contribution 3 

The third objective concerns how to quantify the effects of CAFs within safety barriers and 

how to reduce or mitigate their impacts. The two articles are related to this objective: 

Article Ⅴ: Performance assessment of KooN SISs subject to cascading failures 

Article Ⅵ: Performance Assessment of SISs Systems Subject to CAFs in High-demand Mode 

1. Article Ⅴ proposed a recursive aggregation-based approach for analyzing KooN SISs 

operating in low-demand modes considering CAFs. Based on the approach, the 

approximation formulas for performance assessment of most common configuration SISs 

have been summarized. 

2. Article Ⅵ proposed approximation formulas for the average frequency of dangerous 

failures of SISs operating in high/continuous-demand modes subject to CAFs. This article 

is an extension of Article Ⅴ, where the focus was directed to low-demand mode systems. 
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The main contributions of these articles are summarized as follows: 

1. Simplified formulas for PFDavg considering CAFs are presented in Table 10. A general 

approximation based on these formulas were developed in different configurations of SISs 

considering CAFs.  

PFDavg
(𝐾𝑜𝑜𝑁) = (

𝑁 − 1
𝐾 − 1

)𝑁𝛾𝑁−𝐾
𝜆𝜏

2
          (6) 

where λ denotes a failure rate of the component of SISs,  γ denotes a measure of CAF 

propagation, and τ is a test interval.  

 

Table 10 Approximation formulas for PFDavg with CAFs after simplification 

K/N N=1 N=2 N=3 N=4 

K=1 𝜆𝜏/2 2𝛾 ∙ 𝜆𝜏/2 3𝛾2 ∙ 𝜆𝜏/2 4𝛾3 ∙ 𝜆𝜏/2 

K=2 - 𝜆𝜏 6𝛾 ∙ 𝜆𝜏/2 12𝛾2 ∙ 𝜆𝜏/2 

K=3 - - 3𝜆𝜏/2 12𝛾 ∙ 𝜆𝜏/2 

K=4 - - - 2𝜆𝜏 

 

A factor  σ𝐾𝑜𝑜𝑁 = (
𝑁 − 1
𝐾 − 1

)𝑁𝛾𝑁−𝐾 was introduced to distinguish the effects of CAFs on 

the value of PFDavg among various configurations. The value of factors were also 

compared to those for CCFs, as illustrated in Figure 11. Again, the value for CAFs is higher 

than that of CCFs. 

 

Figure 14 Comparison of the factors for CCFs and CAFs 
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2. Approximation formulas have been derived for PFH of SISs in high/continuous modes that 

are subject to CAFs, as illustrated in Table 11. λDU is a DU failure rate of the component of 

SISs, γ denotes a measure of CAF propagation, and τ is a test interval. The proposed 

formulas can be applied to other industrial systems that are susceptible to cascading 

failures. The article was also demonstrated that the contribution of CAFs towards PFH 

relies on the CAFs and may lead to unacceptable SIL.  

Table 11 PFH of various structures with CAFs 

System PFH 

1oo2 𝜆𝐷𝑈
2τ + 2𝜆𝐷𝑈𝛾 

1oo3 𝜆𝐷𝑈
3τ2 + 6𝜆𝐷𝑈

2τ𝛾 + 3𝜆𝐷𝑈𝛾
2 

2oo3 3𝜆𝐷𝑈
2τ + 6𝜆𝐷𝑈𝛾 

1oo4 𝜆𝐷𝑈
4τ3 + 12𝜆𝐷𝑈

3τ2𝛾 + 12𝜆𝐷𝑈
3τ2𝛾2 + 4𝜆𝐷𝑈𝛾

3 

2oo4 4𝜆𝐷𝑈
3τ2 + 24𝜆𝐷𝑈

2
τ𝛾 + 12𝜆𝐷𝑈𝛾

2 

3oo4 6𝜆𝐷𝑈
2τ + 12𝜆𝐷𝑈𝛾 

 

5.2.4 Contribution 4 

The last objective addresses the problem of how SISs are employed to prevent CAFs. Unlike 

the previous ones focused on CAFs within safety barriers, these research questions are 

associated with safety barriers used to prevent CAFs. Therefore, the two articles are relevant: 

Article Ⅶ: Performance analysis of SISs protecting against cascading failure during prolonged 

demand 

Article Ⅷ: Performance analysis of safety barriers against cascading failures in a battery 

pack. 

1. Article Ⅶ proposed an approach for analyzing how the performance of SISs influences 

the protection against and mitigation of CAFs. In addition, it considers SIS reliability and 

SIS durability in the mitigation of CAFs if demands on SIS are prolonged. 

2. Article Ⅷ investigated the effects of CAFs in a specific application area regarding 

batteries. It studied battery reliability and analyzed the effects of safety barriers against 

CAFs from a modeling battery pack perspective  

The main contributions of these articles are summarized as follows: 

1. Article Ⅶ developed a new approach to model SISs against CAFs and evaluated their 

effectiveness. The approach considered the failures of SISs in responding and after 

activation; thus, it analyzed SIS reliability and durability in performance analysis. The 

proposed approach can provide designers and operators with information for SIS design 

and deployment, thereby improving the safety and reliability of the EUC system.  

2. It was demonstrated that, in some cases, it was reasonable to pay more attention to the 

effects of failure during demand when considering the high stress from CAFs, as illustrated 

in Figure 15.  
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Figure 15 System reliability profiles for different states of SISs 

 

That means the effects of failure during demand (FDD) are relatively higher than failures 

on demand (FOD) on the system reliability. 

3. The proposed models for evaluating the performance of safety barriers against CAFs 

illustrated in their applications with a practical case study in the battery industry in Article 

Ⅷ. 
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Chapter 6 

 
6 Conclusions and future work  

This chapter highlights the main contributions of the Ph.D. works. Because the research 

regarding safety barriers with dependent failures is still under-explored, this chapter also 

presents several open research problems and opportunities for the future.  

6.1  Conclusions 

The overall objective of this Ph.D. thesis was to explore a new approach for analyzing safety 

barriers with dependent failure in complex systems, with a particular focus on the effects of 

CAFs. This objective was decomposed into four sub-objectives addressed through the eight 

articles in Part Ⅱ of the thesis. Four articles investigated dependent failures, while four aimed 

to model the effects of safety barriers considering CAFs.  

The contributions of individual objectives have been elaborated in Chapter 5. Here, it 

emphasized that the contributions fulfilled the objectives and are summarized as follows:  

1. A clarification of the differences and similarities between CCFs and CAFs was explored. 

Meanwhile, safety barrier strategies to protect against the dependent failures have been 

discussed and clarified. This research may increase the awareness, competence, and 

treatment of CAFs. It is expected that defense against CAFs can be considered in design as 

well as in operations. 

2. A new framework for identifying significant influencing factors was proposed, presenting 

new ideas and insights to update failure rates in performance analysis of safety barriers. In 

addition, the models for evaluating the effects of CAFs in complex systems have been 

investigated and developed. Although the framework and models need further 

development, the contributions fulfill the intent of the objective.  

3. Models and formulas for evaluating the performance of safety barriers considering the 

impacts of CAFs were proposed and developed. Traditionally, CCFs in safety barriers have 

been a significant contributor to system unavailability and have been intensively studied. 

However, little attention has been paid to the effects of CAFs within safety barriers, 

particularly for SISs operating in high- and low-demand modes. A special challenge is 

related to modeling dependencies that are within or between components of SISs. The 

contributions of this Ph.D. project represented new perspectives and approaches to deal 

with CAFs within or between SISs.   

4. While safety barriers prevent CAFs during prolonged demands, models for evaluating their 

performance are desirable. The project addressed this question and considered the EUC 

reliabilities and SIS durability during demand. They allow one to provide guidelines for a 

cost-efficient mitigation plan for a given resource situation and limited budget.     

In conclusion, this Ph.D. thesis contributed to recognizing the effects of safety barriers with 

dependent failures in complex systems, promoting systematic and holistic approaches to 

evaluate the performance of the systems. The benefits of the proposed approaches and models 

in this thesis were as follows: 1) providing precise and holistic performance analysis of safety 

barriers, and 2) offering the guidelines for SIS or barrier design and deployment to improve the 

performance of complex systems.  
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The thesis applied the proposed models and approaches to SISs and safety barriers in the oil 

and gas industry, but they can also be adapted to other sectors, such as the energy and railway 

fields. The proposed models have been employed in SISs and EUC systems, but they can also 

be generalized to other industrial complex systems with dependent failures.   

6.2 Future work 

This section gives open questions and recommendations for further research concerning 

complex systems, maintenance, approaches and models, and verification.   

6.2.1 Complex system 

Complex systems discussed in this thesis mainly focus on systems comprising many 

components and are associated with interactions and dependency issues, like numerous 

influences or dependent failures. However, as mentioned in Chapter 1, complex systems can 

be various and more complicated. Therefore, efforts can be made to find more numerical 

solutions for complex systems, e.g., network systems, hierarchical systems, and dynamic 

systems. The effects of CAFs in these complex systems can thus be different, which can be 

interesting research questions.   

6.2.2 Maintenance issues 

The thesis is dedicated to the performance analysis and reliability analysis of safety barriers. 

The work can be extended to testing and maintenance issues as they are vital activities to ensure 

that safety barriers achieve and maintain the desired performance. The activities may include 

several factors but may not be limited to repair time, proof testing, response time for SIF, 

inspection intervals, testing coverage, testing schedules, and maintenance strategies. Involving 

these activities impacts the models for analyzing the performance of safety barriers. Therefore, 

it is necessary to improve the models and approaches for analyzing safety barriers considering 

maintenance activities.       

6.2.3 Approaches and models 

The adequate models and approaches are determined by the simplification and assumptions 

that are made. Simplification of the reality in the models raises uncertainty of the approaches. 

The approaches and models in this Ph.D. work still need future development, and their 

numerical efficiency must also be improved. Some assumptions in the models are somewhat 

restrictive. For example, the statistical dependency between CAFs, e.g., time-dependent, or 

jointing cascading probability, has not been considered in the analysis. Additionally, 

performance indicators, such as response time, capacity, and robustness, can also be included 

in the models.  

6.2.4 Implementation 

Monto Carlo simulations have verified the approaches and models proposed in this Ph.D. 

project. However, it is also required to accumulate and develop available cascading failure data 

to verify the models. High-quality data are then essential for accurate modeling reliability and 

performance analysis. The models have been applied to a specific industry in the battery 

cascading cases, but more efforts should be encouraged, and the models should be expanded 

to various applications.   
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Common cause failures and cascading failures in technical systems: 

Similarities, differences and barriers

L. Xie, M.A. Lundteigen & Y.L. Liu
NTNU, Trondheim, Norway

ABSTRACT: Many technical systems continue to increase in size and complexity, with more interac-
tions and interdependencies between components. Dependent failures, such as common cause failures 
and cascading failures, are becoming important concerns to system reliability. Both failure types may lead 
to the unavailability of multiple components at the same time or within a short time interval. Although 
many researchers have studied common cause failures and cascading failures respectively, there is little 
comparison of the two concepts. This paper investigates the similarities and differences of these two 
failure groups, with focus on the conditions and nature of initiations and propagation of such failures. 
Moreover, a comparison is also made about suitable barrier strategies that can either prevent or reduce 
the consequences of failure. The paper concludes the study with a demonstration of reliability modeling 
for common cause- and cascading failures.

So far, it seems like most attention has directed 
to CCFs and in specific for safety-critical systems 
where redundancy is used actively to enhance reli-
ability (Paula et al., 1991, Humphreys and Jenkins, 
1991, Lundteigen and Rausand, 2007, IEC61508, 
2010, A. Mosleh, 1998). There have been two main 
strategies suggested for incorporating defenses 
against CCFs in design. One is to carry out analyses 
to identify and remove causes, and the other is to 
introduce measures to reduce the effects of CCFs 
in case they occur. Suggested methods include 
cause-defense matrices, common cause analysis, 
and zonal analysis (Humphreys and Jenkins, 1991, 
Paula et al., 1991).

The defenses to CCFs are typically identified in 
design, however, measures in the operational phase 
are also important (Lundteigen and Rausand, 
2007). Even for an excellent system design, there 
will always remain a risk of CCFs. It is therefore 
required to include the contribution of CCFs in 
quantitative analyses used to demonstrate ade-
quate reliability. A high number of models has been 
introduced for this purpose (Vesely, 1977, Fleming, 
1975, Evans et al., 1984, Mosleh and Siu, 1987). 
The standard beta factor model is perhaps the 
most widely adopted, due to its simplicity (Flem-
ing, 1975, IEC61508, 2010). The PDS method 
(Hauge et al., 2015) is an extension of the standard 
beta factor, where a second parameter is added to 
account for voting, e.g. 2-out-of-3 and 1-out-of-3.

As for cascading failures, it is of interest to 
consider efficient means to avoid or reduce the 
vulnerability of the failures in the system design, 
and to quantify cascading failures. An important 

1 INTRODUCTION

Technical systems, such like railway systems, 
processing systems in chemical and petroleum 
plants, and power grids, are becoming increasingly 
complex. These systems include many physical 
components, with a huge number of interaction 
and interdependencies. Sometimes, those failures 
occurring in multiple components are resulted 
from the interconnections. We refer to such fail-
ures as dependent failures. Within the category of 
dependent failures, there are two sub-categories 
that are of specific interest: common cause fail-
ures (CCFs) and cascading failures (Rausand and 
Lundteigen, 2014). In the chemical and process 
industry, cascading processes are called as domino 
effects (Abdolhamidzadeh et al., 2010, Abdolha-
midzadeh et al., 2009, Landucci et al., 2016).

Past accidents and near misses have shown that 
dependent failures are one of main threats to a 
complex system. For example, CCFs are main 
contributors of failures in safety systems of the oil 
and gas industry (Smith and Simpson, 2004, Lun-
dteigen and Rausand, 2007). Fires in the chemical 
and process industry highlight the severe cascading 
consequences (Landucci et al., 2016, Cozzani and 
Reniers, 2013). The blackouts in United States, 
Canada in 2003, and Europe in 2006 are also the 
examples of cascading failures (Kotzanikolaou 
et al., 2013, Andersson et al., 2005). Many other 
infrastructure systems, like water distribution 
networks, transportation, also often suffer from 
cascading failures (Lin et al., 2014, Shuang et al., 
2014, Ouyang, 2014).
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task in these analyses is to study interdependen-
cies, and many analyzing approaches in literature 
are based the topology of complex network (Mot-
ter and Lai, 2002, Wang, 2012, Albert and Bara-
bási, 2002). One kind of cascading failures are 
the failures when a heavily load component fails, 
and its load is redistributed to other components, 
resulting in loads on that exceed their capacities. 
State-based approaches, such as Markovian proc-
ess, approaches based on the Bayesian network 
models, and Monte Carlo Simulation have been 
used to analyze cascading failures (Iyer et al., 2009, 
Calviño et al., 2016, Erp et al., 2017).

In fact, many technical systems can be subject to 
both CCFs and cascading failures, thus it is impor-
tant to consider both failure categories in reliability 
analysis. Unfortunately, very limited attention has 
been directed comparing the two types of depend-
ent failures, and their corresponding defense strat-
egies. Kotzanikolaou et al. (2013) highlight that 
CCFs may have cascading effects, but do not go 
into much detail.

The objective of this paper is therefore to make 
a comprehensive comparison on the concepts, 
causes, and mechanisms of the two failures, and 
provide some suggestions on the analysis and 
defense strategies. In this paper, we use the term of 
barrier to denote a specific defense measure.

The rest of the paper is organized as follows: In 
section 2, we discuss the definitions and interpreta-
tions of CCFs and cascading failures. Sections 3 
and 4 present the similarities and distinctions of 
the two failures. In section 5, we clarify the barriers 
against the two failures. A small example is then 
employed in section 6, to illustrate that the effects 
of CCFs and cascading failures. Conclusions and 
discussions occur in section 7.

2 DEFINITIONS AND INTERPRETATIONS

According to Humphreys and Jenkins (Hum-
phreys and Jenkins, 1991), dependent failures refer 
to the failures whose probability cannot be expressed 
by unconditional probability of the individual event. 
Dependencies in a technical system may derive 
from the sameness of the types of components, 
exposure from the same environment, the use 
of shared resources, functionality, the common 
shocks and the incapability to resist certain haz-
ardous events (Rausand, 2013).

People in different industrial sectors define 
CCFs in their own ways. Nuclear sector defines 
it as two or more component fault states exist at 
the same time, or with a short interval, because of 
a shared cause (Mosleh et al., 1988). The generic 
standard on design and operation of electric, elec-
tronic, and programmable electronic safety-related 

systems, IEC 61508, defines a CCF as a failure that 
is the result of one or more events, causing concur-
rent failures of two or more separate channels in a 
multiple channel system, leading to system failure 
(IEC61508, 2010). Both definitions emphasize that 
CCFs involve at least two failures that are due to a 
shared or common cause.

Cascading failure may be multiple failures, where  
initiated by the failure of one component in the sys-
tem that results in a chain reaction, the so-called 
domino effect (Rausand and Øien, 1996). In power 
systems, cascading failure is referred to a sequence 
of dependent failures of individual components that 
successively weakens the systems (Baldick et al., 
2008). It differs from the definition in infrastruc-
tures that limit the cascading failure to the propa-
gation of failures between components (Rinaldi et 
al., 2001). Generally, we can find some same ele-
ments in the definitions that cascading failures are 
multiple failures initiated by one, and a sequential 
effect occurs.

From the perspective of failure causes, both 
CCFs and cascading failures result from some 
common vulnerabilities of more than one compo-
nent. These two types of failures are interrelated 
in some cases (Laprie et al., 2007, Kotzanikolaou 
et al., 2013). However, they are still two distinctive 
categories of dependent failures. As Smith and 
Watson explained, CCFs emphasize that failures 
are located in ‘first in line’, which means that the 
failure are only dependent on the causes, but not 
on each.

In the following sections, we try to elaborate sim-
ilarities and difference between the two failures.

3 SIMILARITIES

We categorize the similarities between CCFs and 
cascading failures into three: multiplicity, timeli-
ness and classification of causes.

3.1 Multiplicity

Both CCFs and cascading failures obviously 
involve more than one components. We are con-
cerned with the effect of failure of  several compo-
nents and functions for two categories of failures.

3.2 Timeliness

For both CCFs and cascading failures, the time 
from the first failure to the existence of multiple 
failures is often short. In case of insufficient miti-
gation measures, the collapse of an entire system 
may occur very soon. For example, in the Three 
Mile Island accident caused by CCFs in 1979, 
the radiation level in the primary coolant water 



2403

was around 300 times of the expected level after 
only 2 hours (Hasani, 2017). The power blackout 
in India in 2012 due to cascading failures, spread 
across 22 states within 12 hours and affected more 
than 620 million people (Russel, 2012).

3.3 Root causes

Root causes of both CCFs and cascading failures 
are the common vulnerability of more than one 
components in a system. Coupling factors between 
components can explain why multiple components 
are destroyed by a common hazardous event, e.g. 
cold temperature, extreme snowfall or electrical 
failure. Meanwhile, for cascading failures, cou-
plings also can explain why multiple components 
are affected by the faults of relevant components. 
For example, the unavailability of one processing 
unit increases the workload of another unit.

4 DIFFERENCES

For differences between two types of failures, we 
categorize them into two: initiation and propaga-
tion of  failures, as shown in Table 1. Initiation of 
failures.

As seen in Table 1, the initiating event of a CCF 
can be either replicated or occur simultaneously 
for several components. The effect of CCFs arises 

Table 1. Differences between CCFs and cascading failures.

Difference Characteristics CCFs

Cascading 

failures

Initiation Triggering 

condition

Shared causes Conditional on 

preceding 

failures

Occurrence Simultaneously or 

during a critical 

time of interest

Sequence

Propagation Sequence First in line Series

Consequence Finite Possibly infinite

Pathway Cause- 

components

Connected/

dependent 

components

Figure 1. CCF and cascading failures.

Figure 2. Comparisons of CCFs and cascading failures in terms of impact and effect.

from shared causes, may be simultaneous failures 
or failures with some time apart. A cascading fail-
ure always starts with a single preceding compo-
nent failure, as the effect of an initiating event.
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To illustrate these differences, we introduce two 
small examples, as shown in Figure 1. High tem-
perature is the initiating event of both a CCF and a 
cascading failure in this case. In Figure 1(a), all the 
four components expose themselves to high tem-
perature, and so all or some of the components fail 
simultaneously or in a short interval. However, in 
the case of a cascading failure of Figure 1(b), only 
component 1 is exposed to high temperature, and 
fails due to this initiating event. Then, the failure 
of component 1 trigger the failures of other com-
ponents due to diverse reasons. Even in the same 
cascading sequence, the failure causes can be dif-
ferent for the different components.

4.1 Propagation of failures

Propagation of failure means in this context the 
evolvement of multiple failures, with the initiating 
event already manifested. Figure  2 illustrates the 
differences in the propagation of CCFs and cas-
cading failures. CCFs are first in line failures that 
delineate the exclusion of dependent failures from 
CCF definition (Smith and Watson, 1980), which 
implies that CCFs are directly linked to the fail-
ure causes. On the contrary, the propagation of a 
cascading failure follows a series of interactions. 
CCFs are most different from cascading failures 
in terms of the approaches of propagation. As 
shown in Figure  2(a), for CCFs, the first in line 
failure only occurs on component 1 and 2. For the 
consequence of failure propagation, as shown in 
Figure  2(b), a cascading failure can escalate and 
result in worse impacts on the other parts of a sys-
tem, such as more serious disruptions, overload 
to neighbors and longer recovery time etc. CCFs 
highlight a direct cause-effect relationship between 
the cause and the failed components (Rausand 
and Lundteigen, 2014), whereas the pathway 
of cascading failures involve the interactions or 
dependencies between relevant components, see in 
Figure 2(c).

5 BARRIERS

Barriers are employed to prevent, control or miti-
gate undesired events or accident (Sklet, 2006). 
Sometimes, barriers are also called defenses, pro-
tection layers or countermeasures. In general, a 
barrier function can be realized by many different 
means, such as by a technical or physical system, 
human actions and procedural deficiencies.

In the design phase of a system, it is possible 
to introduce barriers against potential failures, like 
separation, diversity, quality control, simplicity of 
design etc. Some of them are effective to reduce 
the probability of CCFs, and some of them are 

more functional for protecting the system from 
cascading failures. Considering the similarities 
and differences of CCFs and cascading failures, 
we can categorize barriers into three groups: barri-
ers against both failures, barriers against CCFs and 
barriers against cascading failures.

Barriers efficient for both failures: Such kind 
of barriers should be designed in consideration 
of the similarities of CCFs and cascading fail-
ures, such like their root causes and coupling 
factors. One way of barrier design is therefore 
to mitigate and reduce the vulnerability to root 
causes. Simplicity can be regarded as a barrier, 
for example, to reduce system complexity that is 
one important source of vulnerability. Another 
way of barrier design is to decrease the coupling 
degrees among components. Spatial and tem-
poral separations are examples of decreasing 
coupling degrees. In practices, we can find that 
firewalls in a process plant are effective barriers 
to prevent fire disasters.
Barriers against CCFs: The effectiveness of such 
barriers is to isolate failure causes and compo-
nents, as shown in Figure  3(a). One example 
is diversity of the design. Diverse components 
will often have different failure modes, and are 
therefore less likely to be affected by the com-
mon cause. However, diversity is not effective 
to mitigate cascading failures. When the failure 
of one component brings higher workload to 
its neighbors and their failure probabilities, no 
matter the components are identical or not.
Barriers against cascading failures: The main 
purposes of this kind of barriers are to stop or 
slow down failure propagation, as shown in Fig-
ure 3(b). An example for this class of barriers is 
a process shutdown valve that can isolate related 
process segments. In case abnormal events have 
occurred in the upstream facility, the shutdown 
valve can stop or limit the flow between two facil-
ities, and thereby cease the failure propagation.

In the next section, we will use a small example 
to illustrate the quantitative analyses for CCFs and 
cascading failures, and the effects of barriers.

Figure 3. Barriers for CCF and cascading failures.
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implies that CCFs may have more influence on the 
reliability performance than cascading failures in 
this case, when using similar assumptions about 
the probability of having additional failures, when 
a first failure has occurred.

We now introduce time-dependent probabilities 
for reliability analysis, and assume that the time 
to failure is exponentially distributed, with failure 
rate of 1E-04 per hour for each component. For 
the system with CCFs, the total system reliability 
can be obtain as:

R e e et t t( )t (( (e= [ ]−( (− −2 2β λt)) β λt) βλt  (5)

For the system with cascading failures, the total 
system reliability can be obtain as:

R e PrPP( )t ( )e t ( )e t= e1 (− 2 2λt λt λ  (6)

Figure  5 illustrates calculated system reliabil-
ity considering the effects of the two failures as a 
function of time. We can see that, in this case, the 
two failures seems to have comparable effects on 
the system reliability.

For CCFs, the function of barriers is to separate 
shared root causes from the components. The func-
tion of the barriers against cascading failures is to 
prevent propagation of the failures between compo-
nent A and B. Reliability of the system with barriers 
is illustrated in the blue line in Figure 5, implying 
that the system reliability will increase when per-
forming barriers function against the failures.

7 CONCLUSION AND FURTHER WORK

Exploring similarities and difference between 
CCFs and cascading failures facilitate us to answer Figure 4. Case study for CCF and cascading failures.

6 CASE STUDY

Suppose a system comprising two parallel compo-
nents. The effects of failures and corresponding 
barriers for the two dependent failures are studied 
separately, as illustrated in Figure 4.

For modeling CCFs, a new independent “CCF” 
event is added in the standard beta model with 
beta-factor β. The parameter β can be interpreted 
as the conditional probability that a failure of a 
channel is in fact a common-cause failure:

β = Pr( )CCF Failureof channels  (1)

With inclusion of CCFs, the total system reli-
ability can be obtain as:

R R R( )t ( )R= 2 β )  (2)

where R = 0 8.  and β = 0 1. .1
For modeling cascading failures, it is neces-

sary to consider the effects of functional depend-
ency between the two components, and Bayesian 
network model is an approach we used here. The 
conditional failure probability is a measure of 
dependency that differ from the conditional prob-
ability β for CCFs. The conditional probability for 
cascading failures can be defined as:

Pr( . . )B failsff comp f
F

F

DFF

AF
=  (3)

Here, FAF  and FBFF  denote the individual failure 
probability for component A and B. FDFF  denotes the 
failure probability for component A on the condi-
tion of component A has failed. The total system 
reliability with cascading failures can be obtained as:

R F F F F F

RP
A BF FF D BFF DFF

rPP

( )t ( )

( )R ( )R

= − + FFF

= R

1

1 (− 2 2  (4)

where Pr denotes conditional probability between 
component A and B and is assigned as 0.1(Pr = 0.1).

As shown in Figure 5, the total system reliabil-
ity with CCFs becomes 0.946, but it is 0.957 with 
the effects of cascading failures at that time. This 

Figure 5. Reliability with cascading failures & CCFs.
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the following questions: 1) why such dependent 
failures initiate, 2) how dependent failures con-
tribute to disruptions in the systems, and 3) what 
kind of barriers are needed and how they should 
be implemented. In this paper, we find that CCFs 
and cascading failures may have comparable influ-
ences on the performance of a simple system. 
More probabilistic and quantitative analyses are 
required, to evaluate the impacts of cascading 
failures in a larger and more complex system (Erp 
et al., 2017).

Our further work will involve modeling the 
interdependent systems with cascading failures 
and CCFs, and developing tools to evaluate reli-
ability for complex systems. It is also of interest 
to identify different failure modes and perform 
barrier analysis for both of the failures, which can 
help to allocate barriers and thereby optimize bar-
rier functions.
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A B S T R A C T

Safety instrumented systems are frequently deployed to reduce the risk associated with industrial activities, such
as those in the oil and gas industry. A key requirement for safety-instrumented systems in standards like IEC
61508 and IEC 61511, is that the safety functions and their equipment must fulfill the requirements of a given
safety integrity level. A safety integrity level formulates a maximum tolerated probability of failure on demand,
which must be confirmed in design as well as follow-up phases. The equipment's failure rates are important
inputs to this analysis, and these figures assumed from design must be re-estimated and verified based on the
operational experiences with the equipment at the specific facility. A thorough review of reported failures from
six Norwegian onshore and offshore oil and gas facilities indicates that equipment of similar type experience
different failure rates and different distribution of the occurrence of failure modes. Some attempts have been
made to identify the underlying influencing factors that can explain the differences, however, so far the utili-
zation of data-driven methods have not been fully explored. The purpose of this paper is two-fold:1) demonstrate
how data-driven methods, i.e. principal component analysis and partial least squares regression, can be used to
identify important influencing factors, and 2) propose a framework for predicting the failure rates based on the
reported failures. The framework is illustrated with a case study based on the data collected from the six fa-
cilities.

1. Introduction

Safety instrumented systems (SISs) are frequently used to reduce the
risks associated with industrial activities in many industries, e.g. at
process and nuclear power plants, and at oil and gas facilities (Rausand,
2014). A SIS is characterized as a system that relies on electrical/
electronic/programmable electronic (E/E/PE) technologies to detect
abnormal situations. SISs perform one or more safety instrumented
functions (SIFs) to protect the equipment under control (EUC) against
the occurrence of hazardous events (IEC61511, 2016). An industrial
facility usually is equipped with several SISs, such as process shutdown
(PSD) system to stop production in case of process upsets, and emer-
gency shutdown (ESD) system to reduce the escalation of uncontrolled
events like leakages by depressurizing and removing electrical ignition
sources. A SIS generally consists of three main subsystems: sensor(s)
(e.g. level transmitters, gas detectors, and push buttons), logic solver(s)
(e.g. programmable logic controller and industrial computer) and final
element(s) (e.g. shutdown valves, and circuit breakers). As illustrated in
Fig. 1, the sensors detect possible abnormal situations, and the logic

solvers activate, and the final elements take actions according to the
sensor inputs.

The standards for SISs, e.g. IEC 61508 and IEC 61511, state that the
SIFs performed by SISs must fulfill the requirements of specified safety
integrity levels (SILs) (IEC61508, 2010; IEC61511, 2016). Each SIL
defines the maximum tolerated (average) probability of failure on de-
mands (PFD). The PFD of a SIF must be estimated in design, using
generic (often field-based) failure rates or those provided by manu-
facturers, and then re-estimated in operation using reported failures
from the facilities where the SIF is installed (Rausand, 2014). A failure
rate is defined as an average frequency of failure, i.e. a number of
failures per unit of time (ISO14224, 2006). Failure rates can generally
be classified into three groups: generic, manufacturer-provided and
user-provided failure rates, depending on how they have been derived
(Rausand, 2014).

In oil and gas industry, Generic failure rates for SIS equipment per-
forming SIFs are presented in databases and handbooks, like Offshore
and Onshore Reliability Data (OREDA, 2015), Safety Equipment Re-
liability (EXDIA, 2007) and Reliability Data for Safety Instrumented
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Systems (PDS data handbook1) (SINTEF, 2013a). OREDA databases and
handbooks rely on failures reported in operation from multiple oper-
ating companies, while e.g. PDS data handbook relies on a combination
of OREDA data, expert judgment, and manufacturer information.
Generic failure rates are mainly applied in reliability analysis during the
design phase before the designers have decided on what equipment to
purchase. Manufacturer-provided data is meanwhile based on analyses of
specific products, laboratory testing and collected data, typically during
the warranty period. It is often seen that manufacturer-provided failure
rates are lower than what is experienced in operation (SINTEF, 2013b).
User-provided failure rates are based on aggregated time in service and
the number of reported failures at one or more specific facilities owned
by the same operating company. The standards and regulations, such as
IEC61508, IEC 61511, ISO 14224 and GL070, have given certain re-
quirements with respect to the failure rates (GL070, 2004; IEC61508,
2010; IEC61511, 2016; ISO14224, 2006). IEC 61508 states that the
failure rates used in a reliability analysis should have at least a con-
fidence level of 70% (IEC61508, 2010). The uncertainty of the esti-
mated failure rates is required in OREDA to be presented as a 90%
confidence interval with a lower limit and an upper limit (OREDA,
2015). In order to fulfill 90% confidence, a guideline proposed by
SINTEF2 suggests that operational hours times the number of failures
should exceed 3 106 hours (Hauge and Lundteigen, 2008). In addition,
when the upper 95% percentile is approximately three times the mean
value or lower, we may use the estimated failure rates based on op-
erational experience (Hauge and Lundteigen, 2008). In this context,
many oil and gas facilities invest time and resources to record failures to
obtain estimated failure rates.

A number of methods can be applied to estimate failure rates. In
many applications, failure rates are estimated as the maximum like-
lihood estimators (i.e. the total number of failures divided by the ag-
gregated time in service) (OREDA, 2015). Estimation of the failure rates
should also consider specific operational conditions (IEC61508, 2010).
Different models are suggested to analyze the impact of various op-
erational conditions from one facility to another. Physical models
considering physical laws like Arrhenius's law, Voltage acceleration and

Gunn's law, are used to estimate failure rates (Foucher et al., 2002;
Ratkowsky et al., 1982). MIL-HDBK-217 (MIL-HDBK-217F, 1995),
Telcordia SR-332 (TelcordiaSR-332, 2001) and IEC 61709 (IEC61709,
2017) propose analytical failure functions of parameters, e.g. tem-
perature, humidity, stress, voltage or electrical intensity. Statistical
models can use operational data to investigate the trends of failure
rates, such as Cox models (proportional hazards model) and Bayesian
models (Becker and Camarinopoulos, 1990; Cox, 1972; Elsayed and
Chan, 1990; Kutyłowska, 2015; Newby, 1994). Brissaud suggests a way
to predict failure rates with consideration of the influences from design,
manufacture or installation etc. (Brissaud et al., 2010). A similar
method is suggested by Vatn, taking into account the effects of im-
plementation of risk reduction measures in the prediction (Vatn, 2006).
It is noticed that the physical models for estimating failure rates require
well-known knowledge about physical mechanism leading to the fail-
ures. In this paper, in order to develop a general model, the prediction
of failure rates is only based on statistical models.

Most statistical models mentioned above rely on the data for a large
group of equipment. The items within a group are assumed to have
similar functions and the same failure rates, however, their design (e.g.
measuring principle), location, and environment can be different.
SINTEF has previously performed a study where it was documented
that similar equipment experienced varied failure rates even if the
operating environment is the same (Håbrekke et al., 2017). The study
has shown that shutdown valves with flow medium gas and hydro-
carbon (HC) liquid experience different failure rates. It was also showed
that the failure mode, i.e. the type of failure, was influenced by certain
parameters. For example, the occurrence of the failure mode “fail to

Nomenclature

SIS safety instrumented system
PSD process shutdown
ESD emergency shutdown
FTO fail to open
LCP leakage in closed position
DOP delayed operation
OTH other
PCA principal component analysis
PLSR partial least squares regression
DD dangerous detected
DU dangerous undetected
PC principal component
SIF safety instrumented function
SIL safety integrity level
GLM generalized linear model
Cox proportional hazards model
HC hydrocarbon
T score matrix

P, Q loading matrix
X explanatory variable
V eigen value
Y response variable
E F F~, ~, ~* residuals from decomposition
NIPALS nonlinear iterative PLS algorithm

DU,i failure rate of DU failure, corresponding to failure mode i
ij weight of influencing factor j, corresponding to failure

mode i
ij score of influencing factor j, corresponding to failure mode

i
DU
* predicted failure rate

LT level transmitter
PSV pressure safety valve
DU_YES revealed DU failure
DU_NO no revealed DU failure
PDS reliability data for safety instrumented system
SAR safety analysis report
P&ID process and instrument diagram
SRS safety requirement specification

Fig. 1. Role and general configuration of SIFs.

1 PDS forum is a co-operation between 20 participating companies, including
oil companies, drilling contractors, engineering companies, consultants, safety
system manufacturers and researchers, with a special interest in SISs, see www.
sintef.no/pds.

2 SINTEF: An independent Norwegian research organization (https://www.
sintef.no/en/).
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open” (FTO) for the same valves were strongly affected by the tem-
perature of the medium flowing through the valves. The term sig-
nificant influencing factors were thus introduced for those factors (e.g.
design, operating environment, failure mode) with the strongest effects
on the failure rates. These factors have been analyzed by using tradi-
tional statistical models, however, data-driven methods could also be
suitable (Håbrekke et al., 2018). In this paper, data-driven methods
refer to the quantitative methods of identifying the correlations based
on amounts of data, such as principal component analysis (PCA) and
partial least squares regression (PLSR). Those data-driven models based
on experienced data are now proposed to be incorporated with the
traditional statistical models to predict failure failures of SIS equipment
for new facilities in the design phase.

The purpose of this paper is to study the application of data-driven
models for failure rate estimation. More specifically, the objectives are
to: 1) demonstrate how data-driven methods, i.e. PCA and PLSR, can be
used to identify significant influencing factors for the specific failures of
SISs, and 2) propose a framework for predicting the failure rates based
on the identified factors. The framework is illustrated with a case study
from data collected at six Norwegian onshore and offshore oil and gas
facilities. The framework is developed for SIS equipment, but can also
be applied for other systems or equipment.

The rest of the paper is organized as follows: Section 2 gives some
theoretical basis related to predictions of failure rates. Section 3 depicts
a framework for prediction of failure rates. Section 4 illustrates the
application of the proposed framework based on the data from six
different oil and gas facilities. Finally, some conclusions and ideas for
further work are discussed.

2. Theoretical basis

This section presents some selected definitions and concepts relating
to failures as well as failure rate prediction and elaborates the basic
principles of data-driven methods for identifying influencing factors.

2.1. Definitions of the failures

According to IEC 50(191), a failure is defined as “the termination of
the ability of an item to perform a required function” (IEC60050, 1990).
An item may refer to a system, subsystem, voted group or channel and
component. IEC 61508 splits the failures of SISs into four groups
(IEC61508, 2010): dangerous detected (DD) failures, dangerous un-
detected (DU), safe and no part/no effect failures. Both DD and DU
failures are dangerous failures that are critical for the functionality of
equipment. The difference between DD and DU failures lies in how the
two types of failures are revealed. DU failures are latent and only re-
vealed upon real demands, periodic tests, or inspections occasionally,
while DD failures are revealed by automatic diagnostics once they
occur. Since DU failures cannot be detected immediately and may not
be fixed until e.g. the next periodic test, these failures contribute the
most to the unavailability of SIS equipment. Hence, DU failures are of
concern in most reliability studies and also in this paper.

Other important terms in this paper include “time to failure”, “failure
cause”, “detection methods” and “failure mode”. Time to failure is often

referred to as the time elapsing from when the item is put into operation
until it fails for the first time (Rausand and Høyland, 2004). By time to
DU failure we mean the time when the item is put into operation until a
DU failure on it is revealed. Failure causes include circumstances as-
sociated with design, manufacture installation, use and maintenance
that have led to a failure (IEC60050, 1990). Detection methods are used
to describe how the failures are discovered (IEC61508, 2010). A failure
mode is a possible state description of a faulty item, which tells how the
inability is observed (Rausand, 2014).

2.2. Influencing factors

Estimation of DU failure rates from operation are often based on
generic data and/or user-provided data. In addition, influencing factors
that may affect the failure rates should be considered for prediction of
failure rates, but it is not mandatory in all generic and user-provided
data. Influencing factors are defined as the internal and external parts
of a system which act on its reliability or failures (Brissaud et al., 2010).
The term of influencing factor is more general than failures causes, and
it relates to the indirect explanatory factors, for example, equipment
attributes (e.g. sizes, types), operational environment (e.g. temperature,
pressure, loads), manufacture activities (e.g. manufacturers, proce-
dures), facility (e.g. location) and maintenance (e.g. test interval) and
the activities of the end-user (e.g. general safety culture) (Brissaud
et al., 2010; Rausand, 2014). Significant influencing factors are the
factors whose effects are the most influencing on the failure rates. Each
influencing factor can be broken down into several subcategories. The
effects of influencing factors may relate to failure rates. For example,
high temperature may lead to a higher frequency of the failures com-
pared to low temperatures.

2.3. Data-driven models for identifying significant influencing factors

In previous analyses of influencing factors, Cox models and gen-
eralized linear model (GLM) have been used (Håbrekke et al., 2018).
Both of the two models assume underlying failure distributions. For
example, GLM is based on binomial distributions, where only two
possible states of equipment are considered. A major advantage of these
models is the ability to describe the analytical correlations between
influencing factors and failure probability. However, both models re-
quire high quality data for representing simple statistical correlations,
and they are sensitive to the number of factors. When a number of
influencing factors are involved with complex interaction and non-
linearity, Cox and GLM models may not be suitable.

More flexible models, such as those data-driven models, can be al-
ternatives. PCA and PLSR are therefore introduced to investigate the
correlation between many factors simultaneously. These models enable
us to extract the most important information in order to understand the
correlations that may exist between factors. PCA and PLSR have been
applied for root cause identification, fault detection, and quality mon-
itoring in many cases (Li et al., 2016; Qin, 2012; Tidriri et al., 2016).
Here we will adopt them for understanding the essential relationships
between the influencing factors and DU failures. Details regarding PCA
and PLSR are found in the Appendix.

Fig. 2. Framework for predicting failure rates.
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3. Framework of failure rate prediction

In this section, we propose a framework to predict failure rates of
SIS equipment at a new facility based on experiences from comparable
facilities. The framework clarifies the correlations between operational
data and influencing factors, and thereby provides more preciseness in
failure rates prediction for selected equipment. As illustrated in Fig. 2,
the framework consists of three main steps: 1) data-collection, in-
cluding a selection of equipment, collection, and pre-processing data; 2)
identification of significant influencing factors to find out hidden cor-
relations; and 3) failure rates prediction by determining the weights
and scores of the factors.

3.1. Step 1: data-collection

The purpose of this step is to collect and interpret, classify and clean
data. It is required to collect data concerning both failures and influ-
encing factors. The failure data were obtained from failure notifications
and maintenance records, ranging from time to DU failure, failure
causes, and failure modes to detection methods. The data reflecting the
states of influencing factors were related to equipment attributes, op-
erational environment and maintenance activities, etc. Equipment at-
tributes are used to describe equipment relating to manufacturer's data
and design characteristics.

To limit the scope of the analysis, experts from manufacturers, oil
and gas facilities and engineering companies within the PDS project
have suggested some typical types of SIS equipment relevant for ana-
lysis. The selected groups of equipment should be accompanied by
sufficient data to obtain the required statistical confidence. The re-
commendation is limited to four groups: shutdown valves (i.e. ESD and
PSD valves), process safety valves (PSVs3), level transmitters (LTs), and
gas detectors. In terms of their safety functions, shutdown valves can
close and isolate related segments on demands, PSVs can be open on a
predefined setpoint to relief pressure, LTs measure the level in a vessel
or tank, and gas detectors discover the presence of gas and initiate an
alarm at specified concentrations.

To assure the quality of the data, pre-processing of data is needed.
Each failure maintenance notifications is reviewed and classified ac-
cording to failure causes, failure modes, and detection methods. The
failures were registered by operators and maintenance personnel, in-
cluding both random hardware failures and systematic failures. It is
suggested that systematic failures can be in failure rates estimations
(SINTEF, 2013a). However, some reoccurring failures due to specific
problems, such as icing problems and hydrate design problems have
been removed to avoid invalid the impacts on the overall results. Such
problems at one facility may not necessarily occur at other facilities.
The classifications of equipment are predefined according to the sug-
gestions of the experts. For example, the valves whose diameters are
less than one inch are categorized into a separated group, since they are
normally water-based and low-risk valves. Some assumptions are ne-
cessary in case of lack of data, for example, the valves installed in one
particular system are assumed to share the same medium as the flow
medium within the valves is not given.

3.2. Step 2: identification of significant influencing factors

The purpose of this step is to investigate the correlations between
failures and influencing factors, and to identify significant influencing
factors based on the data-driven models. Significant influencing factors
are referred to as the factors that highly affect the performance of
equipment.

PCA has been selected to identify gross correlations in data, and give
an overview of the distribution of the DU failures, correlations between
DU failures (e.g. occurrence of DU failures, failure modes) and influ-
encing factors (e.g. equipment attributes, maintenance, environmental
factors). As shown in Fig. 3, PLSR is applied to find quantitative cor-
relations between equipment performances (e.g. time to DU failure) and
the same influencing factors. PCA models are concerned with the oc-
currence of DU failures and failure modes, while PLSR models are
mainly related to time to DU failure. Both models contribute to the
identification of significant influencing factors, and investigate more on
the correlations between failures and factors.

3.3. Step 3: failure rates prediction

The purpose of this step is to predict failure rates of SIS equipment
at a new facility based on experiences from comparable facilities. A
user-provided failure rate for DU failures is denoted as DU. This failure
rate can be split into i groups according to different failure modes:

= + …+ iDU DU,1 DU,2 DU, (1)

where iDU, is the failure rate according to the failure mode i.
= …j k( 1,2 )ij denotes the weight of the significant influencing factor j,

meaning its importance to the failure rates iDU, . The weight ij can be
determined based on either the analysis in step 2, such as regression
coefficients and correlation analysis or the experience from the experts.

Then, the score ij for the influencing factors can be determined by
comparing the new conditions and existing conditions. The scores re-
present the impact of the significant influencing factors. For example,
when = 1ij , the influencing factor j is supposed to be in the medium
state according to failure rates DU i, . When > 1ij , the impact from
influencing factor j is more hostile than the existing condition. When

< 1ij , the impact is considered more benign than the existing condi-
tion. Similar studies have been discussed by many authors (Brissaud
et al., 2010; Rausand, 2014; Vatn, 2006). The predicted failure rates are
then estimated by:

= ij ij iDU DU, (2)

Failure rates are then obtained by using Equations (1) and (2).

4. Case study

In this section, a case study is used to illustrate the proposed fra-
mework for the prediction of failure rates. The content of this paper is
based on the works of the PDS project. We focus on the shutdown valves
and use the analysis of equipment attributes as examples. Other influ-
encing factors like the operational activities of the end-user or main-
tenances, may also have important influences on the failure rates.

4.1. Step 1: data-collection

The data stem from the six offshore and onshore facilities in the
Norwegian oil and gas industry, involving 12788 equipment items and
more than 13000 failures. A number of influencing factors can be taken
into account, but we mainly focus on equipment attributes here since
they are demonstrated important in explaining the variance of experi-
enced reliability performance of the SIS equipment.

The data regarding the failures and equipment attributes is derived
from maintenance notifications, work orders and relevant documenta-
tion, such as safety requirement specifications (SRSs), process and in-
strument diagrams (P&IDs), safety manuals and safety analysis reports
(SARs) and manufacturer specifications. Discussions with technical
advisors and process engineers have also been included. For example,
the flow medium for shutdown valves in the separation and stabiliza-
tion system has been checked in P&ID manually and discussed with the
experts. Some failure records are illustrated in Table 1. Shutdown

3 PSVs are non-instrumented equipment, but they are considered for the data
collection since some reliability handbooks for SIS include data for such
equipment.
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valves mainly have three types of DU failure: fail to close (FTC), leakage
in closed position (LCP), and delayed operation (DOP) (ISO14224,
2006).

Table 2 and Table 3 present a summary of the failure data and
equipment attributes. The equipment attributes, i.e. manufacturers,
size, flow medium and type of the shutdown valves, are included in the
analysis.

Table 4 illustrates an example of the shutdown valves used in data
analysis. For example, No. 1 valve has survived and No. 4 valve has
failed during the surveillance time.

4.2. Step 2: identification of significant influencing factors

PCA and PLSR are possible methods to identify significant influen-
cing factors for shutdown valves in this section. The results are visua-
lized by the software called “The Unscrambler X”, but it should be
noted that similar analyses can also be realized in Matlab or R.

Each possible influencing factor is defined as a variable. The sam-
ples here are shutdown valves, which are distributed in the variable
space. By application of PCA, a set of possibly correlated variables are
converted into a set of linear uncorrelated variables. Then, the di-
mension of the multivariate variables is reduced to principal compo-
nents (PCs) with a minimal loss of information. The samples are pro-
jected by using PCs with the largest explained variance. Fig. 4 shows the
correction loadings plot. The explained variance now tells us how much
information attribute to each of the PCs when high dimensional space is
converted to low dimensional space. In Fig. 4, PC1 contains 12% of the
variance and the PC2 contains 10% of the variance. The loading plot is
used to understand the correlation between the variables, as illustrated
in Fig. 4. “DU_NO” stands for a situation where DU failures are not

revealed, while “DU_YES” stands for a situation where DU failures are
revealed during surveillance time. There is a distinction between
“DU_NO” and “DU_YES” along PC2. The valves with DU failures are
allocated in third and fourth quadrants, illustrating the distribution of
DU failures. The score plot indicates how the samples are distributed
along with PCs. By comparing Figs. 4 and 5, we can recognize the
correlation between the grouped influencing factors and DU failures. In
Fig. 5, the extremely large and large valves are also distributed in the
third and fourth quadrants, meaning they are more likely to be subject
to DU failures than the rest of the valves. The valves with gas and
chemical flow medium are more exposed to DU failures compared to
the other valves.

By introducing failure modes, e.g. DOP, FTC, LCP, in the analysis,
the variance of PC1 and PC2 rises to 17% and 14% respectively. As
shown in Fig. 6, failure mode DOP is close to “extreme” and “gas”,
meaning that the failure mode DOP and extreme large-sized valves with
gas flow medium are clustered. This implies that these valves are more
exposed to DU failures with the failure mode DOP.

Fig. 7 and Fig. 8 show the analysis results from the PLSR analysis.
The predicted plot is used to describe the correlations between time to
DU failure and the influencing factors. R-squared gives the goodness-of-
fit of the model. Time to DU failure is poorly predicted in Fig. 7 since R-
squared is rather small and there is a big deviance between predicted
regression lines (red validation line and blue calibration line) and target
line (black reference line). Fig. 8 illustrates the weight regression
coefficients providing information about the importance of the influ-
encing factors. The influencing factors with a large regression coeffi-
cient play an important role in the regression model. In this case, some
influencing factors like size (e.g. extremely large), flow medium (e.g.
water, multiphase) and type of valves (e.g. ball and gate) can still be

Fig. 3. Flowchart for identifying significant influencing factors.

Table 1
Examples of failure notifications.

Comp. Notification Functional loc. Failure mode Detection method Description Comments

PSD valve * * FTC Proof test The valve fails under function test Valve went to 40% opening at closing. Rust actuator and
spring.

ESD valve * * DOP On-demand Error of feedback The too long closing time during the function test
PSD valve * * DOP Proof test Check opening and closing time for

valve
Closing time is 56 s

… … … … … …

Table 2
Failure data for the four groups of equipment.

Equipment Group No. of equipment Total operational time (hours) No. of DU failures Experienced failure rates (per 106 hours)

Shutdown valves 1646 3.7 107 292 7.9
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found as significant with respect to the failure rates.
To sum up, we conclude that in our case study DU failures are

correlated with the most significant influencing factors, e.g. size and
flow medium. Extremely large-size and flow medium (i.e. gas) are cri-
tical for some particular failure modes like DOP. That is why the two
influencing factors, i.e. size and flow medium are mainly concerned in
the following subsection.

4.3. Step 3: failure rates prediction

Based on operational experiences, we intend to predict failure rates
of the shutdown valves installed a new facility. The user-provided
failure rates in our case study are based on 1646 shutdown valves and
292 DU failures in total. The failures rate is estimated as the maximum
likelihood estimator by 7.9 10 6. The corresponding confidence interval
is given by [7.2 10 , 8.9 10 ].6 6 Table 5 lists the DU failures and asso-
ciated rates l per failure mode for the shutdown valves.

As discussed in the previous section, two significant influencing
factors need to be taken into account in predicting failure rates, i.e. size
and flow medium of the valves. The weight ij reflects the influence on
failure rates from each influencing factor according to the failure
modes, which is determined by experts based on the analysis results
from PCA and PLSR. The score ij is determined by comparing new
conditions and existing conditions. The relevant assumptions and pre-
diction results are shown in Table 6. Due to changes in operational
conditions, the failure rate can be calculated by Eq. (1) and Eq. (2) and
the predicted failure rate decrease by 5% to 8.8 per 106hour, lower than
the predicted result by using Brissaud's method (9.3 per 10 hour6 ) under
the same assumptions. The difference between the two predicted results
can be explained by obtaining more information about correlations
between significant influencing factors and the failure modes from the

Table 3
Equipment attributes for the shutdown valves.

Type Ball Controls flow by rotating a perforated and pivoting ball, poor methanol resistance in O-rings and deposits.
Gate Opens and closes by lifting or putting a gate out/down of the path of the fluid. Precipitation and abrasion are typical problems.
Butterfly Regulates or isolates flow by a damper.
Others Other types, e.g. globe valves

Size Small-sized 0–1 inch
Medium-sized 1–3 inches
Large-sized 3–18 inches
Extreme large-sized > 18 inches

Flow medium HC liquid Oil and condensate (hydrocarbon) liquid
Diesel Diesel fuel.
Chemical Chemical medium in chemical injection system e.g. H2S, Oxygen and some in methanol injection system e.g. 90% MEG with 10% water
Multiphase A mixture of different flow medium, e.g. a mixture of hydrocarbon, water, and sand
Water Freshwater with normal temperature and produced water with high temperature
Seawater Used for a fire water system and is characterized by salt
Gas HC gas or HC vapor in gas compression and re-injection systems, gas treatment systems, gas export metering systems, heating medium

systems, etc.
Manufacturer Manufacturers E.g. P, B … (anonymized)

Table 4
Examples for the analyses.

No. Time (hours) DU Failures Type Dimension Flow
Medium

Manufacturer

1 96456 DU_NO Ball Large HC Liquid P
2 96456 DU_NO Ball Medium Others P
3 96456 DU_NO Ball Large Others B
4 624 DU_YES Ball Large Others P
5 96456 DU_NO Ball Medium Gas B
… … … … … … …

Note: '' DU_YES '' – DU failures are revealed and '' DU_NO '' – No DU failure is
revealed.

Fig. 4. Correlation loading plot for the first and second PCs in PCA.
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PCA and PLSR analysis. It is illustrated that changes in the influencing
factors may affect some specific failure modes, rather than all failure
modes. Thus, it is more reasonably to predict failure rates for the spe-
cific failure modes of the shutdown valves.

5. Conclusions, discussions and further work

The main contribution of this paper is the proposed framework for
identifying influencing factors and predicting failure rates of SIS
equipment. The framework combines data-driven models i.e. PCA and

PLSR, and statistical models for predictions of failure rates. The
methods help us to identify the most important significant influencing
factors on failure rates, and to decide on the weights and scores of
identified influencing factors based on the analysis results from PCA
and PLSR.

Such a framework has been illustrated with a case study involving
operational experiences reported for the shutdown valves at six oil and
gas facilities. The results suggest that the size and the flow medium
through the valves are the most significant influencing factors. The case
study also illustrates how the framework is utilized to predict the failure

Fig. 5. Score plot of the first and second PCs in PCA.

Fig. 6. Correlation loading plot of the valves in PCA with failure modes.
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rates for equipment at a new facility. It can be the basis for reliability
improvement programs, optimizing maintenance programs and sug-
gesting subcategories within equipment groups. Prediction of failure
rates is the start of risk assessment and the calculation of PFD
(Famuyiro, 2018).

Many factors will affect the accuracy of the analysis. The biggest
challenge comes from the quality of data, such as lack of data, missing
information. Another limitation is the choice of predefined categories
for equipment (i.e. attributes) and failures (e.g. failure modes). The
selection of these categories strongly depends on the experts’ opinion
and the information available in the data. The data applied in the case
study to identify significant influencing factors is restricted to time to
DU failure. This time may be underestimated since DU failures are not
revealed immediately. Constant failure rates are also assumed in this
paper, which only applies to the failures during the useful life period of
operation. Thus, we have disregarded any changes in failure rates

during early life and end-of-life.
Further research should involve the comparisons of the effects of

different significant influencing factors on various SIS equipment
groups to mitigate DU failures. It is relevant to study other influences,

Fig. 7. Predicted plot of the shutdown valves in PLSR.

Fig. 8. Weighted regression coefficients of the influencing factors in PLSR.

Table 5
Failure distributions and corresponding failure rates.

Failure mode No. of DU Weights Failure rates iDU, (per 106 hour)

DOP 152 52.0% 4.1
FTC 101 34.6% 2.7
LCP 16 5.5% 0.4
OTH∗ 23 7.9% 0.6

Total 292 100% 7.9

Note∗: OTH represents other failure modes and unknown failure modes.

L. Xie, et al. Journal of Loss Prevention in the Process Industries 60 (2019) 96–105

103



such as installation, maintenance and general safety culture, on the
prediction of failure rates. Root cause analysis could also be in-
corporated in the proposed framework from the beginning of the
quantification of influencing factors. Other alternative methods, like
dynamic principal component analysis and or machine learning, can be
considered and their effectiveness needs to be analyzed. Development
of a guide for failure rate prediction is also required from an end-users
perspective, including validation of predicted values with experienced
failure rates. Another issue to be considered is to perform analyses to
predict dynamic failure rates in the operation.
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Appendix

PCA

PCA is based on the statistic model proposed by Pearson and Hotelling (Hotelling, 1933; Jolliffe, 2011; Pearson, 1901). Such a method can reduce
the dimensionality of multivariate to principal components (PCs) with minimal loss of information. In the context of this paper, PCA is used to reduce
the dimensionality of the influencing factors, so that significant influencing factors are retained and essential correlation is analyzed more easily.

Influencing factors are defined as the explanatory variables and expressed as = …X X X X[ , , ]n
T

1 2 . Assume m samples of equipment that describe
the observed situation relating to various influencing factors and the states of DU failures. ‘1’ represents a situation where a DU failure is detected,
whereas ‘0’ represents that there is no DU failures. The matrix X is decomposed into a score matrix T= …t t t[ , , ]n1 2 and a loading matrix P:

= +X TP ẼT (3)

where Ẽ denotes the residual matrix. The score T shows how the DU failures are distributed and how they project along the orthogonal PCs. The
loading P reflects the correlations between PCs. Then, the covariance matrix can be expressed as:

=S X X
N

1
1

T
(4)

The Eigen-decomposition is performed on S to obtain loading matrix P. The Eigenvalues V are denoted as:

= …V [ , ]l1 2 (5)

Then, the ith eigenvalue i, relates to the ith column of the score matrix T:

= t
n

t1
1 i

T
i i (6)

The highest eigenvalues represent the PCs with the most information and the measurement of the residuals is conducted to contain less cov-
ariance.

PLSR

Similarly, PLSR decomposes X and Ymatrices into bilinear structure models consisting of scores and loading matrices. The influencing factors are
defined as the explanatory variable expressed by = …X X X X[ , , ]n

T
1 2 . The response variables = …Y Y Y Y[ , , ]n

T
1 2 represents here the time to DU

failures. X and Y project from high dimensional spaces to low-dimensional spaces as follows:

= +X TP ẼT (7)

= +Y TQ F̃T (8)

where = …T t t t[ , , ]l1 2 are the score vectors, = …P p p p[ , , ]l1 2 and Q = …q q q[ , , ]l1 2 are the loading for X and Y. Ẽ and F̃ are PLS residuals corre-
sponding to X and Y. The loading weights of P and Q reflect the correlations between X and Y with the purpose of prediction. Then, the PLSR mode
can be rewritten as:

= +U T Ff ( ) ˜ (9)

Table 6
Comparison of the distribution for subcategories.

Brissaud's method Proposed method in this paper

DU(per 106 hours) Significant Influencing
factors

j j DU i, (per 106

hours)

Failure mode DU i, (per 106

hours)
Significant influencing
factors

ij ij DU i, (per 106 hours)

7.9 Size 0.6 1.5 7.1 FTC 4.1 – – – 4.1
Flow medium 0.4 0.7 2.2 DOP 2.7 Size 0.6 1.5 3.2

Flow medium 0.4 0.7 0.4

LCP 0.4 – – – 0.4
OTH 0.6 – – – 0.6

Prediction 9.3 8.8
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where U is a matrix that represents score vectors when Y projects to T . F̃ denotes the combined residuals from the decomposition. In this study, the
nonlinear iterative PLS (NIPALS) algorithm is used. Once all significant components are extracted, the model can then be used to predict new data
using the following relationship:

= + = +Y TQ F XB F˜ ˜T (10)

where B denotes a matrix of regression coefficients. More details of PLS algorithms can be found in the studies introduced by Geladi and Kowalski
(1986) and Hoskuldsson (Höskuldsson, 1988).
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Abstract
Cascading failures can occur in many technical systems where the components are organized as in series–parallel struc-
tures. The failures in these systems may propagate from one component to the other, not only within the same parallel
sub-structure but also between different sub-structures. This article presents a recursive aggregation method based on
the extended models of reliability block diagram, for analyzing the impacts of cascading failures on the reliability of
series–parallel systems. Based on the reliability analysis, the effects of safety barriers on preventing cascading failures are
studied, and the importance of safety barriers at different locations is evaluated. One simple example of three compo-
nents and one practical case from an oil production system are presented. The findings in these case studies illustrate
how system designers and safety managers can identify the effective and reasonable ways of installing safety barriers by
using the proposed approaches, for the mitigation of cascading failures in series–parallel technical systems.
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Introduction

Dependent failures (DFs) often occur in technical sys-
tems, such as in railway signaling, in flow transmission,
and in process plants.1–5 DFs refer to those failures
occurring in more than one component, influenced or
affected by either external or internal impacts, for
example, hazardous events, environmental factors,
shared resources, and dependent functions of different
components.6 The term ‘‘DF’’ reflects a relationship
between the state of one component and the states of
other associated subsets or components in a system.

Two sub-categories of DFs are of specific interest:
common cause failures (CCFs) and cascading failures
(CAFs). The similarities and difference between CCFs
and CAFs have been studied in Xie et al.7 Both failures
can occur simultaneously and influence multiple com-
ponents, leading to devastating consequences.
However, CCFs are the multiple failures due to a
shared cause, while CAFs are characterized by a chain
reaction or a domino effect initiated by the failure of
one component.3 Neither CCFs nor CAFs can straight-
forwardly be modeled by traditional reliability analysis
approaches like fault tree or Markov method,8–11 and
considerable researches have recently been devoted to

modeling and analyzing these failures with complexity.
The models for CCFs can be broadly classified as:
direct estimate models (e.g. square-root model8,9), ratio
models (e.g. b-factor model,10 C-factor model11), and
shock models (e.g. binomial failure rate model12).
These models have been incorporated to the traditional
reliability analysis approaches, such as fault tree analy-
sis, Markov methods, and event tree analysis.

The mentioned approaches for CCFs are unfortu-
nately not fully applicable for modeling CAFs, because
the interdependence and propagation mechanisms in
CCFs and CAFs are not the same.7 CAFs have been
widely studied by using sequential and network-based
approaches from risk-based assessment, complex net-
work theory, and reliability analysis perspective. Since
late 1990s, Khan and Abbasi have provided conceptual
frameworks based on sets of models and computer-
automated tools to assess CAFs as domino effect.13–16
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Based on these works, domino effect is lately described
by the physics of cascaded process like escalation prob-
ability or domino effect frequency related to distance,17

threshold values,18 and probit methodology.19 Risk
analysis associated with Markovian model,20–22

Bayesian network (BN),23,24 graph theory,25,26 and
Monte Carlo (MC) simulation,27,28 have been used to
quantify the impacts of CAFs or domino effect.
Topological approaches motivated by the complex net-
work theory have been utilized to analyze the impacts
of CAFs on system connectedness and robustness.29–32

In the context of reliability analysis, numerous algo-
rithms have been proposed for analyzing the effects of
CAFs in redundant systems, for example, parallel sys-
tems and k-out-of-n (koon) systems. For example,
Murthy and Nguyen have studied three types of rele-
vant failures on parallel systems in stochastic models:
induced failure, shock failure, and their combina-
tions.1,33 Redistribution of loads that can result in
CAFs is also discussed in consideration of koon sys-
tems,34,35 where the functioning of k channels in n par-
allel ones can ensure the system functioning. Recently,
some approaches like stochastic filtering and fault tree
analysis have been proposed to address stochastic
dependency issues including degradation dependencies
and structural redundancy.36,37 In addition, CAFs in
multistate or network systems are paid more attention.
Levitin and Xing have analyzed the performance of dis-
crete multistate systems considering the global and
selective effects of CAFs.5,38–41 In Fricks and Trivedi,42

stochastic Petri nets and continuous time Markov
chains are adopted to study the effects of CAFs on
reliability. Tsilipanos has developed a system of sys-
tems framework for analyzing CAFs of telecommuni-
cation networks based on Bayesian network model.43

In a short, the existing literatures on CAFs have
analyzed the sequence-based, network, redundant and
multistate systems. However, in practices, it is very
common that technical systems are designed for func-
tionality. The realization of system function is through
those sub-functions in series–parallel structures, which
can be described as a success-oriented model, namely
reliability block diagram (RBD). The reliability of a
technical system is concerned with the probability that
system functionality can be performed well within a
specified period of time. Therefore, system reliability is
not only determined by the number of survival compo-
nents in the system, but also related to functional struc-
ture of the system.3

It is also noteworthy that, in a series–parallel system,
failures may propagate not only within the same paral-
lel sub-structure but also between different sub-
structures in series. Such a kind of propagation brings
multiple possibilities of cascading failures in series–
parallel systems, and challenges the current analysis
approaches. Therefore, the first objective of this study
is to develop an approach for evaluating the impacts of
CAFs on the reliability of series–parallel systems with
certain functionality.

Moreover, given that CAFs can endanger a system,
it makes senses to explore how to protect the system
and enhance the reliability of series–parallel systems.
Safety barriers are necessary to be installed against
CAFs to avoid accidents.37 In the accidental risk assess-
ment methodology for industries (ARAMIS) project
report, safety barriers have been considered in risk
assessment of domino effect, including identification,
frequency assessment, consequence assessment, and risk
calculation.44,45 Similar efforts have also been devoted
to introduce safety barriers in cascading control and
mitigation in complex networks.46–49 A framework pro-
posed by Reniers and Cozzani21 has been used to allo-
cate protective safety barriers. A decision model has
been proposed to allocate protective safety barriers and
mitigate domino effect in Janssens et al.50 Chen et al.51

also suggested a sequence-based method considering
economic losses, casualties, and pollution to allocate
security measures and safety barriers for reducing the
risk of intentional attacks. Quantitative assessment of
safety barrier performances, such as time to failure and
activation time, has been developed in the prevention of
fire escalation.17

Despite the above researches, few of them has
focused on the effects of barriers against CAFs in the
context of the system reliability analysis. The second
objective of this article is thus to propose reliability-
based approach for investigating the effects of barriers
against CAFs. It is expected that the approaches pre-
sented in this article can support the designers and
operators to determine the effective and reasonable
ways of deploying safety barriers. Especially when the
resources are limited, the mitigation of cascading fail-
ures should be conducted in a cost-effective way.

The rest of the article is organized as follows. Section
‘‘Definitions, assumptions and specifications’’ presents
the definitions and the assumptions in terms of CAFs
and safety barriers. In section ‘‘RBD-based recursive
aggregation approach,’’ we elaborate the reliability
analysis and barrier analysis approaches considering
CAFs in series–parallel systems. Section ‘‘An illustra-
tive example’’ and section ‘‘Case studies for preventing
CAFs in oil and gas production’’ introduce two exam-
ples to illustrate the approaches in analyzing the effects
of CAFs and safety barriers. Conclusions and further
works are discussed in section ‘‘Conclusion and future
works.’’

Definitions, assumptions, and
specifications

Definitions of CAF and safety barrier

It is helpful to clarify the concepts of CAFs and safety
barriers for further quantitative analysis, in consider-
ation of the existence of arguments on these topics.
From the perspective of probability theory, DFs have
been regarded as the failures whose probability cannot
be expressed by the simple unconditional failure
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probabilities of the individual events.52 On the con-
trary, independent failures, or self failures are the fail-
ures with the occurrence probabilities not affected by
other components.11 For example, an age-related fail-
ure occurs on a component itself, irrelevant with
whether other components fail or not. Meanwhile, even
though an independent/self failure of one component is
not a result of other failures, it can influence other
components and act as a starting point of more
failures.

CAFs are referred to as a subcategory of DFs but
are identified in literature by the similar terms with a
different focus, such as induced failures, domino fail-
ures, propagated failures and interaction failures.1,22,53

For example, Murthy and Nguyen1 have called them as
induced failures and emphasized the failure probability
caused by the other components within the systems.
Rausand and Høyland3 have regarded CAFs as multi-
ple failures associated with a chain reaction or domino
effect. CAFs have been called as escalating failures in
the SINTEF report, that is, failure mode of one or more
component initiates failure in other components.54 The
term CAFs (or domino effect) has also been used to
denote a chain of accidents or situations when a fire/
explosion/missile/toxic load generated by an accident in
one unit causes secondary and higher order accidents in
other units.13,14

Despite of the differences existing in defining CAFs,
we keep this article in the commonly accepted area,
where CAFs are regarded as multiple failures that ori-
ginate from independent failures of some components
and then propagate to the other components. In Figure
1(a), dotted curves with arrows are used to denote the
propagation paths of CAFs. For example, the curve
from component 1 to component 3 means the failure of
the former can result in the failure of the latter, or at
least increase its failure probability.

In terms of safety barriers, they are known as coun-
termeasures, defenses, lines of defense, layers of protec-
tion, and safeguards in different regulations, standards,
and literature.6 Safety barriers are defined as the physi-
cal or non-physical means to prevent, control, or miti-
gate undesired events or accidents.55 In this article, we

emphasize those physical means installed to stop or
mitigate the effects of CAFs. Such barriers are a kind
of add-on barriers that refer to the added systems or
components because of their safety considerations.56

They are introduced on the logical or physical paths of
failure propagations to intervene in to the interdepen-
dencies between components, as the crosses are shown
in Figure 1(b).

It is noted that the safety barriers considered here
do not perform the main or essential system functions,
but they carry out protective functions. Take a separa-
tion system of process fluids as an example: firewalls
are added to section the process area in case of a fire,
which can prevent fires from spreading from one part
to another. Shutdown valves can play a similar role,
that is, to prevent the propagation of fire in one area to
the next.

Delimitations and assumptions in the CAF analysis

We will analyze the impacts of CAFs and safety bar-
riers on the reliability of series–parallel systems, based
on the definitions given in the last subsection. It is nec-
essary to mention the delimitation of analysis, and the
assumptions to be noted:

1. For any components in a system, only two states
are taken into account: functioning or completely
failed.

2. Independent/self failures and CAFs are consid-
ered. All components are subject to both types of
failures.

3. Independent/self failure of any component can
trigger one or multiple CAFs, but second-order or
higher order effects of CAFs can be ignored con-
sidering the extremely low occurring likelihood
and small impacts on the system reliability.

4. Time to an independent/self failure on any compo-
nent follows the exponential distribution, with a
probability of FIi(t), and a constant failure rate l.
It should be noted that other distributions like
Weibull distribution, can also be considered.

Figure 1. RBD with CAFs and corresponding barriers of example 1: (a) Dotted curves with arrows rij denote propagation paths of
CAFs and (b) crosses Bij the barriers installed on the path of failure propagation between components i and j.
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5. Failure propagation is possible from one compo-
nent to others under the condition that the system
is still working.

6. Failure propagation time of CAFs from one com-
ponent to the other is very short and negligible.

7. All the barriers are perfectly reliable and indepen-
dent, meaning that they can always intervene in
failure propagations once they are installed.

In addition, it should be noted that repairs and
restorations after any failure is not considered in this
article.

Specifications of CAF modeling

As shown in Figure 1(a) and (b), a RBD can be used to
describe the structure of a system. Such a commonly
used reliability analysis model is extended in this article,
by introducing cascading paths as dotted curves with
arrows. The following specifications are made in terms
of CAFs based on the extended RBD:

1. A measure of cascading probability gij(t) 2 ½0, 1�
(8i, j 2 O, i 6¼ j) is introduced to denote the easiness
of failure propagation. It is defined as the failure
probability of component j in case that component
i has failed

gij tð Þ=
Pr comp:j fails by time t comp:i has failed by time tjð Þ

ð1Þ

2. The cascading probability gij(t) can be estimated
based on test data or historic failure records by
either parametric or nonparametric techniques. For
the sake of simplification, gij(t) is assumed to be a
constant representing cascading probability between
components i and j in this article, denoted as gij.
The cascading probabilities between different com-
ponents are illustrated in a matrix G(gij)

G gij

� �
=

0 � � � g1n

..

. . .
. ..

.

gn1 � � � 0

2
64

3
75 ð2Þ

3. The escaping probabilities that the components can
escape from CAFs (�gij=1� gij) are illustrated in a
matrix �G(�gij).

RBD-based recursive aggregation
approach

In order to evaluate the effects of CAFS, a RBD-based
recursive aggregation approach is proposed in this sec-
tion. Such an approach is developed based on the work
of Liu et al.34 with significant extension, since in that
work only purely parallel systems are studied and their

system performances are measured relying on the num-
ber of survival components. In this article, the pre-
sented approach is able to evaluate the impacts of
CAFs on more general structures, namely series–
parallel ones, as well to assess the effectiveness of bar-
riers. This approach is expected to be applicable for
analyzing the systems with a number of components
considered as cause of CAFs.

Reliability analysis of a system with CAFs

Consider a series–parallel system with n components.
The reliability of such a system can be obtained by an
approach using a RBD associated with minimal path
sets (MPSs). Path sets are defined as a set of function-
ing components to ensure that the system is working.11

As long as there is at least one logical path between
functioning components, the system survives. A path
set is said to be minimal if any component in a path set
cannot be reduced without losing the function of the
system. In this article, totality of MPSs of a system are
denoted as MPS= fMPS1,MPS2, . . . ,MPSpg. It can
be found that MPSs of example 1 include MPS1 =
f1, 3g and MPS2 = f2, 3g, as shown in Figure 1(a).

As mentioned in section ‘‘Delimitations and assump-
tions in the CAF analysis,’’ a series–parallel system is
subjected to independent/self failures and CAFs. Each
independent/self failure may lead to CAFs that propa-
gate between one component and other functioning
components within the system. At the system level, let
FS

c(t) represent the failure probability of system
O(O= ½1, 2, . . . , n�) considering CAFs. According to
the total probability law, the failure probability can be
calculated as

Fc
S(t)=

X
i2O

Fc
S, i(t)=

X
i2O

Pr(system fails FIij ) � Pr(FIi)½ �

ð3Þ

where Fc
S, i(t) is the probability of system failure in case

that the component i has failed at first and component
i 62MPS. Pr(FIi) is the probability of the event that
component i fails due to a independent/self failure. The
independent/self failure on the component i can propa-
gate CAFs. Then, the probability of system failure Fc

S(t)
can be expressed as

Fc
S(t)=

X
i2O

ðt

0

FO�i(ti, t)
Y

j 6¼i, j2O
Rj(t) dFIi(ti) ð4Þ

where ti is the time to a independent/self failure of com-
ponent i. When component i has failed, the system can
be viewed as re-configured by removing the component
i from the old system. In other words, the new system
without component i can be regarded as a subsystem of
the old one. The failure probability of subsystem
fO� figg is denoted by FO�fig(ti, t) in ½ti, t�. The failure
propagation is conditioned that the failures can be pro-
pagated from component i and the system is
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functioning at the time ti. Rj(t) is the reliability of com-
ponent j(8j 2 O� i) at time t.

Let Pr(nc) denote the probability that the system are
subject to nc of CAFs. For example, Pr(nc =0) is the
probability of the event of no cascading failure occur-
ring (Pr(nc =0)=

Q
j1, j2, ..., jnci 6¼ i, j2O �gij1

�gij2 , . . . , �gijnci
),

where nci is the number of CAFs initiated from compo-
nent i. If one failure propagates from component i to
component j1, Pr(nc =1) represents the probability of
the event with only one CAFs. FO�fi, j1g(ti, t) is the fail-

ure probability of the subsystem fO� fi, j1gg. All the
possible combinations of CAFs are considered. FO(ti, t)
can be obtained by

FO(ti, t)= Pr (nc =0)FO� if g(ti, t)

+
X

j12O� if g Pr (nc =1)FO� i, j1f g(ti, t)

+
X

j1, j22O� if g Pr (nc =2)FO� i, j1, j2f g(ti, t)+ � � �

+
X

j1, j2, ..., jnci2O� if g

Pr (nc = nci)FO� i, j1, ..., jncif g(ti, t)

ð5Þ

The subsystem Om =(8fO� fig,O� fi, j1g, . . . ,
O� fi, j1, . . . , jncigg). For example, considering the sec-
ond independent/self failure occurring on the compo-
nent j (8j 2 O� fig) at time tj, FO� if g(tj, t) is the failure
probability of subsystem fO� figg fails during ½tj, t�
with the condition that component j has failed and the
system is working at time tj. Since the occurrence of
next failure is a Markov process, with a no-memory
property, and ti can be regarded as a new starting point
for the new subsystems. The failure probability of the
subsystem FO�fig(ti, t) can therefore be expressed as

FO� if g(ti, t)=
X

j2O�i
ðt

tj

FO� i, jf g(tj, t)
Y

k6¼i, j, k2O Rk(t) dFIj(tj)
ð6Þ

For any subsystem Om, FOm
(tm, t) can be deduced in

a similar way as equations (4) and (5). Such recursive
aggregations will stop:

1. When there is no MPS found in Om. The corre-
sponding failure probability of the subsystem is
equal to 1;

2. When the subsystem Om is one of MPSs, such as
MPS= fMPS1,MPS2, . . . ,MPSpg. The failure
probability can be determined based on MPSs.

To facilitate the integration of the failure probabil-
ities, one can use convolution and Laplace transforms
for equations (3)–(6).3 Laplace transforms for equation
(4) can be expressed as

L FS, i
c(t)½ �=L FO� i(t)½ � li

S+ l1 + � � � + ln
ð7Þ

L FS
c(t)½ �=

X
i2O
L FO� i(t)½ � li

S+ l1 + � � � + ln
ð8Þ

Proof of equations (7) and (8) is given in
Appendix 2. Similarly, Laplace transforms for equation
(5) can be obtained

L FO� i(t)½ �=Pr (nc =0)L FO� if g (t)
� �

+
X

j12O� if g Pr (nc =1)L FO� i, j1f g (t)
� �

+
X

j1, j22O� if g

Pr (nc =2)L FO� i, j1, j2f g (t)
� �

+ � � �
+
X

j1, j2, ..., jnci2O� if g

Pr (nc = nci)L FO� i, j1, ..., jncif g (t)
h i

ð9Þ

By using inverting Laplace transforms, the failure
probability of the system FS

c(t) can be obtained. Then,
the system reliability should be expressed as

RS
c(t)=1� L�1 FS

c(t)½ � ð10Þ

In short, the system reliability can be obtained by
applying the following steps:

Step 1: Define the MPS of series–parallel systems based
on RBD, and evaluate the failure probabilities of MPS
as the first layer by using the Laplace transforms.
Step 2: Incorporate one or more components into the
MPSs as new subsystems in the second layer, and eval-
uate the failure probabilities of the new subsystems.
Step 3: Repeat step 2 to collect the failure probabilities
of all possible subsystem in the upper layers until one
reach to the system level with n components.
Step 4: Obtain the failure probability FS

c(t), by taking
the inverse Laplace transforms. The failure probability
of the system FS

c(t) is an aggregation of all the
possibilities.
Step 5: Obtain the system reliability by time t.

Barrier analysis

The purpose of barrier analysis is to identify suitable
and cost-effective solutions for protecting the system
from CAFs. We consider two decision variables related
with safety barriers: the location of barriers and the
number of barriers within a system. Bij denotes the bar-
riers installed on the path of failure propagation
between components i and j, as shown in Figure 1(b).

Important measures can be used for comparing the
criticalities of barriers in different locations. As stated
in equation (11), one of the measures is improvement
potential in system reliability by using barrier i by time
t denoted by IP(ijt)

IP(ijt)= h(1i,R
c
S(t))� h(0i,R

c
S(t)) ð11Þ

where h(1i,R
c
S(t)) is the conditional probability that the

system is functioning when barrier i is installed, while
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h(0i,R
c
S(t)) is the conditional probability that the sys-

tem is functioning when barrier i is not installed. If the
value IP(ijt) is large, it means that barrier i results in a
comparatively large change in the system reliability at
time t. This measure is applied for identifying the most
important barrier and comparing the effects of barriers.
However, the increase of absolute value is rather small,

thus a modified Birnbaum measure is introduced as the
ratio of the improvement in system reliability by using

the barriers i by time t, denoted by IB(ijt) that is

IB(ijt)=
h(1i,R

c
S(t))� h(0i,R

c
S(t))

h(0i,R
c
S(t))

ð12Þ

Two examples are presented to show the effects of
cascading failures and safety barriers in the following
sections.

An illustrative example

An illustrative example composing only three compo-
nents is employed to elaborate on how system reliabil-
ity is evaluated by the proposed method. RBD of this
example and corresponding CAFs have been presented
in Figure 1(a).

Impact analysis of CAFs

System reliability analysis with CAFs. According to equa-
tion (2), the matrix G with cascading possibilities and
the matrix �G with escaping probabilities are arranged
as

G =
0 g12 g13

g21 0 g23

0 0 0

2
4

3
5 �G =

1 �g12 �g13

�g21 1 �g23

1 1 1

2
4

3
5

Step 1: We can obtain the failure probabilities of
MPSs by using Laplace transforms L½F2, 3(t)� and
L F1, 3(t)½ � as

L F2, 3(t)½ �= 1

s
� 1

s+ l2 + l3

L F1, 3(t)½ �= 1

s
� 1

s+ l1 + l3

Step 2: By using equations (6) and (9),
L½FS�i(t)�(i=1, 2, 3) can be obtained

L FS�1(t)½ �= �g12�g13L F2, 3(t)½ �+ 1

s
g12�g13 + g13�g12 + g12g13ð Þ

� �
l1

s+ l1 + l2 + l3

L FS�2(t)½ �= d12�g23L F1, 2(t)½ �+ 1

s
g21�g23 + g23�g21 + g21g23ð Þ

� �
l2

s+ l1 + l2 + l3

L FS�3(t)½ �= 1

s
� l3

s+ l1 + l2 + l3

Step 3: FS
c(t) is the sum of the failure probability of the

system O (O= ½1, 2, 3�). Laplace transforms of the fail-
ure probability can be obtained by

L FS
c(t)½ �=L FS�1(t)½ �+L FS�2(t)½ �+L FS�3(t)½ �= 1

S� �g12�g13
1

S+l2 +l3

��g21�g23
1

S+l1 +l3
� 1� �g12�g13 � �g21�g23ð Þ l1

S+ l1 + l2 + l3

Step 4: By inverting Laplace transforms, the failure
probability of the system FS

c(t) considering CAFs can
be expressed as

FS
c tð Þ=1� �g12�g13e

�(l2 + l3)t � �g21�g23e
�(l1 +l3)t

� 1� �g12�g13 � �g21�g23ð Þe�(l1 +l2 + l3)t
ð13Þ

Step 5: The system reliability RS
c(t) considering CAFs

can therefore be obtained as

RS
c(t)= �g12�g13e

�(l2 + l3)t + �g21�g23e
�(l1 +l3)t

+(1� �g12�g13 � �g21�g23)e
�(l1 +l2 + l3)t

ð14Þ

Verification of the numerical analysis. MC simulations for
failure propagations are conducted in MATLAB to
check the results of the proposed approach. Figure 2 is
the flowchart of MC simulations. Ti(li) is denoted as
an exponential random variable representing the time
to failure of component i with a constant failure rate
li, h is a random variable generated from a uniform
½0, 1� and is delimited by a cascading probability, gij is
the failure that propagates from component i to j, and
Ts is the simulated time to system failure.

To verify the numerical analysis results, it is assumed
without losing generality that the values of the para-
meters are assigned as shown in Table 1. Here, 106 MC
iterations run over a period of 2190 h (3months). The
results of the system reliability by using the analytical
algorithm and MC simulations are presented in
Figure 3. As seen, reliability calculation using equation
(14) gives the exact same results as the MC simulations.
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It is demonstrated that the proposed approach is suit-
able for evaluating the reliability of series–parallel sys-
tems that subject to CAFs.

Sensitivity analysis. Sensitivity analysis is conducted here
to examine how much does the system reliability
changes when the cascading probabilities change. Here,
all cascading probabilities in Table 1 are reduced by

Figure 2. Flowchart of MC simulations for failure propagation.

Table 1. Inputs parameters for the analysis.

Parameter Values Parameter Values

g12 0.2 l1 1:0 3 10�3 per hour
g13 0.1 l2 5:0310�4 per hour
g21 0.2 l3 2:5310�4 per hour
g23 0.1 – –
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20%, 50% and 100%, respectively. For example, g12 is
0.2 in Table 1, and here it is set as 0.16, 0.1, and 0,
respectively. Figure 4 shows the system reliability at a
certain moment increases with the decreases of the cas-
cading probabilities during 2190 h. The difference in
the values for the system reliability with and without
cascading probabilities can be explained by the effects
of CAFs. For example, by 1000 h, reliability of the sys-
tem without CAFs can be around 0.6, that is 50%
higher than that of the system where CAFs always
occur. Such findings imply that the introduction of any
barriers is helpful to mitigate the effects of CAFs, but it
is not increasing system reliability in a linear way.
Therefore, it is necessary to analyze how many and
where the safety barriers are to be installed in a more
cost-effective manner ensuring system reliability.

Barrier analysis

In this subsection, we will analyze how the different
layouts of safety barriers in such a small system can
mitigate CAFs in different ways. The two scenarios are
considered: only one single barrier is installed in the
system at one time, and multiple barriers are available
at the same time to intervene the failure propagations.

As shown in Figure 1(b), if only one barrier is
employed, four options to install the barriers can be
concerned: on the paths from components 1 to 2, from
2 to 1, from 1 to 3, and 2 to 3. Safety barriers have
been assumed as perfect, meaning that when any of
them is installed on a path, the cascading probability
from the component at the starting side to that at the
end side becomes 0. The system reliability can be calcu-
lated based on equations (4)–(10). Figure 5 presents the
system reliability changing with time when a single bar-
rier is installed at different places. Barrier B12 always
leads to a higher reliability than the others in this case.
With such a rough analysis, system designer can recog-
nize the appropriate location if they only install one
safety barrier in the system.

Considering multiple safety barriers to be installed
in this system, it is necessary to identify which combi-
nation of the barriers is more effective. Similarly, the
effects of different barrier combinations can be
obtained (numbering from 0 to 15, and here we also
consider t=100 h as an example) as presented in
Table 2 and Figure 6. It is noticed that some single bar-
riers even have a greater impact on the system reliabil-
ity than a combination of several ones. For example,
barrier B12 (No. 4) is more effective than the combina-
tions of two barriers B13 and B21, B21 and B23, and B13

Table 2. System reliability with multiple barriers at t = 100 h.

No. Barriers System reliability IB(ijt)(%) Cost No. Barriers System reliability IB(ijt)(%) Cost

0 No 0.93 – – 8 B12, B23 0.95 2.54 2a
1 B23 0.94 0.37 a 9 B12, B21 0.96 2.64 2a
2 B13 0.94 0.76 a 10 B12, B13 0.96 2.04 2a
3 B21 0.94 0.84 a 11 B13, B21, B23 0.95 3.00 3a
4 B12 0.95 1.70 a 12 B12, B21, B23 0.96 3.02 3a
5 B13, B23 0.94 1.12 2a 13 B12, B13, B23 0.96 3.48 3a
6 B21, B23 0.95 1.30 2a 14 B12, B13, B21 0.98 2.54 3a
7 B13, B21 0.95 1.58 2a 15 B12, B13, B21, B23 0.97 3.94 4a

Figure 3. System reliability of example 1 by using MC
simulation and analytical formula.

Figure 4. Sensitivity analysis of example 1 for cascading
probability and failure rates.
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and B23(i.e. No. 7, No. 6, and No. 5). If the required
resources for employing any of those barriers are
assumed to be same, the barrier B12 is more cost-
effective than those combinations.

Since the increase of absolute value of system relia-
bility is rather small in this case, the values of IB(ijt), in
a straightforward way, can better reflect the mitigating
effectiveness of employing a certain combinations of
safety barriers. Once the cost information of safety bar-
riers and system failures are available, IB(ijt) can be
used to determine which barriers should be installed.
For a simple example, if the cost of any safety barrier is
a, and the loss/cost in a system failure is 100a, it can be
roughly summarized, that those barrier combinations
with (IB(ijt)=n). 1 are more reasonable options, where
n is the number of barriers, because the risk reduction
is more significant than the cost increase. In this case,
No. 4 is worth investing if only one barrier can consid-
ered due to limited budget. No. 14 is the best in consid-
eration of barrier combinations.

Case studies for preventing CAFs in oil
and gas production

Consider applying the RBD-based recursive aggrega-
tion approach for a more complex system. A practical
case of an oil and gas production system is taken into
account, consisting of three separators (components 1,
2, and 3), one scrubber (component 4), and three com-
pressors (components 5, 6, and 7). The separators are

designed to separate production fluids into their consti-
tuent components of oil, gas, and water. The scrubber
is used to wash unwanted pollutants from the gas
stream. The essential function of the compressors is to
increase the pressure and temperature of the gas.

In this case, fires caused by independent failures
(e.g. overheating) of components 1, 2, 3, 5, 6, and 7 can
propagate to the other components in the same facility.
Considering the locations of equipment, fires generated
in a place may cause selective effects (i.e. the damage of
parts of systems), as shown in Figure 7. It is assumed
that cascading probabilities between the components
are the same and the escaping probability is g. MPSs
for this system are MPS1 = f1, 2, 4, 5g, MPS2 =
f1, 2, 4, 6g, MPS3 = f1, 2, 4, 7g, MPS4 = f3, 4, 5g,
MPS5 = f3, 4, 6g, and MPS6 = f3, 4, 7g.

Reliability analysis

Reliability of the system considering CAFs in Figure 7
can be obtained based on equation (10)

RS
c(t)= �g7=2+2�g6=3� 5�g5=3� 11�g4=3+11�g3=6+7�g2=3� �g

� �
e�7lt + 3�g7 +5�g6=2

�
+ �g5=2� 15�g4=2� 15�g3=2+5�g2 � 2�g +1

�
e�5lt � 2�g7 +7�g6=6+17�g5=6� 7�g4=6

�
�11�g3=3+5�g2=6� 2�g

�
e�4lt + �g7=2+ �g6=6+7�g5=6+ �g4=2+ �g3=3+ �g2=3

� �
e�3lt

+ �2�g7 � 13�g6=6+17�g5=6+19�g4=2+5�g3=3� 41�g2=6+ �g
� �

e�6lt

ð15Þ

MC simulations are conducted in a similar way as
the one for example 1, using the flowchart in Figure 2.
Figure 8 presents the analytical and simulated results of
system reliability (l=10�3=h,g =0:2). As seen, equa-
tion (15) gives the same results as the MC simulations,
which can strengthen the confidence in the suggested
approach.

Sensitivity analysis is used to understand the influ-
ences from changing design parameters (e.g. cascading
probabilities). Figures 9 and 10 show the system

Figure 5. System reliability of example 1 with single barriers
against CAFs.

Figure 6. System reliability of example 1 with multiple barriers
against CAFs.
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reliability profiles during 2190h (3months) with con-
sideration of different cascading probabilities and fail-
ure rates. In Figure 9, the failure rates of independent
failures on all the components are assigned as a fixed
value of 1:03 10�3 per hour. With different value of
cascading probabilities g, we can observe the impact of
CAFs on the system reliability.g =0.2 means that
components are sensitive to the failure events (i.e. fires)
and one failure can easily result in another failure.
There is no CAFs when g is equal to 0. Figure 10 pre-
sents the impacts of independent failures the system
reliability. The failure rates of independent failures are
assigned as the values varying from 0:53 10�3 to
2:03 10�3 per hour.

The distances between facilities can be far to reduce
the cascading probability, or more suitable materials
can be used to realize lower failure rates, because fail-
ure rates have more impacts than cascading probabil-
ities on system reliability in this case. Thus, the system

Figure 7. RBD of example 2 with CAFs.

Figure 8. System reliability of example 2 by using MC
simulations and analytical formula.

Figure 9. System reliability of example 2 with different
cascading probabilities.

Figure 10. System reliability of example 2 with different failure
rates.
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designer or operators can compare different measures
by using the proposed approach.

Barrier analysis

Firewalls can be introduced as safety barriers to pre-
vent CAFs from the propagations, as illustrated in
Figure 11. Without consideration of barriers, the cas-
cading probabilities between the components are origi-
nally assigned to be 0.2.

Both single barrier and multiple barriers are consid-
ered in this case. By using equations (10) and (11), the
system reliability and barrier importance can be
obtained, as shown in Table 3. Figure 12 presents the
system reliability at t=100h when only a single barrier
is involved. The failure rates of independent failures for
all the components are assumed as 1:03 10�3 per hour.

According to the importance of a single barrier,
B13,B24, andB64 are more effective on preventing
CAFs. Those failure propagations between compo-
nents 1 to 3, components 2 to 4, and components 6 to 4
can lead to the system failure. The most significant
reliability improvement can be achieved by localizing
the barrier B64(IB(ijt)= 1:79% at t=100 h). Subject
to limited budget, such a barrier analysis can help
designers and operators to find out the most critical
barrier that lead to the greatest increase on system
reliability.

In this case, three options (i.e. options 1, 2, and 3)
with respect to different facilities are considered, as
shown in Figure 11. Equations (10) and (11) can be

used to measure the importance of multiple barriers.
As seen in Table 4 and Figure 13, one can obtain com-
parable system reliability by using options 2 and 3
(IB(ijt)= 3:38%and3:77%). Option 3 has the lowest
effects against CAFs since the barrier importance is
only 0.67%. The reason is that option 3 of the barrier
is designed to prevent failure propagations in the 1oo3
subsystem. This subsystem is more invulnerable than
the other two subsystems.

By comparing the system reliabilities in Tables 3 and
4, the effects of the barrier B64 is found approximately

Figure 11. Series–parallel system of example 2 with barrier options against CAFs.

Table 3. System reliabilities of example 2 with single barrier against CAFs at t = 100 h.

Bij B13 B32 B24 B25 B56 B65 B64 B67 B73

RS
C(t) 0.83 0.83 0.84 0.83 0.82 0.82 0.84 0.82 0.82

IB(ijt) (%) 1.73 1.66 1.78 1.68 0.13 0.38 1.79 0.39 0.25

Figure 12. System reliability of example 2 with single barrier
against CAFs.
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the same as the combined effects of barriers B23 and
B32. It is even higher than the effects of multiple barriers
B56, B65, andB67. This analysis can help the designers
to compare the effectiveness of a single barrier and mul-
tiple barriers against CAFs in the system in case of lim-
ited budget.

Conclusion and future works

This article suggests the RBD-based recursive aggrega-
tion approach for assessing reliability of series–parallel
systems that are subject to CAFs. Barrier analysis is
then employed to mitigate CAFs more effectively. It is
investigated in the examples to illustrate how the loca-
tions and the number of barriers should be considered
in system reliability assurance. The approaches can help
one to decide about allocation of the safety barriers to
reduce and mitigate the consequence of CAFs in series–
parallel technical systems.

The results of case studies in this article are encoura-
ging both in term of qualitative and quantitative analy-
sis. Indeed, the effectiveness of barriers is affected by
many factors, including:

1. Cascading failure probabilities.
2. The available budget.
3. Difficulties and features of installations.
4. Frequencies of accidents generating CAFs.
5. Available number of protective barriers.

It is necessary to utilize the proposed barrier assess-
ment in this article combining with other qualitative
methods to support decisions in design and mainte-
nance of safety barriers.

Independent/self failures are assumed to be distribu-
ted exponentially in this article, but many other distri-
butions can be considered by using the convolutions in
the approach. Although the consistency and the validity
are shown on simple applications, the present approach
may be ineffective to deal with the complexity of very
large systems. For the common series–parallel systems
with a moderate number of components incorporating
CAFs, the approach is applicable to obtain the system
reliability. However, the methodology still needs future
developments to improve its numerical efficiency.

Future works can be expected from several perspec-
tives. For example, approximation methods can be
included to reduce the computational burden. Efforts
can also be made to find more numerically performing
solutions for more complex systems, for example, net-
work systems, hierarchical systems, and dynamic sys-
tems. In addition, the assumption of constant cascading
probability is rather restrictive. The statistical depen-
dency between CAFs, for example, time-dependent or
jointing cascading probability, can be considered in the
analysis. It is also of interest to perform further barrier
analysis, for example, multilevel barriers or imperfect
barriers against CAFs.
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Appendix 1

Notation

FIi(t) probability that component i fails due to
an independent failure by time t

FS
c(t) system unreliability by time t considering

cascading failures
FS, i

c(t) system unreliability by time t considering
cascading failures given that component i
has failed at first

FOm
(tm, t) failure probability of any subsystem Om

IP(ijt) improvement potential in system
reliability by using barrier i by time t.

IB(ijt) modified Birnbaum measure of barrier i
by time t

nc number of cascading failures
nci number of cascading failures that

originate from component i
Ti(li) random exponential variable representing

the time to failure of component i with a
failure rate li

RS
c(t) system reliability by time t considering

cascading failures

gij cascading probability corresponding to
the failure probability of component j that
is conditioned on the failure of component
i

�gij escaping probability corresponding to the
survival probability of component j that is
conditioned on the failure of component i

h random variable generated from a
uniform ½0, 1� in simulations

li independent failure rate of component i
G matrix of failure propagation probabilities

between components
�G matrix of the escaping probabilities

between components
O system consisting of n components
Om subsystem consisting of m(m\ n)

components

Appendix 2

Proof of equations (7) and (8)

Let us define Laplace transform f�(s) of the function
f(t) as

f�(s)=L f(t)½ �=
ð‘

0

e�stf(t)dt ð16Þ

Unreliability of the system US, i
c(t) conditioned that

component i has failed at first can be expressed as

US, i
c(t)=

ðt

0

FO�i(ti, t)
Y

j6¼i, j2O
Rj(t) dFIi(ti)

=

ðt

0

FO�i(ti, t) lie
�
P

O
ljti d(ti)

ð17Þ

Due to the memoryless property of exponential dis-
tribution, equation (17) can be modified as

US, i
c(t)=

ðt

0

FO�i(t� ti) lie
�
P
O

ljti

d(ti) ð18Þ
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Let L½f1(t)� and L½f2(t)� denote Laplace transforms of
two functions f1(t) and f2(t), and satisfy the property of
convolution

f1(t)
�f2(t)=

ðt

0

f1(x)f2(t� x)dx ð19Þ

L f1(t)
�f2(t)½ �=L f1(t)½ �L f2(t)½ � ð20Þ

Therefore, Laplace transform of equation (18) can
be expressed as

L US, i
c(t)½ �=L FO�i(t)½ � li

S+ l1 + � � � + ln
ð21Þ

L US
c(t)½ �=

X
i2O
L FO�i(t)½ � li

S+ l1 + � � � + ln
ð22Þ
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a b s t r a c t

Safety instrumented systems often employ redundancy to enhance the ability to detect and respond
to hazardous events. The use of redundancy increases the fault tolerance to single failure but remains
vulnerable in case of dependent failures, including common cause failures and cascading failures.
Reliability analysis of safety instrumented systems therefore involves the impact of dependent failures.
The used approaches have primarily focused on common cause failures. In this paper, it is argued the
need to consider the efforts of cascading failures that are caused by functional dependencies, hazardous
events, and shared resources. A recursive aggregation-based approach is proposed for performance
analyzing of K -out-of-N safety instrumented systems with consideration of cascading failures. General
approximation formulas are developed for estimating the average probability of failures on demand of
different configurations of safety instrumented systems. These formulas are compared with those for
common cause failures. Then a case of fire water pump is studied to illustrate the effects of cascading
failures on safety instrumented systems.
© 2021 The Authors. Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction SILs are defined in accordance with the average probability of
failure on demands (PFDavg), ranging the safety integrity from
Safety instrumented systems (SISs) are employed to prevent SIL 1 (the lowest level) to SIL4 (the highest level). PFDavg is
t
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This is
hazardous events and mitigate damages in diverse industries,
including but not limited to process and nuclear power plants,
and oil and gas facilities. A SIS is characterized as a system that
relies on electrical/electronic/programmable electronic (E/E/PE)
technologies to detect abnormal situations [1]. A SIS performs
one or more safety instrumented functions (SIFs) to protect the
equipment under control (EUC) [2]. It often consists of one or
more components (such as sensors, gas detectors), logic solvers
(such as programmable logic controller) and final elements (such
as circuit breakers). Considering a process shutdown system as
an example of SISs, it performs its safety function as following:
In case of process upsets, the sensors of the SIS s detect possible
abnormal situations. The sensors will send the alarm information
to the logic solver(s), which can activate the final elements,
shutdown valves, to stop production [3].

According to the standards IEC 61508 [1] and IEC 61511 [2],
performance requirement on a SIS is often assigned to each SIF
and reliability assessment is carried out to prove compliance to
the requirement [1,2]. It is stated that the SIFs performed by a SIS
must fulfill specified safety integrity levels (SILs). Four different

∗ Corresponding author.
E-mail address: yiliu.liu@ntnu.no (Y. Liu).
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licenses/by/4.0/).
he performance measure for SISs operating in the low-demand
ode [1]. It can also be interpreted as a mean proportion of time

hat the item is not able to perform its specified SIF in a certain
eriod or a long term [4]. PFDavg may be calculated on the basis of
everal methods: simplified formulas based on fault tree analysis
FTA) [4], IEC 61508 formulas [1], PDS method [5], and Markov
ethods [6].
To reduce PFDavg, it is often effective to introduce redundancy,

uch as K-out-of-N (KooN) configurations, into a SIS subsystem.
ooN means that the subsystem with N parallel components is
vailable when at least K components are functioning. A typical
IS in the oil & gas industry, high-integrity pressure protection
ystem (HIPPS), can comprise a 2oo3 configuration of pressure
ransmitters, a 1oo1 configuration of logic solver, and a 1oo2
onfiguration of shutdown valves. The HIPPS does not terminate
ts SIF until there are two or more failures on transmitters, one
ailure on the logic solver, or two failures on the valves. Such
ind of configurations normally can increase the reliability and
vailability of systems. This redundancy often brings dependent
ailures, which occur on multiple components with functional
ependencies and shared resources [7]. IEC 61508 [1], ISO/TR
2489 [8] and PDS (‘‘Reliability of SIS’’ in Norwegian) hand-
ook [5] have indicated that the effects of dependent failures on
he performance of SISs should be considered. Biswal et al. have
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proposed approaches based on FTA for redundant structure in
production systems like hydrogen cooling systems [9]. However,
it is difficult to straightforwardly use by such traditional methods
like FTA, IEC 61508 formulas and Markov to deal with dependent
issues with SISs [10–12].

IEC 61508 and relevant literature focus primarily on common
cause failures (CCFs) as dependent failures. CCFs are character-
ized by the failures of two or more components fail due to the
same reasons [1]. They can be modeled by the standard and the
multiple beta-factor model incorporated with FTA, PDS method
and Markov model in PFDavg calculation [5,12]. Cascading fail-
ures (CAFs) are another type of dependent failures, reflecting the
multiple failures that one component’s failure results in chain
reactions [12]. The differences between cascading and CCFs in
interdependences and propagation mechanisms have been dis-
cussed in the previous work [13]. CCFs are the failures that are
first in line and directly linked to the failure causes, while the
propagation of CAFs follows a series of interactions. Therefore,
the models for assessing performance of SISs with CCFs are not
applicable for the SISs with CAFs.

SISs are vulnerable to CAFs that are originated from the re-
liance on shared loads, shared testing and maintenance resources,
hazardous events, and dependent functions [13,14]. For example,
several components are configured in parallel in a flow trans-
mission system sharing maintenance resources. The failure of
one component may occupy the maintenance resource, decrease
the possibilities of maintenances on other components, and then
trigger more failures [14]. Another example is a fire water supply
system where the pumps are operating in a KooN configura-
tion. When one of the pumps fails, the corresponding pipeline is
closed, and other pumps must carry the whole loads. The prob-
abilities of failures-to-start of the other pumps thereby increase.
Many researchers analyze the impacts of CAFs on general systems
based on different theory and models including but not limited
to complex network [15–18], risk analysis [19–22], probabilistic
analysis [23,24] and maintenance optimizations [25,26].

Nevertheless, performance assessment of SISs that are subject
to CAFs is seldom explored. SISs are such a kind of systems
whose SIFs are only be activated upon abnormal situations. Since
SISs are not running all the time in the low demand opera-
tional mode, many failures cannot be detected immediately after
their occurrences. These so-called hidden failures can be both
independent- and dependent-failures. Periodical proof tests, such
as once per year, are conducted in many process plants to reveal
hidden failures of SISs, but with noticeable delays. Performance
assessment of SISs thus needs specific measures, such as PFDavg
for low demand mode of SISs. The value of PFDavg is not only
related with the internal properties of a SIS, but also related with
the frequency and effectiveness of proof tests (see [1,2] and [4]).
These particularities distinguish SISs from production or general
systems and impede the adaption of the existing approaches for
CAF analysis to SISs.

Therefore, the objective of this paper is to introduce the ap-
proaches for incorporating CAFs into performance assessment of
SISs: (1) A generalized approach based on recursive aggregation
for reliability analysis of SISs subsystems voted KooN. (2) Approx-
imation formulas for performance assessment of most common
configuration SISs. The approximation formulas may be consid-
ered for the standards with respect to SISs, such as IEC 61508
and ISO TR 12489, as a complement to the existing formulas for
performance assessment of SISs.

The rest of the paper is organized as follows: Section 2 dis-
cusses the considerations in SIS performance assessment and
the basic analysis approaches for CAFs. Section 3 presents an
approach based on recursive aggregations for reliability analy-
sis of SISs that subject to CAFs, and Monto Carlo Simulation is
ISA Transactions 118 (2021) 35–43

dopted to verify the numerical results. Section 4 introduces ap-
roximation formulas for evaluating the performance of SISs with
eneral configurations, and Section 5 illustrates the approach and
he effects of CAFs with a case study. Finally, a discussion is
resented, and further works are discussed in Section 6.

. Considerations in assessing SISs with CAFs

It is important to clarify the characteristics of CAFs and SISs be-
ore quantitative analysis, in consideration that many arguments
till exist.

.1. Failures and performance measures of SISs

IEC 61508 splits the failures of SISs into two groups [1]:
angerous failures and safe failures. Owing to many automatic
iagnosis functions in SISs, some dangerous failures can be found
mmediately when they occur, as dangerous detected (DD) fail-
res, but some other failures are hidden after occurrence for some
ime, as dangerous undetected (DU) failures. DU failures are more
f interests in many studies including this paper, because DU
ailures are the main contributors to the unavailability of SISs
nd only can be revealed by proof tests or when a demand/shock
ccurs [4]. A proof test is a periodic test performed to detect
U failures in SISs so that, if necessary, a repair can restore the
ystem to an ‘as-good-as-new’ condition or as close as practical
o this condition. In case of DU failures, the SISs cannot activate
hen a demand comes, and a disaster may therefore occur.
Performance of a SIS is often measured by PFDavg if the SIS

s in low demand mode, namely the demand rate is less than
nce per year according to IEC 61508 [2]. PFDavg of subsystems
sensors, logical solvers, and final elements) is dependent on DU
ailure rates of components, system configurations, and frequency
nd effectiveness of tests and maintenances. The overall PFDavg
f a SIS is a sum of the values of PFDavg of its three subsystems.
he rest parts of this paper will be limited to the SIS subsystems
n low-demand modes, concerning DU failures and PFDavg in the
uantification of SILs. For the assessment of SISs in other demand
odes and the applicability of PFDavg, readers can find more

nformation in [6,27].

.2. CAFs analysis

CAFs appear in the current literatures with different names,
ncluding induced failures, domino failures, and propagating fail-
res [19,25,28]. Rausand and Høyland [12] define CAFs as the
ultiple failures that the failure of one component result in a
hain reaction. Murthy and Nguyen regard CAFs as the failures
hat affect the remaining components in a system [25]. Hauge
t al. [9] view CAFs as the escalating failures that one or more
omponents fail caused by failures of other components. Al-
hough there is no standard definition for CAFs, researchers have
ome common agreements that CAFs start from one component
nd spread to more in the system. On the contrary, there are
ome failures whose occurrence probabilities are irrelevant with
ther components [4], like, an age-related failure. In this paper,
uch failures are called as independent failures or self-failures,
nd their occurrences are irrelevant with other components.
For subsystems in a SIS, especially for sensor- and final el-

ment subsystems, it is common that identical components are
nstalled in a voting structure. These components can suffer from
he same hazardous events and are monitored with the same
echanism. Thus, the dependency among these components, as

he root cause of CAFs, is difficult to be avoided.
In this study on the performance assessment of SISs, the

ollowing assumptions are existing:
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(1) All the components in a subsystem of SISs are identical and
unrepairable.

(2) Only two states account for all the components: either
functioning or failed.

(3) An independent/self-failure of a component is character-
ized by a distribution function F (t), and the time to failures
is assumed as an exponential distribution, namely the com-
ponent has a constant failure rate λ. Other distributions,
such as Weibull distribution for many mechanical systems
can also be considered.

Considering the particulars of CAFs, additional assumptions
are needed in analysis:

(1) Any component can lose its SIF due to a self-failure or the
cascading impact of the failures of other components.

(2) Propagation duration of CAFs is rather short and can be
ignored.

We use cascading intensity γij(t) ∈ (0, 1] (i ̸= j) to reflect the
easiness of failure propagation from component i to component
j. In mathematics, the cascading intensity is expressed as the
conditional failure probability of component j when component i
fails by time t:

γij (t) = Pr (comp. j fails by t | comp. i has failed by t) (1)

The value of cascading intensity γij (t) can be estimated by
either parametric or nonparametric techniques based on historic
data. It is not difficult to identify cascading failures that origin
from a failure in another component from review of mainte-
nance notifications in case of adequate and detailed failure causes
descriptions. The probability γij(t) is arranged as a matrix γ
that represents failure propagation between the components. The
probabilities escaping from CAFs are δij(t) = 1 − γij(t). With the
assumption of exponential distributions, γij(t) and δij(t) can be
simplified as two constants γij and δij, or even γ and δ for identical
components in the rest parts of this paper.

3. SIS reliability analysis with CAFs

The performance assessment often starts from reliability anal-
ysis based on probabilistic theory and models [12]. This section
suggests a system reliability analysis approach of KooN configu-
rations subject to CAFs. Then, Monte Carlo simulation is used to
check whether the analytical results are appropriate or not.

3.1. The recursive aggression-based approach

The reliability of the systems in parallel and in series that
are affected by CAFs has been discussed in [26]. For many tra-
ditional reliability methods, such as fault tree, they are not effec-
tive in dealing with failures with dependencies. In this section,
we extend the research to SISs, and to more general configura-
tions, namely KooN voting structures. A recursive aggregation-
based approach proposed can be applicable for analyzing systems
with several components and many CAFs propagation paths. Re-
cursive aggregation means that evaluation is repeated for each
combination of the components in the systems.

Let FΩ (ta, t) express a probability that the system Ω (Ω =

[1, 2 . . . n]) fails by time t , conditioned on that all the component
in the system Ω is functioning by time ta. Let GΩ (ti, t) denote the
probability that the system Ω fails in [ti, t] given that component
i fails at time ti. The failure probability of the system Ω is
obtained:

FΩ (ta, t) =

∑
i∈Ω

∫ t

ta
GΩ (ti, t)

∏
j̸=i,j∈Ω

Rjm (t) /
∏
j∈Ω

Rj (ta) dFi(ti) (2)
ISA Transactions 118 (2021) 35–43

here Rjm (t) denotes the reliability of component jm(∀jm ∈

− i,m ∈ [1, 2, . . . , n − k − 1]) at time t . Fi(ti) denotes the
ailure probability because of independent /self-failures. GΩ (ti, t)
s given by:

Ω (ti, t) = Pr(nc = 0)FΩ−{i} (ti, t)

+

∑
j1∈Ω−{i}

Pr (nc = 1) FΩ−{i,j1} (ti, t)

+

∑
j1,j2∈Ω−{i}

Pr (nc = 2) FΩ−{i,j1,j2} (ti, t) . . .

+

∑
j1,j2...jn−k−1∈Ω−{i}

Pr (nc = n − k − 1)

× FΩ−{i,j1,j2...jn−k−1}
(ti, t) + Pr (nc ≥ n − k) (3)

here nc denotes the number of CAFs. Pr(nc)(m ∈ [0, 1, 2, . . . ,
− k − 1]) denotes the probability that the system is subject to
AFs with number of nc . All the components in the SIS subsystem
re identical and Pr(nc) can be expressed as:

r (nc) =

(
nc

n − 1

)
δn−nc−1γ nc (4)

In consideration of the exponential distribution assumption,
he starting point of the study, ta, can be regarded as zero when
he system like Ω − {i} , Ω − {i, jm} is regarded as a new system
. Fs (t) denotes failure probability of system Ω , and Fs (t) =

Ω (t) = FΩ (0, t).
The failure rates for all the components are λ. Hence, the

ystem failure probability Fs (t) can be obtained by using Eqs. (3)
nd (4) when ta = 0:

s (t) = FΩ (t) = n
[
δn−1FΩ−1 (t) +

(
1

n − 1

)
δn−2γ FΩ−2 (t)

+

(
2

n − 1

)
δn−3γ 2FΩ−2 (t) + · · ·

+

(
n − k − 1
n − 1

)
δkγ n−k−1FΩ−(n−k−1) (t)

+

((
n − k
n − 1

)
δk−1γ n−k

+

(
n − k − 1
n − 1

)
δk−2γ n−k+1 . . .

+

(
n − 1
n − 1

)
γ n−1

)]
(5)

The failure probability FΩm (tm, t) for any subsystem Ωm is ob-
ained in a similar way by using Eqs. (4) and (5). This aggregation
tops when there are more than N-K-1 failures in Ωm. Then, the
ailure probability of this subsystem is FΩ−(n−k−1) (t) = 1− e−kλt .

The convolution and Laplace transformation is used to facili-
ate integration of system failure probabilities in Eq. (2) [12]. We
btained:

[FS (t)] = L [GΩ (t)] λ/(S + nλ) (6)

· · · · ·[
FΩ−(n−k−1) (t)

]
=

1
S

−
1

S + kλ
(7)

Then, the system failure probability Fs(t) and system reliability
(t) can be obtained by inverting Laplace transforms.

.2. Verification with Monte Carlo simulations

To examine whether the analytical algorithms are appropriate,
onte Carlo (MC) simulations are conducted in MATLAB in this
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Table 1
Inputs parameters for the models.
Parameter Values

γ 0.1, 0.2 and 0.5
λ 2.0 × 10−6 per hour
t 2.5 × 104 hours

section. Two typical configurations of SIS subsystems, 2oo3 and
1oo3 voting structures, have been chosen as examples for for-
mula verification. For a 2oo3 configuration, its reliability can be
obtained by Eqs. (3)–(7) as:

R (t) = 3δ2e−2λt
+ (1 − 3δ2)e−3λt (8)

Similarly, the reliability of a 1oo3 configuration can be ob-
tained as:

R (t) = 3δ (1 − δγ ) e−λt
+ 3δ2(2γ − 1)e−2λt

+ (1 − 3δ (1 − δγ ) − 3δ2(2γ − 1))e−3λt (9)

Fig. 1 shows the flowchart of MC simulation for CAFs propa-
gation. Ti(λ) denotes random exponential variables. They are the
time to failure of component i with λ failure rate. Let Pij denote a
random variable that is generated from a uniform distribution in
[0, 1]. It is limited by γij that represents the propagated probabil-
ity from component i to component j. Ts(t) denotes the simulated
time to system failures.

To verify the proposed algorithms, without losing general-
ity, it is assumed that γij has fixed values of 0.1, 0.2 and 0.5
respectively for all cascades between components. The time to
independent/self-failures Fi (t) is exponentially distributed with a
constant failure rate of 2.1× 10−6 per hour. We run Monte Carlo
simulations over a period of 2.5 × 104 hours with 105 iterations.
Inputs of the parameters are summarized in Table 1.

The results of system reliability for 2oo3 and 1oo3 configura-
tions using analytical approach and MC simulation are presented
in Figs. 2 and 3.

As seen, the results using analytical formulas give the almost
same results as the MC simulations of 2oo3 and 1oo3 configu-
rations. That gives the confidence on the proposed approach for
further reliability analysis of KooN SISs subject to CAFs.

4. Analysis for PFDavg and approximation formulas

In this section, the reliability analysis results can be trans-
formed to PFDavg. Moreover, to simplify the calculations and
analyses in practices, approximation formulas for PFDavg of a SIS
subsystem with consideration of CAFs are summarized. Then, we
have compared of these approximation formulas for CAFs with
those for CCFs.

4.1. PFDavg With CAFs

PFDavg is the average probability that the component is not
able to react and perform its safety function in response to the
demand. Such a measure relates to the time dependent unavail-
ability (PFD (t)) in a proof test interval, denoted by τ . PFD (t) can
be expressed as in [4]:

PFD (t) = Pr (a DU failure has occurred at or before time t)

= Pr (T ≤ t) = F (t) (10)

The long-run average PFDavg is equal to the average value of
PFD (t) in the first proof test interval (0, τ ):

PFDavg =
1
τ

∫ τ

0
PFD(t)dt =

1
τ

∫ τ

0
F (t)dt = 1 −

1
τ

∫ τ

0
R(t)dt (11)
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Fig. 1. Flowchart of MC simulation of CAFs propagation.

Fig. 2. Simulated and analytical system reliability for 2oo3 configuration.

here τ denotes the length of proof test interval.
Reconsider the two systems, namely 2oo3 and 1oo3 configu-

ations, with all components having a constant DU failure rate λ

nd cascaded failure probability γ (δ = 1 − γ ) between any two
omponents. Based on system reliability obtained in Section 3,
FDavg of the 2oo3 configuration can be expressed as:

FDavg
(2oo3)

= 1 −
1
τ

∫ τ

0
R (t) dt
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Fig. 3. Simulated and analytical system reliability for 1oo3 configuration.

Table 2
Approximation formulas for PFDavg with CAFs.

K/N N = 1 N = 2 N = 3 N = 4

K = 1 λτ/2 2γ · λτ/2 3γ 2
· λτ/2 4γ 3

· λτ/2
K = 2 – λτ 3γ (2 − γ ) · λτ/2 4γ 2(3 − 2γ ) · λτ/2
K = 3 – – 3λτ/2 4γ (3 − 3γ + γ 2) · λτ/2
K = 4 – – – 2λτ

= 1 −

∫ τ

0
(3δ2e−2λt

+ (1 − 3δ2)e−3λt )dt

= 1 −
3δ2

2λτ

(
1 − e−2λt)

−
(1 − 3δ2)

3λτ

(
1 − e−3λt) (12)

Since SIS components are always highly reliable, λ is a rather
small number. Given that λτ is small (<0.1), we can replace e−2λt

and e−3λt by using Taylor series deployment:

PFDavg
(2oo3)

= 1 − 3δ2
(
1 −

2λτ

2
+

(2λτ)2

3!
. . .

)
−

(
1 − 3δ2

) (
1 −

3λτ

2
+

(3λτ)2

3!
. . .

)
≈ 3

(
1 − δ2

) λτ

2
(13)

While for the 1oo3 configuration, the PFDavg can be obtained
as:

PFDavg
(1oo3)

≈ 3γ 2 λτ

2
(14)

4.2. Generalized formulas for PFDavg with CAFs

With the same approach, PFDavg for other KooN systems can
be obtained. PFDavg of some simple KooN (n ≤ 4) systems are
listed in Table 2.

When cascaded failure probability γ is small (for example
when γ ≤ 0.2), γ 2, γ 3, γ 4 . . . are negligible. Therefore, simplified
formulas for PFDavg is presented in Table 3.

By observing the values in Table 3, a general approximation
formula for PFDavg of any KooN configurations is summarized as:

PFDavg
(KooN)

=

(
N − 1
K − 1

)
Nγ N−K λτ

2
(15)

The general formula is more meaningful for practitioners of
SISs, because it can provide enough information only with some
simple input numbers.
ISA Transactions 118 (2021) 35–43

able 3
pproximation formulas for PFDavg with CAFs after simplification.

K/N N = 1 N = 2 N = 3 N = 4

K = 1 λτ/2 2γ · λτ/2 3γ 2
· λτ/2 4γ 3

· λτ/2
K = 2 – λτ 6γ · λτ/2 12γ 2

· λτ/2
K = 3 – – 3λτ/2 12γ · λτ/2
K = 4 – – – 2λτ

able 4
actors σKooN for different configurations.
K/N N = 2 N = 3 N = 4 N = 5

K = 1 2γ 3γ 2 4γ 3 5γ 4

K = 2 – 6γ 12γ 2 20γ 3

K = 3 – – 12γ 30γ 2

K = 4 – – – 20γ

able 5
koon(γ = 0.05) for CAFs in different configurations.
σkoon N = 2 N = 3 N = 4 N = 5

K = 1 1.0 × 10−1 7.5 × 10−3 5.0 × 10−4 3.1 × 10−5

K = 2 – 3.0 × 10−1 3.0 × 10−2 2.5 × 10−3

K = 3 – – 6.0 × 10−1 7.5 × 10−2

K = 4 – – – 10.0 × 10−1

The validity of such a general formula needs to be examined. A
ore complicate system of 3oo5 configuration is concerned. The
ystem reliability of the 3oo5 configuration subject to CAFs can
e expressed as:

(t) = (10δ3γ + 10δ7)e−3λt
+ (5δ4 − 20δ7)e−4λt

+
[
1 − (10δ3γ + 10δ7) − (5δ4 − 20δ7)

]
e−5λt (16)

PFDavg of 3oo5 configuration is found to be:

FDavg
(3oo5)

= 1 −
1
τ

∫ τ

0
R (t) dt = 5γ 2 (

6 − 8γ + 3γ 2) λτ

2

≈ 30γ 2
∗
λτ

2

=

(
5 − 1
3 − 1

)
5γ 5−3 λτ

2
(17)

The result matches the general formula Eq. (15) that is pro-
osed in this subsection.

.3. Comparisons of formulas for CCFs and CAFs

In the PDS handbook [5], PFDavg of SISs subject to CCFs have
lso been summarized to be approximation formulas relevant
ith configurations. Here we compare the formulas for PFDavg
onsidering CCFs and CAFs. A factor σKooN is introduced to distin-
uish the effects of CAFs on the value of PFDavg among various
onfigurations. Based on Eq. (15), the factors σKooN for CAFs in
ifferent configurations are summarized in Table 4.
PFDavg of the KooN configurations subject to CAFs is therefore

alculated as:

FDavg
KooN
(CAF) = σKooN

λτ

2
(18)

The factor CKooN is used to describe the effects of CCFs [5]. The
eneral formula for PFDavg is expressed as [5]:

FDavg
KooN
(CCF) = CKooNβ

λτ

2
(19)

To compare the effects of two factors, γ and β are assigned
s 0.05 as an example. The factors σKooN and CKooNβ for different
onfigurations are illustrated in Tables 5 and 6.
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Table 6
Ckoonβ(β = 0.05) for CCFs in different configurations.
CMooNβ N = 2 N = 3 N = 4 N = 5

K = 1 5 × 10−2 2.5 × 10−2 1.5 × 10−2 1.0 × 10−2

K = 2 – 1.0 × 10−1 5.5 × 10−2 4.0 × 10−2

K = 3 – – 1.4 × 10−1 8.0 × 10−2

K = 4 – – – 1.8 × 10−1

Fig. 4. Comparison of the factors for CCFs and CAFs.

Apparently, the value of factor σKooN for CAFs is higher than
that of CKooNβ for CCFs, when K is close to N, for example N-K is
equal to 1, as shown in Fig. 4. This deviation can be explained that
the value of CKooNβ for CCFs is constant, whereas σKooN for CAFs
relies on γ N−K . Fig. 4 indicates that the curve of CAFs fluctuates
much more than that of CCFs, in other words the effects of CAFs
towards PFDavg are more likely to rely on configurations. Such a
phenomenon with case studies is explored in the next section.

5. Case studies

The purpose of case studies is to investigate the changing
trend of SIS performance related to CAFs and then to examine
the relevant operational strategies. We consider a fire water
supply system, with the focus on the subsystem of final elements,
namely firewater pumps.

5.1. System description

The fire water supply system consists of three parts: sen-
sors (for example fire and gas (F&G) detectors, signal from ESD
ISA Transactions 118 (2021) 35–43

Fig. 6. PFD(t) without and with CAFs for 2oo3 system.

ystem), logic solver (for example F&G logic solver) and final
lements (for example fire water pumps, deluge valves). Our
tudy here is limited to firewater pumps that are structured in
KooN configuration and are subject to CAFs, as shown in Fig. 5.

n this case study, some situations like the system lose power and
he logic solver fails, are beyond the delimitation.

The fire pump subsystem is a load-sharing system, where the
umps share common loads, such as water pressure. If one pump
ails, the other pumps must carry the whole loads, and thus their
ailure rates can increase. Such failures are referred to as CAFs in
he SIS.

.2. PFD(t) and PFDavg with CAFs

Two configurations of such a SIS subsystem: 2oo3 and 1oo3
re considered in this subsection. The time to self-failures Fi (t)
or all the pumps is assumed to be distributed exponentially
ith constant failure rates of 2.1 × 10−6 per hour. The cascaded

ailure probability γ of each pump is set as a fixed value of 0.05.
he relevant PFD(t) over time within three proof test intervals is
alculated by Eqs. (8) and (9).
Figs. 6 and 7 illustrate PFD(t) with and without CAFs for 2oo3

nd 1oo3 configurations, respectively. It is found that the effects
f CAFs on 2oo3 configuration are more obvious than those on
oo3 configuration. For the 2oo3 configuration, PFDavg increase
ramatically from 3.4 × 10−4 to 2.7 × 10−3, while PFDavg of the
oo3 configuration rises from 1.6 × 10−6 to 6.9 × 10−5. The ab-
olute difference of PFDavg for 2oo3 configuration that are caused
Fig. 5. Research boundary in fire water supply system.
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Fig. 7. PFD (t) without and with CAFs for 1oo3 system.

by CAFs is obviously bigger than that for 1oo3 configuration. It
implies that the 2oo3 configuration is more sensitive to CAFs
compared to the 1oo3 one. That is because only one cascade
result in the failures within 2oo3 configuration. The implication
to the SIS designer is to increase the number of N-K in the voting
structure if the budget is allowed.

5.3. Effects of cascaded failure probability γ

To examine the effect of the cascading failure probability γ ,
the changes of PFDavg and SILs are observed in different con-
figurations when γ varying from 0 to 0.2. PFDavg is calculated
by the proposed formulas Eq. (15) for some selected typical
configurations, such as 1oo2, 1oo3, 1oo4, 2oo3, 3oo4 and 2oo4
configurations. Fig. 8 illustrates how γ affects PFDavg in different
system configurations. It is obvious that the PFDavg increases
along with γ and the values of PFDavg for 3oo4 and 2oo3 config-
urations are more sensitive to CAFs. A conclusion can be reached
that CAFs have more significant influence on the PFDavg when the
value of N-K decrease. Particularly, if N-K is equal to one, the con-
figurations are the most vulnerable to CAFs. On the other hand,
when the configuration is limited as N-K=1, the effectiveness of
reducing γ in controlling PFDavg is higher.

It is essential to ensure that SISs can achieve required SIL re-
quirement in operational phase. Log10(PFDavg) is used to illustrate
corresponding SILs for these configurations in Fig. 9. The variation
of SILs with different γ dependents on configurations, namely
the value of N-K. In this case, PFDavg of the 1oo4 configuration
is always within the range of SIL4. The values of PFDavg for 2oo4
and 1oo3 configurations drop from the range of SIL4 to that of
SIL3. The values of PFDavg for 3oo4, 2oo3 and 1oo2 configurations
change from SIL3 to SIL2.

The findings are helpful in determining SIL of SISs. When
considering CAFs in SISs, their integrities are not only relying
on the reliability of parallel components, but on the identified
dependency of components and the system configurations. It
shows that the impacts of CAFs on PFDavg and SILs are unignorable
regardless SIS configurations, especially when γ is not small. The
results encourage the industry to put more efforts into analyzing
and avoiding CAFs.
ISA Transactions 118 (2021) 35–43

Fig. 8. PFDavg of different configurations subject to CAFs.

Fig. 9. Log10(PFDavg) of different configurations subject to CAFs.

.4. The effects of CCFs and CAFs

To illustrate the need to consider the efforts of CAFs, we
ompare the effects of CCFs and CAFs on PFDavg with different
arameters, beta value β for CCFs and cascading intensity γ for
AFs. The configurations 2oo3 and 1oo3 are reconsidered in this
ubsection. According to Table 4, σKooN for 2oo3 and 1oo3 configu-
ations are 3γ 2 and 6. CKooN for 2oo3 and 1oo3 configurations are
.5 and 2. PFDavg can be calculated by Eqs. (18) and (19), and the
esults are shown in Figs. 10 and 11. It is demonstrated that CAFs
ave comparable effects on PFDavg and SIL as CCFs in this case.
The effects of CCFs and cascading failure on PFDavg become

ore significant when the parameters increase. PFDavg of the
oo3 configuration considering CAFs is always higher than that of
he same configuration considering CCFs. In a 1oo3 configuration,
owever, the effects of CCFs on PFDavg are more significant than
hose from CAFs when the value of parameter is less than 0.17
pproximately. Both two figures show that performance assess-
ent of redundant SISs should be conservative since CAFs have
omparable effects on PFDavg and SIL as CCFs. It is noted that dif-
erent configurations of SISs perform differently in terms of their
ulnerabilities to CAFs and CCFs, even though the parameters of
hese two types of failures are set as equal.



b
p
i
l
K

t
l
o
c
t

i
d
C
m
q
t

r
l
e
S
a

D

c
t

R

[

[

[

[

[

42
L. Xie, M.A. Lundteigen and Y. Liu

Fig. 10. The effects of CCFs and CAFs in 2oo3 systems.

Fig. 11. The effects of CCFs and CAFs in 1oo3 systems.

The results of the case studies may increase the awareness to
how CAFs can impact on the SIS performance and encourage that
contribution of CAFs are considered in analyzes carried out design
and in the operational phase. It is necessary to investigate the root
causes and possible influence factors of CAFs. Possible solutions
to decrease cascading intensities may include reducing functional
dependence or sharing loads, enhancing absorptive ability and
resistant capacity. In the operation phase, when determining
proof test interval of SISs, the potential effects of CAFs should also
be considered to ensure that the SISs can met SIL requirement.

6. Conclusions and future works

In this paper, a recursive aggregation-based approach has been
developed for incorporating CAFs into reliability and availability
analysis of SISs. General approximation formulas for PFDavg of
KooN voted SISs have been proposed considering CAFs. The ef-
fects of cascading failures in the performance of SISs have been
presented in comparison with those by CCFs. Numerical examples
have shown that the contribution of CAFs towards PFDavg relies
on not only the cascaded failure probability, but also the system
configurations. Such analysis can help designers and operators
ISA Transactions 118 (2021) 35–43

etter evaluate effects of dependent failures and estimate system
erformance of SISs. The proposed approach has been illustrated
n the case study of SISs, but it must be highlighted that the ana-
ytical formulas can be more generally applied to other industrial
ooN voted systems.
Independent/self-failures are assumed to be exponential dis-

ribution because the exponential distribution is the most used
ife distribution in applied reliability analysis. However, many
ther distributions, such as Weibull distribution for many me-
hanical systems, can also be considered by using the convolu-
ions in the approach.

In this paper, we assume constant cascading probability, which
s rather restrictive. It is worthy to consider statistical depen-
ency, such as time-dependent cascading probability between
AFs. Further, the future work can involve performance assess-
ent for the SISs in high/continuous mode, where average fre-
uency of failure (PFH) are used as a measure. New approxima-
ion formulas for these SISs are needed.

Another topic to be explored is how to allocate SILs to reduce
equired amount of risk with consideration of dependent failures,
ike CCFs and CAFs. Traditionally, the allocation process often
xcludes dependent failures that may exist within and between
ISs. It is thus of interest to perform further studies on the SIL
llocation considering dependent failures.
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Safety-instrumented systems are designed to act upon hazardous events and reinforce safety. IEC 61508 specifies 

two possible reliability measures of safety-instrumented systems:  the average probability of failure on demand for 

low-demand mode systems, and average frequency of dangerous failures for high/continuous-demand mode systems. 

Redundancy is applied to ensure the reliability of safety-instrumented systems so that they are commonly 

constructed as K-out-of-N systems. The potential effects of dependency must therefore be included in the reliability 

analysis. So far, both standards and literature focus primarily on common cause failures as the source of 

dependencies. With the technology trends (e.g. cyber-physical and programmable electronic technologies), 

cascading failures caused by functional dependencies and shared resources may be issues in the implementation of 

safety-instrumented systems. Few attempts have been made to investigate the effects of cascading failures in the 

reliability of safety-instrumented systems. This paper aims to propose approximation formulas for average 

frequency of dangerous failures for high/continuous-demand mode systems that are subject to cascading failures. 

This research is an extension of previous research where the focus was directed to low-demand mode systems. 
 

Keywords: Safety-instrumented systems, cascading failures, high-demand mode, PFH. 

 
 

 

1. Introduction 

Safety-instrumented systems (SISs) are 
designed to act upon hazardous events and 
reinforce safety in many applications, such as 
process industry, public transportation, and 
critical infrastructure (Rausand 2014). A SIS 
performs one or more safety-instrumented 
functions (SIFs) to protect the equipment under 
control (EUC) against a specific hazardous 
event, namely a demand (IEC61508 2010). A 
SIS generally comprises three main subsystems 
in a series structure: sensor(s) (e.g. level 
transmitters, gas detectors, and obstacle 
detector), logic solver(s) (e.g. programmable 
logic controller, and industrial computer) and 
final element(s) (e.g. shutdown valves, and 
circuit breakers). Sensors identify the possible 
hazardous situations, logic solvers decide what 
to do, and final elements take actions to respond 
to negations. 
According to IEC 61508 (2010), the operational 
modes of SISs include low-demand and 
high/continuous- demand mode. Once per year 
the frequency of demands is suggested to be the 
borderline of two modes (IEC61508 2010). 

Many authors have studied the difference 
between low-demand and high/continuous-
demand systems (Liu 2014, Innal et al. 2010, 
Liu and Rausand 2011). The average 
probability of failure on demand (PFDavg) is 
proposed as the reliability measure for SISs 
operating in the low-demand mode, while the 
average frequency of a dangerous failure per 
hour (PFH) is used when operating in the 
high/continuous-demand mode. The calculated 
PFD or PFH is one out of several inputs that 
decide the safety integrity level (SIL) achieved 
for a safety instrumented function (SIF) carried 
out by a SIS. IEC 61508 defines four different 
SILs, where SIL 1 is the lowest level and SIL 4 
is the highest (IEC61508 2010).  
PFDavg and PFH may be calculated on the 
basis of several methods: simplified formulas 
(Rausand 2014), IEC 61508 formulas 
(IEC61508 2010), PDS method (Hauge et al. 
2013), fault tree analysis (Jin et al. 2013), 
Markov methods (Liu and Rausand 2011) and 
petri nets (Rausand 2014). Among those 
methods, simplified formulas are the most 
widely accepted to assess the performance of 
SISs due to their simplicity.   
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It is often necessary to introduce redundancy to 
achieve the required value of PFD or PFH for 
the SIF. Redundancy may be introduced to one 
or more subsystems, i.e. to the sensor system, 
logic solver system, or actuated devices system. 
The use of redundancy implies that it is 
necessary to incorporate the effects of 
dependent as well as independent failures 
(Torres-Echeverria et al. 2009). So far, IEC 
61508, its related standards, and literature in 
general focus primarily on common cause 
failures (CCF) as dependent failures. CCFs are 
characterized by the failures of two or more 
components due to a shared cause. CCFs are 
often modeled by the standard beta-factor 
model and the multiple beta-factor model 
(Rausand and Høyland 2004, Hauge et al. 2013).  
With the development of technology (e.g. 
cyber-physical and programmable electronic 
technologies), cascading failures may be 
another type of failures resulting from 
dependency in technical systems. Cascading 
failures are the multiple failures in a chain 
reaction that are initiated by the failure of one 
component in the system (Rausand and 
Høyland 2004). Such kind of failures can 
propagate from one component to others owing 
to functional dependencies, shared loads and 
resources, and hazardous events. The 
differences between cascading and CCFs have 
been discussed in the previous work (Xie et al. 
2018). 
Cascading failures occur frequently within the 
SISs in the high/continuous-demand mode. For 
example, one channel’s failure in a flow 
transmission system may result in an increase 
of loads on others, which trigger cascading 
failures on the others (Levitin 2004). Cascading 
failures influence significantly system 
performance of critical infrastructure systems, 
such as signal systems and transport network in 
railway industry (Zimmerman and Restrepo 
2009, Wang et al. 2018). The effects of 
cascading failures have been studied 
intensively in literature (Xing et al. 2014, Xing 
et al. 2018, Liu et al. 2015, Liu et al. 2016, 
Levitin 2004). Topological approaches are also 
motivated by the complex network theory to 
analyze and mitigate the cascading impacts on 
system connectedness and robustness (Motter 
and Lai 2002, Albert and Barabási 2002, Zio 
and Sansavini 2011, Crucitti et al. 2004, 
Golnari and Zhang 2015). 
A careful literature study has revealed that there 
have been few attempts to model the effects of 
cascading failures on the SIS reliability. The 
objective of this paper is therefore to propose 
an approach for incorporating the effects of 
cascading failures in analytical formulas for 
PFH. The focus of this paper is given to 

high/continuous demand mode system because 
this research is an extension of previous 
research where the focus was directed to low-
demand mode systems. The new formulas are 
applied as a case study in a railway signaling 
system. 
The remaining parts of the paper is structured 
as follows: section 2 explains definitions of 
PFH and cascading failures. Sections 3 presents 
approximation formulas for PFH with 
consideration of cascading failures. In section 4, 
case studies in railway industry are employed to 
illustrate the effects of cascading failures. 
Section 5 contains conclusions and discussions. 

2. Definitions and Assumptions

This section presents several basic concepts and 
assumptions in relation to PFH and cascading 
failures.   

2.1.  PFH 

PFH is a reliability measure that incorporates 
the effects of dangerous failures. A dangerous 
failure is a failure that brings the components 
into a state where it is not able to perform its 
safety functions (IEC61508 2010). Some 
dangerous failures may be detected by online 
diagnostics, and are then referred to as 
dangerous detected (DD) failures. Dangerous 
failures that may only be revealed by regular 
tests or during the execution of the SIF. These 
failures are therefore referred to as dangerous 
undetected (DU) failures. We assume that the 
EUC is brought to a safe state upon a DD failure, 
or corrected in due time before the next demand. 
DD failures are therefore disregarded in the 
calculation of PFH.  
The PFH may be regarded as an average failure 
rate, calculated in a period of length 𝜏. During 
this period, it is assumed that the components’ 
failure rates are constant. This means that 
necessary maintenance and inspections are 
carried out as needed. At the end of the period𝜏, 
a more thorough test and renewal may be 
carried out, but not always. In the high-demand 
mode, most failures are revealed upon demands, 
and they are therefore corrected immediately. 
The PFH for a single component for given time 
period of length 𝜏  can be define as (Rausand 
2014): 

PFH =
𝑀ean No.of DU failures in (0,𝜏 )

𝜏
=

𝐹(𝜏)

𝜏
 (1)  

It is assumed that measures such as regular 
inspections and maintenance are taken to 
ensure that the components’ failure rate remain 
constant during the period.  
For a subsystem voted k-out-of-n (koon system), 
we may introduce the term dangerous failures 
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(DGF). In the presence of a DGF, the subsystem 
loses its ability to perform the safety function. 
The PFH for a DGF in a period (0, 𝜏): 

𝑃𝐹𝐻𝐺
(𝑘𝑜𝑜𝑛)

=
𝑀𝑒𝑎𝑛 𝑁𝑜. 𝑜𝑓 𝐷𝐺𝐹𝑠 𝑖𝑛 (0, 𝜏 )

𝜏
 

                    =  
𝑃 𝑟(𝑁(𝜏)≥𝑛−𝑘+1)

𝜏
                          (2)         

Here, 𝑁(𝜏)  denotes the number of dangerous 
failures of koon system, and a DGF occurs 
when the number of dangerous failures is more 
than 𝑛 − 𝑘 + 1. 

2.2.  Cascading Failures 

Cascading failures are multiple failures that are 
initiated by other components’ failures 
(Rausand and Høyland 2004). In the literature, 
we have identified alternative terms with 
similar meaning, such as induced failures, 
domino failures, propagating errors and 
interaction failures in literatures (Abdelmoez et 
al. 2004, Cozzani et al. 2005, Murthy and 
Nguyen 1985).  
For the development of formulas for PFH with 
the effects of cascading failures included, we 
have made the following assumptions:  

• All components in a subsystem of SISs are 

identical and are organized as koon 

configurations. 

• Only two states are taken into account for 

all the components: either functioning, or 

completely failed; 

• All components may suffer from 

independent failures (i.e. DU failures) and 

cascading failures; 

• Independent failures are characterized by 

distribution function  𝐹(𝑡) , and are 

assumed as an exponential distribution 

with a constant failure rate 𝜆𝐷𝑈.  This 

constant failure rates is assumed to be 

1.5 × 10−6 per hour in this paper; 

• Delays in the propagations of cascading 

failures are rather short and can be ignored; 

• A cascading probability, namely  𝛾𝑖𝑗(𝑡) ∈

(0,1] (𝑖 ≠ 𝑗), is introduced to reflect the 

easiness of failure propagation from 

component  𝑖  to component 𝑗  in case that 

the former one has failed. The cascading 

probability is expressed as: 

       𝛾𝑖𝑗(𝑡) = Pr (
comp.𝑗 fails by 𝑡

comp.𝑖 has failed
)                   (3) 

• This cascading probability  𝛾𝑖𝑗(𝑡) can be 

estimated based on test data or historic 

failure data by either parametric or 

nonparametric techniques. To simplify the 

analysis,  𝛾𝑖𝑗(𝑡) is assigned as a constant 𝛾 

for all the components in this paper. 

• For a system with 𝑛  components, 

cascading probabilities can be arranged as 

a matrix 𝜸  that represents failure 

propagation between the components. 

 

 
3. Approximation Formulas of PFH 

Consider a 𝑘𝑜𝑜𝑛  system that are subject to 
cascading failures. The system fails as soon as 
at least 𝑛 − 𝑘 + 1 components fail. The failure 
of a component can be an independent failure 
occurring on itself and a dependent failure 
cascaded from the others. According to Eq. (2), 
the average PFH for koon system can be defined 
as: 

PFH𝐺
(𝑘𝑜𝑜𝑛)

=  
Pr(𝑁𝐼(𝜏)+𝑁𝐶(𝜏)≥𝑛−𝑘+1)

τ
               (4)              

𝑁𝐼(𝜏)  denotes the number of independent 
failures and 𝑁𝐶(𝜏)  denotes the number of 
cascading failures. 
Take a 1oo2 system that is subject to 
independent failures and cascading failures as 
an example. The 1oo2 system fails with two 
independent failures or one independent failure 
as well as one cascading failure. The PFH for 
this system can be calculated by: 

𝑃𝐹𝐻𝐺
(1𝑜𝑜2)

= 
Pr(𝑁𝐼(𝜏)=2)+Pr (𝑁𝐼(𝜏)=1 & 𝑁𝐶(𝜏)=1)

τ
 

             =
(1−𝑒−𝜆𝐷𝑈𝜏)

2
+(

2
1

)(1−𝑒−𝜆𝐷𝑈𝜏)𝑒−𝜆𝐷𝑈𝜏𝛾

τ
 (5) 

Where (
𝑛
𝑘

) =
𝑛!

𝑘!(𝑛−𝑘)!
.  

By using the approximation 1 − 𝑒−𝜆𝐷𝑈𝜏 ≈
𝜆𝐷𝑈𝜏  and  𝑒−𝜆𝐷𝑈𝜏 ≈ 1 , Eq. (6) can be 
approximated by: 

PFH𝐺
(1𝑜𝑜2)

 ≈ 𝜆𝐷𝑈
2τ + 2 𝜆𝐷𝑈 𝛾                        (6)               

Note that only one DGF is concerned in period 
of interest, since SISs are highly reliable. 
Similarly, for a 2oo3 system, the PFH can be 
expressed as: 

PFH𝐺
(2𝑜𝑜3)

= 
Pr(𝑁𝐼(𝜏)=2)+Pr (𝑁𝐼(𝜏)=1 & 𝑁𝐶(𝜏)=1)

τ
 

     =
(

3
2

) (1−𝑒−𝜆𝐷𝑈𝜏)
2

+(
3
1

)(
2
1

)(1−𝑒−𝜆𝐷𝑈𝜏)(𝑒−𝜆𝐷𝑈𝜏)
2

𝛾

τ
      

     ≈ 3𝜆𝐷𝑈
2τ + 6 𝜆𝐷𝑈 𝛾                                    (7) 

With consideration of independent failures and 
cascading failure, Table 1 presents 
approximation formulas for the different 
structures of SISs.  
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Table 1. PFH of various structures with 

independent failures and cascading failures 

System PFH 

1oo2 𝜆𝐷𝑈
2τ + 2 𝜆𝐷𝑈 𝛾 

1oo3 𝜆𝐷𝑈
3τ2 + 6 𝜆𝐷𝑈

2τ 𝛾 + 3 𝜆𝐷𝑈𝛾2 

2oo3 3𝜆𝐷𝑈
2τ + 6 𝜆𝐷𝑈 𝛾 

1oo4 𝜆𝐷𝑈
4τ3 + 12 𝜆𝐷𝑈

3τ2 𝛾 + 12 𝜆𝐷𝑈
3τ2 𝛾2 + 4 𝜆𝐷𝑈𝛾3 

2oo4 4 𝜆𝐷𝑈
3τ2 + 24𝜆𝐷𝑈

2
τ𝛾 + 12 𝜆𝐷𝑈 𝛾2 

3oo4 6𝜆𝐷𝑈
2τ + 12 𝜆𝐷𝑈 𝛾 

 
The approximation formulas of PFH for koon 
systems can be generalized as: 

𝑃𝐹𝐻𝐺
(𝑘𝑜𝑜𝑛)

= (
𝑛

𝑛 − 𝑘 + 1
) 𝜆𝐷𝑈

𝑛−𝑘+1τ𝑛−𝑘

+ (
𝑛

𝑛 − 𝑘
) (

𝑛 − 𝑘
1

) (
𝑘
1

) 𝜆𝐷𝑈
𝑛−𝑘τ𝑛−𝑘−1𝛾

+ (
𝑛

𝑛 − 𝑘 − 1
) (

𝑛 − 𝑘 − 1
1

) (
𝑘 + 1

2
) 𝜆𝐷𝑈

𝑛−𝑘−1
 

τ𝑛−𝑘−2𝛾2 + ⋯ + (
𝑛
1

) (
𝑛 − 1
𝑛 − 𝑘

) 𝜆𝐷𝑈𝛾𝑛−𝑘        (8) 

We assume that 𝜆𝐷𝑈τ  and 𝛾 are significantly 
small (e.g. 𝜆𝐷𝑈τ ≤0.1) to obtain adequacy of 
the formula (Rausand 2014). It is therefore not 
valid for very long period 𝜏. 

4. Case Study 

To illustrate the effects of cascading failures, a 
case study is used in this section.  
Consider a European vital computer (EVC) 
system in European Train Control System 
(ETCS). EVC, as the core part of ETCS 
onboard sub-system, is a computer-based 
system that supervises the movement of the 
train and can apply the emergency brake if 
necessary. It can be regarded as an embedded 
real-time SIS that handles telegrams from 
balises and measures the train speed and 
position. Such a SIS is widely employed in 
high-speed railways in Europe.  
 

The dual-duplex system and triple modular 
redundancy system are two typical redundancy 
strategies for EVC. The reliability block 
diagrams (RBDs) show the logical functions of 
EVCs, as illustrated in Fig.1 (a) and Fig.1 (b). 
We use 1oo2 (Fig.1 (a)) to simplify the dual-
duplex system and 2oo3 (Fig.1 (b)) for the triple 
modular redundancy system. To ensure that the 
same outputs (i.e. calculations) are performed 
in parallel by two or three components, a 
macro-synchronization procedure is performed 
beforehand. This is achieved through specific 
point-to-point serial links between the 
components. In those cases, all components 
share the same power/bus system and working 

environment, which may cause the cascading 
failures. In case that one component of EVC 
fails, the failure probability of other single 
component will rise. That can be reflected by 
cascading probability 𝛾.  

1

2

3

1

2

(a) (b)  
Fig. 1 RBD of EVCs 

 

To simplify the analysis, 𝛾 is assumed to be a 
fixed value for all cascades between 
components, varying from 0 to 1. The 
independent DU failures are distributed 
exponentially with constant failure rates 𝜆𝐷𝑈 of 
1.5 × 10−6  per hour. In this case study, it is 
assumed that the period 𝜏 is corresponding to a 
periodic test interval, to ensure that any DU 
failure in redundant channels are identified. The 
regular test interval 𝜏  is assigned to be one 
month. The values of failure rates and test 
interval are taken from typical datasheets 
(Flammini et al. 2006).  
By using Eq. (8) proposed in section 3, the PFH 
for 1oo2 and 2oo3 of EVC with different 
cascading probability 𝛾 (0 ≤ 𝛾 ≤ 1)are shown 
in Fig. 2. It is obvious that the PFH increases 
along with the increase of 𝛾. The values of PFH 
of 2oo3 system is more sensitive to cascading 
failures. 

 
Fig. 2 PFH of 1oo2 and 2oo3 EVCs with DU failures and 
cascading failures 

 

Log10(PFH) is used to illustrate the effects of 
cascading failures on the two structures, as 
shown in Fig. 3. The variation of SILs with 
different 𝛾  corresponds to the structures of 



Performance Assessment of SIS Subject to Cascading Failure 5 

 

EVC. In this case, for both 1oo2 and 2oo3 EVC, 
the values of PFH drop from SIL4 to SIL2. 
Even though the value of cascaded failure 
probability 𝛾  is small (e.g. 𝛾  <0.05) when we 
maintain other parameters, the systems cannot 
fulfil the requirement of SIL4. Such findings 
emphasize the importance of the contribution 
from the cascading failures on SISs. It also 
implies that the capacity of SISs to prevent 
cascading failures escalating into system 
failures, can be achieved by reducing the value 
of cascading failure probabilities 𝛾. 

 
Fig. 3 SILs of 1oo2 and 2oo3 EVCs with DU failures and 

cascading failures  

 
5. Conclusions And Further Work 

In this paper, approximation formulas have 
been derived for PFH of SISs in high/continues 
mode that are subject to cascading failures. The 
proposed formulas can be applied to other 
industrial systems that are susceptible to 
cascading failures.  
Numerical examples illustrating the effects of 
cascading failures are presented. The paper 
demonstrates that the contribution of cascading 
failures towards PFH relies on the cascading 
failure probability. The cascading failure 
possibly could lead to unacceptable SIL for the 
SISs even though the value of cascading 
probability is rather small. In cases where the 
effects of cascading failures is substantial, it 
dominates reliability measures. This analysis 
helps decision making process for maintenance 
and inspection strategies.  
The future work will involve further barrier 
analysis in SISs with consideration of 
cascading failures. The effects of different 
barriers in terms of cascading failure 
probabilities will be assessed. 
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A B S T R A C T   

Cascading failures may occur in many technical systems where the failure of one component triggers successive 
events. Safety barriers like safety instrumented systems are installed in many industries to prevent failures and 
failure propagations. However, little attention has been paid to the impacts of safety instrumented systems 
employed to prevent cascading failures in the literature. This paper proposes a novel method for analyzing how 
the performance of safety instrumented systems influences the protection against and mitigation of cascading 
failures. It considers SIS reliability and SIS durability in the mitigation of cascading failures. The method uses 
recursive aggregations based on the reliability block diagram and is verified with Monte Carlo simulations. The 
application is illustrated with a practical case study, where the proposed method is found beneficial to identify 
the criticality of safety instrumented systems in consideration of their locations and performance.   

1. Introduction 

Cascading failures (CAFs) are multiple failures in which the failure of 
one component leads to high stress and a consequently high failure 
probability in other components [1]. CAFs are a concern for many 
technical systems, such as railway signaling systems, power distribution 
networks, process systems, industrial communication networks, and 
internet systems [2,3]. Functional dependencies and interactions exist 
commonly among components, and thus a single failure can negatively 
influence other parts in the same system. As a result, CAFs may cause 
catastrophes in technical systems without proper preventions and mit-
igations [4,5]. 

The awareness of CAFs is not new. In the past decade, much research 
has aimed at developing models to evaluate the effects of CAFs and 
associated preventive measures. These models can be categorized as 
topological, probabilistic, state-transition, and simulations. In the 
context of topological models, some efforts have been devoted to 
assessing mitigation measures of CAFs based on complex network theory 
[6–9] and graph theory [10–12]. Probabilistic models have been applied 
to quantify the ability of preventions against CAFs in risk propagations 
[13–16]. State-transition models, such as Markov processes, Petri nets, 
and Bayesian networks, have effectively analyzed CAFs [17–21]. Be-
sides, simulations like the Monto Carlo simulation (MCS) have been used 

in analyzing the systems associated with CAFs in many application 
areas, including power and gas networks, traffic-power, and infra-
structure systems [22–24]. 

To prevent CAFs, Safety instrumented systems (SISs) can install as a 
type of safety barrier. SISs are widely employed to reduce accidents in 
the process industries and other sectors [25]. An SIS applies elec-
trical/electronic/programmable electronic (E/E/PE) technologies to 
detect and act upon hazardous situations arising in the assets [26]. The 
assets can be humans, equipment, or process sections. They are called 
equipment under control (EUC) in the generic standard IEC 61508 [26]. 
An SIS generally consists of three main subsystems: sensors (e.g., level 
transmitters, gas detectors, and push buttons), logic solvers (e.g., pro-
grammable logic controllers and industrial computers), and final ele-
ments (e.g., shutdown valves and circuit breakers). As illustrated in 
Fig. 1, the sensors detect possible abnormal situations (e.g., CAFs), and 
the logic solvers activate, then the final elements act according to the 
sensor inputs. The event upon which an SIS is activated is considered a 
demand [1]. A typical example of SISs to prevent CAFs is an automatic 
fire extinguishing system (AFES)1. An AFES activates when a fire or gas 
leakage at a tank is detected. If the SIS fails to extinguish or control the 
fire at a specific time, the fire can propagate and affect several facilities 
[27]. 

SIS performance is of great significance to ensure the safety of EUC 
systems [28]. Several indicators can reflect SIS performance, such as 

* Corresponding author.  
1 There has been debate over the categorization of fire extinguishing systems as SISs, but they are included in SISs in this paper since Petroleum Safety Authority 

(PSA) in Norway and Guideline 070 consider such systems as SISs. 
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specificity, functionality, reliability, response time, capacity, durability, 
robustness, audit-ability, and independence [25,29,30]. Among them, 
reliability is the most crucial for SISs since it expresses the ability of an 
SIS to protect EUC systems at a specific time [1]. 

The SIS reliability is related to the ability to respond on-demand as 
expected. For example, when a fire occurs, an AFES is expected to start 
to splash water. If an SIS works on-demand, it is reliable. However, many 
SIS failures cannot be detected immediately after their occurrences. 
Instead, those failures can be revealed upon actual demands or period-
ical proof tests with noticeable delays. Such failures are called failures 
on demand (FODs). In applications, a specific measure, the probability 
of failure on demand (PFD), is widely applied for FODs of SISs [26]. If 
the proof test intervals are fixed, the average PFD within one interval as 
PFDavg is a commonly used reliability measure [22]. PFDavg can be ob-
tained by simplified formulas [1], IEC 61508 formulas [26], the PDS 
method [31], and Markov models [19,32]. 

In recent years, PFDavg and SIS reliability have been intensively 
studied. For example, Cai et al. [28] have proposed a method for eval-
uating SISs with heterogeneous components based on Bayesian net-
works. Liu and Rausand have considered different demand modes for the 
SIS reliability analysis [19,33]. Alizadeh and Sriramula [34] have 
developed an unreliability model for redundant SISs using Markov 
chains. Meng et al. [35] have modeled the SIS reliability measures in 
AltaRica 3.0. Xie et al. [36] have considered the reliability of redundant 
SISs where dependent failures may occur. An analytical approach for 
simplification of complex Markov model has been proposed in SIS reli-
ability analysis [37]. In addition, Ding et al. [38] have derived a diverse 
redundancy method based on system degradation using a reliability 
block diagram to evaluate the SIS reliability. Yu et al. [39] have 

proposed a fuzzy reliability assessment for SIS taking account of com-
mon cause failures. 

However, little attention has been paid to the impacts of SISs 
employed to protect against CAFs. In addition, the currently defined SIS 
reliability is insufficient to evaluate the overall SIS performance in 
preventing and mitigating CAFs. That is because the demands on SISs for 
preventing or mitigating CAFs may not be instantaneous [3]. As a result, 
even though an SIS can respond to demands, it may fail afterward. For 
example, fires can last few seconds or several days, and AFESs must 
operate for a specified period to suppress fires. Such a period is defined 
as a prolonged demand duration. During this period, SISs are often 
exposed to high stress and thereby have more chances to fail. 

Therefore, it is of interest to examine whether an SIS is reliable while 
responding and how an SIS performs after activation. The former is 
related to SIS reliability, whereas the latter is related to SIS durability. 
Durability represents how long an SIS can perform its safety instru-
mented functions and withstand stress. The failures related to durability 
are called failures during demand (FDDs) in this study. In other words, 
SISs that are employed against CAFs may suffer from intensive degra-
dations and failure before demands are complete. 

Considering both FODs and FDDs, it is thus challenging to use 
straightforward traditional methods to evaluate the SISs against CAFs. 
For example, fault tree analysis is often used for the specific analysis of 
the accident, and it is difficult to cope with dependent issues such as 
CAFs [40]. In addition, Markov models have a problem in dealing with a 
large-scale system where CAFs occur [37,41]. Furthermore, the formulas 
listed in IEC 61508 do not consider CAFs [42]. Therefore, a new method 
to assess the performance of SISs against CAFs is required. 

This paper proposes a method for analyzing how SIS performance 

Nomenclature 

CAF cascading failure 
SIS safetyinstrumented system 
AFES automatic fire extinguishing system 
PFD probability of failure on demand 
FOD failure on demand 
MCS Monte Carlo simulation 
EUCi EUC component i 
ti EUCi fails at time ti 
TDD demand duration 
fSISij (t) probability density function of time to failures in SISij 

R̃i(t) conditional reliability of EUCi by time t 
θν(t) probability that CAF event ν occurs by time t 
δh,g(t) probability that EUCh fails and g SIS event occurs by time t 
λSIS scale parameter of Weibull distribution for SIS 
T(λSIS) simulated time to failure within SIS with λSIS 
γi probability that failures are cascaded from EUCi 

RBD reliability block diagram 
EUC equipment under control 
SIL safety integrity level 
PFDavg average PFD in a test interval 
FDD failure during demand 
RAW risk achievement worth 
t observing time 
SISij SIS between EUCi and EUCj 
μ time at an FDD occurrence 
fi(t) probability density function of time to failures in EUCi 

R̃Ωn− F (t) conditional reliability of subsystem Ωn− F by time t 
η,η1 random variable generated from a uniform [0, 1] in 

simulations 
Qν(t) conditional probability for ν CAF event by time t 
αSIS shape parameter of Weibull distribution for SIS 
Ti(λi) simulated time to failure within EUCi with λi 
TSIS operating time of SIS from activation to the failed state  

Fig. 1. A general configuration of an EUC system and an SIS.  
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influences the protection against and mitigation of CAFs. This paper’s 
novelty and main contributions are two folds: 1) developing a new 
method to model SISs against CAFs and evaluate their effectiveness; 2) 
revealing the influences of reliability and durability of SISs on the 
mitigation of CAFs. 

The benefits of the proposed method include the following: 1) 
providing precise and holistic performance analysis considering SIS 
reliability and durability; 2) considering time-dependent failures on SISs 
while responding and after activation, and there is no limitation on 
failure distributions; 3) offering guidelines for the SIS design and 
deployment to improve the reliability of EUC systems. 

The rest of the paper is organized as follows. Section 2 illustrates the 
models of CAFs and SISs. Section 3 suggests the method for evaluating 
the impacts of SISs associated with their failures. In Section 4, an illus-
trative example is provided and is verified by Monte Carlo simulations. A 
practical case study in the oil and gas industry is presented in Section 5. 
Finally, in Section 6, we conclude and discuss future works. 

2. Modeling SISs against cascading failures 

2.1. Modeling cascading failures 

CAFs are identified in the literature by many names, such as induced 
failures, domino failures, propagated failures, and interaction failures 
[43-45]. This paper deals with CAFs between EUC components. The case 
that CAFs within SISs have been studied in work [36]. CAFs are assumed 
to originate from a fault in an EUC component, triggering successive 
failures of other parts of EUC systems. For example, when an external 
leakage of flammable gases from a valve is detected, a failure in a control 
system can cause a valve misclosure and sudden pressure increases. 

In previous research [36,46-48], cascading probability γi ∈ [0,1] has 
been introduced as a measure of propagation easiness. This measure is 
also employed in this paper. Given that EUCi fails, the probability that 
the failure cascades to other components is γi. The failure propagation is 
shown as a dotted curved arrow in Fig. 2 (a). Cascading probability 
influences the extent of CAFs damages. It can be estimated based on test 
data or historic failure records [48]. The probability that there are no 
CAFs is denoted by γi (γi = 1 − γi). 

2.2. Modeling SISs against CAFs 

Fig. 2(b) illustrates that SISij is installed to prevent failure propaga-
tion from EUCi. This paper focuses on the situations that demands on 
SISs are prolonged (e.g., 2 hours or more). An SIS may fail due to failures 
in any of its three main subsystems (i.e., the sensors, logic solvers, and 
final elements). The failures can be classified into two groups:  

• FOD refers to an event when an SIS cannot act on demands (e.g., the 
inability to activate an AFES). An FOD is always a dangerous unde-
tected failure, as defined in IEC 61508 [26]. It is hidden until upon 
demand or in a proof test. An SIS is often considered as-good-as-new 
after a proof test [1]. If the proof test interval is not changed, PFDavg 
is the same in the whole life. PFDavg is also used to determine if an SIS 

satisfies a specified safety integrity level (SIL) [26]. IEC 61508 de-
fines four SILs: SIL 1 (the lowest level) through SIL 4 (the highest 
level) [26].  

• FDD refers to an event when an SIS fails during a prolonged demand 
(e.g., an AFES stops operating even though the fire has not been 
suppressed). Since an FDD is revealed immediately, it is similar to 
those dangerous detected failures defined in IEC 61508 [26]. The 
difference is that FDD is also undetectable by continuous monitoring. 
It is natural to assume an FDD can be found upon a demand or test. 
Time to FDD reflects the capability of SISs to resist stress during 
demands. It is reasonable to use known distributions with probability 
density functions fSISij (t) for FDD, such as a Weibull distribution. 

Fig. 3 depicts the sequence of failure events associated with Fig. 2(b). 
An initiating event is a hazardous event like overheating or a short 
circuit in the EUC system. EUCi may fail due to hazardous events, which 
causes a fire. The fire can propagate to the other components with 
cascading probability γi. An FOD may occur when the demand on SISij 
presents. SISij may also fail due to FDD even if it is activated. The failures 
in SISij, including FOD and FDD, determine the outcomes of EUCj. 

This paper focuses on the performance of SISs starting from haz-
ardous events, meaning that the moment t = 0 in this context is the 
occurrence of a hazardous event. In other words, the EUC system is as- 
good-as-new until t = 0. The EUC system is still functioning in a 
degraded mode under hazardous events. Let ti denote time that EUCi 
fails, and a fire propagates from EUCi. Then, a demand on SISij occurs. 
The condition of the SIS is unknown when it needs to be activated, and it 
may be working or failed due to a hidden failure. An FOD may thus be 
observed at time ti. Let μ represent time when an FDD occurs. TDD de-
notes a demand duration of SISij. Fig. 4 describes failure time in EUCi and 
SISij. 

Let Pij(t) denote the probability that SISij fails by time t, considering 
FOD and FDD. The probability Pij(t) can be obtained as: 

Pij(t) = Pr
(
SISij fails by time t

)

= PFD(ti)+ [1 − PFD(ti)]P(TSIS ≤ (t − ti))

= PFD(ti) + [1 − PFD(ti)]

∫ t
0 fi(ti)

∫ t
ti

fSISij (μ − ti)dμdti
∫ t

0 fi(t)dt
(1)  

where TSIS denotes the operating time of SISij from activation to the 
failed state. TSIS is assumed to be less than TDD, because the demand is 
prolonged. 

Accordingly, let Pij(t) denote the probability that the SISij functions 
by time t. The probability Pij(t) can be obtained as: 

Pij(t) = Pr
(
SISij is functioning by time t

)

= [1 − PFD(ti)]P(TSIS ≥ (t − ti))

= [1 − PFD(ti)]

∫ t
0 fi(ti)

[
1 −

∫ t
ti

fSISij (μ − ti)
]
dμdti

∫ t
0 fi(t)dt

(2) 

Fig. 2. An EUC system with CAF and SIS.  
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3. Performance analysis considering CAFs and SISs 

A recursive aggregation method based on reliability block diagrams 
(RBDs) is proposed in this section. The method builds on the previous 
studies of multi-state systems with failure propagation time [47]. The 
method in this paper is applied to EUC systems in which SISs are 
employed to intervene in CAF propagation. We take EUC system reli-
ability into account in the analysis of SIS performance in the context of 
CAFs. The term of system reliability in the following sections refers to 
the reliability of EUC systems. EUC systems are constructed as typical 
series-parallel structures. 

3.1. Reliability analysis with conditional failures 

System reliability can usually be calculated with reliability functions 
derived from RBDs as long as there are two states of components 
(functioning and failed) [49]. However, when the system is subject to 
CAFs, the components are not independent. Consequently, the general 
rules for structure functions cannot be applied. Reliabilities with con-
ditions are therefore introduced to complement the RBD method. Here, 
three scenarios may arise considering the states of EUCi and CAFs: 1) 
EUCi functions; 2) EUCi fails, and the failure is not cascaded; 3) EUCi 
fails, and the failure is cascaded, as shown in Fig. 5. 

Fig. 3. The sequences of failure events.  

Fig. 4. An illustration of time to failure in EUCi and SISij.  

L. Xie et al.                                                                                                                                                                                                                                       



Reliability Engineering and System Safety 216 (2021) 107975

5

The conditional reliability of EUCi, denoted by R̃i(t), is defined as the 
probability that EUCi is functioning at time t given no CAF from EUCi. No 
CAF phenomena include the two scenarios: 1) EUCi functions; 2) EUCi 
fails, and the failure is not cascaded. Hence, the probability of no CAF, 
denoted by Pr(No CAFs ), is equal to Ri(t) + γiRi(t) or 1 − γiRi(t). 
Accordingly, the probability that a CAF occurs Pr(CAF occurs ) is equal 
to γiRi(t). The conditional reliability R̃i(t) can be described as: 

R̃i(t) =
Pr(EUC functions )

Pr(No CAFs )
=

Ri(t)
Ri(t) + γiRi(t)

=
Ri(t)

1 − γiRi(t)
(3) 

If the failure in EUCi will never be cascaded out, the conditional 
reliability R̃i(t) is defined to be equal to the reliability Ri(t). 

Consider a system Ωnwith n components EUCi (i= 1,2,…, n) orga-
nized in a series structure. One can obtain the conditional system re-
liabilities by time t as: 

R̃Ω, series(t) =
∏n

i=1
R̃i(t) (4) 

Similarly, the conditional reliability of a parallel system with n 
components EUCi can be obtained as: 

R̃Ω, parallel(t) = 1 −
∏n

i=1

(
1 − R̃i(t)

)
(5) 

The conditional system reliability for an arbitrary series-parallel 
system can be obtained based on Eq.s (4) and (5). The method is 
similar to the traditional RBD method [49], replacing component re-
liabilities by corresponding conditional reliabilities. 

3.2. Reliability of an EUC system 

This section presents the method for analyzing the reliability of an 
EUC system. The following assumptions are made:  

• The two states are considered for EUCi: functioning or failed. 
• The time to failure in EUCi follows a known distribution with prob-

ability density functions, denoted by fi(t).  
• There are no repairs and inspections during demand durations. 

First, consider a system Ωn with n components structured as a series- 
parallel system, and only one CAF may occur from EUCi to EUCj. If the 
CAF occurs and an SIS is functioning with the probability of Pij(t), EUCj 
is protected from the CAF by the safety function of the SIS. It implies that 
only EUCi is in a failed state at time t for this system. On the contrary, 
when the CAF occurs and an SIS fails with the probability of Pij(t), EUCj 
is impacted by the CAF. Both EUCi and EUCj are in failed states at time t. 
Pij(t) corresponds to the conditional reliability R̃Ω− i(t) in case that the 
SIS is functioning. Similarly, Pij(t) corresponds to the conditional reli-
ability R̃Ωn− (i,j) in case that the SIS is in a failed state. Hence, the reliability 
of the system Ωn by time t is listed as follows: 

RS(t) = Pr(No CAFs )R̃Ωn (t)

+ Pr(CAF occurs )

[

Pij(t)R̃Ωn− (i,j) (t) +Pij(t)R̃Ωn− (i) (t)
]

=
[
1 − γiRi(t)

]
R̃Ωn (t) + γiRi(t)

[

Pij(t)R̃Ωn− (i,j) +Pij(t)R̃Ωn− (i) (t)
]

(6)  

where Ωn− (i,j) and Ωn− (i) are the subsystems with functioning compo-
nents. R̃Ωn− i and R̃Ωn− (i,j) denote the corresponding conditional reliabilities 
of Ωn− (i,j) and Ωn− i. The failed components can be removed when 
calculating system reliability, meaning that their reliabilities are 
replaced by zero. One can obtain R̃Ωn− (i) and R̃Ωn− (i,j) based on Eq.s (4) and 
(5). 

Second, consider a system Ωn with multiple CAFs. Subsystem 
Ωm(Ωm ∈ Ωn) has m EUC components with CAFs, denoted by CAF1, 
CAF2, CAF3, …and CAFm. Cascading probabilities are γ1, γ2, γ3,…, and 
γm. All possible combinations of CAF occurrence are considered. The 
event θ1 describes no CAF in subsystem Ωm (θ1 =

CAF1 ∩ CAF2… ∩ CAFm). The event θ2 is a situation when CAFs generate 
from the first component (θ2 = CAF1 ∩ CAF2… ∩ CAFm). The event 
when all CAFs occur in m components is denoted by θ2m (θ2m =

CAF1 ∩ CAF2… ∩ CAFm). The probability θν(t)(ν ∈ ∀(1,2…2m)) de-
scribes that the CAF event θν occurs by time t, and it is given as follows: 

θν(t) =
∏m

i=1

[
γiRi(t)

]mod

(⌊

ν− 1
2i− 1

⌋

,2

)

[
1 − γiRi(t)

]

(

1− mod

(⌊

ν− 1
2i− 1

⌋

,2

))

(7) 

Assume the CAF event θν is connected to a specific subsystem 
Ων(Ων ∈ Ωm) where CAFs are triggered from the components. Assume 
EUCh (EUCh ∈ ∀Ων) is linked to l SISs denoted by SISh1, SISh2, SISh3, …, 
and SIShl. All possible combinations of the SISs’ states (i.e., functioning 
or failed) are considered SIS events. The event δ1 involves no SIS failure 
(δ1 = SISh1 ∩ SISh2… ∩ SIShl). The event δ2 involves one failure in SISh1 

(δ2 = SISh1 ∩ SISh2… ∩ SIShl). The event when all SISs fail is denoted by 
δ2l (δ2l = SISh1 ∩ SISh2… ∩ SIShl). The probability δh,g(t)(g ∈ ∀(1,2…2l))

describes that EUCh fails and the SIS event δg occurs by time t, and it is 
given as follows: 

δh,g(t) =

∫ t
0 fh(th)

∏l
j=1

[
Ph,j(t)

]mod

(⌊
g− 1
2j− 1

⌋

,2

)
[

Ph,j(t)
]

(

1− mod

(⌊
g− 1
2j− 1

⌋

,2

))

dth

∫ t
0 fh(t)dt

(8)  

where 

Ph,j(t) = PFDavg,hj +
(
1 − PFDavg,hj

)
∫t

th

fSIShj (μ − th)dμ 

Fig. 5. Three scenarios considering EUCi and CAFs.  
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Ph,j(t) =
(
1 − PFDavg,hj

)

⎡

⎣1 −
∫t

th

fSIShj (μ − th)dμ

⎤

⎦

Ph,j(t) is the probability that SIShj has failed by time t, while Ph,j(t) is 
the probability that SIShj is functioning at time t. EUCh fails at time th. 
PFDavg,hj denotes the steady-state probability for FOD in SIShj. SISs are 
critical safety barriers so that they are often designed to be highly reli-
able under normal conditions [50]. PFD(t) is relatively small and varies 
slightly. It is unnecessary to determine the probability as a function of 
time, and an average value is sufficient for FOD [1]. Furthermore, IEC 
61508 distinguishes four SILs relating to PFDavg, rather than PFD(t) 
[26]. Therefore, in Eq. (8), we use PFDavg to represent PFD(ti) 
approximately. 

Combing all SIS events, conditional probability for the CAF event θν 
by time t is obtained as: 

Qν(t) =
∏

h∈∀Ων

∑2l

g=1
δh,g(t)R̃Ωn− F (t) (9)  

where Ωn− F denotes a subsystem with the functioning EUC components, 
and R̃Ωn− F (t) denotes the conditional reliability by time t for the sub-
system Ωn− F. Eventually, system reliability can be obtained as: 

RS(t) =
∑2m

ν=1
θν(t)Qν(t) (10) 

In short, system reliability can be obtained by applying the following 
steps:  

1 Define a subsystem comprising m EUC components that may trigger 
CAFs and calculate their conditional reliabilities.  

2 Generate all combinations of CAFs and compute probabilities of CAF 
events.  

3 For each CAF event, generate all SIS states’ combinations and 
compute probabilities of SIS events.  

4 Based on RBDs, compute conditional reliabilities for all SIS events.  
5 Obtain system reliability by combining conditional reliabilities for 

all CAF events. 

The following section introduces an example. Then, a practical case 
is used to present the method’s effectiveness. 

4. Example and verifications 

4.1. An illustrative example 

Consider a system Ωn with three EUC components (the RBD of this 
system is shown in Fig. 6). Subsystem Ωm represents a subsystem with m 
EUC components that may trigger multiple CAFs. The subsystem Ωm 
includes the components EUC1 and EUC2. The cascading possibilities are 
γ1 and γ2. SIS12, SIS13 SIS21 and SIS23 are installed to prevent and miti-
gate CAFs propagation. The probability of FODs is PFDavg,12, PFDavg,13, 
PFDavg,21, and PFDavg,23. 

The reliability of the EUC system is calculated using the following 
five steps: 

Step 1: According to Eq. (3), the conditional reliabilities of EUC1, 
EUC2, and EUC3 considering CAFs are obtained as: 

R̃1(t) =
R1(t)

1 − γ1R1(t)

R̃2(t) =
R2(t)

1 − γ2R2(t)

R̃3(t) = R3(t)

Step 2: By using Eq. (7), the probabilities of the CAF events are ob-
tained as: 

θ1(t) =
[
1 − γ1R1(t)

]
⋅
[
1 − γ2R2(t)

]

θ2(t) =
[
γ1R1(t)

]
⋅
[
1 − γ2R2(t)

]

θ3(t) =
[
1 − γ1R1(t)

]
⋅
[
γ2R2(t)

]

θ4(t) =
[
γ1R1(t)

]
⋅
[
γ2R2(t)

]

Step 3: By using Eq. (8), the probabilities of the SIS events are ob-
tained as: 

δ1,1(t) = 1 

Fig. 6. RBD of an EUC system with CAFs and SISs.  
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Fig. 7. The MCS flowchart for failure propagations.  
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δ2,1(t) =

∫ t
0 f1(t1)

[(
1 − PFDavg,12

)(
1 −

∫ t
t1

fSIS12 (μ − t1)dμ
)][(

1 − PFDavg,13
)(

1 −
∫ t

t1
fSIS13 (μ − t1)dμ

)]
dt1

∫ t
0 f1(t)dt   

δ2,2(t) =

∫ t
0 f1(t1)

[
PFDavg,12 +

(
1 − PFDavg,12

) ∫ t
t1

fSIS12 (μ − t1)dμ
][(

1 − PFDavg,13
)(

1 −
∫ t

t1
fSIS13 (μ − t1)dμ

)]
dt1

∫ t
0 f1(t)dt   

δ2,3(t) =

∫ t
0 f1(t1)

[(
1 − PFDavg,12

)(
1 −

∫ t
t1

fSIS12 (μ − t1)dμ
)][

PFDavg,13 +
(
1 − PFDavg,13

) ∫ t
t1

fSIS13 (μ − t1)dμ
]
dt1

∫ t
0 f1(t)dt   

δ2,4(t) =

∫ t
0 f1(t1)

[
PFDavg,12 +

(
1 − PFDavg,12

) ∫ t
t1

fSIS12 (μ − t1)dμ
][

PFDavg,13 +
(
1 − PFDavg,13

) ∫ t
t1

fSIS13 (μ − t1)dμ
]
dt1

∫ t
0 f1(t)dt   

δ3,1(t) =

∫ t
0 f2(t2)

[(
1 − PFDavg,21

)(
1 −

∫ t
t2

fSIS21 (μ − t2)dμ
)][(

1 − PFDavg,23
)(

1 −
∫ t

t2
fSIS23 (μ − t2)dμ

)]
dt2

∫ t
0 f2(t)dt   

δ3,2(t) =

∫ t
0 f2(t2)

[
PFDavg,21 +

(
1 − PFDavg,21

) ∫ t
t2

fSIS21 (μ − t2)dμ
][(

1 − PFDavg,23
)(

1 −
∫ t

t2
fSIS23 (μ − t2)dμ

)]
dt2

∫ t
0 f2(t)dt   

δ3,3(t) =

∫ t
0 f2(t2)

[(
1 − PFDavg,21

)(
1 −

∫ t
t2

fSIS21 (μ − t2)dμ
)][

PFDavg,23 +
(
1 − PFDavg,23

) ∫ t
t2

fSIS23 (μ − t2)dμ
]
dt2

∫ t
0 f2(t)dt   

δ3,4(t) =

∫ t
0 f2(t2)

[
PFDavg,21 +

(
1 − PFDavg,21

) ∫ t
t2

fSIS21 (μ − t2)dμ
][

PFDavg,23 +
(
1 − PFDavg,23

) ∫ t
t2

fSIS23 (μ − t2)dμ
]
dt2

∫ t
0 f2(t)dt   
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Step 4: According to Eqs. (4) and (5), the conditional reliabilities of 
the subsystems considering CAFs can be obtained as: 

R̃Ωn (t) =
[
R̃1(t)+ R̃2(t) − R̃1(t)R̃2(t)

]
R̃3(t)

R̃Ωn− 1 (t) = R̃2(t)R̃3(t)

R̃Ωn− 2 (t) = R̃1(t)R̃3(t)

R̃Ωn− (1,2) (t) = R̃Ωn− (1,3) (t) = R̃Ωn− (2,3) (t) = R̃Ωn− (1,2,3) (t) = 0   

Step 5: The system reliability RS(t) can be calculated using Eq. (10): 

By removing the subsystems whose reliabilities with conditions are 
equals to zero, the system reliability can be obtained as: 

RS(t) = θ1(t) R̃Ωn (t) + θ2(t)δ2,1(t)R̃Ωn− 1 (t) + θ3(t)δ3,1(t)R̃Ωn− 2 (t) (11) 

Notice that the calculations regarding θ4(t) are excluded since the 
system is down when EUC1 and EUC2 fail simultaneously. 

4.2. Verifications of the proposed formulas 

Monto Carlo simulations (MCSs) were conducted to check the val-
idity of the proposed method and Eq. (11) in the previous sections. Fig. 7 
is a flowchart of MCSs constructed in MATLAB. The flowchart illustrates 
the simulation process of the example in section 4.1. The principals 
should be the same for different examples, but details may be modified 
according to the algorithm and configurations. The proposed method 
can be applied to any arbitrary type of failure distribution. In this case, 
the time to failures in EUC components is assumed to follow an expo-
nential distribution, while time to FDD in SISs is assumed to follow a 
Weibull distribution. An exponential random variable, denoted by Ti(λi), 
expresses the time to failure in EUCi. A variable η is a random variable 
generated from a uniform [0, 1]. If η is smaller than cascading proba-
bility γi, CAFs occur in the simulations. Similarly, η1 is another random 
variable generated from a uniform [0, 1]. An FOD occurs when η1 is 
smaller than FOD probability (i.e., PFDavg of SISs). Time T(λSIS) denotes 
the simulated time to FDD of SISs, which is reflected by time (μ − ti) in 
Fig. 4. Time Ts denotes simulated time to system failure. 

The EUC components and SISs are assumed to be identical. Without 
losing generality, γ1 and γ2 are assigned to 0.2 and 0.3, respectively. The 
other parameters are presented in Table 1. Fig. 8 shows the system 
reliability profiles in 2 hours. Here, we run the simulations with 106 MC 
iterations. System reliability calculation using the proposed method in 
this paper gives the same results as the simulations for all three cases. 
Thus, it is demonstrated that the method in this paper is suitable for 
evaluating system reliability considering CAFs and SISs. 

5. Case study 

This section conducts a practical case study in the oil and gas in-
dustry to illustrate deploying SISs based on the proposed method. A EUC 
system consists of three separators (EUC1, EUC2, and EUC3), one 
scrubber (EUC4), and three compressors (EUC5, EUC6, and EUC7), as 

shown in Fig. 9. The separators separate production fluids into oil, gas, 
and water, and the scrubber is used to wash unwanted pollutants from 
the gas stream. Finally, the compressors are applied to increase gas 
pressure and temperature. 

In this case, hazardous events like overheating or short circuits can 
result in failures of the EUC system. We assume that the failures in EUC2 
and EUC6 can initiate fires. The fires can propagate to the components 
located in the same facility, as shown in Fig. 9. They cannot cause fires in 
the rest of the components because of separation systems like firewalls. 
Time to failure in an EUC component is assumed to follow a Weibull 
distribution with a scale parameter λEUC and a shape parameter αEUC. 
Cascading probabilities are denoted by γ2 and γ6. The parameters used 
in this case study are presented in Table 2. In general, such parameters 
can be obtained from historical statistics, vendor data, and equipment 
certifications. The failure probability of EUC components and SISs is 
much higher than in regular operations. That is because they are sup-
posed to be exposed to high stress in hazardous events in this case. 

AFESs are installed to suppress and extinguish fires. Each AFES is for 
the analysis generalized as SISij. As shown in Fig. 9, SIS24 and SIS25 can 
prevent failure propagation from EUC2, while SIS64 and SIS67 can pre-
vent failure propagation from EUC6. For all SISij, PFDavg is assigned to be 
10− 3 for FODs to achieve the required SIL 3 requirements, i.e., the 
maximum allowed value of a SIL 3 function. Time to FDD is assumed to 
follow a Weibull distribution with scale parameter λSIS and shape 
parameter αSIS. The parameters of SISs are summarized in Table 3. 

5.1. System reliability calculation 

The reliability of the EUC system can be calculated using Eq. (10). 
The EUC system is evaluated by considering the following states of the 
SISs: (1) perfect SISs, (2) SISs with FOD, and (3) SISs with FOD and FDD. 
Here, γ2 and γ6 are set at 0.5. The calculation results are shown in 
Fig. 10. Since we focus on the situations when demands on SISs are 
prolonged (e.g., 2 hours or more), it is reasonable to observe the reli-
ability in the first two hours as an example. As seen, the reliability 
profiles of the EUC systems with (1) perfect SISs and (2) SISs with FOD 
are almost the same. That means the effects of FOD are relatively low. 
The reliability gap between the EUC systems with (1) perfect SISs and 
(3) SISs with FOD and FDD is noticeable. The effects of FDD can explain 
such a gap. The reason is that we focus on what happens after a haz-
ardous event, and the probability of FOD is extremely low. The 

Table 1 
The parameters of the illustrative example.   

SIS EUC  

Failures Parameter Value Parameter Value 

Case 1 No SIS - - λi  0.2/hour  
No SIS - - αi  1 

Case 2 FOD PFDavg,ij  0.1 - -  
FDD λij  0.08/hour λi  0.2/hour   

αij  1 αi  1 
Case 3 FOD PFDavg,ij  0.2 - -  

FDD λij  0.16/hour λi  0.1/hour   
αij  2 αi  1  

RS(t) = θ1(t)δ1,1(t) R̃Ωn (t) + θ2(t)
[

δ2,1(t)R̃Ωn− 1 (t) + δ2,2(t)R̃Ωn− (1,2) (t) + δ2,3(t)R̃Ωn− (1,3) (t) + δ2,4(t)R̃Ωn− (1,2,3) (t)
]

+θ3(t)
[

δ3,1(t)R̃Ωn− 2 (t) + δ3,2(t)R̃Ωn− (2,1) (t) + δ3,3(t)R̃Ωn− (2,3) (t) + δ3,4(t)R̃Ωn− (1,2,3) (t)
]
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reliability gaps can be changed when λSIS and PFDavg are set differently. 
It implies that it is reasonable to pay more attention to the effects of FDD 
when considering the high stress from CAFs. 

5.2. Sensitivity analysis 

Given that SISs are installed, the reliability of the EUC system is 
impacted by the strength of CAFs (i.e., cascading probability γ) and the 
capacity of SISs (i.e., PFDavg in terms of FOD and scale parameters λSIS 

for FDD). This section will carry out sensitivity analyses to understand 
the influences of these parameters. 

5.2.1 Effects of origins of CAFs 
To evaluate the impacts of CAFs, we observe the situations when 

cascading probabilities γ2 and γ6 are changed, keeping the other pa-
rameters as constants. For example, cascading probability γ2 is 
increased, meaning that the failure is more likely to affect the others due 
to geographical location (e.g., closing to the center of an industrial area). 

Fig. 8. System reliability for three cases using calculation and simulations.  

Fig. 9. RBD with CAFs and SISs of the case study.  
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γ2 and γ6 are assigned from 0 to 0.5. The other parameters are presented 
in Table 2 and Table 3. The result at time t = 2 hours is provided in 
Figure 11. The 3D plot indicates that the system reliability is more 
sensitive to γ6 than γ2, which means that CAFs generated from EUC6 are 
more critical to system reliability in this case. In other words, if EUC6 is 
physically closer to other parts of the production system, the system is 
more vulnerable in case of fires. 

5.2.2 Mitigating effects of SISs 
The mitigating effects of SISs are considered in this section. Now, the 

cascading probabilities γ2 and γ6 are kept constant and set equal to 0.5, 
while the values of PFDavg for FOD and scale parameters for FDD are 

changed. We assume that the same values are applied for all SISs since 
the SISs are identical and perform similar safety functions. The system 
reliabilities with increasing Log10(PFDavg) at the different observing 
times (e.g., t = 0.5, 1, 1.5, 2 hours) are presented in Fig. 12. For clarity, 
the ranges of SILs are SIL 1 to SIL 4. As seen, when changing 
Log10(PFDavg), the trend of the system reliability in the four subplots are 
approximately similar. The system reliabilities remain almost un-
changed when SISs are at SIL 2 or higher. If the SIL of the SISs drops to 
SIL1, the system reliabilities decrease dramatically. In other words, SISs 
mitigate CAFs almost as well at SIL 2 as at SIL 4. This analysis provides 
information on improving system reliabilities with increasing SILs 
regarding safety integrity. In practice, it is beneficial to determine proof 
test intervals of SISs to satisfy the SIL safety requirements and the EUC 
reliability requirements. 

Fig. 13 illustrates how the system reliability is impacted when the 
scale parameters λSIS varies. For example, by t = 2 hours, the system 
reliabilities with λSIS, 1.5λSIS, 2λSIS, 2.5λSIS 3λSIS of SISs are 0.74, 0.70, 
0.66, 0.64 and 0.63, respectively. The system reliabilities do not 
decrease linearly with higher values of the scale parameters. Thus, it is 
necessary to analyze how specific SISs mitigate CAFs and deploy suitable 
SISs, and it will be discussed in the following sections. 

5.3. Criticality analysis of SISs 

Based on the method in Section 3, criticality analysis is carried out to 
identify optimal solutions of SISs in protecting against CAFs. We 
consider three variables related to optimal solutions: location, number, 
and cost of SISs. Specifically, risk achievement worth (RAW), denoted by 
IRAW(SIS|t), is employed as the critical analysis. It is defined as the ratio 
of the system unreliability if an SIS is not present (or in the failed state) 
with the system unreliability if an SIS is functioning at time t [49]: 

IRAW(SIS|t) =
1 − h(0SIS,RS(t))
1 − h(1SIS,RS(t))

(12) 

Fig. 10. System reliability profiles for different states of SISs.  

Table 3 
The parameters of SISs in the case study.  

SISij FOD FDD  
λSIS(/hour)  αSIS  (PFDavg) 

SIS24  0.42 2.0 10− 3  

SIS25  0.33 2.0 10− 3  

SIS64  0.41 2.0 10− 3  

SIS67  0.18 2.0 10− 3   

Table 2 
The parameters of EUC components in the case study.  

EUCi Components λEUC (/hour)  αEUC  

1 Separator 1 0.21 1.4 
2 Separator 2 0.12 1.3 
3 Separator 3 0.24 1.2 
4 Scrubber 0.17 1.5 
5 Compressor 1 0.32 2.1 
6 Compressor 2 0.32 2.1 
7 Compressor 3 0.32 2.1  
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Fig. 11. System reliability considering γ2 and γ6 at t = 2 hours.  

Fig. 12. System reliability considering PFDavg of SISs for FOD.  
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where h(0SIS,RS(t)) denotes system reliability without an SIS, 
while h(1SIS,RS(t)) denotes system reliability with an SIS. When 
IRAW(SIS|t) is large, the status of SIS can result in a comparatively sig-
nificant change in the system reliability significantly at time t. 

By combining Eqs. (10) and (12), IRAW(SIS|t) is obtained in Table 4. 
The parameters are shown in Table 2 and Table 3. Solution No.16 with 
the four SISs has the most significant effects in achieving system reli-
ability against CAFs. On the other hand, no. 7 (SIS24, SIS64) effects are 
found approximately the same as ones of three SISs in solution No.12 
(SIS24, SIS25, and SIS64). The reason is that the effects on preventing 
CAFs of solutions No.3 (SIS25), No.5 (SIS67), and their combination 
No.10 (SIS25, SIS67) are restricted. That implies that those SISs have less 

influence on the system reliability in comparison with the others. 
The cost of SIS deployment can also be considered in the analysis. We 

assume that the installation cost is roughly the same for all SISs and 
equal to a. Then, IRAW(SIS|t)/a reflects the improvement of system 
reliability by installing an SIS. The analysis results are summarized in 
Table 4. Solution No.4 (SIS64) is the worthiest solution if only one SIS is 
considered. If two SISs are considered, the most efficient solutions are 
No.7 (SIS24, SIS64) and No.11 (SIS64, SIS67). This analysis can help the 
designers compare the effectiveness of solutions with a limited budget 
for installing SISs. 

In addition to IRAW(SIS|t), we can also obtain the system reliability 
profiles to compare different solutions. For example, we consider two 
potential solutions: No.6 (SIS24, SIS25) and No.11(SIS64 and SIS67). 
Fig. 14 indicates that the two solutions effectively improve system 
reliability, but solution No. 11 always has more significant effects in 
protecting against CAFs than solution No.6. It implies that SIS64 and 
SIS67 are more critical for the system reliability than SIS24 and SIS25. In 
other words, SIS64 and SIS67 can more effectively protect the 1oo3 
subsystem (i.e., EUC5, EUC6, EUC7) from CAFs than the others. 

6. Conclusions and future research 

This paper has proposed a novel method to evaluate the performance 
of SISs that are employed to protect the EUC system against CAFs. The 
method considers failures of SISs in responding and after activation and 
so analyzes SIS reliability and durability in performance analysis. The 
proposed method can provide designers and operators with information 
for the SIS design and deployment, thereby improving the safety and 
reliability of the EUC system. This paper applies the proposed method to 
SISs and EUC systems, but it can also be adopted in other safety barriers 
in industrial series-parallel systems. 

The method is verified through simple applications, but it efficiently 
manages large systems with a limited number of CAFs. If the number 
increases, the combinations of CAFs grow exponentially. In that case, the 

Fig. 13. System reliability considering scale parameters of SISs for FDD.  

Table 4 
Calculation results for different solutions at t = 2 hours.  

No. SIS R(t) IRAW(SIS|t) cost IRAW(SIS|t)/a  

1 No 0.56 - - - 
2 SIS24  0.59 1.07 a  1.07 
3 SIS25  0.56 1.00 a  1.00 
4 SIS64  0.64 1.22 a  1.22 
5 SIS67  0.56 1.00 a  1.00 
6 SIS24 , SIS25  0.59 1.07 2a  0.54 
7 SIS24 , SIS64  0.68 1.38 2a  0.69 
8 SIS24 , SIS67  0.59 1.07 2a  0.54 
9 SIS25 , SIS64  0.64 1.22 2a  0.61 
10 SIS25 , SIS67  0.56 1.00 2a  0.50 
11 SIS64 , SIS67  0.67 1.33 2a  0.67 
12 SIS24 , SIS25, SIS64  0.68 1.38 3a  0.46 
13 SIS24 , SIS25, SIS67  0.59 1.07 3a  0.36 
14 SIS24 , SIS64, SIS67  0.70 1.47 3a  0.49 
15 SIS25 , SIS64, SIS67  0.67 1.33 3a  0.44 
16 SIS24 , SIS25, SIS64, SIS67  0.71 1.52 4a  0.38  
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calculation efficiency of the method is expected to be further improved. 
However, the method is applicable for systems incorporating a moderate 
number of CAFs in most cases. 

This paper has focused on SIS reliability and durability, but the other 
indicators, such as response time, capacity, and robustness, can also be 
important. Hence, they can be the research in the future. In addition, the 
assumption of constant cascading probability is somewhat restrictive; 
statistical dependency (e.g., time-dependent cascading probability) can 
be considered. Another direction of future work is extending the method 
to more complex systems (e.g., network systems and hierarchical sys-
tems) to investigate more interdependent relationships between SISs 
and CAFs. 
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