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Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfillment of the requirements for the degree of philosophiae
doctor. This doctoral work has been performed at the Department of Structural
Engineering, NTNU, Trondheim from August 2017 through August 2021 under
the supervision of Leif Rune Hellevik.

The funding is received from Petromaks 2, a large-scale program from the Re-
search Council of Norway [1]. The program aspires optimal management of the
Norwegian petroleum resources and a future-oriented development of petroleum
technology. The strategy is continually managed by OG21 – Oil and Gas for the
21st century, with mandate from the Norwegian Ministry of Petroleum and En-
ergy [2]. From 2013 to February 2021, the program has awarded NOK 2.4 billion
across 432 projects [3].

This work is part of the project SUM – Scaling and Uncertainty in Multiphase flow,
supported by the Norwegian Research Council, grant number 267620, and indus-
trial partners from SINTEF, IFE and Multiflow JIP (Schlumberger Information
Solutions, Equinor, ESSS, Lundin Norway, LedaFlow Technologies DA, Gassco,
Vår Energi and TechnipFMC).

The thesis is a collection of papers published in or submitted to international peer-
reviewed journals. The thesis is organized in two parts. Part I is an introductory
section that presents the themes and background of the thesis and part II includes
the journal papers.
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Abstract
The purview of this thesis is insight into, and development of, methods for uncer-
tainty quantification in multiphase flow. The work is directed towards commercial
simulators for transport of gas and liquid in pipelines and the primary quantities of
interest are pressure drop and liquid holdup.

In science and engineering, processes are frequently described by mathematical
models, which generally include several uncertain components. The specification
of model structure may be associated to simplifications or lack of knowledge. Un-
certainty also arise when the state of the system is gauged. In practice, the models
are implemented on computers, and are also referred to as simulators. The simu-
lator representations of variables and operations are prone to errors as well.

Also multiphase flow simulators include several layers of uncertain quantities and
closure laws. Consequently, predictions are not exactly equal to the outcomes of
the experiment or operation they represent. Investigations and development of
methods to quantify three sources of uncertainty are described in this thesis.

The focus of the first paper was uncertainty in input variables of a steady-state
simulator. Uncertainty propagation with a Monte Carlo method was faster and
more robust than polynomial chaos expansions. Further, the coverage of prediction
intervals was satisfactory for liquid holdup but rather low for pressure drop.

In the second paper, the focus is shifted to uncertainty in model formulation. Clo-
sure laws are modeled as stochastic components of the simulator, and two methods
to quantify uncertainty were developed. The aim was to tune closure law uncer-
tainty such that simulator prediction intervals were adequate with respect to obser-
vations. The two methods yielded similar estimates for closure law uncertainties.

Variability is the topic of the third paper, and refers to uncertainty about the state
of the process due to excluded variables or fundamental stochastic phenomena.
Repeatability, which is closely related to variability, was quantified based on novel
replicated experiments. The relative deviations in pressure drop and volume flow
rates were found to be much less than one percent for nearly all replicates, and
express a high degree of repeatability.

The collection of papers constitute a comprehensive overview of uncertainty in
multiphase pipe flow, in terms of variable uncertainty, model uncertainty and vari-
ability. Accessible methods are developed to quantify uncertainty to make im-
proved predictions and more effectively plan and make decisions for multiphase
pipe flow operations.
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Chapter 1
Introduction

This thesis has been pursued at the Department of Structural Engineering at the
Norwegian University of Science and Technology. The topic has been multiphase
flow with focus on uncertainty in measurements and uncertainty in predictions
of simulator models. The Department of Mathematical Sciences has also been
involved as well as external laboratories and industry partners.

The advent of multiphase flow modeling is a milestone in the Norwegian petroleum
industry. These models were essential for determining if transport of oil and gas
in the same pipeline was possible, and if so, how. Multiphase transport bypassed
the need of constructing a new oil platform at each new reservoir. In 2012 the Nor-
wegian newspaper Aftenposten named multiphase technology the most important
Norwegian innovation since 1980 [4].

Multiphase modeling is still used extensively, to operate and develop new oil fields
and to assure safe operations. The information from modeling reduces the risk and
lowers the cost. The structural challenges are bigger than ever as the new oil fields
are deeper and colder [5]. Simultaneously, models are enhanced to give more
accurate representations. In fact, the level of accuracy is not only required to be
high, but preferably also known [6].

The thesis is based on simulators and experiments for multiphase flow in pipelines.
Broadly speaking, a simulator is a program for computing the pressure drop in a
conduit based on flow rates. Geometry and material properties are also required.
Additionally, some simulators provide detailed estimates of the flow profile. The
usefulness of a simulator is ultimately determined by performance in field opera-
tions. Several components of a simulator are empirical models, and relevant data is

5



6 Introduction

essential for tuning them. The most relevant data comes from field, but laboratory
experiments are more accessible and precise.

Uncertainty quantification (UQ) is to identify all uncertain components in the sim-
ulators and experiments and quantify the impact of uncertainties on predictions.
Uncertainty quantification is an essential part of risk assessment and management,
and provides a basis for decision making [7, 8]. The available tools for UQ are
manifold and the appropriate choice depends on the application [9].

We have aspired to develop accessible UQ methods for multiphase flow, to make it
worthwhile for practitioners to run their own analysis with relevant data. The UQ
methods in the thesis are directly compatible with commercial simulators such as
LedaFlow [10]. Furthermore, we have pursued a comprehensive description of
sources of uncertainty, which we categorize by variable uncertainty, simulator un-
certainty and variability [11]. The categories are described in detail in Section 3.1
followed by an outline of UQ methods and literature.

The doctoral work is motivated by specific needs for knowledge. Among numer-
ous methods for uncertainty propagation, it was not clear which were more suit-
able for multiphase pipe flow [6, 12, 13]. Picchi et al. [14] applied a Monte Carlo
(MC) method which they proposed as a benchmark for validation of more com-
plex methods such as polynomial chaos (PC) expansions. Performance of PC in
comparison to MC is the topic of the first paper of the thesis. However, the uncer-
tainty description seemed incomplete without consideration of closure laws [15].
The second paper is dedicated to closure law UQ through uncertainty propagation,
to extend existing work on closure laws where uncertainties were determined by
expert elicitation or separate experiments [15–19]. Further, we recognized that re-
peatability of multiphase flow experiments had not been thoroughly studied. Only
few prior experimental campaigns included replicates, and only particular settings
therein were replicated [20, 21]. For the third paper of the thesis, eleven settings
of a flow loop were each replicated 23 times or more, in order to make inference
on repeatability and variability.

The thesis consists of a collection of papers and is divided into two parts. The
first part is an introductory section and consists of Chapters 1-5. A brief intro-
duction to multiphase flow which is relevant for this thesis is given in Chapter 2.
In Chapter 3, uncertainty categories are presented along with methods to quantify
uncertainty. Chapter 4 is a summary of the appended papers, accompanied by the
main conclusion drawn from the thesis and directions for further work in Chap-
ter 5. The second part of the thesis includes Chapters 6-8 which consist of the
appended papers.



Chapter 2
Multiphase flow

This chapter gives a brief introduction to the components of multiphase flow, mod-
eling and experiments.

Multiphase flow consists of materials in two or more thermodynamic phases. A
basic example is any interaction between liquid water and steam, which is a single
substance in two phases. However, we often encounter processes where multiple
substances mix, such as carbonated drinks. A larger scale example is sedimenta-
tion of sand in rivers.

The purview of this section is restricted to simultaneous flow of gas and liquid
commonly known as two-phase flow. Moreover, only flow in pipes is considered.
Two-phase pipe flow occurs in several industries. A major example is power sys-
tems, ranging from coal [22] to nuclear [23]. Another example is epidemiology
[24]. However, the main application of this work is long distance transport of oil
and gas in pipelines.

2.1 Two-phase flow
One aim of two-phase modeling is to determine the composition of gas and liquid
along a pipe. At a cross-section of areaAwhere gas occupies an areaAg, the liquid
covers Al = A − Ag. Moreover, each fluid moves according to a velocity field.
Depending on the level of detail required, it may be sufficient to operate in terms
of the average velocity at cross-sections. In that regard, some essential definitions
are listed in Table 2.1. Subscript p refers to phase, either gas (g) or liquid (l). The
holdup Hp is the fraction of phase p at the cross-section. The average velocities
are proportional to the volume flow ratesQp and are also called the bulk velocities.

7



8 Multiphase flow

Table 2.1: Terms used to describe the composition of gas and liquid in two-phase pipe
flow. Notation is given in the second column and third is the definition in terms of a cross-
sectional average.

Variable Symbol Definition
Holdup Hp Ap/A
Velocity ūp Qp/A
Superficial velocity Up Qp/Ap

Sometimes superficial velocities Up = ūp/Hp are used for convenience.

2.1.1 Flow regimes

The simultaneous flow of gas and liquid in the same pipe may either be structured
or chaotic. The deformable complex interfaces between the liquid and the gas are
key characteristics of two-phase flow. The literature is consistent in the catego-
rization of flow based on interfaces. The categories are called flow regimes, and
illustrated in Figure 2.1. On the bottom left we see stratified flow, in which the
fluids are separated as layers. Gas is light and flows above the heavier oil layer.
Wavy flow is also stratified, but the gas moves forward relative to the liquid and
creates waves, as demonstrated at sea. If the waves are large enough, they cover
the whole cross-section of the pipe, and this is then called slug flow. Slugs refer
to the segments where liquid fills the cross-section, and they move faster than the
liquid in the stratified segments. Gas is also dispersed in the slugs as illustrated in
Figure 2.1. Bubbly flow is primarily liquid with some gas dispersed therein. The
last flow regime discussed here is annular flow where a liquid film covers the pipe
wall. Moreover, gas flows in the center of the pipe and suspends droplets of liquid.
Figure 2.1 is inspired by the work of Taitel and Dukler [25].

For given fluid properties and geometry, it is to some extent possible to map out
flow regimes in terms of superficial velocities such as in Figure 2.1. Each flow
regime corresponds to a region in the space of Ug and Ul, with boundaries sepa-
rating the regions. The challenge of modeling flow regime boundaries is ongoing
research and has been for decades [26–29]. The prevailing regime for specific
conditions may be determined by watching experiments in transparent pipes, di-
rect numerical simulation or other ways of modeling. However, two-phase flow
generally evolves with time, even at fixed flow rates. The flow is unstable near
the boundaries, and the instabilities grow and cause transitions in regime. Thus,
boundaries are sometimes represented as transition bands rather than lines [30].

2.2 Steady-state modeling



2.2. Steady-state modeling 9

Figure 2.1: Flow map of two-phase flow in near-horizontal pipes.

2.2.1 Stratified flow

In stratified flow the light gas flows on top of the heavier liquid. Figure 2.2 illus-
trates flow in an upwards inclined pipe where the gas (transparent) moves faster
than the liquid (blue). Pressure decreases in the direction of x, which corresponds
to a driving force. Gravity works with acceleration g, with a fraction sin θ in the
direction of negative x. Moreover, two types of shear stress apply to each phase.
Shear stress τwg acts on the the gas-wall perimeter Sg, and τwl acts on the the
liquid-wall perimeter Sl. At the interface Si, the fluids inflict shear stress τi on
each other, and thus the liquid is pulled by the faster moving gas. In steady state,
the derivatives of fluid momentum in time and space are zero. Furthermore, effects
from a hydrostatic level gradient, entrainment and deposition are disregarded for
this purpose. The simplified momentum equations for gas and liquid are [31]

−Ag
∂p

∂x
− Sgτwg − Siτi −Agρgg sin θ = 0, (2.1a)

−Al
∂p

∂x
− Slτwl + Siτi −Alρlg sin θ = 0. (2.1b)

Multiplying (2.1b) by Hg and subtracting (2.1a) multiplied by Hl eliminates the
pressure gradient and yields

HgSlτwl −HlSgτwg + Siτi +HgHlA(ρl − ρg)g sin θ = 0, (2.2)



10 Multiphase flow

Figure 2.2: Liquid (blue) and gas (transparent) in stratified wavy flow in a pipe of upwards
inclination θ. At the near end cross-section, gas covers an areaAg located above the liquid
area Al. There are three phase perimeters, gas-liquid Si, gas-wall Sg and liquid-wall
Sl, with shear stresses τi, τwg and τwl respectively. Additionally, gravity applies with
acceleration g.
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Figure 2.3: Diagram of slug flow. The large gas pockets are assumed to be of constant
length Lb separated by slugs of length Ls.

where A, Hg, Sg, Sl and Si are computed directly from Hl and pipe diameter D.
The unknown liquid holdup Hl is obtained from numerical solution of (2.2).

2.2.2 Slug flow

Conveniently, the modeling of stratified flow naturally extends to slug flow. Fig-
ure 2.3 illustrates the unit cell concept introduced by Dukler and Hubbard [32].
One unit cell comprises a bubble zone of length Lb followed by a slug zone of
length Ls. In terms of fractions, the slug zone covers s = Ls/(Lb + Ls). The
slugs entrain gas bubbles, and the amount is significant. The average liquid holdup
H in the pipe is the average liquid holdup in the unit cell, which is the weighted
average of the bubble zone and slug zone,

H = (1− s)Hl + sHs, (2.3)

where Hl is the solution to (2.2) while Hs and s are obtained from empirical clo-
sure laws discussed below. The slug fraction s is restricted to [0, 1]. However, in
the process of deciding flow regimes, we might temporarily operate with invalid
values for s, where s ≤ 0 is stratified flow and s ≥ 1 is bubbly flow.

The gas velocity and the liquid velocity in a slug are not equal by default. The
ratio of gas to liquid velocity is called the slip ratio and is modeled by empirical
closure laws [33, 34]. Moreover, the case of equal velocities is called no-slip
or homogeneous flow, and the slip ratio is then one [30]. Furthermore, the slug
velocities equal the mixture velocity Um = Ug +Ul. Inserting the mixture velocity
for the slug velocities into mass continuity equations for the slugs, yields a slug
fraction equal to

s = 1 +
(1−Hs)Ul −HsUg

(Hs −Hl)Ub
, (2.4)
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where Ub is the velocity of the large gas bubbles as illustrated in Figure 2.3 [31].

2.2.3 Bubbly flow

Bubbly flow is characterized by the dispersion and shapes of the gas bubbles. Ap-
plication of no-slip and the relations in Table 2.1 yields

ūg = ūl

⇔ Ug

1−H = Ul
H

⇔ H = Ul
Um
,

(2.5)

where H again is the average liquid holdup in the pipe.

2.2.4 Pressure drop

The pressure gradient in the main flow direction is also called the pressure drop
and is frequently the primary quantity of interest [15]. Analogous to (2.3), the
pressure drop is the weighted average

∂p

∂x
= s

∂ps
∂x

+ (1− s)∂pl
∂x

. (2.6)

Rearranging (2.1) yields the bubble zone pressure gradient, and modified (2.1b)
applies to the slug zone, such that

∂ps
∂x

= −4τs
D
− ρsmg sin θ, (2.7a)

∂pl
∂x

= −Sgτg
A
− Slτl

A
− ρlmg sin θ, (2.7b)

where τs is the wall shear stress in the slug zone and ρpm = (1−Hp)ρg +Hpρl is
the mix density where p is l for the bubble zone and s for the slug zone.

2.3 Closure laws
The averaging procedures in Section 2.2 produce a solution of low resolution and
some information about the flow is instead reintroduced from empirical model-
ing. For instance, it is rarely feasible to model friction locally on a microscopic
scale. Instead we capture the macroscopic or average effect of friction by theo-
retical simplifications or deduction from experiments. The various models used to
approximate effects are here referred to as closure laws because they are necessary
to close the set of flow equations.

A vast collection of theoretical and empirical works forms the development of
closure laws in steady-state flow. Shippen et al. list several works on each closure
[15, 35]. The basic closure laws encountered in the thesis are presented below.
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2.3.1 Wall shear

Fluids incur shear stress τ when they move along the pipe wall, which is force per
area. Consider a single fluid of viscosity µ in a cylinder with radial coordinate
r ∈ [0, R]. For Newtonian fluids, Newton’s law of viscosity states

τ(r) = µ
∂u

∂r
, (2.8)

where v is the flow velocity and ∂u/∂r is called shear velocity or strain rate. In
fully developed steady-state laminar flow the pressure is p = p(x) and the velocity
is expressed as a profile u = u(r). The velocity profile is obtainable by solving
the horizontal force balance on a cylinder lamina of differential thickness ∂r and
length ∂x given by

2πr∂r
(
p(x)− p(x+ ∂x)

)
= 2πr∂rτ(x) + 2π(r + ∂r)∂xτ(r + ∂r). (2.9)

Integration, no-slip on the wall and radial flow symmetry yield the velocity flow
profile u(r) = 2ū(1− 4r2/R2). Consequently, the wall shear stress is

τw = µ
∂u

∂r

∣∣∣∣
r=R

= −8µū

D
. (2.10)

The pressure drop over a length L of the pipe is ∆p = τ · 4L/D, which combined
with (2.10) is the Hagen-Poiseuille equation. This result was first experimental
[36, 37], but later justified theoretically [38].

A modified version of (2.10) applies to two-phase stratified laminar flow [31]. In
the example above, the fluid fills the entire cross-section A = πD2/4 and wall
shear applies to the perimeter S = πD. When two fluids share cross-section, the
ratios of area to perimeter within each phase are different. The change in geometry
from one phase to two phases is captured by replacing D = A/S in (2.10) by the
hydraulic diameters Dhg = 4Ag/(Sg + Si) and Dhl = 4Al/Sl. The interface is
assumed to act as a wall for the gas, but not for the liquid [30, p. 211].

2.3.2 Friction factors

The fanning friction factor fp is the ratio of local shear stress τ to dynamic pressure
1
2ρpū

2
p [39], and is dimensionless. Inserting (2.10) for laminar flow of phase p

yields

f lp =
τwp

1
2ρpū

2
p

=
16µp

ρpū
2
pDhp

=
16

Rep
, (2.11)

where Rep is the phase Reynolds number. In this situation, the Reynolds number
compactly represents the relative importance of friction to viscosity, and helps
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determine whether turbulence will occur [40]. Generally, nonviscous fluids are
more prone to turbulence. Experiments show that turbulent flow is characterized
by larger friction factors than the model (2.11) [41]. Thus a separate model is
required for turbulent flow, for instance the Haaland equation [42]

f tp = 0.07716 · log−210

(
6.9

Rep
+ 0.234

( ε
D

)1.11)
, (2.12)

where ε is the roughness of the pipe wall [43, p. 294]. The friction factor is shown
to increase monotonically with the roughness ratio ε/D for turbulent flow [44].
Moody diagrams [39], such as Figure 2.4, present the friction factor in terms of
Rep and ε/D on a log-log scale. The model is in this work divided into three
regions at a = 1700 and b = 4000. The laminar model (2.11) applies to Rep < a
and does not depend on ε/D. The turbulent model (2.12) applies to Rep > b and
is plotted for select values of ε/D listed on the right-hand side of Figure 2.4. The
friction factor is interpolated in the transition region 1700 < Rep < 4000 by

fp = (1− w′)f lp + w′f tp , (2.13a)

w′ = sin2

(
π

2
· Rep − a
b− a

)
, (2.13b)

where w′ are weights introduced in Chapter 6. The laminar value f lp is plotted as
a dotted line in the transition region. Different treatment is given to the slug zone,
where a is taken to be Res = DρsmUm/µl at the intersection between the laminar
model and the turbulent model (dashed line). Fully turbulent flow is defined as
b = 3000 in the slug zone.

2.3.3 Slug zone holdup

In the unit-cell model, slug zone holdup Hs is determined empirically. Gregory
et al. [45] fit a function of Um from 157 low viscosity experiments with estimated
mean squared prediction error of 0.034. Kora et al. [46] made closure laws for
higher viscosities, which is applied to µl ≥ 0.02 in this work. The relative impact
of gravity to viscosity is represented by the dimensionless number k = FgF

0.2
v ,

where

Fg =
Um

(gD)0.5

√
ρl

ρl − ρg
and Fv =

Umµl
gD2(ρl − ρg)

. (2.14)
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Figure 2.4: Moody diagram. The Fanning friction factor in terms of Reynolds number
Rep and roughness ratio ε/D. The friction factor depends on ε/D in the turbulent region
Rep > 4000 but not in the laminar region Rep < 1700. The friction factor is interpolated
between laminar and turbulent values in the transition region 1700 < Rep < 4000.

The combined expression for the slug zone liquid holdup is

Hs =



1
1+(Um/α)1.39

, µl < 0.02

1, µl ≥ 0.02, k ≤ 0.15

1.012 · e−0.085k, µl ≥ 0.02, 0.15 < k < 1.5

0.9473 · e−0.041k, µl ≥ 0.02, k ≥ 1.5

(2.15)

where α = 8.66 m/s. Evidently, mixture velocity is the principal variable for
predicting Hs.
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2.3.4 Bubble nose velocity

The bubble nose velocity is illustrated in Figure 2.3. In similar fashion to Sec-
tion 2.3.3, multiple experimental works together make a robust approximation
[47–50]. Effectively, Ub is the sum of the bubble velocity in a stagnant fluid and a
proportion C0 of the mixture velocity Um. The factor C0 is interpolated between
the laminar [48] and turbulent [51] values

C l
0 = 2, (2.16a)

Ct
0 = 1 + 2.5871

√
f ts + 1.4874f ts , (2.16b)

with f ts from (2.12) and C0 interpolated like (2.13). The bubble nose velocity is
modeled as

Ub = U0(F + 0.351 tan θ) (2.17)

+ Um ·max
(
C0 + 0.15 sin2θ, 1.05 + 0.15 sin2θ, 1.2− U0F/Um

)
,

where

U0 = cos θ
√
Dg(ρl − ρg)/ρl,

F = 0.53 exp
(
−13.7D−0.89(gρl)

−0.33(ρl − ρg)−0.23µ0.46l σ0.1
)
.

2.4 Simulators
A simulator here refers to an implementation of a model for multiphase flow. The
origin and development of steady-state simulators is summarized in Shippen and
Bailey [15], building on terminology from Brill and Arirachakaran [52], and is
briefly discussed here. Naturally, the multiphase modelling was first an adaptation
of the more mature single-phase field of research, around year 1950. The phases
were treated as a mixture with no slip between them. The mixture was further
represented by an average viscosity, density and Reynolds number weighted by
the volume of each phase.

In the subsequent decades experiments were applied ad hoc. Increasingly more
experiments tuned the effect of friction. Eventually slip was considered, which
required a closure law for the liquid holdup. Soon after, new closure laws pre-
dicted flow regimes. It was around year 1975 when researchers returned to a more
phenomenological representation of multiphase flow [15]. The limitations of the
empirical approach became clear and computers were more relevant.

The core phenomenon is the joint momentum balance introduced in Section 2.2,
supported by continuity equations and closure laws. The extent to which closure
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Table 2.2: Experiments. Each paper, indicated in the first column, makes use of experi-
ments. The project partners involved are listed in the second column followed by the year
of execution and the facility. Columns five and six give the inner diameter of the test sec-
tion and the pipe inclination. The number of experiments is given in the last column.

Paper Partner Year Facility D [cm] θ [deg] #exp.

1 VOMS JIP 2012 SINTEF MFL 6.9 0.0 240

2 MultiFlow JIP 2018 IFE WFL 10.2 +2.5 46
SINTEF MFL 19.4 +2.5 37
SINTEF MFL 18.9 0.0 76
SINTEF MFL 18.9 +0.5 76

3 LYTT Ltd. 2020 SINTEF MFL 12.7 +2.0 294

laws replace first principles depends on the information available [53]. Moreover,
which closure laws to deploy depends on the input range.

In the 90s, models emerged that coupled the flow in reservoir, wellbore and export
[54–56]. With increasingly ambitious and convoluted simulators, researcher were
not able to develop the code unassisted, and commercial simulators commenced.
The OLGAS simulator arrived on the market in 1989 and is in 2021 developed
by Schlumberger. The Tulsa University Fluid Flow Project Unified simulator was
published in 2003 [57, 58]. Shortly after Kongsberg released the LedaFlow Point
Model [10].

OLGAS and LedaFlow are both trained primarily with data from Tiller Multiphase
Flow Laboratory, while Tulsa University have separate facilities. All three simula-
tors utilize more than ten thousand steady-state training points, of which only parts
are published [59, 60].

2.5 Experiments
Along with first principles and observational studies, experiments is a major source
for knowledge. Stable and repeatable conditions are required to avoid dilution
of information from extraneous confounders [61]. Repeatability conditions for a
series of experiments are defined by ISO as “same measurement procedure, same
operators, same measuring system, same operating conditions and same location,
and replicate measurements on the same or similar objects over a short period of
time” [62].

The doctoral work benefits from the state of the art facilities SINTEF Multiphase
Flow Laboratory and IFE Well Flow Loop. Data from several experimental cam-
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paigns is studied. Chapter 6 includes published data from the Viscous Oil Multi
Scale joint industry project [63], while the remaining data is not yet publicly avail-
able. Information about the employed data is listed in Table 2.2, with the associated
paper index in the first column. Industrial partners request certain experiments and
follow the experimental campaigns. Partner, year and facility are given in columns
2 to 4. The pipe diameter and inclination are listed in columns 5 and 6. Finally,
the number of experiments are given in the last column.



Chapter 3
Uncertainty quantification

The absence of information about the state of a variable or model is also called
uncertainty [64]. In engineering applications, measurements and prediction mod-
els are used to gauge quantities of interest. While the primary aim is to obtain the
most accurate predictions and models, it is essential to also know the general level
of accuracy. It is in 2021 commonplace to quantify uncertainty and the science of
doing so is a central topic in several journals [65–70]. The field of multiphase flow
follows suit [6].

3.1 Sources of uncertainty
There is perhaps no definitive way to categorize uncertainty about measurements
and simulator predictions. In this thesis, uncertainty is divided into three cate-
gories suitable for multiphase flow applications. The appended papers focus on
one category of uncertainty each, as will be explained in Chapter 4. The classifi-
cation is based on Kennedy and O’Hagan [11] who operated with six categories of
uncertainty, and their categories are recited in italics below.

3.1.1 Category I: Variable uncertainty (Chapter 6)

Parameter uncertainty and observation error [11]. With multiphase flow as exam-
ple, features such as material properties and velocities are used to define the state
of a process at any given time. Some of these variables change frequently, while
other variables such as pipe diameter are almost constant for a particular process.
The values of the variables are gauged by instruments such as densitometers and
calipers, and the level of certainty depends on instrument. Other variables are read
from tables of physical properties, supplemented by estimated standard deviations.

19
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Variable uncertainty also includes error in direct measurements of quantities of in-
terest.

The standard deviations of errors in instruments and table values are frequently
reported, while the full error distributions are rarely seen. However, for a given
standard deviation, the Gaussian distribution is the least informative according to
the principle of maximum entropy [71, 72]. Thus, the Gaussian distribution is a
suitable default.

3.1.2 Category II: Simulator uncertainty (Chapter 7)

Model inadequacy and code uncertainty [11]. A number of governing equations
are required [73] to accurately describe multiphase flow and several mechanisms
are minuscule. Despite great modeling efforts, considerable structural errors in
simulators are recognized [19, 74]. Some errors could be avoided with further
investigations or higher resolution in modeling.

In practice, computers are necessary to represent the simulator, which bring poten-
tial errors in implementation along with suboptimal representations of variables
and operations. However, the thesis does not include detailed investigations of
code uncertainty in particular.

3.1.3 Category III: Variability (Chapter 8)

Residual variability and parametric variability [11]. A simulator predicts values
based on a set of variables. Even if the simulator and variables are correctly spec-
ified, some variations of process may be undescribed still. The process may be
inherently stochastic on a fundamental level [11] or additional variables are re-
quired to describe more conditions of the process. Thus, the deviations may be
partially reducible.

Repeatability is the closeness between multiple measurements of a variable under
the same conditions [75]. Thus, repeatability measures both variability and vari-
able uncertainty. In fact, it is not trivial to separate category I and category III
uncertainty in a study of repeatability.

3.2 Framework
Probability theory is the preferred framework for uncertainty quantification con-
sidering the ability to structure partial information. Standard notation is to use
x for the physical value of a variable and the random variable X as an uncertain
counterpart, such as a measurement. In similar fashion, a quantity of interest is y or
Y . The value of y may also be explained by a set of variables x = (x1, x2, . . . , xp)
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through a model f , where

y = f(x). (3.1)

Even though f is the true model and x includes all the required variables, there may
be inherent variability in the process such that f is stochastic. Commonly, neither
f nor x are fully known. In fact, some explanatory variables may be missing
entirely. Moreover, the available variables are usually measured and are to some
extent erroneous. A simulator f̂ is an approximation of f . Predictions for y are
made by evaluating f̂ at a set of measured variables X, which may be written

Ŷ = f̂(X). (3.2)

Evaluating f̂ at a single realization of X provides no certainty about the true value
y. In fact, it is strictly necessary to estimate how different sources of uncertainty
translate to the predictions. Uncertainty propagation is one strategy to estimate
prediction uncertainty.

3.3 Uncertainty propagation

The aim of uncertainty propagation is a probability distribution for Ŷ that repre-
sents uncertainty. First, all sources of uncertainty in f̂ and X must be identified
and described by probability distributions. In trivial cases, the distribution f̂(X)
is tractable analytically, but this is the exception rather than the rule. Instead, the
probability distributions are often approximated by samples. The simulator is then
evaluated for each sample point.

3.3.1 Monte Carlo methods

Monte Carlo (MC) methods refer to a wide range of algorithms that draw n sam-
ples

{
x(s)

}n
s=1 from a prescribed joint probability distribution of X and compute

statistics directly from
{
y(s)
}n
s=1 . Some literature adopt a more exclusive defini-

tion of MC methods [76]. The approach is illustrated in Figure 3.1. Each input,
here exemplified by gas or oil mass rates, is sampled according to the measured
value and a prescribed measurement error distribution. For each sampled set of
inputs, the simulator is evaluated, which yields outputs such as pressure drop or
liquid holdup. Each output distribution can be represented by a histogram or more
succinctly by the mean µ, standard deviation σ or a 95 % prediction interval for y
from estimated quantiles y0.025 and y0.975.

Uncertainty in closure laws (CL) may be sampled like inputs, but caution is re-
quired. First of all, closure laws are functions and not variables. Still, the er-
ror might take the form of a stochastic variable added or multiplied to the CL.
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Figure 3.1: Propagation of uncertainty through a multiphase flow simulator. Measurement
error is sampled from Gaussian distributions and used to perturb the input variables, such
as the gas or oil mass rate. Each perturbation is evaluated by a simulator to produce many
predictions of pressure drop and liquid holdup, which is here represented by histograms.
The histogram of pressure drop predictions is annotated by the mean, one standard devi-
ation from the mean, and quantiles. Errors in the interface and gas-wall friction factors
are also sampled. The pie chart in the bottom right illustrates variance-based sensitivity
indices for the uncertain variables.
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However, while appropriate error distributions in input often derive directly from
instrumentation, there are no prominent distributions for CLs. One angle is to
parameterize the uncertainty in CLs in terms of unknowns to be optimized as an
inverse problem [77, 78].

Sensitivity indices are defined as the proportion of the output variance subject to
each uncertain input, or groups thereof, illustrated by the pie chart in Figure 3.1.
By imposing a certain correlation structure in the sampling, it is possible to iden-
tify the impact of each input as demonstrated by Saltelli et al. [79]. In certain
circumstances it is possible to define sensitivity indices for closure laws as well.
Yet, it depends on the parametrization of CL uncertainty, and dependency on the
stochastic inputs. Classic sensitivity analysis operate on independent input distri-
butions, but dependency is manageable [80, 81].

3.3.2 Polynomial chaos expansions

The simplicity and generality of Monte Carlo methods come with computational
cost if each evaluation of the simulator is considerable [82]. Parallel computing
is suitable and provides some remedy [83]. However, other non-intrusive meth-
ods specializes on computationally expensive simulators. Surrogate models ap-
proximate the simulator, and have the benefit of cheap predictions. Even better,
estimates for the output uncertainty sometimes derive directly from the surrogate
model. A non-intrusive polynomial chaos (PC) expansion is a projection of the
output onto polynomials in the stochastic inputs [13]. Output mean, variance and
sensitivity indices directly derive from fit coordinates of the expansion. Evalua-
tions of the actual simulator is still required to fit the expansion, but presumably
fewer than for non-parametric methods [84]. It is challenging to set the complexity
of the expansion, which is determined by the basis functions. The basis functions
are polynomials, and a high order means flexibility, but also computational cost
and risk of over-fitting [85, Ch. 2].

3.3.3 Other surrogate models

This section provides a brief discussion of surrogate models beyond the PC expan-
sions presented in Chapter 6. The field of machine learning models deploys nu-
merous surrogate models, such as neural networks, support vector machines and
kriging [86]. If the uncertainty distributions for some variables and parameters
are unknown a priori, it is necessary for the surrogate model to parametrize these
distributions in terms of unknowns. Fitting the unknown uncertainty parameters
is then an inverse problem to be solved with Bayesian inference. Exact inference
may be replaced by Markov chain Monte Carlo when necessary [87].

An example of complex surrogate uncertainty modeling is given in Liu et al. [77],
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regarding vertical bubbly flow in a rectangular channel. They apply two differen-
tial transport equations parametrized in terms of five uncertain coefficients relat-
ing to closure laws. Each parameter is assigned a conservative prior distribution
based on software defaults [88] and expert elicitation. The simulator is evaluated
at five hundred samples. However, because the outputs are given on a series of grid
points, the dimension is 6720, but principal component analysis is used for dimen-
sion reduction. A feedforward neural network is fit to the simulator, which implies
an implicit representation of the closure law uncertainty. Additional sources of
uncertainty are included, but added separately afterwards to ensure a manageable
complexity in the Bayesian inference. Specifically, a Gaussian process with radial
kernel across the channel is added as an extra uncertainty to the output space, and is
fit by MCMC. Moreover, input uncertainty is quantified by separate experiments
and treated as known in the larger framework. Finally, uncertainty propagation
through sampling gives probability intervals for the quantities of interest.

Bayesian networks are parametric in terms of likelihood kernels and prior distribu-
tions and also include several parameters related to discretization and fitting. The
Bayesian approach is theoretically appealing because the likelihood functions for
the model uncertainty parameters are computed directly. Still, it is worth consid-
ering other less parametric yet robust options. One option is to try out different
values for the uncertainty parameters, and find the closest match between the pre-
dicted output distribution and measured output in terms of probability [89].

3.3.4 Sampling

The classic sampling on computers is called pseudorandom [90], and the general
approach is to adaptively increase the sample size until the sample statistics con-
verge. Sometimes using quasirandom sequences improves the rate of convergence
[91]. Quasirandom sequences have low discrepancy, which means even distribu-
tion of points on the domain.

A case of multiple uncertain variables X1, X2, . . . with dependency, may be han-
dled by first samplingX(s)

1 from P (X1), then samplingX(s)
2 from P (X2|X1), and

so on. A more complex case is a stochastic process (Xt, t ∈ T ) where the index
set T is of infinite dimensions in time or space. If the mean and covariance of the
process is known, the Karhunen-Loève (KL) expansion provides a finite dimen-
sional approximation. KL expansions have been applied to model porosity and
permeability fields in petroleum reservoir simulations [92].

3.3.5 Intrusive methods

Intrusive methods replace uncertain parts of the simulator by stochastic variables
and the result is a stochastic system. However, it is non-trivial to resolve stochastic
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systems. For instance, a velocity u in a deterministic simulator is generally a
stochastic variable U in the stochastic system and depends on uncertain variables
X = (X1, X2, . . . Xk). In cases where the exact distribution P (U) is unattainable,
approximating U(X) by a polynomial chaos expansion is an alternative. For each
input Xj the expansion applies basis functions that are orthogonal with respect
to the probability density function ρj(Xj). A standard normal Xj corresponds
to Hermite polynomials [93] and a uniform distribution corresponds to Legendre
polynomials [94]. The polynomial expansion for U(X) provides an estimate for
P (U), and may additionally enter into a more complex stochastic system.

The Navier-Stokes equations are traditionally deterministic. However, it is possi-
ble to allow for stochastic velocity, viscosity and more. The first step is to identify
a set of independent stochastic variables X [95, p. 44]. Velocity and other state
variables can then be replaced by PC expansions in X to produce a stochastic sys-
tem. Stochastic Navier-Stokes equations are implemented in the Fortran package
multiUQ [96, 97]. A single solution of the equations is required to predict quan-
tities of interest and their uncertainty, and in this regard stochastic solvers have
the potential for low computational cost. The primary disadvantage of stochas-
tic solvers is the implementation effort. It is not possible to deploy an existing
deterministic solver, but instead the stochastic solver is almost fully rebuilt [96].
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Chapter 4
Summary of appended papers

All the appended papers were on the topic of multiphase pipe flow. The research
aspired to a comprehensive study of sources for uncertainty in experiments and
predictions. Thus, the papers follow the structure of Section 3.1. The emphasis
of the first paper was variable uncertainty, while the focus shifted to simulator
uncertainty in the second paper, and variability in the third.

Paper 1 (Chapter 6)

Uncertainty Propagation through a Point Model for Steady-State Two-Phase Pipe
Flow, A. Strand, I.E. Smith, T.E. Unander, I. Steinsland, L.R. Hellevik
Published in Algorithms, 2020.

This paper describes investigations of variable uncertainty in simulators for mul-
tiphase flow as described in Section 3.1.1. A simple model was implemented in
Python in order to clearly see the behaviour of methods for propagation of uncer-
tainty in input variables. The targets were prediction intervals for pressure drop
and liquid holdup, along with sensitivity indices. It was clear that transitions in
flow regimes caused issues for UP, partly within the closure laws. The non-smooth
transitions impeded approximations by polynomial chaos expansions and to some
degree MC methods.

The complexity of two-phase flow implies several input variables in terms of ge-
ometry and physical properties of each fluid. Propagation of ten uncertain inputs
proved to be on the computational limit, even with highly parallel implementation
on supercomputers. The UQ estimates were based on thousands of evaluations of
the simulator. Increasingly more samples were evaluated until the prediction statis-
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tics converged. While the PC expansions showed high potential for swift results,
they failed to converge in some cases, and overall MC was preferred.

Estimates from MC and PC were in close agreement. The uncertainty about pipe
diameter and liquid viscosity comprised most of the prediction uncertainty. Con-
sequently, the estimates for liquid holdup and pressure drop would be much more
certain by improving measurements of diameter and liquid viscosity.

The coverages were generally high. However, the liquid holdup in the slug flow
experiments tended to be over-predicted while the stratified experiments tended
to be under-predicted. Regardless of flow regime, the pressure drop was slightly
under-predicted for low values and over-predicted for high values. After all, some
deviations were expected, both from excluded entrainment and imperfect closure
laws.

The uncertainty analysis also uncovered discontinuities in the formulation of the
simulator, and corrections were suggested.

Paper 2 (Chapter 7)

Closure Law Model Uncertainty Quantification, A. Strand, J. Kjølaas, T.H. Bergstrøm,
I. Steinsland, L.R. Hellevik
Published in International Journal for Uncertainty Quantification, 2021.

This paper contributes to new methods for describing simulator uncertainty, a topic
described in Section 3.1.2. This work built on the first paper by extending the un-
certainty propagation framework to also include simulator uncertainty. However,
while the input uncertainty was prescribed, the model uncertainty was estimated.
Two methods for estimation were developed and demonstrated on the commercial
simulator LedaFlow. Experiments were grouped by flow pattern and analyzed.
The aim was to find uncertainty parameters that produce calibrated distributions
with respect to output measurements.

The model uncertainty was attributed to five closure laws. It is accepted that clo-
sure laws deviate from the physical values they represent. While there are un-
limited ways to represent closure law errors, a multiplicative Gaussian error was
satisfactory in the presented applications in terms of prediction coverage. For each
case study, only closure laws that significantly affected predictions were included
in the parameter estimation, while the remaining were fixed.
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Paper 3 (Chapter 8)

Repeatability in a Multiphase Pipe Flow Case Study, A. Strand, C. Brekken, P.R. Leinan,
I. Steinsland, L.R. Hellevik
Submitted to International Journal of Multiphase Flow, 2021.

This paper describes a study of variability as defined in Section 3.1.3. A large set
of replicated experiments were conducted at the SINTEF Multiphase Flow Labo-
ratory. The flow loop comprised a main flow of oil with multiple injections of oil,
water and air along the main test section. The fluid mass flow rates were carefully
set to certain values and regulated. Each setting for mass rates were replicated
many times, in order to study the variability in quantities of interest.

Pressure was measured at several locations. The relative replicate deviations in
pressure were less than one percent at most locations. The volume flow rates were
generally even less variable. The volume flow rates were computed from mass
flow rates, densities and in some cases pressures and temperatures.

4.1 Statement of authorship
In Chapter 6 Andreas Strand developed and implemented all methods, performed
all simulations and drafted the manuscript.
In Chapter 7 Andreas Strand co-developed and co-implemented all methods, per-
formed all simulations, and drafted the manuscript.
In Chapter 8 Andreas Strand co-developed and implemented all methods, per-
formed all analyses and drafted the manuscript.
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Chapter 5
Conclusions and directions for
further work

5.1 Conclusions
The uncertainty propagation study (Chapter 6) demonstrated how Monte Carlo
methods may require hundreds of thousands of model evaluations, even for a
steady-state point model. The polynomial chaos expansions did not converge for
some cases in the transitional flow regimes. Evidently, the non-smooth regions of
the simulator demanded an expansion of high polynomial order.

The Monte Carlo method and polynomial chaos expansions provided similar es-
timates for prediction intervals and sensitivity indices despite their computational
disparity. Pipe diameter and liquid viscosity were found to contribute most to the
uncertainty in the steady-state point model predictions. The prediction coverage
was apt for holdup but not for pressure drop.

Inclusion of model uncertainty improved the coverage of the prediction intervals
in the second paper (Chapter 7) as presumed. Both methods yielded clear optima
for the closure law uncertainty parameters. The commercial simulator LedaFlow
was studied with use of two datasets. As expected, flow regime determined which
closure laws were critical. The gas-wall friction factor was decisive for strati-
fied/annular flow, while the liquid-wall friction factor and the slug-bubble velocity
were decisive for slug flow.

The third paper (Chapter 8) covers an investigation of variability in experiments,
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where eleven settings for mass flow rates were replicated between 23 and 28 times
each. The quantities of interest such as pressure drop and volume flow rates were
repeatable, with relative errors mostly much less than one percent. The geometries
of the flow loops in the first two papers (Chapter 6 & 7) were less elaborate than in
the third paper, which suggests low variability in all three studies. Low variability
further supports the choice to run each input setting only once in the experimental
campaigns of the first two papers.

The prediction uncertainty is most efficiently reduced with focus on the primary
contributors. In Chapter 6, contributions from the input variables are readily given
by the sensitivity indices. Evidently, liquid viscosity is a primary contributor to
uncertainty, and may be regarded as a weak link. One solution is to monitor liquid
viscosity throughout the experiments, rather than to prescribe a fixed value from
reference data. Generally, it is also essential to target the weak links in the simu-
lator itself. The results in Chapter 7 do in fact direct our attention to closure laws
which comprise substantial prediction uncertainty. Evidently, refining wall friction
factors is key. In contrast, it appears that variability in input variables is a minor
contributor to prediction uncertainty (Chapter 8).

When the uncertainty in input variables and closure laws is aptly quantified, for-
ward propagation of uncertainty (UP) through the simulator yields predictive dis-
tributions conforming to the available information. Throughout the thesis work, it
has been apparent that flow conditions determine the total prediction uncertainty
and the main contributors thereto. Thus, relevant data is required for representative
UQ and calibrated predictions.

Considering the thesis as a whole, there are promising implications for the multi-
phase industry already in the short term. To assist computations for complex mul-
tiphase pipeline transport, operators may readily adopt the work flow presented
in Chapter 7 and supported by Chapters 6 & 8. The benefit is more effective deci-
sions through probabilistic predictions with all major sources of uncertainty rigidly
quantified. Importantly, the method is compatible with any simulator, without
changes to the simulator software.

5.2 Future work
The attempts to fit PC expansions in the first paper were not exhaustive, and it is
perhaps worthwhile to consider sparser expansions [98].

While the state of the art multiphase software is ever more capable of prediction,
UQ tools therein are in an earlier stage of development. At the same time, general
software for optimization and UQ are highly sophisticated [99–102]. The UQ
software is capable of calling a deterministic simulator and perform a non-intrusive
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analysis. With some insight into the software, the workflow is manageable to
set up. Yet, it would be an improvement to have more UQ tools built into the
multiphase software, such that uncertainty is considered by default.

Also intrusive UQ methods are suitable for integration in commercial simulators.
Intrusive simulators were not implemented in the thesis work despite their rigor
and potential to outperform more brute methods [103, 104]. The software multiUQ
demonstrates the potential for intrusive stochastic implementations of multiphase
processes. The creators stated a need for further development of three dimensional
solutions, interface capturing and general computational efficiency [96].

In Chapter 7, the model for closure law uncertainty was promising, but not neces-
sarily optimal. Optimization with comparisons of multiple uncertainty models is
possible. Still, a more sophisticated approach is to attain specific prior information
about the sources and distributions of modeling errors as demonstrated in Oliver et
al. [105]. They simulated a mass-spring-damper system where the damping coef-
ficient is estimated. The coefficient was known to depend on temperature, but the
model form was unknown. They were able to extrapolate uncertainty estimates to
other systems by qualitative arguments related to temperature. In multiphase flow,
such arguments could be effective to extrapolate uncertainty estimates in closure
laws to new operations.

Bayesian approaches are intuitive and rigorous, yet not frequently applied to mul-
tiphase pipe flow. One example for bubbly flow is demonstrated by Liu et al. [77],
where a neural network and a Gaussian process formed the basis for Bayesian in-
ference of uncertainty parameters. Complexity, both in the sense of over-fitting
and computational cost, is a recurrent challenge for maximum likelihood estima-
tion in Bayesian networks, but Liu et al. used principal component analysis for
regularization. In summary, Liu et al. combined three machine learning tools, and
the sophistication is daunting. However, there are helpful software available, such
as PyTorch [106] and TensorFlow [107]. Bayesian modeling of multiphase flow in
porous media is a mature field [92, 108–110], and knowledge therein may translate
to pipe flow.
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Abstract: Uncertainty propagation is used to quantify the uncertainty in model predictions in the
presence of uncertain input variables. In this study, we analyze a steady-state point-model for
two-phase gas-liquid flow. We present prediction intervals for holdup and pressure drop that are
obtained from knowledge of the measurement error in the variables provided to the model. The
analysis also uncovers which variables the predictions are most sensitive to. Sensitivity indices and
prediction intervals are calculated by two different methods, Monte Carlo and polynomial chaos. The
methods give similar prediction intervals, and they agree that the predictions are most sensitive to the
pipe diameter and the liquid viscosity. However, the Monte Carlo simulations require fewer model
evaluations and less computational time. The model predictions are also compared to experiments
while accounting for uncertainty, and the holdup predictions are accurate, but there is bias in the
pressure drop estimates.

Keywords: two-phase flow; unit cell; uncertainty quantification; sensitivity analysis; Monte Carlo;
polynomial chaos

1. Introduction

Multiphase flow models are used in a range of applications, such as petroleum transport, nuclear
energy and biomechanics. Accuracy in the model output is required to ensure the models to be useful
decision support tools. Consequently, there is a rapid development in methods for quantifying the
uncertainty in these models.

Lee and Chen [1] compared several types of uncertainty propagation methods, including
Monte Carlo methods (MC), polynomial chaos expansions (PC), full-factorial numerical integration
(FFNI) and univariate dimension reduction (UDR). They explain the relative strengths of each
method, and one conclusion is that PC is most viable in comparison to FFNI and UDR when input
distributions are normal but output distributions are not. This is the situation in our analysis.
Later, Cremaschi et al. [2] discussed applications of the methods discussed in Lee and Chen [1] to
multiphase flows. Furthermore, they asked in the short-term that vendors of multiphase simulators
implement tools for propagating uncertainty and yield sensitivities and prediction intervals. It was also
requested that the simulators incorporate uncertainty in closure laws and that researchers accompany
experimental data with uncertainty estimates. In the long term, Cremaschi et al. [2] recommended
producing scale-up data to improve extrapolation in multiphase models. A case study is presented

Algorithms 2020, 13, 53; doi:10.3390/a13030053 www.mdpi.com/journal/algorithms
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in Holm et al. [3,4], where they demonstrated how uncertainty propagation may be used for flow
assurance on the Shtokman gas and condensate field. Their analysis included pressure drop and
liquid holdup predictions using a one-dimensional model in the software OLGA. They determined
probability distributions for a selection of input variables and closure laws and they propagated
these uncertainties through the multiflow model using a Monte Carlo method. The result is the 10th,
50th, and 90th output percentiles for pressure drop and liquid holdup predictions and measures of
sensitivity to the input variables. Hoyer et al. [5] used Monte Carlo simulations with OLGA in order to
identify influential variables and closure laws in several groups of data with different flow conditions.
They are only able to construct satisfactory probability distributions for each closure law when using a
group of data where the closure law is significant.

Klavetter et al. [6] modeled liquid holdup and pressure drop in two-phase pipe flow using the
TUFFP Unified Model for two-phase flow. They assumed an uncertainty range for each input variable
and compared perturbation, Taylor series approximations and Monte Carlo methods for uncertainty
propagation. They concluded that Taylor series approximations overestimate the output uncertainty
while the other methods perform well. Keinath et al. [7] also demonstrated the importance of selecting
an appropriate framework when handling uncertainty in multiphase modeling and highlighted the
value of quantitative information about the input uncertainty distributions for decision making.
Just recently, in Liu et al. [8], a Gaussian process and principal component analysis were applied to a
complex two-phase flow model in order to explore the uncertainty and reduce the complexity of the
model. Picchi and Poesio [9] considered a one-dimensional model for two-phase pipe flow. Known
distributions for input variables are propagated through the model using Monte Carlo methods
to obtain first-order and total sensitivity indices as well as output distributions. In the thesis of
Klinkert [10], a similar method was applied to the point model Shell Flow Correlations and the
one-dimensional model PIPESIM by Schlumberger. Polynomial chaos expansions were also applied,
and both analyses were implemented in the open-source software UQLab [11].

In this work, we compare uncertainty estimates obtained by Monte Carlo simulations with those
of polynomial chaos for the two-phase point model presented in Smith et al. [12]. The analyses include
quantifying the uncertainty in the model output and estimating the sensitivity to each input variable.
Furthermore, we explicitly compare the computational cost of MC to that of PC. These comparisons
are important for practical use but uncommon in the literature.

The flow model predicts average holdup and pressure drop based on mass rates, viscosities,
densities, pipe diameter, hydraulic roughness, surface tension and pipe inclination. The uncertainty
framework provides prediction intervals and the sensitivity to each input variable. We use 240
experiments of stratified flow or slug flow from the SINTEF Multiphase Flow Laboratory as reference.
These experiments were also studied in Smith et al. [12]. The comparison of prediction intervals to
measurement intervals provides high-quality information about any bias in the physical model because
the uncertainty is handled in a careful manner.

Section 2 contains details on the flow model and the uncertainty quantification framework. The
results are presented in Section 3 and discussed in Section 4.

2. Materials and Methods

2.1. Flow model

We analyzed the model developed in Smith et al. [12], only with a small change to turbulent
interpolation. This section briefly outlines their model, which considers two-phase flow in a circular
pipe and predicts liquid holdup H and pressure drop −p′ = −∂p/∂x in the longitudinal direction
x. The model predictions are based on ten measured input variables listed in Table 1. In contrast to
the presented approach, system identification with a backward elimination method [13,14], forward
selection [15] or stepwise regression [16] can be used for the same purpose. This would raise the model
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quality, but also increase the experiment cost and computational time significantly, and is not applied
in this paper.

Table 1. Input to the flow model. The index p refers to phase, where g is gas and l is liquid.

Symbol Description unit
ṁp Mass rate kg/s
µp Viscosity Pa s
ρp Density Pa s
D Pipe diameter m
ε Hydraulic roughness m
σ Surface tension N/m
θ Pipe inclination rad

The flow is categorized as either stratified, bubbly or slug flow. All cases are covered by a unit-cell
model, as introduced in Dukler and Hubbard [17]. The holdup is the weighted average

H = sHs + (1− s)Hl, (1)

where s is slug fraction, Hs is the slug zone holdup and Hl is the bubble zone holdup. Slug flow is
illustrated in Figure 1. The model allows for gas bubbles in the slug. Note that s ≤ 0 is stratified flow
and s ≥ 1 is bubbly flow, and s is then limited to 0 and 1, respectively, in the weighting.

Figure 1. Slug flow. Gas bubbles are separated by liquid slugs. At the near end of the pipe, we have
illustrated the gas–wall perimeter Sg (black dashed line), liquid–wall perimeter Sl (black line) and the
interface perimeter Si (white line).

The estimation procedure consists of two main steps, deciding the flow regime and computing
the holdup conditional on that regime. In general, we need the conditional holdups in order to decide
on the regime.

2.1.1. Slug zone

The slug zone holdup is computed first. We apply Gregory et al. [18] for low liquid viscosities and
Kora et al. [19] for higher ones. It is convenient to introduce average superficial velocities, defined as

Up =
4ṁp

πD2ρp
, (2)
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where the index p refers to phase, with g for gas and l for liquid. The slug zone holdup is

Hs =



1
1+0.05{Um}1.39 , µl < 0.02

1, µl ≥ 0.02, k ≤ 0.15

1.012 · e−0.085k, µl ≥ 0.02, 0.15 < k < 1.5

0.9473 · e−0.041k, µl ≥ 0.02, k ≥ 1.5

(3)

where k = U1.2
m D−0.9g−0.7µ0.2

l ρ0.5
l (ρl− ρg)−0.7 and Um = Ug +Ul is the mix velocity with the numerical

value denoted as {Um}. Using the slug zone holdup, we can easily check for bubbly flow. The holdup
for bubbly flow is

H =
Ul
Um

if Ul > UmHs. (4)

The requirement corresponds to a slug fraction greater than 1. In order to find the average holdup in
slug flow, we need the bubble nose velocity, which is also empirical. Smith et al. [12] used a modified
version of the function proposed in Bendiksen [20]. The bubble nose velocity is assumed linear in the
mix velocity with an intercept determined by the experiments conveyed in Jeyachandra et al. [21]. The
slope C0 is interpolated from a laminar value and a turbulent value, as proposed in Nuland [22], with
some additional restrictions. Details are given in section 2.1.5. The laminar and turbulent values are

Cl
0 = 2 (5a)

Ct
0 = 1 + 2.5871

√
f t
s + 1.4874 f t

s , (5b)

where f t
s is the slug friction factor defined later. The turbulent value is as reported in Hinze [23]. Using

this approach, the bubble nose velocity is

ub = U0(F + 0.351 tan θ) + Um ·max
(

C0 + 0.15 sin2 θ, 1.05 + 0.15 sin2 θ, 1.2− U0F
Um

)
, (6)

where U0 = cos θ
√

Dg(ρl − ρg)/ρl and F = 0.53 exp(−13.7 D−0.89(gρl)
−0.33(ρl − ρg)−0.23µ0.46

l σ0.1).

2.1.2. Bubble zone

Let Hg = 1− Hl be the gas fraction in the bubble zone. The liquid holdup in the bubble zone is
the solution to the momentum balance for both phases, that is Hl such that

ρg fgSgu2
gH3

g − ρl flSlu2
l H3

l + ρg fiSi(ulHl − ugHg)|ulHl − ugHg|+ (ρl − ρg)
π
4 D2H3

gH3
l g sin θ = 0, (7)

where the perimeters Sp and Si are defined in Figure 1, and the friction factors fp and fi are defined
below. The superficial velocities up must be chosen according to the flow regime. The superficial
velocities equal the average superficial velocities in Equation (2) for stratified flow, while they are
functions of the bubble zone holdup for slug flow, namely

Stratified flow: up = Up (8a)

Slug flow:

{
ug = Ug + ∆
ul = Ul − ∆.

(8b)
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where ∆ = (Hs − Hl)ub + (1− Hs)Ul − HsUg. Furthermore, the interface friction factor is a modified
version of the expression proposed in Andreussi and Persen [24] and is given by

fi = fi0

1 + 10h

(
2ug

HgD

√
Siρg

πHgg(ρl − ρg) cos θ
− 0.36

)0.67
 , (9)

where h is the line fraction approximated by

h = 1− cos

(
1
3
+

(
3π

2

) 1
3
+

(
π − 2

3

)
Hl + H

1
3
l + H

1
3
g

)
(10)

and we impose a minimum of fi0 = fg(ε = 0). The friction factors fi0, fg, fl and fs are interpolated
from laminar and turbulent values, as described in section 2.1.5. We use the Hagen-Poiseuille and
Haaland formulas found in White [25] given as

f l
p = 16Re−1

p (11a)

f t
p = 0.07716 · log−2

10

(
6.9Re−1

p + 0.234
( ε

D

)1.11
)

, (11b)

where

Re−1
p =



µg(Sg + Si)

πD2ρg|ug|
, p = g

µlSl

πD2ρl|ul|
, p = l

µl
Dρs

mUm
, p = s

(12)

and ρ
p
m = (1 − Hp)ρg + Hpρl is the mix density where p is l or s for bubble zone or slug

zone, respectively. The comparative study in Brkić and Praks [26] suggests a more accurate and
computationally efficient approximation than Equation (11b) for the Colebrook turbulent friction
factor. However, model tuning is not the main objective for this work. Instead, we use the Haaland
approximation to allow for comparison to Smith et al. [12]. The friction factor is a small contributor
to the computational cost of the point model. Thus, it is not essential to find the most efficient
approximation.

2.1.3. Slug fraction

The fraction of the unit-cell covered by the slug is called the slug fraction, and it may be computed
as

s = 1 +
(1− Hs)Ul − HsUg

(Hs − Hl)ub
. (13)

Figure 2 shows a flowchart of the steady-state point model solution procedure. The first step is to
compute the slug zone holdup from (3). Next, we determine the correct flow regime and average
liquid holdup. Finally, the pressure drop is computed.
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Compute Hs (3)

Ul > UmHs

Solve momentum
balance (7) with

(8a)→ Hstrat
l

(8b)→ Hslug
l

Hslug
l < Hstrat

l

Slug flow
H = sHs + (1− s)Hslug

l

Stratified flow
H = Hstrat

l

Bubbly flow
H = Ul

Um

Pressure drop (14)

yes

nono

yes no

Figure 2. Flowchart of the point model. First holdup is computed, then pressure drop.

2.1.4. Pressure gradient

The pressure gradient is the weighted average

p′ = sp′s + (1− s)p′l, (14)

where the slug zone and bubble zone pressure gradients are

p′s = −
2
D

ρs
m fsU2

m − ρs
mg sin θ (15a)

p′l = −
2

πD2

(
ρg fgSgu2

g

H2
g

+
ρl flSlu2

l
H2

l

)
− ρl

mg sin θ, (15b)

where Hg and Hl is the solution to Equation (7).

2.1.5. Interpolation by Reynolds number

Several dimensionless numbers g in the model are computed as gl for laminar cases and as gt for
turbulent cases. By interpolation, we ensure continuity in g(Rep), also in the transition from laminar to
turbulent. Let the laminar region be Rep < a, the transitional region be a < Rep < b and the turbulent
region be b < Rep. A natural interpolation is

g(Rep) = wgl + (1− w)gt (16a)

w =
b− Rep

b− a
. (16b)

We chose a = 1700 and b = 4000 for the friction factors in Equation (11) except for fs. For fs and the
slopes in Equation (5), we use b = 3000 and a such that fl(Re = a) = ft(Re = a).

However, using weights w will not produce a smooth function g. In fact, the derivative of g with
respect to Re is discontinuous at a and b. This far, we have outlined the model given by Smith et al. [12],
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but we suggest replacing the weights by w′ = sin2(πw/2). These weights provide continuity in the
derivative of g. The change is demonstrated in Figure 3. The histograms in the left panel show the
distribution of holdup estimates obtained by perturbation of a certain set of inputs with a Reynolds
number close to 3000. Blue gives the holdup estimates using the original model with weights w,
while orange gives the estimates obtained using the new weights w′. The right panel shows C0(Re) in
the transition from laminar to turbulent Reynolds numbers. We prefer the modified model because
the distribution with small changes in input is more straightened out. However, the distribution of
pressure drop is nearly unchanged.
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Figure 3. Comparison of two methods of interpolation by Reynolds number. Left: Histograms of holdup
for small perturbation of input around Re ≈ 3000 for the original model (blue) and the modified model
(orange). Right: The bubble nose variable C0(Re) in the transition from laminar to turbulent for the
original model (blue line) and the modified model (orange dashed line).

2.2. Uncertainty quantification

Section 2.1 describes how we can predict holdup or pressure drop from measured inputs.
In this section, we explain how to compute the effect of measurement error in input variables
on the predictions. First, we will discuss the measurement error in each input and output. The
uncertainties are attained from Table 2 in Smith et al. [12] and follow-up discussion with the laboratory
staff. Additional details regarding the uncertainty estimates can be found in Khaledi et al. [27].
The uncertainties should be understood as defined by the Guide to the Expression of Uncertainty in
Measurement [28], and the uncertainties are quantified as one standard deviation. Next, we have
summarized the discussion on measurement error in each input variable. We refer to Section 2.3 in
Smith et al. [12] for details on the uncertainty in output measurements.
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Table 2. Uncertainty in the model variables given as one standard deviation.

(a) Input.

Variable Unit Uncertainty
ṁg kg/s ṁg · 0.4 %
ṁl kg/s ṁl · 0.05 %
µg Pa s µg · 2 %
µl Pa s µl · 3 %
ρg kg/m3 0.2 kg/m3

ρl kg/m3 1 kg/m3

D m D · 1 %
ε m 1 · 10−6 m
σ N/m σ · 30 %
θ rad 2 · 10−4 rad

(b) Output.

Variable Unit Uncertainty
H − 0.03

−∂p/∂x Pa/m max(3 Pa/m,−∂p/∂x · 0.5 %)

2.2.1. Measurement error

Mass rate. The devices used to measure the mass rates have uncertainties relative to the measured
value. The uncertainties are reported as 0.05% of the measured value for liquid and 0.4% of the
measured value for gas.

Viscosity. The gas viscosity is found from reference data, and the value for various gases are
in the range 1 · 10−5 Pa s to 2 · 10−5 Pa s, and the viscosity has only a slight dependence on pressure
and temperature. The uncertainty in the reference data is quoted as 2 %, and it is reasonable to use
this value for the uncertainty in gas viscosity. Liquid viscosity is difficult to measure under relevant
conditions and is significantly affected by temperature. If the viscosity of a hydrocarbon fluid is
measured, a typical uncertainty will be 3 % of the reading. The viscosity of a single-compound fluid
such as water can be obtained from reference data. The uncertainty in water reference data in the
relevant range is 0.5 %.

Density. For well-known gas compositions, the gas density can be calculated accurately from
reference data. Alternatively, the density can be measured by weighing. In both cases, the uncertainty
will typically be 0.2 kg/m3. This value also includes the effect of various degrees of saturation of
vapors from the liquid present in the loop. Liquid density can be measured using Coriolis meters and
a reasonable uncertainty in such measurements is 1 kg/m3.

Pipe diameter. If the pipe diameter is obtained from the nominal diameter, the production tolerance
must be used to infer the uncertainty. Typically, such an analysis will yield an uncertainty in diameter
of 1 %. If the diameter is measured by filling experiments, an uncertainty in diameter of 0.2 % can
be obtained. Note that the pipe diameter enters into many calculated quantities, and usually to a
high degree. This includes the superficial velocities and hydraulic roughness. In the evaluation of the
uncertainty in these quantities, the contribution from the uncertainty in pipe diameter is not included.
The contribution from error in pipe diameter is unique because it will be the same for all experiments
carried out in one particular test section.

Hydraulic roughness. The hydraulic roughness is inferred from single phase liquid flow
experiments, and the uncertainty in roughness in the current case is 1 µm.

Surface tension. Surface tension is a parameter that can only be measured off-line. The actual
value of the surface tension in situ is hardly known due to contamination and dynamic effects. The
uncertainty in surface tension is set to 30 %.

Pipe inclination. The uncertainty in pipe inclination is estimated based on how the pipes are
mounted. By inspection of the setup, we believe that the pipe can deviate 6 mm in the vertical direction
over a section of 30 m. This corresponds to an uncertainty in the pipe inclination of 2 · 10−4 rad.
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2.2.2. Uncertainty propagation

Uncertainty propagation is a term for how the measurement error in each input is propagated
through the model; for instance, whether the measurement error in the mass rates results in uncertainty
in the estimated holdup. We can write the model as

Y = y(ṁg, ṁl, ρg, ρl, µg, µl, D, ε, σ, θ) = y(Z), (17)

where Y is either holdup or pressure drop. Our model is represented as a function y, which takes the
vector Z of random variables as input. The uncertainties of Z are propagated through the model y to
produce a new random variable Y.

We can simulate the effect of measurement error by changing the inputs slightly and observe
the change in the output. If we do this many times, we will get a distribution for the output. The
change in input represents the measurement error. We sample the measurement errors based on the
uncertainties presented in the previous section and Table 2a. We assume independent measurement
errors from normal distributions with standard deviations given in the table. All the variables except
pipe inclination are truncated at zero.

2.2.3. Input sampling

The measurement error is sufficiently simulated without true randomness. Instead, we use a
classical pseudo-random sequence denoted

{
z(j)}n

j=1 , where n is the sample size. The error in the
estimated statistics decays by 1/n, while the rate is only 1/

√
n for truly random sampling. Furthermore,

the pseudo-random sequence cover the input space almost uniformly, while a random sequence may
have clusters and holes.

Pseudo-random normal samples of input are generated by applying a copula to the sequence,
which is a transformation function for uniform sequences. A dependency between the measurement
errors in the inputs could easily be simulated by the use of a different copula.

2.2.4. Statistics

The uncertainty analysis can be summarized by some key figures. We have a good overview of
the propagated uncertainty if we know the mean E [Y], variance Var [Y] and the quantiles y0.025, y0.05,
y0.95 and y0.975. Furthermore, we can list the contribution to Var [Y] from each input. If the input Zi
contributes much to Var [Y], we have much to gain from reducing the measurement error in Zi. The
reduction in Var [Y], if we could eliminate the measurement error in Zi, is equal to VarZi

[
EZ∼i [Y|Zi]

]
,

where Z∼i are all inputs except Zi. The relative reduction in output uncertainty is

Si =
VarZi

[
EZ∼i [Y|Zi]

]
Var [Y]

, (18)

which is known as the first-order sensitivity index proposed in Sobol [29]. The same article defines
the total sensitivity index STi which also includes the interaction effect with other variables. The total
index is the remaining output variance when we fix all inputs but Zi. That is

STi = 1− VarZ∼i

[
EZi [Y|Z∼i]

]
Var [Y]

. (19)

Sections 2.3 and 2.4 each provide a simulation method. When we talk about sensitivity indices for
multiple cases, ASi is the average index weighted by Var [Y] for each case. That is

ASi =
∑c Sc

i Var [Yc]

∑c Var [Yc]
, (20)
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where Sc
i is the first-order sensitivity index of input Zi for case c, and Var [Yc] is the output variance for

case c.

2.3. Monte Carlo methods

Monte Carlo methods treat the model as a black box. We get estimates for sensitivities by
computing changes in the output for systematic changes to the input. This is done by dividing
the samples into two parts. Let the first half of the sample be the matrix A and the second half B.
Denote A(i)

B a matrix equal to A but with column i from B. The preferred estimators for the mean
output and output variance are the sample average and the unbiased sample variance. We will use
estimators for the sensitivity indices based on the best practices discussed in Saltelli et al. [30]. Since
the work in Sobol [29], improvements have been proposed in Saltelli [31] and Sobol et al. [32]. Further
improvements for the first-order indices are suggested in Saltelli et al. [30]. The total indices are
estimated as proposed in Jansen [33]. The estimators are

Ȳ =
1
n

n

∑
j=1

y
(

z(j)
)

, (21a)

σ̄2
Y =

1
n− 1

n

∑
j=1

(
y
(

z(j)
)
− Ȳ

)2
, (21b)

S̄i =
2

σ̄2
Yn

n/2

∑
j=1

y(B)j

(
y
(

A(i)
B

)
j
− y(A)j

)
, (21c)

S̄Ti =
1

σ̄2
Yn

n/2

∑
j=1

(
y
(

A(i)
B

)
j
− y(A)j

)2
, (21d)

ȳα/2 = F−1
n (α/2), (21e)

ȳ1−α/2 = F−1
n (1− α/2), (21f)

where Fn is the empirical distribution of y
(
z(j)) and 1− α is the confidence level. The number of

model evaluations with ten inputs is 5n for A(i)
B and n/2 each for A and B. Thus, a total number of 6n

evaluations is required.

2.4. Polynomial chaos

When the model y is not on a simple explicit form, directly computing the distribution of y(Z)
is not feasible. However, we can first approximate the model by a simplified version, namely
a polynomial expansion. This is known as the general polynomial chaos (gPC) expansion. An
introduction of gPC is found in the book of Xiu [34]. Let the polynomial expansion be

Yp =
p

∑
j=1

ajΦj(Z), (22)

where aj are coefficients found by regression and Φj(Z) are orthonormal polynomials constructed
from three terms recursion. Orthonormality is not required but simplifies estimators. We terminate the
recursion when it reaches the desired polynomial order. A high polynomial order corresponds to a
close approximation, but note that the number of polynomials p = (10 + order)!/(10!order!) grows
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fast with the order. Next, we draw an input sample of size n as described in Section 2.2.3. Let ε be the
differences in output between the model and the expansion, that is

y
(

z(1)
)

...

y
(

z(n)
)
 =


Φ1

(
z(1)

)
· · · Φp

(
z(1)

)
...

. . .
...

Φ1

(
z(n)

)
· · · Φp

(
z(n)

)

a1

...
ap

+

ε1
...

εn

 . (23)

Ordinary least squares provides estimates â1, . . . , âp. These inserted in Equation (22) gives an explicit
representation of the flow model. Furthermore, estimates for the statistics in Section 2.2.4 are

Ỹ = â1, (24a)

σ̃2
Y =

p

∑
j=2

â2
j , (24b)

S̃i =
1

σ̃2
Y

∑
j∈Ai

â2
j , (24c)

S̃i = 1− 1
σ̃2

Y
∑

j/∈Ai

â2
j , (24d)

ỹα/2 = F−1
p (α/2), (24e)

ỹ1−α/2 = F−1
p (1− α/2), (24f)

where Ai = {j|Φj(z) = Φj(zi)} is the set of polynomials depending solely on zi, and Fp is the
empirical distribution of Yp for ten thousand Monte Carlo samples and 1− α is the confidence level.

2.5. Simulations

The Monte Carlo simulations are initialized at 6000 samples and expanded by 30 % for each
iteration until estimates of Equation (21) converge. For both MC and PC, we define convergence as a
change from previous iteration less than 0.01 for sensitivity indices and a relative change less than 0.01
for the mean, the variance and the quantiles.

For polynomial chaos, we first use order two and increase the order until estimates of Equation (24)
converge. For each order, we increase the sample size repeatedly by p + 1 until the fit on a test set
does not longer improve. The test set consists of 6006 combinations of input, and we deem the fit
satisfactory when the mean absolute deviation in the fitted output for consecutive iterations changes
less than 20 %. This indicates that we have enough evaluations of the model for an accurate polynomial
approximation.

The pseudo-random sampling is most efficient if we first construct a large sample matrix and
evaluate the point model for an incrementally larger subset when required. For PC, we construct
a sample of size ten times the number of polynomials in the three terms recursion of order five. A
sample size of 300,000 seems to suffice for the MC method.

3. Results

The input variables to the pipe flow model are listed in Table 1. From these variables, the point
model predicts the liquid holdup (volume fraction) in the pipe and the pressure drop per meter. The input
variables are taken from 240 gas-liquid experiments in a horizontal pipe from the SINTEF Multiphase
Flow Laboratory. We compare the measured holdup and pressure drop with the results from the fluid
model. The presented approach is implemented in Python 3.6, and the uncertainty analysis is based
on the Python module Chaospy presented in Feinberg and Langtangen [35]. The uncertainty in each
experiment is computed with Monte Carlo (MC) simulations and polynomial chaos (PC) expansions.
The details on the uncertainty methods are given in Section 2.2.
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3.1. Holdup

Figure 4 shows the estimated average sensitivity for the holdup predictions. The sensitivities
quantify how sensitive the holdup predictions are to each input variable. In other words, it is the
contribution of the uncertainty in each input to the uncertainty in holdup predictions. The estimated
total sensitivity index and the estimated first-order index never differ more than 0.02. Thus, we use
first-order indices in plots and refer to them simply as sensitivities. In the left panel, we see the
averages weighted by the variance in each experiment. The right panel gives the plain averages with
standard errors. The combined effect of liquid viscosity, pipe diameter and gas density account for
ninety percent of the uncertainty in the holdup predictions. We have removed 7 out of the 240 cases
from the results because the polynomial chaos expansions for pressure drop do not converge with
polynomial order. The criteria for convergence is a change in estimates for the sensitivities, the output
mean and the output variance from one order to the next less than 0.01. For the output mean and
variance, we use the relative change. The criteria must be reached the latest at order 5. Table 3 contains
information about the pressure drop statistics for the seven cases that do not converge. The holdup
statistics actually change less than the threshold of 0.01, but we still exclude these results because we
treat the pressure drop and the holdup as a joint variable in the simulations. For each case, we show
the variable with the largest change from order 4 to 5 and the values of that variable for order 3, 4 and
5. All seven cases are on the border between two regimes, meaning that the model changes regime
based on the sampled measurement error. The regimes assigned by the flow model are listed in the
last column of the table.
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Figure 4. Holdup sensitivity estimates averaged over 233 experiments. Left: Weighted by the variance
in each experiment. Right: Plain averages with standard error bars.
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Table 3. Seven cases where the polynomial chaos expansions for pressure drop do not converge with
polynomial order. The first column denotes the variable with the maximal change in the last iteration
(absolute change for the sensitivities and relative change for the mean and the variance). The values of
that variable for polynomial orders 3-5 are given in the next columns, and the last column gives the
regime assigned by the flow model.

Variable Polynomial order Unit Flow Regime3 4 5
SD 0.9961 0.9518 0.9882 − Bubbly/slug

ST, µl 0.4814 0.5044 0.5215 − Slug/stratified
Var [∂p/∂x] 24.214 24.906 25.196 Pa2/m2 Slug/stratified
Var [∂p/∂x] 28.301 29.042 31.399 Pa2/m2 Slug/stratified
Var [∂p/∂x] 217.10 291.76 269.55 Pa2/m2 Slug/stratified
Var [∂p/∂x] 514.15 528.26 521.32 Pa2/m2 Slug/stratified
Var [∂p/∂x] 5833.6 6555.0 6980.1 Pa2/m2 Bubbly/slug

Figure 5 provides a more refined view of the holdup sensitivities. Each panel gives the histogram
of sensitivity to one input based on the 233 cases. We plot separate histograms for slug flow (blue) and
stratified flow (red). Furthermore, we compare MC (solid lines) to PC (dotted). There are only small
deviations between the two methods. Half of the input variables have sensitivities consistently under
2 %. The gas mass rate and density are moderately sensitive, while the diameter and liquid viscosity
are in some cases highly sensitive, but not for all cases.

We compare predicted holdup to measured holdup in Figure 6. Only cases with converging
prediction intervals from both MC and PC are included. In the left panel, each experiment is drawn
as a cross. The horizontal part represents measurement error, and the vertical part (much smaller)
represents prediction uncertainty. To be more precise, the crosses are the measured holdup with
two standard deviations either way and the predicted mean and interval from MC simulations. The
standard deviation in holdup measurements is set to 0.03. Furthermore, the diagonal line is where
measurements and predictions are equal, and cases where the uncertainty box does not cover this
line are highlighted. All cases with over-predicted holdup are observed slug flow. Conversely,
under-predicted cases are stratified. The 90 % intervals do not cover the observations in 20 (10.3 %) out
of 194 cases, while the 95 % intervals are off in 12 (11.4 %) out of 105 cases.

The right panels of Figure 6 show the relative difference in the PC predictions and MC predictions.
The mean holdup (solid line) is very similar, the upper quantile (dashed) is slightly larger, and the
lower quantile (dash-dotted) is slightly smaller with PC. Thus, the PC predictions are overall similar to
those of MC, but the intervals are wider.
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Figure 5. Frequency histograms of the holdup sensitivity estimates across 233 experiments. The
sensitivity distribution for one input variable is given in each panel. The experiments are categorized as
slug (blue) or stratified (red) and we compare estimates from Monte Carlo (solid lines) and PC (dotted).
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ȳ0.975
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Figure 6. Left: Predicted versus measured holdup for 194 experiments. The diagonal line is where the
coordinates are equal, and cases with a discrepancy between prediction and observation are highlighted.
The first axis gives measured value with two standard errors either way. The second axis is predicted
mean, lower quantile and upper quantile. Slug experiments are blue and stratified ones are red. Right:
The relative difference in PC predictions compared to MC predictions with respect to measured holdup.
Upper quantiles (dashed), means (solid) and lower quantiles (dash-dotted).
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3.2. Pressure drop

As for holdup, we summarize the pressure drop results in terms of sensitivity and prediction. The
averaged sensitivities are given in Figure 7. The weighted average is similar to the plain average. The
uncertainty in the diameter measurement is responsible for 90 percent of the uncertainty in pressure
drop predictions. The liquid viscosity also contributes, and in some low-variance cases, the pipe
inclination. Figure 8 shows the sensitivities by regime. The distributions of sensitivities are similar for
stratified flow and slug flow.
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Figure 7. Pressure drop sensitivity estimates averaged over 233 experiments. Left: Weighted by the
variance in each experiment. Right: Plain averages with standard error bars.

Pressure drop predictions are compared to measurements in Figure 9. Only converged cases are
included. The prediction uncertainty is much larger than the measurement uncertainty and increases
with the pressure drop. The model under-predicts the pressure drop for small values and over-predicts
for large values. The pressure drop predictions are much less accurate than the holdup predictions.
The 90 % intervals are off in 126 (64.9 %) out of 194 cases, while the 95 % intervals are off in 62 (59.0 %)
out of 105 cases.
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Figure 8. Frequency histograms of the pressure drop sensitivity estimates across 233 experiments. The
sensitivity distribution for one input variable is given in each panel. The experiments are categorized
as slug (blue) or stratified (red), and we compare estimates from Monte Carlo (solid lines) and PC
(dotted).
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ỹ0.95−ȳ0.95
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Ȳ
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Figure 9. Left: Predicted versus measured pressure drop for 194 experiments. The diagonal line is
where the coordinates are equal. The first axis gives measured value with two standard errors either
way. The second axis is predicted mean, lower quantile and upper quantile. Slug experiments are blue,
and stratified ones are red. Right: The relative difference in PC predictions compared to MC predictions
with respect to measured pressure drop. Upper quantiles (dashed), means (solid) and lower quantiles
(dash-dotted).
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3.3. Computational cost

The computational cost of the Monte Carlo simulations is mainly from evaluating the model
many times. The polynomial chaos expansion requires fewer model evaluations but also involves
large regressions to obtain expansion coefficients. In Figure 10, the computation time (left) and number
of model evaluations (right) required for convergence are compared between MC and PC. The colors
represent the criteria used for convergence. Blue is only convergence in sensitivities while orange
and green is the cost if we also want convergence in prediction intervals on confidence level 90 % and
95 %, respectively. All cases converge for MC while some do not for PC. The number of cases without
convergence is given as an entry on the right hand side. Notice the different scales on the axes for MC
and PC.

The computation time is obtained from timing python scripts on the Norwegian HPC
infrastructure. We run one MC script and one PC script for each of the 240 cases for each of the
three convergence criteria. We terminate each uncertainty analysis at convergence or after 15 hours.
Thus, the maximum total computation time is 2 · 240 · 3 · 15 h = 900 days. However, because we can
run hundreds of scripts in parallel and many cases finish soon, the results are available after one day.
We have also implemented the option of parallel evaluations of the model within each script, but chose
serial evaluation for this comparison.
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Figure 10. Frequency histogram of computational cost across 240 experiments. Each color is one type
of simulation criterion, namely only convergence in sensitivities (blue) or also 90 % prediction intervals
(orange) or 95 % (green). The number of cases that did not converge is given as an entry on the right.
Left: Computation time. Right: Number of model evaluations.

The computation time is obtained from timing python scripts on the Norwegian HPC
infrastructure. We run one MC script and one PC script for each of the 240 cases for each of the
three convergence criteria. We terminate each uncertainty analysis at convergence or after 15 hours.
Thus, the maximum total computation time is 2 · 240 · 3 · 15 h = 900 days. However, because we can

Figure 10. Cont.
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The computation time is obtained from timing python scripts on the Norwegian HPC
infrastructure. We run one MC script and one PC script for each of the 240 cases for each of the
three convergence criteria. We terminate each uncertainty analysis at convergence or after 15 hours.
Thus, the maximum total computation time is 2 · 240 · 3 · 15 h = 900 days. However, because we can
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(orange) or 95 % (green). The number of cases that did not converge is given as an entry on the right.
Left: Computation time. Right: Number of model evaluations.

4. Discussion

The sensitivity estimates are similar using Monte Carlo or polynomial chaos. The averages ASi
gives the clearest picture as they measure how much uncertainty each input brings to the output
estimates across all cases. From the first panels of Figures 4 and 7, we see that the pipe diameter and
liquid viscosity are important for both pressure drop and holdup, while the gas mass rate, gas density
and pipe inclination only matters for the holdup estimates. We can utilize the sensitivity indices
for efficiently reducing the uncertainty in the output estimates. The focus should be on reducing
the measurement error of the most sensitive variables; in this case, the pipe diameter and the liquid
viscosity. Reducing uncertainty in measurements of these variables will efficiently improve predictions.
Keep in mind that sensitivity indices are not general but depend on the flow conditions. See Smith
et al. [12] for a description of the experiments. The results can not directly be extrapolated to different
experiments. A new analysis is required, but the methods described in Section 2 may be applied.

Also note that because first-order and total indices are similar, there are no decisive uncertainty
interactions. Furthermore, we cannot conclude that the flow regime is important for sensitivity
estimates.

The sensitivities are similar across each regime. However, the moments of the polynomial chaos
expansions do not converge with order for some cases on the boundary between regimes. Two cases
are on the boundary bubbly/slug and neither converge with PC. Among 24 cases on the boundary
slug/stratified, five cases do not converge with PC. Thus, the current implementation of PC expansions
is unreliable on the regime boundaries. The expansions do not capture the behavior of the flow model
well on the boundaries because the model is not smooth there. Adding higher-order terms to the
expansion would make the expansion better resemble non-smooth behavior, but this is not immediately
possible due to computational expense. It is possible to construct high-order approximations with low
complexity by applying variable selection, but this approach is less applicable.
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We have also explored the technical details in the uncertainty computations, specifically the
performance of Monte Carlo simulations compared to that of polynomial chaos methods. For the fluid
model in question, we clearly prefer MC because this method provides uncertainty estimates for all
cases, and it does so in the least amount of time. In contrast, PC fails in many cases and has a larger
computation cost. The strength of PC lies in the low number of required model evaluations. Compared
to MC, polynomial chaos is likely to perform better if the fluid model required more time for each
evaluation.

We have compared measured holdup with predicted holdup accounting for uncertainty in both.
The equivalent comparison was applied to the pressure drop. The holdup prediction matches the
measured values well. We can observe that over-predicted cases are slug flow and under-predicted
cases are stratified. The predictions of pressure drops are less accurate, with under-prediction for
small values and over-prediction for large pressure drops. There is a clear bias in the estimates, which
suggests there are physics that are not captured by the model. The authors of Smith et al. [36] pointed to
the over-prediction of the slug velocity variable C0. The claim is supported by follow-up experiments,
which they discuss in their Section 3.4.

In summary, estimates for sensitivities and output predictions using MC are similar to those of PC,
and the pipe diameter and the liquid viscosity have the largest sensitivity indices. The Monte Carlo
method is preferred because it is more robust and requires less time. This conclusion applies to the
flow model used and the implementation of each uncertainty method. The uncertainty analysis also
provides evidence that holdup predictions are accurate, while pressure drop predictions are biased.

4.1. Future research

We have seen that half of the input variables contribute less than 2 % to the output uncertainty in
all cases. For polynomial chaos, it is possible to construct the polynomial approximation by attempting
to prioritize the important variables. One idea is to iteratively introduce higher order polynomials in
significant variables. This way, we can reach a sufficiently high polynomial order without introducing
too many regressors.

Applying the methods of Hoyer et al. [5] to create probability distributions for closure laws will
make the analysis of the uncertainty in the flow model more complete. Currently, the closure laws are
treated as known. We think it is possible to tune the closure law distributions by comparing the output
predictions with measurements. An applicable tuning method is the minimum continuous ranked
probability score (CRPS) estimation, as demonstrated in Gneiting et al. [37].
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Abstract

A high degree of repeatability is most often an underlying assumption for re-
search and development based on multiphase flow experiments. In this paper
repeatability in multiphase flow experiments are studied through an experimen-
tal campaign with 28 replicates for 11 unique settings.

The experiments were conducted in a flow loop with multiple injections of
oil, water and air. A high degree of repeatability was found, with relative repli-
cate deviations in volume flow rates and pressure drops of 0.1 % in magnitude.
Further, several potential causes of replicate deviations were studied, and firmer
control of temperature of the inflow fluids is proposed as a means to improve
repeatability in volume flow rates and pressure.

We conclude that for practical use, the presented category of multiphase
experiments sufficiently meets underlying repeatability assumptions.

Keywords: multiphase flow, repeatability, uncertainty, pipe flow

1. Introduction

Multiphase flow in pipelines occur in many industrial applications and is
especially important in the oil and gas industry [1, 2, 3, 4]. Challenges of multi-
phase flow in pipes or channels include how the distribution of the phases in the
cross section depends on the inflow rates, operational conditions, and thermo-
dynamic state, leading to different multiphase flow regimes. With that in mind,
models and simulators for multiphase flow in pipelines play important roles in
hydrocarbon production, both during the field development and planning stage,
and to ensure favorable flow conditions in the short- and long-term operation of
pipelines. [5, 6]. Laboratory experiments support design and operation of field
pipelines, either through tuning of simulator, calibration of experiments or oth-
erwise representing the full-scale flow. Consequently, firm control and precision
in the laboratory setting is essential for valid transfer to industry applications.

The development of models and simulators for multiphase flow in pipelines
requires extensive high quality experimental data to cover a large span of the

Preprint submitted to International Journal of Multiphase Flow



possible flow conditions may occur in field in practice [7]. In multiphase exper-
iments it is common not to repeat an experiment for a given setting, or to have
only a few repeated experiments for some settings in an experimental campaign
[8, 9, 10, 11]. This practice relies on an implicit assumption that performing the
same experiment will give the same, or very similar, outcomes for the quantities
of interest.

Repeatability is defined as measurement precision under conditions that in-
clude the same measurement procedure, same operators, same measuring sys-
tem, same operating conditions and same location, and replicate measurements
on the same or similar objects over a short period of time [12]. In this paper
the aim is to study repeatability in a multiphase flow loop. To our knowledge
there are no previous large studies of the implicit assumption of high degree of
repeatability in multiphase pipe flow experiments.

We present highly unique experiments in a fixed multiphase pipe flow loop.
A test matrix of 11 unique settings was replicated up to 28 times over the course
of seventeen days. The experiments originally formed the foundation of a per-
formance study of independent non-intrusive sensors where it was essential to
provide identical volume flow rates of oil, water and air for each distinct setting
repeatedly. The resulting data offered a rare opportunity to study repeatability
of multiphase pipe flow experiments given instrumentation uncertainty, opera-
tional conditions and inflow conditions. In the described setup the mass flow
rates where under automated regulation whereas pressure and temperature was
not, apart from control of ambient temperature in the laboratory hall. Changes
in fluid properties over time was also a factor to consider, especially for air and
tap water.

The pipe inlet and outlet pressures along with volume flow rates were the
primary quantities of interest. The main tasks were to (1) quantify repeata-
bility of pressure measurements, (2) quantify repeatability of volume flow rates
and (3) study possible causes of variation in pressure and volume flow rates
through statistical modeling, using measurements of temperature, density, flow
and pressure at multiple locations.

2. Experiments

The experiments were conducted at the SINTEF Multiphase Flow Labora-
tory. See Figure 1 for a simplified drawing of the flow loop setup. The +2°
inclined flow loop steel pipe test section consisted of

• a 49 m long fully welded inner pipe of inner/outer diameter 127.1/141.3 mm,
with a 4.5 m long specially designed central inner pipe of inner/outer diam-
eter 87.3/114.3 mm fitted to the main inner pipe by 127 mm long reducers;
the central inner pipe had a perforated section consisting of 22 axial slits
of dimensions 6.5×82.5 mm covering the pipe circumference to allow fluid
flow into the base pipe from an external annular space;
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Figure 1: The laboratory setup. A pipe of length 49m encases another pipe. The pipes are
coaxial with inclination of 2° upward. The diameters are amplified 20 times in the drawing
compared to length. The main flow runs through the inner pipe. Secondary flow is injected
into the annulus and enters the inner pipe through a perforation in the center. The flow
components are oil (1, 2, 3, 4, 5), water (6) and air (7). During each cycle, the fluids mix and
separate (9). The circles are meters for mass rate, density and/or temperature. The black
diamonds are pressure meters, where p2, p3, p4 and p5 are annulus pressures.

Table 1: Fluid system. Physical properties at 20 °C.

Fluid Viscosity
[
Pa s

]
Density

[
kg/m3

]
Exxsol D60 1.39 · 10−3 786
Tap water 1.00 · 10−3 1000
Air 1.83 · 10−5 1.204

• a 49 m long flanged outer pipe of inner/outer diameter 215.1/219.1 mm
covering the inner pipe and defining an annular space between the coaxial
inner and outer pipes; and

• 4 injections points at different axial locations along the test section for
injection of fluids into the annular space. Upstream each injection point,
a skid with regulation valves and flow meters controlled the mass inflow
rates.

The box in Figure 1 labeled T9 represents a separation process, where fluids
entered on the right-hand side. The upwards arrow represents air release, the
line to 1 is oil and the line to 6 is water. The oil flow branched into the main
flow 1 and the injection points 2, 3, 4 and 5. Air from 7 and water from 6
also entered at injection point 3. Exxsol D60 was used for the oil. The fluid
properties at 20 °C are listed in Table 1.

2.1. Variables
The experiments were monitored by non-intrusive instruments, and their lo-

cations are shown Figure 1. The black diamonds correspond to pressure meters,
where p0 is inlet, p1 is outlet, and p2, p3, p4 and p5 are on the annulus. The
remaining instruments are drawn as circles, numbered 1–9. Instruments ṁ4 and
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Table 2: Measured variables with symbols, units and std. deviations of measurement errors.

Variable Symbol Unit Standard deviation (σ)
Pressure p Pa/m p · 0.09 %
Air mass rate ṁ7 kg/s ṁ7 · 1.5 %
Liquid mass rate ṁ kg/s ṁ · 0.3 %
Liquid density ρ kg/m3 1 kg/m3

Temperature T °C 0.21 °C

ṁ7 are mass rate meters. Locations 1, 2, 3, 5 and 6 each have meters for mass
rate, density and temperature. Instrument T8 is the outlet thermometer and T9
is the separator thermometer.

All the measured variables with symbols and units are listed in Table 2. The
measurements were associated with some error, with presumed standard devia-
tions σ given in the last column of the table. In short, the standard deviations
are quantified by the laboratory staff according to product specifications and
experiments [13]. The errors represent deviation from the physical value [14]. In
addition, the physical values fluctuated slightly over a logging time of 5–10 min
despite verification of a virtually steady state. Additional details on instrumen-
tation are given in Appendix A.

2.2. Experimental design
The mass rates at locations 1–7 were kept close to target levels by closed-loop

control. Henceforth, one combination of target mass rates is called a setting.
Eleven settings were used as shown in Table 3, each replicated up to 28 times.
The column labeled ‘Oil 1’ gives the target main flow, which was alike for all
settings. The remaining columns give the rates of injection into the annulus,
where ‘−’ corresponds to no injection at the given location. Additionally, setting
4 included 0.014 kg/m3 sand and settings 5–7 included 0.057 kg/m3 sand from
annulus, but any impact from sand was not studied in this work.

On February 11, 2020 setting 1 was initialized. Steady-state was achieved
after a couple of minutes, and then one set of measurements were made. Next,
setting 2 was initialized, steady-state achieved and measurements made. The
process continued according to numbering, and eventually setting 11 was mea-
sured. Thus far, one replicate of each setting was obtained. Again setting 1
was initialized, followed by the same steps as above. The process lasted until
28 replicates of each setting was obtained, at February 28, 2020. Experiments
disrupted by any process deviation were pruned. Certain process deviations
were deliberate choices to study other mass rates, but details are not disclosed
here.

In effect, the flow loop was reset between each run of the same setting. It
is then correct to call each run a replicate rather than a repeat [15]. Yet, it
is customary to use the term repeatability for the closeness of replicates, as
explained in Section 3.

In terms of notation, let i = 1, 2, . . . , 11 be the setting index and let j =
1, 2, . . . ni be the replicate index. Furthermore, index k refers to location as
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Table 3: Target mass rates of the experimental design. Eleven settings indexed in the first
column. The number of replicates for each setting is given in column two. Columns 3–8 gives
the mass rates in kg/s at each location. The value ‘−’ corresponds to zero.

Setting # replicates Oil 1 Oil 2 Oil 3 Oil 4 Oil 5 Water (6) Air (7)
1 28 4.318 − − − − − −
2 28 4.318 0.720 0.720 − 0.720 − −
3 26 4.318 0.720 2.159 − 0.720 − −
4 26 4.318 0.720 0.720 − 0.720 − −
5 27 4.318 0.720 0.720 − 0.720 − −
6 26 4.318 0.720 0.720 − 0.720 − −
7 28 4.318 0.720 0.720 0.720 0.720 − −
8 26 4.318 − − − − 2.746 −
9 23 4.318 − 1.079 − − 1.373 −
10 28 4.318 − − − − 1.373 −
11 28 4.318 0.720 0.720 0.720 0.720 − 0.02087

given in Figure 1. Observations are written as xijk where x is pressure (p),
mass rate (ṁ), density (ρ) or temperature (T ).

3. Methodology

The International vocabulary of metrology [12] defines several characteristics
of replicated measurements, such as precision, accuracy and repeatability, which
are quoted in Sections 3.1 to 3.3. In effect, these definitions agree with those of
the International Organization for Standardization [16].

3.1. Measurement precision
Measurement precision is defined as “closeness of agreement between indica-

tions or measured quantity values obtained by replicate measurements on the
same or similar objects under specified conditions”. In our case, replicates refer
to measurements j = 1, 2, . . . , ni of a fixed setting i and location k. The average
over replicates is

x̄ik =
1

ni

ni∑
j=1

xijk. (1)

The measurement precision is in this work quantified as the relative deviation
in each replicate from the sample mean, which is

δxijk =
xijk − x̄ik

x̄ik
. (2)

3.2. Measurement accuracy
Measurement accuracy is defined as “closeness of agreement between a mea-

sured quantity value and a true quantity value of a measurand”. The target
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mass rates ṁ0
ik given in Table 3 are conventional quantity values, which are

canonical estimates for true quantity values [12, Section 2.12]. Measurement
accuracy of mass rates is here defined by replacing the sample mean in (2) by
m0

ik, which gives

δ0ṁijk =
ṁijk − ṁ0

ik

ṁ0
ik

. (3)

3.3. Repeatability
Repeatability is measurement precision, see (2), under conditions that in-

clude “the same measurement procedure, same operators, same measuring sys-
tem, same operating conditions and same location, and replicate measurements
on the same or similar objects over a short period of time”.

3.4. Liquid density model
Liquids expands with temperature. The rate of volume change due to tem-

perature alone is
dV

dT
= αkV, (4)

where V is the volume of the fluid and αk is the thermal expansion coeffi-
cient [17]. For our purpose (4) was represented in terms of densities and lin-
earized about a temperature T ∗. It was then necessary to assume αk constant in
temperature. The result was a linear regression model for density as a function
of temperature,

dk(T ) = âk +
b̂k

1 + αk(T − T ∗) , (5)

where âk and b̂k were coefficients obtained from ordinary least squares [18] on
observations Tijk and ρijk at settings K defined in Appendix B.3. Predictions
from (5) are denoted ρ̂ijk = dk(Tijk). The residuals ε̂ijk = ρijk − ρ̂ijk were the
part of the density observations not modeled by temperature. Furthermore, the
fraction of variance in density explained by temperature at location k was

r2k = 1−
∑

i∈K
∑ni

j=1 ε̂
2
ijk∑

i∈K
∑ni

j=1(ρijk − ρ̄k)2
= r2(ρijk, ρ̂ijk), (6)

with r from (B.4) and ρ̄k from (B.2). Conversely, 1 − r2k was the fraction of
variance in density from other sources than temperature, according to the fitted
regression model.

3.5. Air density model
The air was assumed dry with a specific gas constant of Rair = 287.058 J/kg·

K. According to the ideal gas law, density is pressure p divided by temperature
T and Rair,

d7(T, p) =
p

RairT
. (7)

The air density was not measured directly, only inferred from (7).
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4. Results

4.1. Pressure measurements
Figure 1 shows the placement of pressure meters. Figure 2 gives all mea-

surements for inlet pressure p0 (crosses) and outlet pressure p1 (circles) for all
settings (frames) i = 1, 2, . . . , 11. The vertical axes is pressure in kilopascal and
the horizontal axes is time in days, from February 11 to 28 of year 2020. The
horizontal axes are all identical. All vertical axes are of the same scale in order
to provide visual comparisons of absolute replicate deviations.

Relative deviations in inlet pressure, outlet pressure and the pressure drop
p1 − p0 was computed from (2) and is plotted in Figure 3. The vertical axis
is the number of observations that falls in each bin. The black curves are the
distributions for each setting estimated by (B.1). The axes for the density curves
are not included because the sole message is shape. The vertical dashed lines are
±1 relative standard deviation in measurements, given in Table 2. Because inlet
and outlet pressure had σ = 0.09 %, pressure drop had σ =

√
2 · 0.09 % ≈ 0.13 %.

The errors in instruments were treated as independent of each other. Figure 4
gives the distributions of relative deviations in annulus pressures p2, p3, p4 and
p5. All replicates of all settings are used for Figures 3 and 4.

4.2. Deviations in volume flow rate
Volume flow rates dictates flow regime and is defined simply as Q = ṁ/ρ.

Volume flow rate is proportional to mass flow rate, and inversely proportional
to density. Note that Gaussian distributions for measurements of ṁ and ρ
implicates a Cauchy distribution for the volume flow rate [19]. The Cauchy
distribution has no defined mean or variance. Consequently, it is impossible to
directly translate the measurement error of mass flow rate and density to the
volume flow rate.

The density was not measured at location 4, and ρ1 was used as a proxy. The
air density was not measured directly either, but inferred from (7). Air mixed
with oil and was expected be at a temperature close to T3 on annulus entry. Fur-
thermore, air pressure was not measured at injection but instead approximated
as p4. In summary the reported injected air density was d7(Tij3, pij4).

The outlet volume rate was the sum of oil, water and air volume rates.
Densities were not measured directly at the outlet, but both temperature T8
and pressure p1 were available. With densities from (5) and (7), the outlet
volume rate was Qij8 =

∑
7
k=1 ṁijk/dk(Tij8, pij1), where d1 was used for all oil

density models d1, d2, . . . , d5.
The relative deviations in replicate volume flow rates at locations 1–8 were

computed from (2) and are presented in Figure 5. Additionally, the outlet
volume rates of oil, water and air were computed separately and the deviations
in each are given in the bottom row of Figure 5.
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Figure 3: Relative deviations in pressure from the setting averages, for inlet (left), outlet
(middle) and difference (right). The frequency histogram gives the distribution of relative
deviations. The black curves are fitted distributions for each setting (scaled to frame size). The
dashed vertical lines represent the measurement standard deviations of the pressure meters.

4.3. Deviations in mass flow rate
Recall that each experiment was run with certain target mass rates, which

was automatically regulated. Relative deviations in mass flow rates computed
from (3) are plotted in Figure 6. For each location (frame), the histogram gives
the distribution of relative errors over all settings and replicates. Naturally,
only settings with flow at the given location were considered. An overview of
the settings is given in Table 3.

4.4. Temperature series
The fluid temperatures were 15–19 °C for all experiments. The fluids ex-

panded with temperature, and consequently the volume flow rate increased.
Strict control of temperature was not imposed on the experiments, and fluctua-
tions over time were expected. Figure 7 gives all 294 measurements of tempera-
tures T1 (yellow crosses) and T8 (purple circles). Location 1 and 8 are chosen as
examples because they were relevant for all settings and relates to inlet and out-
let. The horizontal axis represent time in days, with resolution of one minute.
The trend each day was increasing temperature, on average 0.016 °C between
subsequent measurements. However, 12 measurements (black) were clear excep-
tions to the trend, being at least 0.100 °C higher than the next measurement.

4.5. Density
Temperature was expected to be the main contributor to variation in density.

The change in density was aptly modeled as locally linear in temperature as
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Figure 7: Temperature (°C) for all experiments at location 1 (yellow crosses) and location 8
(purple circles). The horizontal axis gives the time of each measurement. Subsequent mea-
surements are in most cases about ten minutes apart. Temperatures were mostly increasing
throughout each day, and clear exceptions are drawn in black.

explained in Section 3.4. Linear models were fitted to oil (k = 1) and water
(k = 6), where all measurements of temperature were within 1.5 °C of T ∗ =
17.5 °C. Thermal expansion coefficients were taken as α1 = 7.64 ·10−4 °C−1 and
α6 = 2.14 · 10−4 °C−1. For clarity units are left out in the fitted models given
by

d1(T ) = −662.16 +
1450.30

1 + 7.64 · 10−4(T − 17.5)
(8a)

and

d6(T ) = −99.56 +
1095.88

1 + 2.14 · 10−4(T − 17.5)
. (8b)

The fractions of explained variance were r21 = 99.3 % and r26 = 57.7 %. The left
panels of Figure 8 show observations (circles) and the fitted models (black lines).
The vertical axes are densities, and the horizontal axes are the temperature
regressor (left) and the residuals (right). The residuals of the regressions are
plotted against the fitted values and the vertical gray lines marks the value of
zero.

5. Discussion

We have analyzed experiments in a flow loop with coaxial pipes and multiple
injection points with the purpose of quantifying repeatability. Repeatability en-
tails the ability to control the state of the flow loop, which is a desirable quality.
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The experiments were previously used to compare sensors, and the compari-
son benefitted from precision in volume rates and pressure across replicates.
Precision in explanatory variables are also essential for tasks such as prediction.

The first results presented in Section 4 regarded repeatability of pressure
measurements. As shown in Figure 3, inlet pressure deviated less than 1 %
relative to the sample mean, and mainly less than 0.1 %. The outlet pressure
deviated less than 5 %, and mainly less than 1 %. The pressure drop p1 − p0
was of the same order of magnitude as the inlet pressure. All three distributions
were bell-shaped and close to symmetric. The entropy of such distributions is
large [20], which is appropriate for random errors.

The second panel of Figure 3 gives the distribution for each setting as a
black curve. Setting 11 had the largest deviations δpij1, followed by settings 9,
10 and 7. These were also among the most complex settings, as seen in Table 3.
The large deviations in setting 11 were likely due to the introduction of air into
the flow loop. Air flow in this study was more unstable than liquids due to
compressibility effects, and air also affected the multiphasic fluid system in a
complex manner which may have lead to a higher degree of variance compared
to liquid-only flows. Figure 4 gives the distributions of relative deviations in an-
nulus pressures, which had higher variances than the inlet and outlet pressures.
The positions of the annulus pressure meters are marked in Figure 1. Clearly,
the pressures in the upper part of the annulus were more variable, up to about
30 % relative deviations. Setting 11 was least variable and is represented by the
narrowest probability density curves in distributions for δpij4 and δpij5. There
was possibly a fluctuating mixture of air and liquid in the upper annulus for all
settings except setting 11 where air constantly occupied the upper annulus.

It is instructive to study the causes of variation in pressure, starting with
volume flow rates. Relative deviations are given in Figure 5. The water rate
was least variable, with most deviations smaller than 0.02 % and the largest
deviations at 0.06 %. The deviations in oil inlet rates were about twice that.
The deviations in injection rates Q2 through Q5 were less than 0.25 % and
mainly within 0.10 %. The inlet air rates were more variable and deviated up to
0.80 %. The behaviour of the different fluids was reflected at the outlet. Both
oil and water have similar deviations at outlet and inlet, while water deviates
more at the outlet, up to 5 %. Volume flow rates impact pressure drop but the
exact relation is complex for the flow loop considered. In the case of high flow
rates, it is sometimes feasible to model pressure drop as a linear combination of
the squared volume flow rates [21].

Volume flow rates were computed as mass flow rates divided by density.
The mass rates deviations were well within one standard measurement errors of
0.3 % and 1.5 %. Of course, measurement errors also factored into the estimated
relative deviations. In fact, the insight gained by comparing replicate deviations
and measurement error is not clear. It is important to acknowledge that replicate
deviations and measurement error are two distinct contributors to uncertainty
about the physical values of the system variables. In our case, it seems that the
prescribed measurement errors in the mass flow rates dominated the replicate
deviations.
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Figure 7 shows that temperature increased over the course of a day, and
surely the density decreased accordingly. The fitted linear models in Figure 8
seemed appropriate and the residuals had no clear dependence on fitted densi-
ties. Moreover, temperature was estimated to explain 99.3 % of the variance in
oil density and 57.7 % of the variation in water density. Most of the remaining
variation in density is expected to be contamination of oil in water and vice
versa. The separator did not perfectly separate oil and water, especially at high
flow rates. Pressure would naturally also affect density to some extent.

Repeatability conditions is defined in 3.3 as a list of several requirements.
Surely the replicates were conducted under the same measurement procedure,
operators, measuring system and location, and describing similar objects. It
is less obvious whether the operating conditions were sufficiently similar and
whether the time span was short. It does not appear feasible to perform all
experiments in significantly less time while also satisfying the remaining re-
peatability conditions. The temperature was not strictly controlled, yet no Tk
spanned more than 2 °C. Each time a new setting was imposed on the flow loop,
only a single replicate was produced, before changing to a different setting. The
procedure was meticulous but denied bias from confounders.

With similar conditions across replicates, repeatability translates to mea-
surement precision, which for this purpose is quantified as relative deviations
in replicates given by (2). Distributions of relative deviations are provided in
Figures 3 to 6. Small deviations equal high repeatability which expresses the
ability to impose specific conditions on the flow loop.

6. Conclusions

We have presented unique replicated experiments in a flow loop at the
SINTEF Multiphase Flow Laboratory. Oil made up the main flow, but there
were injections of oil, water and air through an annulus pipe surrounding the
main test section. Eleven settings of the flow loop were run, ranging in com-
plexity from only main flow to flow with several injections. Each setting was
replicated up to 28 times. The conditions across replicates were compared and
deemed sufficiently similar for a study of repeatability.

Inlet pressure, outlet pressure, pressure drop and volume flow rates were the
quantities of interest. The relative deviations of all quantities of interest were
mainly much less than 1 %. Effectively, the experiments were highly repeatable.
In other words, the system for controlling the flow loop was capable of closely
replicating select conditions.

Temperature explained 99.3 % of the variance in oil density and 57.7 % of the
variance in water density. The density fluctuations directly changed the volume
flow rates which in turn influenced the pressure drop. Temperature control was
not a requirement in the original industrial test campaign from which the data
was shared. Significantly higher repeatability is expected with strict control of
the flow loop temperature.

The replicate deviations were small both in comparison to deviation across
settings and measurement error. The high degree of repeatability observed is
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inevitably specific to the experimental setup. Still, it appears that satisfactory
repeatability is achievable in multiphase experiments.
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Appendix A. Instrumentation

The instruments used for measurements are listed in Table A.4. The mea-
sured variables are given in the first column. Note that some instruments mea-
sure multiple variables. The position of the instruments along the test section
are given in the second column followed by a description in the last column.
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Table A.4: List of measuring instruments with variables measured in the first column, position
along the test section in meters in the second column and product description in the last
column.

Variables Position [m] Instrument description
p0 00.00 Fuji differential pressure transmitter
p1 52.00 Fuji differential pressure transmitter
p2 00.20 FUJI FCX-A/C II DP Transmitter
p3 16.30 Fuji differential pressure transmitter
p4 32.40 Fuji pressure transmitter
p5 48.40 Fuji pressure transmitter

ṁ1, ρ1 00.00 MicroMotion CMF200M elite series Coriolis meter
T1 00.00 Inor Meso-HX temp transmitter with PT100 ele-

ment, 3 mm edge and 1⁄2 inch tube clamp fitting
ṁ2, ρ2, T2 11.60 Krohne Optimass 1400C S40
ṁ3, ρ3, T3 23.60 Krohne Optimass 1400C S40

ṁ4 27.60 Krohne Optimass 1400C S40
ṁ5, ρ5, T5 37.60 Krohne Optimass 1400C S40
ṁ6, ρ6, T6 23.60 Krohne Optimass 1400C S40

ṁ7 23.60 Air flow meter EE771-CH1N025DKA1/RI6IMA
P/N: S10757 S/N: 1702160000234C

T8 52.00 PyroControl temperature transmitter rebuilt with
PR5335D PT100

T9 00.00 PyroControl temperature transmitter
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Table B.5: Means and standard deviations of pressure measurements in kPa. Values are given
separately for each setting (rows 1–11) and overall (last row).

Set. p0 p1 p2 p3 p4 p5
Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂

1 15.650 0.0307 0.835 0.00436 16.542 0.0963 11.152 0.0736 6.813 0.535 6.150 0.978
2 16.663 0.0179 0.838 0.00532 17.607 0.0726 12.236 0.0700 7.808 0.439 7.138 0.912
3 17.637 0.0197 0.830 0.00897 18.590 0.0659 13.220 0.0663 8.758 0.422 8.082 0.923
4 16.675 0.0149 0.837 0.00590 17.611 0.0732 12.241 0.0709 7.815 0.428 7.153 0.920
5 16.679 0.0146 0.837 0.00494 17.612 0.0708 12.241 0.0688 7.842 0.446 7.199 0.936
6 16.676 0.0153 0.837 0.00519 17.609 0.0687 12.237 0.0669 7.802 0.416 7.133 0.906
7 17.123 0.0177 0.820 0.01510 18.102 0.0621 12.727 0.0735 8.232 0.394 7.552 0.868
8 18.457 0.0331 0.687 0.00484 19.574 0.0376 14.183 0.0402 9.437 0.335 8.701 0.844
9 17.909 0.0228 0.701 0.01600 19.037 0.0346 13.642 0.0343 8.958 0.349 8.244 0.857
10 17.811 0.0125 0.699 0.01570 18.899 0.0185 13.526 0.0213 8.853 0.328 8.114 0.820
11 16.923 0.0322 0.829 0.02000 17.912 0.0244 12.527 0.0299 9.950 0.027 9.879 0.025
All 17.090 0.7480 0.797 0.06160 17.565 0.8190 12.700 0.8170 8.378 0.948 7.752 1.280

Appendix B. Sample statistics

Appendix B.1. Kernel density estimation
The distribution of relative deviations in replicates δxijk for j = 1, 2, . . . , ni

was estimated as a Gaussian kernel with Scott’s rule for bandwidth. Explicitly,

f̂(z) =
n5/4
i√
2π

ni∑
j=1

exp
(
− 1

2n
2/5
i (z − δxijk)2

)
. (B.1)

Appendix B.2. Mean and standard deviation
Let xijk be a measurement from an instrument, where x is a physical quan-

tity, k is location, i is setting and j is replicate. Furthermore, let K = {i :
ṁ0

ik > 0} be the settings with flow at location k. The sample mean and unbi-
ased sample standard deviation are

x̄k =
1∑

i∈K
ni

∑
i∈K

ni∑
j=1

xijk (B.2)

and

σ̂(xk) =

√√√√ 1∑
i∈K

ni − 1

∑
i∈K

ni∑
j=1

(xijk − x̄k)
2
, (B.3)

taken over all replicates j and settings i ∈ K. Tables B.5 to B.7 lists the
means and deviations of pressures, densities and temperatures for each setting
separately and for all settings combined.
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Table B.6: Means and standard deviations of density measurements in kg/m3 at locations 1,
2, 3, 5 and 6. Values are given separately for each setting (rows 1–11) and overall (last row).

Setting ρ1 ρ2 ρ3 ρ5 ρ6
Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂

1 788.119 0.254
2 788.181 0.249 782.763 0.310 783.238 0.273 781.888 0.609
3 788.173 0.257 782.611 0.277 783.156 0.267 781.706 0.604
4 788.166 0.252 782.657 0.265 783.197 0.261 781.920 0.598
5 788.142 0.255 782.612 0.271 783.164 0.264 781.851 0.595
6 788.137 0.252 782.600 0.259 783.155 0.257 781.848 0.567
7 788.105 0.252 782.539 0.257 783.088 0.255 781.725 0.542
8 788.087 0.254 996.356 0.0569
9 788.144 0.242 783.176 0.243 996.290 0.0528
10 788.141 0.242 996.317 0.0565
11 788.154 0.239 782.551 0.230 783.095 0.235 781.631 0.483
All 788.141 0.247 782.619 0.273 783.158 0.257 781.795 0.572 996.212 0.203

Table B.7: Means and standard deviations of temperature measurements in °C at locations
1, 2, 3, 5, 6, 8 and 9. Values are given separately for each setting (rows 1–11) and overall
(last row). Locations without flow are marked ‘−’. Air was only used at setting 11, with
temperature T7 of mean 18.96 °C and standard deviation 0.400 °C.

Set. T1 T2 T3 T5 T6 T8 T9
Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂ Mean σ̂

1 17.52 0.327 17.32 0.422 18.16 0.362
2 17.44 0.324 17.45 0.346 17.50 0.334 17.12 0.530 17.38 0.363 18.15 0.363
3 17.44 0.334 17.51 0.347 17.56 0.341 17.16 0.529 17.45 0.343 18.17 0.359
4 17.45 0.326 17.50 0.337 17.53 0.335 17.11 0.524 17.41 0.337 18.15 0.364
5 17.48 0.332 17.54 0.343 17.56 0.342 17.17 0.532 17.46 0.345 18.17 0.371
6 17.49 0.325 17.55 0.335 17.57 0.334 17.16 0.507 17.46 0.335 18.16 0.370
7 17.53 0.330 17.60 0.337 17.62 0.336 17.20 0.489 17.53 0.335 18.19 0.370
8 17.55 0.327 17.42 0.285 17.47 0.322 18.18 0.367
9 17.49 0.315 17.58 0.320 17.45 0.277 17.49 0.295 18.14 0.360
10 17.52 0.313 17.49 0.290 17.51 0.314 18.17 0.385
11 17.53 0.307 17.60 0.314 17.62 0.314 17.26 0.464 17.49 0.313 18.19 0.386
All 17.50 0.320 17.53 0.335 17.57 0.329 17.17 0.505 17.46 0.282 17.45 0.340 18.16 0.363
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Appendix B.3. Correlation coefficient
Let xijk and yijl be measurements from two instruments, where x and y are

physical quantities, k and l are locations, i is setting and j is replicate. The
joint linear variation in xijk and yijl can be estimated by the sample Pearson
correlation coefficient. Let L = {i : ṁ0

il > 0} be the settings with flow at
location l, and let M = K ∪ L. The correlation coefficient across all settings is

r(xk, yl) =

∑
i∈M

∑ni

j=1(xijk − x̄k)(yijl − ȳl)√∑
i∈M

∑ni

j=1(xijk − x̄k)2
√∑

i∈M
∑ni

j=1(yijl − ȳl)2
, (B.4)

with x̄k and ȳl from Section B.2. The correlation coefficient between instruments
succinctly pointed out physics of the system. The correlations between densities,
temperatures and mass flow rates were estimated from (B.4) and illustrated in
Figure B.9. Each square in the grid, gives the correlation between the variables
labeled on the axes. Values of larger magnitude than 0.6 is printed and the area
of each square scales with magnitude.

The estimated correlation between the total mass flow rate ṁ1+ṁ2+· · ·+ṁ7

and the pressure drop p1 − p0 was 0.54.
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Figure B.9: Correlation between variables. Each square gives the correlation between the
variables on the axes. Correlation larger than 0.6 in magnitude are printed. The areas of the
squares also represent magnitude.
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