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Abstract—Most work on left ventricle (LV) ultrasound image
segmentation using deep learning has focused on single-frame
segmentation of end-diastole (ED) and end-systole (ES) frames.
Using these neural network models on the entire cardiac cy-
cle often results in segmentation flickering and sudden large
segmentation errors. Neural networks that perform some form
of temporal reasoning is needed to solve these issues. In this
work, we have investigated the use of neural networks with
convolutional long short-term memory (ConvLSTM) layers for
real-time temporal coherent LV segmentation. A comparison on a
dataset of 174 apical 4-, 3- and 2-chamber ultrasound recordings
indicated that increasing the number of frames annotated from
the cardiac cycle improves temporal segmentation, while using
weighted moving average post processing can reduce segmen-
tation flickering, and using ConvLSTM layers reduces large
temporal errors considerably. The runtime of the ConvLSTM
segmentation network was 13 ms when used in a real-time
application for automatic ejection fraction.

I. INTRODUCTION

Deep neural networks (NNs) are state-of-the-art for left
ventricle (LV) segmentation [1]. However, most studies have
only trained and evaluated accuracy on end-diastole (ED)
and end-systole (ES) images, leaving the rest of the cardiac
cycle unstudied. We have studied the accuracy in the entire
cardiac cycle of NNs trained only on ED and ES frames
over several years and observed several temporal issues such
as: segmentation flickering in areas with low signal, incorrect
placement of the atrioventricular plane when the mitral valve is
open, and other sudden large errors in the segmentation. Auto-
matic echocardiography measurements such as LV volume and
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ejection fraction are very sensitive in terms of segmentation,
even small changes in the contour can impact the volume
significantly. Correct ejection fraction measurements are also
dependent on having a temporal coherent segmentation over
time from ED to ES, meaning that it follows the same physical
contour over time. We hypothesize that these temporal issues
occur because the NNs only process one image at a time and
thus have no memory.

There exist several segmentation methods for temporal
image data. The simplest approach is to provide some temporal
information as additional input to the NN. This can for
instance be the segmentation of the previous frame, and optical
flow information such as used in the MaskTrack method [2].
This approach however limits the memory to just the previous
frame. NNs with 3D convolutions have been used for temporal
LV segmentation [3]. 3D networks are quite heavy in terms of
parameters and runtime, and are harder to train. They also have
a memory limited to the number of frames sent to the network.
Due to these reasons, 3D NNs are not very suitable for real-
time use. Long short-term memory (LSTM) can be used to
create recurrent NNs. LSTM NNs can also be used in a stateful
manner, where the NN has a state, which is remembered for
each execution of the network. This makes them suitable for
real-time use because they can remember over many frames,
while still only processing one frame at a time. Still, the
standard LSTM layers are fully-connected and 1-dimensional,
and thus doesn’t fit well into the standard fully-convolutional
encoder-decoder segmentation architectures such as U-net.
Using them directly in a segmentation NN would lead to a
massive increase in parameters, and reduced inference speed
and 2D spatial locality. For this reason, the more efficient 2-
dimensional Convolutional LSTM (ConvLSTM) [4] layers are
better suited for segmentation.

In this work, we have studied how ConvLSTM layers can be
used to create real-time temporal coherent LV segmentation.



II. METHODS

A. Dataset and annotation

174 apical 4-, 3- and 2-chamber ultrasound recordings from
a Norwegian population study dataset (HUNT) were annotated
by an expert using Annotation Web [5]. To evaluate and train
on the full cardiac cycle instead of just ED and ES, seven
frames of a single cardiac cycle were annotated starting with
1 ED frame, 2 systole frames, 1 ES frame, 2 diastole frames,
and finally 1 ED frame. The endocardium, epicardium and left
atrium were annotated in a similar manner to the CAMUS
dataset [1]. ED and ES frames were selected as the frame
before mitral valve closure as recommended in [6].

B. Neural network architecture

The base NN architecture used in this study was the multi-
view fully-convolutional encoder-decoder network described
in [7]. This architecture has six levels and uses max pooling
in the encoder and 2 × 2 repeat upsampling in the decoder.
Two 3× 3 convolution layers are used at each level, together
with ReLU activation. The final layer uses softmax activation.
Network input is an ultrasound image of size 256 × 256
together with a binary value indicating if it is an apical 3-
chamber/long-axis view or not. The image pixel intensities is
normalized to a 0-1 range by dividing by 255. The output is
a map of same size as the input image, where each pixel is
classified as either LV, myocardium, left atrium or background.
This network has about 2 million parameters and was designed
for real-time use with a runtime of only a few milliseconds
on a modern GPU.

It is not clear where in a NN the ConvLSTMs layers should
be used. Thus, we have experimented using ConvLSTMs
layers in the encoder, the decoder, last layer and in the
bottleneck of the base NN. For each block with two 3 × 3
convolution layers in the base NN, the first layer was replaced
with a ConvLSTM layer with the same filter count and size.

C. Training and loss function

The base NN was trained with a Dice loss function. In
order to teach the temporal ConvLSTM NNs to create smooth
segmentations over time, we created a new temporal loss
function Ltemporal which simply measures the Dice score D
between two consecutive frames (t and t− 1):

Ltemporal =
1

T − 1

T−1∑
t=1

clip(D(yt, yt−1), c, 1.0)− c (1)

where clip is a function which clips all values below a
minimum value c to c. Since we know there is some movement
in the images for each pair of frames due to the beating heart,
we perform clipping with a threshold c = 0.01 in an attempt
to allow the segmentation to change a little without penalty.
The final loss was a linear combination of the Dice loss and
the temporal loss with weights 0.4 and 0.6 respectively.

For training of the temporal NNs, the annotations of the
seven frames of each US sequence were interpolated, to create
annotations for every frame in the cardiac cycle. This is a

potential source of error, since the interpolation is not able to
capture all the complexity of the beating heart.

Random augmentations were used during training to reduce
overfitting. The following augmentations were used:

• Gamma intensity transformation.
• Rotation - Maximum angle: 10 degrees.
• Gaussian shadows - Dark shadows applied to the image

at random locations and with random sizes.
• Depth - Cuts the image bottom randomly up until the LV.
• JPEG compression - Compresses the image with a ran-

dom quality setting.
• Blackout - Sets all pixels in a random rectangle to all

zeros.
For the temporal NNs an additional batch augmentation was
applied which selects at random a subsequence of N frames
with random frame step for each ultrasound sequence sample.
The temporal NNs were trained in non-stateful manner with N
frames for each sample in a batch. Ideally, the size of N should
be as high as possible, but with a limited GPU memory, the
batch size and N must be adjusted accordingly. The training
parameters used for training the temporal NNs on a GPU with
16 GB memory was batch size 2, N = 20, and randomly
selected frame step of 1 or 2.

D. Comparison metrics

Segmentation accuracy in deep learning is usually reported
using the overlap measure Dice which is 0 for no overlap
and 1 for perfect overlap. Although this metric captures the
overall accuracy, it is not necessarily able to capture the
temporal issues we seek to resolve. Since not all frames are
annotated, if the temporal error occurs on a frame which is
not annotated, it will not be measured. To solve this, we have
counted large temporal errors (#LTE) as the number of
recordings where the Hausdorff distance between a frame and
the closest annotated frame was above a high threshold of
30 mm. Although not a perfect measure, it seems to be able
to capture large temporal errors occurring on non-annotated
frames. Segmentation flickering was measured with the mean
flickering image pixels (mFIP) measure introduced in [8]
which simply measures how many pixels changed their label
from one frame to the other:

mFIP =
1

WH

T−1∑
t=1

W−1∑
x=0

H−1∑
y=0

|sign(St(x, y)− St−1(x, y))|

(2)
where S is the segmentation result image at timestep t with
size W × H . In addition, we also measured the Hausdorff
distance in millimeters which is the maximal distance between
the closest points on the segmentation and ground truth
contours. This metric can give an impression of size of the
largest segmentation errors.

E. Comparison study

To evaluate the effect of the proposed multi-view ConvL-
STM segmentation NN, the performance of several alternative
approaches were measured. Using the base NN from [7]



TABLE I
CROSS VALIDATION RESULTS OF MEAN FLICKERING IMAGE PIXELS (MFIP), NUMBER OF LARGE TEMPORAL ERRORS (#LTE), MEAN DICE SCORE AND

HAUSDORFF DISTANCE IN MILLIMETERS FOR EACH STRUCTURE.

Experiment mFIP #LTE Dice LV Dice Myoc. Dice LA Hausd. LV Hausd. Myoc. Hausd. LA

Non-temporal ED/ES frames 0.013 11 0.93± 0.04 0.80± 0.08 0.89± 0.09 5.78± 4.08 6.38± 4.25 5.07± 4.44
Non-temporal 7 frames 0.011 4 0.94± 0.03 0.80± 0.08 0.91± 0.05 4.94± 2.13 5.60± 2.71 4.31± 2.46
Non-temporal 7 frames + WMA 0.007 3 0.93± 0.03 0.80± 0.08 0.91± 0.05 4.95± 2.06 5.71± 3.24 4.39± 2.33
Temporal ConvLSTM 0.007 1 0.93± 0.03 0.79± 0.07 0.88± 0.07 5.55± 2.09 6.26± 2.65 5.66± 2.91

Fig. 1. Three examples of large temporal errors (LTE) which were only resolved using the proposed temporal ConvLSTM NN method.

trained on 1) ED/ES frames only, 2) all 7 frames, and 3) all 7
frames with temporal smoothing post processing. The tempo-
ral smoothing technique used was weighted moving average
(WMA). A window size of 6 frames was used for WMA.
In summary, the following four approaches were trained and
tested on the same dataset using 10-fold cross validation:

• Non-temporal NN trained on ED/ES only.
• Non-temporal NN trained on all 7 frames.
• Non-temporal NN trained on all 7 frames and applying

WMA post processing.
• Temporal ConvLSTM NN trained on interpolated anno-

tations.

III. RESULTS

Table I shows the results of the four tested methods. Note
that Dice and Hausdorff were only calculated on the 7 frames
annotated by an expert, while mFIP and #LTE were calculated
using the entire cardiac cycle. Using ConvLSTM layers only
in the encoder of the temporal NN gave the best results, while



at the same keeping the number of parameters at a reasonable
level (∼ 2.7 million). Comparing non-temporal NNs trained
with only ED and ES frames, and with all 7 frames, the results
showed that mFIP and #LTE were reduced by including all
7 frames (0.013→0.011, 11→4). The temporal errors were
reduced further by applying WMA (0.007, 3). The temporal
ConvLSTM NN achieved the best temporal results (0.007, 1).
Dice accuracy was however slightly reduced with the temporal
NN (0.94→0.93 and 0.80→0.79 for LV and myocardium).
Fig. 1 shows three examples of large temporal errors which
were only solved using the temporal ConvLSTM NN.

By converting the ConvLSTM NN to a stateful version, we
were able to use it in real-time by feeding the network one
frame at a time using TensorFlow. The NN inference runtime
was 13 ms on an NVIDIA RTX 2080 GPU when used in a
real-time application for automatic ejection fraction [9].

IV. DISCUSSION

In this work, we have shown that convolutional LSTMs
layers can be used in a fully convolutional segmentation neural
network to efficiently produce more temporally coherent LV
segmentations of the entire cardiac cycle. While temporal
flickering can be resolved using simple post processing tech-
niques such as WMA, the temporal ConvLSTM network was
able to eliminate more large temporal errors than using WMA.
Still, we observe that this comes at the cost of over-smoothing
and more stiff temporal segmentation, which is reflected in the
slightly lower Dice and Hausdorff scores in Table I. Also, the
temporal ConvLSTM is not able to eliminate all large temporal
errors, thus there is room for improvement.

One drawback of this work is the use of interpolation to
annotate the entire cardiac cycle and use this to train the
temporal network. The interpolation is not able to capture the
complex motion of the LV from just seven frames. Training
without interpolated annotations was tested, but gave worse
results. In this approach, only the seven annotated frames were
used, and the Dice loss was not calculated for the frames
lacking annotations, while the temporal loss was used for
all frames. An alternative could be to use advanced speckle
tracking methods such as Echo-PWC-Net [10], to create more
accurate temporal annotations of the entire cardiac cycle.

V. CONCLUSION

Temporal coherent segmentation of the left ventricle from
apical 2-, 3- and 4-chamber recordings using neural networks
was investigated. The results indicate that increasing the num-
ber of frames annotated from the cardiac cycle helps, while
using weighted moving average post processing can reduce
segmentation flickering. Still, large temporal errors were best
reduced using a neural network with convolutional LSTM
layers which has the ability to remember. This network was
found to be very efficient enabling real-time usage.
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