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Abstract

Animal movement studies aim to understand animal behavior by analyzing data consisting of

locations visited by the animals, often collected by GPS collars. As the positioning technologies

have been improving quickly over the last decades, new opportunities have arisen in animal

movement studies, accompanied by challenges. In this thesis, we focus on the issue of GPS error

in the animal positions collected by GPS collars. We propose to use an existing error correction

method called Simulation Extrapolation, or SIMEX, in order to understand GPS error in animal

movement studies, and try to account for them.

We start with a review of the common frameworks used in animal movement studies, which are

Resource-Selection Functions (RSFs) and Step-Selection Functions (SSFs), with a focus on the

latter. We describe these methods and their challenges, as well as their associated models. An

SSF is commonly formulated as a conditional logistic model, but we also recall that it can be

reformulated as a Poisson model. Furthermore, we review the need for random effects in both

formulations. To display the differences between the existing methods to fit an SSF, we apply

them to a dataset on lynx. Finally, we introduce the use of SIMEX in animal movement studies

with simulations as well as a case study on a dataset of sandhill cranes.

The analysis on the lynx dataset revealed that the Poisson reformulation with random effects

is generally the preferred model. Furthermore, the simulations showed that SIMEX is an in-

teresting method to understand GPS error and reduce bias in the estimated parameters. The

crane analysis further emphasized the conclusion from the simulations, even though some lim-

itations of SIMEX appeared. Overall, the results suggested that GPS error is an issue that should

not be ignored in animal movement studies, and that SIMEX is an easy and intuitive approach

to consider as a potential solution to the issue.
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Chapter 1
Introduction

Animal movement and habitat selection studies represent an important part of statistical ecol-

ogy. This field aims at understanding animals’ movement behaviors and resource selection,

which can depend on many factors such as the weather, the presence of predators or the avail-

ability of food (Fortin et al., 2005; Thurfjell et al., 2014; Gehr et al., 2017). The understanding of

those behaviors is key to answering many questions in wildlife conservation. For example it can

be useful to learn more about a certain species: Do they like to stay in herds or are they soli-

tary? Do they change territory often or are they sedentary? What resources makes them select

a certain habitat? Are they easily disturbed by the presence of humans? Answering those ques-

tion will bring us a better understanding of the species, but it will also help with the planning of

wildlife management actions, with consequences such as the protection of endangered species

and the reduction of human-wildlife conflicts (Rosenzweig, 1991; Gaillard et al., 2010; Chapron

et al., 2014; Raynor et al., 2017).

The recent progress in positioning technologies is making it possible to collect data on the lo-

cations of animals in a new efficient way (Cagnacci et al., 2010; Tomkiewicz et al., 2010). With

the use of Global Positioning System (GPS) collars, it is now easy to collect positions at a fine

temporal scale. This makes it possible to obtain enormous amounts of data, meaning that we

might be able to get a better understanding of animal movement behavior (Hebblewhite and

Haydon, 2010). The simplified access to radio telemetry data has been beneficial for research,

but it has also created new challenges.

This thesis focuses on a challenge that inevitably arises with data collected by GPS collars: the

GPS inaccuracies. Indeed, the observed locations are not fully accurate, which can lead to er-

roneous estimated parameters (Jerde and Visscher, 2005; Ganskopp and Johnson, 2007; Lewis

et al., 2007; Frair et al., 2004). This may be problematic, as the whole basis of animal move-

3
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ment studies is to get a better understanding of animals, in order to take certain actions for

their benefits. However, biased parameters can lead to wrong conclusions about the animal’s

behavior.

Some other challenges also considered in this thesis concern the models used to analyze the

data collected by radio telemetry. The frameworks most commonly used are called Resource-

Selection Functions (RSFs) and Step-Selection Functions (SSFs), whose main idea is the same

for both, to compare the resources at the locations that an animal visited with the ones of other

randomly sampled locations (Manly et al., 2002; Fortin et al., 2005). We focus on SSFs, as they

have the advantage to account for temporal correlations better, by considering the animals’

steps in chronological order.

We will discuss some of the challenges brought by the SSFs, which appear from the design of

the experiment to the final results. For example, when designing an experiment, one starting

question is how often should locations be collected. Then, when defining the SSFs, we need

to decide how to sample the new locations, and how many of them are needed per observed

location. Those are some of the many decisions that need to be taken by the designer of the

experiment. Even though literature can assist with this decision-making, the choices are ex-

pected to depend on the specific study and can have a negative influence on the results if cho-

sen poorly (Fortin et al., 2005; Thurfjell et al., 2014). Once the data is ready, other challenges

arise. This data contains many observations on each individual, which creates a correlation that

needs to be taken into account to avoid pseudoreplication (Hurlbert, 1984; Gillies et al., 2006;

Fieberg et al., 2010; Muff et al., 2020). Furthermore, while the individuals of the same popula-

tion tend to act similarly, there is still individual variability that needs to be considered (Fieberg

et al., 2009). In order to account for this, it has been suggested to include random effects in

SSFs (Duchesne et al., 2010). However, SSFs are usually fitted by conditional logistic regression

(Fortin et al., 2005), which are not easy to fit when random effects are included. Nevertheless,

Muff et al. (2020) proposed a reformulation to a log-linear Poisson model, which can be fitted

both in a likelihood-based and in a Bayesian framework. We discuss the different methods to

fit and compute the results of SSFs, in order to understand their differences and which one to

choose. This topic has been studied for some years already, and we wanted to give an overview

of what has been done so far.

As the main aim of this thesis is to address the issue of GPS error in animal movement studies, we

propose to take advantage of an existing error correction method, that is called Simulation Ex-

trapolation (SIMEX) (Cook and Stefanski, 1994). The method consists of two steps, a simulation

step and an extrapolation step. We assume that data of animals’ locations has been collected,

and that a model was already selected and fitted to the data. From this point, the simulation
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step consists of manually adding error to the original locations, and re-fitting the model to this

blurred data. This procedure is executed with different magnitudes of error, in order to observe

what effects the GPS error truly have on the estimated parameters. Once we have parameters

corresponding to different error levels, we can move on to the extrapolation step. For each vari-

able of interest, this step consists of extrapolating the parameters obtained from blurred data

to obtain the coefficient that would correspond to data without error. This approach is quite

easy to implement and intuitive to understand, making it a good potential option to approach

the GPS error problem. This SIMEX method has already been used in different fields, including

ecology with a study on pedigrees (Ponzi et al., 2019), but never on animal movement to our

knowledge. We want to present a method that is easy to exploit and gives effective results.

In order to introduce SIMEX in the context of animal movement data, we used simulations as

well as actual datasets, one on lynx and the other on cranes (Gehr et al., 2017; Wolfson et al.,

2017, 2020). The simulations were used to test the SIMEX method in a controlled environment

and understand which factors affect the analysis. The lynx data allowed us to compare different

models used to fit SSFs, but SIMEX could unfortunately not be used as we had hoped, because

we did in the end not gain access to the raw data. In order to illustrate how the SIMEX procedure

impacts the estimated parameters, we applied it to the crane data.

The thesis is built up as follows. First, the necessary background theory is introduced in Chapter

2. This includes the existing models to study animal movement, but also the challenges linked

to GPS collected data, and the SIMEX algorithm. In Chapter 3 the methods used for the dif-

ferent analyses are described, before presenting their results in Chapter 4. The results are then

discussed in Chapter 5. Finally, we find the conclusion in Chapter 6.
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Chapter 2
Background

We will start by introducing the popular frameworks used in animal movement studies, as well

as the statistical models that will be used in later chapters.

We are considering animal locations data from wildlife radio telemetry. The animal positions

are collected at regular time intervals by Global Positioning System (GPS) collars. We note that

in this thesis we use the term GPS to mean any global positioning system, not only the Ameri-

can one, branded GPS. One observation in the dataset will usually contain the animal ID num-

ber, the GPS location, the time and some environmental variables at this location such as the

temperature, altitude, presence of food, etc. Ideally, we would like to to have data of where an

animal has been and has not been. However, it is not realistic to survey an animal’s territory at

all times to get this kind of information. Nevertheless, as mentioned previously, with the GPS

collars we can easily access the locations where animals have indeed been. This type of data is

called presence-only (Fithian and Hastie, 2013). The dataset is then extended by sampling ran-

dom location where the animal might have been, called available locations, that we will con-

sider as pseudo-absences (Warton et al., 2010). A response variable is then added to the data,

which takes value 1 for observed positions and value 0 for available ones. Considering those

"pseudo-absences" is a necessity in order to obtain valid results. Indeed, if we only look at the

visited locations, we will see what kind of resources the animals select but this omits the fact

that an animal’s usage of a resource can depend on the other available resources (Manly et al.,

2002).

7
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2.1 Resource-selection functions

Resource-selection functions (RSFs) are statistical models that compare the environmental co-

variates between the visited locations and the available ones (Manly et al., 2002). In this case

the available locations are sampled from the animal’s home range. The definition of this home

range is not obvious and would ideally be discussed with a specialist on the considered specie.

It is important to once again mention that we do not know if a random location drawn from

the home range was ever visited by the animal or not, which sets us in a use-availability design.

Comparing those locations is usually done with logistic regression which yields similar results as

the inhomogeneous Poisson process model proposed for this kind of data (Warton et al., 2010;

Fithian and Hastie, 2013). What we call an RSF is the exponential of the linear predictor (Manly

et al., 2002). If at each location we consider n covariates x = (x1, ..., xn) the RSF takes the follow-

ing form:

RSF = exp(β1x1 +β2x2 + ...+βn xn)

where the βββ> = (β1, . . . ,βn) are the coefficients to be estimated. For m = 1, ..., M animals and

j = 1, ..., Jm locations for animal m, the probability that a location ym j with covariate vector xm j

is observed is P (ym j = 1|xm.) =πm j , then the logistic regression model is given by

ym j ∼ Ber n(πm j ),

where

πm j =
exp(βββT xm j )

1+exp(βββT xm j )
,

which corresponds to a generalized linear model. RSFs are not the main tool that will be used in

this thesis, but introducing them was important in order to understand step selection functions

that are discussed below, since they are closely related.

2.2 Step Selection Functions

As mentioned previously, the home range of animal can be hard to define, which can result in

available locations in RSFs that are not possibly reachable by the animal because of time and

distance issues. This difficulty is part of what led to the design of step selection functions (SSFs),

a similar method introduced by Fortin et al. (2005). In SSFs the movement of animals is consid-

ered. The data consists of steps instead of locations, where a step consists of the line between

two consecutive locations (Fortin et al., 2005). In terms of data, this means that one observation
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in the dataset will contain the time, both the starting and ending location of a step, as well as the

length between those two locations and the turning angle. The environmental variables of inter-

est can be measured at different places along the step, depending on what is wanted. In SSFs, the

available steps are created by sampling a new location from the turning angle and step length

distributions. From one observed step a chosen amount of random steps with the same start-

ing location is sampled, representing places where the animal could have gone instead (Fortin

et al., 2005). The objective of the SSF method is to compare the environmental attributes of the

observed steps with the environmental attributes of the sampled available steps. The advantage

of the SSF design is that the available steps can now be considered as true absences since the

animal cannot have visited more than one location at a given time. Furthermore, sampling steps

can be easier than sampling locations from an animal’s home range, which as we saw earlier is

one of the drawbacks of RSFs (Duchesne et al., 2010).

Let’s clarify the shape of the full dataset. For each animal the data is collected at regular time

intervals, usually a few hours, over many days, weeks or months, depending on the study. At

each time step we have a data stratum made of J observations: one realized step and J −1 avail-

able ones. Some studies can focus on herds of animals, in which case we will have m used steps

and J −m available ones in each stratum (Craiu et al., 2011). The response variable y associated

with each observation is a binary variable that takes value 1 if it is a used step, and value 0 if it is

an available one. All the strata generated by one animal are called a cluster. Such data contain-

ing many observations on each animal can be assumed to have some within-cluster correlation

and between-cluster heterogeneity (Fieberg et al., 2010). We will later see how to account for

that correlation with cluster-level random effects.

When we talk about SSF we usually mean the exponential of the linear predictor, which is the

same as for a RSF, namely:

SSF = exp(β1x1 +β2x2 + ...+βn xn) ,

where x> = (x1, . . . , xn) are the covariates and βββ are the coefficients which in this case are esti-

mated by conditional logistic regression, which will be discussed in Section 2.2.1. The idea is

that if a step has a higher SSF value, it has higher odds of being chosen by the animal compared

to the other steps that are available (Fortin et al., 2005).

Many aspects of SSFs are still being discussed and will need more time before reaching a con-

sensus. This includes questions such as
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• At which frequency should we collect locations?

• Does the frequency have to be constant or not?

• What are the temporal and spatial scales?

• Where along the step should the covariates be measured?

• How many random steps do we need to produce for one observed step?

• How do we sample available steps?

The choices made in this thesis are based on how those questions were answered in different

papers. The choice of distribution that we sample the step length and turning angle from is

an important factor that has to be decided and is a complicated topic in SSFs (Thurfjell et al.,

2014). A method commonly used is to draw the step lengths and turning angles independently

from distributions built from data on other animals of the population (Fortin et al., 2005). How-

ever, both variables could be correlated, so it can be useful to first estimate the correlation be-

tween them, to know if the respective correlation needs to be taken into account (Thurfjell et al.,

2014).

2.2.1 Conditional logistic regression

The sampling design of SSFs leads to a formulation that requires a conditional logistic regression

model (Compton et al., 2002; Fortin et al., 2005; Boyce, 2006). We therefore introduce this model

here, and start by establishing the notation. For simplicity we will assume that the same amount

of strata has been observed for each animal, that each stratum contains the same amount of

observations, and that among them we only have one observed location. So, we have N animals,

each of them observed over S strata. For each stratum i , i = 1, ...,S we have J locations, leading

to a vector of binary responses Yni = (Yni 1, ...,Yni J ) where
∑

j Yni j = 1. There is also a J×p matrix

of covariates Xni = (xni 1, ...,xni J ).

The probability that the animal n chooses location j in stratum i given Xni is

P (Yni j = 1|Xni ) =πni j =
exp(βββT xni j )∑J

k=1 exp(βββT xni k )
,

where we want to estimate βββ. This model can also be seen as a special case of a multinomial

distribution (McCullagh and Nelder, 1989). Since for each stratum i we have the vector Yni that
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is a single multinomial observation such that
∑J

j=1 yni j = 1, we then have

P (Yni = yni |πni 1, ...,πni J ,
J∑

j=1
yni j = 1) ∝π

yni 1
ni 1 ...π

yni J

ni J .

Now we can calculate the log likelihood for each stratum in our case,

lYni (β) =∑
j

yni j log

(
exp(xT

ni jβ)∑
l exp(xT

ni lβ)

)

=∑
j

(
yni j xT

ni jβ− yni j log

(∑
l

exp(xT
ni lβ)

))

=∑
j

yni j xT
ni jβ− l og

(∑
l

exp(xT
ni lβ)

)
.

This is the likelihood of stratum i of animal n. In order to get the full likelihood, we need to sum

up this expression for each stratum of each animal.

2.2.2 Equivalence to Poisson model

The multinomial model of the conditional logistic regression presented above is likelihood equiv-

alent to a log-linear Poisson model (McCullagh and Nelder, 1989). Let’s have a look at why. We

will focus on stratum i and location j of an animal. The animal’s subscript is omitted here to

keep notation simple. The log-linear poisson model can be written as follows

l og (µi j ) =φi +xT
ijβ ,

where φi and β are coefficients to be estimated, xij are the covariates and µi j is the parameter

of a Poisson distribution such as Yi j ∼ Poi sson(µi j ). We calculate the log likelihood over the

strata, omitting the terms not depending on φ and β

lY (φ,β) =∑
i j

(yi j (φi +xT
i jβ)−exp(φi +xT

i jβ))

=∑
i
φi +

∑
i j

yi j xT
i jβ−∑

i j
exp(φi +xT

i jβ) .

Let’s introduce a transformation of the parameters such that τi = ∑
j
µi j . Following McCullagh

and Nelder (1989), Chapter 6.4, Pages 210, we rewrite the likelihood by also adding and sub-
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stracting a new term,

lY (φ,β) =∑
i
φi +

∑
i j

yi j xT
i jβ−∑

i j
eφi+xT

i jβ+∑
i

l og

(∑
j

exT
i jβ

)
−∑

i
l og

(∑
j

exT
i jβ

)

=∑
i

log

(∑
j
µi j

)
+∑

i j
yi j xT

i jβ−∑
i j
µi j −

∑
i

l og

(∑
j

exT
i jβ

)

=∑
i

(log (τi )−τi )+∑
i

(∑
j

yi j xT
i jβ− log

(∑
j

exT
i jβ

))
= lm(τ;m)+ lY |m(β; y) .

This separates the likelihood in two parts. Only the second term depends on β so it can be used

to estimate the coefficients, where that term corresponds to the likelihood of the previously

defined multinomial model. This proves that those two models are equivalent to estimate β.

The advantage of this reformulation is that it will allow the model to be fitted as a generalized

linear model, which will be computationally much more efficient than the conditional logistic

regression formulation.

Note that in this new formulation there are now stratum-specific intercepts φi that need to be

estimated, which can be a large computational disadvantage. However, it is actually more effi-

cient to consider them as random effect from a normal distribution N (0,σ2
φ) (Muff et al., 2020).

The variance of this distribution can be set at a large value to avoid shrinkage.

2.2.3 Random Effects in Step Selection Functions

It is crucial to consider random effects in SSFs. Even though individuals of the same species can

be expected to have somehow similar behaviors, there is still some heterogeneity between them

that cannot be ignored (Fieberg et al., 2009). In a fixed-effect model we will obtain coefficients

that apply to the whole population. Nevertheless, individuals might respond differently from

one another to a change in a covariate (Gillies et al., 2006). Furthermore, there is some correla-

tion between the different strata of one animal which is also taken into account by a model with

individual-level random effects (Fieberg et al., 2010). Not considering this correlation can lead

to underestimated standard errors and confidence intervals, because of a phenomenon called

pseudoreplication (Hurlbert, 1984). Adding individual-level random coefficients will allow vari-

ations between individuals, while still using the information on the whole population from the

data (Gillies et al., 2006; Muff et al., 2020).

Another reason to include random effects is linked to the independence from irrelevant alter-

natives (IIA) assumption, which in the context of habitat selection states that an animal’s pref-

erence for an habitat over another does not depend on the other available habitats. However
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this assumption is often violated by the habitat selection behavior of animals, so adding animal-

specific random-effects to the model will relax the IIA assumption at the population level (Duch-

esne et al., 2010). Furthermore the availability of a resource might also have an influence on its

usage, an issue once again resolved by the addition of random-effects (Gillies et al., 2006).

Thurfjell et al. (2014) noted that, despite the recommendation to use mixed effect models by

Duchesne et al. (2010), almost no publications in between have used them. Then Muff et al.

(2020) once again realized that the mixed effect models used in the literature were usually only

using random intercepts and not random slopes. This might be due to the fact that those mod-

els have been lacking good software to fit them. A method called the two-step estimation is a

solution to fit a random effects SSF, but it only gives an approximation of the results (Craiu et al.,

2011). This is where the previously discussed Poisson reformulation comes into play, as it pro-

vides a new approach that allows random effects models to be directly and easily fitted (Muff

et al., 2020).

Let’s have a look at the random effects model. Let the random effects bn have density f (bn ;θ)

with θ a vector of unknown parameters. The probability that animal n chooses location j in the

i -th stratum is now

P (Yni j = 1|X)ni =
∫ exp(xT

ni jβ+bt
n zni j )∑k

l exp(xT
ni lβ+bt

n zni l )
f (bn;θ)dbn ,

where zni l is usually a vector containing a subset of covariates (Duchesne et al., 2010). The

Poisson reformulation takes the form

l og (µni j ) =φi +βT xni j +bT
n zni j .

Since fixed-effects models are more efficient and easier to interpret, we should not be using

mixed-effects models when they are not needed. Since a mixed-effects model with zero variance-

covariance in f (bn ;θ) is a fixed-effects model, an idea can be to perform a likelihood-ratio test

to evaluate the need for random effects.

Two-step Estimation

Let’s explain how to fit a random effect SSF using the two-step estimation introduced by Craiu

et al. (2011). As its name indicates, the two-step estimation consists of two different steps.

The first one consists of estimating cluster-specific parameters, by fitting a classical regression

model to each individual. If there are a large number of observations for each individual, the

regression coefficient estimates are approximately normal (Craiu et al., 2011). Therefore if we

consider one covariate, its population-level parameter corresponds to the mean of a multivari-
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ate normal distribution from which the regression coefficients previously obtained come from.

The second step consists of applying the expectation-maximization algorithm, a well known

method that can be used here to approximate the population-level coefficients.

The two-step approach is a good method when the number of steps per animal is large, but it

often fails when individuals do not have enough variability in their movements, meaning when

they do not encounter all categories of a categorical predictor (Craiu et al., 2011; Muff et al.,

2020). Moreover, the two-step estimation is an approximation and does not provide exact re-

sults. It is still a popular approach, as fitting random effects SSFs is a complex task.
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2.3 Integrated Step Selection Analysis (iSSA)

Integrated Step Selection Analysis (iSSA) is an extension of SSF which takes into account the

dependence between the movement parameters and resource selection parameters (Avgar et al.,

2016). The idea of iSSA is to simultaneously estimate both sets of parameters.

As mentioned in Section 2.2, it is common in SSFs to draw step lengths and turning angles from

distributions built on data from other individuals of the same population. Then, we fit the model

and estimate the resource selection parameters. This implies an independence between move-

ment and resource selection that can be questioned. Indeed, shouldn’t habitat availability affect

the animal’s movement patterns and its movement capacity affect its use of resources? Ignoring

this dependence leads to biased estimates, according to Avgar et al. (2016).

iSSA solves the problem of dependency by including parameters representing movement in the

model. Let’s assume that the step length follows a Gamma distribution and the turning angle

are Von Mises distributed (Avgar et al., 2016). The Von Mises distribution is often used to sam-

ple angles since it is similar to a normal distribution but on the circle. The probability density

function of a Gamma distribution with shape parameter k and scale parameter θ is

f (x) = 1

Γ(k)θk
xk−1 exp

(−x

θ

)
,

which we can also write in the following form

exp(ln( f (x))) = exp
(
− ln(Γ(k))−k ln(θ)+ (k −1)ln(x)− x

θ

)
,

so as the exponential of a linear combination of x and ln(x), where in our case x is the step

length. This shows that by including the step length and log step length in the model, we will

obtain their coefficients, which will correspond to a transformation of the shape and scale pa-

rameters of the Gamma distribution. Adding the cosine of the turning angle to the model will

similarly lead to the Von Mises concentration parameter (Avgar et al., 2016).

In the iSSA procedure, we start by sampling available points as in SSF, with step length and turn-

ing angle distributions obtained from observed data. As in an SSF, we assign a variable with

value 1 to the observed data and value 0 to the sampled data. Then, we fit a conditional logistic

regression to a model containing the three movement covariates in addition to the environmen-

tal covariates. What we called SSF is now

SSF = exp(β1x +β2sl +β3 log(sl )+β4 cos(t a)) .

Once the new parameters for the step length and turning angle distributions are obtained,they
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can be combined with the tentative parameters used to sample the available steps. iSSA is very

useful as it allows to test for more hypotheses on the relationship between the animal’s move-

ment and its environment.

2.4 Challenges of GPS collars

The recent use of GPS collars in animal movement studies has extended the capacity to collect

data at a finer temporal scale and spatial resolution. These are great advantages but they also

come with drawbacks. The first one is the costs of the collars, which can limit their usage (Morris

and Conner, 2017). Those costs refer to the collars themselves but also to their batteries. A short

battery life is therefore undesirable, but in the same time it is restricted by technology and by

weight (Dewhirst et al., 2016). Indeed, bigger batteries would last longer, but they are too heavy

to be worn by an animal. This has however improved over the past few years and will hopefully

continue to do so. In any case, we would like to change the GPS collar as little as possible, since

it costs money, effort and it intrudes on the animals’ lives (Dewhirst et al., 2016). Collecting

locations less frequently is a solution to make the battery last longer, but reducing the amount

of available data can be detrimental to the statistical analyses.

Another drawback of GPS data is the errors that it contains in the form of missing data and

inaccurate locations (Frair et al., 2004). We focus on the second type of error in this thesis. There

are many factors contributing to the inaccuracy of a collected location, such as the vegetation,

canopy cover, terrain, satellite geometry, atmospheric conditions and animal movement (Lewis

et al., 2007; Frair et al., 2004; Montgomery et al., 2011; Muminov et al., 2019). Even though the

error does vary according to those characteristics of the locations, it is possible to approximate

the error variance of a given GPS collar, by collecting data on the collar set on the floor at a

given location. Once we have an order of magnitude for the error we can ask ourselves some

important questions: Does the GPS error affect the parameter estimates in animal movement

studies to an extend that we have to worry? And if so, how can we account for this error? These

are the questions that we will investigate.

2.4.1 GPS Error in Animal Movement Studies

GPS error influences the results in the context of animal movement studies, as has been dis-

cussed by, for example, Jerde and Visscher (2005); Ganskopp and Johnson (2007); Lewis et al.

(2007); Montgomery et al. (2011); Muminov et al. (2019). Let’s look at a few practical cases where

GPS error was an issue. In a study on cattle behavior, Ganskopp and Johnson (2007) found out

that the GPS error was not significant for moving animals, but that it was detrimental for the

more static ones. Indeed, when classifying what an animal is doing, any error in the location of
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a static animal will most likely misclassify it as active, but not the other way round. A paper by

Muminov et al. (2019) considers GPS error in the context of virtual fence collars. The idea is to

make goats wear GPS collars that can transmit a stimuli of some kind to the animal when it goes

outside of its allowed grazing area. In this context even small errors can be problematic. Mea-

surement errors also have an influence on the estimation of turning angles and step lengths

(Jerde and Visscher, 2005), and the influence depends on the distance traveled by the animal

between two collected locations. If locations are collected every 4 hours, it is possible that the

animal walked a few kilometers in that time, and therefore, an error of 10m will not have much

effect on the results in that case. Jerde and Visscher (2005) urge to take into account the known

error variance of the collar in the sampling design.

It is common to think that with the recent improvement in GPS systems, the errors can be ig-

nored. However, according to Montgomery et al. (2011), there is a complex relationship between

the GPS error and the way the habitat characteristics are mapped, namely the raster resolution

and patch size. So, any GPS error, even when small, coupled with non matching patch sizes and

resolutions can lead to significant errors in the results of statistical inferences if ignored.

There are a few proposed solutions to account for GPS error. One of them is to use accelerometer

and magnetometer data from a sensor on the collar to predict if a collected position is plausible

or not(Dewhirst et al., 2016; Muminov et al., 2019). Inaccurate locations could then be rectified.

The positional dilution of precision (PDOP) is a measure of the satellite geometry linked to the

location error that can also be used to detect invalid locations(Lewis et al., 2007). However,

screening data is likely to lead to additional biases so we have a trade-off situation between

eliminating inaccurate locations and retaining the maximum amount of information.

Overall, we saw that the possible and needed accuracy depends on many factors like the way

habitat characteristics are mapped, the goal of the study and the specie considered. The meth-

ods addressing GPS error that we have seen consist mostly of removing inaccurate data.

2.5 Simulation Extrapolation (SIMEX)

We will consider an existing method called Simulation Extrapolation (SIMEX) (Cook and Ste-

fanski, 1994) to account for GPS error in the context of resource selection studies. SIMEX is a

heuristic method used to account for measurement error when the error variance is known, or

at least well estimated (Cook and Stefanski, 1994). Error correction usually requires the error

model and its parameters to be known, but SIMEX presents a useful alternative, because it only

requires one information on the error: its variance (Ponzi et al., 2019). Furthermore, it is an

intuitive and easy to implement method, so it is overall an attractive option.
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When we are using a regression analysis, error in the covariates is expected to introduce bias

in the resulting parameters (Carroll et al., 2006). This concern lead to the first application of

SIMEX, at the time where it was introduced by Cook and Stefanski (1994). It is common to think

the bias caused by the error is always an attenuation, dragging the parameter towards zero. This

makes sense in the context of animal movement as errors will make it seem like an individual

is acting more randomly, drawing the coefficients representing resource selection to zero. Even

though attenuation happens quite often, the effect of the measurement error on the parameters

is determined by more factors, such as the other variables, their correlations, the model itself

and the measurement error distribution (Carroll et al., 2006). Let’s consider the effect of additive

error on a simple linear regression Y =β0+βx X +ε, with ε∼N(0,σ2
ε), where instead of observing

the covariate X we observe W = X +U , where U is independent of X and Y , with mean zero and

variance σ2
u . The model considered is then Y =β0+βwW +ε and the estimated parameter from

the data containing error is βw =λβx , where

λ= σ2
x

σ2
x +σ2

u
< 1

(Carroll et al., 2006). For this specific model and error, the estimated parameter is indeed atten-

uated to zero.

SIMEX is based on the idea that adding more error to the data will introduce more bias (Cook

and Stefanski, 1994). Let’s look at how SIMEX works for one parameter of the model. SIMEX con-

sists of first a simulation step where we add more and more error to the data and compute the

estimate corresponding to each added error level. This means that we first select the variances

of the errors we will add, and then for a variance α, we generate an error with this variance, add

it to the data and estimate the parameter β̂b(α). For each error level we repeat this B times and

find the mean

β̂(α) = 1

B

B∑
b=1

β̂b(α) .

In the extrapolation step, the goal is to find a pattern between the error variances α and the

parameters β̂b(α) in order to extrapolate back to zero error to obtain β̂SI ME X = β̂(α = 0). A

quadratic extrapolant is often used for this step, as it is considered quite stable (Carroll et al.,

2006). The extrapolated parameter is an approximately consistent estimator, which means that

it converges in probability to an approximation of the true parameter(Cook and Stefanski, 1994).

The previously discussed attenuation pattern that appears quite often is presented in Figure 1,

where we see a decrease in the parameter magnitude as more error is added. Even without the

extrapolation step, the SIMEX plot offers very useful information on the relationship between

the error variance and the parameter value.
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Figure 1: The general SIMEX idea, where adding more error draws the parameter to zero. The
naive parameter has value 0.8, and the corrected parameter found from quadratic extrapolation
has value 1.0.

The SIMEX method is quite simple, but one drawback is the difficulty to obtain standard errors

for the error-corrected estimates. A solution is to use bootstrapping, but the computing costs

can be too large (Carroll et al., 2006). Another way to do this is to find the two error components

that make up the SIMEX parameter variance (Apanasovich et al., 2009; Ponzi et al., 2019). The

first one is the variance of the estimated parameter itself. Let’s say that we are at iteration b of

error levelα, and with the chosen estimation method we get the estimated parameter β̂b(α). The

model also yields the standard error of this parameter, and so by squaring it we get the variance

SD2(β̂b(α)). A way to get this variance for the SIMEX parameter is actually to apply the SIMEX

procedure on it. We simply store this variance at each step and find the mean of the variance for

each error level, Var(β̂(α)) = 1
B

∑B
b=1 Var(β̂b(α)). We can then use the same extrapolation method

as with the parameter in order to find Var(β̂(α= 0)).

The second component is due to the difference in variance between each simulation for a fixed

α, namely Var(β̂b(α))−Var(β̂(α)). An approximation of this value can be found as follows

s(α) = 1

B −1

B∑
b=1

(Var(β̂b(α))−Var(β̂(α)))2

and again we can extrapolate in order to find s(α= 0). The total variance is then the difference
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Var(β̂SI ME X ) = Var(β̂(α= 0))− s(α= 0).

SIMEX is overall a straightforward method and intuitive to understand, which allows us to un-

derstand how measurement error affect the resulting estimated parameters. The main advan-

tage of SIMEX is that the error model for the covariates x does not need to be explicitly stated,

instead, we act directly on the GPS measurement, which is where the error occurs. Furthermore,

it is easy to add more error to the GPS data if we have access to the landscape variables, and the

starting error variance can be estimated from repeated measurements on a collar set at a known

location. Therefore, data collected by GPS collars creates a good setting to use SIMEX.
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Methods

Our exploration of the SIMEX method in animal movement studies is separated in three parts.

We start with some simulations to see if the method worked in a controlled simulation environ-

ment and then move on to case studies on lynxes and sandhill cranes. The analyses were done

with the programming language R (R Core Team, 2021).

3.1 Simulations

The idea of the simulations was to generate an animal moving through a landscape with a known

preference for some characteristics of the habitat. The first step was to generate an environmen-

tal variable xe from a landscape, and for this we used a Gaussian random field (GRF). The main

features of a GRF are its resolution, its range of spatial autocorrelation, and the magnitude of

variation of this autocorrelation. We set those values to 10, 20 and 0.001, respectively, in order

to create a continuous landscape. We also created a GRF with values 10, 10, 0.001 and made

a binary landscape from it. The landscape variable is the only environmental variable in the

model. We considered simulations using the continuous landscape from Figure 2, and some

simulations with the categorical landscape from Figure 3. In the continuous setting, we can

imagine that this variable represents the temperature, while in the categorical setting, it could

for example constitute the habitat type, such as forest or non forest.

Once we had a landscape, we needed to define how the animal moves in it. We followed the

iSSA procedure, and defined the model as an SSF containing the three movement parameter

(step length, logarithm of step length and cosine of turning angle) as well as the environmental

variable of interest xe , thus

SSF = exp(β1xe +β2sl +β3 log(sl )+β4 cos(t a)) . (3.1)

21
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Figure 2: Simulated continuous Landscape used as the variable xe in some simulations.

Figure 3: Simulated categorical Landscape used as the variable xe in some simulations.
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The next step was to come up with true β coefficients for each term. For the habitat variable, a

higher coefficient means that the animal has a preference for higher values. For the continuous

landscape we considered two cases, one with β1 = 0.5 and the other with β1 = −0.5. We called

them continuous case 1 and continuous case 2 respectively. There were also two cases for the

categorical landscape, with coefficients β1 = 1 and β1 = −1, categorical case 1 and categorical

case 2. For the animal’s movement through the landscape, we assigned to the step length a

Gamma distribution with a shape parameter of 10 and a scale parameter of 15, which yields the

probability density function

f (x) = 1

Γ(10)1510
x9 exp

(−x

15

)
,

shown in Figure 4, indicating a typical step length of roughly 100-150m. For the turning angle,

we assumed that the animal does not have a preferred direction and set the concentration pa-

rameter of the Von Mises distribution to 0. Once we had all those parameters we simulated a

track with the function simulate_track(), from the amt package (Signer et al., 2019).

Figure 4: Gamma Distribution for the step length, with shape parameter k = 10 and scale θ = 15.

In Figure 5 we show the simulations of 500 steps starting in the center of the landscape. The

Figures (a) and (b) represent the two cases of the animal moving in the continuous landscape.

The two categorical cases are displayed in Figures (c) and (d). It is quite clear what the preferred

habitat is in each Figure.

With the defined landscape and coefficients, we could then start the simulation part of SIMEX,

which required to add some error. We recall that an advantage of SIMEX is that the explicit
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(a) (b)

(c) (d)

Figure 5: Plot of four different simulations, each representing 500 locations visited by the sim-
ulated animal. (a) and (b) are set in a continuous landscape, while (c) and (d) in a categorical
one. Going from (a) to (d), β1 takes the values 0.5,−0.5,1,−1.

error model at the level of the covariates is not necessarily required. Instead, we only needed

to know the error-generating mechanism on the lowest level of the data-generating mecha-

nism, which in our situation was the animal locations. The error-generating mechanism we

used was as follows: We started by picking the variances of the errors to be added as σ2 =
(5,10,15,20,25,30,35,40,45,50). Let’s only consider the continuous case 1 from now on, as

the other cases were processed in a similar way. As a start, we simulated 50 tracks of 501 lo-

cations (500 steps), using Equation 3.1 with β1 = 0.5. In Figure 5 (a), we find an example of

locations visited by a simulated animal. Each of the simulated tracks was then blurred once

with each σ2
i ∈ σ2. Blurring a track with σ2

i was done by sampling two independent variables



3.2. LYNX DATA 25

ε j ∼ N (0,σ2
i ), j ∈ {1,2} for each location of the track. Since a location is defined by its x−axis and

y−axis components px and py , the blurring was done by replacing those components by px+ε1

and py + ε2. This way of blurring tracks was suggested by Jerde and Visscher (2005). At the end

of this blurring process, we obtained 10·50 = 500 blurred tracks, so a total of 550 tracks if we also

count the 50 original ones.

We then fitted an SSF model to each of those 550 tracks. This was done by first sampling 10 avail-

able steps for each used one, then extracting the covariate values from the landscape, and finally

fitting a conditional logistic regression using the function fit_clogit from the amt package

(Signer et al., 2019). This function is used to fit a conditional logistic regression in the absence

of random effects. As we considered only one individual, we indeed did not need to include

random effects.

We then applied the extrapolation part of the SIMEX method to the environmental variable xe .

In order to simulate a real situation, we ignored all parameters that were estimated from the

tracks with no error. We then wanted to simulate two different situations, one where the starting

error variance would be 5, and one where it would be 15. We first calculated the mean parameter

estimates per error level from error 5 and higher and tried a linear, quadratic and cubic extrap-

olation on it. The best extrapolation according to the AIC criteria was selected, following Ponzi

et al. (2019). We then did the exact same thing, but considering the parameter estimates only

from error variance 15 and higher. For each case, we then used the corresponding extrapolation

to obtain the SIMEX parameter, corresponding to 0 error. We wanted to know if SIMEX could

improve the parameter estimates obtained from the blurred data.

3.2 Lynx Data

The first dataset that we considered is the one used by Gehr et al. (2017) to investigate how the

habitat selection of the Eurasian lynx is influenced by human disturbance and the availability

of roe deer. We decided to reproduce the analysis of this paper and compare it to the results

obtained by the Poisson reformulation. Then, we wanted to use the SIMEX approach on it.

Let’s start by describing the data and the model as in Gehr et al. (2017). The lynx dataset contains

19128 locations from 13 lynx, collected in the northwestern Swiss Alps between 2011 and 2014.

The GPS standard deviation had been estimated at 8.8m. The model used for the analysis is an

SSF that contains two environmental covariates: the altitude and the habitat type. There are two

types of habitat, open and cover, with the latter being the reference category. The two other main

covariates are human disturbance and deer availability. The human disturbance index was built

from the building density and the distance to the closest road. The deer availability variable is
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a prediction of the probability of deer occurence, obtained from a previously fitted RSF on a roe

deer dataset. In order to include temporal dynamics in the model, harmonics of time of day and

day of year were created. The significant interactions between those harmonics and the four

main predictors are added to the model. With the exception of habitat type, quadratic terms are

also added for the main covariates. Furthermore, an interaction term between step length and

human disturbance is added, as well as one between habitat type and human disturbance. The

data we had access to had already been processed; it contained 13185 observed steps, each of

them matched with 10 sampled available steps.

We first wanted to confirm that both models were equivalent. In order to do so, we fitted a

conditional logisitic regression with clogit and a generalized linear model with glmmTMB, both

with no random effects, on the lynx data. When random effects are omitted, both models are ex-

pected to give the same results. However, we are looking at multiple individuals, so a model with

random effects is actually needed. The previous models were just used to confirm the equiva-

lence between them. Therefore, we continued with the two-step estimation glmmTMB, which

was the approach used in Gehr et al. (2017) to fit the random effects SSF. However, the two-step

estimation is an approximation, so the Poisson reformulation giving precise estimates might

be preferred. In order to investigate the differences between both approaches, we also fitted

the Poisson reformulation with random effects using glmmTMB. We chose to work in a likelihood

set up, as a Bayesian approach would have been less computationally efficient. The focus of

this analysis was on comparing the results of the four models in order to understand their dif-

ferences, and not on analyzing the parameter values, as that was already done by Gehr et al.

(2017).

We then wanted to apply SIMEX on this data. However, in order to do this we needed to blur

the original locations and retrieve the covariates of the blurred tracks. Unfortunately, we did not

obtain the necessary landcover file containing the covariates, and could therefore not proceed

forward. We had to switch to another dataset on sandhill cranes, that allowed us to try the SIMEX

method.

3.3 Crane Data

The following analysis was done on a dataset containing locations of sandhill cranes. This data

comes from a study of breeding sandhill crane populations in Minnesota (Wolfson et al., 2017,

2020). 34 individuals were recorded using GPS/GSM transmitters (Cellular Tracking Technolo-

gies models CTT-1060a-LB and CTT-1060-LM-BT3). We selected one individual for the analysis,

with id 7J (Melby colt 1), as it visited a wide range of locations. The variable that we included in

the model is a categorical variable that comes from a land cover layer of Minnesota. Therefore,
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we filtered the data to consider only the locations in Minnesota. This left us with 7104 locations

from the 17th of April 2016 until the 1st of December 2016, collected approximately every 15

minutes from sunrise to sunset.

In order to apply the SIMEX algorithm, we had to know the variance of the measurement error.

Thankfully, we also had data collected at different time intervals from 12 collars put down at a

known location. The error was quite different in each of the 12 collars, with standard errors from

5m to 90m. We chose to define the starting error with a standard error of 35m, which lead to a

variance of 1200m2 when rounded.

For the simulation part of SIMEX, we had to blur the locations by adding more errors to them.

Since the starting error variance was 1200m2, we decided to increase the variance in steps of

500m2 until 7000m2. This resulted in 14 different levels of added error variances σ2
i . For each of

those σ2
i , we blurred the original locations 50 different times. Blurring a location was done by

sampling ε j ∼ N (0,σ2
i ), j ∈ {1,2} and replacing the x and y component of the location by x + ε1

and y +ε2. After the blurring was done, we had 50 ·14 = 700 blurred tracks.

We could then fit all the blurred tracks as well as the original one, in a similar way as in the sim-

ulations. For each track, we turned the locations into steps and sampled 10 available steps for

each observed steps. We then extracted the covariate xl and from the landcover and reduced it to

7 categories of interest: wetlands, barren, developed, forest, herbaceous, planted_cultivated and

water, with wetlands as the reference category. The SSF also included the step length, logarithm

of step length and cosine of turning angle. It is given by the following equation:

SSF = exp(β1xl and +β2sl +β3 log(sl )+β4 cos(t a)) . (3.2)

The estimatedβ coefficients were obtained with the function fit_clogit from the amt package

(Signer et al., 2019). The Poisson reformulation was not needed here, because we were only

looking at one individual, which meant no need for random effects.

The extrapolation part was done by first finding the mean estimated parameter for each error

level. Counting the parameter from the original data, this added up to 15 values. We then extrap-

olated the coefficient corresponding to 0 error, once again using the best out of linear, quadratic

and cubic extrapolation, according to the AIC criteria.
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Chapter 4
Results

4.1 Simulations

The results of the simulations indicate good results when the data without error is used (Ta-

ble 1). Indeed, the mean of the parameters estimated by conditional logistic regression using

clogit from the original tracks, βest i mated , is in each case close to the true value βtr ue . This

confirms that the model is accurate. Adding error to the simulated animal’s location caused an

attenuation of the parameters towards zero for all cases, as we can see in Figure 6. This is the

pattern that was expected to be found. The attenuation looks like it converges to a value higher

than zero.

The parameter that results from blurring the locations with an error of variance 5 is called β(5)
err,

and similarly β(15)
err for a variance of 15. In the continuous case 1, the true parameter was 0.5, and

the estimated parameter from the true data was 0.508±0.0976. Adding errors with variance 5

made this parameter drop to 0.455±0.0958, while a variance of 15 gave the parameter 0.434±
0.0964 (Table 1). These decreases of about 10% and 15% show that the more error we add, the

more the estimate diminishes, as we had expected. In the categorical case 1, where the true

value was 1, adding error had an even stronger effect on the estimated parameters. Indeed,

errors with a variance of 5 lead β(5)
err taking the value 0.830±0.331, a decrease of about 20%, and

β(15)
err the value 0.734±0.339, a decrease of about 25%. The continuous and categorical case 2 are

very similar to the cases so far described, except that their numbers are negative. Furthermore,

we see that the standard error do not seem affected by the added error. They are, however, much

larger in the categorical cases. This might be due to the type of landscape, or to the magnitude

of the true parameter.

Two extrapolations were performed for the two categorical cases as well as for the two contin-

29
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βt r ue βest i mat ed SDestimated β(5)
err SD(5)

err β(5)
SIMEX SD(5)

SIMEX β(15)
err SD(15)

err β(15)
SIMEX SD(15)

SIMEX

continuous case 1 0.5 0.508 0.0498 0.455 0.0489 0.471 0.0496 0.434 0.0492 0.497 0.0493

continuous case 2 -0.5 -0.503 0.0499 -0.452 0.0491 -0.469 0.0498 -0.432 0.0494 -0.507 0.0496

categorical case 1 1 1.04 0.179 0.830 0.169 0.875 0.178 0.734 0.173 0.854 0.171

categorical case 2 -1 -1.007 0.133 -0.842 0.130 -0.902 0.132 -0.755 0.131 -0.930 0.131

Table 1: Estimates and standard errors of the environmental variable in the simulations. βtr ue

is the true parameter used to simulate the animal’s movement. βest i mated is the mean of the
estimated parameters from the 50 simulated tracks without error, while β(5)

err and β(15)
err are the

means of the estimated parameters from the tracks blurred with an error variance of respectively
5 and 15. Finally, β(5)

SIMEX and β(15)
SIMEX are the corresponding parameter obtained from the SIMEX

procedure starting from the error levels 5 and 15.

uous ones. Out of the two extrapolations. one included the parameters estimated from tracks

containing error of variance 5 and above, and one with variance 15 and above. Choosing these

two variances aimed to simulate two situations, where the estimated parameter from the ob-

served data would have been βer r or 5, and βer r or 15, respectively. We tested a linear, quadratic

and cubic extrapolation, and selected the best one according to the AIC. This resulted in the

cubic extrapolation being selected most of the time, with the exception of the two extrapola-

tions of the categorical case 1, and the extrapolation starting at variance 5 of the continuous

case 2, which were quadratic extrapolations. When performing the extrapolation, we obtained

the SIMEX parameters corresponding to a starting error of 5 and 15, β(5)
SIMEX and β(15)

SIMEX. In all

cases, both β(5)
SIMEX and β(15)

SIMEX are closer to βest i mated than their corresponding βer r (Table 1).

The standard errrors of the SIMEX estimates are of the same magnitude as the βer r s, but they

are a little larger in most cases. Since the SIMEX parameters reduced some of the bias, they were

expected to increase the variance. However, we expected a larger increase of the variances than

what we found.

An interesting point to mention is that in the two continuous cases, β(15)
SIMEX is much closer to

the true parameter than β(5)
SIMEX is. In the continuous case 1 for example, the SIMEX parameter

β(5)
SIMEX is 0.471±0.0972, while β(15)

SIMEX is 0.497±0.0966 which is closer to 0.5. This is intriguing,

as we thought that the smallest errors increments would provide the most information, and

therefore lead to more accurate SIMEX parameters. However, in this case the extrapolation is

better when starting further away from the true track. In any case, both SIMEX parameters still

help accounting for some of the simulated GPS error. The continuous case 2 gives almost the

same results, suggesting that the sign of the parameter does not play an important role. In the

categorical case 1, the SIMEX parameter starting from the variance 5 errors is closer to the real

parameter than the one from variance 15. Nonetheless, it is the opposite in the categorical case

2.



4.2. LYNX DATA 31

(a) (b)

(c) (d)

Figure 6: Effects of adding error to the locations of an animal moving through a landscape. The
red points are the mean estimated parameters per error level. In blue and green we find the
SIMEX estimates starting from error level 5 and 15 respectively. The results are displayed in
Table 1. (a) and (b) are set in a continuous landscape, while (c) and (d) in a categorical one.
Going from (a) to (d), β1 takes the values 0.5,−0.5,1,−1. The error variance is increased by 5 at
a time until reaching 50.

4.2 Lynx Data

The analysis of the lynx data using the Poisson model yielded similar results to those from the

approximate two-step procedure (Table 2). The intercept was included in both the fixed effects

and the mixed effects Poisson model, and the variable

Deer availability:dcos was removed from the models without random effects, as it intro-

duced an error. The conditional logistic regression and the Poisson reformulation yield very

similar results in the case of fixed effects, as expected from the Poisson reformulation. If we look

at all βs in absolute values, the resulting parameters when using random effects are larger than

without, suggesting an underestimation of the parameters when random effects are omitted.
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Fixed Effects Mixed Effects

Variable name βcl r SDclr βPoi sson SDPoisson βcl r SDclr βPoi sson SDPoisson

Intercept -24.484 1.831 -24.768 1.827

Habitat type -0.359 0.0235 -0.359 0.0235 -0.406 0.0627 -0.415 0.0549

Altitude 0.229 0.0255 0.229 0.0255 0.325 0.0802 0.244 0.0658

Human dist. Index -0.172 0.0158 -0.172 0.0158 -0.147 0.0338 -0.179 0.0403

Deer availability 0.632 0.0342 0.632 0.0342 0.732 0.0659 0.676 0.0423

Altitude sq -0.234 0.0131 -0.234 0.0131 -0.306 0.0402 -0.286 0.0336

Human dist. Index sq -0.0518 0.00396 -0.0518 0.00396 -0.0542 0.00711 -0.0548 0.00644

Deer availability sq -0.0837 0.920 -0.0837 0.00679 -0.0903 0.0138 -0.0819 0.00960

Step length 0.0624 0.0103 0.0624 0.0103 -0.0897 0.0873 -0.0991 0.0834

Habitat type:ycos2 -0.147 0.0304 -0.147 0.0304 -0.153 0.0339 -0.149 0.0315

Habitat type:dsin -0.206 0.0353 -0.206 0.0353 -0.162 0.0402 -0.179 0.0367

Habitat type:dsin2 0.166 0.0357 0.166 0.0357 0.197 0.0561 0.169 0.0422

Habitat type:dcos2 0.000271 0.0322 0.000269 0.0322 -0.0984 0.0482 -0.0921 0.0404

Altitude:ycos -0.232 0.0322 -0.232 0.0322 -0.209 0.0635 -0.253 0.0633

Altitude:ysin2 -0.231 0.0288 -0.231 0.0288 -0.289 0.0588 -0.259 0.0424

Altitude:dcos -0.0924 0.0347 -0.0924 0.0348 -0.0623 0.0660 -0.0629 0.0690

Altitude:dsin2 -0.0799 0.0254 -0.0799 0.0254 -0.121 0.0280 -0.117 0.0271

Human dist:Step length 0.0383 0.00624 0.0383 0.00624 0.0623 0.00886 0.0628 0.00877

Human dist:ysin 0.0851 0.0113 0.0851 0.0113 0.0949 0.0244 0.0843 0.0214

Human dist:ycos 0.0823 0.0155 0.0823 0.0155 0.104 0.0248 0.0980 0.0209

Human dist:ycos2 -0.0217 0.0132 -0.0217 0.0132 -0.0297 0.0246 -0.0319 0.0183

Human dist:dsin -0.0974 0.0129 -0.0974 0.0129 -0.123 0.0346 -0.112 0.0360

Human dist:dcos 0.117 0.0165 0.117 0.0165 0.122 0.0395 0.122 0.0368

Human dist:Habitat type -0.0747 0.0157 -0.0747 0.0157 -0.0936 0.0326 -0.0850 0.0271

Deer availability:ysin2 0.0800 0.0216 0.0800 0.0216 0.0675 0.0355 0.0756 0.0384

Deer availability:ycos2 0.0368 0.0207 0.0369 0.0207 0.0474 0.0281 0.0428 0.0247

Deer availability:dsin -0.108 0.0237 -0.108 0.0237 -0.0797 0.0263 -0.0839 0.0245

Deer availability:dcos 0.0953 0.0480 0.123 0.0400

Table 2: Results of the different analyses on the lynx data. For both the fixed effects and the
mixed effects approaches we have the parameter βclr estimated with a conditional logistic
regression, the parameter βPoi sson obtained from the Poisson reformulation, and their corre-
sponding standard deviations SDclr and SDPoi sson .
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Furthermore, the parameters estimated with the Poisson model with random effects tend to be

smaller than the ones from the two step estimation. The Poisson model is an exact reformu-

lation of the conditional logistic regression model, so it is expected to give precise estimates,

whereas the two-step estimation is an approximation. This explains the difference between

both sets of parameters, and suggests that the Poisson model estimates should be preferred.

The standard error are larger when using random effects.

4.3 Crane Data

For the crane data, the analysis displayed interesting results (Table 3). The SIMEX estimates are

all larger, in absolute value, than their corresponding naive parameter. This would again sug-

gest that the parameters were originally underestimated. The SIMEX standard errors are quite

similar to the naive ones, which is surprising since we expected them to be larger because of

the bias-variance tradeoff that is supposed to takes place. Furthermore, the attenuation pattern

that we had seen in the simulations did appear for some categories, but not all of them, as can

be seen in Figure 7.

βnai ve SDnaive βS I ME X SDSIMEX

Barren 0.692 0.319

Forest -0.510 0.0775 -0.523 0.0784

Planted Cultivated -0.133 0.0372 -0.150 0.0372

Herbaceous 0.263 0.233 0.727 0.225

Developed -2.042 0.293 -2.661 0.297

Water 1.006 0.0863 1.055 0.0836

Table 3: Estimates and standard errors of the landcover variable in the crane data analysis. For
each category we have βnai ve , the estimated parameter from the original data, βSI ME X , the pa-
rameter obtained from the SIMEX procedure, as well as their standard deviations SDnai ve and
SDSI ME X . SIMEX was not applied on barren, because of the pattern it displayed.

At first sight, the categories planted cultivated, herbaceous, developed and water in Figure 7

(c), (d), (e) and (f), display similar patterns to the ones in the simulations. However, let’s look at

them more closely. We start with the category planted cultivated, in Figure 7 (c). The parameters

are drawn towards zero as more error is added, which coincides with the theory. It seems that

as more error is added, the parameter estimates will converge around the value -1. However, we

notice that the naive parameter seems to be equal to the parameter estimated from data blurred
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with an error of variance 500m2. This is interesting, as it might suggest that adding error has an

effect on the parameter estimates only from a certain error level.

The herbaceous category presents an interesting situation in Figure 7d. Indeed, we seem to no-

tice the same pattern as in the simulations, but actually adding more error leads the estimated

parameters to cross the zero threshold before stabilizing itself around the value -0.3. The pa-

rameter estimated from the blurred data with an error variance of 7000m2 is around the same

magnitude as the starting parameter, but with its sign reversed. So far we had seen that GPS

error causes an underestimation of the parameters, but now we see a new possible effect of GPS

error that goes as far as reversing the sign of the estimated parameter. We note that the herba-

ceous category is also the one that has the most difference between the SIMEX and the naive

parameter( Table 3), with the SIMEX parameter being more than twice as large as the naive pa-

rameter.

The categories developed and water show the behavior that we had expected, similar to the

simulations. The patterns are clear and adding more error drags the parameters towards zero.

The scale of the effects of SIMEX is however different for those two categories. For the water

category, the naive parameter is 1.006 ± 0.169 and the SIMEX parameter 1.055 ± 0.164. Even

though this suggests that the naive parameter was underestimated, the SIMEX parameter is only

about 5% larger. In the developed category, the naive parameter takes the value −2.042±0.574

and the SIMEX parameter −2.661±0.582. SIMEX increases the parameter by about 30% for the

developed category, but we also note that the confidence intervals are much larger than for the

water category.

We decided to not include a SIMEX estimate for the barren category, because there did not seem

to be a clear pattern appearing from adding error to the data, as we can see in Figure7 (a). The

estimated barren parameter takes the value βnai ve = 0.692±0.625, but once we add some error

the parameters seem to jump up and gather between 1 and 1.1. The unclear pattern and the

large confidence interval made it so that it did not seem informative to perform the extrapola-

tion. Furthermore, barren is a category that was not selected by the animal very often, which

could explain what we observed.

The effect of adding error to the data influenced the forest category in a similar way than the

barren category. However, the naive estimate is −0.510±0.152 and all the parameters estimated

from blurred tracks seem to lie between -0.48 and -0.45. We decided to extrapolate the error-

prone estimates for the forest category because the confidence interval was reasonable and a

pattern might still exist despite being unclear. We obtained a SIMEX parameter of −0.523 ±
0.154, so about 2.5% larger than the naive parameter. We are questioning the use of SIMEX for
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this category, and we cannot claim that the SIMEX parameter is better than the naive one. It

is possible that some correlations between the levels of the landcover variable are leading to

unusual patterns such as the ones displayed by the barren and forest category.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Results of the SIMEX procedure on the crane data. In red we find the mean estimated
parameters per error level, in green the naive parameters and their confidence intervals, and in
blue the SIMEX parameters and their confidence intervals. The starting error variance is 1200m2

and we increased that by increments of 500m2 until reaching 8200m2. Table 3 displays the re-
sults.



Chapter 5
Discussion

In the following, we will start by discussing the lynx results, as they allowed us to gain some

insight on how to model animal habitat selection. Then, we consider the SIMEX results in the

simulations and on the crane data. We also discuss some topics such as the challenges of de-

signing experiments, GPS technologies and other sources of error.

Lynx analysis

We start by acknowledging the fact that the analysis on the lynx data might not seem coherent

with the rest of the thesis, as it does not include an application of SIMEX. However, it is included

because the analysis of the different models had already been performed when we faced the

fact that it would not be able to apply SIMEX on this dataset. Furthermore, this analysis does

provide an overview of different models used in animal movement studies, which is relevant

information.

We wanted to reanalyze the lynx data from Gehr et al. (2017), with a similar analysis as Muff

et al. (2020). In Section 2.2.2, we have seen that a conditional logistic regression is equivalent

to a log linear Poisson model, when no random effects are added. This is illustrated by the

results found in Table 2, showing that the resulting parameters and standard errors of these

two models are almost identical. This confirms that the Poisson reformulation works well, and

that considering the stratum specific intercepts as random effects with a large fun is a good

way to avoid estimating all the stratum-specific intercepts as fixed effects. The clogit function

computed the results faster than glmmTMB, so the former should be preferred when fitting fixed

effects models.

However, as discussed in Section 2.2.3, random effects are often needed, especially with this lynx

dataset where many individuals are considered. Therefore, we also fitted the same two models

37
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with random effects. In this case, we can see some differences between the two sets of parame-

ters. The differences might be explained by the fact that the conditional logistic regression with

random effects had to be fitted with a two-step estimation, which is an approximation. On the

other hand, the Poisson model with random effects could directly be fitted, which is expected

to give unbiased estimates, given the modeling assumptions are met. Overall, the two-step esti-

mation is computationally more efficient, but can give questionable results, and it might fail to

run in some circumstances. Therefore, we would suggest to mainly keep the two-step estima-

tion as a solution for when the Poisson reformulation takes too long to run, but otherwise use

the Poisson model. This was already suggested by Muff et al. (2020).

We also compared the parameter estimates from the models with fixed effects to those from

the random effects models. We compared both sets of results from the Poisson approach. The

parameters differ a little, with the parameter estimates from the random effects model tending

to be larger than those from the fixed effects model, so there might have been an underestima-

tion of the parameters by the fixed effects model. The standard errors of the fixed effects model

are way smaller than with the random effects. This can be interpreted as a sign of pseudorepli-

cation, which was expected to result in too optimistic standard errors and biased parameters

(Gillies et al., 2006; Duchesne et al., 2010; Fieberg et al., 2010; Muff et al., 2020).

To summarize the analysis of these four models, we suggest to use the clogit approach when

fitting fixed effects models, and glmmTMB when fitting random effects models. Since the mixed

effects models take an additional amount of time to compute, the need for random effects

should first be investigated. We had mentioned in Section 2.2.3 that this could be done with

a likelihood-ratio test, for example. Random effects are also usually not needed when only

one individual is considered, therefore, if not many individuals are observed it can be better

to fit a separate fixed effects model for each individual, as already suggested by Thurfjell et al.

(2014).

Simulation analysis

With a better understanding of the models used to fit SSFs, we then moved on to our main

focus on GPS error. The simulations allowed us to introduce SIMEX as an innovative method to

account for GPS error in animal movement studies. The simulations considered four different

cases, with differences being the type of landscape (continuous or categorical) and the value of

the true parameter. We did not exactly follow the simulation part of the SIMEX method. Instead,

we simulated 50 tracks that we considered as the original ones, and then blurred each of them

once for each selected error variance. This resulted in 50 blurred track per error level, where

each of them corresponded to exactly one original track. This was a way for us to observe what
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happens when error gets added to location data.

Blurring the tracks corresponded to the simulation part of the SIMEX method. From the blurred

tracks we obtained biased estimated parameters, which showed that the errors do significantly

affect the results, confirming our expectations. Furthermore, for all the simulation cases, we

saw a clear pattern in Figure 6, suggesting an underestimation of the parameters as more error is

added. In Section 2.5, it was discussed that adding error to an animal’s track makes it seem like it

is acting randomly, which can be translated to habitat selection parameters being drawn to zero.

Therefore, the pattern of the results is also as expected. The differences in how errors affects

the results between the different simulations might be due to the type of landscape, or to the

fact that the magnitude of the parameters is larger in the categorical cases. Furthermore, with

the categorical landscape we have a binary variable, so a misclassified observation might have

a big impact on the results, while on the continuous landscape the impact may be smoother.

Moreover, the larger parameters of the categorical case represent a stronger preference for a

certain type of habitat, which is then more likely to be disrupted by errors in the locations. From

this simulation step, we gained useful knowledge on how the extrapolation function should look

like, which motivated us to explore the extrapolation step.

The resulting SIMEX parameters reduce the bias of the estimates obtained from data contain-

ing error (Table 1). However, the parameters are not fully unbiased, which can be explained

by the fact that SIMEX is ,under the right assumptions, an approximately consistent estimator

2.5. Moreover, there could be some error associated with the extrapolation. Finally, we recall

that we did not exactly follow the SIMEX procedure in these simulations, so it is not surprising

to not have fully unbiased SIMEX parameters. Overall, even though we cannot claim to have

unbiasedness in the simulations, SIMEX does help to partially correct the underestimated pa-

rameters. The bias-variance tradeoff is surprising in these results, as we expected much larger

variances for the SIMEX parameters. Our only explanation for this unexpected result is that the

method to calculate the SIMEX standard error contained some approximation error.

In these simulations, we chose the values of 5 and 15 to represent starting error variances that we

could have had in a real situation. We have seen that the smaller starting error does not always

lead to the best SIMEX estimate, which can seem unexpected. Indeed, we thought that the

tracks blurred with the smallest error would provide the most information, as they were closer

to the real track. It is hard at this point to give an explanation to these differences between the

SIMEX estimates obtained from starting variance 5 and 15 other than chance. However, this

phenomena could suggest that extrapolating is not always the best option when the GPS error

is small.
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Overall in the simulations, the effects of GPS error appear to act as expected, drawing the param-

eters towards zero in a clear continuous pattern. We have considered two different landscapes,

but it is still not quite clear how the landscape settings such as smoothness, resolution, or the

type of landscape affect the results. It seems like the sign of the true parameter was not of much

importance here, but its magnitude was. Some other factors had to be decided in the simula-

tions, and would need to be thought of when designing an experiment. This includes the choice

of errors that we add. In these simulations, we selected errors with variances going from 5 to

50 with increments of 5. This choice lead to clear patterns as more error is added, but we can-

not claim that these numbers would work for any experiment. This is a choice that needs to be

made with respect to the dataset, the landscape we are studying, and maybe some still unknown

factors. We also decided that each simulated animal would walk 500 steps. Can the length of the

track have an influence on the results as well? We suggest more research to be done to analyze

how these different factors may influence the effects of GPS error in animal habitat selection

studies. Most of them are probably correlated, and should therefore be analyzed together.

Crane analysis

The crane data allowed us to investigate SIMEX in a real setting. First of all, we obtained inter-

esting information about how the GPS errors affect the parameter estimates from the simulation

part of SIMEX. Then, we estimated the SIMEX parameters, which were all larger than the naive

ones, indicating that the parameters were originally underestimated, as we had expected( Table

3). By looking at the plots of Figure 7, we observed different patterns for the different categories.

In Figures 7c, 7e and 7f, we observed one type of situation that can happen, where the pattern is

clear and similar to what we found in the simulations (see Figure 6). When this type of pattern

appears, we suggest to go on with the extrapolation, as it seems to account for some of the GPS

error. This does not necessarily mean that we will use the SIMEX parameter instead of the naive

parameter in further analyzes, but it is worth it to obtain and discuss the SIMEX parameters in

this type of situation. As the SIMEX parameters for the planted cultivated and the water category

are not very different from their naive parameters (Table 3), we can conclude that those cate-

gories were not terribly affected by the GPS error in the original dataset, but SIMEX still helps

correcting the estimates. However, the developed category’s SIMEX parameter is −2.661±0.582,

while the naive parameter is −2.042± 0.574. This large difference indicates that this category

is quite affected by GPS error, and that SIMEX provides a way to account for some of this er-

ror.

The herbaceous category presents an interesting situation in Figure 7d. At first sight it looks

similar to the categories planted cultivated, developed water. However, despite having a pattern

that is going down as more error is added, the sign of parameters also get reversed. This brings
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up a new effect of GPS error, as so far, we have discussed the importance of not underestimating

the parameters in an analysis, but getting a parameter of the wrong sign can have even worse

consequences. Indeed, when trying to understand how an animal behaves, the management

actions that will be taken depend on its habitat preferences, therefore it is important to know if

the species has a preference for a herbaceous landscape or if it prefers to stay away from it. It is

not obvious to understand why the sign of the parameter got reversed here, it might be due to

how the landscape is laid out, or to some complex correlations among the different categories

of the variable. The fact that GPS error affects the sign of a parameter is a problem that the

simulation part of SIMEX can help us discover.

Another situation that can happen is observed In Figures 7a and 7b, where adding error with

variance 500m2 or 7000m2 seems to have the same effect on the parameters. These Figures are

not very informative in terms of analyzing the effects of GPS error. Therefore, we cannot justify

the use of an extrapolation for this type of situation. We did try with the forest category, but the

result is not convincing enough to suggest the use of that SIMEX parameter for further analyzes.

We hypothesize that what we see in Figures 7a and 7b is the result of some complex correlations

between the levels of the landcover variables.

Altogether, the results from the crane analysis show that GPS error do have an influence in a

real situation. We get useful information from just the simulation step, which is why we suggest

to carry out this step of the SIMEX method in all situations where it is possible. Depending on

the pattern that this first step, we can then decide if we want to proceed with the extrapolation.

We observed three situations that can arise in this crane dataset, but correlation in the dataset,

types of landscapes and other factors might lead to different patterns.

We estimated the starting error variance to be 1200m2, but would like to remain critical of this

choice. Indeed, to find that variance, we used validation data from 12 GPS collars that were laid

out on the ground, collecting data at different time intervals, from 30 seconds to 30 minutes,

over 2 days. We then calculated the average standard error of the GPS error in both the x and y

direction for each of those collars. The results were varied, from 5m to 90m, so we then chose a

value in between, 35m, and rounded its variance to 1200m2. However, the way we calculated the

standard errors could contain some error, and the final choice of variance could have been dif-

ferent. Therefore, more attention should be given to that part of the process in the future.

General discussion

We have now seen an application of SIMEX on both simulated data and a real dataset. This is

just a starting point for the use of SIMEX in animal movement studies, but it seems promising.

Different parameters have to be chosen when using SIMEX. First of all, the starting error vari-
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ance needs to be selected. As previously stated, this can be done by collecting data from a collar

set on the floor, but new challenges rise from this experiment. Indeed, the error obtained from a

GPS set on the floor will not necessarily be the same as the GPS error on the data. Some external

factors will affect the error, such as the speed of the animal, the type of terrain, the vegetation,

the altitude, etc. (Tomkiewicz et al., 2010; Cagnacci et al., 2010). Therefore, determining the

starting error variance is not such an easy task. As already mentioned in the simulations, an-

other important choice is the magnitude of the error variance increments that will be added to

the original data. The error increments should be adapted to the scale of the starting variance,

which is why Cook and Stefanski have proposed to use a factorλ, for exampleλ ∈ {1.1,1.2, ...,2.5},

which gives the different error levels when multiplied with the starting error variance Cook and

Stefanski (1994). Another decision is the number of times we will blur the track for each error

level. We selected the number 50, because it had been used a few times by, Cook and Stefan-

ski (1994), when introducing SIMEX. Finally, we need to select an extrapolation function. We

proceeded with the extrapolation in a similar way as Ponzi et al. (2019), but maybe it would be

worth to investigate other ways to do it. Overall, those design choices should be adapted to each

situation. We hope that more research will be done in order to give recommendations on how

to make those choices.

There are also design choices to be made when the data is collected. In our case we obtained

data to analyze, but a researcher who wants to study a certain specie will have to start by collect-

ing data. With the advancement of GPS technologies, data can be collected at higher frequency

more easily. So people tend to collect positions more often, because it gives more information

about the animal’s movement. However, if we look at animal’s positions at a very fine time scale,

GPS error can be expected to have larger effects on the results (Jerde and Visscher, 2005). In-

deed, let’s say we collect positions every 30 seconds, on a slow animal that moves on average 5m

in 30 seconds. With a standard GPS error of 30m, we are likely to obtain steps of length more

than 50m, which will show an implausible behavior for the individual. What is important is to

decide on the time step between collection of locations depending on characteristics like the

speed of the animal, and the GPS error of the collars that will be used. As seen in Section 2.4.1,

it is also possible to screen some of the observed positions using already known information on

the specie of interest.

GPS technologies are constantly improving, and will continue to do so until very high accu-

racy is reached. At the moment, three systems are in use: GPS, GLONASS and Galileo, who can

even be combined for better precision (Kiliszek and Kroszczyński, 2020). This will hopefully

lead to data containing neglectable error, which would make error correction methods, includ-

ing SIMEX, obsolete. However, there is still quite some time until the GPS systems can give us
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highly accurate data, and many existing datasets do contain significant GPS error. GPS error

therefore remains a nuisance to animal movement studies, and a method like SIMEX seems like

an interesting solution to explore.

Our main focus is on GPS error, but let’s not forget that there are other types of error that can

appear in this type of study. First of all, there will be some error that appears during the col-

lection of covariates such as the temperature, the precipitation, etc. Moreover, when we obtain

covariates through a landcover file, it is specified at a given scale and resolution, which are im-

portant factors. Indeed, if the GPS error is much smaller than the resolution, it might not have

much influence on the results. Furthermore, representing the landscape with pixels also intro-

duces some error. In order to understand this, we consider an example of a categorical variable

that represents two types of landscapes: forests and clearings. One pixel of the landcover data

might be named forest, when it actually consists of 80% forest and 20% clearing. Therefore, if

the animal we are studying is resting in the clearing, we will obtain an error in the data. It could

be interesting to look into using SIMEX to solve this issue. Another source of error is in the com-

putations, as we used different models in our analyses, with some being approximations. Those

are likely to lead to some approximation errors. Finally, we have considered GPS error, but have

not talked about missing data, which also happens when collecting data from GPS collars. All

sources of error are avenues for future research.

To conclude our anaylsis of SIMEX on both the simulated and the crane data, we give our sug-

gestions for future work. We have already mentioned various factors that could be studied in

order to come up with a concrete framework giving instructions on how to use SIMEX in animal

movement studies. Even without these instructions, we encourage researchers to experiment

with SIMEX in animal movement studies when the data allows it, meaning when we possess a

dataset with animal locations, landscape variables and know the starting GPS error. Even with-

out extrapolating, observing the effects of GPS error on a dataset can provide useful information.

Then, it can be decided if extrapolating seems actually useful or not. In this thesis we obtained

promising results that will hopefully encourage the investigation of the use of SIMEX in animal

movement studies.
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Chapter 6
Conclusion

In this thesis we have studied measurement error in GPS-based animal telemetry studies. We

adapted an error correcting method called SIMEX to the case of GPS error. By following this ap-

proach, introduced by Cook and Stefanski (1994), we managed to obtain a better understanding

of the effect of GPS error on the resulting parameters of an SSF. We saw how adding more error

to the data can make a pattern appear, that can be used to extrapolate the parameter corre-

sponding to zero error. This was illustrated with simulations, and the application to a real data

example. We have also covered some tools commonly used to study animal movement and

habitat selection. This included the SSF and the need for random effects to be included, as well

as the reformulation to an equivalent Poisson model. We obtained a dataset on Lynx on which

we applied those tools. However, the original plan was also to test the SIMEX procedure on this

Lynx data, but since we did not get access to the geoinformation from the respective landcover

files, we could not generate new blurred trajectories and thus not apply SIMEX.

SIMEX proved to be a simple method with great potential to correct for GPS error in animal

movement studies. A great advantage is that we can use SIMEX without needing to formulate

an explicit error model. Its only prerequisite is for the error-generating mechanism and the

starting error to be known. Therefore, we suggest to use it whenever we have the possibility to.

This means when we know the starting GPS error variance, and when the dataset contains the

locations as well as the landcover, so that we can extract the covariates from it after blurring the

positions. The simulation part of SIMEX will always give some information on how GPS error

is potentially disturbing the results. However, we would not suggest to use the extrapolation on

any dataset without checking the results from the simulation step, and the specific situation.

Our simulations and case studies provided a useful starting point to go on for further analy-

ses, but a lot of questions still need to be answered. We would need more examples of SIMEX

with similar data in order to confirm its efficiency. Furthermore, since SIMEX requires the user
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to make a lot of choices, future work could aim at establishing a framework for those choices.

Once a framework is put into place, it could be quite simple to use SIMEX in animal movement

studies.

The current progress in positioning technologies is creating new and exciting opportunities in

animal movement studies. GPS error is certainly a drawback, but the GPS accuracy keeps im-

proving and will lead to data containing less and less location error. If very high accuracy is

reached, the SIMEX approach presented in this thesis might not be needed. However, in the

meantime, we believe that it is important to find methods such as SIMEX to account for teleme-

try error in animal movement studies.
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Appendix A
Code

The essential of the code used in the analyses is displayed in the next pages. The more de-

tailed and latest version (which may be modified after completion of this thesis) can be found

at https://github.com/clarapasu/Master_Thesis.
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library(sf)
library(raster)
library(amt)
library(tidyverse)
library(NLMR)
library(lubridate)
library(glmmTMB)
library(ggplot2)
library(gridExtra)
library(ggpubr)
source("/Users/clara/Documents/Master Thesis/Simulations/functions.R")

First, we generate a landscape on which the animal moves. We will use a Gaussian field. We also need to set
the coefficients that will be used to simulate the trajectory. The ones for step length and the logarithm of step
length are transformations of the parameters of a Gamma distribution G(10,15). We pick a concentration
parameter of 0 for the Von Mises distribution of the turning angle. A transformation of this parameter will
be the coefficient of the cosine of the turning angle in the model. We define different sets of coefficients,
where the variable coefficient takes the values 0.5,-0.5,1,-1. We will only show the code used to perform the
analysis on the continuous landscape with the variable coefficient 0.5, as the other cases are done similarly.

set.seed(124)
formula <- ~ var_end + log_sl_ + sl_ + cos_ta_
coefs <- c("var_end" = 0.5, scale_to_sl(15), shape_to_log_sl(10), kappa_to_cos_ta(0))
coefs2 <- c("var_end" = -0.5, scale_to_sl(15), shape_to_log_sl(10), kappa_to_cos_ta(0))
coefs3 <- c("var_end" = 1, scale_to_sl(15), shape_to_log_sl(10), kappa_to_cos_ta(0))
coefs4 <- c("var_end" = -1, scale_to_sl(15), shape_to_log_sl(10), kappa_to_cos_ta(0))

Here is how to generate the categorical landscape that we will use.

lscp2 <- NLMR::nlm_gaussianfield(300, 300,nug=0.001,
resolution = 10,autocorr_range=20,user_seed = 3,rescale = FALSE)

lscp2 <- stack(lscp2)
names(lscp2) <- "var"

plot(lscp2,cex.main=2, cex.axis=1.5,legend.width=0.8,
legend.shrink=0.7,axis.args=list( cex.axis=1.5))

And how to generate a track on this landscape.
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set.seed(7)

trk <- simulate_track(formula, coefficients = coefs,
start = c(1500,1500), spatial.covars = lscp2,max.dist = 100, n = 500)

plot(lscp2,xlim=c(0,3000),main=expression(paste("Continuous case 1")),
cex.main=2, cex.axis=1.5,legend=FALSE)

points(trk$x_, trk$y_)

Here is just a little test to show that the conditional logistic regression model and the Poisson model yield
the same results.

set.seed(123)

m<-trk %>% steps %>% random_steps() %>%
extract_covariates(lscp2) %>%
mutate(log_sl_ = log(sl_), cos_ta_ = cos(ta_))

m2<-fit_clogit(case_ ~ var + sl_ + log_sl_ + cos(ta_) + strata(step_id_),data=m)

TMBStruc = glmmTMB(case_ ~ var + sl_ + log_sl_ + cos(ta_) + (1|step_id_),
family=poisson,
data=m,
doFit=FALSE)

TMBStruc$parameters$theta[1] = log(1e3)
TMBStruc$mapArg = list(theta=factor(c(NA)))
m1 = glmmTMB:::fitTMB(TMBStruc)

c(summary(m2)$coef[1,1],summary(m1)$coef$cond [2,1] ,
summary(m2)$coef[1,3],summary(m1)$coef$cond [2,2] )

## [1] 0.45664795 0.45664854 0.04032624 0.04032623

We then simulate and blur 50 trajectories, to observe the simulation step of SIMEX, even though we do it
a little differently than in the original algorithm here.

set.seed(123)
run=1

if (run==0){
param <- data.frame(matrix(ncol = 3, nrow = 0))
names <- c("variable","sd","error")
colnames(param) <- names
start_variance<-2.5
variance<-c(2.5,5,7.5,12.5,17.5,22.5,27.5,32.5,37.5)
for (i in 1:50) {

trk <- simulate_track(formula, coefficients = coefs,
start = c(1500, 1500), spatial.covars = lscp2,max.dist = 50, n = 500)

param[nrow(param) + 1,]=c(fit(trk,lscp2),0)

trk_blur<-blur(trk,start_variance)
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param[nrow(param) + 1,]=c(fit(trk_blur,lscp2),start_variance)

for (j in 1:length(variance)) {
trk_new<-blur(trk_blur,variance[j])
param[nrow(param) + 1,]=c(fit(trk_new,lscp2),variance[j]+start_variance)

}
}
write.csv(param,"/Users/clara/Documents/Master Thesis/Simulations/simex1.csv",

row.names = FALSE)
}
if (run==1){

param=read.csv("/Users/clara/Documents/Master Thesis/Simulations/simex1.csv")
}

Now, we can group the results by error level and find the mean parameter. Then, we extrapolate back to
0 error, once starting from error variance 5 and once 15. For each extrapolation we use the AIC criteria to
pick the type of extrapolation.

set.seed(123)
df<-param %>% group_by(error) %>% summarise(variable=mean(variable))
df2<-subset(df,error!=0)
df20<-subset(df,error!=0 & error!=5 & error!=10)

standard_error<-param %>% group_by(error) %>% summarise(variable=mean(sd))

fit = lm(variable ~ error, data = df2)
fit2 = lm(variable ~ error+I(errorˆ2), data = df2)
fit3 = lm(variable ~ error+I(errorˆ2)+I(errorˆ3), data = df2)

c(AIC(fit),AIC(fit2),AIC(fit3))

fits = lm(variable ~ error, data = df20)
fit2s = lm(variable ~ error+I(errorˆ2), data = df20)
fit3s = lm(variable ~ error+I(errorˆ2)+I(errorˆ3), data = df20)

c(AIC(fits),AIC(fit2s),AIC(fit3s))

new_df<-data.frame(error=0)
p<-predict(fit3, newdata = new_df, interval = "confidence", type = "response")
p2<-predict(fit3s, newdata = new_df, interval = "confidence", type = "response")

plot1<-ggplot(data=param, aes(group=error,x=error,
y=variable)) + geom_boxplot()+geom_point(aes(y = p[1],
x = 0,colour="SIMEX parameter"),size=2.5)+geom_point(aes(y = p2[1],
x = 0,colour="SIMEX 2" ),size=2.5)+
theme(legend.position="none",legend.text = element_text(size=11))+
ggtitle(expression(paste("Continuous case 1, ",
beta[1],"=0.5")))+theme(axis.title=element_text(size=18),
axis.text=element_text(size=15),plot.title = element_text(size=20,
hjust = 0.5))+ylim(0.30,0.55)+geom_point(data = df,
mapping = aes(x = error, y = variable,
color="Mean estimated parameters per error"),size=2.5)+ylab("parameter")
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We start by loading the lynx dataset.

library(survival)
library(glmmTMB)
library(TwoStepCLogit)
load("/Users/Clara/Documents/Master Thesis/Data/Lynx/data/lynx.RData")
dat <- lynx_table

First, we fit the models with fixed effects only. We want to check that the conditional logistic regression
model gives the same results as the poisson reformulation. We start by fitting the condition logistic regression
model.

run_clog=0
if (run_clog==1){
r.clogit <- clogit(formula=use~cover_swisstopo +altitude_swisstopo+

cover_swisstopo:ytcos2 +
cover_swisstopo:tsin +
cover_swisstopo:tsin2 +
cover_swisstopo:tcos2 +
altitude_swisstopo +
hum_indx +
prey_avail +
I(altitude_swisstopoˆ2) +
I(hum_indxˆ2) +
I(prey_availˆ2) +
altitude_swisstopo:ytcos +

altitude_swisstopo:ytsin2 +
altitude_swisstopo:tcos +
altitude_swisstopo:tsin2 +
dist2 +
hum_indx_loc2:dist2 +
hum_indx:ytsin +
hum_indx:ytcos +
hum_indx:ytcos2 +
hum_indx:tsin +
hum_indx:tcos +
hum_indx:cover_swisstopo +
prey_avail:ytsin2 +
prey_avail:ytcos2 +
prey_avail:tsin +
strata(loc_id), data=dat)
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clog<-data.frame(summary(r.clogit)$coef)

write.csv(clog,"/Users/Clara/Documents/Master Thesis/Data/Lynx/clogit.csv",
row.names = TRUE)

}
if (run_clog==0){

clog=read.csv("/Users/Clara/Documents/Master Thesis/Data/Lynx/clogit.csv",
row.names = 1)

}

Now, we fit the Poisson model and compare the results.

run_glmm=0
if (run_glmm==1){

TMBStruc = glmmTMB(use~cover_swisstopo +altitude_swisstopo+
cover_swisstopo:ytcos2 +
cover_swisstopo:tsin +
cover_swisstopo:tsin2 +
cover_swisstopo:tcos2 +
altitude_swisstopo +
hum_indx +
prey_avail +
I(altitude_swisstopoˆ2) +
I(hum_indxˆ2) +
I(prey_availˆ2) +
altitude_swisstopo:ytcos +
altitude_swisstopo:ytsin2 +
altitude_swisstopo:tcos +
altitude_swisstopo:tsin2 +
dist2 +
hum_indx_loc2:dist2 +
hum_indx:ytsin +
hum_indx:ytcos +
hum_indx:ytcos2 +
hum_indx:tsin +
hum_indx:tcos +
hum_indx:cover_swisstopo +
prey_avail:ytsin2 +
prey_avail:ytcos2 +
prey_avail:tsin +
#prey_avail:tcos+
(1|loc_id),
family=poisson,
data=dat,
doFit=FALSE)

TMBStruc$parameters$theta[1] = log(1e3)

TMBStruc$mapArg = list(theta=factor(c(NA)))
m1 = glmmTMB:::fitTMB(TMBStruc)
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summary(m1)
glmm=summary(m1)$coef[1]
write.csv(glmm,"/Users/Clara/Documents/Master Thesis/Data/Lynx/glmm.csv",

row.names = TRUE)
}
if (run_glmm==0){

glmm=read.csv("/Users/Clara/Documents/Master Thesis/Data/Lynx/glmm.csv",
row.names = 1)

}

round(clog[1],digit=2)==round(glmm[2:27,1],digit=2)

We can then move on to the random effects models. We start with the two-step estimation in order to fit
a conditional logistic regression with random effects, which gives the same results as the paper that was
published on this data.

run_twostep=0

if (run_twostep==1){
lynx_model <-Ts.estim(formula = use~cover_swisstopo +

cover_swisstopo:ytcos2 +
cover_swisstopo:tsin +
cover_swisstopo:tsin2 +
cover_swisstopo:tcos2 +
altitude_swisstopo +
hum_indx +
prey_avail +
I(altitude_swisstopoˆ2) +
I(hum_indxˆ2) +
I(prey_availˆ2) +
altitude_swisstopo:ytcos +
altitude_swisstopo:ytsin2 +
altitude_swisstopo:tcos +
altitude_swisstopo:tsin2 +
dist2 +
hum_indx_loc2:dist2 +
hum_indx:ytsin +
hum_indx:ytcos +
hum_indx:ytcos2 +
hum_indx:tsin +
hum_indx:tcos +
hum_indx:cover_swisstopo +
prey_avail:ytsin2 +
prey_avail:ytcos2 +
prey_avail:tsin +
prey_avail:tcos +
strata(loc_id)+cluster(id_anim), data = dat)

#lynx_model$r.effect
twostep<-cbind(beta=lynx_model$beta, se =lynx_model$se)

write.csv(twostep,"/Users/Clara/Documents/Master Thesis/Data/Lynx/twostep.csv",
row.names = TRUE)

}
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if (run_twostep==0){
twostep=read.csv("/Users/Clara/Documents/Master Thesis/Data/Lynx/twostep.csv",

row.names = 1)
}

And finally, the Poisson model with random effects.

run_random=0

if (run_random==1){
TMBStruc = glmmTMB(use~cover_swisstopo +altitude_swisstopo+

cover_swisstopo:ytcos2 +
cover_swisstopo:tsin +
cover_swisstopo:tsin2 +
cover_swisstopo:tcos2 +
hum_indx +
prey_avail +
I(altitude_swisstopoˆ2) +
I(hum_indxˆ2) +
I(prey_availˆ2) +
altitude_swisstopo:ytcos +

altitude_swisstopo:ytsin2 +
altitude_swisstopo:tcos +
altitude_swisstopo:tsin2 +
dist2 +
hum_indx_loc2:dist2 +
hum_indx:ytsin +
hum_indx:ytcos +
hum_indx:ytcos2 +
hum_indx:tsin +
hum_indx:tcos +
hum_indx:cover_swisstopo +
prey_avail:ytsin2 +
prey_avail:ytcos2 +
prey_avail:tsin +
prey_avail:tcos+

(1|loc_id)+
(0+cover_swisstopo|id_anim) +
(0+altitude_swisstopo|id_anim)+
(0+hum_indx|id_anim)+
(0+prey_avail|id_anim)+
(0+cover_swisstopo:ytcos2|id_anim)+
(0+cover_swisstopo:tsin|id_anim)+
(0+cover_swisstopo:tsin2|id_anim)+
(0+cover_swisstopo:tcos2|id_anim)+
(0+I(altitude_swisstopoˆ2)|id_anim)+

(0+I(hum_indxˆ2)|id_anim)+
(0+I(prey_availˆ2)|id_anim)+

(0+altitude_swisstopo:ytcos|id_anim)+
(0+altitude_swisstopo:ytsin2|id_anim)+
(0+altitude_swisstopo:tcos|id_anim)+
(0+altitude_swisstopo:tsin2|id_anim)+

(0+hum_indx_loc2:dist2|id_anim) +
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(0+hum_indx:ytsin|id_anim) +
(0+hum_indx:ytcos|id_anim) +
(0+hum_indx:ytcos2|id_anim) +
(0+hum_indx:tsin|id_anim) +
(0+hum_indx:tcos|id_anim) +
(0+hum_indx:cover_swisstopo|id_anim) +
(0+prey_avail:ytsin2|id_anim) +
(0+prey_avail:ytcos2|id_anim) +
(0+prey_avail:tsin|id_anim) +
(0+prey_avail:tcos|id_anim) +

(0+dist2|id_anim),
family=poisson,
data=dat,
doFit=FALSE)

TMBStruc$parameters$theta[1] = log(1e3)
TMBStruc$mapArg = list(theta=factor(c(NA,1:27)))
m = glmmTMB:::fitTMB(TMBStruc)

random=summary(m)$coefficients[1]
random
write.csv(random,"/Users/clara/Documents/Master Thesis/Data/Lynx/glmmrandomwithintercept.csv",

row.names = TRUE)
}
if (run_random==0){

random=read.csv("/Users/Clara/Documents/Master Thesis/Data/Lynx/glmmrandomwithintercept.csv",
row.names = 1)

}
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source("/Users/clara/Documents/Master Thesis/Simulations/functions.R")
library(raster)
library(rgdal)
library(here)
library(tidyverse)
library(sf)
library(amt)

We start by importing the raster that represents the environmental variable. It is a general land cover layer
with the extent of Minnesota.

ras<-raster(here("/Users/clara/Documents/Master Thesis/Code/Crane/nlcdmnutm15.tif"))

We then bring in GPS points, select one individual, and filter to keep only the locations in Minnesota.

df1 <- read_csv(here("df16.csv"))
df <- subset(df1,id=="7J (Melby colt #1)" )
df<-df %>% filter(location.long>(-96),

location.long<(-93),
location.lat>45,
location.lat<48)

We make the data into a track.

track<-make_track(df,location.long,location.lat,loctime, crs = CRS("+init=epsg:4326"))
track <- transform_coords(track, CRS(proj4string(ras)))

We can now prepare the track to be fitted, by among other things sampling available steps and extracting
the covariate. The land cover gives a lot of categories, so we regroup into 7 categories, with ‘wetlands’ as
the reference category. We then fit the conditional logistic regression.

set.seed(123)
trk<-prepare_track(track)
fit<-trk%>% fit_clogit(case_ ~ category + sl_ + log_sl_ + cos(ta_) + strata(step_id_))

We can then apply SIMEX on the data. We vector variance contains the variances of the error that will be
used to blur the original track.
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set.seed(123)
start_variance<-1200
run=1
if (run==0){
param <- data.frame(matrix(ncol = 13, nrow = 0))
names <- c("categorybarren","categorydeveloped","categoryforest",

"categoryherbaceous","categoryplanted_cultivated",
"categorywater","SDbarren","SDdeveloped","SDforest",
"SDherbaceous","SDplanted_cultivated","SDwater","error")

colnames(param) <- names
variance<-c(500,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500,6000,6500,7000)
param[nrow(param) + 1,]=c(summary(fit)$coef[1:6,1],

summary(fit)$coef[1:6,3]ˆ2,start_variance)

for (j in 1:length(variance)) {
for (i in 1:50){

trk_blur<-blur(track,variance[j])
trk_blur<-prepare_track(trk_blur)
fit_blur<-trk_blur%>% fit_clogit(case_ ~ category + sl_ +

log_sl_ + cos(ta_) + strata(step_id_))
param[nrow(param) + 1,]=c(summary(fit_blur)$coef[1:6,1],

summary(fit_blur)$coef[1:6,3]ˆ2,start_variance+variance[j])
}

}
}

if (run==1){
param<-read.csv("/Users/clara/Documents/Master Thesis/Code/Crane/crane_results4.csv")
param[1,]=c(summary(fit)$coef[1:6,1],summary(fit)$coef[1:6,3]ˆ2,start_variance)
}

We realised that there was a mistake in the above code, as we saved the variances and not the standard
deviations under the name SD. Instead of running the code again, we change the names of the columns to
fix that mistake.

names <- c("categorybarren","categorydeveloped","categoryforest",
"categoryherbaceous","categoryplanted_cultivated",
"categorywater","Variancebarren","Variancedeveloped","Varianceforest",
"Varianceherbaceous","Varianceplanted_cultivated","Variancewater","error")

colnames(param) <- names

Now that we have the results from the simulation part of SIMEX, we plot the results for each category and
proceed with the extrapolation to obtain the SIMEX parameter. We extrapolate with a linear, quadratic
and cubic function, and pick the best one according to the AIC criteria. We also find the standard errors of
the SIMEX parameter. Here is the code for one category, as they are all similar.

df<-param %>% group_by(error) %>%
summarise(categoryplanted_cultivated=mean(categoryplanted_cultivated))

fit = lm(categoryplanted_cultivated ~ error, data = df)
fit2 = lm(categoryplanted_cultivated ~ error+I(errorˆ2), data = df)
fit3 = lm(categoryplanted_cultivated ~ error+I(errorˆ2)+I(errorˆ3), data = df)
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c(AIC(fit),AIC(fit2),AIC(fit3))

new_df<-data.frame(error=0)
p<-predict(fit2, newdata = new_df, interval = "confidence", type = "response")
naive<-as.double(subset(df,error==1200)[2])

variable<-pull(param,categoryplanted_cultivated)
variance<-pull(param,Varianceplanted_cultivated)
error<-pull(param,error)
sd<-sqrt(variance)
dfvar<-data.frame(variable,sd,error)
sdplanted<-sqrt(find_variance(subset(dfvar,error!=1200)))

confsimex<-ConfidenceInt(p[1],sdplanted)
conf<-ConfidenceInt(param[1,5],sqrt(param[1,11]))

plot<-ggplot(data=subset(param,error!=1200), aes(group=error,x=error,
y=categoryplanted_cultivated)) + geom_boxplot()+xlim(0,8500)+
ylim(-0.25,-0.05)+geom_point(aes(y = p[1], x = 0,
color="SIMEX parameter from quadratic extrapolation",
label="hello"),size=3.5)+xlab("error variance")+
ylab("parameter")+
ggtitle(label="Planted Cultivated")+
theme(plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5))+
labs(color="")+theme(legend.position="none")+
geom_point(data = subset(df,error!=1200), mapping = aes(x = error,
y = categoryplanted_cultivated,color="mean parameter per error level"),size=3.5)+
theme(axis.title=element_text(size=20),axis.text=element_text(size=15),
plot.title = element_text(size=26,hjust = 0.5))+

geom_point(aes(y = naive, x = 1200, color="naive parameter",label="blop"),size=3.5)+
geom_segment(aes(x=1200,y=conf[2],xend=1200,yend=conf[1]),color="chartreuse4",size=0.7)+
geom_segment(aes(x=0,y=confsimex[1],xend=0,yend=confsimex[2]),color="steelblue3",size=0.7)

plot
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