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Abstract

The appearance of an object is the combination of the physical attributes that influ-
ence the human visual perception of the object itself. The most prominent of these
attributes are colour, gloss, translucency and texture. Texture, which is defined as
the aspect of appearance that gives rise to a perceivable local variability, plays a
complex, yet fundamental, role in human recognition of material characteristics
and in pattern discrimination. As a result, its study has gained considerable relev-
ance during the last decades, though it is the most understudied among the visual
appearance characteristics. The objective of this Ph.D. thesis is to contribute to the
identification of a general texture metric, with particular focus on fabrics.

We first focused on the physical requirements of a texture measurement device. In
particular, we initially derived the characteristics required by a multi-spectral sys-
tem to optimally classify the texture of fabrics. We then showed that the minimum
texture classification error can be reached with less than ten spectral channels. Sub-
sequently, we quantified the effect of the radiometric calibration and other standard
steps of a camera imaging pipeline on the classification accuracy of trichromatic
images. According to the results of the study, the process that most affects the
accuracy appeared to be colour rendering.

Afterwards, we analysed the limits and capabilities of the mathematical approaches
used to study texture. Specifically, we examined the concept of ‘texture stationar-
ity’, which, in the context of appearance, is ambiguously defined. We hence pro-
posed and tested a scale-dependent stationarity test for images based on the locally
stationary two-dimensional wavelet model. This method was then applied to reg-
ular and irregular textures, thus demonstrating that stationarity data can be useful
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to improve the accuracy of image classification, especially when classes have been
chosen by humans. We also evaluated the relevance of stationarity by correlating
it with texture similarity data obtained from a psychophysical experiment.

To conclude, we gathered data on the semantic terms used by fabric experts to
describe the visual appearance of textile samples. From these descriptors we then
derived a vocabulary of appearance attributes and a fabric ontology. The corres-
ponding descriptors were analysed and linked to a set of texture features, among
which CNN ones appeared to perform the best. Finally, we developed a series of
simple models based on these results with which it is possible to infer the semantic
terms associated with an image.



Sammendrag

Utseendet til et objekt er en kombinasjonen av dets fysiske egenskaper, disse
påvirker den menneskelige visuelle oppfatningen av selve objektet. De mest fremtre-
dende av disse egenskapene er farge, glans, gjennomsiktighet og tekstur. Tekstur,
som er definert som en måte å betrakte overflate på, gir opphav til en lokal variab-
ilitet. Dette spiller en kompleks, men grunnleggende rolle i menneskelig gjenkjen-
nelse av egenskaper i materialer og i det å skille mønster fra hverandre.

Som et resultat har undersøkelsen fått betydelig relevans i løpet av de siste tiårene,
selv om den er den mest undervurderte blant de visuelle utseendeegenskapene.
Målet med denne Ph.D. avhandlingen er at den skal gi et bidrag til identifisering
av en generell teksturmetrikk, med særlig fokus på tekstiler.

Vi fokuserte først på de fysiske kravene til en teksturmåleenhet. Spesielt avle-
det vi i utgangspunktet egenskapene som kreves av et multispektralt system for
å optimalt kunne klassifisere tekstur av tekstiler. Vi viste da, at den minste tek-
sturklassifiseringsfeilen kan nås med mindre enn ti spektrale kanaler. Deretter
kvantifiserte vi effekten av den radiometriske kalibreringen og andre standardtrinn
i et kamera-avbildningsprosess på klassifiseringsnøyaktigheten til et trikromatisk
kamera. Ifølge resultatene av studien syntes den prosessen som mest påvirker
nøyaktigheten å være fargegjengivelse.

Etterpå analyserte vi muligheter og begrensninger til de matematiske tilnærmin-
gene som ble brukt for å studere tekstur. Spesielt undersøkte vi konseptet ’tek-
sturstasjonaritet’, som i teksturkontekst er tvetydig definert. Vi har derfor foreslått
og testet en skala-avhengig stasjonaritetstest for bilder basert på den lokalt stas-
jonære todimensjonale wavelet-modellen. Denne metoden ble deretter brukt på
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vanlig og uregelmessig tekstur, og demonstrerte dermed at stasjonæritetsdata kan
være nyttige for å forbedre nøyaktigheten av bildeklassifisering, spesielt når klasser
er valgt av oss mennesker.

Vi evaluerte også relevansen av stasjonæritet ved å korrelere den med tekstur-
likhetsdata oppnådd med et psykofysisk eksperiment. For å avslutte, samlet vi
data om de semantiske begrepene som brukes av stoffeksperter for å beskrive det
visuelle utseendet til tekstilprøver. Fra disse deskriptorene hentet vi deretter et ord-
forråd med utseendeattributter og stofftekstologi. De korresponderende deskriptorene
ble analysert og knyttet til et sett med teksturfunksjoner, blant dem syntes CNN å
fungere best.

Til slutt har vi basert på disse en serie enkle modeller som det er mulig å utlede de
semantiske begrepene knyttet til et bilde.
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Chapter 1

Introduction

The Human Visual System (HVS) provides us with the sense of sight and the en-
suing ability to interpret our surrounding environment. This is achieved thanks to
the interaction between visible light and the objects present in our field of view,
which permits us to infer information from the scene. Within the research field
of perception, the mechanisms that make this possible are scientifically referred
to as appearance, which is formally defined as “the aspect of visual perception
by which objects are recognised” [9]. In describing this term, the International
Commission on Illumination (CIE) states that through it “an object is perceived to
have attributes such as size, shape, colour, texture, gloss, transparency, and opa-
city” [8]. Moreover, Pointer introduced the concept of total appearance [201], a
quantity that includes all and only the measurable visual properties, thereby al-
lowing a more complete interpretation of the appearance of an object inserted in a
scene.

This thesis has been written as part of an industrial computer science Ph.D. pro-
gram aimed at defining a way to measure and classify texture, with particular focus
on fabrics. This project is the result of the collaboration between the Italian com-
pany Barbieri electronic snc/OHG and the Norwegian Colour and Visual Com-
puting Laboratory at the Norges Teknisk-Naturvitenskapelige Universitet (NTNU)
in Gjøvik. The present chapter gives a brief introduction to the research work
done during the Ph.D. It is subdivided into Motivation (Sec. 1.1), Goals and Re-
search Questions (Sec. 1.2), List of Publications (Sec. 1.3) and Thesis Organization
(Sec. 1.4).

1



2 Introduction

1.1 Motivation
Visual perception is one of the five senses with which humans navigate the world.
The human eye is sensitive to photons with wavelengths in the visible spectrum
domain (λ ∈∼ [380, 750]nm). The photoreceptor cells in the retina absorb these
photons and convert them into signals that are, in turn, processed by the central
nervous system [79], which consists of the optic nerve, the optic tract and the
visual cortex. This procedure involves a wide number of tasks, including but not
limited to the generation of neural representations, the management of colour vis-
ion, the assessment of distance through stereopsis, the recognition of objects and
patterns and the perception of motion. All these mechanisms allow us to move in
the surrounding environment by inferring its properties and the properties of the
objects contained within it through their appearance. Thanks to appearance, hu-
mans are extremely skilled at assessing if a surface is near or far, soft or rigid, or
smooth or rough. These abilities are part of our daily life and influence our social
behaviour and choices as consumers. Their understanding is therefore of utmost
importance not only on an academic level but also on an industrial one.

As anticipated above, appearance encompasses various visual attributes. Among
these, the CIE identified four main features [78]: colour, gloss, translucency and
texture. Usually, appearance attributes are studied within the framework of soft
metrology. This field aims to develop a metric that links the output of a measure-
ment device (which quantifies a physical stimulus) with the responses of the HVS
to the same stimulus [201]. Among the four appearance features, texture, which
is linked to the spatial complexity of a scene, is considered the most difficult to
address, given that it refers to cognitive processes of a higher level than the other
three. This difficulty explains why different definitions of texture have been given
in various publications [9, 205, 94, 198, 202], but never in a convincing and stand-
ardized way. The physical phenomenon behind texture can be determined by the
non-uniformity of either illumination, reflectance, transmittance or topography of
the surface under study [102]. This is the reason why the CIE has made a distinc-
tion between surface [226] and sub-surface [223] texture, the former being related
to the spatial structure of the sample’s reflectance, the latter to its translucency. It is
therefore clear that texture is strongly linked to the other appearance features [201].
The mechanism of texture perception is perhaps even more intricate since the sig-
nificance of spatial cues depends on the context in which they are applied. For
example, periodic fabrics can be modeled with spectral-based approaches while
natural textures often exhibit fractal structures. For the sake of this thesis, texture
is defined as the aspect of appearance which gives rise to a perceivable local vari-
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ability [56]. This interpretation should be broad enough to include the previously
mentioned definitions.

In literature, texture is mainly used in two different contexts: empirical measure-
ment and computer vision. Empirical texture measurements are employed by the
manufacturing industry to evaluate the mechanical properties of a surface [126,
129]. Computer vision, on the other hand, makes use of texture information for
various purposes, such as 2D pattern reproduction [198], defect detection [51],
classification [115], segmentation [235] and 3D rendering [111]. Texture appear-
ance, however, is underresearched, in part due to its presently unclear definition.
Given that the understanding of how it is assessed remains at such an early stage,
we have adopted and aimed to provide multiple solid bases for future research in
this field. Firstly, to achieve this goal, we decided to focus the attention of this
Ph.D. project on fabrics, for which texture is the main appearance trait (as sugges-
ted by the shared etymological origin of the words textile and texture). Secondly,
since texture is a high-level aspect of appearance, we have considered it both from
a metrological and a computational perspective and we have tried to establish a
link between the two.

Additionally, the motivation for choosing fabrics as the study material for this
project came from Barbieri electronic. Barbieri is a leading manufacturer of spec-
trophotometers for the chromatic calibration of medium and large format printers,
and has recently dedicated itself to the field of cloth measurement, as the market
for digital printing on textiles is at present in great expansion. In this context, Bar-
bieri electronic’s aim is the development of a texture metric for the characterization
of garments and the optimization of colour reproduction in digital textile printing.

1.2 Goals and research questions
As discussed in the previous section, the main goal of this work is to contribute
to identifying a general texture metric for fabrics. We approached this goal by
defining the following three sub-objectives:

• Study the physical requirements of a texture measurement device.
There are many computer vision techniques able to quantify texture para-
meters. These algorithms are usually applied to RGB images but are, how-
ever, limited by their capability to reproduce a scene with respect to the
HVS. Using digital cameras, for example, the accurate measurement of the
tristimulus coordinate of a colour is a challenging task, because they are
usually unable to satisfy the Luther-Ives conditions [212]. These require
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that the camera sensor sensitivities would be obtainable as a linear combin-
ation of the CIE colour matching functions, a precondition not ordinarily
satisfied by commercial cameras. The easiest way to solve this issue is to
adopt a multi-spectral system. Furthermore, a system aimed at reproducing
the HVS should include a method to evaluate the topographical structure of
a surface. This poses a problem similar to the one indicated above for the
multi-spectral case, but in relation to the height map of the sample. An-
other possibility to take into account is the choice of geometry of the system
because the view of a surface from different angles allows one to estimate
the behaviour of the General Reflectance Function (GRF) [102]. Neverthe-
less, the measurement accuracy is limited by the increased complexity of the
system and the cumbersomeness of the measurements.

• Clarify limits and capabilities of the mathematical approaches used to study
texture.
Various texture characterization methods have been developed through the
years [198]. Different approaches rely on distinct concepts and usually make
assumptions about the nature and characteristics of the process that have
generated the texture. For example, statistical techniques are generally based
on mathematical models, and the model choice is usually linked to prior
knowledge of the type of texture to be analysed. These assumptions are,
however, not always satisfied and seldom verified. As an alternative, it is
possible to analyse texture with learning-based techniques, which have been
widely used in the last decade with astounding results in many areas related
to computer vision. However, we could not rely on these techniques in this
project because they have a strong dependence on the training dataset and
because the interpretation of the features they extract is ambiguous.

• Gather data on textile texture perception.
Currently, the biggest obstacle in developing a soft metrology model of tex-
ture appearance is the lack of data. Several texture image datasets exist, but
only few visual and psychophysical experiments have been performed. It is
therefore necessary to collect clues on the response of the HVS to textures
with variable characteristics. Once these data are obtained, it is possible to
start correlating them with texture features obtained via different measure-
ment and analysis methods.

We can then propose three sets of research questions, each one related to the re-
spective sub-objective:
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1. What are the possibilities and limitations of spectral measurements of textile
texture? How much do the physical characteristics of the adopted measure-
ment device affect the results of texture analysis? Which texture feature
performs best in the classification of textiles?

2. What are the limitations of texture statistical analysis methods? Can they be
linked to perceptual stimuli? Can one use the knowledge on these limitations
to improve texture classification?

3. Which appearance properties do observers use to describe the texture of
textiles? Can texture features be used to model these properties?

1.3 List of publications
This thesis is based on eight articles addressing the research questions discussed
in Sec. 1.2. Seven of these have been published through peer-reviewed publica-
tion channels, whereas the remaining one is currently under revision at a scientific
journal. Each publication is referred to with a letter of the alphabet, and the order
follows their occurrence in the thesis narrative. The contributions are divided into
core publications, Articles A to E, whose first author is the writer and which play
a central role in the narrative of this thesis, and related publications, Articles F to
H, which correspond to contributions that are part of the work carried out during
the Ph.D. and are useful for the discussion, but do not, however, address the prob-
lem of texture directly. A rationale to locate these articles in the context provided
in Sec. 1.2 and to define the relation between them is illustrated in Fig. 1.1, whose
description can be found in Sec. 1.4. The content of the articles is summarized
in Chapter 3. Journal articles are shown in boldface, while conference articles are
shown in regular typeface.

List of the core contributing articles:

Article A Michele Conni, Helene Midtfjord, Peter Nussbaum, and Phil Green.
Dependence of texture classification accuracy on spectral information. In
2018 Colour and Visual Computing Symposium (CVCS), pages 1–6. IEEE,
2018

Article B Michele Conni, Peter Nussbaum, and Phil Green. The effect
of camera calibration on multichannel texture classification. Journal of
Imaging Science and Technology, 65(1):10503–1, 2021
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Article C Michele Conni and Hilda Deborah. Texture stationarity evaluation
with local wavelet spectrum. In London Imaging Meeting, volume 2020,
pages 24–27. Society for Imaging Science and Technology, 2020

Article D Michele Conni, Hilda Deborah, Peter Nussbaum, and Phil Green.
Visual and data stationarity of texture images. Journal of Electronic
Imaging, 30(4):043001, 2021

Article E Michele Conni, Peter Nussbaum, and Phil Green. Textile tex-
ture descriptors. Manuscript under review in a journal

List of related articles:

Article F Nadile Nunes de Lima, Michele Conni, Phil Green, and Markus
Barbieri. Measurement uncertainty for printed textiles. In 2018 Colour and
Visual Computing Symposium (CVCS), pages 1–6. IEEE, 2018

Article G Max Derhak, Phil Green, and Michele Conni. Color appearance
processing using iccmax. Electronic Imaging, 2018(16):323–1, 2018

Article H Oswald Lanz, Fabian Sottsas, Michele Conni, Marco Boschetti,
Erica Nocerino, Fabio Menna, and Fabio Remondino. A versatile multi-
camera system for 3d acquisition and modeling. The International Archives
of Photogrammetry, Remote Sensing and Spatial Information Sciences, 43:785–
790, 2020

1.4 Thesis organization
This thesis is organized in a compilation of published articles. Fig. 1.1 provides
an overview of the research structure and the publications originated from specific
topics of interest. This structure has been based on the soft metric framework,
which is usually adopted in appearance research [201].

The articles reported in this thesis concern the four steps of the soft metrology
framework. In particular, Articles A to E constitute the core of the work. Articles
A and B attempt to find the optimal spectral setup in relation to the features used
for texture classification. They are therefore more focused on the measurement
aspect of texture perception, and on the first goal of the project. Articles C and D
provide an analysis of the concept of texture stationarity, which until now has been
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Figure 1.1: An overview of the articles and their relationship to the topics of interest of
the research project.
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used to indiscriminately describe two separate notions, one mathematical and the
other perceptual. In these publications, we proposed to split the two notions and
we analysed the correlation between them. Therefore in Fig. 1.1 their scope covers
both the perceptual and the analysis fields (although the measurement has not been
considered explicitly in the two publications) and addresses the second goal of the
thesis. Finally, in Article E we studied the vocabulary of fabrics appearance by
performing a semantic experiment with experts in the field of textiles as observers.
The results of the experiment can be used to estimate the relationship between
texture features and semantic descriptors. The remaining articles offer details that
are less crucial but nonetheless relevant to the objectives specified in Sec. 1.2.
Article F is a study on the performance and uncertainty of colour measurements
of textile samples. Article G analyses different adaptation transforms with the
most recent International Color Consortium (ICC) colour management framework,
iccMAX. Article H describes a novel multi-camera system for the acquisition of
the three-dimensional structure of objects. While these do not directly address
measurement of texture appearance, they do provide useful background for future
research on the topic.

In Chapter 2 we present an overview of the background of the research carried out
in the Ph.D. project and of the methods used. Chapter 3 reports a synthesis of the
contributions discussed in the previous paragraph, contextualizing them with re-
spect to the research questions and goals discussed in Sec. 1.2. Finally, Chapters 4
and 5 respectively discuss the results of the article and the conclusions of the Ph.D.
work.



Chapter 2

Background

In this chapter, we provide an overview of the foundations of literature on which
our work rests. We begin with a brief review of what has been done in the context
of texture appearance (Sec. 2.1). We then give a short description of the possible
typologies of textiles and of their manufacturing processes (Sec. 2.2). Next, we
have a summary of the state of the art of texture measurement (Sec. 2.3) and ana-
lysis (Sec. 2.4). We then conclude the chapter with the outline of the essential
references on which the methods used in this thesis are based (Sec. 2.5).

2.1 Texture appearance
A perceptual stimulus stems from the interaction of the structure of a scene (de-
termined by the spatial arrangement of its atoms and molecules) with its environ-
ment (e.g., the illumination). The retinal and neural characteristics of an observer
convert the stimulus into an appearance response [118]. The structure and the
stimulus of a scene may be accurately measured using hard metrology [201, 37],
and the physical properties obtained from these measurements can be used to gen-
erate a precise digital reproduction of surfaces and materials [67]. However, these
properties do not allow one to predict the human perception of the scene, thus lim-
iting our ability to reproduce the same appearance under different conditions of
observation. In fact, we do not know enough about the neural and psychological
factors that determine appearance to predict the preference of an observer from
the physical characteristics of a structure. To meet this need, Pointer defined the
concept of soft metrology as “the measurement of parameters that, either singly or
in combination, correlate with attributes of human response” [201]. This discipline

9



10 Background

aims at developing measurement techniques and mathematical models that enable
objective quantification of the properties of materials, products and activities that
are determined by human response (in any of the five senses) [78]. Soft metrology
relies mainly on psychophysics, which is “the study of the functions relating the
physical measurements of stimuli and the sensations and perceptions the stimuli
evoke.” [9].

Currently, the most successful and advanced application of soft metrology is in
colour appearance. The first attempts to introduce a colour perception model led
to the development of colorimetry, which serves as the fundamental underpinning
of ensuing approaches. Colorimetry was standardised in 1931 by the CIE with
the definition of the CIE XYZ tristimulus space [218]. Since then, more accur-
ate and complete models that take into account finer aspects of colour appearance
have been and are being proposed and promoted [79]. With respect to colour, both
gloss and translucency appearance models are at a preliminary stage of study, as a
satisfactory metric has not yet been found for either of them. Nevertheless, gloss
can rely on measurement methods and optical instruments that have been used for
decades by many sectors of industry and are still in use today for quality con-
trol [157]. These methods have proven to be unable to identify every perceptual
cue on which gloss appearance relies, therefore this field is currently the subject
of study and discussion [34]. The study of translucency, on the other hand, des-
pite being at a less advanced state than that of gloss, is starting to accumulate a
substantial amount of literature [91], including some recent attempts to develop a
standard perceptual model [238].

Unlike the fields of gloss and translucency, that of texture appearance can presently
rely on a relatively limited bibliography. In the principal publications of soft met-
rology, texture is usually described as very hard to address [78], and it is ap-
proached from the viewpoint of computer vision [201]. Our understanding of
perceptual texture in images can be traced back to Bela Julesz, who studied it
in the context of texture discrimination. Julesz analysed pre-attentive perception
of grey-scale images and tried to understand what makes two textures with the
same illumination-related properties distinguishable. He concluded that human
texture characterization is correlated to first- and second-order spatial statistics of
the image [137, 138], i.e., that humans are not able to distinguish two textures if
their first- and second-order statistical parameters are identical. First-order statist-
ics indicate the probability distribution that a dot thrown randomly on an image
would fall on a certain grey-scale level, while second-order statistics represent
the joint probability distribution of an image, i.e., the likelihood that the vertices
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of a segment with a given length and orientation would fall on a certain pair of
grey levels. Julesz later noticed that his conjecture was exact in most cases, but
with some exceptions. He therefore updated his theory to include the concept
of textons [139, 15], which are local geometric structures used by the HVS to
discriminate even textures with same second-order statistics. This suggests that a
good texture perception model should take into account both global and local cues.
The work of Julesz on texture segregation has then been expanded by many other
researchers, such as Landy [149], who proposed a model based on non-linear fil-
tering, Rosenholtz [205], who focused on the effect of texture in peripheral vision,
and Zhu [254], who linked Markov random field models of texture to the conjec-
tures of Julesz. With respect to texture perception, the main limitation of these
approaches is that they are mainly focused on RGB photographs of samples, thus
neglecting all 3D cues on which texture appearance is based. In doing so, they
neglect the effect of the characteristics and limitations of the measurement device
used to acquire the scene, which is a central element of an exhaustive soft metro-
logy model.

Haindl and Filip propose a completely opposite approach to the study of texture
appearance by focusing on the precise measurement of the reflectance of a mater-
ial [102]. To achieve this, they propose a set of physical functions, starting from
the General Reflectance Function (GRF), a complex function of 16 variables that
describes all possible interactions between the sample and a ray of light striking it.
However, the GRF is too complex to be accurately measured or modeled, thus it is
usually simplified by applying various simplifying assumptions to the model. The
most advanced function used to characterize texture is the Bidirectional Texture
Function (BTF) model, a seven-dimensional function that currently can be both
measured and modeled. Psychophysical experiments have been applied to BTFs,
either to estimate to what extent the dimensionality of a BTF can be reduced to
without a noticeable difference in the rendering [81], or to analyse where human
gaze fixes when examining a rendered sample obtained with a BTF model [83].
Ref. [82] then links the results of these rendering-based experiments to the same
procedures applied to real objects. Moreover, Ref. [64] proposes a soft metrology
model based on a variation of the BTF. Despite these simplifications, however,
the actual BTF measurement of a material is lengthy and technically difficult to
achieve, especially for textiles [32]. This is in stark contrast with how quickly and
seemingly effortlessly the HVS assesses the appearance of a textured surface.

In the industry, the main reference for colour management is the ICC. Formed in
1993, the purpose of this organization was to create an open, vendor-neutral colour
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management system which would work transparently across all operating systems
and software packages [213]. This was achieved through the so-called ICC pro-
files, files in which the data that characterizes a colour input or output device or a
colour space are stored [96]. These files are composed according to standards pro-
mulgated by the ICC, and are the final output of radiometric calibration processes.
For digital printing, this operation is usually performed with a spectrophotometer,
which is the main product of Barbieri electronic. Recently, the ICC developed a
novel profile framework, called iccMAX with the aim of expanding colour man-
agement to a wider range of applications [62]. This includes, for example, spectral
characterization [100] and BRDF information [99]. Yet iccMAX does not consider
texture appearance processing, although it permits normal and height map data for
3D rendering to be attached to an image [124]. In Article G we contributed to
define the capabilities of iccMAX.

As discussed by Pointer in Ref. [201] (see Figure 39 in the publication), an ob-
jective assessment of a texture appearance metric can be divided in two processes:
the physical measurement of data and the computational analysis applied to them.
Therefore, in the following sections we provide a review of both state of the art
measurement devices (Sec. 2.3) and computer vision techniques (Sec. 2.4) related
to texture. The aim of an appearance metric is to find the mathematical model that
permits to infer the HVS response to a stimulus from the output of the measure-
ment analysis. Given that the most prominent of these responses can be expressed
through semantic elements, in Article E we gathered information on the connec-
tion between computer vision features and semantic descriptors by asking a panel
of experts to describe a set of physical samples.

2.2 Introduction to fabrics
Formally, one refers to textiles as products formed by the interlacement of fibers,
filaments, yarns, woven, knitted and braided cloths as well as non-woven fab-
rics [186]. Textile materials can be divided in natural-based fibers (e.g. silk, wool,
cotton, etc.) and man-made ones (e.g. nylon, polyester, etc.). The textile manu-
facturing process usually begins with the yarn production, i.e., a long continuous
length of interlocked fibers, with or without twist. Once the yarn is ready, it can
be used to form a woven fabric through weaving, i.e., the interlacement of two
set of yarns perpendicular to each other (the warp and the weft) [2], or knitting,
in which the yarn is bent into loops that are then interconnected to form the fab-
ric [221]. Non-woven fabrics, on the other hand, are manufactured directly from
the fibers, and are therefore faster and cheaper to produce [207]. These are widely
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used, and are mostly made of man-made materials (e.g., polymers), though some
of them, for example felt, can be obtained from natural ones, such as wool. From
an appearance point of view, while woven and knitted fabrics have a periodic or
quasi-periodic structure, non-woven ones are irregular and thus require statistical
methods of characterization. Finally, fabrics can be additionally processed in vari-
ous ways (e.g. singeing, bleaching, printing). The type of material and the post-
processing deeply influence the reflectance function of the fabric sample.

Recently, the digital textile printing market has grown considerably [31]. This
has led to a push towards improving the accuracy of colour management of textile
printers. However, the precise measurement of the colour of fabrics is challen-
ging, because their interactions with light are very complicated [4], and they have
a strong influence on the colour coordinates measured by a standard spectropho-
tometer [169]. We have studied the uncertainty of colour in textiles in Article
F.

2.3 Texture measurement
As discussed in Sec. 2.1, measurement is the first of the two steps that permit one
to derive the objective parameters of a soft metrology model. A texture sample
can be measured with many different techniques, depending on the property of in-
terest [154, 102]. Since we are interested in texture elements visible up-close to the
naked eye (fabrics are usually observed in such a context), we can set the resolution
boundaries of our measurement system between 10mm and 0.1mm [37]. Indeed,
human vision has a lower resolution limit roughly equal to 0.07mm, whereas
surface features smaller than this cannot be directly detected by the unaided eye.
Small scale roughness influences the point reflectance function of the sample, and
through it its total appearance, by affecting the perception of haze and gloss rather
than texture [34].

As clearly exemplified in Adelson and Pentland’s workshop metaphor [3], the
visual stimulus generated by a spatially complex scene depends on three main
factors: the spectral and geometrical properties of the light illuminating the scene,
the topographical structure of the surfaces contained in it and their reflectances.
Since the illumination of a measuring instrument can usually be controlled, in this
work we assume that the light source of the scene does not influence the texture
pattern, i.e., that it does not project a pattern on the surface under study. However,
in practically defining a texture measurement device care must be taken in design-
ing its illumination as it has been proven that texture perception is greatly affect by
illumination geometry [36]. Therefore, excluding that, the two physical properties



14 Background

of a surface that generate a texture stimulus are spatial variations in its topograph-
ical structure (physical texture in Ref. [201]) or in its spectral reflectance (optical
texture in Ref. [201]). A review of state of the art measurement of physical texture
is reported in Sec. 2.3.1 and of optical texture in Sec. 2.3.2.

2.3.1 Topography measurement

Although the term binocular vision literally means vision with two eyes, it is usu-
ally employed to refer to the limited group of animals who possess a large area of
binocular overlap rather than to animals with two eyes [112]. The brain of these
animals processes the disparity between the two images and the vergence posi-
tion of the eyes to infer the distance of visible objects [12]. In addition to depth
perception, binocular vision also provides other advantages, both for basic [136]
and complex [215] tasks. In this context, textured reflectance information actu-
ally provides additional cues to discern the topography of a surface, which is the
principle that shape from texture algorithms use [5].

Topography measurement methods of textured surfaces have been standardised in
ISO 25178, which is comprised of various parts. In particular, part 6 subdivides
the available methods of surface texture measurement into three classes [130]:

• Line profiling: procedures that have an height function z(x) as output (e.g.
stylus instruments, phase-shifting interferometry [58], optical differential
profiling [184]). These approaches were the first to be developed [154],
but they provide only partial data on the structure of the sample.

• Area-integrating: methods that produce numerical results that depend on
area-integrated properties of the surface texture (e.g. total integrated scat-
ter [108], angle resolved scatter [243], parallel plate capacitance [155]).

• Areal topography: techniques that produce height functions z(x, y) (e.g.
parallel stylus measurements [21], coherence scanning interferometry [57],
scanning electron microscopy [73]). They are standardised in Ref. [129].

Note that contact-based measurement techniques, such as stylus instruments, can-
not be applied to soft and fragile surfaces, such as most fabrics. Given the range
of scales of interest, the 3D structure of fabrics has been mainly measured either
with stereo systems [142], with photometric stereo [249, 140], or with structured
light [1]. In Article H, we helped develop a multi-camera system for the recon-
struction of the 3D structure of an object, which can be applied to fabric samples.
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2.3.2 Reflectance measurements

The reflectance R(λ) of a material is defined as following:

R(λ) =
Φre(λ)

Φri (λ)
(2.1)

where Φre and Φri are respectively the light flux (or power) reflected by the surface
and the flux incident on it [110]. Therefore, R(λ) is a function that indicates the
effectiveness of the material in reflecting radiant energy. Given a detector with a
set of sensitivities sn(λ), the signal acquired by its nth channel can be calculated
as [151]:

ρn =

∫

Λ
Ee(λ)sn(λ)dλ =

∫

Λ
R(λ)Ei(λ)sn(λ)dλ (2.2)

Here, Ee(λ) is the spectral irradiance emitted by the sample under analysis, R(λ)
is its reflectance,Ei(λ) is the spectral irradiance of the illumination source and Λ is
the spectral domain of interest. The reflectance can be therefore calculated dividing
the emitted irradiance Ee(λ) by the irradiance of the light source Ei(λ) incident
on the sample [196]. If the nth spectral sensitivity is the Dirac delta function
δ(λ) centered in λ0, i.e. sn(λ) = δ(λ − λ0), the response of the nth channel of
the device corresponds exactly to the spectral irradiance at the same wavelength,
i.e. ρn = Ee(λ0). Although this theoretical case is not achievable in practice,
it shows that the responses ρns of an imaging device provide an estimation of
spectral irradiance of a scene, and thus of the radiance of the objects contained
in it. Eqn. 2.2 also applies to the HVS by taking the colour matching function
(CMFs) x̄(λ), ȳ(λ) and z̄(λ) of the three cone types as sensitivities sn [222].
In this case, the wavelength domain Λ corresponds to the visible spectrum, i.e.
Λ ∈ [380, 740]nm [116].

In the context of texture appearance, as discussed in Sec. 2.3, the spatial variation
of spectral reflectance R(λ) is one of the two physical properties of the sample
that forms the texture stimulus. In fact, a spatially varying reflectance R(x, y, λ)
can generate a colour texture pattern on the surface (referred to as optical tex-
ture in Ref. [201]). Therefore, its assessment is at the core of most texture meas-
urement and analysis methods. Currently, the most common way to evaluate the
spectral behaviour of the reflectance R(x, y, λ) of a surface is with spectral ima-
ging devices, which provide an estimation of the spectral irradiance Ee(x, y, λ)
of a scene through the model described by Eqn. 2.2 [101]. These were first in-
troduced around the mid 19th century by Pierre Jules César Janssen, a French
astronomer who used a double-slit monochromator to analyze the spectrum of the
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solar corona [134]. This measurement setup based on point scanning had two
major drawbacks: poor light collection efficiency and high sensitivity to motion
artifacts. The problems of the monochromator were eventually solved with the in-
troduction of 2D detector arrays in the 1980s [92]. Such devices provided a higher
efficiency and the possibility to cover two dimensions of the three dimensions oc-
cupied by a spectral image (i.e. the x and y coordinates of the imaging plane and
the wavelength dimension λ). Various solutions have been developed to probe the
missing dimension:

• Spatial scanners: instruments based on this approach use a sequential spec-
tral acquisition, i.e. they use a 2D detector and a diffraction mechanism to
gather both spatial and spectral information at the same time. The missing
spatial dimension is scanned by moving either the detector or the object.
Examples of this approach are pushbroom devices [114, 153].

• Spectral scanners: devices similar to spatial scanners, but in this case it
is the wavelength dimension that is scanned in time. This is usually done
thanks to spectral filters [25, 90, 65].

• Snapshot setups: the main drawback of the two previous methods is that
they work under the assumption of static scene [233]. The most common
choice to acquire dynamic data is to use snapshot cameras, whose integra-
tion period are able to capture both spectral and spatial information via a
time lapse shorter than the temporal resolution requested. A possible ap-
proach is the Integral Field Spectroscopy (IFS), used mainly for astronomy
applications. IFS is based on the idea of rearranging the voxels composing
the domain of the spectral irradiance Ee(x, y, λ) in two dimensions thanks
either to mirror [244], fiber [240], or lenslet [48] arrays. Other two altern-
atives include Computed Tomography Imaging Spectrometry (CTIS) [190,
27], based on wavelengths multiplexing with a transmissive diffraction grat-
ing and Multi-spectral Sagnac Interferometer (MSI) [147], which exploits
channeled imaging polarimetry, and filter-based methods, such as the tun-
able echelle imager [11] or the image-replicating imaging spectrometer [107].
But the most common solution to this problem is to sacrifice spatial resol-
ution in favor of spectral resolution by superimposing a colour filter array
(CFA) in front of the imaging sensor [13, 19]. This latter approach is partic-
ularly effective when a limited spectral resolution is required, as seen in the
reproduction of the human visual system response.
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Digital cameras based on CFA devices are currently the most widespread ima-
ging devices. Accurate colour reproduction with these instruments requires the
exact setting of the illumination and the radiometric calibration of the measure-
ment device [96]. The latter is usually achieved either through the measurement
of a target with known reflectance or of the spectral sensitivity functions of the di-
gital sensor [128]. However, the two aforementioned requirements are not always
feasible (for example, illumination control is not viable for images containing so-
called textures in the wild [39]). Given that evidence on multiple fronts shows that
the choice of colour space can affect the precision of texture classification [33],
we studied the effect of accurate radiometric calibration in Article B. In Article A
we furthermore analysed the dependence of textile classification on the number of
spectral channels available.

2.4 Texture characterization
Once the height map z(x, y) and/or the spectral reflectance R(x, y, λ) of a source
are known, one can manipulate it to extract salient information on the nature of
the texture [201]. These significant traits, which reflect some characteristic of the
surface, are usually referred to as texture features [198]. Features are widely used
to perform various computer vision tasks, such as classification [115], segmenta-
tion [235] or object recognition [35].

In this section, we present a review of the most used feature extraction techniques
available. Sec. 2.4.1 deals with methods applicable to regular textures, Sec. 2.4.2
with those generally used with irregular textures [198]. The features addressed
in these two sections are extracted from data with one channel (either grey-scale
images or height maps), and their extension to the multichannel case is discussed
in Sec. 2.4.3. To conclude, we dedicate Sec. 2.4.4 to the description of the state of
the art of stationarity analysis of a two-dimensional signal, which is the focus of
Articles C and D.

2.4.1 Regular textures

A texture is regular if it has been generated following a deterministic algorithm [198].
Regular textures can be modelled as consisting of repeated texture elements, some-
times referred to as texels. From a synthesis point of view, these patterns can be
described with shape grammars, which are a formal way to specify the algorithm
used to generate them [229]. A shape grammar is composed by two elements: an
elementary pattern, which in our case corresponds to the texel, and a set of place-
ment rules. The textured image is obtained by reproducing the texel according to
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the rules [103]. In the cases in which these are repeated recursively, the texture
is translationally symmetric, and thus can be described through crystallographic
group theory [166]. This mathematical framework can be exploited to detect and
describe regular and near-regular patterns images [247].

2.4.2 Irregular textures

Most natural textures are irregular, which means that, unlike regular ones, they can-
not be defined through a set of repeatable rules [198]. Depending on the knowledge
available surrounding the process that generates the texture and the application, a
wide variety of techniques can be used to analyze images containing irregular pat-
terns. In this section we provide a quick summary of the most used techniques.

Grey level co-occurrence matrices

Let us suppose to have an image of dimension Nx ×Ny, with Ng grey tone levels
and with grey-scale values g(i, j) at pixel position (i, j). Its Grey Level Co-
occurrence Matrix (GLCM) p(d, θ) is defined as the matrix of dimensionsNg×Ng

whose element (n,m) corresponds to the number of times that two image pixels
distant d and at an angle θ from each other assume the grey tone values n and
m [198]. Salient parameters can then be extracted from each matrix, the most suc-
cessful of which have been proposed by Haralick in Ref. [104]. GLCM features
have been directly inspired by the first Julesz conjecture [137], and are thus re-
lated to second-order statistical properties of the texture. The main drawback of
the GLCM features proposed by Haralick is that they are very time-consuming to
calculate [181]. Therefore, many alternative methods based on the same principles
have been proposed through the years [208, 182].

Histograms

Another broadly used group of texture analysis methods represents images through
parameters of their histograms [209, 214, 210]. The most popular of these ap-
proaches is the Histogram of Oriented Gradients (HOG), introduced in a 1986
patent application [176] and further developed in Ref. [53]. Widely used in the
field of object detection, this technique is based on the idea that texture can be
described by local histograms of image gradient orientations in a dense grid. As a
consequence, however, it is limited in the detection of global structures.

Markov random fields

A Markov Random Field (MRF) is a stochastic process that can describe the spa-
tial relationships between pixels in a user-defined neighborhood [115]. The MRF
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model is based on the assumption that the value of a pixel directly depends only on
the intensities of its neighboring pixels, or the Markovian property [161]. MRFs
were first applied to the field of texture characterization by Ref. [50], but they
became popular with Ref. [17], in which they were used to model generic lattice
systems. Currently, they are mainly employed in classification and segmentation
tasks [173]. MRFs characterize an image with a parametric distribution that ac-
counts for the relations with neighboring elements as terms of its prior probability.
Since they can only describe relationships between pixels within the neighbor-
hood, the main drawback of MRF-based techniques is that they are suited to a
limited number of textures [255].

Fractals

A fractal is an object with irregular structure that shows a degree of self-similarity
at different scales [143]. In texture analysis, non-deterministic fractal processes
are fitted to the image to extract self-similar statistical parameters, such as the
fractal dimension D [135]. Intuitively, D links the number N(ε) of basic elements
(e.g. boxes, spheres) required to cover a set S ∈ R to their characteristic length
ε, i.e. D = logεN . In the case of a grey-scale image, this set S corresponds to
the bidimensional intensity function I(x, y) and the fractal dimension D estimates
how self-similar the image is at different scales [198]. The main flaw of fractal
methods is the same as with MRF: they work well only on images that have an
irregular geometry, such as those generated with natural processes [115].

Local binary patterns

The Local Binary Pattern (LBP) texture features were first introduced in Ref. [189]
and became popular with Ref. [188]. To define the LBP, one needs first to define
a standard neighbourhood of P pixels with respect to a central one. Then, each
neighbouring pixel is compared to the central and the pattern is transformed in a
binary series according to the equation:

LBPP,R =

P−1∑

p=0

sign(gp − gc)2
p (2.3)

Here, R represents the radius of the neighbourhood, sign(z) = 1 ⇔ z ≥ 0,
otherwise sign(z) = 0, and gc and gp indicate the grey levels for the central and
the pth neighboring pixel, respectively. This operator generates a map with 2P

levels, which characterizes each pixel in function of its relative relation with its
surroundings. As it describes the distribution of local patterns, the LBP method
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can be considered as a texton-based approach [139]. LBP features have proven to
be very effective in texture classification tasks, and many approaches have been
developed based on these [200, 24]. Their main drawback is their low resilience to
noise [251].

Fourier transform

A wide group of texture characterization techniques are based on spectral meth-
ods [198]. The forerunner of these methods is the Fourier Transform (FT) operator,
which can be defined as:

FT [f(x)] = f̂(ξ) =

∫ ∞

−∞
f(x)e−2πixξdx (2.4)

where ξ is the variable of the transform space and i is the imaginary unit [94]. The
FT permits to project a function f(x), x ∈ R on a complete set of orthonormal
elements, represented by the e−2πixξ term in the definition. This corresponds to
decomposing an image into a summation of sine and cosine functions with differ-
ent phases and frequencies [115]. The resulting function f̂(ξ), ξ ∈ C, is a function
in the frequency domain. The FT is therefore used to represent the frequencies
that form an image, which is particularly suitable to describe repetitive and peri-
odic textures [253]. The main defect of the FT in the context of image analysis is
that, since it is a sum of sine and cosine functions, it is not well-suited to capture
local transient signals.

Wavelet transform

The basic idea behind the wavelet transform is to perform a spectral analysis
based on the same mathematical principles of the FT, but with a local functional
basis [54]. We can thus define the wavelet transform as as:

Wψ[f(x)] =Wψ(a, b) =
1√
|a|

∫ ∞

−∞
ψ∗(

x− b

a
)f(x)dx (2.5)

where ψ is an L2(R) function, called mother wavelet. The mother wavelet can
be used to define a complete family of functions ψjk(x) = 2j/2ψ(2jx − k) with
j, k ∈ Z, which correspond to its translated and stretched versions. ψ(x), and
consequently also the functions derived from it, is by definition a compact support
function with oscillatory characteristics, and it is therefore spatially limited [185].
Generally, the mother wavelet is associated to a low-pass filter, and it is paired with
an auxiliary function φ(x) called father wavelet, which is added to the wavelet
family to obtain a complete functional basis [237].



2.4. Texture characterization 21

Gabor filters

Gabor filters are a group of functions based on a complex sinusoidal function mod-
ulated by a bidimensional Gaussian distribution [198]. They have been explicitly
modeled on early processing stages of the HVS [191]. The basic structure of a
Gabor function is the following:

h(x, y) = g(x, y)ei2π[Ux+V y] (2.6)

Here, g(x, y) = 1
2πσxσy

exp{−1
2 [(

x
σx
)2+( yσy )

2]} is a Gaussian function, while the
vector (U, V ) ∈ R2 represents a specific 2D frequency. Mathematically, this fam-
ily of functions is particularly important because it permits to minimize the wavelet
transformation uncertainty principles (i.e. ∆x ·∆u ≥ 4π and ∆y ·∆v ≥ 4π) in
two dimensions [55]. Therefore, it provides the best trade-off between spatial and
spectral localization achievable with a spectral transform. Several authors have
modified and improved this texture analysis technique [41, 172, 70].

Autocorrelation

The autocorrelation function quantifies the similarity of a texture with its shifted
self as a function of the shift distance [94]. It is able to detect repetitive patterns,
and therefore it can be linked to the FT. The shape of the autocorrelation function
is used as an indicator of how coarse a texture is [115]. The normalized autocor-
relation of an image with dimensions Nx ×Ny can be defined as:

ρ(x, y) =

1
(Nx−|x|)(Ny−|y|)

∑
i,j I(i, j)I(i+ x, j + y)

1
NxNy

∑
i,j I(i, j)

2
(2.7)

where I(i, j) indicates the grey level of the image at position (i, j). As the FT,
the autocorrelation is based on a global model, and it thus tends to neglect local
information.

Mathematical morphology

Mathematical Morphology (MM) is a theory used to analyse spatial structures [220].
It can be used to extract information on the shape and form of objects, and it is
based on a mix of set theory, integral geometry, and lattice algebra. It has also
proven to be a powerful image analysis technique, and can thus be found at the
core of many image processing and analysis algorithms [250, 165, 22]. Moreover,
MM provides a set of tools, such as granulometry and the pattern spectrum, that
can be employed to characterize textures [219]. These quantities supply us with
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information on the size of objects in the image by applying the morphological
transformations of opening and closing to it. The advantage of MM features is that
they can be computed very efficiently [60], while their main disadvantage is that
they are unable to store positional information.

Deep learning features

The complexity of texture appearance has prompted many researchers to seek a
solution to texture-related challenges in the increasingly widespread Convolutional
Neural Networks (CNNs) [164]. A CNN is a deep neural network whose con-
nectivity pattern between neurons is inspired by the organization of the animal
visual cortex [175]. Perhaps thanks to this similarity with natural structures, this
typology of networks has proven to be very effective in many computer vision
tasks [146, 26, 39, 40, 7, 163, 252, 52]. In fact, the authors of Ref. [14] proved
that using off-the-shelf features extracted by pre-trained CNNs for texture clas-
sification provides, in most cases, better results than handmade ones. The main
drawback of CNNs is their black-box nature, which makes it difficult to clearly
interpret how the inputs of the network determine its decisions [245]. Given the
current state of the art, it is therefore impractical to use these techniques for the
development of a texture appearance model.

2.4.3 Multi-spectral features

In Subsec. 2.4.2 we limited ourselves to addressing texture features in the context
of grey-scale images. However, it has been proven that taking into account colour
information improves the performance of various computer vision algorithms [68,
194, 180]. In fact, most texture analysis methods discussed have been extended to
multichannel applications. It is therefore useful to give a summary of the methods
used to expand texture features to cases of images with three or more channels.

Ref. [33] divides these techniques into two main categories. The first one is com-
posed by the integrative approaches, which derive intensity features of each chan-
nel and join the results into a feature vector. The second one encompasses parallel
approaches, which first convert the image to grey-scale, calculating its intensity
features, and then merges them with a set of global colour parameters. Pure colour
features used in parallel techniques are generally elementary properties, such as
descriptive statistics or percentile information. They are applied to the dimensions
that contain colour information (e.g. a and b in the CIELab space), which depend
on the choice of colour space [194]. Integrative approaches, on the other hand, are
directly derived from their corresponding intensity methods [156, 174, 10]. For
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both of these categories, the colour space and coordinate normalization methods
adopted can have a big influence on the performance of the implemented task. In
Articles A and B, we linked this influence to the choice of a texture measurement
setup.

2.4.4 Texture stationarity

Stationarity is a property of signals that represents the independence of the dis-
tribution of their generating process from time or space [121]. It is central for
texture interpretation because it indicates if and when global methods are applic-
able [198]. Therefore, many texture feature extraction techniques assume that
the image to which they are applied is (second-order) stationary [94]. This is
due to the fact that the stationarity of an image informally means that its statist-
ical properties do not change from pixel to pixel [185]. Formally, this translates
to a property type called strong stationarity, which requires that a signal has a
finite-dimensional distribution that is shift-invariant, i.e. that its joint distribu-
tion F in a sub-region of the image is the same everywhere (F (Xr1 , · · ·Xrn) =
F (Xr1+∆r, · · ·Xrn+∆r)∀ri, i,∆r). However, strong stationarity is usually too
strict to be applied in practice, therefore the concept of weak stationarity is gen-
erally used. A signal is weakly stationary if the first and second moments of its
process are invariant under a coordiante shift, i.e. cov(Xr1 , Xr2) = γ(r1 − r2).
This is the type of stationarity generally assumed by texture analysis methods.

The stationarity of a signal can be verified with a statistical test [231]. Many sta-
tionarity tests have been developed over the years for one-dimensional signals, but
only a few of them have been extended to two dimensions. Of these, the approach
proposed in Ref. [75] is based on the fact that the second-order cumulant spectrum
matrix of a stationary image should theoretically be diagonal. Therefore, the au-
thors used the l2 norm of its off-diagonal elements as test statistic. This method has
been put in practice in Ref. [76], which applied it to the problem of source detec-
tion in shallow water. Ref. [23], on the other hand, proposed to evaluate the spatial
stationarity of uniform linear arrays using the generalized likelihood ratio statistic.
The main drawback of these two methods is that they require multiple realizations
of the process to evaluate its stationarity, which is a strongly restricting require-
ment. The author of Ref. [87] tested stationarity on the basis of the homogeneity
of a set of spatial spectra evaluated on different windows of the image. On the
other hand, Ref. [20] used the empirical mean and variance of images with known
underlying asymptotic behavior to detect any anomalies, which should hint at the
images’ non-stationarity. The main defect of these latter two approaches is that
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they cannot be automated. In fact, the output of the first algorithm depends on how
the windows are chosen, while the second one relies on visual inspection to de-
tect the non-stationarity of the images. Finally, Ref. [231] introduces a stationarity
test based on the locally stationary two-dimensional wavelet (LS2W) model, using
the constancy of its power spectrum as test statistic. According to Ref. [78], an
important side of the texture’s appearance is its dependence on the viewing scale.
Given that the LS2W test is able to assess the stationarity of a single image at
different scales, we contributed to the definition of a soft metrology scheme for
texture appearance by using it to address the uniformity and scalability of a texture
in Articles C and D.

2.5 Research methods
Each step of the research discussed in this Ph.D. thesis required a specific method-
ology. In most cases, the adopted methods were conceived as variations and con-
tinuations of approaches used by other researchers, whose work was perceived as
particularly relevant for the purposes of the Ph.D. project. This approach allowed,
indeed, a great consistency with literature as well as methodological rigour.

For what concerns the first part of the project, which addresses the problem of out-
lining the physical requirements of a texture measurement device (see Sec. 1.2),
we used the framework of texture classification to evaluate the efficiency of the
measurement system defined. In particular, in both Article A and Article B we
measured a set of hyperspectral images, derived from them the reflectance of the
scene and applied to it various spectral sensitivity functions to simulate the re-
sponse of different imaging systems. This procedure is in line with the methods
commonly used to characterize digital imaging devices [213]. The dataset em-
ployed in these two papers was obtained with an HySpex VNIR-1800 camera, for
which we adopted the measurement approach presented in Ref. [144]. Further-
more, Article B and Article H assessed the calibration of an RGB camera, which
has been performed following Ref. [128]. In the same publication we also im-
plemented a manual rendering and a sharpening through a basic unsharp masking
process, as suggested in Ref. [94]. The uncertainty measurements made in Article
F have been mainly rest on Ref. [131].

Moreover, in these first two articles of the Ph.D., as well as in Article E, we
extracted a wide variety of texture features from the images obtained. These have
been implemented on the basis of various references, in particular Ref. [33], to
which the articles are inspired, and Ref. [197], which provides a comprehensive
summary of the techniques of texture analysis in computer vision. A survey of
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the techniques used can be found in Sec. 2.4.2. The choice of classifiers, 3-NN
and random forest, and the colour texture examination method were also mainly
based on Ref. [33]. We also employed texture classification in Article D, for which
however we drew inspiration from Ref. [14]. On the other hand, the computations
carried out in Article G have all been addressed in Ref. [63].

Articles C and D addressed the problem of the evaluation of texture stationar-
ity. To achieve this, we implemented the image stationarity test introduced by
Ref [231], which has its foundations on the wavelet research of Nason and col-
leagues [185, 72]. In Article C we also proposed a scale-dependent alteration of
the method, which we evaluated according to the criteria used in Ref. [231], as
well as tested it on the Amsterdam Library of Textures (ALOT) database.

We performed various visual experiments during the Ph.D. project discussed in
this thesis. In particular, in Article D we calculated the Spearman rank-correlation
between the confusion matrices of the classification algorithms and a similarity
coefficient derived from a texture grouping experiment. The results of this pro-
cess, that we conceived ourselves, were then analysed to quantify the relationship
between perceptual and mathematical stationarity. On the other hand, in Article
E we have collected a series of semantic data on the appearance of fabrics, which
we have arranged in a vocabulary on the basis of Ref. [118]. In the same paper, we
proposed an ontology for textiles, which was based on the Semantic Web frame-
work [211].
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Chapter 3

Summary of the included articles

In this chapter, we summarize the articles included in this thesis. These include
three journal papers, five conference proceedings and a series of oral contributions.
For each paper, we present a synopsis of motivations, methods and outcomes. For
further details, refer to the respective manuscripts, which can be found in the final
part of this thesis.

3.1 Core contributions
In this section, we gather the major contributions to the topic of this Ph.D. project.

3.1.1 Article A: Dependence of texture classification accuracy on spectral
information

Michele Conni, Helene Midtfjord, Peter Nussbaum, and Phil Green.
Dependence of texture classification accuracy on spectral information.
In 2018 Colour and Visual Computing Symposium (CVCS), pages 1–
6. IEEE, 2018

As addressed in Subsec. 2.4.3, there is evidence that one can improve the perform-
ance of texture analysis by taking into account colour cues. To our knowledge,
however, this principle has only been applied to trichromatic images. Given the
growing interest in the study of texture of hyper-spectral images, the purpose of
this paper was therefore to quantify the value of spectral information in texture
classification. Since the dataset used for this investigation was mainly composed
of textiles, this analysis also provided an insight on the requirements of a measure-
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ment system aimed at the classification of fabrics.

As a database of hyper-spectral texture images was not available, we first acquired
a set of 191 hyper-spectral images using a HySpex VNIR-1800 camera [122], some
of which are shown in Fig. 3.1. For each image we then extracted the spectral
reflectance information of the samples using a reference surface with a known re-
flectance. A set of simulated multi-spectral images with an increasing number
of channels was subsequently obtained from each sample reflectance by applying
various spectral sensitivities to them. These sensitivities were defined as the col-
lection of n identical Gaussian functions whose variances covered the range of
wavelengths in which the HySpex is sensible. After this, we extracted a selection
of texture feature vectors for each simulated image based on various techniques
(GLCM, LBP, Gabor and wavelet) with an integrative approach. We eventually
classified these vectors with two different classifiers (3-nearest neighbours (3-NN)
and random forest (RF)) and collected the accuracy of the algorithm depending on
the number of spectral channels. This process was performed both in the whole
spectral domain of the camera (λ ∈ [400, 1000]nm), which includes a large por-
tion of in the near infrared (NIR) region, and in the visible (λ ∈ [400, 730]nm).

The results of the experiment show that texture classification accuracy increases
with the number of spectral channels with which the image is acquired. This in-
crement has however a saturation value, which depends on the type of feature used.
For the features considered, the saturation is reached with less than ten channels.
These results are valid for both classifiers, but the 3-NN appears to outperform
RF for LBP features. Considering only the visible spectrum on average enhances
the classification performance of 5% for the lower number of channels, although
the asymptotic value of the curves appears to be independent from it. In order to
infer the optimal number of channels that a measurement system should have to
maximise texture classification, however, further study is needed, because in this
work we used ideal spectral sensitivities. The ideas discussed in this paper have
been expanded in Article B (Sec. 3.1.2).

The Ph.D. candidate conceived the research idea, gathered the experimental data
and proposed the methodology of analysis. He also contributed significantly to the
practical implementation of the computations needed for the analysis and authored
the article.
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Figure 3.1: Example of the dataset acquired in Article A.

3.1.2 Article B: The effect of camera calibration on multichannel texture
classification

Michele Conni, Peter Nussbaum, and Phil Green. The effect of
camera calibration on multichannel texture classification. Journal of
Imaging Science and Technology, 65(1):10503–1, 2021

To capture images in a perceptually meaningful colour space, an accurate ra-
diometric calibration of the employed camera is needed [96]. However, this is
a cumbersome and lengthy process, and in some situations it may be impractic-
able. It has been shown that the colour space in which the extraction of texture
features is performed can affect the results of texture analysis algorithms. There-
fore in this paper we aimed at quantifying the effect of accurate camera calibration
and of other standard steps in a camera imaging pipeline on texture classification.
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Figure 3.2: A scheme of the experimental workflow followed in Article A. The number
of elements constituting the data is reported at each step.

This may affect how texture image databases are used, some of which lack calibra-
tion data. In this work we also compared the ideal results of Article A (Sec. 3.1.1)
with those obtained with spectral sensitivities of real devices.

In order to implement this analysis, we first determined the spectral sensitivities
of a Raspberry Pi V2 camera module with a monochromator. We then applied
them to the database of reflectances acquired in Article A, thus extracting a set
of uncalibrated trichromatic images. For each of these we calculated the same
set of texture features used in Article A, which we used to classify the samples
with two classifiers (3-NN and random forest). We compared the classification
accuracy with the results of Article A. Following that, we examined the effect of
various standard processes normally applied to images in a commercial camera.
First, we optimized the colour matching functions of the Raspberry Pi camera,
thus obtaining the model of a calibrated device. We then applied colour rendering
and sharpening to the images, classifying them after each step. A scheme of the
whole process is displayed in Fig. 3.2.

The results of the experiment show that the accuracies obtained with the meas-
ured Raspberry Pi camera sensitivities are very similar to those derived in Article
A. Moreover, the various steps of the image acquisition pipeline had a relatively
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small effect on the classification results. Between these, the rendering step is the
procedure that most affects the accuracy, increasing it by approximately 5%. This
could be due to the fact that for rendered images the colours are usually more sat-
urated, which could increase the distance between different classes in the features
space. These results suggest that, when classifying texture images, it is preferable
to work with fully rendered pictures rather than pure raw images, which managed
to match the accuracy results achieved by the multi-spectral systems simulated in
Article A.

The candidate contributed to this paper by proposing the research idea, developing
the research methodology and performing the Raspberry Pi camera calibration pro-
cedure, both experimentally and computationally. Moreover, he wrote the research
paper and followed its process of submission and peer-review.

3.1.3 Article C: Texture stationarity evaluation with local wavelet spectrum

Michele Conni and Hilda Deborah. Texture stationarity evaluation
with local wavelet spectrum. In London Imaging Meeting, volume
2020, pages 24–27. Society for Imaging Science and Technology, 2020

Ref. [197] defines a stationary texture image as an image that contains only one
type of texture. Based on this definition, the authors recommend analysing non-
stationary images with methods different from those used for stationary ones.
However, this line of thinking is ambiguous, because stationarity can have two
possible interpretations. If the authors of Ref. [197] intended stationarity in a
mathematical context (see Subsec. 2.4.4), they should have indicated a method for
quantifying the stationarity of images. Otherwise, if they meant it in the context of
visual perception, they should have referred to the texture discrimination literature
(see Sec. 2.1), which, however, does not currently indicate a comprehensive model
to evaluate the homogeneity of texture. Given that, as far as we know, the math-
ematical and perceptual frameworks have never been compared - though they are
logically akin - in Article C we performed a pilot study in order to probe if and
how they are related.

A discrete time seriesXt ∈ Z is defined as weakly stationary if the mean of its joint
distribution is constant over time and its covariance between two time coordin-
ates t1 and t2 depends only on their difference (KXX(t1, t2) = KXX(τ, 0), τ =
t2 − t1,∀t1, t2 ∈ N). Ref. [72] expanded this concept to image processing by
defining it for a bidimensional signal with pixel coordinates (u, v), and Ref. [231]
further used it to delineate a stationarity test for images. In Article C, we first pro-



32 Summary of the included articles

posed and implemented a modification to this test to make it capable of extracting
scale-related stationarity information. We then applied this test to two groups of
100 artificial images obtained with homogeneous statistical distributions, a white
noise process and a correlated Gaussian random field, to confirm that they were ac-
tually labeled as stationary. Finally, we applied it to a subset of the ALOT texture
database [28], in order to personally judge the effects of various types of texture
on the output p-values.

The results of the experiment with the artificial images show a p-value higher than
the chosen significance level of 5% at every scale, thus confirming its effectiveness.
Furthermore, the p vector has revealed to be an interesting tool to fathom these
attributes at different scales. Additional results of this analysis can be found at
this link. From these results it seems that man-made textures are more stationary
than natural ones. Based on this study, we planned the experiments performed in
Article D (Sec. 3.1.4).

The thesis author contributed to the conception of the research idea and proposed
the modifications of the stationarity test to add scale dependence. Together with
the co-author of Article C, he designed the experiment, developed the research
methodology, acquired the data and performed the analysis. The candidate also
contributed substantially to writing the research paper.

3.1.4 Article D: Visual and data stationarity of texture images

Michele Conni, Hilda Deborah, Peter Nussbaum, and Phil Green.
Visual and data stationarity of texture images. Journal of Electronic
Imaging, 30(4):043001, 2021

The objective of this paper was to further gain information on the LS2W station-
arity test proposed in Article C (Sec. 3.1.3) and on its relationship with perceived
stationarity. This link has been discussed in Ref. [231] in the context of fabric
pillage, whose results were neither general nor supported by experimental data.
Moreover, in the framework of soft metrology, Article D aimed at advancing the
development of a model for texture uniformity.

To achieve these goals, we performed three different investigations: a chessboard
stationarity analysis, two classification tasks, and a psychophysical experiment.
For the first one, we generated a set of chessboard images of various dimensions,
orientations and noise levels. With this, we wanted to study in detail which effect
a plain regular texture such as a chessboard would have had on the p-values at
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Figure 3.3: Structure of the first task in the classification investigation of Article D.
Each input image is split into sub-images, which are then classified. The precision of the
classification is evaluated based on whether the sub-images are correctly linked to their
original image.

different scales. The second analysis was aimed at understanding the veracity and
the limits of the assertion that some texture analysis techniques are more suited
for stationary image characterization than others. We thus performed two different
classification tasks on 110 texture images extracted from the Describable Textures
Dataset (DTD) [69, 39]. In the first of these classification tasks, two texture feature
techniques, GLCM and wavelet, were used to extract descriptive vectors from each
image. In fact, according to Ref. [197], GLCM texture features are more suited to
describe stationary images than wavelet. We then compared the classification ac-
curacy obtained considering the stationarity information provided by the LS2W
test with the accuracy supplied by a standard classification approach (see Fig. 3.3).
We subdivided the original images into non-overlapping sub-images and we used
the original image as class. In the second task, we repeated the experiment, but
we used the texture classes defined in Ref. [39] and five feature vectors (LBP,
GLCM, HOG, Gabor and wavelet). Again, the performances of the algorithm with
and without stationarity cues were compared. As a reference, we also performed
the same task with a set of features obtained from various pre-trained CNNs. Fi-
nally, in the third task we set up an online psychophysical experiment based on the
definition of perceptual stationarity given in Ref. [198]. In this we presented to the
observers a set of 25 images and a reference, all randomly selected from the subset
of the DTD database used for the classification experiment. We then asked the ob-
servers to select all the images that looked similar to the reference. From this, we
calculated the correlation between the texture similarity judged by the observers
and the results of the classification tasks.

The application of the stationarity test to the chessboard images showed a strong
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stationarity, which is in line with how the HVS perceives regular textures. How-
ever, the p vector of an image obtained by stretching the chessboard had an un-
expected non-stationary artefact at a single scale, which suggested that the test
could be improved. The classification experiments provided us with additional
insights on the characterization of irregular textures. In particular, the first classi-
fication task demonstrated that the approach to texture analysis in stationary and
non-stationary images proposed in Ref. [198] has limited validity in a classification
framework. On the other hand, the results of the second task suggest that using the
stationarity information does improve the classification of the DTD images in their
human-defined macrogroups. Finally, although the traditional texture features ap-
pear to be weakly correlated with the results of the psychophysical experiment,
the technique that achieved the best correlation with the response of the average
observer was a mix of wavelet and LBP features obtained with the stationarity
information.

In Article D, the candidate played a main role in the conception of the research
idea, the design of the experiment and the development of the research methodo-
logy. He also worked on the algorithms for the analysis of the chessboard images
and for the classification tasks, set up the psychophysical experiment, implemen-
ted the analysis of data and wrote the research paper based on the results. Finally,
he served as corresponding author in the process of submission of the paper at the
Journal of Electronic Imaging and worked with the co-authors to its revision in the
peer-review process.

3.1.5 Article E: Textile texture descriptors

Michele Conni, Peter Nussbaum, and Phil Green. Textile texture
descriptors. Manuscript under review in a journal

Fabrics have played a fundamental part in human society for tens of thousands of
years. However, the link between physical properties and texture appearance of
a textile sample is still far from being fully understood. A perceptual model of
fabrics would be extremely useful for appearance reproduction, and could benefit
industries active for example in the online shopping and digital printing sectors. In
order to obtain information on the behaviour of texture perception, in this article
we studied the relationship between optical characteristics of textiles and semantic
descriptors used by experts in fabric design to define them. We organized these
descriptors in a vocabulary of fundamental terms, and we proposed an ontology
in order to build a general structure of textile perception, logically linking it to
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physical properties.

The first step of this analysis consisted in gathering textile descriptors. We asked
a number of researchers in fabric design to participate in a visual experiment, ten
of whom agreed to collaborate. Some of the participants also invited collaborators
to join, eventually amounting to 28 participants. We then sent to each group of ob-
servers a set of 22 fabric samples, selected between the most commonly used ma-
terials and weavings. The observers were asked to identify no more than five Eng-
lish words that they would have used to describe each fabric sample to someone
who was not able to see it. Once we received the results from each group, we
brought them together, filtered those relative to appearance and arranged them into
a vocabulary formed by their macro-groups, which highlighted pairs of descriptors
with opposite meaning. Following this, we proposed an ontology for textile ap-
pearance, based on objective information related to materials and manufacturing
techniques. The purpose of the ontology was to clarify the scope of the terms used
by the observers and the logical relation between them. After that, we compared
the frequency with which terms corresponding to each macro-group were used to
describe the different fabric samples with the value of some popular texture fea-
tures. We did this by calculating the Spearman rank-correlation coefficient for
each feature-descriptor couple, thus obtaining the feature with the highest correla-
tion for each descriptor. These features were extracted from data obtained with two
different measurement devices: a simple RGB camera and xTex by Vizoo [246],
which acquires various maps of the sample with which one can generate a rendered
version of the surface. Finally, we used the results of the analysis to infer the most
suitable terms for a subset of the textile image database proposed in Ref. [140].

The results of the psychophysical experiment showed that the observers tended
to use not only visual attributes, but also other types of adjectives, which can be
related to mechanical and material properties of the samples. The textile ontology,
based on fabrics literature and industrial standards, was proposed to uncover the
rationale behind these descriptors and to clarify the boundaries between objective
(which one can therefore study independently of perception) and subjective (which
can be analysed through soft metrology) properties of textiles. On the other hand,
the conclusions of the comparison between frequency of use of each descriptor
and value of various texture features showed how pre-trained CNN-based features
achieve the highest Spearman correlation value. However, this result is linked to
the fact that each CNN extracted a total of 1000 features, a much higher number
than that obtained with traditional techniques. If we neglect the learning methods,
the best correlation was achieved by higher statistical moments of the distribution
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of pixel grey-scale values. Moreover, by comparing the results obtained with the
two measurement techniques we can conclude that a good texture analysis setup
requires not only 2D spatial information, but also topographical data. Finally, the
results of the application of prediction models to the textile image database seemed
to be reasonable.

This article was conceived and designed by the Ph.D. candidate, who also proposed
the research methodology, followed the organization and realization of the visual
experiment, envisioned and performed the analysis of data, and wrote the article.
The candidate has served as corresponding author in the process of submission
of the paper, which is currently under review. We expect to be able to provide a
revised version of the article before the Ph.D. defense.

3.2 Minor contributions
In this section we provide a summary of the minor contributions resulting from
various collaborations during this Ph.D. project.

3.2.1 Article F: Measurement uncertainty for printed textiles

Nadile Nunes de Lima, Michele Conni, Phil Green, and Markus
Barbieri. Measurement uncertainty for printed textiles. In 2018 Col-
our and Visual Computing Symposium (CVCS), pages 1–6. IEEE, 2018

Colorimetric measurements of materials with a complex topographical structure,
such as wood or fabric, usually employ spectrophotometers with a large sampling
aperture, although graphic industry standards do not provide any specific recom-
mendation on the matter [127]. In fact, since the device measures the average
colour in its field of view, a larger aperture should correspond to a more stable
and reliable estimation. Moreover, the 0◦ : d geometry is usually considered more
suited to the measurement of anisotropic samples than the 0◦ : 45◦ or 45◦ : 0◦

ones due to their supposed independence from the positioning on the surface un-
der study. In practice, this should correspond to higher reproducibility and lower
uncertainty of the measured data. The aim of this paper is to provide experimental
evidence to these hypotheses in the specific case of digitally printed fabrics.

We addressed this problem by evaluating the performance of four commercial
spectrophotometers (one bench-top and three hand-held) in terms of short-term
repeatability, inter-model agreement and reproducibility. To assess the short-term
repeatability, we measured various samples: a white Spectralon tile, made of poly-
tetrafluoroethylene (PTFE), a white paper sample with optical brightening agents,
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and five raw fabric samples. We then estimated the Mean Colour Difference from
the Mean (MCDM) of the data [16]. After this, we calculated the inter-model
agreement between all instruments, thus quantifying how accurately two spectro-
photometers can repeat the same colour measurement. Finally, we evaluated the
reproducibility of each device by changing the measurement position on the five
textile samples and calculating the MCDM.

On the PTFE tile and the white paper sample all instruments performed consist-
ently with the manufactures specifications, while on the textile samples the short-
term repeatability was in most cases of the same order as on the Spectralon tile.
Varying the position of the sample with respect to the instrument aperture res-
ulted in a higher uncertainty, which depended on both the device and the textile
material. On printed samples, the 0◦ : d instrument performed best in terms of
short-term repeatability, regardless of the orientation to the sample. However, in
terms of reproducibility, i.e. when measuring the same sample at different loca-
tions, the diffuse spectrophotometer showed similar results as 45◦ : 0◦ ones. We
thus proposed that directional instruments of the type used in the graphic arts in-
dustry can also be used in the control process of textiles, especially if used with a
large aperture.

In this publication, the candidate contributed to the conception of the research idea
and design of the experiment together with all co-authors. Moreover, he supervised
the processes of data acquisition, data analysis and writing.

3.2.2 Article G: Color appearance processing using iccMAX

Max Derhak, Phil Green, and Michele Conni. Color appearance
processing using iccmax. Electronic Imaging, 2018(16):323–1, 2018

In this paper, we investigated some aspects of sensor adjustment transforms (SATs)
using iccMAX, a new specification of the ICC colour management architecture
that allows the user to have more flexibility in the creation of ICC profiles. An SAT
is a mathematical procedure used to predict the appearance of a known colour co-
ordinate after a change in observing conditions. In this paper, we have considered
two types of SATs: the chromatic adaptation transforms (CATs), which are used to
predict the corresponding colour for a given tristimulus value when the chromati-
city of the adapting illumination changes, and the material adjustment transforms
(MATs), which, unlike the CATs, assume that the material, rather than the colour,
remains the same (i.e., that the reflectance of the object is constant). Therefore,
whereas CATs can only address changes in illuminant, MATs are also able to pre-
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dict the effect of a change of observer. In this article, we intended to show that it is
possible to encode both these approaches in an iccMAX profile, and we used this
capability to compare the precision of three CATs (CAT02, CAT16 and the linear-
ized Bradford transform) and a MAT (the Wpt transform) by computing with them
various changes of illuminant.

In order to achieve these goals, we encoded each SAT in an ICC profile using
the iccMAX Reference Implementation. For the comparison, we employed a
set of spectral reflectances obtained from the Munsell Book of Colour and from
ISO 17231-1. We converted these reflectances to XYZ tristimulus values through
various PCC profiles obtained by modifying those included in the Reference Im-
plementation. The conversion from source XYZ to destination XYZ was then
encoded for every SAT in the DToB multiProcessingElements tag of as
many profiles. For each transformation, we eventually calculated the mean CIELAB
∆E∗

ab differences between XYZ values predicted from the reference illuminant
chromatically adapted to the test illuminant, and the exact XYZ values for the test
illuminant computed directly from the spectral reflectances.

The results show that the Munsell data are best predicted by the Wpt MAT, though
CAT02 and CAT16 achieved a comparable accuracy. The fact that the MAT per-
forms well was foreseeable, given that it was optimized for the Munsell reflect-
ances. On the other hand, no single SAT performed best at predicting the change
in colorimetry of the ISO 17321-1 reflectances, although the linearized Bradford
transform achieved a reasonably good result.

The candidate contributed to this work by designing and implementing the experi-
ment performed (i.e., he developed the iccMAX profiles that carried out the SATs
and analysed the resulting data).

3.2.3 Article H: A versatile multi-camera system for 3d acquisition and mod-
eling

Oswald Lanz, Fabian Sottsas, Michele Conni, Marco Boschetti,
Erica Nocerino, Fabio Menna, and Fabio Remondino. A versatile
multi-camera system for 3d acquisition and modeling. The Interna-
tional Archives of Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, 43:785–790, 2020

This article describes an attempt at building a market-ready multi-camera image-
based 3D scanner and at developing its associated 3D digitization algorithm, real-
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ized with photogrammetric reconstruction techniques. The system has been real-
ized as a joint work between industrial and academic partners, in order to achieve
the best performance possible. This setup consists of 31 synchronized high-end
professional cameras fixed on a rigid structure, with an adjustable moving base-
ment and an adaptable FOV. It can thus deal with small and medium objects, with
a maximum volume of approximately 500 × 500 × 500mm3. The paper thor-
oughly describes the measurement setup, discusses its geometric and radiometric
calibration and outlines the 3D reconstruction approach adopted.

The candidate collaborated by designing and performing the radiometric calib-
ration of the device. This was achieved by implementing a target-based charac-
terization procedure for each camera of the system. Such a process permits the
acquisition of a mathematical model that transforms the raw RGB data of each
camera into a device-independent colour space (CIELAB, in this case). This was
performed by capturing an image of a colour target (an IT8.7/4 colour chart with
1617 patches printed on a ProofMaster Matt 140g paper) with known CIELAB
coordinates with every camera. From these, we interpolated a multi-dimensional
look-up table defined on a 33× 33× 33 grid in the raw RGB space of the sensor.

3.2.4 Oral contributions

Throughout this Ph.D., the candidate participated not only in academic events, but
also industrial ones. In this context, he maintained relations with the ICC [123], the
Fogra Forschungsinstitut für Medientechnologien [85] and the Covision Lab [49].
On some of these occasions, he presented various parts of the work in public, in
line with the application focus of an industrial Ph.D. project. Notably, the can-
didate held a talk at the Fogra institute in 2019 and three talks at the 2018, 2019
and 2020 ICC Developers Conferences (or DevCons). These are high-level con-
ferences for industrial experts and academic researchers working in colour man-
agement.

For the purpose of this thesis, it is worth mentioning some details of the present-
ation given at the ICC DevCon 2020. The theme of ICC DevCon 2020 was "the
Future of Colour Management", and it focused on implementation of ICC’s new
colour management architecture iccMAX. The DevCon organisers assembled a
program of experts with experience of particular aspects of iccMAX and its ap-
plications. In the presentation, the candidate showed how one could use iccMAX
to produce an ICC profile able to correct the spectrophotometric measurements of a
sample with known topographical properties. This was achieved by implementing
the simplified model of fabrics reflectance proposed in Ref. [169], which infers the
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colour of the textile fiber based on the characteristics of the measurement device,
the BRDF of the surface material and the height map of the sample. During the
presentation, the candidate explained how to apply this model to an ideal case and
demonstrated how to perform this correction with an iccMAX profile. Therefore,
this was a practical application of the work performed in Article G. Please note,
however, that this presentation was not peer-reviewed, and it should be expanded
with novel concepts in order to proceed to a proper publication.



Chapter 4

Discussion

In Chapter 3, we have summarized the articles included in this dissertation, spe-
cifying motivations, methodologies and results. The current chapter discusses the
outcomes of each article in the context of the research objectives listed in Sec. 1.2
and of the overall contributions to the field of texture appearance. It is divided
in two parts: part one (Sec. 4.1) addresses the three research goals described in
Sec. 1.2 and the relative questions, part two (Sec. 4.2) highlights the contributions
of the research made.

4.1 Research goals
In this section we discuss how we approached the three research objectives intro-
duced in Sec. 1.2 (Subsec. 4.1.1, 4.1.2 and 4.1.3) and the conclusions we can draw
for each of these objectives, based on the results of the various articles. Additional
remarks deducible from the publications have been gathered in Subsec. 4.1.4.

4.1.1 Study the physical requirements of a texture measurement device

In Sec. 2.3 we have summarized the possible ways in which one can physically
address the measurement of texture appearance. This problem can be approached
by measuring either the reflectance, whose connotation varies depending on the
dimensions of the GRF considered (e.g. spatial, spectral, angular, etc.), or the 3D
structure of a surface. Given the wide literature in the context of texture analysis
with computer vision and the need to replicate the HVS structure, with the first
goal described in Sec. 1.2 we addressed the problem of measuring the reflectance
of a sample in the spectral and spatial dimensions. This issue is particularly im-
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portant because, as we have shown in Article F, the complexity of a surface affects
the accuracy of its colour measurement. The spectral measurement of a texture can
be carried out using multi- or hyper-spectral measurement devices. The essential
difference between the two methods is that hyper-spectral imaging employs a num-
ber of different wavelength channels substantially higher than multi-spectral ima-
ging [195]. Having a large number of spectral channels allows to precisely evalu-
ate the spectral characteristics of a material, without loss of information [178, 38].
However, extending texture analysis approaches to multiple channel images poses
various problems. First of all, the computational complexity of the feature extrac-
tion algorithms increases with the amount of channels available [88]. Moreover,
considering features with a high number of dimensions leads to the so-called curse
of dimensionality, i.e. an increase in the sparsity of information, which has been
observed in many pattern recognition applications [98, 225]. In the context of clas-
sification, this is also known as the Hughes phenomenon, and it corresponds to the
reduction of mean classification accuracy when the proportion between training
instances and number of spectral features is too small [113, 239, 230]. Usually,
this problem is addressed either by reducing the information quantity [117, 216],
i.e. by projecting the data on a subspace with a smaller number of dimensions, or
by trimming some channels [224], i.e. selecting the dimensions that provide the
most significant features. All these solutions, however, focus on minimizing the
computational complexity of the task rather than on optimizing the physical meas-
urement system. In Articles A and B, we tried to find the optimal hardware setup
for a texture analysis system, as required by the first goal of this thesis.

In this context, Article A [45] studied how precise the spectral resolution of a snap-
shot device should be to correctly characterize a texture. Given its relevance and its
straightforward interpretation from the point of view of perception [228], we adop-
ted a classification framework to quantify the usefulness of spectral information.
Many papers demonstrated that the accuracy of texture classification can be im-
proved by considering not only spatial, but also colour information [194, 141, 95]
and by optimizing the colour process used [33]. Based on these publications, Art-
icle A established the dependence of the average texture classification accuracy on
the number of channels of the instrument. The results have been derived for four
popular hand-crafted texture features (GLCM, LBP, Gabor and wavelet) and two
widely used classifiers (3-NN and random forest). For every feature and classifier
the accuracy appears to increase monotonically as a − b · e−c(nchan−1), where
nchan represents the number of spectral channels used, a is the maximum ac-
curacy obtainable with the feature, a − b is the accuracy obtained with just one
channel and c is the exponential coefficient, which indicates how fast the function
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grows. Article A demonstrates that for the four typologies of features used the
maximum accuracy is always reached with less than ten channels. Such a number
falls within the scope of multi-spectral imaging, in which the selection of optimal
filters is a recurring topic [187, 106, 6, 144]. Its practical implementation could
be achieved with either a multi-spectral filter wheel or a multi-spectral filter array
(MSFA) [101]. Both methods have their pros and cons: a filter wheel camera has
to acquire a number of images equal to the number of filters, and it is therefore
slower than a MSFA-based design, which provides snapshot images. However, the
latter method requires demosaicing, which negatively affects the spatial resolution
of the system [183]. A possible way to avoid this limitation is to use texture fea-
tures taken directly from raw MSFA images [167]. Ref. [38] points out that using
multi-spectral devices instead of hyper-spectral ones has the disadvantage of not
being suited for the development of a stable metric, since the measured quantities
are detached from the physical characteristics of the sample. However, most re-
flectance functions are smooth, so hyper-spectral systems are generally redundant
for perception-related purposes [6]. Another issue with the approach used in Art-
icle A is that the number of channels obtained with optimization analyses depends
on the dataset used [38]. We tried to minimize this effect by acquiring a large im-
age database mainly composed of fabric samples (more than 80%). The results of
Article A should therefore be valid for fabrics. Another practical limitation of the
paper’s conclusions is that for the analysis we used ideal Gaussian filters, and their
implementation with real-world materials could be difficult to achieve [152, 162].
However, various frameworks to address the problem exist, such as filter selec-
tion algorithms [217]. Moreover, the fact that we have simulated the filters instead
of applying selection or transformation algorithms has allowed us to work with
wide spectral transmittances. These are closer to reality, as colour filters are used
for imaging applications instead of dichroic filters (which have a sharper spectral
dependence) because of their transmittance is angle-independent [84].

We already argued that the precise colour reproduction of digital RGB cameras
can be achieved only when their scanning filters are nonsingular transformations
of the CIE CMFs [242] (the Luther-Ives condition). Nonetheless, the colorimetric
calibration of a digital still camera (DSC) can be used to find the mathematical
transformation from its raw RGB coordinates to a standard colour space, e.g. CIE
XYZ [128]. In Article B [47] we tried to understand if the texture classification
accuracies obtained with the simulated multi-spectral devices in Article A can be
matched by simply calibrating a trichromatic camera. First of all, we compared
the effect of the use of spectral sensitivities of a real-world commercial camera,
a Raspberry Pi V2 [204], with those adopted in Article A, i.e. a set of ideal
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Gaussian functions defined in the visible spectrum. We thus measured the camera 
CMFs and repeated the classification experiment of Article A. The average accur-
acy obtained with the Raspberry Pi sensitivities shows a feeble improvement with 
respect to the simulated ones. We then reproduced a complete camera acquisition 
pipeline and evaluated the effect of various procedural steps (calibration, rendering 
and sharpening). Among these, the only procedure that significantly increased the 
classification efficiency was rendering, which on average led to an increase of 3%
for the 3-NN accuracy and of 4.5% for the RF one. In order to understand this 
effect, we derived the contrast of the images before and after the rendering and 
found a significant raise. In fact, Fig. 7 of Article B shows that the rendering pro-
cess was based on an increment of saturation of the image colours. We can hence 
attribute the positive effect of rendering to the increase in the average image qual-
ity that it produces [29]. For all texture features and both classifiers, the accuracy 
of rendered images classification is equal to or higher than the asymptotic values 
derived in Article A. We can therefore conclude that having a high image quality 
is more valuable than using a radiometrically calibrated imaging system when it 
comes to texture classification. Note that both the calibration and the rendering 
steps have been implemented in Article B as linear transformations in a trichro-
matic space. However, since the texture features used for the classification are not 
necessarily linearly related to the pixel levels of the image from which they have 
been extracted, their effect on the space of the classification data is non-linear.

In other articles included in this thesis, we addressed the measurement of topo-
graphical texture. Article H [150], in particular, focuses on the general problem of 
the acquisition of surface topography, and discusses how to accurately reproduce 
the colour of a 3D object. This has been achieved by chromatically calibrating 
each camera of the system separately with a reference checker. We borrowed 
this approach from cultural heritage literature [89], since it is the main field, as 
far as we know, in which the issue has been studied. Additionally, we addressed 
the subject of texture topography in Article E [46], in which we acquired a set 
of 22 different fabric samples with an xTex A4 scanner [246]. This device is 
able to capture the appearance attributes needed for the Physically Based Render-
ing (PBR) [199] of a surface texture. The measurement output consists in as a 
set of maps (base colour, roughness, metalness, transparency, normal, displace-
ment), compatible with the Unified 3D Material standard [236], with which one 
can accurately render a surface. The topographical data extracted by this setup can 
moreover be handily attached to an image file through an iccMAX profile, which 
we presented and discussed in Article G [61]. In Article E we evaluated the Spear-
man rank-correlation between the frequency at which a semantic descriptor is used
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to define a texture and a set of texture features extracted from the representations
of the fabric samples provided by the xTex. The results of this experiment show
that for many descriptors (e.g., shiny, soft and natural) the highest correlation can
be obtained from the normal map of the samples, suggesting that the 3D structure
is able to provide useful information on the texture appearance of textiles.

4.1.2 Clarify limits and capabilities of the mathematical approaches used to
study texture

The second objective proposed in Sec. 1.2 concerns the methods used for texture
analysis from a more technical point of view. We thus put aside the examination
of texture measuring devices and concentrated on the purely mathematical side
of the texture of grey-scale images. In this regard, a careful study of the literat-
ure pointed out the lack of a standard metric for texture homogeneity (sometimes
referred to as uniformity). An image is called homogeneous if its content is visu-
ally and physically inseparable. This property is fundamental for understanding
texture perception, as it is connected to the studies on texture discrimination (see
Sec. 2.1). Indeed, the concept of homogeneity is embedded in the field of seg-
mentation, whose purpose is to divide an image into regions “uniform and homo-
geneous with respect to some characteristic such as gray tone or texture” [105].
The HVS also uses homogeneity to infer information on a surface’s 3D struc-
ture [206], which is the basic idea behind shape from texture procedures [171, 86].
The definition of homogeneity has been widely studied in the context of landscape
ecology [145, 158, 80], without ever having achieved a satisfying solution. In
the case of texture, a widely used concept corresponding to that of homogeneity
is visual stationarity, which has been introduced in Ref. [198]. The authors of
this publication state that “a stationary texture image is an image which contains
a single type of texture”. However, a purely statistical interpretation of this fea-
ture also exists, as discussed in Subsec. 2.4.4. This concept of (weak) stationarity,
which we have called data stationarity for clarity, is an important element of tex-
ture analysis because it is a fundamental hypothesis for the application of global
feature extraction methods to an image [231]. In fact, if the statistical properties
of the image varied depending on the position considered, a global feature, such
as the average or the standard deviation of the intensity values, would provide
only a partial description of the data content. While data stationarity is useful for
computer science purposes, visual stationarity falls within the scope of visual ap-
pearance modeling. Although they are distinct, these two types of stationarity are
often assumed to coincide in computer vision articles. This supposition is valid for
textured images that satisfy the first Julesz conjecture [137], but cannot be applied
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to every texture pattern [139]. Therefore, Articles C and D contain a thorough
study of the relationship between data and visual stationarity.

The first step of our research consisted of choosing a spatial stationarity metric,
which we selected among the tests reviewed in Subsec. 2.4.4. The LS2W-based
method proposed by Taylor and colleagues in Ref. [231] appears to be the most
general and stable of these techniques, and it has already been applied to computer
vision in the context of image classification [232]. An interesting feature of this
test is that it makes use of texture information at every dyadic scale available. As
pointed out in Ref. [80], scale-dependence is a fundamental trait of texture ho-
mogeneity, because a complex scene can appear heterogeneous from close or far
enough. Ref. [78] hints at this by including texture scales in a table of expanded
texture appearance properties. The texture perception of an observer, in fact, varies
with the viewing distance, in relation to their visual acuity and contrast sensitivity
functions [159]. Due to this, some texture features have been expanded to take into
account multiple scales at once [170, 248], while some others, such as the fractal
dimension and granulometry [198], aim at describing the dependence on scale of
a pattern. In Article C [43] we thus introduced a variation to the test proposed in
Ref. [231] that analyses the stationarity of an image scale by scale. We then per-
formed a scoping study to verify that this novel procedure worked as expected and
also to study its behaviour at different scales. To do this, we first generated two
sets of 100 artificial images: one based on an uncorrelated Gaussian white noise
process, the other on a 2D correlated and scale-invariant Gaussian random field.
We then applied the LS2W test and its scale-dependent variation to each image,
calculating the average results for each group. The resulting vectors of p-values p
are shown in Fig. 2 of the paper: both groups have an average p-value higher than
the threshold α = 5% at every scale. This confirms that the proposed approach
correctly categorizes images which are stationary by construction. For the present-
ation of the paper at the LIM conference, we additionally implemented the same
process with two other sets of 100 images generated through the non-stationary
models NS2 and NS4 defined in Ref. [231]. The left half-plane of the NS2 images
(see Fig. 4.1(a)) was filled with a unit variance white-noise process, while its right
one with an isotropic Gaussian random field (Matérn covariance with shape para-
meter ν = 1). The NS4 model, on the other hand, is a white-noise process whose
standard deviation follows a sigmoidal trend in the horizontal direction, thus show-
ing a smooth transition (see Fig. 4.1(b)). The resulting p vectors are reported in
Fig. 4.1(c), and they show that in this case, the non-stationarity behaviour appears
to be dictated by the lower scales, while higher ones are classified as stationary.
This could be due to the fact that higher scales are less sensible to model changes
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because the wavelets with which the p-value has been calculated spread over a 
wider area. Nonetheless, the average p-value of these two groups of images was 
smaller than the threshold, so they were rightfully identified as non-stationary. Fi-
nally, we applied the two stationarity tests to a collection of natural images drawn 
from the Amsterdam Library of Textures (ALOT) [28]. For four of these, the res-
ults are reported in Tab. 1 and shown in Fig. 4 of Article C. Here, one can observe 
that the ALOT image 155 has a vector p very similar to those of NS2 and NS4, 
and its overall p-value is hence 0.01, i.e., smaller than α. Image 185, on the other 
hand, has a p-value of 1, although it has the most clearly directional pattern and 
most of its vertical p-values are beneath the threshold value.

In practice, a visual stationarity metric could be used to model the perception of 
texture homogeneity. Therefore, Article D [44] starts from the results of Article C 
to analyse the chosen data stationarity test more in depth and to gather information 
on its link with visual stationarity. First of all, we extracted the vector p from 
an artificial checker image, which, as expected, had only unitary p-values. The 
addition of white noise with increasing standard deviation did not alter the output 
of the test. The noise was, in fact, stationary, therefore it did not influence the 
stationarity of the image. Inspired by the peculiar response of the ALOT image 
185, we then applied various transformations to the chessboard picture. Initially, 
we stretched it in the horizontal and vertical directions, doubling the pixel length 
of the square primitive each time. The resulting p-values were again all unitary, 
apart from a small number of middle scales whose stationarity dropped for the 
penultimate stretch prior to reaching the maximum (see Fig. 2 in Article D). Since 
the applied stretches were global transformations, this occurrence suggests that the 
adopted stationarity test is subject to aberrations, though relatively negligible. The 
second distortion tested was the resizing of the texture primitive. An alternative 
interpretation of this transformation is a zooming in on a chessboard subregion. 
In this case, the general p-value is degraded by the distortion. Such an effect 
can be linked to the dependence of texture appearance on the scale discussed in 
Ref. [80]: as we zoom in, our perception gradually moves away from the concept 
of homogeneous texture and begins to consider the texture primitive as an element 
in its own right. In the case considered, however, this does not make the image non-
stationary, because the primitive texture itself is stationary. In the second analysis 
of the article, we tested the assumption expressed in Ref. [198] that stationary 
images are better described by global texture features. In order to investigate this, 
we applied the concept of data stationarity to texture classification, expecting that 
the images classified with a mix of local and global feature vectors based on the 
LS2W p vector would achieve higher classification accuracies than using pure
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feature vectors. This expectation was based on the idea the p-value of the test can
be viewed as a binary criterion to decide whether an image is homogeneous or not,
such as the binary criterion γ(Ri) defined in Ref. [132]. According to the results
presented in Article D, in which we performed a classification experiment on a
subset of the DTD image database, such an hypothesis appears to be valid only
for classification tasks that use human-defined groups. This suggests that the test
is actually effective in reproducing the HVS mechanisms. In the final step of the
study, we directly probed the relationship between data and visual stationarity by
performing a visual experiment that made use of the stationary texture definition
given in Ref. [198]. In fact, we asked 93 observers to group together the DTD
images that looked similar. From this, we derived how similar each couple of
texture images used in the classification were. We then rearranged this into a
similarity map, comparing it to the confusion matrices of the second classification
task with the Spearman rank-correlation. The results of this operation show which
mixed feature behaves in a way analogous to the observers. In this case, a mix of
GLCM and LBP and one of GLCM and wavelet features accomplish the highest
value of 0.53. Therefore, the mixing of features based on stationarity data could
also be useful to model the appearance of textures.

4.1.3 Gather data on textile texture perception

It has been observed that the appearance of a fabric heavily influences the choice
of costumers when buying garments and apparel [227]. As humans frequently
communicate perceived visual properties of materials, the most important cues that
make-up appearance can be studied from a semantic point of view [77]. In Article
E [46], therefore, we tried to fulfill the final goal of this thesis: the definition of a
semantic context for textile appearance. This idea is not novel, as many works sook
to estimate the space of texture appearance based on semantic experiments, e.g.,
[203, 18, 109, 97, 39, 133]. However, these experiments focus on images rather
than real objects, an approach that has recently been questioned [93]. Moreover,
these studies were all aimed at deriving a general texture model, disregarding the
fact that humans use distinct metrics to judge different types of materials [119].
Ref. [179] solves this problem by concentrating on fabric texture semantics. In
particular, by asking a group of non-expert observers to verbally describe a set of
samples, the authors of this paper were able to derive a set of perceptual attributes
used by people to interpret and evaluate the texture properties of textiles.

In Article E, on the other hand, we adopted the approach to total appearance ana-
lysis proposed by Hutchings [118], who made use of panels of experts to define
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and analyse appearance in different contexts [120]. According to his method, a
panel is supposed to meet, discuss and come up with a set of parameters that can
be used to evaluate the appearance of a product. Hutchings mainly focused on food
appearance, but the employment of expert opinions is also currently practiced in
the textile industry [125]. In fact, since trained individuals have a strong grasp
of the widest possible range of semantic descriptors in their field, they are more
capable of providing objective observations less dependent on the social environ-
ment [148]. One of the essential abilities for an industrial designer, for example, is
to “make his or her intentions explicit – communication is at the heart of industrial
design” [66], although this is not always achieved [71]. Therefore, in Article E
we gathered a set of semantic descriptors defined by 28 experts in texture design.
We asked the observers to specify a maximum of five adjectives for each sample
contained in a booklet comprised of 22 patches of textile. The participants were
not provided with an explicit definition of texture itself. The experts were required
to use the English language, so that the results could have been compared more
easily, and to make use only of visual cues, given that texture is sometimes inten-
ded from a tactile point of view [74]. Based on the experimental data, we then
composed a vocabulary for fabric appearance. In order to follow the principles of
semantic differential theory [192], we only employed bipolar descriptors. These
can be seen in Tab. 2 of Article E, ordered from most to least mentioned by
the observers in the experiment. Among these, some can be related to mechan-
ical properties of the samples (stiff and stretchy, soft and hard), some others to
subjective aesthetic parameters (elegant and cheap, comfortable and uncomfort-
able). The fact that many observers used terms related to technical properties of
the samples rather than visual elements prompted us to propose a semantic onto-
logy for textiles in which the appearance can be included. In fact, an ontological
framework permits us to formalize the relationship between manufacturing char-
acteristics and appearance properties of a textile element. This could then be used
to establish an appearance measurement pipeline for fabrics. After this, we evalu-
ated the correlation between the frequency of the observers’ semantic descriptors
and the value of various computer vision texture features. The features have been
extracted from two types of sample reproductions: a simple RGB image and an
.u3m file, measured with an xTex A4 device [246], containing a total of six texture
maps that can be used for PBR. The combinations of feature and map that provides
the highest Spearman rank-correlation are reported in Tab. 3 of the article for each
visual descriptor. It can be seen that, among the features calculated, the ones
obtained from pre-trained CNNs maximize the correlation, suggesting that deep
learning should be able to reproduce appearance perception. However, the neural
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networks used derived 1000 features, whereas the man-made features were only
48. Moreover, while CNNs provide optimal results in computer vision [177], their
main flaw is that their features are hard to explain [245], a characteristic necessary
for the development of a model. To show the possible application of a texture ap-
pearance model, we finally used the features with the best correlation to predict
which descriptors an expert would use when looking at a fabric image.

4.1.4 Additional Results

Let us now briefly discuss the minor contributions summarized in Secs. 3.2 and 3.2.4.
Among these works, Articles F and H fall in the framework of appearance meas-
urement, as the former addresses the effect of topographical texture on colour ap-
praisal and the latter describes how to chromatically calibrate a 3D scanner. The
first problem is very current and pressing, both in academia and industry, and re-
mains unresolved. The standard approach to characterize the colour of a surface
consists in measuring it with a spectrophotometer. This method, however, has
been initially developed for matt materials, specifically paper. The results of Art-
icle F [59] show that employing it to measure textured surfaces such as textiles
yields a higher measurement uncertainty. Various research studies have attempted
to solve this problem [169, 234, 168, 160], but no accepted guideline has been
proposed yet. In the presentation given at the ICC DevCon 2020 [42] (see Oral
contributions and Sec. 3.2.4) we proposed using a simplified model of the surface
reflectance and a measurement of its 3D structure to elicit a measurement correc-
tion coefficient for a spectrophotometer. This work shows how the calculations
needed to implement such a model can be carried out with the calculator tool in-
cluded in iccMAX [30]. IccMAX is also the focus of Article G, whose purpose
was to show how various sensor adjustment transforms (SATs) can be performed
in this framework.

4.2 Research Contributions
In this section we highlight the contributions to current knowledge achieved by
this Ph.D. work.

First of all, in Article A we defined the possibilities and limitations of spectral
measurements in the analysis of textile images, showing that a multi-spectral ima-
ging system with no more than ten spectral channels optimizes the accuracy of a
texture classification pipeline. In this publication, we have expanded the study of
multivariate texture analysis and classification [194, 33] to the multi- and hyper-
spectral cases, which is, to our knowledge, a rather unexplored field. Moreover, for
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this paper we have acquired a set of 191 hyper-spectral images, which are avail-
able upon request for research purposes, 155 of which are textiles. Article B, on
the other hand, showed that the same accuracy can be reached with a standard im-
age acquisition pipeline. Additionally, its results suggest that a correct radiometric
calibration of the system does not have a strong effect on the precision of texture
classification, and that this process is therefore not needed in such a context. We
have then demonstrated that, in textiles, the best performing man-made feature for
textiles is LBP. Both Article A and B have been devised and carried out to meet
the needs of Barbieri electronic, which was interested in acquiring information
and practical data on the methods of measurement and characterization of visual
texture.

In Articles C and D, we have pointed out the dual nature of stationarity, proposing
a scale-dependent method to measure it. Article D also showed that the division
between stationary and non-stationary texture features proposed in Ref. [198] does
not improve the classification accuracy in general, but can still work in some cases.
This scale selection approach could be easily integrated into neural networks [193],
for which the problem of bulkiness is currently widely discussed [177], to speed
them up. Furthermore, Article D introduced a first analysis of the correlation
between visual and data stationarity. All these outcomes are part of a novel ap-
proach to the study of texture discrimination.

The practical take-away from Article E includes a textile appearance vocabulary
and a fabric ontology. Moreover, the gathered data includes not only a set of hyper-
spectral images of the textile samples employed in the visual experiment, but also
a joint set of maps for PBR. These results can be used as a basis to develop a
standard framework for textile appearance.

Among the minor contributions, the results of Article F provide useful informa-
tion on the precision of colour measurement of textiles, which can be useful both
for academic and industrial purposes. The analysis performed in Article G, on
the other hand, had a dual purpose: indicate which SAT is optimal to simulate a
change of illuminant and show the possible applications of iccMAX, thereby stim-
ulating its use in both industrial and academic environments. More in general,
the candidate’s participation in the various ICC DevCons during the Ph.D. project
(Sec. 3.2.4) was aimed at sharing ideas and innovations in the context of inter-
company collaboration. Finally, Article H gave a complete and straightforward
report on the setup of a multi-camera 3D scanner.
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(a) NS2 (b) NS4

(c) p-values

Figure 4.1: Two images (Fig. 4.1(a) and Fig. 4.1(b)) generated with the non-stationary
processes NS2 and NS4 described in Ref. [231] and a plot of the corresponding vectors p
(Fig. 4.1(c)).



Chapter 5

Conclusions and future
perspectives

In this final chapter, we provide an overall conclusion of the thesis and give a
perspective for future work on the topics discussed.

5.1 Conclusions
The purpose of the Ph.D. project presented in this thesis was to advance the meas-
urement and characterization of visual texture appearance, with special emphasis
on textiles. The theory of texture appearance is still at an early stage, leaving much
room for a wide range of possible research directions. In this dissertation, we have
attempted to combine the optimization of current texture measurement and ana-
lysis methods with the collection of data on the mechanisms of textile perception.

First of all, we contributed to the field of texture analysis from the point of view of
computer vision. In particular, we studied the dependence of texture classification
on the spectral information available, and we concluded that a system optimized
for texture characterization requires a number of spectral channels not bigger than
ten to maximize the algorithm’s accuracy. We then focused on trichromatic camera
sensors, studying the effect of radiometric calibration and of common colour man-
agement processes on texture classification. The results showed that working with
a scene-referred characterized camera rather than with a standard output-referred
one has a relatively small effect on the accuracy of the classification. Among the
steps of the digital imaging acquisition pipeline, colour rendering appears to be the
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one that improves the performance of the algorithm the most, thus suggesting that
rendered camera RGB images are more suited for the task than raw ones. These
conclusions expand the current knowledge on spectral texture images analysis, and
provide useful information for setting up a texture measurement system.

We then shifted the focus of our research on the theoretical definition of texture
properties, and in particular on stationarity. In fact, we identified an ambiguity in
the definition of texture stationarity, which we analysed from both the standpoint
of computer vision and of appearance perception. From the computational point of
view, we introduced a novel method to measure the data stationarity of an image
at various scales and showed that this information can be useful to improve the
accuracy of texture classification, especially when the classes have been chosen
based on human visual perception. From the side of appearance, on the other
hand, we gathered data on texture similarity and we calculated their correlation
with the classification results. This allowed us to quantify which mix of texture
features is most correlated to the human behavior. The fact that in this case, too,
the mixing of some features at different spatial scales produces an improvement
hints that the LS2W stationarity test can be suitable to model visual appearance.
However, more in-depth studies are needed to actually derive such a model. This
could be employed in the texture field to define an absolute metric of homogeneity
of a visual pattern, which would greatly benefit practical operations such as image
segmentation.

Finally, we contributed to the collection of data on textile appearance. We invited
a group of expert observers to compile a database of semantic descriptors related
to the visual appearance of textiles. These terms were then arranged into a vocab-
ulary of dual attributes, followed by the proposal of a general ontology for fabrics.
Next, we calculated the Spearman’s rank-correlation between the value of a wide
selection of texture features and the frequency at which the terms of the vocabulary
have been used to describe each fabric samples. Among the techniques adopted, a
set of pre-trained CNNs achieved the highest correlation, which is yet another con-
firmation of the power of neural networks in the field of computer vision. However,
since their feature maps are difficult to interpret in terms understandable to humans
and their outputs depend on how the network has been trained, the application of
CNNs to appearance models is problematic. The fact that some of the features with
high correlation have been extracted from the surface normal map showed that to-
pographical information can contribute to define the visual texture appearance of
a textile. This latest work proposes a semantic approach to the characterization
of fabric appearance and provides a useful basis for further development of this
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method.

5.2 Future perspectives
Sec. 4.1.1 identified the requirements that a multi-spectral system should satisfy
in order to optimally classify a fabric sample, but this area can be studied further.
In particular, given the rising importance of neural networks in the field of com-
puter vision, one could study how their performance would vary with an increasing
number of spectral information. Furthermore, a fundamental step in practically
building a multi-spectral camera for textile classification is the choice of filters.
Therefore, it would be interesting to compare the results obtained in Article A
with ideal transmittances with real-world ones, which can be obtained from fil-
ter manufacturers [217]. On the other hand, according to the analysis performed
in Article B, colour rendering appears to be the most important step in a trichro-
matic camera’s image processing pipeline. A broad inquiry aimed at explaining
this result would be most useful to help define an optimal texture measurement
system. This could be achieved, for example, by means of a psychophysical ex-
periment in which a group of observers chooses the most pleasant rendering setup
for an imaging device and observing if and by how much their preferences affect
a classification algorithm.

The difference between the concepts of data and visual stationarity, introduced in
Article C, can be studied more in depth, too. First of all, the multiscale LS2W test
proposed in the paper can be extended to the domain of multivariate images, both
trichromatic and multi-spectral. A possible solution to this problem has already
been developed in Ref. [232], but it is not suited for images with a high number
of spectral channels because of its excessive computational load. Moreover, the
adopted technique could be extended to a continuous range of scales, whereas only
dyadic ones were considered in Articles C and D. Given that in Article D we have
shown that the scale LS2W test can have some incorrect behaviour, it would also
be useful to develop a wider variety of spatial stationarity metrics. In Subsec. 4.1.2
we introduced the concept of stationarity by linking it to homogeneity perception.
We avoided using this term in the articles, however, because we focused only on the
relationship between data and visual stationarity. It would thus be useful to assess
with a visual experiment the ability of the LS2W test to quantify the homogeneity
of a texture. Finally, it would be interesting to broaden the study of how the scale
stationarity test behaves with regular textures beyond the chessboard case and with
a wider range of distortions (e.g., the ones used in Ref. [256]).

In conclusion, the framework of fabric appearance semantics devised in Article
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E needs to be validated [241]. This can be achieved through focused interviews
with textile experts, both for the proposed vocabulary and the ontological archi-
tecture. Moreover, the model used to predict textile appearance attributes can be
strengthened with rank-ordering experiments. It would also be interesting to com-
pare the results of the psychophysical experiment performed in the paper with
other types of stimuli, such as RGB images and computer graphics objects.
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Abstract—The influence of the number of spectral channels
of spatial information on the accuracy of texture classification
was evaluated by modelling the spectral sensitivity functions of a
group of ideal imaging systems with a set of gaussian functions
and then applying them to a set of hyperspectral images in
order to simulate the response of each of their colour channels.
Feature extraction and classification with different techniques
were applied to the simulated data to assess the performance.
It was shown that a significant enhancement of the accuracy
was achieved, with a dependency on the approach adopted; it
is therefore possible to estimate the optimal number of spectral
channels for each method.

Index Terms—colour texture classification, spectral imaging,
feature extraction

I. INTRODUCTION

Texture classification is one of the fundamental applications
of texture analysis, as it can be exploited in any field in which
high-level tasks, such as human-like perception and visual
recognition of surfaces, are linked to data obtained with a
digital camera. This type of analysis has became fundamental
in multiple fields, e.g. food science [29], medicine [23], face
recognition [9] and defect detection [14]. The camera-based
approach can be expanded with additional input information,
such as a surface topographical pattern of the sample [4]
or multi-illumination analysis [11]; however, the accuracy
improvement achieved with these is usually at the cost of
increased complexity of the acquisition system.

Most classification approaches involve the use of features
(descriptors): these elements, which are outputs of an initial
computational step, consist of sets of parameters distinctive of
the surface under study, and are derived from the available data
with a variety of different techniques. The use of descriptors
permits the reduction of dimensionality of the characterization
problem, as an array of features normally has a dimension
of tens or hundreds, which is considerably less data than an

entire image. This reduction of dimensionality helps reduce
the number of degrees of freedom for the characterization
process. A clear example of the latter can be found in the
Local Binary Pattern (LBP) operator (one of the most effective
feature extraction models), which is robust to illumination
changes in the texture images [7]. Usually, texture features are
extracted from grey-level images. However, it has previously
been shown that the addition of multispectral information
enhances the performance of such analysis, both for colour
[3] and spectral [13] data.

This paper aims to evaluate the dependence of classification
accuracy on the number of spectral channels of the detector,
thus obtaining indicators on the optimal measurement setup for
texture classification. An increase of the amount of information
is generally associated with a better definition of the classes;
however, since this increase in input data corresponds to
the enlargement of the data space through the addition of
dimensions and a consequent increase in complexity [1].
This work is composed of the following steps: first, a set
of hyperspectral images, consistent with the already existing
texture databases, has been acquired; subsequently, a group of
images, with a number of channels m increasing from 1 to n,
has been simulated for each image by applying a set of m theo-
retical sensitivity functions. A selection of methods for feature
extraction (grey-level co-occurrences matrices (GLCM), local
binary patterns (LBP), Gabor transformation and wavelet
transformation) has been then applied to the simulated dataset.
Finally, the features extracted have been subjected to multiple
classification algorithms, in order to obtain a value for the
accuracy for different number of channels.

II. DATA ACQUISITION

The data used in this paper are a collection of bidimensional
spectral images. Three examples of pictures are illustrated in
Fig. 1. The acquired databases consist of 191 sample images,
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(a) Textile. (b) Leather. (c) Wood.

Fig. 1: Illustration of three of the images in our database. The
RGB images are simulated from the multispectral images with
GLIMPS imaging spectroscopy image analysis.

divided into the six texture macro classes: textiles (155),
leather (3), paper (8), plastic (13), wood (8), and metal (4).
Textiles are again divided into nine micro classes: viscose (1),
jute (1), polyamide (1), wool (2), mixed natural (4), linen
(3), polyester (42), Trevira CS (48) and mixed synthetic (53).
While each subclass contains different typologies of spatial
texture distributions, additional subgroups comprising different
colour gradations of the same visual pattern can be further
defined. Some of the materials are translucent, and an opaque
sheet of white paper (without optical brighteners) has been
used as sample backing for each acquisition.

The hyperspectral images have been acquired with a
HySpex VNIR-1800 [10], which is a linear CMOS detector
with a spectral range Λ ∈ [400, 1000]nm and a resolution
∆λ = 3.26nm, i.e. 184 spectral channels. The setup is
equipped with two 150W tungsten halogen light sources
positioned at ±45◦ with respect to the detector and a movable
sample-holder table. The focal length of the optical system
has been fixed to 30 cm, while the linear field of view (FOV)
is approximately 10 cm. The dimensions of the samples are
greater than or equal to 5 cm × 5 cm, thus allowing the
extraction of patches of dimension 640 × 640 pixels from
the multispectral images. These dimensions have been chosen
to match the images of the already existing and widely used
SpecTex database [25].

Being the raw output of the measurement proportional to
the radiance detected, the data obtained has been processed to
extract reflectance of the samples. Since the integration time
could potentially vary from image to image, a reference grey
patch with a known spectral reflectance has been inserted in
each image; this has been used to determine the spectral power
distribution of the light source in the image. The captured
radiance has been divided by this light source spectral power
distribution in order to get the desired reflectance R(λ) of the
object under analysis.

III. METHODOLOGY

As described in Section I, the workflow for the classification
experiment can be subdivided into three main steps: sensitivity
function filtering, feature extraction and actual texture clas-
sification. Here we give a brief overview of the techniques
adopted for these tasks.

A. Filtering

The input to the process is the set of hyperspectral images
described in section II, each element of which consists of
an image with 184 spectral channels distributed on a Λ ∈
[400, 1000]nm domain, corresponding to the visible and near
infrared regions of wavelengths. The first step is the sensitivity
function filtering, in which the images are filtered with ideal
sensitivity functions of n different detectors, each one with
an increasing number of channels m that goes from 1 to n.
Thanks to this process, the acquisition of the same image from
each of these devices can be simulated. For the definition of
the spectral sensitivity functions, we referred to the model of
a generic one-shot spectral filter array camera. In this case, the
signal acquired is ρi =

∫
Λ
R(λ)l(λ)S(λ)ti(λ)dλ for the ith

spectral channel; in this expression, R(λ) is the reflectance
of the sample, l(λ) is the spectral power distribution of the
illumination, S(λ) is the sensor spectral response and ti(λ) is
the spectral transmission of the ith filter. The response S(λ)
varies from camera to camera and depends on its sensor mate-
rial structure. An example is illustrated in [24]. Spectral filters
responses ti(λ), as assessed in [12], most often follow a Fabry-
Pérot filter model, which for our purposes is replaceable with
a Gaussian one with negligible error. In the workflow adopted,
the cumulative quantity Ti(λ) = S(λ) · ti(λ) has been taken
into account for each channel i, and, under the assumption
of a constant sensor response S(λ), a Gaussian model has
been adopted. Despite this is a simplification, it is considered
suitable fo the analysis performed [12]. The effective sensitiv-
ity functions Ti(λ), hence, have been defined as a collection
of equi-gaussians with unitary maxima and variances chosen
so that the union of the wavelength domain covered by their
standard deviation corresponds to the complete bandwidth of
the acquisition sensor (

∑m
i=1 2σi = Λ). This approach results

in a high level of inter-channel correlation, but this ensures
that stimuli from all spectral regions are represented.

B. Feature extraction

Having obtained for each picture a set of n images, the
mth of which is characterized by m colour channels, the
feature extraction is applied to them. In [16], Palm sorted the
possible approaches to extract features from a colour image
into three groups: parallel, sequential and integrative. The
parallel method involves splitting each picture into a grey-scale
component and a set of colour histograms, before extracting
features from these two elements. The sequential partitions
the image based on the clusters of the colour histogram, while
the integrative method involves treating each colour channel
as a grey-scale image. The integrative technique is adopted in
our work, since they permit us to analyze each colour channel
separately and to compare features extracted from images with
different number of channels. Their simplest implementation
(referred to as single-channel) consists of applying grey-scale
texture analysis to each distinct channel, while more complex
ones (multi-channel) also quantify the correlation between
channels. We treat each simulated colour channel as a grey-
scale image, because the number of permutations between
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Fig. 2: Accuracy plotting for 3-Nearest Neighbour classifier, 5 channels and GLCM and Gabor feature vectors.
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Fig. 3: Accuracy plotting for Random Forest classifier, 5 channels and GLCM and Gabor feature vectors.

channels required by the multi-channel approach is factorial in
the number of elements, and requires significant computational
time for large numbers of channels.

Four feature extraction techniques have been implemented:
GLCM, LBP, Gabor transform and wavelet transform. Each
of these has been used to extract a set of 14 vectors with
different dimensions, and the classification has been performed
on each vector separately; this selection has been derived
based on the results of [3]. For GLCM [8], the calculation
was performed at scales 1 to 8 and at 8 angles (equi-spaced
by 45◦), the average at each scale is computed, and contrast,
homogeneity and energy are then calculated; from this, two
vectors are derived, one containing only the results for scale
1 (CMOS, 3 features) and another containing all of them
(MCMOS, 24 features). For LBP, 4 vectors are computed,
2 with uniform patterns [15] and 2 with the Completed Local
Binary Count (CLBC) [28]: from uniform patterns, a 10
feature vector accounting for 8 neighbouring pixels at radius 1

(LBP riu) and a 54 feature one that concatenates the previous
one with the vector obtained with the same technique at
radius 2 and 16 neighbours and the one at radius 3 and 24
neighbours, for a total of 54 elements (MLBP riu). For Local
Binary Count, both vectors are obtained by applying the count
to the structures used for the uniform pattern, thus getting
to a 9 (CLBC) and 53 (MCLBC) features respectively.
Two feature vectors were derived with Gabor filters [19],
one normalized for illumination invariance (GNI) and the
other without normalization (GWN ). They are formed by 48
parameters each, corresponding to the mean and the standard
deviation of the magnitudes of the Gabor transformed image.
The transformation has been obtained with filters characterized
by different number of frequencies (∈ 1, ..., nF ) and orienta-
tions (∈ 1, ..., nO). The filtering parameters have been chosen
taking the results of [2] into account: FM = 0.327, nF = 4,
Fr =

√
2, nO = 6 and η = γ = 0.5. Finally, six wavelet

transform vectors were used, two of which are generated with
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Fig. 4: Accuracy plotting for 3-Nearest Neighbour classifier,
15 channels, LBP and wavelet feature vectors.

Haar filters, two with the Daubechies ones and two with the
dualt-tree complex wavelet transform (DTCWT, [21]). Haar
and Daubechies vectors contain mean and variance of the
energy of the wavelet transformed image; both of them have
3 levels of decomposition, while the size of the Daubechies
filter is 4. Two vectors have been derived from each fil-
ter: one containing the mean values of 10 transformations
(HaarME and DaubechiesME), the other which adds the
corresponding variances (Haar and Daubechies). The two
vectors obtained with the DTCWT are composed respectively
by mean and variance (DTCWT ), and variance and entropy
statistics (DTCWT −V H); overall, 3 scales and 6 directions
are taken into account for the filters, for a total of 36 elements
for each vector. The GLCM, LBP and Gabor filtering functions
of the skimage.feature Python library [22] were used to
perform the implementation, together with PyWavelets [18]
and dtcwt [5] modules.

C. Classification

In the third step, the extracted feature vectors are taken as
inputs for classification algorithms; in line with the texture
classification literature [3], the feature extraction described in
Section III-B has been performed on patches of 160 × 160
pixels of the samples. This means that 16 patches have been
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Fig. 5: Accuracy plotting for Random Forest classifier, 15
channels, LBP and wavelet feature vectors.

extracted from each image, and the image number of the
original picture has been used to define the class of each patch.
Given the limited size of the dataset (∼ 3000 images), the sub-
division into training and testing was 70%-30%, respectively.
Two classifiers have been selected following the results of [6]:
the 3-NN (k-Nearest Neighbours with k = 3) algorithm is one
of the most basic approaches, while the Random Forest (RF)
classifier has shown to generally provide precise solutions.
Python’s machine-learning library scikit.learn [17] was
used; it comprises a large variety of classifiers, 3-NN and RF
between the others. After features have been extracted for the
whole dataset, and the training step has been performed on
the 70% training sub-set of the images, the accuracy of the
application of the trained model on the test set (composed
by the remaining 30%) is evaluated and taken as final output.
Since some of the images showed some defect, only a fraction
of the dataset (texture inhomogeneities), consisting of 170
pictures, has been used for the classification.

IV. RESULTS AND CONCLUSIONS

A preliminary experiment has been conducted, in which
the procedure described was implemented to classify the
SpecTex texture database [25]. This has been found to be
effective, showing however a strong variation with respect to
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Fig. 6: Accuracy plotting for 3 Nearest Neighbour classifier,
15 channels, LBP and wavelet feature vectors; visible spectral
domain.

the expected trend for images with fewer colour channels; this
variation has been subsequently linked to the use of a feature
selector method.

Fig. 2 and Fig. 3 show the percentages of classification
accuracy obtained with Gabor and GLCM features and a
simulation of up to 5 channels, with both 3-NN and RF
classifiers. More extended results are shown in Fig. 4 and
Fig. 5 (up to 15 channels) for LBP and wavelet transform; due
to the large amount of computational time demanded by them,
GLCM and Gabor filter features extraction methods have been
neglected in these cases. Nonetheless, the results for a number
of channels up to 5 show the positive effect of the spectral
information on these approaches. All these results have been
derived from a 10 fold repetition of the classification, from
which the average values have been extracted, as well as the
95% confidence intervals (for which a Student’s t distribution
model for the sample size has been adopted). It can be seen
that, for the first five channels, there is in fact a monotonic
increase of the gain, due to the larger number of samples taken
into account. The total increase over the channels is on average
∼ 5% for GLCM, Gabor and wavelet features and ∼ 10% for
LBP; the gain of each step, however, decreases progressively.
It can be noted that the results of the two classifiers are almost
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Fig. 7: Accuracy plotting for Random Forest classifier, 15
channels, LBP and wavelet feature vectors; visible spectral
domain.

identical for most of the approaches; there is however a clear
difference of ∼ 5% in the case of the Local Binary Pattern
features, with the highest numbers belonging to the 3-NN
classifier. The only technique that is not affected by the number
of channels is the COMS, behavior that can be related to its
simplicity. Moreover, it is clear that the difference between the
distinct wavelet approaches is minimal.

In Fig. 4 and Fig. 5, the results with 15 channels show
a trend of the classification performances analogous to the
5 channel one; a gradual reduction of the accuracy gradient,
which we attribute to the distribution of the texture information
in the spectral domain, is clearly visible. The performance of
each approach has an asymptotic saturation value, which per-
mits to derive an optimal number of channels over which the
additional spectral information would be useless. A possible
approach to derive this parameter is to fit the data with a
non-linear function, such as a polynomial or the step response
discussed in [26].

Finally, the effect of the bandwidth of acquisition has been
taken into account: since the wavelength range under study is
quite broad, and it is in practice quite costly to cover with
a spectral sensor, we reproduced the 15 channels analysis of
LBP- and wavelet-derived features on the visible domain (λ ∈
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[400, 730]nm). The results are shown in Fig. 6 and Fig. 7: a
performance enhancement of ∼ 5% is visible for the lower
number of channels. This can be related to the lack of useful
information in the infrared region, in which case the elements
of each feature vector related to such a region would be similar
for a great percentage of the samples, thus adding difficulty
to the correct class sorting.

To conclude, this work derived the trend of the classification
accuracy of a set of textiles depends on the number of available
spectral channels; this dependence has a saturation value,
which is related to the spectral sensitivity functions and the
bandwidth of the detection setup, as well as to the feature
extraction and classification methods. We propose that it is
possible to calculate such a value for a given set of data, in
order to select the best acquisition setup to classify them. In
Figs. 4-7 it can also be observed that a number of channels
larger than 3 does in general positively affect the accuracy of
classification, while a number higher than 6 is not significantly
beneficial.

There are many potential improvements to this analysis, the
most straightforward one being to evaluate the performance of
a wider range of feature extraction methods, here not taken into
account, such as fractal-related ones [20] and machine learning
ones [27], along with different classifiers [6]. Moreover, the
dependence of the performance on the shape and the position
of the sensitivity functions applied, as well as the effect of
a more complex parallel feature extraction method, have not
been investigated; as discussed, the Gaussian model exploited
has some limitations. The application of sensitivity filters
obtained directly from real multispectral cameras to the hy-
perspectral images could be used to evaluate the applicability
of the model proposed. The data thereby acquired could also
be exploited to evaluate how the camera chromatic calibration
influences the classification accuracy.
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Abstract. The stationarity of a texture can be considered a fundamental property of images, although the property
of stationarity is difficult to define precisely. We propose a stationarity test based on multiscale, locally stationary, 2D
wavelets. Three separate experiments were performed to evaluate the capabilities and the limitations of this test. The
experiments comprised a chessboard stationarity analysis, two classification tasks, and a psychophysical experiment.
The classification tasks were performed on 110 texture images from a texture database; in one sub-task five texture
feature vectors were extracted from each image and the classification accuracy of two classical methods compared,
while in the second sub-task the classification accuracy of several methods was compared to the descriptors defined for
each image within the database. In the psychophysical experiment the correlation between the classification results and
observer judgements of texture similarity were determined. It was found that a combination of wavelet shrinkage and
rotation-invariant local binary pattern (LBP) best predicted the observer response. The results show that the proposed
stationarity test is able to provide relevant information for texture analysis.

Keywords: texture stationarity, visual texture, texture classification.

1 Introduction

A one-dimensional temporal signal is said to be stationary if its local statistical properties are
constant in time.1 The same concept can be extended to the field of texture analysis, where it is
widely used. It is, in fact, a fundamental assumption of global texture models, such as Markov
random fields, auto-correlation functions and the well-known Tamura features.2 Consequently, if
the texture is not stationary, these techniques give a flawed representation of the signal. In fact,
this fails to depict the actual mathematical properties of the texture, because it extracts an average
behaviour that neglects any change of local features in the image. For such a case, a texture can be
divided into stationary sub-regions with a segmentation algorithm which autonomously partitions
an image into multiple homogeneous areas.2 However, this increases the computational complexity
of the analysis and, as discussed in Ref. 3, prior knowledge of the stationarity of the sample would
still be needed.

Currently, the stationarity property of a texture image has a dual meaning. From a mathematical
point of view, the term stationarity means that the average of the data generating process, which
gives rise to the image observed, is the same everywhere in the image,3 and that its distribution is
essentially regular, i.e., its variance is finite and its covariance is dependent only on the distance
between pixels. We use the term data stationarity to refer to this definition. On the other hand, in
Ref. [4, pg.80], Petrou and Sevilla state that “a stationary texture image is an image which contains
a single type of texture”. This suggests an interpretation of stationarity which is more related to
the human visual system. We name this second definition visual stationarity. This interpretation is
more complex than the first one, as it touches the border of linguistics, i.e., the understanding of the
concept of a single type of texture, which would probably depend on the context of analysis. This
situation is not uncommon, for example even the similar but more widely used term homogeneous
has a fuzzy meaning in the research of human perception of texture.5

1
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An example that shows the practical need for a shared definition of data and visual stationarity
is suggested by Ref. 6. In this article, the authors classified a wide variety of existing texture
databases according to certain characteristics. Among these characteristics is texture stationarity,
with explicit mention to the definition given in Ref. 3. In Appendix C we show that this partition
is inconsistent with the results of the stationarity test employed in the current paper (see Sec. 2).
This mismatch clearly highlights the discrepancy between data and visual stationarity.

In a previous study,7 we analysed the concept of data stationarity and we expanded a frame-
work developed to evaluate image stationarity8 to account for multiple scales. The choice of scale
has proven to be of great importance for texture analysis.9 The link between this mathematical
approach and visual stationarity is discussed in Ref. 8, in which the stationarity test was applied
to images of pilled fabric, and the results subsequently compared to the authors’ evaluation of the
visual stationarity of the images. This however provides limited experimental psychophysical data
on which to base firm conclusions. In this work, we wish to remedy this gap in the literature. To
this end, we provide an investigation of the relationship between visual and data stationarity, using
images of our own dataset as well as from a subset of the Describable Texture Dataset (DTD).10

The choice of DTD is based on its texture categorization and annotation by human observers,
thus incorporating the complexity of human perception of texture. Additionally, data stationarity
analyses of an alternative texture database can be found in Appendix C.

2 Texture Stationarity

In the field of visual texture analysis, the conjecture proposed by Julesz, stating that “whereas
textures that differ in their first- and second-order statistics can be discriminated from each other,
those that differ in their third- or higher-order statistics usually cannot,”11 is a good approxi-
mation of how human perception works. Many texture feature extraction techniques therefore
assume that their image targets are second-order stationary,3, 12 i.e., the process generating these
images has a constant mean, a finite variance, and a covariance that is a function of pixel distance
cov(Xr1 , Xr2) = γ(r1 − r2). In Ref. 8, Taylor and colleagues employed these premises to develop
an image stationarity test for a single realization of a generating statistical process. The test inter-
prets each image as a Locally Stationary Two-Dimensional Wavelet (LS2W) process, and it eval-
uates the constancy of its power spectrum to estimate its stationarity. We introduce and describe
it in Section 2.1, and we propose a variation to it in Section 2.2. Frequently used mathematical
notations are also summarized in Table 1.

2.1 The LS2W stationarity test

A mother wavelet ψ(x) is a compact support function with oscillatory characteristics,13–15 x ∈ R,
which, together with an auxiliary function φ(x) called a father wavelet, can be used to form a
complete functional basis on L2(R). This functional basis {ψj,k, φj,k}j,k∈Z is achieved by scaling
and shifting ψ(x) and φ(x), with j and k indicating the scaling and shifting indices respectively.
On one hand, the shifting gives the possibility of representing local segments of the signal, while
on the other the scaling allows it to represent the fine or coarse structures contained therein. As
discussed in Ref. 16, a discrete version of such a basis function can be obtained by associating
two compactly supported mother and father wavelets ψ and φ with a suitable pair of low-pass
and high-pass filters {hk}k∈Z and {gk}k∈Z. In this case, a discrete wavelet at scale j is a vector
ψj = (ψj,0, . . . , ψj,Nj−1), where Nj = (2j − 1)(Nh − 1) + 1, Nh 6= 0, ψ−1,n = gn and ψj−1,n =

2
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Table 1: Frequently used mathematical notations.

ψ(x), φ(x) Mother and father wavelets, respectively
γ Covariance function γ : Z2 → R of a stationary image
ri Location or coordinate of arbitrary pixel i, with r ∈ Z2

j Wavelet scaling index, where j ∈ Z+

k,k Wavelet shifting index and vector, respectively, k ∈ Z and k = (k1, k2), ki ∈ Z
u Image coordinates after wavelet shifting, u = r+ k
l Wavelet direction index, where l ∈ {H, V,D}
h, g Discrete low- and high-pass filters, respectively
Nh Number of nonzero elements in h, Nh = #(h) 6= 0
Nj Number of elements of the discrete wavelet ψj at scale j
R,C Number of rows and columns in an image, respectively, expressed in terms of a

power of 2, R = 2m, C = 2n, n,m ∈ N+

R Dimension of a greyscale image, R = (R,C)
wl

j,u Coefficient of the wavelet transform
ξlj,u Zero-mean random orthonormal increment sequence
J Lowest significant scale, J(R,C) = log2{min(R,C)}

Xr;R Generic LS2W process with dimension R
z Normalized spatial coordinate, z = u/R := (u/R, v/C), z ∈ (0, 1)2

Sl
j Local wavelet spectrum

dlj,u Empirical mother wavelet coefficients
I(u) Local wavelet periodogram (LWP) as an estimator for Sl

j

AJ LWP correction matrix
Ŝ(u) Estimator for LWP, Ŝ(u) = A−1

J I(u), composed by the elements Ŝl
j(u)

Tave Departure from constancy of an estimated LWP Ŝ(u)
B Number of repetitions of the bootstrap loop
p p-value of the stationarity test for Ŝ

η(j, l) Index of scale-direction pair, η ∈ {1, . . . , 3J}
pη(j,l) p-value of the stationarity test for Ŝl

j

p Vector of pη(j,l) at various dyadic scales and directions, p = (pη=1, . . . , pη=3J)

pj p-value of the stationarity test for Ŝj

pj Vector of pj at various dyadic scales, pj = (pj=1, . . . , pj=J)
Xwn(r) Bi-dimensional white-noise process
N(µ, σ) Normal distribution with mean µ and standard deviation σ

∑
k hn−2kψj,k, ∀n ∈ [0, . . . , Nj−1 − 1]. Such a basis can be easily expanded in two dimensions

and applied to images. This is achieved by substituting k with k = (k1, k2) and introducing a
direction index l ∈ {H,V,D}. l is employed to mix both father and mother wavelets, to ensure
the completeness of the basis. Its values are H for horizontal, V for vertical, and D for diagonal.
The corresponding 2D fundamental wavelets are defined as ψH

j,k = φj,k1ψj,k2 , ψV
j,k = ψj,k1φj,k2 and

ψD
j,k = ψj,k1ψj,k2 . A generic discrete wavelet at scale j in a given decomposition direction l can
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then be expressed as in Eq. (1).

ψl
j =




ψl
j,(0,0) . . . ψl

j,(0,Nj−1)
... . . . ...

ψl
j,(Nj−1,0) . . . ψl

j,(Nj−1,Nj−1)


 . (1)

The family of wavelets {ψl
j} derived from the definition of Eq. (1) was used in Ref. 17 to

define a random field modeling framework, called the locally stationary two-dimensional wavelet
field (LS2W). The idea is to apply the complete set of 2D discrete wavelet matrices as filters on
an image to calculate its wavelet coefficients in various pixel positions, determined by the shift k.
The approach proposed in Ref. 17 exploits only dyadic scales, while the filters are applied on every
possible position of the image. Mathematically, a generic image of dimensions R = (R,C) can
be generated with an LS2W process as in Eq. (2), where {wl

j,u} are the wavelet coefficients and
{ψl

j,u(r) = ψl
j,u−r} are 2D discrete non-decimated wavelets with orientation l, scale j and shifted

coordinate u. Each coefficient wl
j,u quantifies how large the contribution of the corresponding

wavelet ψl
j,u(r) is in defining the process. {ξlj,u} is a zero-mean random orthonormal increment

sequence which allows stochastic structure to be encapsulated in the model. The dependence on
the image dimension R is included to make the link with the lowest significant scale J(R,C) =
log2{min(R,C)} explicit. Further on, it will be considered as implicit.

Xr;R =
∑

l

∞∑

j=1

∑

u

wl
j,u;Rψ

l
j,u(r)ξ

l
j,u (2)

The local wavelet spectrum (LWS) of an LS2W process Xr can be considered as a Power
Spectral Density for the stationary wavelet transform Sl

j(z) ≈ wl
j(u/R)2. Here, z ∈ (0, 1)2 is

a normalized spatial coordinate z = u/R := (u/R, v/C) and, for a stationary process, Sl
j(z)

is a constant function of z ∀j, l.17 Therefore, an estimate of the LWS can be used to assess the
stationarity of an image.8

In Ref. 17, Eckley and colleagues proposed the local wavelet periodogram (LWP) as an estima-
tor for Sl

j(z). It is expressed as in Eq. (3), where dlj,u are the empirical mother wavelet coefficients
of the image. The fact that the father wavelet coefficients are not included in Eq. (3) implies the
independence of the LWP from the mean value of the process under study. This estimator is biased,
but it can be corrected by multiplying it with the inverse of the two-dimensional discrete autocorre-
lation wavelet matrix AJ , obtaining Ŝ(u) = A−1

J I(u).18 Prior to the correction, wavelet shrinkage
has also been applied to each level of LWP to increase the consistency of the estimator.17 Ŝ(u) is
an array with four dimensions, i.e., two for the spatial coordinates u, one for scale j, and one for
direction l, to reach a total of R× C × J × 3 elements.

I(u) = {I lj,u} =
{
|dlj,u|2

}
=

{(∑

r

Xrψ
l
j,u(r)

)2
}

(3)

The stationarity test introduced in Ref. 8 employs as test statistic a departure from constancy
Tave{Ŝ} in Eq. (4), which is the variance of the values of Ŝ(u), averaged over scales j and direc-
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tions l.

Tave{Ŝ} = (3J)−1
∑

l

J∑

j=1

varu(Ŝ(u)) (4)

Since the original distribution is unknown a priori, i.e., the algorithm operates on a single realiza-
tion of the LS2W process Xr, it is simulated with a bootstrap operation to infer its characteristics
from the input image. Then, the p-value of the stationarity test is calculated by comparing the
Tave of the various bootstrap iterations with that of the original image. Mathematically, this can be
expressed as p = 1+#{T obs

ave≤T
(i)
ave}

B+1
, with obs indicating the observed image, index i specifying the

various bootstrap instantiations, and B the total number of repetitions of the bootstrap loop.

2.2 Proposed approach to texture stationarity

As discussed in Ref. 8, it is also possible to test each scale-direction spectral plane for constancy.
This is achieved by defining a test statistic Tη(j,l) as shown in Eq. (5).

Tη(j,l){Ŝ} := T{Ŝl
j} = varu(Ŝl

j(u)) (5)

With these test statistics it is possible to perform a stationarity test at every scale j and direction

l. For each of these tests, a p-value pη(j,l) =
1+#{T obs

η(j,l)
≤T

(i)
η(j,l)

}
B+1

can be defined. The pη(j,l)s can
be grouped into a vector p to understand the degree of stationarity of an image at dyadic scales
2j, ∀j ∈ Z+, j < J(R,C) and for direction l ∈ {H, V,D}. Note that the calculation of p is non-
linear in Tave, which means that the average value of the vector p is different from the p-value of
the image (pη(j,l) 6= p). Given that the family of wavelets {ψl

j} is composed by orthogonal filters,
each test is independent from the others. Such an approach is similar to the BootstatmhLS2W
framework introduced in Ref. 8, which however is used to probe the stationarity of the whole
image, and not scale by scale. To achieve that, the BootstatmhLS2W applies a multiple hypothesis
testing scenario discussed in Ref. 19. In our case it is not necessary to resort to this correction
method since we define 3J distinct hypothesis tests, one for each η.

Finally, we can define a set of p-values under the null hypothesis of stationarity of scale j. We

can define these as pj =
1+#{T obs

j ≤T
(i)
j }

B+1
, Tj{Ŝ} :=

Tη(j,H){Ŝ}+Tη(j,V ){Ŝ}+Tη(j,D){Ŝ}
3

. This corresponds
to Eq. (8) of Ref. 8, averaged only over the wavelet directions. We gather these values in the vector
pj .

p p and pj are all results of statistical tests, under the null hypothesis of stationarity. Therefore,
a threshold α of the test significance level can be chosen. In the present paper, we used Haar
wavelets and we set B = 100 and α = 5%, where not stated otherwise.

3 Chessboard Stationarity

The relevance of LS2W and the related stationarity test in computer vision applications has been
discussed in various articles.8, 17, 20, 21 However, to our knowledge, its relationship to the human
perception process and appearance analysis has not been previously addressed. A simple way to
obtain some initial insights is by extracting the values p and p from images that have a regular
structure. Our goal is therefore to investigate whether the tests introduced in the previous Section
define these images as data stationary.
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We applied the stationarity test on an 8-bit 128 × 128 chessboard image (Fig. 1a) with binary
values (0 on black patches, 255 on white ones). Following the classification discussed in Ref. 3,
this is a regular periodic pattern with a black square primitive, which thus can be analysed with
a shape grammar. According to the definition in chapter four of the same Reference, the image
can be perceived as filled with a single texture, i.e. it is visually stationary. Since the LS2W
model assumes that the image analysed has a stochastic structure, we added a degree of random
noise to the pixels of the chessboard picture: a two-dimensional white Gaussian noise process
Xwn(r) ∼ N(0, σwn), with σwn = 10 · n, ∀n ∈ [0, 10]. Only moments of order two and higher of
the original checkerboard picture are influenced by the procedure because the distribution has an
average value of zero. Given that for all of these images the p-value of the LS2W test is p = 1, they
are data stationary according to the test. In this case, the scale analysis does not add any additional
information, because p is constant and unitary p = {pη(j,l) = 1, ∀j ∈ Z+,∀l ∈ {H, V,D}}.
Interestingly, the results of the stationarity tests are the same for both the stochastic (σwn 6= 0) and
the deterministic (σwn = 0) patterns that were analysed. This is probably due to the fact that the
added noise is second-order stationary, and thus does not influence the result of the calculation,
which is mainly dictated by the deterministic base. The zero mean of the overall image, which is
assumed by the LS2W methodology, is, as discussed, independent on the noise distribution. This
property is further ensured by the definition of the LWP itself (see Eq. (3)), which is an estimator of
the LWS of an image. In fact, as mentioned in Sec. 2.1, the LWP neglects the constant component
of the image contained in the father wavelet coefficients. Based on these results, we avoid adding
a stochastic structure to deterministic images in the following analysis.

The stationarity analysis has also been repeated on modified versions of the chessboard image
in order to understand how various types of distortions affect p. First, the image is stretched in
the horizontal and vertical directions, see Figs. 1b-1i. Their p-values appear to be always = 1 and,
thus, unaffected by the stretching. The corresponding p is also mainly unitary. However, note the
repeatable effect on scales 21 to 22 shown in Fig. 2, obtained from Figs. 1c and 1g. This effect
arises from Tave{Ŝ} having a peak in the diagonal direction which is stronger than in any other
image. This peak is present in every image, at scale 22 in the horizontal and vertical directions
and 23 in the diagonal one. However, in the case of Figs. 1c and 1g, it is particularly strong in
respect with the values at other scales. In fact, in these levels and with these images, the trade-off
between spatial distance and frequency of the changes in intensity is the highest. Given that the
stretched images appear visually stationary, this unexpected effect highlights a limitation of the
mathematical method.

Next, we rotated the chessboard image to confirm the independence of the test from the di-
rection of the texture. This should be ensured by the completeness of the family of filters {ψl

j}
considered, as they probe all the relationships between pixels at the scale j. We used the function
imutils.rotate from Python,22 based on bilinear interpolation, with rotation angles [0◦, 90◦),
in an interval of 10◦. Bigger angles of rotation are not necessary, given that the original chessboard
image is symmetric by rotation of π and the horizontal and vertical wavelets probe perpendicular
directions. As expected, all these images appeared to be data stationary at every scale considered
for each rotation angle.

Finally, we varied the sizes of the white and black patches in the chessboard. To maintain
the original image dimension (128 × 128), the sides of the patches were enlarged by powers of 2,
as shown in Fig. 3. Again, all the images appear to be stationary with α = 5%. However, it is
interesting to notice that the p is not unitary for all the images, as shown in Fig. 4. Visually, this
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Fig 1: Original chessboard image (Fig. 1a) and horizontally (Figs. 1b, 1c, 1d and 1e) and vertically
(Figs. 1f, 1g, 1h and 1i) stretched versions.

Fig 2: ps for Figs. 1c (left) and 1g (right) (H for horizontal, V for vertical, and D for diagonal).

can be linked to a reduction of homogeneity of the whole image associated with the scaling. In
parallel, an analysis of the vector p of the images, shown in Fig. 5, displays an average decrease
of values with the zoom, especially in the finer scales. This could be due to the different Cone
Of Influence (COI) of the wavelet at each scale: the finer wavelets, whose COIs are the smallest
considered, are affected by the edges of the pattern more abruptly than the other scales, which
could lead to a smaller stationarity.

4 Texture Classification

To further probe how the stationarity information can be linked to the perception of texture we ran a
classification experiment. We used the Describable Textures Dataset (DTD),10, 23 whose purpose is
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Original ×2 ×4 ×8

Fig 3: Original image and resized variants.

Fig 4: Dependence of chessboard image p-value on the size of its patches.

to describe textures ‘in the wild’ with semantic attributes chosen by human observers. We selected
100 texture images among the ones in the database, extracting them from 10 different classes
derived from Ref. 5. These have been then supplemented with an eleventh class, consisting of 10
pictures of fabric samples which we acquired ourselves, for a total of 110 images. The limited
number of images considered is bounded by the necessity of submitting them to the observers of
the psychophysical experiment discussed in Sec. 5. The classes are: chequered, dotted, fabric,
flecked, grid, knitted, lacelike, scaly, stratified, striped and waffled. While the original images are
in colour, in this experiment they have been converted to greyscale images, in order to account
only for their spatial variation. This conversion has been performed by loading each image with
the cv2.imread function of the OpenCV library, which derives the intensity information Y as
Y = 0.299 · R + 0.587 · G + 0.114 · B.24 Every picture has also been cropped into squares of
128 × 128 pixels, as required by the current implementation of the algorithm. Examples of the
selected and processed images from all 11 classes are shown in Fig. 6.

We ran two classification tasks on these data. For the first task, we divided each image input
into sub-images. To comply with the requirements of the dyadic implementation of LS2W, each
image target was split into 16 sub-images, each of dimension 32× 32 pixels (for additional insight
on the choice of dimension, see Appendix D). Then, we classify these sub-images and evaluate
whether they are classified as belonging to their original image. Details on the experiment setup
for the first task can be seen in Fig. 7. As for the second task, all the 110 images were classified
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×2 ×4 ×8

Fig 5: Vectors p for ×2, ×4 and ×8 resized chessboards showed in Fig. 3. Note that the y-axes
are identical and the labels over each graph indicate the direction of the wavelet (H for horizontal,
V for vertical, and D for diagonal).

DTD-Chequered DTD-Dotted DTD-Flecked DTD-Grid DTD-Knitted

DTD-Lacelike DTD-Scaly DTD-Stratified DTD-Striped DTD-Waffled Fabric

Fig 6: Examples of images used in the experiment, coming from all 11 classes or categories of
images. 10 classes originate from DTD10 and one comes from our own dataset of white fabrics.

using more varied texture features and the previously mentioned DTD groups as ground truth
classes. Details for this experiment are given in Sec. 4.3.

4.1 Texture Feature Extraction

Before presenting the results of the classification tasks, we introduce the texture features used for
them. Five texture feature vectors are extracted from each image, each considered at the seven
dyadic scales (five for the sub-images) used to extract its corresponding p. Feature extraction
methods have been selected from the collection of techniques considered in Ref. 6. We neglected
the non-scalable approaches and the learning-based ones. We did not consider the latter because,
without additional training, the off-the-shelf learning models are also non-scalable, and also be-
cause they have not been discussed by Ref. 3 when defining stationary textures. However, we tested
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as reference the capabilities of off-the-shelf models in Sec. 4.3. Details of the feature extraction
approaches used and their parameters are as follows.

Rotation-invariant local binary pattern (LBP) 25 vectors are obtained at dyadic radii of 2n, n ∈
[0, 7] and eight angles (k · π/4) with interpolation. For each scale and image, an LBP his-
togram of 36 elements is then used as its feature vector.

Grey-level co-occurrences matrix (GLCM) 26 vectors are obtained. They are composed of five
global statistical parameters (contrast, correlation, energy, entropy and homogeneity) at four
angles (0, π/4, π/2, 3/4π). The feature vector is therefore 20 elements long for each scale.

Histogram of oriented gradients (HOG) 27 is computed at nine orientations, normalized accord-
ing to the hysteresis L2-norm, with 2n pixels per cell and one cell per block. The HOG
vectors thus obtained have a total of nine elements per scale.

Gabor filters-based features 28 with central filter frequencies f = 1/2n, n ∈ [0, 7], eight ori-
entations, and deviation parameters γ and η assumed to be equal 3 ln(2)/2π. γ and η are
chosen such that half-peak magnitude iso-ellipses of the various filters would not overlap
(see Appendix C of Ref. 29 for more details). Input images are filtered with these and their
mean and variance has been calculated, resulting in a 16-element vector for each scale.

Wavelet vectors, generated with Haar and Daubechies filters at dyadic scales. These features
correspond to methods I and III used in Ref. 17. As in the Gabor-based ones above, the
mean and variance energy of the filtered images have been used. Note that the variance of
the energy has some degree of correlation with the LWP (Eq. (3)) and with the test statistics
adopted (Eq. (4) and Eq. (5)). However, the two have some substantial differences: while the
regular wavelets used to extract the features are placed at dyadic locations in the image, the
LS2W model used by the test is based on non-decimated discrete wavelets. Moreover, the
estimator Ŝ(u) is corrected with the discrete autocorrelation wavelet matrix AJ . Horizontal,
vertical, and diagonal wavelets have been considered, such that each feature vector has a
length of 12.

According to Ref. 3 and 6, within this list, GLCM and HOG are texture features better suited
for stationary texture images, while the others are better at characterizing non-stationary ones.
This suggests that it could be possible to evaluate the stationarity of an image based on the other
features. This however could be achieved only by defining a proper testing procedure for each
methodology.

4.2 Classification Task 1: Mixed Sub-image Classification

The vector p by itself reflects the stationarity (or lack of it) of an image. Therefore it is not able
to wholly represent the peculiar characteristics of a texture by itself, which is what is required by
the features used for classification. Nonetheless, it is possible to use the stationarity information
to optimize the process of texture feature extraction. In fact, some feature extraction techniques
are claimed to be more appropriate for non-stationary images than others,3, 6 although such a claim
has not been proven experimentally. According to this idea, the stationarity information contained
in the p could suggest a selection of features at different scales which is optimal to describe the

10

Article D 119



Fig 7: Experiment setup for the mixed sub-image classification task in Sec. 4.2. In it, each input
image is split into sub-images, and the latter is classified and evaluated as whether they belong to
their original or source image.

texture. In the context of classification, this translates into an increase in the accuracy of the
process. In this section we set out to provide experimental proof for this hypothesis.

The experiment setup for this classification task can be seen in Fig. 7. The choice of features
for stationary and non-stationary texture is based on Ref. 3. Both GLCM and wavelet-based ap-
proaches were used to extract features at dyadic scales, allowing us to classify the sub-images
using each individual feature vector. We also combine GLCM and wavelet-based features based
on the p of each image. One of the methods, indicated with fs, is applied to stationary scales and
the other, referred to with fns, to non-stationary ones. The jth element of the mixed feature vector
fmix is then obtained as:

fmix,j(fs, fns) =

{
pad(fs,j) if pj > α

pad(fns,j) if pj < α
(6)

, where fs 6= fns and pj ∈ pj . The hypothesis behind the calculation of fmix is that the only
features affected by the non-stationarity of a certain scale would be the ones at that same scale. In
the present case fs = GLCM and fns = wavelet. The threshold α, which in the current work is
set to 5%, is applied to the values pj to estimate whether each scale is stationary. If the p-value
at a certain scale is bigger than α, the image is considered stationary at that scale and the GLCM
feature vector is inserted in the mixed vector. Otherwise, the image at that scale is considered
non-stationary and the wavelet-based feature is used. In this way, the space of the mixed vector
can be divided into a stationary sub-space and a non-stationary one, each one orthogonal to the
other. As a note, fmix,j is padded with zeros to the right in the stationary case and to the left in the
non-stationary one, so that the length of the mixed vector is equal to the sum of the lengths of the
other two vectors.

As shown in Fig. 7, we chose to use a Random Forest classifier with a 67%− 33% training-test
set subdivision. The forest has 100 trees, and the algorithm selects their depth so that the nodes are
expanded until all the leaves are pure. At each split of the tree, the square root of the initial number
of features is considered. For every process, the classification has been repeated 1000 times and
the average value of the accuracy was extracted. The results of using GLCM and wavelet-based
features individually as well as in a mixed feature vector are shown in Table 2. Combining the
two techniques appears to worsen the classification accuracy. The use of wavelet as fs and GLCM
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as fns is discussed in Appendix B. Appendix B also shows how the use of wavelet shrinkage in
the extraction of the p, discussed in Sec. 2.1, leads the accuracy to drop to 61.81%. Additional
analyses of alternative classification experiments are also reported in Appendices A and E.

Table 2: Classification accuracy corresponding to the classification task 1 shown in Fig. 7.

Method GLCM Wavelet fmix

Average accuracy (in %) 68.05 65.33 64.62

4.3 Classification Task 2: Mixed DTD Classification

As a second task, we classified the unabridged images on the basis of the classes defined by the
DTD authors.5 In this case, we used all the features extraction techniques described in Sec. 4.1, so
to probe a wider range of possible approaches. As in the previous section, we derived the accuracy
obtained both by classifying the dataset with the original features and with all the possible com-
binations of mixed vectors fmix (see Eq. (6)). The results for the classification without shrinkage
are reported in Table 3, where, according to the practice adopted in Eq. (6), fs indicates the feature
extraction method considered as stationary, while fns the non-stationary one. On the diagonal of
the tables we show as reference the results for the classification without mixing. The results of
applying shrinkage to the same set of experiments are also shown in Table 4.

These results are compatible with those obtained by local descriptors for the whole DTD.10

Between the unmixed features of Tables 3 and 4, the Local Binary Patterns are the most successful.
On the other hand, HOG and Gabor features appear to perform quite poorly. The mix that provides
the best classification accuracy is fs = wavelet and fns = LBP . In general, the mixing appears
to improve the performance of the classification with every technique. In this case, applying the
wavelet shrinkage when calculating pj seems to be the best choice.

The accuracy depends more on the stationary technique (fs) than on the non-stationary one
(fns). This is due to the fact that the images chosen are mainly stationary: the 88% of the pjs are
bigger than the 5% test threshold without wavelet shrinkage, while the percentage drops to 77%
with wavelet shrinkage. The whole-image p-values have a similar statistic, with 90% for the rough
and 92% for the smooth. This could be related to the fact that the test used is conservative.8

As an additional reference, we performed the same experiment with the following seven Con-
volutional Neural Networks (CNNs):

• ResNet-5030

• VGG-16 and VGG-1931

• Inception v332

• DenseNet-121, DenseNet-161 and DenseNet-20133

We extracted the features from off-the-shelf models, which were trained for object recognition.
Each network was employed as a generic feature extractor, and the resulting features were then
passed on to the Random Forest classifier. Every individual network extracts 1000 features per
image. Given that the CNNs required the input array to have certain dimensions and to have three
channels, we resized them accordingly using cubic interpolation and we tripled the gray channel.
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Table 3: Classification accuracy corresponding to the classification task 2 without wavelet shrink-
age.

fns
LBP GLCM HOG Gabor wavelet

f s
LBP 32.7% 32.4% 31.6% 32.8% 32.3%

GLCM 32.5% 31.7% 31.3% 31.4% 31.9%
HOG 27.5% 26.2% 23.4% 25.9% 25.9%
Gabor 27.4% 27.3% 27.6% 26.2% 27.3%

wavelet 33.8% 32.0% 31.4% 32.5% 29.9%

Table 4: Classification accuracy corresponding to the classification task 2 with wavelet shrinkage.

fns
LBP GLCM HOG Gabor wavelet

f s

LBP 32.7% 34.0% 30.3% 30.2% 33.6%
GLCM 33.8% 31.7% 31.6% 29.2% 33.3%
HOG 33.7% 33.2% 23.4% 26.4% 33.1%
Gabor 34.7% 32.7% 33.9% 26.2% 32.4%

wavelet 36.6% 34.4% 31.1% 33.9% 29.9%

The results are shown in Tab. 5, where one can see that this assignment is challenging even for
learning-based techniques.

Table 5: Classification accuracy with CNNs corresponding to the classification task 2.

Network Average accuracy (in %)
ResNet-50 44.0
VGG-16 39.7
VGG-19 47.4

Inception v3 40.5
DenseNet-121 43.3
DenseNet-169 42.0
DenseNet-201 42.7

5 Psychovisual Experiment Design

As final step of our investigation of the link between perceptual and data stationarity, we performed
a psychophysical experiment. We used the psychovisual software PsychoPy234 to set up the ex-
periment and uploaded it to the Pavlovia web platform. The images used in the experiment are
the same 110 which were classified in the previous section, greyscaled and cropped. The exper-
iment was performed by 93 observers, who carried it out on their personal computer and screen.
Therefore, the viewing environment of each observer was uncontrolled, which could pose some
challenges, mainly related to the resolution of the image, which will vary with the type of display
and the distance of the observer from the screen. However, this effect is limited by the fact that
Pavlovia automatically activates the full-screen view when the experiment starts. As the images

13

122 Article D



Fig 8: A screenshot of the psychophysical experiment performed.

were greyscale, a colour calibration of the screen was not necessary. The display settings of each
observer could have had an impact, although as discussed in Ref. 35, many studies have compared
online behavioral experiments with lab-based ones, and they found that their data quality is usually
equivalent.

The experiment was divided into 30 rounds. At each of them, an observer was presented a
texture reference and 25 samples, and was asked to select all the images that looked similar to the
reference. No information other than this was provided to the observers, and no definition of the
words similar and texture was given before the experiment. The 26 textures, samples and reference,
were selected randomly from the database, and therefore rounds without instances of the reference
image class in the 25 samples were possible. An example of an experiment round is shown in
Fig. 8. Based on the results of this experiment, it is possible to evaluate how similar two texture
images A and B are by defining a similarity coefficient SIMA,B (Eq. (7)). Here, ngroup(A,B)
indicates the number of times that A and B have been grouped together, while nappear(A,B) the
number of times they appeared together in the same screen, given thatA is a reference image. Note
that SIMA,B ∈ [0, 1].

SIMA,B =
ngroup(A,B)

nappear(A,B)
(7)

The results of this similarity evaluation process can be used to fill a matrix, as shown in Fig. 9.
In this figure, we highlighted the boundaries between images belonging to different DTD classes.
From the figure, it can be seen which classes are confused with each other, such as the chequered
with the grid, the flecked with the dotted and the knitted, and the scaly with the stratified.

If averaged over each class, this similarity coefficient matrix can be compared to the corre-
lation matrix of the classification task 2, in Sec. 4.3. This is justified by the observation that, if

14

Article D 123



Fig 9: The SIMA,B matrix for the experiment performed.

Table 6: Spearman’s rank correlation coefficients between confusion matrix of the classification
with different feature extraction methods and the SIMA,B matrix (Fig. 9).

Method LBP GLCM HOG Gabor Wavelet
Spearman’s ρ 0.51 0.49 0.47 0.48 0.38

the images belonging to a certain class are generally similar to those belonging to another accord-
ing to the average human observer, it is more likely that the classification algorithm will confuse
them. Therefore, we calculated the average confusion matrix of 1000 classification repetitions for
the feature extraction techniques used in Sec. 4.3, and we then calculated the Spearman’s rank
correlation coefficient ρ between the two matrices after having collapsed them to one-dimensional
vectors. We chose to use this measure because we want to evaluate the relationship between the
two elements, without assumptions about its linearity or the type of distributions the data is ob-
tained from. The results are shown in Table 6. The values of the ρs show a moderate correlation
and they seem to reflect the accuracies obtained in the second classification task. The only excep-
tion to this rule are the wavelet features, which show relatively low ρ, but give a relatively high
classification accuracy in the group. The same analysis can be performed with the mixed features.
Without wavelet shrinkage we obtain the results shown in Table 7. We have also conducted the
experiment with wavelet shrinkage, resulting in ρs on average 0.08 smaller than the ones without
it. Interestingly, this shows how, while the best solution to classify images seems to be a mix of
wavelet and LBP features vector, the results that better fit with the human observation are obtained
by mixing wavelets with GLCM.

Another way to link this psychovisual similarity to the inspected features is by comparing the
difference between the feature vectors of each pair of images with their similarity. This, too, can
be gauged with the Spearman’s ρ. First, we extracted the feature vectors as described in Sec. 4.1,
calculated the distance between each of them, and compared the output with the similarity values.
The results are provided in Table 8. Notice that they are all negative and quite small.

If we do the same for the mixed features, without wavelet shrinkage we get results shown in
Table 9. If we add wavelet shrinkage, the correlation coefficients are on average the same. The best
possible choice of feature mixing is, in this case, the pure co-occurrence matrix features. On the
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Table 7: Spearman’s rank correlation coefficients between confusion matrix of the classification
with different stationarity-based mixed methods and the SIMA,B matrix (Fig. 9).

Non-stationary
LBP GLCM HOG Gabor wavelet

St
at

io
na

ry
LBP 0.51 0.47 0.45 0.46 0.49

GLCM 0.53 0.49 0.52 0.51 0.53
HOG 0.46 0.46 0.47 0.43 0.47
Gabor 0.49 0.49 0.5 0.48 0.48

wavelet 0.38 0.34 0.34 0.35 0.38

Table 8: Spearman’s rank correlation coefficients between feature vector distances and the SIMA,B

matrix (Fig. 9).

Method LBP GLCM HOG Gabor Wavelet
Spearman’s ρ -0.15 -0.18 -0.1 -0.15 -0.11

other hand, wavelets appear to perform extremely poorly as stationary features. However, overall,
the Spearman’s ρ indicates that the correlation between the techniques used and the results of the
psychovisual experiment performed is very weak. This is in line with the results of Sec. 4.3, which
shows how demanding the DTD classification’s task is.

Table 9: Spearman’s rank correlation coefficients between distances of feature vectors obtained
with different stationarity-based mixed methods and the SIMA,B matrix (Fig. 9).

Non-stationary
LBP GLCM HOG Gabor wavelet

St
at

io
na

ry

LBP -0.15 -0.12 -0.15 -0.12 -0.13
GLCM -0.11 -0.18 -0.11 -0.15 -0.15
HOG -0.13 -0.11 -0.1 -0.11 -0.12
Gabor -0.16 -0.17 -0.16 -0.15 -0.13

wavelet -0.11 -0.11 -0.11 -0.11 -0.11

6 Discussion and Conclusion

The results obtained in this work provide clues on how data stationarity is linked to human per-
ception. First of all, the analysis of the chessboard images in Sec. 3 demonstrated its fundamental
properties in relation to the simple case of a regular texture. According to the test used, the original
chessboard image is data stationary, as are its stretched variations (Fig. 2). On the other hand, an
increase of the chessboard patches dimension reduces the stationarity, particularly at lower scales
and higher spatial frequencies (Fig. 5).

The classification experiments, described in Sec. 4, provide us with additional insights in rela-
tion to irregular textures. In the first task, discussed in Sec. 4.2, the pjs, i.e. the p-values resulting
from testing a texture for stationarity at different scales, are used to mix the elements of GLCM
and wavelet vectors. This however does not improve the classification accuracy. Additional anal-
yses are reported in the Appendices. The results of this classification task suggest that Petrou and
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Sevilla’s claim that while model-based texture features like GLCM are more suited for stationary
images, frequency-based descriptors such as wavelet are preferred for non-stationary ones3 has
a limited validity in a classification framework. On the other hand, the second task, reported in
Sec. 4.3, shows that using the stationarity information does improve the classification of the DTD
images in their texture macrogroups. Compared to task 1, this assignment is more related to high
level texture perception.

Finally, the psychophysical experiment (Sec. 5) directly probes the link between perception and
math. In its first part, it addresses the correlation between the confusion matrices of Sec. 4.3 and the
similarity results, revealing how a mix of wavelet and LBP best replicates the average observer’s
response. It also demonstrates that the traditional texture features are very weakly correlated with
the results of the visual experiment. Even in this context, despite the small size of the Spearman’s
ρs, the p-based mixing of features increases it.

In general, it is not clear if using wavelet shrinkage during the p calculation improves or re-
duces the relationship between visual and data stationarity. In some cases applying the wavelet
shrinkage to p has a disruptive effect, while in some others the effect is negligible. For example, in
the chessboard experiment of Sec. 3 the shrinkage filters high-frequency artifacts, which degrade
some pη(j,l)s of the p, and it is therefore convenient. In the experiment of Appendix B its appli-
cation reduces the accuracy of the algorithm, while it increases it in Appendix E. Finally, it has a
negative effect on the psychovisual analysis between mixed features and experimental similarity.

To conclude, the current paper shows how stationarity information can be linked to the psy-
chophysical attributes of a texture image and how evaluating it with Locally Stationary Two-
Dimensional Wavelet (LS2W) processes can be used to improve a texture classification pipeline.
There are various possible future steps that could better clarify the role of stationarity in texture.
Firstly, one can examine a wider variety of spatial stationarity metrics.36–38 Even if the disadvan-
tages of most of these have been highlighted in Ref. 8, their relationship with the perception of
texture has yet to be assessed. The LS2W method itself can be improved. The scale analysis is
currently performed at dyadic scales,20 which allows fast extraction of the p of an image, but ob-
taining p on a continuous range of scales would provide more insight on its behaviour. Another
possible improvement to this approach is to expand it to colour and spectral images and to find the
best way to mix the various image channels. It has, in fact, been demonstrated that taking them
into account increases the performance of texture analysis.39 This has been already done for p in
Ref. 21, but not for scale-dependent p. Finally, p, p and pj can be used to detect which image in a
database has to go through a texture segmentation process.

Appendix A: Sub-image classification using GLCM and wavelet-based features at all scales

In Sec. 4.2, we calculated the accuracy obtained by classifying images with fmix, a feature vector
obtained by mixing GLCM and wavelet elements. In this appendix, we compare the results of
that experiment, shown in Table 2, to what can be achieved by simply combining the GLCM and
wavelet vectors as in Eq. (8). Here, c is an operation concatenating the vector fns,j to fs,j . With
this, we achieve an accuracy of 72.3%, which is the best accuracy reached for this experiment (see
Table 2).

fcomb,j(fs, fns) = c(fs,j, fns,j) (8)
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Appendix B: Sub-image classification using variations of fmix

For the classification based on fmix (see Sec. 4.2) we also considered the cases in which p is
calculated without wavelet shrinkage-based smoothing. Ref. 17 demonstrates that the results of the
stationarity test are more reproducible if smoothing is applied, but this could be counterproductive
for the classification. Moreover, we assessed the case in which fs = wavelet and fns = GLCM
(see Eq. (6)), since this would provide us with experimental proof for the considerations proposed
in Ref. 3, i.e. that the some techniques, like GLCM, are more suited to stationary images than
others, such as wavelets.

Table 10: Classification accuracy corresponding to the classification task 1 shown in Fig. 7, with
various choices of stationary features and with wavelet shrinkage.

Shrinkage Stationary Non-stationary Accuracy
no GLCM wavelet 64.62%
no wavelet GLCM 61.18%
yes GLCM wavelet 61.81%
yes wavelet GLCM 57.04%

The results obtained by calculating the pjs of each sub-image are shown in Table 10. We can
see that the ‘rough’ pj that is obtained without applying wavelet shrinkage perform better. These
outputs are partially in line with Ref. 3’s hypothesis discussed in Sec. 4.1, as using wavelet as
stationary technique is worse than using GLCM. However, the accuracies reported in Table 10 are
all smaller than those obtained with pure GLCM and wavelet features (see Table 2) and with a
combination of the two (see Appendix A).

Appendix C: ALOT analysis

As discussed in Sec. 1, we chose to use the DTD images in our analysis because of their vision-
based arrangement. To provide an alternative, we also considered the Amsterdam Library of
Textures (ALOT).40 In particular, we studied the ALOT pictures mentioned in Ref. 6. In this
article, the authors classified a wide variety of existing texture databases according to certain char-
acteristics, among which is texture stationarity, with explicit mention to the definition given in
Ref. 3. Therefore, we applied the LS2W stationarity test (Sec. 2) to two datasets defined in
this paper and extracted from the ALOT: one stationary ALOT-95-S-N and the non-stationary
ALOT-40-NS-N. Setting the significance level α to 0.1 and the number of bootstrap iterations B
to 10, only 40% of the ALOT-95-S-N images are classified as stationary by the test, whereas for
the ALOT-40-NS-N group this percentage is increased to 67.5%. This demonstrates the need for
a common definition of data and visual stationarity.

Subsequently, we expanded the results reported in Sec. 4.2 by applying the first classification
task to the ALOT. In particular, we merged the two classes ALOT-95-S-N and ALOT-40-NS-N.
We adopted the same approach as Sec. 4.2, dividing each sample in 16 sub-images of shape 256×
256. The results of the classification are shown in Table 11, where fmix,ws indicates the mixed
features obtained without wavelet shrinkage and fmix,s the ones with it. These results are similar
to those attained in Sec. 4.2.
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Table 11: Classification accuracy of task 1 performed on the ALOT images.

Method GLCM Wavelet fmix,ws fmix,s

Average accuracy without shrinking (in %) 72.18 65.99 70.46 71.92

Appendix D: Dimension dependence

In Sec. 4 we divided each image in sub-images of dimension 32× 32. This is in contrast with the
results discussed in Ref. 8, whose experiment on the power assessment of the LS2W test shows that
an image size of at least 128 pixels side is required to achieve good statistical power. However,
this conclusion has been obtained based on artificial non-stationary models whose visual non-
stationarity is extremely low (e.g. see Fig. 3d in the reference). Moreover, the chosen sub-images’
size is limited by the dimension of the images selected from the DTD.

In this Appendix, we analyse how the size of the sub-images can influence the results of
Sec. 4.2. First, we divided the DTD images selected into bigger sub-images. This has the draw-
back of reducing the total number of images available for the classification. We then repeated task
1 of the classification section. With sub-images of size 64 × 64, which correspond to dividing
the original picture into four squared sections, we obtain Table 12, while with sub-images of size
42× 42, we obtained Table 13.

Table 12: Classification accuracy of task 1 performed on images with size 64× 64.

Method GLCM Wavelet fmix

Average accuracy (in %) 63.55 58.84 57.62

Table 13: Classification accuracy of task 1 performed on images with size 42× 42.

Method GLCM Wavelet fmix

Average accuracy (in %) 68.77 67.15 62.32

As in Sec. 4.2, we reported the numbers obtained by mixing the features using the pjs obtained
without wavelet shrinkage, as applying it would slightly reduce the classification performance.
One can see that the results obtained in Sec. 4.2 correspond, with minor variations, to the ones
showed here.

As mentioned, Ref. 8 suggests using square images with sides of at least 128 pixels. To satisfy
this requirement without reducing the number of samples for the classification, we randomly ex-
tracted sub-pictures of size 128× 128 from the selected DTD images. For each image, we derived
16 sub-pictures, so that the number would correspond to the batch used in the calculation of Ta-
ble 2, for a total of 1760 samples. The output of this experiment is shown in Table 14. In this case
the accuracy is strongly enhanced, probably due to the fact that it is likely that some of the clas-
sified pictures overlap. Nonetheless, the conclusions of Sec. 4.2 are still unaffected by the change
of dimension of the images. In this case, mixing with wavelet shrinkage is the best performing
method, and thus it is the number reported in Table 14.

Appendix E: Sub-image classification using image source p

In Sec. 4.2, we extracted the mixed features vector fmix using a different set of pjs for each sub-
image. If we repeat the experiment with a common pj for all sub-images belonging to the same
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Table 14: Classification accuracy of task 1 performed on images with size 128× 128.

Method GLCM Wavelet fmix

Average accuracy (in %) 95.26 95.01 93.19

original image, we get the results shown in Table 15. Here, we can see a clear improvement with
respect to the case discussed in Appendix B, due to the fact that sub-images with common origin
have the same null terms. Nonetheless, the improvement is quite significant and it is interesting
how the wavelet shrinkage further boosts it. In this case, the classification accuracy is actually
improved in respect with the output obtained using pure features.

Table 15: Classification accuracy corresponding to the classification task 2 shown in Fig. 7, with
common set of pjs.

Shrinkage Stationary Non-stationary Accuracy
no GLCM wavelet 77.79%
no wavelet GLCM 75.34%
yes GLCM wavelet 79.96%
yes wavelet GLCM 75.24%
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Abstract—Measurement repeatability and reproducibility were
analysed for four different models of colour measurement instru-
ment on PTFE and on printed and unprinted cotton material.
The influence of instrument aperture and sample characteristics
on the measurements was analyzed, showing that as expected
larger apertures tended to give better repeatability and smaller
difference in the inter-model agreement. Measurement repeata-
bility across the different textile samples was in the range of
0.04-0.91 ∆E∗

ab, while the effect of different sample positioning
was in the range of 0.25-0.88 ∆E∗

ab.
Index Terms—colorimetry, textiles, measurement geometry,

uncertainty

I. INTRODUCTION

Agreement between colour measurement instruments is
facilitated by international standards and guidelines such as
ISO 13655 [1], GUM [2] and ASTM E2214 [3], and different
industries typically have specific recommended measurement
parameters. Standards developed by ISO TC130, including
ISO 13655, provide recommendations for printed matter
generally, but do not include specific recommendations for
textiles, which are traditionally measured with instruments
with a 0°:d geometry and a relatively large aperture. Digital
printers, of both paper-based and textile substrates, use
instrumentation based on a 0°:45°geometry and relatively
small aperture.

The textile industry commonly uses instruments with
a 0°:d (or d:8°) geometry and larger aperture, according
to the recommendations of ISO 105 [4]. In addition, the
textile industry, in common with many industries, computes
colorimetry from spectral reflectance with a D65 illuminant,
while graphic arts (and ICC colour management) have
adopted D50.

One advantage of a 0°:d geometry when measuring
textured materials is that it is less sensitive to the spatial
orientation positioning of the instrument with respect to
the sample, which results in more consistent results on

anisotropic materials such as textiles. In a 0°:45°(or 45°:0°)
instrument, greater variation in measurement is expected on
such materials.

In order to contribute to recommendations that can be
adopted for process control of printed textiles, this work shows
the results of uncertainty analysis of different measurement
instruments on digitally printed textiles. The procedures
in this study attempted to follow the recommendations of
ISO DTS 23031 [5], which although not yet approved and
published, provides useful recommendations on assessing the
performance of colour measurement instruments.

A. Measurement Uncertainty

According to [6], uncertainty (of measurement) is a
parameter associated with the result of a measurement
that characterizes the dispersion of the values that could
reasonably be attributed to the measurand. It can be divided
into two main categories: precision and accuracy [7], [8].

ASTM E2214 [3] was developed to standardize the ter-
minology and procedures used to evaluate color measuring
instruments. The terminology used in this article and based
on ASTM E2214 are the following [9]–[11]:

• Repeatability: closeness of the agreement between the
results of successive measurements of the same substrate
carried out under the same conditions of measurement.

• Reproducibility: similar to repeatability, except that some
aspect of the measurement conditions has changed.

• Inter-instrument agreement: describes the reproducibility
of two or more instruments of identical design.

• Inter-model agreement: expresses the reproducibility of
two or more instruments of different design.

• Accuracy: how closely an instrument can conform to the
accepted or true value for a given sample.

1) Measurement Uncertainty on Textiles: In the textile
industry, color control has always been a prime concern,
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TABLE I: Overview of the four instruments used in this work

Instrument 1 Instrument 2 Instrument 3 Instrument 4

Geometry
Circumferential 45°:0°
(3-point circumferential
illumination)

Circumferential 45°:0°
(annular illumination) 0°:45° d:8°,

Diffuse illumination

Geometry
standard

conformance
ISO 13655:2017, ISO-5-4 ISO 13655:2009 DIN 5033 Unspecified

Aperture Switchable between
2, 6 and 8 mm 4.5 mm 3 mm 8 mm

Aperture
(over or under-filled) Over-filled Under-filled Unspecified Over-filled

Light source 7 narrow-band LEDs Gas-filled tungsten Gas-filled tungsten Gas-filled tungsten

Detector Diode array Diode array Unspecified Blue-enhanced silicon
photodiodes

Inter-instrument
agreement

Avg: 0.5 ∆E∗
00

Max: 1.0 ∆E∗
00

Avg: 0.4 ∆E∗
94

Max: 1.0 ∆E∗
94

0.3 ∆E∗
ab

Avg: 0.20 ∆E∗
ab

Max: 0.40 ∆E∗
ab

Spectral range
and interval 380nm to 750nm at 10nm 380nm to 730nm at 10nm 400nm to 700nm at 10nm 400nm to 700nm at 10nm

Short-term
repeatability

Spot: 0.05 ∆E∗
00

(standard deviation,
10 measurements made
with white BCRA)
Scan: <0.2 ∆E∗

00

0.1 ∆E∗
94 on white

(D50, 2°, mean of
10 measurements
every 3 seconds on white)

0.03 ∆E∗
ab

0.05 ∆E∗
ab

on white ceramic
(standard deviation)

and tolerances are often very tight. Some of the areas where
color control is applied are color fastness, quality control,
and characterization of colorants [6]. Material texture has
an affect on measurement, so it is of particular interest to
explore the effects on measurement reproducibility of the
spatial orientation and location of measurement on textile
samples.

This study focuses on these repeatability and reproducibility
aspects of measurement uncertainty for textiles, and we do
not show results for combined or expanded uncertainty with
respect to calibrated reference materials. Many different
models of colour measurement instruments are used in the
textile industry. However, the use of instruments with poor
inter-instrument agreement can result in complications in the
control of the colour reproduction process [12].

II. EXPERIMENTAL

A. Instruments

Four commercial spectrophotometers (one bench-top and
three hand-helds) widely used in the graphic arts industry were
analyzed. Table I shows the instruments and their manufacturer
specifications. Each instrument was calibrated according to the
manufacturers instructions using the supplied white reference
prior to each measurement set. Instruments were allowed to
warm up and left powered on for the duration of each set.
Where both scan and spot measurement modes were available,
instruments were operated in spot mode. Instruments 1 to 3
were used in ISO 13655 measurement mode M1 and, for the
0:d instrument the specular component was excluded, which is
expected to give a better correlation to the 45°:0°instruments.

B. Methods and procedures

The performance of the instruments was first evaluated in
terms of precision, repeatability, and reproducibility, using
a white Spectralon tile, a white paper sample (with optical
brightener), and an unprinted sample of each of the fabric
samples (see Table II). Textiles have a more inhomogeneous
surface than paper substrates due to the threads from which
they are woven, and the thread patter varies significantly
between different materials.

TABLE II: Cotton materials used in the study
Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Name Half Panama Popeline 40/40 Voile Woven 30/30 Woven 30/22
Thickness 250 microns 237,5 microns 125 microns 150 microns 175 microns
Thread count
(per cm2) 25x20 40x30 36x28 40x30 50x22

Guides such as [13], [14] discuss how to present textile
substrate for measurement, but they are focused on yarns
and dyed rather than printed textiles. Measurements on paper
samples differ from those on real fabrics since they are more
or less planar,while fabric surfaces have more varied surface
topology [15]. For this study, the fabric samples were mounted
on a white backing to provide a stable base substrate for
the sample positioning mechanism of the instruments. As
preparation for measurements, the instruments were warmed
up with random measurements and then calibrated on their
own white reference tile supplied by the manufacturer ac-
cording to the manufacturers instructions. To determine the
short-term repeatability, a sequence of 25 readings with a gap
of five seconds between each one was taken [1]. The Mean
Colour Difference from the Mean (MCDM) [7] for each set
of readings has been calculated by equation (1) and the results
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Fig. 1: Spectral reflectance of textile samples and the Spec-
tralon reference tile

are shown below, where N is the number of readings, Ci are
the colour coordinates of the ith readings, and Cm are the
colour coordinates of the average of all readings.

MCDM =
1

N

∑

N

∆E(ci, cm) (1)

All instruments report spectral reflectance factor relative to
a perfect reflecting diffuser at 10nm intervals. As shown in
Table I, the different instruments measure over a different
wavelength range, and, the spectral reflectance factor from
400 to 700 nm was used for the computation of colorimetric
values, using the procedure described in ISO 13655:2017.
Depending on the aperture of the instrument, the number of
threads included in the measurement will vary. One instrument
in this study has the option of changing the aperture size,
and results for all three apertures are reported below for this
instrument.

III. RESULTS

A. Short-term repeatability

Fig. 1 shows the spectral reflectance of the textile samples
on all four instruments. Sample 1 contains an optical
brightening agent and is noticeable the different response to
the fluorescent emission between the Instruments 1-4, where
Instrument 2 gives a higher prediction of the fluorescent
emission. Samples 2-5 have similar spectral data, hence Fig.
1b shows the data for sample 2.

Table III shows manufacturers agreement and the
corresponding results in terms of the short-term measurements.
To calculate the MCDM, a white pressed PTFE (Spectralon)

TABLE III: Short-term repeatability

Short term repeatability
(manufacturer’s agreement)

Short term
repeatability

(MCDM
measured)

Inst.1
Spot: 0.05 ∆E∗

00 (standard deviation,
10 measurements made with
white BCRA)

0.05

Inst. 2
0.1 ∆E∗

94 on white (D50, 2°, mean
of 10 measurements every 3 seconds
on white)

0.05

Inst. 3 0.03 ∆E∗
ab 0.03

Inst. 4 0.05 ∆E∗
ab on white ceramic

(standard deviation) 0.03

tile was used. As can be noticed, all instruments had
satisfactory repeatability behavior corresponding to the
manufacturers tolerances. Fig. 2 shows the MCDM for
measurements on the Spectralon tile, the backing paper and
the five textile samples. The MCDM values for the textiles are
broadly similar for each sample. On sample 1, the instrument
2 shows a discrepancy with respect to the other instruments.
In the results for maximum ∆E∗

ab, for instrument 1, the
2mm aperture usually has higher values than 6mm and 8mm
apertures, particularly on textiles. This is to be expected since
a smaller aperture collects light from a smaller area of the
sample and is more prone to measurement noise.

Paper
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Fig. 2: MCDM for each set of measurements

All five textile samples are 100% cotton, but with different
structures. One aspect of different structures is that some
weave patterns are more open, permitting more light to pass
trough. In terms of measurement, we characterize this as
different levels of opacity. For these samples, the intrinsic
reflectivity was calculated according to [16], where each
substrate was measured first with just one layer on a black
backing and after it was folded to an amount of textile thick
enough to be completely opaque. Fig.3 shows the MCDM
vs. opacity. For each value of opacity, the MCDM values
are grouped on a small area, which can be a contribution
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Fig. 3: MCDM against opacity for textile samples

TABLE IV: Inter-model agreement
Inst. 1
2mm

Inst. 1
6mm

Inst.1
8mm Inst. 2 Inst. 3 Inst. 4

Avg ∆E∗
ab - 0,17 0,17 2,85 1,06 1,94Inst. 1-2mm 95% - 0,23 0,26 3,43 2,40 3,39

Avg ∆E∗
ab 0.17 - 0,14 2,79 0,99 1,89Inst. 1-6mm 95% 0,23 - 0,19 3,36 2,40 3,41

Avg ∆E∗
ab 0,17 0,14 - 2,82 0,99 1,97Inst.1-8mm 95% 0,26 0,19 - 3,45 2,51 3,51

Avg ∆E∗
ab 2,85 2,79 2,82 - 3,31 2,34Inst. 2 95% 3,43 3,36 3,45 - 4,61 4,56

Avg ∆E∗
ab 1,06 0,99 0,99 3,31 - 1,68Inst. 3 95% 2,40 2,40 2,51 4,61 - 2,21

Avg ∆E∗
ab 1,94 1,89 1,97 2,34 1,68 -Inst. 4 95% 3,39 3,41 3,51 4,56 2,21 -

from the backing material, giving more consistency. On the
element with higher opacity, the Instrument 2 has a different
value than the other samples. This is related to the detection
of fluorescent emission showed in Fig. 1a.

B. Inter-model agreement

Table IV shows the inter-model agreement between
all instruments. The inter-model agreement between two
instruments, according to [5] were calculated by equation
(2), where IA and IB are two different instruments, s
represents a sample and N the total number of samples. Since
Instrument 4 has a different geometry, it is not expected to
give compatible measurements with the 0°:45°devices, but
the values are shown in Table IV for comparison. From
all the comparisons, the best agreement is found between
6mm and 8mm from Instrument 1, which can is expected as
only the aperture is varied. Also to be expected is that the
poorest agreement is between instruments 2 and , i.e. between
small-aperture 0°:45°and large-aperture 0°:d.

IMA(IA, IB) =
1

N

N∑

i=1

∆E∗
ab(si,A, si,B) (2)

C. Measurement positioning variation on printed textiles

To characterize the effect of change in the spatial position
of the measurement head with respect to the sample, a colour
chart with eight patches digitally printed on the same textile
samples described in Section II-B (cyan, magenta, yellow,
black, red, green, blue and unprinted white) was measured.

Fig. 4 shows the measurement of the chart on textile sample
1 on CIELAB a*b* projection.
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Fig. 4: Colour chart printed on textile sample 1 displayed on
CIELAB a*,b* plane (from top left: black, blue, cyan, green,
magenta, red, plain sample and yellow)

The substrates were measured using two different re-
positioning methods: a) rotation of the instrument with
respect to the sample around the optical axis (see Fig. 5a);
and b) horizontal translation of the instrument position by
3 mm with respect to the sample (Fig. 5b). The MCDM
from the four measurements for rotation and translation
respectively, for each textile sample was calculated. This was
performed for each of the instruments described in Section
II-A.

Fig. 6 shows the results for the measurements obtained by
rotating the devices, with instruments ordered by the aperture.
Instrument 1 using 2mm aperture and instrument 3 have the
smallest apertures in this set of devices and also the highest
∆E∗

ab values, while the performance of 6mm and 8mm
apertures depended on the sample (for the 45°:0°geometry).
For samples 1 and 2, the 6mm was better and for samples 3,
4 and 5, 8mm had better results. The results are also shown
in Table V.

(a) Representation of mea-
surement rotating instru-
ments

(b) Representation of mea-
surement with horizontal
translation

Fig. 5: Representation of how the samples were measured
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Fig. 6: Average ∆E∗
ab for measurements rotating the instru-

ments ordered by the aperture size

Amongst the devices, instrument 4 as expected had better
results overall owing to its 0°:d geometry, which minimises
any differences caused by the rotation. The highest variation
was found for Sample 3, possibly due to the fibres on this
material being thinner and less opaque.

For the translation, Fig. 7 shows that the 2mm and 3mm
apertures overall had lower repeatability, while the 8mm
aperture instrument had similar or better results than 6mm.
The measurements made with instrument 4 are substantially
different from those shown in Fig. 6, where the variability is
higher than in the rotation setup, and more similar to those
of the other instruments. Comparing the difference between
samples, just as the rotation, sample 3 also has the worse
repeatability, supporting the idea that its weaving pattern
leads to a higher degree of variability (See table VI).
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Fig. 7: Average ∆E∗
ab for measurements changing instrument’s

position ordered by the aperture size

In Figs. 8 and 9 it is possible to observe the effect the
structure of the samples has on the measurements. Overall,
there is a tendency of higher repeatability with increased
sample opacity. This behavior is more evident with translation
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Fig. 8: Average ∆E∗
ab against opacity for measurements

rotating instruments

TABLE V: MCDM and 95th percentile for each sample
rotating the instruments

Inst. 1
2mm

Inst. 1
6mm

Inst.1
8mm Inst. 2 Inst. 3 Inst. 4

MCDM 0.70 0.88 0.26 0.33 0.43 0.06Sample 1 95% 1.04 0.49 0.63 0.41 1.38 0.08
MCDM 0.54 0.35 0.38 0.30 0.34 0.04Sample 2 95% 0.80 0.50 0.53 0.57 0.52 0.07
MCDM 0.91 0.65 0.70 0.58 0.50 0.06Sample 3 95% 1.41 0.97 0.73 1.22 1.04 0.10
MCDM 0.63 0.90 0.36 0.44 0.42 0.07Sample 4 95% 0.86 0.63 0.62 0.61 1.45 0.10
MCDM 0.41 0.71 0.23 0.38 0.31 0.06Sample 5 95% 0.64 0.56 0.49 0.37 0.96 0.08

of the samples, since different regions of the same substrate
are being compared. Figs. 10a and 10b show the average
∆E∗

ab of the samples for each aperture. In this set of
instruments, only number 4 has a diffuse geometry; therefore,
it has not been represented in these images.

0.5 0.55 0.6 0.65 0.7 0.75 0.8

Opacity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 E
* a
b

Instrument 1-2mm Instrument 1-6mm Instrument 1-8mm Instrument 2 Instrument 3 Instrument 4

Instrument 2

Instrument 3

Instrument 1 - 6mm

Instrument 4

Instrument 1 - 2mm

Instrument 1 - 8mm

Fig. 9: Average ∆E∗
ab against opacity for measurements

translating samples
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TABLE VI: MCDM and 95th percentile for each sample when
measuring different areas

Inst. 1
2mm

Inst. 1
6mm

Inst.1
8mm Inst. 2 Inst. 3 Inst. 4

MCDM 0.45 0.42 0.33 0.29 0.25 0.49Sample 1 95% 0.73 0.42 0.38 0.52 0.62 0.95
MCDM 0.64 0.44 0.51 0.37 0.36 0.41Sample 2 95% 0.93 0.57 0.54 0.83 0.62 0.75
MCDM 0.69 0.70 0.88 0.52 0.45 0.48Sample 3 95% 1.08 0.81 0.74 1.39 1.01 0.88
MCDM 0.56 0.58 0.47 0.38 0.38 0.29Sample 4 95% 0.84 0.62 0.60 0.73 0.78 0.48
MCDM 0.53 0.43 0.45 0.31 0.25 0.26Sample 5 95% 0.73 0.42 0.38 0.52 0.62 0.95
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Fig. 10: Average ∆E∗
ab against aperture

IV. CONCLUSION

We evaluated four different colour measurement instruments
widely used in the graphic arts in order to understand the
repeatability of these instruments on fabric materials used in
textile printing.

On PTFE, all instruments performed consistently with
the manufactures specifications. On textile samples, the
short-term repeatability (as defined by MCDM) was in most
cases of the same order as for the PTFE. When varying
the position of the sample with respect to the instrument,
the MCDM values were a little higher, but the performance
was more dependent on both the instrument and the textile
material.

The tests described indicate how for textile measurements
the structure of the sample and the measurement aperture
affect the results of color measurement. On printed samples,
the instrument with diffuse geometry obtained the most
reproducible results when using the device at the same
location, regardless of the orientation to the sample. When
measuring at different locations, the diffuse instrument has
similar results to devices with a 45°:0°geometry. Hence we
propose that directional instruments of the type used in the
graphic arts industry can also be used in the control process
of textiles, especially if used with a large aperture.

One instrument with three different options of aperture
shows how the choice of aperture affects the measurement.
Regardless of the sample structure, the larger the aperture
the better the repeatability. When evaluating samples, the
thread count alone is not sufficient to characterize textile

materials. For example, sample 3 has more threads per cm2

than sample 1; however, it has a lower opacity, resulting
in larger ∆E∗

ab values. Hence, for digitally printed textiles,
multiple characteristics of the substrate must be considered.
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Abstract 

ICC.2:2017 is a revision to the next‐generation colour 
management specification iccMAX that introduces new support for 
colour appearance processing. iccMAX includes a built‐in colour 
appearance model IccCAM, together with a rich programming 
environment, and support for spectral data, material channel 
connections, BRDF and processing elements that make it possible 
to functionally encode any appearance model. ICC.2:2017 
introduces many new capabilities, including the ability to provide 
environment variables which allow parameters such as image 
statistics or viewing conditions to be passed to the transform at run‐
time. ICC.2:2017 supports a wide range of colour appearance 
computations within the colour management workflow. 

Introduction  
The ICC.1 profile specification [1], first published in 1996, 

established a well-defined architecture for communicating colour. 
ICC.1 was based on the concept of a reference intermediate colour 
space, and a profile which transformed all colour data encodings 
into or from this colour space, thus avoiding the combinatorial 
explosion of a many-to-many connection and enabling each colour 
device to be defined by a single profile. 

This fixed Profile Connection Space (PCS), based on D50 
colorimetry for a CIE 1931 2 degree standard observer, ensured 
interoperability of profiles regardless of who created them. The 
ICC.1 architecture employs a small set of transform elements – 
curve, matrix and multi-dimensional look-up table – that are applied 
in a predetermined sequence. The ICC.1 specification described the 
PCS for the Perceptual rendering intent as representing “the CIE 
colorimetry which will produce the desired color appearance if 
rendered on a reference imaging media and viewed in a reference 
viewing environment” [2]. This implies that as well as the device 
model the transform also embodies any gamut mapping, colour 
appearance and preference adjustments. In ICC.1 all these 
adjustments are combined into the values encoded in the AToB and 
BToA tags; using the curve, matrix and LUT transform elements 
there is no scope to encode the appearance transform separately, or 
to provide metadata on the transform or the conditions used, in a 
standard way. 

The ICC.1 architecture also includes a default media-relative 
scaling of colorimetry. This can be over-ridden where needed, but a 
matching of source media white point to destination media white 
point is the most common expectation of colour management users. 
This media-relative scaling should not be confused with chromatic 
adaptation: although the form is similar to the Von Kries transform, 
both source and destination have a common illuminant (since all 
PCS colorimetry is required to be D50), and its function is primarily 
to ensure that source white is mapped to destination media white 
point. The adjustment made by media-relative scaling does in 
practice go some way to handling cross-media reproduction with 
different media white points where there is a degree of adaptation to 
the media white [3].  The media-relative PCS should be considered 

as a virtual colour space which allows two encodings to be 
connected, rather than a representation of actual colorimetry.  

It can be seen from the above that ICC.1 is a well-defined but 
highly constrained architecture for colour transforms. Since 1996 
many new requirements have emerged and the ICC.2 architecture 
[4], first published as an ICC specification in 2016, was designed to 
address them with a more flexible approach to connecting different 
colour spaces [5]. The ICC also publishes a Reference 
Implementation [6] which enables developers to make immediate 
use of ICC.2 constructs.  The ICC.2 specification (also referred to 
as iccMAX) supports more flexible communication of:  

i) Colorimetry. There is support for connection spaces other 
than D50, including specification of the illuminant and observer 
colour matching functions within the profile. Spectral data 
(reflectance or emission) is supported, both as input to a transform 
and as a PCS.  

ii) Colour appearance. Colour appearance can readily be 
communicated by implementing a transform between different 
adapting conditions as a multiProcessElement within an iccMAX 
profile. For example, XYZ data for one adapting condition can be 
transformed via the desired appearance model into the adapting 
condition of the PCS of the profile. iccMAX incorporates a default 
IccCam model, which is a variant of CIECAM02. 

iii) Other aspects of appearance. iccMAX includes 
directional appearance (through support for a number of BRDF 
models), and fluorescence (through support for input and processing 
of a full Donaldson matrix). Texture information can be 
communicated through height maps and normal maps associated 
with the BRDF model. 

In addition to communicating appearance in terms of colour 
space values, iccMAX supports communication of metadata 
describing the adapting conditions as Spectral Viewing Conditions. 
The open format of the profile specification and the ability to 
convert between binary profiles and human-readable xml makes it 
possible for profile readers and users to extract the adapting viewing 
conditions from the profile and to modify them. 

Finally, the ability to pass in an environment variable to 
parameterize the transform at the point when the profile is applied 
provides further flexibility. For example the environment variable 
can be used to input the adapting conditions at run-time, avoiding 
the need for an array of static profiles for each adapting condition. 

The iccMAX profile format specifies a 32-bit floating point 
data type for all MPE transform elements, and both input and output 
data can also be encoded as 32-bit floats. The Reference 
Implementation source code can be compiled to perform 
computations at either 32-bit or 64-bit precision. 

Application 
In this paper we investigate some aspects of sensor adjustment 

transforms using iccMAX. A sensor adjustment transform (SAT) is 
used to transform colorimetry from one observing condition to a 
different observing condition based on various criteria [19].  Two 
types of sensor adjustment transform are considered in this paper: 
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chromatic adaptation transforms, and material adjustment 
transforms.  

A chromatic adaptation transform (CAT) attempts to predict 
the corresponding colour for a given tristimulus value when the 
chromaticity of the adapting illumination changes. Chromatic 
adaptation has always been an important element of ICC.1 colour 
management, since in order to achieve interoperability all 
colorimetry with a different illuminant from the D50 PCS must be 
chromatically adapted to D50. ICC recommends a linearized version 
of the Bradford chromatic adaptation transform [1], which is 
implemented as a single 3x3 matrix. The matrix is stored in the 
ICC.1 profile and is used in the inverse direction when it is desired 
to transform from the PCS to the original colorimetry. 

The CAT02 chromatic adaptation transform is an element of 
the CIECAM02 appearance model [8]. CIECAM02 performed well 
in predicting corresponding colour data sets, but a numerical 
instability in the transform has been reported and solutions proposed 
[9, 10, 11, 12, 13, 14, 15]. IccCam [4] replaces CAT02 by the HPE 
primaries and clipping to avoid negative RGB values. In the more 
recent CAT16, proposed as the chromatic adaptation transform in 
the CAM16 appearance model [15], the two stages of the CAT02 
transform are replaced by a single matrix transform. 

A common practice in implementing a CAT is to consider the 
inverse sense of the transform (where the test illuminant is the 
source and the reference illuminant is the destination) as the analytic 
inverse of the forward direction. Owing to the potentially different 
degree of adaptation in these two directions, and the tendency of the 
visual system to consider only near-daylight illuminants as neutral 
[18], it is suggested that where the test illuminant is chromatic the 
CAT model should not transform directly to it but using a two-step 
transform via a daylight illuminant or the equi-energy Illuminant E 
[15]. 

Chromatic adaptation transforms have generally been derived 
from corresponding-colour data sets and their performance 
evaluated in terms of their ability to predict such data [12]. Where 
the spectral reflectance for the colour exists, an alternative approach 
of forming a sensor adjustment transform to predicting the effect of 
a change of illuminant is of course to compute the tristimulus values 
for the test illuminant directly from the spectral data. This also 
suggests that a SAT can be derived from these XYZ values for 
reference and test illuminants computed from spectral reflectance, 
rather than via visual data sets. This approach is taken in e.g. [19, 
20]. This type of transform assumes the reflectance of the object is 
unchanged and has been referred to as a Material Adjustment 
Transform (MAT) [19] or a Colorimetric Value Transform [20].  
One distinguishing feature between a CAT and a MAT is that a 
material adjustment can provide a prediction of changes in observer 
in addition to changes in illuminant. 

For connecting data encodings from different illuminants in a 
colour managed workflow, where both colorimetric and spectral 
data may be used, it is of interest to study the differences between 
the different SAT approaches in comparison to the tristimulus 
values under a different illuminant computed directly from spectral 
data. It has been shown that the degree of adaptation is reduced as 
the adapting illuminant becomes more chromatic and hence that 
CATs tend to over-predict the degree of adaptation and the resulting 
corresponding colours [16, 17]. 

Experimental 
Several iccMAX profiles were used to transform colours from 

reflectance to colorimetry for the four adapting illuminants in Table 
1. These colorimetric values were then transformed from the source 

(reference) illuminant to each of the other illuminants as destination 
or test illuminant, using the following SATs: CAT02 [8], CAT16 
[15], linearized Bradford [1] and Wpt [19]. The degree of adaptation 
was set to 1.0 in all cases. 

Table 1: Adapting illuminants 

CIE illuminant White point XYZ 

D65 95.043, 100, 108.8801 

D50 96.4197, 100, 82.5123 

A 109.849, 100, 35.5825 

F11 100.961, 100, 64.3506 

 
The elements of the required adjustment transforms were 

computed in Matlab to determine the matrices used in the 
CustomToStandardPCS and StandardToCustomPCS tags. Using the 
existing iccMAX D65 colorimetric profile as a starting point, the 
xml was modified to encode these transforms, and profiles were 
subsequently created from the xml using the IccXml tool in the 
iccMAX Reference Implementation. 

Two sets of reflectance data were selected. The first was the 
reflectance spectra of color chips from the Munsell Book of Color 
for Munsell Value 5 Chroma 6, measured at 1nm intervals [21] and 
subsequently corrected [22].  The second was the set of in-situ 
reflectance spectra from ISO 17231-1 [23]. The Wpt MAT was 
optimized for the corrected Munsell reflectances, so the ISO 17321 
data set provides an independent test set. 

The reflectance data were converted to XYZ for the reference 
illuminant using an iccMAX profile created to have a data colour 
space signature ‘nc0051’ representing 81 spectral channels, and a 
spectralViewingConditions tag populated by the CIE 1931 standard 
colorimetric observer over the range 380-780nm at 5nm intervals 
and the reference illuminant over the same range and interval. The 
command-line executable iccApplyNamedCmm [6] was called with 
the source data and profile as arguments. This was repeated for each 
of the reference illuminants in Table 1. 

For each of the SATs tested, the transform was encoded in an 
iccMAX profile with an XYZ PCS and data colour space, in an 
A2B1 multiProcessElement-based tag, using the sequence of 
elements required by the transform. The XYZ data resulting from 
the previous step were converted to the test illuminant using 
iccApplyNamedCmm. 

For each pair of reference and test illuminants, CAT02 and 
CAT16 transforms were performed both directly and via Illuminant 
E. The linearized Bradford transform assumes complete adaptation, 
so in CAT02 and CAT16 the degree of adaptation D was set to 1. 
The CAT02 and CAT16 transforms were also repeated with D = 
0.93.  

Results 
The predicted XYZ values for each transform/illuminant 

combination were converted to CIELAB values, where the test 
illuminant was taken as the reference white in the conversion from 
XYZ to CIELAB. These values were compared with the XYZ 
values computed directly from Munsell and ISO 17321 in-situ 
reflectance spectra, similarly converted to CIELAB under the test 
illuminant. The test illuminant is expected to have CIELAB values 
of [100, 0, 0] after the above procedure. The differences between the 
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different methods are shown in Table 2 and Figures 3-9, for degree 
of adaptation D = 1. 

Table 2 (A-D): Mean CIELAB E*ab differences between XYZ 

values predicted from the reference illuminant chromatically 

adapted to the test illuminant, and the XYZ values for the test 

illuminant computed directly from the spectral reflectances 

A: Reference illuminant D65 

 Forward model Via Illuminant E 

Munsell D50 A F11 D50 A F11 

CAT02 1.13 4.72 2.81 1.13 4.72 2.81 

CAT16 1.40 6.91 3.15 1.39 6.91 3.17 

Linearized 
Bradford 

0.95 3.86 3.21 - - - 

Wpt 0.55 1.84 2.23 - - - 

ISO 17321 D50 A F11 D50 A F11 

CAT02 1.79 6.19 5.37 1.79 6.19 5.37 

CAT16 1.91 7.65 6.06 1.90 7.65 6.07 

Linearized 
Bradford 

1.66 5.54 5.95 - - - 

Wpt 1.72 5.29 4.52 - - - 

B: Reference illuminant D50 

 Forward model Via Illuminant E 

Munsell D65 A F11 D65 A F11 

CAT02 1.09 3.56 2.91 1.09 3.56 2.91 

CAT16 1.36 4.45 2.87 1.36 4.48 2.87 

Linearized 
Bradford 

0.92 2.94 3.14 - - - 

Wpt 0.56 1.33 1.83 - - - 

ISO 17321 D65 A F11 D65 A F11 

CAT02 1.78 4.51 5.92 1.78 4.51 5.92 

CAT16 1.92 4.81 6.19 1.92 4.85 6.19 

Linearized 
Bradford 

1.67 4.04 6.20 - - - 

Wpt 1.83 3.89 5.00 - - - 

C: Reference illuminant F11 

 Forward model Via Illuminant E 

Munsell D65 D50 A D65 D50 A 

CAT02 2.94 3.00 4.79 2.94 3.00 4.79 

CAT16 3.28 2.95 5.37 3.28 2.96 5.38 

Linearized 
Bradford 

3.45 3.27 3.89 - - - 

Wpt 2.10 1.81 1.63 - - - 

ISO 17321 D65 D50 A D65 D50 A 

CAT02 5.60 6.10 8.33 5.60 6.10 8.33 

CAT16 6.27 6.33 8.50 6.27 6.34 8.50 

Linearized 
Bradford 

6.29 6.43 7.22 - - - 

Wpt 4.51 5.11 7.44 - - - 

D: Reference illuminant A 

 Forward model Via Illuminant E 

Munsell D65 D50 F11 D65 D50 F11 

CAT02 4.15 3.27 4.61 4.15 3.27 4.61 

CAT16 5.30 4.16 5.16 5.30 4.17 5.14 

Linearized 
Bradford 

2.94 3.72 3.89 - - - 

Wpt 1.43 2.01 1.61 - - - 

ISO 17321 D65 D50 F11 D65 D50 F11 

CAT02 6.39 4.68 8.54 6.39 4.68 8.54 

CAT16 6.5 4.72 8.45 6.50 4.70 8.40 

Linearized 
Bradford 

5.99 4.37 7.67 - - - 

Wpt 7.23 5.01 8.52 - - - 

 
The distribution of the differences in CIELAB E*ab is shown 

in the histogram in Figures 1 and 2 for the Munsell and ISO 17321 
data respectively. 
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Figure 1. Distribution of mean differences between test illuminant calculated 
direct from spectra and predicted by SATs for all direct transform 
combinations in Table 1: Munsell and ISO 17321 in-situ reflectance data. 

It can be seen from Table 2 that for the Munsell data set, Wpt-
predicted XYZ values have smaller differences from the values 
computed for the test illuminant directly from the reflectances, 
compared with other transforms. However, when the ISO 17321-1 
in-situ reflectances are considered Wpt has larger differences than 
the linearized Bradford transform. 

It can also be seen from Table 1 and the examples in Figure 3 
and 4 that for both CAT02 and CAT16, the differences between the 
predictions of the single-step transform and the transform via 
Illuminant E are negligible, as indicated in [15].  

When the degree of adaptation was set to 0.93, the differences 
between the two workflows was similarly negligible, while the 
magnitude of difference was slightly larger when the reference 
illuminant was D50 and smaller when the reference illuminant was 
A. 

In Figures 2-8 ‘original’ represents the CIELAB a*, b* values 
of the colour computed from the reflectance under the reference 
illuminant; the CAT02 and CAT16 values are those predicted by the 
single-step transform from reference to test illuminant, and 
CAT0223 and CAT0224 values are transformed using the two-step 
workflow described in equations 23 and 24 in [15]. These can be 
compared with the values shown as ‘from reflectance’, which 
represent a*, b* values computed from reflectance under the test 
illuminant. 

 
Figure 2. Differences in prediction of CAT02 using three workflows described 
in [15]. 

 
Figure 3. Differences in prediction of CAT16 using three workflows described 
in [15] 

Examples of the differences between the predictions of the 
different SATs for the Munsell colours can be seen in Figures 4-8. 
As shown in Table 2, in most cases the Wpt transform tends to give 
the closest prediction of the Munsell colours computed from 
reflectance under the test illuminant. 

 
Figure 4. Munsell reflectances for D50 reference illuminant transformed to 
D65 by the 4 SATs 

 

b
*
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Figure 5. Munsell reflectances for D50 reference illuminant transformed to F11 
by the 4 SATs 

  
Figure 6. Munsell reflectances for D50 reference illuminant transformed to 
Illuminant A by the 4 SATs 

As noted above, a CAT has a different derivation from a MAT and 
it is not necessarily expected that they should give equivalent 
results. 

  
Figure 7. ISO 17321 in-situ reflectances for D65 reference illuminant predicted 
by the different SATs for D50, A and F11. 

 
Figure 8. ISO 17321 in-situ reflectances for D65 reference illuminant predicted 
by the different SATs for D50, A and F11. 

Conclusions 
Four different transforms were used to predict the effect of a 

change in illuminant on two sets of reflectances, comprising the 
1269 Munsell matt reflectances and the 24 ISO 17321-1 in-situ 
reflectances. Overall for the Munsell data the Wpt MAT gave the 
smallest differences between the tristimulus values predicted by the 
transform and those computed directly from the reflectance for the 
test illuminant, which is to be expected given that Wpt was 
optimized for the Munsell reflectances. CAT02 and CAT16 gave 
very similar predictions. For the ISO 17321-1 in-situ reflectance 
data the results vary with the reference and test illuminant and no 
single SAT performs best at predicting the colorimetry computed 
directly from reflectance, although the linearized Bradford 
transform adopted in ICC.1 performs reasonably well. 

iccMAX provided a convenient framework for implementing 
the different transforms. Each transform was encoded as a v5 ICC 
profile using the IccFromXml tool in the iccMAX Reference 
Implementation. Conversion from reflectance to tristimulus values 

b*

b
*

IS&T International Symposium on Electronic Imaging 2018
Color Imaging XXIII: Displaying, Processing, Hardcopy, and Applications

323-5

160 Article G



 

 

for the source illuminant was performed using PCC profiles 
provided in the Reference Implementation, with the header modified 
in accordance with the wavelength range and interval used, and the 
conversion from source XYZ to destination XYZ for the different 
SATs was performed by DToB multiProcessingElements in profiles 
generated with IccXml. All CMM computations were performed at 
single precision using 32-bit floats. 

The iccMAX framework also supports a wide range of other 
appearance processing elements. Using the Calc element it is 
possible to encode any appearance model. Although appearance 
coordinates are not available as a colour space data encoding in 
iccMAX, the PCS can be based on appearance coordinates making 
it possible to connect colour space data via transforms to and from 
appearance, and an Abstract class profile can be used to connect 
PCS to modified PCS coordinates. The Calc element also enables 
transform elements to be defined or selected at run-time. 

Although the iccMAX framework provides a technical and 
computational framework for colour appearance processing, further 
work is needed to support the wider use of colour appearance models 
in colour management. Such activities include: 

• Create and disseminate best practice recommendations for 
implementing appearance transforms in colour management 
applications.  

• Develop publicly-available tools such as templates, 
source code, example profiles, and test data. 

• Document the implementation of practical applications in 
iccMAX, including: 

a) One or more colour appearance models 
b) A seamless workflow to communicate colour appearance 

using ICC profiles 
c) A workflow that supports parameterization of viewing 

conditions as environment variables 
d) Interoperability Conformance Specifications for the above. 
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ABSTRACT: 
Image-based 3D models generation typically involves three stages, namely: 2D image acquisition, data processing, and 3D surface 
generation and editing. The availability of different easy-to-use and low-cost image acquisition solutions, combined with open-source 
or commercial processing tools, has democratized the 3D reconstruction and digital twin generation. But high geometric and texture 
fidelity on small- to medium-scale objects as well as integrated commercial system for mass 3D digitization are not available. The 
paper presents our effort to build such a system, i.e. a market-ready multi-camera solution and a customized reconstruction process for 
mass 3D digitization of small to medium objects. The system is realized as a joint work between industrial and academic partners, in 
order to employ the latest technologies for the needs of the market. The proposed versatile image acquisition and processing system 
pushes to the limits the 3D digitization pipeline combining a rigid capturing system with photogrammetric reconstruction methods. 
 
 

1. INTRODUCTION 

Nowadays image- or range-based 3D reconstruction methods are 
receiving a lot of attention due to the availability of fast, easy-to-
use and often low-cost hardware and software solutions. 3D has 
proven to be a promising approach to enable precise inspection, 
documentation, valorization, monitoring, communication, 
interaction and experience. 3D digital models, often called digital 
twins, are increasingly used in various fields and applications, 
such as e-commerce, website content, heritage restoration, 
industrial inspection and monitoring, digital archives and 
cataloguing, etc.  
Digital twins provide an interactive browsing experience to users 
that can inspect digital items by zooming-in from any viewpoint. 
Many applications have strong demand on the fidelity of the 
reconstructed geometry and texture, especially if the 3D model 
has to be relighted when placed into virtual showrooms.   
Even though 3D technologies and processing tools for small to 
medium objects have been democratized (Santos et al., 2017) and 
approaches for semantic enrichment (Grilli and Remondino, 
2019; Pierdicca et al., 2020) and access to 3D models are starting 
to be used, few approaches enable mass digitization of a large 
variety of objects, from the heritage to the industry sectors. 
Controlled acquisition setups are common in the 3D field for the 
digitization of small to medium scale objects. These setups can 
include only one camera or combine cameras, structured light and 
laser scanners. Objects can be placed on a moving turning table 
and recorded from fixed sensor positions in a programmed pose 
sequence (Santos et al., 2014; Gattet et al., 2015; 
Hosseininaveh et al., 2015; Menna et al., 2017). Open-source 
(Stathopoulou et al., 2019) or commercial 3D reconstruction 
tools can then be utilized to process the collected data and derive 
3D surface models.  
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Although solutions based on motorized turntable are low-cost 
and easy to implement, they often do not meet industrial 
requirements and constraints. The main drawback of such 
systems is their limited speed of digitisation given the time 
needed to set up the system and allow the turntable to virtually 
move the sensor around the object according to an acquisition 
schema that places the object at the centre of a sphere. In these 
cases, the typical acquisition protocol requires a skilled operator 
to set up the sensor on a stand (i.e. a tripod) and adjust its position 
and orientation relatively to the object according to sensor’s 
optical characteristics (working distance, depth of field, field of 
view, resolution) in order to meet the project tolerances. To 
accomplish a complete acquisition, the operator needs to move 
the sensor at different heights or tilt the object relatively to the 
sensor. Once the set-up of the system has been carried out, the 
time required to turn the table to acquire all the necessary data 
can be as high as several minutes for a single object. Moreover, 
the process is significantly influenced by the operator skills due 
to the required human intervention and interaction. For these 
reasons such solutions are not well suited for systematic 
digitization projects in industry where productivity and 
consistency in the produced results is of high importance. On the 
other hand, multi-camera setups, integrated with motorized turn 
tables and linear stages, despite intrinsic instrumentation costs, 
have proved great productivity (Santos et al., 2014) with a 
number of advantages such as that they can be accurately 
calibrated once in a while and allow fast data acquisitions. There 
are also many opportunities connected to multi-camera 
systems for high-quality 3D digitization of objects, in particular 
for the benefits provided in the post-processing and editing stages 
with less efforts by professionals required to match market 
needs.  
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a)  b)      

c)  
 

d)  
Figure 1: The DI-One multi-camera system with 31 PCB synchronized cameras, lights and a moving basement (a, b). One of the 
high-end professional cameras (c) and the electronics used to control groups of cameras (d). 
 

1.1 Aim of the paper 

In this paper we present our holistic approach for the realization 
of a market-ready multi-view camera system for mass 3D 
digitization of small to medium objects. The image acquisition 
and processing systems boosts the 3D digitization pipeline by  
jointly optimized photogrammetric reconstruction methods and a 
rigid capturing design and control. Compared to other solutions 
from the literature, the presented one (Figure 1) can deal with 
small up to medium objects (max size approximately 
500x500x500 mm3) thanks to an adaptable FOV, it has 31 
synchronized high-end professional cameras tied on a rigid 
structure and an adjustable moving basement. 
The rest of the paper is organized as follows: Section 2 describes 
the realized hardware system while Section 3 presents its 
geometric and radiometric calibration. Section 4 presents some 
experiments followed by conclusions in Section 5. 
 

2. MULTI-CAMERA CAPTURING SYSTEM 

The Durst Imaging Product System (DI-One - Figure 1) consists 
of 24+7 synchronized high-end professional cameras located on 
a spherical ring and on a hemispherical truss (half dome) to 
capture lateral and upper parts of objects. A directly and 
indirectly lighted semi-transparent and adjustable basement 
allows to place objects at different heights and inclination while 
the cameras can capture instantly 360 degrees images for 
different application fields and purposes. The system comes with 
a proprietary PCB designed to allow the system to trigger the 
cameras precisely via hardware with different trigger modes. 
Cameras can be triggered (i) all at the same time (“freeze / 
standard mode”) or (ii) very accurately with a configured delay 
between each camera trigger (“sequential mode”) or (iii) 
combining the two methods (“mixed mode”). The PCB design is 
modular. Besides, the camera trigger the PCB also controls 
additional equipment of the camera system like LED / light 
control or trigger of an attached flash. All acquired images (a 
“revolution”) are transferred and written to disk each one in less 
than a second. A proprietary driver to control and trigger the 
cameras from a Linux system was developed, with a front-end 
application (GUI) that gives the user full control of the capturing 
system, i.e. change the settings of the cameras, set triggering 
modes, revolution history lookup, session controls,  focus and 
zoom control, auto-focus and more.  
The multi-view camera system has also a revolution playback 
system, i.e. a set of hardware and software components that listen 
for new files in a shared folder where newly created acquisitions 

are stored and plays them back as either a grid of images or a 
rapid slideshow, mimicking the playback of the 24-image 
revolution as a video. 
 

3. SYSTEM CALIBRATION 

The system calibration includes two procedures: (i) a geometric 
calibration (Section 3.1) to retrieve the camera parameters and 
(ii) a radiometric calibration (Section 3.2) to determine the 
correct colours in the images and improve the visual appearance 
of the generated 3D models. 
 
3.1 Geometric calibration 

Photogrammetric self-calibration of a single or a multi-view 
camera system, based on ray intersection of multiple (target) 
points on a testfield or on a moved reference bar, was introduced 
by Brown (1971), Fraser (1997), Maas (1998), Gruen and Beyer 
(2001), Remondino and Fraser (2006). 
The geometric calibration of the 31 cameras is performed using 
an ad-hoc testfield composed of scale bars and circular coded 
targets. The testfield (Figure 2) is placed in the centre of the 
basement in order to be visible by all cameras by rotating and 
tilting it in various positions. The testfield is modular and can be 
adjusted in size based on the necessary measurement volume. 
Targets of different diameters are used according to ground 
sample distance (GSD) and needed spatial resolution on the 
assets.  
The calibration procedure is done in four steps: 
1) a set of about 30 synchronized shots for all 31 cameras is 

acquired by tilting and rotating the testfield in the FOV of 
the cameras; 

2) image orientation and bundle adjustment with self-
calibration for each camera, using the 3D coordinates of the 
coded targets as soft constraints (coordinates are pre-
measured with an estimated accuracy of better than 15 µm); 

3) refinement of the exterior orientation parameters through a 
simultaneous bundle adjustment of all the acquired images 
(about 900) but keeping interior parameters fixed; 

4) average relative orientation of all the cameras with respect 
to a master camera. 

The calibration is repeated at different zoom levels, which can 
then be controlled via software. Each calibration is stored in the 
system’s memory and utilized when needed (Fraser and Al-
Ajlouni, 2006). The system accuracy and calibration verification 
over time is carried out using 3D length measurements of invar 
scale bars (Figure 2-bottom). The measurements obtained with 
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the DI-One system are checked against reference calibrated 
values (VDI/VDE, 2002).  
 

 

 
Figure 2: The used testfields for geometric calibration of the 
camera system (interiors and poses). 
 
Figure 3 shows the complete image network used in the bundle 
adjustment (ca 900 images) together with the 3D coordinates of 
the testfield.  
 

 
Figure 3: example of a full camera network used for the 
geometric calibration. 

 
 
3.2 Radiometric calibration 

The DI-One system delivers multi-camera shots in RAW image 
format which need to be radiometrically calibrated and post-
processed to meet the colour fidelity requirements of professional 
applications. Assuming that the object surfaces to be acquired are 

Lambertian, the acquisition process can be expressed through the 
equation (Gaiani et al., 2017): 
 

 
Eq. (1) 

 

where: 
x = spatial coordinate 
l = wavelength 
w = camera’s spectral domain (visible) 
c = colour index (R, G, B) 
fc(x) = raw value of the image at position x, filter colour c 
m(x) = Lambertian shading 
I(l) = radiant intensity of the light source 
rc(l) = camera sensitivity function for colour c 
S(x, l) = spectral reflectance of the surface. 
 
Equation 1 shows the dependence of a camera's pixel response 
on its sensitivity function rc(l) which generally varies from 
camera to camera (Pagnutti et al., 2017). 
fc(x) is the raw value at position x of an image acquired with a 
commercial camera, and in a commercial imaging pipeline it 
undergoes multiple steps of post-processing, such as Bayer 
interpolation, noise subtraction, and white balancing. 
If a faithful chromatic reproduction of an object is required, these 
values, which represent the camera's own RGB values, must be 
linked to a device-independent colour space, such as CIEXYZ or 
CIELAB. This process is referred to as the radiometric camera's 
calibration (Westland et al., 2012) and it can be performed in 
various ways. 
The most widely used characterization approaches are described 
in the international standard ISO 17321-1 (ISO17321): one is 
based on the measurement of the cameras' spectral sensitivities, 
while the other is target-based. 
We performed the latter procedure for each camera in the multi-
camera system. Since the illumination is controlled, the colour 
calibration was performed for a D50 standard illuminant. 
We printed an IT8.7/4 colour chart with 1617 patches on a 
ProofMaster Matt 140g paper (Fig. 4). Although such a target has 
been designed for the colour characterisation of scanners, 
monitors and other output devices, it has been previously 
exploited to perform multi-camera calibration (Troester et al, 
2018). 
 

 
Figure 4: Example of captured IT8.7/4 colour chart 

 
 
We then measured the CIELAB coordinates of the target with a 
Barbieri Electronic LFPqb spectro-photometer (Barbieri, 2020), 
and we used them as references. 
The colour chart was taped on a flat white matte holder and was 
acquired with each camera of the system at a position roughly 
normal to its optical axis. A spotlight with 5000 K colour 
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temperature was placed at about 45 degrees with respect to the 
camera axis. The other acquisition parameters correspond to 
those previously discussed. 
On each image we applied the Python's module rawpy 
(https://pypi.org/project/rawpy) for an AHD demosaicing and for 
the extraction of the raw RGB values of each colour patch. It is 
then possible to link these values to the previously measured 
CIELAB values in order to obtain a proper colour profile, which 
can then be used to correct the texture file of a 3D model. 
In particular, we used a multi-dimensional look-up table defined 
on a 33x33x33 grid in the raw RGB space of each camera 
(Balasubramanian and Klassen, 2003), implemented using the 
Python's scikit-learn tool (https://scikit-learn.org/). 
An example of the radiometric processing is shown in Fig. 5. The 
improvement in the appearance of the scene is evident. If 
necessary, further corrections could be performed, such as bad 
pixel removal, bias and dark frame subtraction, flat fielding, etc. 
 

  
Figure 5: Example of the radiometric calibration result (right) 
on a raw image (left) of a glove. 
 

4. 3D RECONSTRUCTION PIPELINE 

The DI-One system (https://www.covisionlab.com/media-lab) is 
coupled with an automated photogrammetric pipeline which 
allows to generate textured 3D models of various objects (Figure 
6). Using the camera calibration parameters, the images are 
remapped as if they were all obtained through the same pinhole 
camera, i.e. without geometric distortions, with a unique 
principal distance (focal length) and the principal point at the 
center of the image format. This procedure simplifies the 3D 
reconstruction and modelling pipeline and allows the use of the 
DI-One images also with other research and commercial based 
software, which might not be able to deal with distortion 
parameters or use a different distortion formulation. 
 

     
Figure 6: Examples of some objects digitized with the realized 
DI-ONE multi-camera system. 

 
For objects characterised by cooperative texture and simple 
geometry, a single DI-One synchronized shot (31 images) may 
be sufficient for reconstructing their visible parts. In these cases, 
the exterior orientation parameters (camera poses) obtained from 
system calibration (Section 3.1) are directly used.  Figure 7 shows 
the coordinate system and the camera network as defined from 
the calibration stage. These exterior orientation parameters are 
directly provided to the photogrammetric pipeline for the 3D 
reconstruction procedure, thus providing also the proper scaling. 
 

 
Figure 7: DI-One camera network and coordinate system. 

 
The typical pipeline starts with a background masking, 
performed automatically through image subtraction procedures 
(Figure 8) and then feature points are extracted and matched 
within the unmasked areas of the images. These tie points are 
then triangulated using the exterior orientation parameters and 
the individual interior orientation parameters derived from the 
calibration procedure. Dense image matching procedures are 
then applied to generate depth maps and a dense cloud. Finally, 
a mesh is triangulated over the point cloud and texturized.  
 

  
Figure 8: Example of image masking obtained through 
background subtraction. 
 
Figure 9 shows an example of a 3D reconstruction of small vase 
(170x130x180 mm3) obtained with 31 synchronized images 
acquired under the camera network shown in Figure 7. 
 

  
Figure 9: One (out of 31) synchronized image of a small vase 
obtained with the DI-One system (left) and the reconstructed 3D 
mesh (right).  
 
For more complex objects (such as the glove in Figure 12), 
depending on their shape, self-occlusions and texture 
characteristics (shiny, texture less, etc), more shots may be 
required after tilting or rotating the object within the field of view 
of the system. Different camera networks can thus be obtained in 
order to achieve a complete 3D reconstruction. Figures 10 and 11 
show two examples of camera networks obtained with a total of 
4 DI-One shots by rotating the object respectively around the Z 
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axis by the angles {-48.75, 48.75,  97.5} [deg] (Figure 10) or by 
tilting the object around the Y axis of the angles {-22.5, 22.5, 45} 
[deg] (Figure 11). 
 

  
Figure 10: A typical camera network obtained rotating the 
object around the Z axis in order to have a better coverage. 

 
Figure 11: Examples of camera network obtained using 
multiple shots after tilting the object around the Y axes. 

 
Figure 12 shows two rendered views of the 3D texturized model 
of a Durst Gil camera (production 1938), reconstructed from two 
shots to capture the entire object texture and geometry. 
 

  
Figure 12: Views of a 3D model of the 1938 Durst Gil camera 
reconstructed from two shots taken at different object poses.  

 
 
Figure 13 shows the 3D reconstruction of a skiing glove pictured 
with three synchronized shots (93 images) and textured with a 
radiometrically corrected texture. 
 

   
Figure 13: One (out of 93) image of a glove obtained by 
rotating the system basement around the Z axis (left) and the 
reconstructed 3D mesh through photogrammetric process 
(right).  

5. CONCLUSIONS 

The paper presented the realization of the Covision Media Lab 
(https://www.covisionlab.com/media-lab) 3D digitization 
process named DI-One multi-camera system.  DI-One is a 
market-ready image-based solution composed of 31 
synchronized high-end professional cameras for mass 3D 
digitization of small to medium objects. The system and 
processing methodology were conceived as a joint work between 
industrial and academic partners, they are quite versatile and push 
to the limits the 3D digitization by combining a rigid capturing 
system with photogrammetric reconstruction methods.  
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3. Texture models

4. Roughness correction in iccMAX
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1. Barbieri

ICC DevCon 2020 © MICHELE CONNI 3

Provincia di Bolzano,
Italy

15 employees
Service center in America,
Europe and Asia

R&D, Assembling
Quality control Advanced patented technology

Products
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Spectro Pad as portable solution for roll-to-roll Format 
Printing

Spectro LFP qb for Large Format Printing

Customized measuring devices for OEM-manufacturersSpectro Swing for calibration in roll-to-roll-Format Printing

Barbieri spectrophotometers
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2. What is texture?

• “No formal definition of 
texture exists, intuitively this 
descriptor provides 
measures of properties such 
as smoothness, coarseness 
and regularity.” [Gonzalez, 2002]

• Usually refers to a scene taken from a single 
object/material characterized by spatial 
complexity

ICC DevCon 2020 © MICHELE CONNI 5

Surface texture

ICC DevCon 2020 © MICHELE CONNI 6

From [Dong, 2005]
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3. Texture models

• General Reflectance Function (GRF): 16 variables 
source, detector, collision, emission coordinates + 
time and frequency of generation and detection

• Bidirectional Surface Scattering Reflectance 
Distribution Function (BSSRDF): 9D (scattering)

• Bidirectional Texture Function (BTF): 7D (surface)

• Bidirectional Reflectance Distribution Function 
(BRDF): 5D (point)

• Drawbacks: lengthy and expensive processes, 
cumbersome data management

ICC DevCon 2020 © MICHELE CONNI 7

From [Haindl, 2013]

Lambertian reflectance model

• Property of ideal diffusely reflecting surface

• Surface reflectance is isotropic

• It is impossible to tell where the incident 
light comes from

• No specular peak

• Real world examples: matte paper, flat 
paint, opal glass

ICC DevCon 2020 © MICHELE CONNI 8

From [wikipedia]
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Oren–Nayar reflectance model

• Comprehensive model for body 
reflectance from surfaces with 
macroscopic roughness

• Accounts for complex geometric 
and radiometric phenomena 
(masking, shadowing, 
interreflections)

• Based on V-cavities

• Depends on the acquisition system 
(e.g. resolution of pixels)

ICC DevCon 2020 © MICHELE CONNI 9

shadowing masking interreflection

From [Oren, 1994]

Oren–Nayar reflectance model

• Statistical model

• Effective for rough diffuse 
surfaces, such as, plaster, sand, 
clay, and cloth

• 𝐴 𝜎 = 1 − 0.5
𝜎2

𝜎2+0.33

• 𝐵 𝜎 = 0.45
𝜎2

𝜎2+0.09

ICC DevCon 2020 © MICHELE CONNI 10

𝐿𝑟 =
𝜌

𝜋
cos 𝜃𝑖[𝐴(𝜎) + 𝐵(𝜎)max 0, cos 𝜙𝑖 − 𝜙𝑟 sin (max(𝜃𝑖 , 𝜃𝑟)) tan(min(𝜃𝑖 , 𝜃𝑟)))] 𝐸0

From [wikipedia]
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Oren–Nayar reflectance model

ICC DevCon 2020 © MICHELE CONNI 11

From [Oren, 1994]

Roughness

• More models exist

• E.g., Principled BRDF

• 𝑅𝑑𝑞 =
1

𝑁
σ𝑖=1
𝑁 𝑑𝑍

dx 𝑖

2

• Lambertian and Oren-Nayar models 
can be mixed

ICC DevCon 2020 © MICHELE CONNI 12

From [Feidenhans’l, 2015]
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Luo texture correction model
• Use reflectance model to correct colour measurements of textiles

• The correction must be done in CIEXYZ, given linearity with reflectance

• 𝑋 =
𝑝,𝑞𝑚𝑏 𝑝,𝑞 𝐻 𝑝,𝑞 𝑑𝑝𝑑𝑞

𝐴𝑟
𝜆𝐸 𝜆 𝑅 𝜆 ҧ𝑥 𝜆 𝑑𝜆 = 𝐶 ⋅ 𝑋𝑛𝑜𝑟𝑚

ICC DevCon 2020 © MICHELE CONNI 13

From [Luo, 2014]

4. Roughness correction in iccMAX

• Extension of ICC v4

• v5 in header

• Backwards compatibility

• ISO 20677

• Novelties examples:

• Extended connection space (e.g. flexible PCS, illuminant, 
CMFs)

• multiProcessingElements (matrices, LUTs, CAM and Calc 
elements)

• Spectral and BRDF support

• Height/normal map can be stored but not used in 
profile

• Can be used for rendering

ICC DevCon 2020 © MICHELE CONNI 14

From [Specification ICC.2:2019]
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The Calc element

• MultiProcessElement

• Stack-based programming language

• Uses reverse polish notation: 2 ∗ 4 → 2 4 𝑚𝑢𝑙

• Structure of CalculatorElement:

• The data is private to the MultiProcessElement

• Stack empty at the start

ICC DevCon 2020 © MICHELE CONNI 15

From [wikipedia]

Implementation

• Two texture correction models: Lambertian and Oren–Nayar

• Purpose: correction of colour measurement on complex surface

• 𝑋𝑌𝑍𝑛𝑜𝑟𝑚 = 𝑋𝑌𝑍𝑚𝑒𝑎𝑠/𝐶

• 𝐶𝐿𝑎𝑚𝑏𝑒𝑟𝑡 = 𝜇(cos 𝜃𝑖 )

• 𝐶𝑂𝑟𝑒𝑛−𝑁𝑎𝑦𝑎𝑟 = 𝜇(cos 𝜃𝑖[
]

𝐴 𝜎 + 𝐵 𝜎 max(
)

0, cos(
)

𝜙𝑖 −
𝜙𝑟 sin (max(𝜃𝑖 , 𝜃𝑟)) tan(min(𝜃𝑖 , 𝜃𝑟))) )

• Single profile, CIEXYZ data colour space, CIEXYZ PCS

• Relative Colorimetric rendering intent

• ColorSpace (‘spac’) profile

• Correction implemented in multiProcessElement, A2B1 tag

• B2A1 tag implements 𝑋𝑌𝑍𝑚𝑒𝑎𝑠 = 𝐶 ⋅ 𝑋𝑌𝑍𝑛𝑜𝑟𝑚

ICC DevCon 2020 © MICHELE CONNI 16
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Lambertian model correction

• 𝑋𝑌𝑍𝑛𝑜𝑟𝑚 = 𝑋𝑌𝑍𝑚𝑒𝑎𝑠/𝜇(cos 𝜃𝑖 )

• Declarations:

ICC DevCon 2020 © MICHELE CONNI 17

3D structure

ICC DevCon 2020 © MICHELE CONNI 18

Front Side
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Lambertian model correction

• import_lamb.xml:

ICC DevCon 2020 © MICHELE CONNI 19

Lambertian model correction
• Main function:

ICC DevCon 2020 © MICHELE CONNI 20
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Oren-Nayar model correction

• 𝑋𝑌𝑍𝑛𝑜𝑟𝑚 = 𝑋𝑌𝑍𝑚𝑒𝑎𝑠/𝜇 (cos 𝜃𝑖[𝐴(𝜎) + 𝐵(𝜎)max(
)

0, cos(
)

𝜙𝑖 −
𝜙𝑟 sin (max(𝜃𝑖 , 𝜃𝑟)) tan(min(𝜃𝑖 , 𝜃𝑟)))])

• Declarations:

ICC DevCon 2020 © MICHELE CONNI 21

Oren-Nayar model correction
• import_oren.xml:

ICC DevCon 2020 © MICHELE CONNI 22

From [wikipedia]
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Oren-Nayar model correction

• Conversion to radiants and cos(𝜃𝑖):

ICC DevCon 2020 © MICHELE CONNI 23

Oren-Nayar model correction

• 𝐴(𝜎) and 𝐵(𝜎):

ICC DevCon 2020 © MICHELE CONNI 24
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Oren-Nayar model correction

• max 0, cos 𝜙𝑖 − 𝜙𝑟 :

ICC DevCon 2020 © MICHELE CONNI 25

Oren-Nayar model correction

• sin (max(𝜃𝑖 , 𝜃𝑟)):

ICC DevCon 2020 © MICHELE CONNI 26
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Oren-Nayar model correction

• tan(min(𝜃𝑖 , 𝜃𝑟)):

ICC DevCon 2020 © MICHELE CONNI 27

Oren-Nayar model correction
• Main function:

ICC DevCon 2020 © MICHELE CONNI 28
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Input

• The .xml file can be converted in .icc profile with iccFromXml.exe

• Applied to image with iccApplyProfiles.exe, to named input with 
iccApplyNamedCMM.exe

• We used:

iccApplyNamedCMM.exe input_oren.txt 3 0 oren_nayar_correction.icc 3

• Final encoding: icEncodeFloat

• Interpolation: Linear

• Rendering intent: Absolute

• Input file:

ICC DevCon 2020 © MICHELE CONNI 29

Results

• Output:

ICC DevCon 2020 © MICHELE CONNI 30
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Thank you for your attention

Michele Conni

(R&D Engineer at Barbieri Electronic

Ph.D. candidate at NTNU) 

michele.conni@barbierielectronic.com

michelco@stud.ntnu.no

www.barbierielectronic.com
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