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Numerical reservoir simulation has been recognized as one of the most frequently used aids
in reservoir management. Despite having high calculability performance, it presents an acute
shortcoming, namely the long computational time induced by the complexities of reservoir
models. This situation applies aptly in the modeling of fractured reservoirs because these
reservoirs are strongly heterogeneous. Therefore, the domains of artificial intelligence and
machine learning (ML) were used to alleviate this computational challenge by creating a
new class of reservoir modeling, namely smart proxy modeling (SPM). SPM is a ML ap-
proach that requires a spatio-temporal database extracted from the numerical simulation to
be built. In this study, we demonstrate the procedures of SPM based on a synthetic fractured
reservoir model, which is a representation of dual-porosity dual-permeability model. The
applied ML technique for SPM is artificial neural network. We then present the application
of the smart proxies in production optimization to illustrate its practicality. Apart from
applying the backpropagation algorithms, we implemented particle swarm optimization
(PSO), which is one of the metaheuristic algorithms, to build the SPM. We also propose an
additional procedure in SPM by integrating the probabilistic application to examine the
overall performance of the smart proxies. In this work, we inferred that the PSO had a
higher chance to improve the reliability of smart proxies with excellent training results and
predictive performance compared with the considered backpropagation approaches.

KEY WORDS: Reservoir simulation, Dual-porosity dual-permeability, Smart proxy modeling, Back-
propagation algorithms, Particle swarm optimization.

INTRODUCTION

Hydrocarbons are among the primary sources
of energy in today�s world. This is proven by a sta-
tistical review conducted by British Petroleum

(2020), which found that, in 2019, oil contributed to
the largest share of the world primary energy of
about 33.1%, whereas natural gas had the third
largest share of 24.2%. Hence, they play a pivotal
role in quenching the high demand of world energy
consumption and such demand will be likely in an
upward trend due to the increasing global popula-
tion (Gerald et al. 2014; International Energy
Agency 2018). In addition, the importance of
hydrocarbons is reflected by the significant influence
of their price on many other major economic do-
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mains (Lescaroux and Mignon 2009). This is illus-
trated clearly by the phenomenon of how many
other industries have been affected by the fluctua-
tion of oil price (Lescaroux and Mignon 2009).
Therefore, it is essential to have a sustainable
hydrocarbon production not only to fulfill the de-
mand for energy consumption, but also to maintain
the global economic growth. With respect to this,
carbonate reservoirs are one of the main sources of
hydrocarbons. These reservoirs make up approxi-
mately 60% of the global oil reserves and about 40%
of the global gas reserves (Schlumberger 2020b).
Most of these reservoirs are naturally fractured, and
hence, accurate modeling of fluid flow in these
reservoirs is one of the most critical steps to ensure
the sustainable production of hydrocarbons.

In general, modeling of fluid flow in porous
media can be perceived as a numerical reservoir
simulation. Reservoir simulation is one of the most
frequently used tools in reservoir management,
which is the application of technological, labor, and
financial resources to maximize the economic per-
formance and the hydrocarbon recovery of a reser-
voir (Wiggins and Startzman 1990). This is because it
has been implemented extensively to help predict
the performance of a reservoir as well as to provide
useful information for uncertainty analysis or any
optimization task that includes enhanced oil recov-
ery, hydraulic fracturing, and so forth. However, one
of the challenges of accurate modeling of fractured
reservoirs stems from a lack of underlying theory or
principle to describe the behavior of fluid flow in
these reservoirs. To mitigate this challenge, Bar-
renblatt (1960) established a theory pertaining to
fluid flow in fractured porous media. Based on this
theory, Warren and Root (1963) developed the dual-
porosity method, which has been one of the most
fundamental tools in simulating a fractured reser-
voir. However, this conventional model does not
sufficiently capture the realistic behavior of fluid
flow as fluid is assumed to move only through frac-
tures, whereas the matrix blocks only supply fluid to
fractures. Hence, this model was enhanced to the
dual-porosity dual-permeability (DPDP) model, in
which the transport of fluid between matrix blocks is
considered (Uleberg and Kleppe 1996). The details
regarding this model are explained further below.

Having developed the DPDP model implies
that fractured reservoirs can be simulated numeri-
cally. Nonetheless, another challenge in terms of

computational effort arises as the complexity of
simulated fractured reservoirs increases (including
as much details as possible to ‘‘describe realistically’’
a reservoir). Therefore, reservoir management
might not be sufficiently efficient to keep up with
sustainable hydrocarbon production. Fortunately, in
today�s world of digitalization, methods of artificial
intelligence and machine learning (AI&ML) have
come to the rescue. In this context, Ertekin and Sun
(2019) provided a very comprehensive review on the
implementation of AI&ML methods in the field of
reservoir engineering. They also proposed the use of
hand-shaking protocol that would combine the
advantages of both traditional and intelligent reser-
voir modeling to develop more powerful computa-
tional protocols. With this, the great potential and
extensive utilization of AI&ML-based methods have
also been demonstrated further in many technical
domains of the petroleum industry (Mohaghegh
2000a, b, c; Parada and Ertekin 2012; Nait Amar and
Jahanbani Ghahfarokhi 2020; Nait Amar et al.
2020). Moreover, with the help of AI&ML, Moha-
ghegh (2011) has coined a new class of reservoir
modeling, namely smart proxy modeling (SPM).
Fundamentally, SPM is the development of an arti-
ficial neural network (ANN) that receives both input
and output data from a reservoir simulation model
and undergoes a training phase. After the ANN has
been trained to recognize the pattern induced by the
data (relationship between input and output), it can
yield the estimated result that matches with that
produced by the reservoir model within a few sec-
onds or minutes. Therefore, this ANN is termed
‘‘smart proxy.’’ Regarding this, the word ‘‘smart’’
reveals the ability to learn and capture the under-
lying physical behavior of a simulated reservoir
model through pattern recognition and the word
‘‘proxy’’ denotes to act on behalf of the original
model (Mohaghegh 2017, 2018).

For the past decade, SPM has been considered
as a technological breakthrough in the petroleum
industry as it has not only reduced the reservoir
simulation time significantly, but it also provided the
results within an acceptable range of accuracy. The
successful application of smart proxies has been
demonstrated in many literatures of the oil and gas
industry. Mohaghegh et al. (2006) developed surro-
gate reservoir model (the initial nomenclature of
SPM), which was an accurate representation of a
sophisticated full-field reservoir model, and used it
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for uncertainty analysis. With this breakthrough,
these surrogate models were implemented on dif-
ferent real fields in Saudi Arabia for geological
uncertainty analysis (Mohaghegh et al. 2012a, c).
Mohaghegh et al. (2012b, 2015) then reformulated
the concept of SPM by categorizing it as grid-based
and well-based. As the nomenclatures imply, grid-
based SPM is done for the analysis of numerical
model at grid block level, whereas well-based SPM
is for the analysis at well level. Grid-based SPM has
been applied in several real-life CO2 sequestration
projects (Mohaghegh et al. 2012b), whereas well-
based SPM has been implemented for optimization
of production scheduling of a real field in United
Arab Emirates (Mohaghegh et al. 2015). Besides,
the application of SPM was then extended gradually
to other domains, such as history matching and en-
hanced oil recovery (EOR). He et al. (2016) coupled
the use of SPM with differential evolution (DE) to
perform automatic history matching. Alenezi and
Mohaghegh (2016) also built a SPM that reproduced
and forecasted the dynamic properties of a reservoir
that has been water-flooded. Moreover, Mohaghegh
(2018) discussed the utilization of SPM under the
context of CO2-EOR as a storage mechanism. Fur-
thermore, Parada and Ertekin (2012) applied SPM
to establish successfully a new screening tool for
four different improved oil recovery (IOR) meth-
ods, including waterflooding, miscible injection of
CO2 and N2, and injection of steam. Therefore,
these literatures do not only show the high applica-
bility of SPM in oil and gas industry, but they also
highlight its potential for further enhancement.

Nevertheless, SPM still has few disadvantages.
One of them is that a smart proxy built can only be
applied to predict what the simulated reservoir
might estimate only if the physics assumed in the
numerical simulation is not changed. For instance, if
a smart proxy is developed on a reservoir model
with reservoir pressure of 4000 psia,1 then it cannot
be applied to perform any estimation of parameters
when the reservoir pressure is not 4000 psia. To
handle this problem, another smart proxy needs to
be established. In addition to this, the spatio-tem-
poral database is considered as the backbone of the
SPM as it is the main component used to train the
ANN model. Thus, if another smart proxy is built (as

previously mentioned), then the database needs to
be prepared again. Despite having such inconve-
nience, the time spent on preparation of this data-
base is still much less than the time spent by
numerical simulation. Pertaining to this, the prepa-
ration of a spatio-temporal database might take
about few hours (or for few minutes with the help of
commercial software). However, for a sophisticated
reservoir simulation model, the computation might
take a few days. It is important to understand that
smart proxy is another example of data-driven
model as it is developed by analyzing the collected
data (Alenezi and Mohaghegh 2016, 2017). Hence,
careful attention is required when a spatio-temporal
database is created. If incorrect data are provided to
the smart proxy, it will ‘‘learn wrongly’’ and produce
unsatisfactory results. This complies with the short
phrase that goes ‘‘garbage in and garbage out.’’

Although there are many literatures explaining
the theoretical basis of SPM, it is still treated as
‘‘black-box’’ as commercial software is mostly used
to build a smart proxy. Thus, in this work, one of the
objectives was to provide a more vivid illustration of
how SPM can be performed based on a synthetic
reservoir model. Besides, we present another alter-
native of training algorithm apart from the back-
propagation algorithm that is mostly used in SPM.
More intriguingly, we include a probabilistic appli-
cation to evaluate further the overall performance of
the developed SPMs. We opine that this integration
in SPM is insightful as it helps to better reflect the
performance of the proxy models. After this intro-
duction, we discuss briefly the mathematical con-
cepts of the DPDP model and how ANN operates.
Three different algorithms, which are two examples
of backpropagation algorithms, namely stochastic
gradient descent (SGD) and adaptive moment esti-
mation (Adam) algorithms, and particle swarm
optimization (PSO), were implemented as the
learning algorithm to train the ANN. Hence, the
fundamentals of these algorithms are discussed next.
Then, we explicate the background of the reservoir
model simulated based on the DPDP method and
the problem setting of the production optimization
case. We also explain how the respective SPM is
developed upon it and used in production opti-
mization. Then, the results and discussion will fol-
low. Prior to proceeding to conclusions, we also
provide another case study, which considers a
heterogeneous fractured reservoir model, to further
show the robustness of the methodology discussed in
this paper.1 1 psia = 6894.75728 Pa.
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METHODOLOGY

Fundamentals of DPDP Model

In the conventional dual-porosity model, a grid
block consists of two portions—the matrix block and
the fractures. In this model, the fluid flows mainly
through the fractures, whereas the matrix blocks
only provide fluids to the fracture (Uleberg and
Kleppe 1996). This phenomenon of fluid flow is
illustrated in a two-dimensional case as in Figure 1.

Assuming a one-dimensional and one-phase
flow case, the transport of fluid through the fracture
can be mathematically expressed as (Barrenblatt
1960; Warren and Root 1963):
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where k is permeability, B is the formation volume
factor, l is viscosity of fluid, and £ is porosity. The
term bqmatrix fracture indicates the supply of fluid to
fractures by the matrix block, and its mathematical
expression is:
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Because the assumption of no fluid flow be-
tween the blocks of matrix is not realistic, the dual-
porosity model was extended to the DPDP model by
adding a flow term in Eq. (2) (Uleberg and Kleppe

1996). Hence, the system of equations representing
the DPDP model is:
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Regarding the exchange term, it can be further

represented as:

� bqmatrix fracture ¼ r
kmatrix

l
Pmatrix � Pfractureð Þ ð5Þ

where P denotes pressure, whereas r is the shape
factor or the geometric factor. This shape factor
represents the geometry of the matrix block, and it
dictates the flow fluid between the matrix blocks and
the fracture system (Kazemi et al. 1976). There are
many mathematical formulations available in the
literature to describe this shape factor depending
upon the physical effects and mechanisms consid-
ered (Warren and Root 1963; Ahmad and Olivier
2008; Su et al. 2013). In this context, one of the most
widely applied forms is the one proposed by Kazemi
et al. (1976), and it was used in this study. Regarding
its formulation, Kazemi et al. (1976) discussed that
the shape factor can be computed in a three-di-
mensional case as:

r ¼ 4� 1

L2
x

þ 1

L2
y

þ 1

L2
z

" #
ð6Þ

where the L term refers to the dimension of the
matrix block in x-, y-, and z- directions.

ANN

ANN is a biologically inspired mathematical
model or algorithm that can predict any relevant
output within an acceptable range of accuracy after
learning the relationship between the inputs and
outputs provided (Wilamowski and Irwin 2011; Bu-
duma and Locasio 2017). This biological inspiration
stems from the imitation of learning method used in
human brains. ANN is very robust due to its high
generalization ability in capturing the nonlinearity
of any process investigated (Gharbi and Mansoori

Figure 1. Fluid flow behavior in a dual-

porosity model for two-dimensional case.

The red arrows indicate the flow thorough

fracture network, whereas the black arrows

denote the supply of fluid from matrix.
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2005; Wilamowski and Irwin 2011; Nait Amar et al.
2018b). Thus, ANN is better than any traditional
regression approach to solve complicated mathe-
matical problems (Gharbi and Mansoori 2005).
There are different types of ANN, such as feed-
forward neural network, convolutional neural net-
work (CNN), recurrent neural network (RNN).
Multilayer perceptron (MLP), which is an example
of feed-forward neural network,2 was implemented
here. Regarding the architecture of MLP, it is made
up of three different types of layers, namely one
input layer, one or more hidden layers, and one
output layer (Wilamowski and Irwin 2011; Buduma
and Locasio 2017). Each of these layers comprises
simple calculating elements, which are known as
nodes, units, or artificial neurons (Gharbi and
Mansoori 2005). The output from each node in a
layer is multiplied by the weights (and biases). The
product enters the node in the next layer as input.
These inputs are then summed and applied to acti-
vation function, also known as transfer function, to
produce the output of the node. The structure or
topology of an arbitrary ANN that comprises one
input layer with three nodes, one hidden layer with
four nodes, and one output layer with two nodes is
shown in Figure 2.

Referring to Figure 2, the mechanism of ANN
can be expounded mathematically as follows. From
input layer to hidden layer, the output of the node is
computed as:

oj ¼ F
XNi

i¼1

wjioiþbji

 !
ð7Þ

Then, from hidden layer to output layer, the
output of the node is calculated as:

ok ¼ F
XNj

j¼1

wkjoj þ bkj

 !
ð8Þ

In Eqs. (7) and (8), the subscript i denotes the
input layer, the subscript j means the hidden layer,
and the subscript k indicates the output layer, N
shows the number of nodes in each layer, o indicates
either the output of node in the current layer or the
input of node from previous layer (based upon the
subscript), w is a set of weights, and b is a set of
biases. Weights are considered as the fitting param-
eters in modeling of an ANN, whereas bias is an
extra node that provides more flexibility for the
ANN model to be trained. There are many forms of
activation functions F that are readily used in ANN
modeling. The major ones include sigmoid, rectified
linear unit (ReLU), and hyperbolic tangent (Budu-
ma and Locasio 2017). Here, the activation function
used was ReLU and it is represented as:

F xð Þ ¼ 0forx � 0
xforx[0

�
ð9Þ

The derivative of the ReLU function is:

@F xð Þ
@x

¼ 0forx � 0
1forx[0

�
ð10Þ

Mathematically, ANN learns the relationship or
recognizes the pattern between input and output
data through the tuning of the sets of weights and
biases between the two layers. Through a number of
epochs (or iterations), these weights and biases are
optimized by minimizing any predefined error
function (also known as loss or cost function), such
as mean squared error, average absolute percentage
error. There are different examples of algorithms
that can be used to optimize these weights and bia-
ses. Backpropagation algorithm has been commonly
used in this context. Examples of backpropagation
algorithm are gradient descent (GD), Gauss–New-
ton algorithm, Levenberg–Marquardt algorithm
(LM), adaptive gradient algorithm (AdaGrad), root-

Figure 2. Structure of an ANN.

2 To avoid confusion, feed-forward neural network, artificial

neural network, multilayer perceptron, smart proxy model, smart

proxy, and proxy model technically share the same definition in

this paper. However, feed-forward neural network is considered

as a family of artificial neural network and it includes several

types such as multilayer perceptron, radial basis function network,

correlation filter neural network.
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mean-square propagation (RMSProp), Adam, and
so forth. Additionally, other metaheuristic algo-
rithms, like PSO, DE, genetic algorithm (GA), and
so forth, have also been proven useful for neural
network training (Nait Amar et al. 2018a, b). As
Bianchi et al. (2009) have counseled, metaheuristic
algorithm is a high-level mathematical algorithm
that is generally natural inspired and used to solve
more sophisticated optimization problems. In this
study, both backpropagation algorithm and meta-
heuristic approach have been employed to enable
the ANN to ‘‘learn.’’ The selected backpropagation
algorithm was GD, whereas PSO was the chosen
metaheuristic training algorithm.

Backpropagation Algorithm

For the workflow of the GD algorithm, both the
inputs and outputs are fed to the ANN as the
training phase starts. When the inputs enter the
ANN and proceed through the layers, they are
gradually processed to yield the predicted output.
Thereafter, the predicted output is compared with
the desired output. Errors are then propagated back
through the ANN. During this backpropagation, the
weights and biases are adjusted to minimize the er-
rors. Such process is repeated iteratively until either
the errors become less than the predefined tolerance
or the number of iterations is reached. The GD is an
algorithm that applies the first-order derivative for
computation. In this context, the first-order deriva-
tive of the error function is implemented to deter-
mine the minimum in the error space. The
calculation of gradient at iteration t can be ex-
pressed mathematically as:

gt ¼
@E x;wtð Þ

@wt
¼ @E

@w1;t

@E

@w2;t

@E

@w3;t
. . .

@E

@wN;t

� �T
ð11Þ

where E indicates the error function, x the input
vector, and w the weight (and bias) vector. There-
after, the weights are updated by using the following
equations. The same idea applies to the updating of
the biases.

wtþ1 ¼ wt þ Dwt ð12Þ

wtþ1 ¼ wt � c� gtð Þ ð13Þ
In Eqs. (12) and (13), the weights (and biases)

at iteration t + 1 are updated using the weights (and
biases) at iteration t, the gradient at t, and c, which is

the learning rate or step size. Therefore, the gradient
is always computed at every iteration step to adjust
the weights (and biases). Pertaining to the compu-
tation of gradient of error function, it is highly
dependent on the forms of error function and acti-
vation function that were used. Here, the error
function used was the mean squared error, whereas
the activation function used was ReLU.

The mathematical formulation of the applica-
tion of GD as learning algorithm is as follows. For
the following derivation, the meaning of the sub-
scripts used here is the same as explained above. The
term tmeans the target value or the actual output, P,
denotes the total number of training sets provided;
thus:

E x; w; bð Þ ¼ 1

P

XP
k¼ 1

tk � okð Þ2 ð14Þ

Having defined the error function, the back-
propagation algorithm starts by computing the
weight update between the hidden and output lay-
ers. To perform this computation, the gradient of the
error function with respect to the weights between
the hidden and output layers is determined. There-
after, the similar procedure is conducted to calculate
the weight update between the hidden and input
layer. This algorithm carries on iteratively until the
value of error function (obtained by using the up-
dated weights and biases) is less than a predefined
tolerance or the initialized number of epochs is
reached. For a more substantial understanding of
the mathematical formulation of the backpropaga-
tion algorithm, peruse Wilamowski and Irwin (2011)
and the relevant literatures. Here, the Keras mod-
ule, which was developed by Chollet (2019), had
been implemented with the help of the programming
language Python 3.8.1 and TensorFlow 2.1.0 to use
the GD algorithm to optimize the weights and bia-
ses. However, it is essential to note that in Keras
module, instead of using GD algorithm, the
stochastic gradient descent (SGD) algorithm is ap-
plied. The fundamentals of these two algorithms are
the same. The main difference is that, in SGD, the
gradient is only computed once at each iteration step
(by randomly selecting a sample from the training
set) and is used further (Buduma and Locasio 2017).
By inducing this stochastic behavior, the computa-
tional cost is reduced drastically. Apart from SGD,
Adam was another backpropagation algorithm used
here; it is a more advanced and robust variant of
SGD developed by Kingma and Ba (2015). Mathe-
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matically, it approximates the first and second mo-
ments of gradients to adaptively calculate the
learning rates for different parameters (Kingma and
Ba 2015). Refer to Kingma and Ba (2015) for the
details of Adam. Here, Adam was also implemented
using Python 3.8.1 and TensorFlow 2.1.0.

PSO

PSO was introduced by Kennedy et al. (1995)
based upon the simulation of the social behavior of a
flock of flying birds. As explained in several litera-
tures (Kennedy et al. 1995; Shi and Eberhart 1999;
Nait Amar et al. 2018a), mathematically, this algo-
rithm operates by having a population of particles,
which is also known as a swarm of particles. Each of
these particles corresponds to a potential position or
a solution in a search space. Then, the position of
each particle is updated iteratively according to its
position and velocity at previous timestep. The
movements of the particles in the search space are
controlled by their own best-known position (the
local best position) and their best-known position in
the entire swarm (the global best position). As this
process occurs iteratively, the particles in the swarm
will eventually converge to an optimal point, which
is deemed as the best solution in the search space.
The position and velocity for the jth particle in a N-
dimensional space at iteration t can be expressed,
respectively, as:

xj;t ¼ xj1;t; xj2;t; xj3;t; . . . ; xjN;t

� �
ð15Þ

vj;t ¼ vj1;t; vj2;t; vj3;t; . . . ; vjN;t

� �
ð16Þ

Then, the velocity of each particle at next iter-
ation t + 1 is updated as (Shi and Eberhart 1999):

vjN;tþ1 ¼ vjN;t þ c1r1 pbestjN;t � xjN;t

	 

þ c2r2 gbestN;t � xjN;t

	 

ð17Þ

In Eqs. (15), (16), and (17), vjN,t and xjN,t rep-
resent the velocity of the jth particle at iteration t
and its corresponding position in N-dimension
quantity, respectively; pbestjN,t corresponds to the
N-dimension quantity of the individual j at the best
position or the local best position at iteration t;
gbestN,t is the N-dimension quantity of the swarm at
the best position or the global best position at iter-
ation t; c1 denotes the cognitive learning factor (also
known as cognitive weight), whereas c2 means the

social learning factor (also known as social weight);
r1 and r2 are random numbers extracted between 0
and 1. Upon updating the velocity, each particle
moves to a new potential solution as:

xjN;tþ1 ¼ xjN;t þ vjN;tþ1 ð18Þ

A new parameter, inertial weight x introduced
by Shi and Eberhart (1998), was included in Eq. (17)
to improve the convergence condition. This also
gradually decreases the velocity of the particles to
have the swarm of particles under control (Nait
Amar et al. 2018a). In other words, it plays a part in
balancing the global search also known as explo-
ration, and the local search also termed as
exploitation (Shi and Eberhart 1998; Zhang et al.
2015):

vjN;tþ1 ¼ xvjN;t þ c1r1 pbestjN;t � xjN;t

	 

þ c2r2 gbestN;t � xjN;t

	 

: ð20Þ

In the context of the minimization problem, an
objective function f to be minimized is defined.
Then, to determine the local best solution at itera-
tion t + 1, the following formula is given (Nait Amar
et al. 2018a):

pbestjN;tþ1 ¼
pbestjN;t; iff ðpbestjN;tÞ ¼ fðxjN;tþ1Þ

xjN;tþ1; otherwise

�

ð21Þ
Then, to find the global best solution at itera-

tion t + 1, the following mathematical formulation is
presented:

gbestjN;tþ1 ¼ min f pbestjN;tþ1

	 
h i
ð22Þ

In this study, the objective function was the
error function in the ANN modeling. To apply PSO
as the training algorithm of ANN, this can be simply
done by treating the weights and biases as the par-
ticles in the algorithm. Hence, the total number of
particles in a swarm is the total number of weights
and biases. Then, the optimization can be performed
using the abovementioned formulations. Here, the
package of PySwarms version 1.1.0, which was built
by Miranda (2019), was implemented by using the
programming language Python 3.8.1 to perform the
optimization. In comparison with the SGD algo-
rithm, one of the advantages of PSO is that it is a
derivative-free algorithm. This implies that it is more
robust as it can be utilized to optimize a mathe-
matical function that is not easily differentiable.
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NUMERICAL SIMULATION MODEL

A three-dimensional, two-phase (black oil and
water) reservoir simulation model was built to rep-
resent the ‘‘true’’ reservoir model. The ‘‘true’’
reservoir is in fact inspired by the dual-porosity
model discussed in Firoozabadi and Thomas (1990),
which is a two-dimensional and three-phase model
(black oil, water, and gas—including free and dis-
solved gas). However, most of the reservoir param-
eters and relevant fluid properties were changed to
develop the ‘‘true’’ model. This ‘‘true’’ reservoir
model supplied the necessary data for the develop-
ment of the respective SPM. This reservoir was a
DPDP model made up of three layers with uniform
thickness.3 The top of this reservoir was set at the
depth of 305 m. About the geometry of this model,
each grid block had a length of 25 m, a width of
25 m, and a height of 15.2 m. Thus, the dimension of
the reservoir model was 1525 m 9 1525 m 9 45.7
m, which corresponds to the number of blocks being
61 9 61 9 3. Regarding the well configuration, it
was the five-spot pattern in which four injectors
were, respectively, set to penetrate near the corners
of this reservoir model and a producer was placed in

the center of the reservoir. The injectors (producer)
would inject water to (would produce from) all the
fracture layers. Besides that, the performance of
each well in this model was controlled by its
respective rate. The target of the field production
rate was set equal to the target of the field injection
rate for pressure maintenance. For instance, if the
target rate of the producer was 400 m3/day, then the
target rate of each of the injector was 100 m3/day
(totaling up to 400 m3/day of the target of the field
injection rate). The numerical simulation of this
DPDP reservoir model was conducted using
ECLIPSE 100 software Schlumberger (2020a).
Other details of this model are summarized in Ta-
ble 1.

For further clarification, as presented in Ta-
ble 1, the values of matrix block heights, matrix
permeability, and effective fracture permeability
were initialized for x-, y-, and z-directions. Addi-
tionally, the relative permeability curves and the oil–
water capillary pressure curves for matrix media are
illustrated in Figure 3. For the two-phase flow in
fracture, the linear relationship between relative
permeability and saturation, which is also known as
‘‘X-curve’’, is one of the most fundamental models
that was determined by Romm (1966). ‘‘X-curve’’
has been used in several fracture-related researches
in petroleum industry (Van Golf-Racht 1982; Gil-
man and Kazemi 1983; Firoozabadi and Thomas
1990). Besides that, regarding the oil–water capillary
pressure in the fracture system, it is equal to zero as

Table 1. Essential parameters used to develop the DPDP reservoir model

Parameters Values Units

Initial reservoir pressure 3.47 9 107 Pa

Oil density 819.18 kg/m3

Water density 1041.20 kg/m3

Oil viscosity 0.0035 Pa s

Water viscosity 0.0005 Pa s

Initial water saturation Matrix media Fracture media

Layer 1 0.1922 0.000

Layer 2 0.1924 0.000

Layer 3 0.1926 0.000

Layer Matrix block height (m) Matrix permeability (m2) Effective fracture permeability (m2) Porosity

Matrix media Fracture media

1 9.144 9.869 9 10-15 1.480 9 10�12 0.210 0.0015

2 6.096 1.974 9 10-14 1.974 9 10�12 0.230 0.0020

3 12.192 1.480 9 10-14 2.467 9 10�12 0.250 0.0018

3 In the modeling of DPDP, if three layers are defined, then there

will be six resultant layers in which three of them correspond to

the matrix system and the remaining three layers correspond to

the fracture system. These fluid flow mechanisms of these two

systems are represented by extending Eqs. (3), (4), and (5) to

three-dimensional and two-phase case.
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shown in the model discussed by Firoozabadi and
Thomas (1990). In short, we selected these models of
relative permeability curve and oil–water capillary
pressure in both matrix and fracture systems for
illustrative purpose. By using the software ResIn-
sight developed by Ceetron Solution AS (2020), this
reservoir model depicting oil saturation at the water
injection rate of 636 m3/day (after the injection
period of 5 years) is displayed correspondingly in
Figure 4 for the matrix system and in Figure 5 for
the fracture system.

Based on Figures 4 and 5, much more oil had
been swept toward the producers in Layer 3 for both
matrix and fracture media. Because the injectors

were (the producer was) perforated in all the frac-
ture layers, this denoted that the injected water flo-
wed and swept the oil in (the oil was only produced
from) the fracture systems. Given the homogeneity
of every layer of the model and the high effective
permeabilities in z-direction for all the fracture
layers, the cross-flow of fluids between the fracture
layers was prominent to contribute to the high
sweeping of oil in Layer 3 of the fracture media. This
scenario also occurred to the matrix media because
it needed to supply the oil to the fracture system
where most of the oil has been swept and produced.
In this context, we reiterate that the DPDP reservoir
modeling was not the main goal of this work. In fact,
we intended to design a valid DPDP model to
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Figure 3. (a) Relative permeability curve. (b) Oil–water capillary pressure curve for the matrix media.

Figure 4. Overview of the matrix system of the reservoir

model: (a) Layer 1; (b) Layer 2; (c) Layer 3.

Figure 5. Overview of the fracture system of the reservoir

model: (a) Layer 1; (b) Layer 2; (c) Layer 3.
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demonstrate that our developed proxy model was
functioning accurately.

PRODUCTION OPTIMIZATION

Smart proxy is widely developed in the petro-
leum industry because of its inexpensive computa-
tional effort. However, SPM is an objective-oriented
task, which implies that modelers need to first know
what the smart proxy is used for prior to developing

it. After identifying the purposes or functions of the
model, modelers would have a well-established
understanding pertaining to the preparation of the
spatio-temporal database (input and output data)
used for neural network training. Regarding this, we
used an illustrative example of production opti-
mization as the objective of developing the smart
proxy. For this illustrative example, we assumed the
production lifetime of the reservoir model discussed

Table 2. Values of the economic parameters used in this example

of production optimization

Parameters Values Units

Oil price, Po 377.40 USD/m3

Cost of produced water, Pw 44.02

Cost of injected water, Pinj 44.02

Monthly discounted rate 0.833 %

Table 3. Simulation scenarios executed for SPM

Scenario Index Injection rate (m3/day)

1 636

2 676

3 715

4 755

5 795

Figure 6. General workflow of SPM.
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to be 30 years and the objective function to be the
net present value (NPV). In this case, we needed to
decide the target of the field injection rate that can
maximize the NPV throughout the production life-
time. The NPV for this optimization example can be
formulated as:

NPV ¼
XN

k¼ 0

PoQo;k � PwQw;k � PinjQinj;k

ð1 þ rÞk
ð23Þ

where the subscripts o, w, and inj denote oil, water
(produced), and injected water, respectively; P is the
price (or cost) per standard barrel (the correspond-
ing unit is USD/m3), Q is total amount for a certain
timestep (the respective unit is m3), r is the discount
rate, and k is the timestep. To calculate Q, the fol-
lowing equation was used:

Qi� o;w;injf g;k ¼ qi� o;w;injf g;k � Dtk ð24Þ

where q is the flow rate reported (either by the
numerical simulation or the developed SPM) on
monthly basis (the unit is m3/day) and Dtk is the
number of months for timestep k. Here, the smart
proxy for the prediction of injection rates was not
developed as the injection rates remained constant
throughout the production period of the reservoir
model. Hence, for practical purpose, only two SPMs
were developed, which, respectively, predicted the
oil production rates and the water production rates
(both on monthly basis). With respect to this, it is
possible to develop a SPM that predicts simultane-
ously two outputs, namely both oil and water rates.
Nevertheless, the tuning of the weights and biases
can be more challenging. Thus, for better and more
fundamental demonstration of SPM, we decided not

to go with this option in this work. Upon formulating
the objective function used in this example of pro-
duction optimization, the setting of the economic
parameters4 used is presented in Table 2.

SMART PROXY MODELING

To build a SPM, the first step is to generate the
spatio-temporal database, which is used as the input
and output data to train, validate, and test the
model. This database is developed by retrieving the
essential data from the numerical reservoir simula-
tion. This step is very crucial because the data ex-
tracted will determine the usefulness of this proxy
model. For this work, the input and output data
selected from the ‘‘true’’ reservoir model are sum-
marized in Table 4 (the details are explained further
below). The database is considered as the backbone
of SPM because it is the source of the data used to
train the neural network.

Data Preparation and Analysis

To generate data used for the neural network
training, five different simulation scenarios, namely
the target of the injection rates at 636 m3/day, 676
m3/day, 715 m3/day, 755 m3/day, and 795 m3/day,
were run (the other parameters used in the numer-
ical reservoir simulation were kept constant). More

Table 4. Selected input and output data

Inputs Output

Indexes Simulation scenario Scenarios 1, 3, and 5 Field oil production rate at time t

Static inputs Grid block ith position Well group (grid block kth denotes the

perforated kth grid block)Grid block jth position

Grid block kth position

Porosity Average values of layers with well perforation,

layers of matrix media, layer of fracture mediaPermeability

Matrix block height Matrix media (parameters in DPDP modeling)

Shape factor

Dynamic inputs Time Monthly basis (timestep 0 to timestep 360)

Bottom-hole pressure For 4 injectors and 1 producer at time

t at time t at time t� 1Field water injection rate

Field oil production rate

4 We understand that the economic parameters used here might

not reflect the real-world case, but our goal here is to present the

application of the smart proxy via an illustrative optimization

task.
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precisely, only three of them were used for the
development of smart proxy, whereas the remaining
two were used as the blind cases, which are discussed
further below. Table 3 summarizes the five simula-
tion scenarios, of which scenarios 1, 3, and 5 were
used for SPM.

Upon running the simulations, the spatio-tem-
poral database was readily generated. This database
was developed by extracting the static and dynamic
data from the numerical simulation. In this context,
static data indicate that the data do not change with
time (e.g., porosity, permeability), whereas dynamic
data denote otherwise (e.g., instance, water injection
rate, oil production rate). One of the main chal-
lenges of SPM is the humongous size of the spatio-
temporal database. This occurs when the geological
properties (static properties) of the simulated
reservoir model are very heterogeneous (each of the
grid blocks in the reservoir model has different
values of porosity and permeability). The high geo-
logical heterogeneity will cause the SPM to be
impractical if all these static data are used. To alle-
viate this problem, several literatures (Mohaghegh
et al. 2012a, b, c, 2015; He et al. 2016; Alenezi and
Mohaghegh 2016, 2017) recommend the application
of tier system to delineate the reservoir model. In
this aspect, the Voronoi graph theory was imple-
mented to re-upscale these static properties through
the lumping of the reservoir layers. By doing so, the
size of the static inputs used in defining the structure
of the spatio-temporal database can be decreased.
However, here, despite having a total of 22,326 grid
blocks in the reservoir model, it was not considered
to be very complex because the porosity and per-
meability were homogenous per layer. Hence, the
reservoir model can be simply delineated by cate-
gorizing it into the matrix media and fracture media.

After resolving the issue of reservoir complex-
ity, the selection of input and output data needs to
be considered. For a real-life reservoir model, the
spatio-temporal database can still be gigantic to be
entirely used as the input and output for SPM. To
mitigate this challenge, the above-mentioned litera-
tures propose to use the key performance indicator
(KPI) coupled with fuzzy logic to help rank the de-
gree of influence of different properties in the
selection of input and output, and it is conducted
mostly by using commercial software. In this study,
for the purpose of illustration, the input and output
data for SPM were determined based upon our
knowledge of reservoir engineering. Thereafter, the
input and output data yielded the final database

applied for training, validating, and testing the
neural network as summarized in Table 4, which
shows 54 static inputs and 8 dynamic inputs.

On the one hand, regarding static properties,
the scenario index, which helps the neural network
to identify which instance of the injection rates is
used, was one of them. Besides this, the well loca-
tions make up 25 out of 54 static inputs because
there were 5 wells in total and each of the locations
was represented as ith, jth, and kth positions of the
grid blocks (with all the fracture layers perforated).
This corresponded to one group of the static inputs
(Table 4). For both porosity and permeability, each
of them comprised 11 static inputs, and 5 of them
corresponded to the inputs of the average values of
grid block where the wells were perforated and the
remaining 6 corresponded to the inputs for the 3
layers in both matrix and fracture systems. There-
after, the heights of the matrix blocks and the shape
factors, respectively, contributed to 3 static inputs.

On the other hand, the bottom-hole pressures
of all 5 wells contributed to 5 of the 8 dynamic in-
puts. Besides that, the timestep also acted as one of
the dynamic inputs. The water injection rate at time
t (on monthly basis) was also a dynamic input. The
remaining dynamic input was the oil production rate
at time t� 1 (on monthly basis), whereas the oil
production rate at time t (on monthly basis) was
used as the output data instead of being treated as
input data in this neural network training. For the
development of smart proxy for the prediction of
water production rates, the input and output data
were essentially the same. However, only the oil
production rates at time t� 1 and t needed to be
replaced with the water production rates at time t
1 and t. Besides that, each of the simulation sce-
narios was run for 30 years. Since the oil production
rates were reported on monthly basis, this corre-
sponded to 360 months (30 years � 12 months/
year). By starting from timestep = 0, there were a
total of 361 timesteps for each scenario. This re-
sulted in a total number of 68,229 records (3 sce-
narios � 361 timesteps/scenario � 63
records/timestep) in the database, which was to be
fed into the neural network for training.

Neural Network Training

Training the neural network is the most essen-
tial part of SPM. Prior to feeding the input and
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output data into the ANN for training, the database
is normalized between 0 and 1, thus:

xnormalized ¼ xi � xmin

xmax � xmin
ð25Þ

where x xnormalized means the normalized value of xi,
which is the initial data, whereas xmax and xmin,
respectively, indicate the maximum and minimum of
data in a group of properties (Table 4). Pertaining to
this, the ranges of the values of the training data
used are shown in Table 5. By normalizing the data,
the convergence condition can be further enhanced,
and the ANN is more likely to ‘‘learn better’’ the
relationship between the input and output data.
Apart from this, the topology of the ANN utilized
here is summarized in Table 6. The topology also
included two bias nodes, which are not listed in
Table 6. One of them was placed in between the
input layer and the hidden layer, whereas another
one was located between the hidden layer and the
output layer.

In addition, the relevant parameters required to
perform the backpropagation algorithms (SGD and
Adam) and PSO algorithms are presented in Ta-
ble 7. Regarding Adam, there are three other
essential parameters, such as exponential decay
rates of the estimates of the first and second mo-
ments, and constant of numerical stability. Here, the
values of these three parameters were, respectively,
assigned to be 0.9, 0.99, and 10–7. For PSO, because
each of the weight (bias) is treated as one particle,

the number of particle swarms indicated the number
of sets of particles used in the neural network
training.

Thereafter, the normalized database was parti-
tioned into three different sets, which are training,
validation, and testing.5 Here, 70% of the database
(47,760 records) was used for training, 15% (10,235
records) for validation, and 15% (10,234 records) for
testing. As the training set is fed into the ANN, it
enables ANN to capture the underlying physical
principles of the simulation by learning the rela-
tionship between input and output data. In addition,
the validation set ensures that its respective error
(loss) reduces, while the error produced by the
training set also decreases. This downward trend
reflects a healthy behavior of training process. In this
study, it was essential to clarify that the validation
set did not change the weights and biases (Mo-
haghegh 2018). It merely uses the weights and biases
optimized by the training set to evaluate whether the
training process is converging. In other words, the
training set was employed to prevent any over-
training or overfitting issue of the ANN (Mohaghegh
2018). Over-fitting occurs if the ANN memorizes the
pattern of the data provided and it is unable to give a

Table 5. Ranges of values of training data

Parameters Minimum

value

Maximum

value

Time (months) 0 360

Simulation scenario index 1 5

Well location (grid block position) 4 46

Porosity 0.0015 0.2500

Permeability (m2) 9.869 9 10–

15
2.467 9 10–

12

Matrix block height (m) 6.096 12.192

Shape factor (m) 0.0023 0.0091

Injector bottom-hole pressure (bara) 334 355

Producer bottom-hole pressure (bar) 140 345

Field water injection rate (m3/day) 636 795

Field oil production rate at time t and

t� 1 (m3/day)

0 795

Field water production rate at time t

and t� 1 (m3/day)

0 619

a1 bar = 100 kPa

Table 6. Topology of the SPM

Type of layers Number of layers Number of nodes

Input 1 62

Hidden 1 10

Output 1 1

Table 7. Essential parameters for the SGD and PSO algorithms

SGD and Adam PSO

Parameters Values parameters Values

Number of

Epochs

2000 Number of Epochs 2000

Step size 0.01 Number of particle

swarms

100

Inertial weight 0.800

Cognitive weight 1.005

Social weight 1.050

5 Mohaghegh (2018) discussed that the spatio-temporal database

should be divided into three different sets, namely training,

calibration, and validation. In this paper, to elude confusion, the

calibration set was termed as the validation set, whereas the

validation set was referred to as the testing set.
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good prediction when other data are supplied. The
testing set assists in checking the predictability of the
trained neural network.

After the trained ANN was evaluated by the
testing set, it should be provided with a new set of
data (that were not from the database) to perform a
blind case run. This step is crucial to further confirm
the robustness of the developed SPM. Once the re-

sults of the training and testing with a blind case run
are within acceptable accuracy, the SPM can be
employed for further analysis. The general workflow
of building a SPM is summarized in Figure 6. As
briefly discussed, the error function used in training
the ANN was the mean squared error. However, for
better evaluation of the performance of the ANN,
other metrics including average absolute percentage

Figure 7. Oil production rate: plots of loss function against

number of epochs for the smart proxy trained with (a) SGD,

(b) PSO, and (c) Adam.

Figure 8. Water production rate: plots of loss function against

number of epochs for the smart proxy trained with (a) SGD,

(b) PSO, and (c) Adam.
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error (AAPE%), root-mean-squared error (RMSE),
and the correlation coefficient (R2) were also
implemented, and their corresponding formulas are:

AAPEð%Þ ¼ 1

N

XN
i¼ 1

ti � oi
ti

����
����� 100 ð26Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ti � oið Þ2
vuut ð27Þ

R2 ¼ 1 �
PN

i¼1 ti � oið Þ2PN
i¼1 oi � �tð Þ2

ð28Þ

where N is total number of data in a set, ti is the
target or actual output value, oi is the estimated
output value, and �t is the mean of the actual output
values.

RESULTS AND DISCUSSION

As mentioned above, we built two SPMs to
correspondingly predict oil production rates and
water production rates at a certain target of injection

rate. The topology presented in Table 6 was used to
develop these proxy models. For each of these proxy
models, the neural network training phase was per-
formed separately by implementing the SGD, PSO,
and Adam algorithms. Therefore, precisely speak-
ing, there were 6 SPMs built here. Aside from the
neural network training, the validation phase was
also done simultaneously to ensure that the trained
ANNs have a better generalization capability. Fig-
ures 7 and 8 show how the cost function deteriorated
as the number of epochs increased in both training
and validation phases when SGD, PSO, and Adam
were utilized to train the ANN model. This
decreasing trend gave a higher confidence that these
trained ANN models had good performances in
terms of prediction. This decreasing trend further
confirmed that these ANNs were prevented from
merely memorizing the pattern of the database
provided. Thereafter, the testing phase was done to
further investigate the predictive performance of the
trained neural networks.

The results of the evaluation of the perfor-
mance of the ANNs are presented in Table 8 for oil
production rate prediction and Table 9 for the water
production rate prediction. The corresponding cross-

Table 8. Performance metrics of the smart proxy for oil rate prediction

AAPE (%) RMSE R2

Stochastic gradient descent Training (758 data) 1.770 10.66 0.9954

Validation (163 data) 1.567 7.512 0.9977

Testing (162 data) 1.768 7.769 0.9971

Particle swarm optimization Training (758 data) 0.349 2.378 0.9998

Validation (163 data) 0.536 14.22 0.9934

Testing (162 data) 0.352 2.408 0.9998

Adam Training (758 data) 0.617 1.829 0.9999

Validation (163 data) 0.649 2.036 0.9998

Testing (162 data) 0.646 1.487 0.9999

Table 9. Performance metrics of the smart proxy for water rate prediction

AAPE (%) RMSE R2

Stochastic gradient descent Training (758 data) – 1.728 0.9998

Validation (163 data) 6.461 1.685 0.9998

Testing (162 data) 8.159 1.652 0.9999

Particle swarm optimization Training (758 data) 6.565 0.547 0.9999

Validation (163 data) – 0.864 0.9999

Testing (162 data) 7.629 0.761 0.9999

Adam Training (758 data) 6.753 0.475 0.9999

Validation (163 data) 4.914 0.262 0.9999

Testing (162 data) 6.504 0.389 0.9999
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plots between the actual output and the predicted
output for the training, validation, and testing sets
are illustrated in Figure 9 for oil production rate and
Figure 10 for water production rate. Pertaining to
the smart proxies for the prediction of oil rate, the

results shown in Table 8 indicate that Adam out-
performed SGD and PSO in the training, validation,
and testing phases in terms of RMSE and correla-
tion coefficient. However, regarding AAPE, PSO
had the best performance in all the three phases.

Figure 9. Oil production rate: plots of correlation coefficient (R2): for SGD (a) training, (b) validation, (c) testing; for PSO (d) training,
(e) validation, (f) testing; and for Adam (g) training, (h) validation, (i) testing.
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Additionally, better performance of Adam is also
presented in Figure 9. As it can be observed, much
more data samples lie on the 45-degree line as the
Adam was used to develop the smart proxies com-
pared to the cases where the SGD and PSO were
utilized. Hence, Adam generally had the best per-
formance, whereas PSO performed better than

SGD. Nonetheless, in the validation phase, SGD
performed better than the PSO in terms of the
minimization of RMSE and the maximization of the
correlation coefficient. This can be due to the exis-
tence of an over-estimated data point (an outlier) in
the validation phase of PSO (as shown in Figure 9e).
Because the healthy training process is illustrated in
Figure 7, it was deduced that any of these trained
models was sufficiently good to be applied to predict
the oil production rate. This is further justified by
the results of the performance metrics in Table 8,
which indicate that the correlation coefficients yiel-
ded by all the datasets exceeded 0.99 and both
AAPEs and RMSEs exhibited in all the phases were
considerably low.

For the prediction of water production rate (as
illustrated in Figure 10), it is difficult to infer whe-
ther the backpropagation algorithm or the PSO
yielded a better performance in the training, vali-
dation, and testing phases. However, according to,
Adam generally had the best results as compared
with SGD and PSO, whereas PSO performed better
than SGD. In addition, the results of AAPE were
not provided for the training phase of SGD and the
validation phase of PSO because, in these phases,
there were a few over-estimated data points (out-
liers) that caused the AAPE to be very large (more
than 1000%). This is because when these data points
were selected at the early stage of water break-
through, the actual water production rate was very
miniscule. Based on Eq. (26), if the numerator is in
the order of magnitude of 1 or 10, then the AAPE
will increase drastically. Thus, for practical reasons,
the results were not shown here. Despite this, this
scenario provided an insight that we needed to look
at different performance metrics during SPM to
determine whether the built proxy models func-
tioned satisfactorily. Besides, these outliers did not
affect the overall predictive capability of the smart
proxy built here as the model was still able to cap-
ture the general data pattern during the develop-
ment stage as presented in Figure 10.

After developing the SPMs, two blind cases
were run by using the target of the injection rates at
676 m3/day and 755 m3/day to provide more
insightful ideas regarding the usefulness of the
trained smart proxies. In other words, the spatio-
temporal databases when the target of the injection
rates was, respectively, at 676 m3/day and 755
m3/day created to be fed into the smart proxies to
observe how well they can make predictions. It is
essential to know that, in order to practically apply

Figure 9. continued.
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the smart proxy, the dynamic inputs should in fact be
estimated by the smart proxy itself. For instance, the
smart proxy in this work was developed to predict
the oil production rates (also water production
rates). This denotes that the oil production rate

(water production rates) estimated at the timestep
t� 1 should be used as one of the inputs to
approximate the rate at the timestep t. Therefore, if
there are more than one outputs to be predicted,
then those estimated outputs at the current timestep

Figure 10. Water production rate: plots of the correlation coefficient (R2): for SGD (a) training, (b) validation, (c) testing; for PSO (d)

training, (e) validation, (f) testing; and for Adam (g) training, (h) validation, (i) testing.
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should be cascaded simultaneously to be the inputs
at the next timestep. Alternatively, different smart
proxy can be designed specifically to provide a pre-

diction of any of the outputs, which is used as the
input for another smart proxy. This situation reflects
another disadvantage6 of the application of smart
proxy.

Here, only smart proxies that estimated the
production rate were developed. For practical and
illustrative purposes, other dynamic data, which are
used as input data, were retrieved from the reservoir
simulation as these data were not used directly in the
optimization task discussed. Nevertheless, in this
case, the oil production rate estimated by the smart
proxy at the current timestep was cascaded to be the
input for the approximation of the rate at the next
timestep. The plots of the actual output (yielded by
reservoir simulator) and the predicted output (pro-
duced by SPM) at injection rates of 676 m3/day and
755 m3/day are illustrated in Figure 11 for oil rate
prediction using SGD, Figure 12 for oil rate pre-
diction using PSO, Figure 13 for oil rate prediction

Figure 10. continued.

Figure 11. Oil rate prediction by SGD: plots of the

comparison of rates for the results predicted by the trained

smart proxy for the two blind cases: (a) injection rate of 676

m3/day; (b) injection rate of 755 m3/day.

6 Building several smart proxies for estimating the dynamic inputs

can reduce the convenience of SPM. So, the resolution of this

issue will enable a smart proxy to be more tractable.
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using Adam, Figure 14 for water rate prediction
using SGD, Figure 15 for water rate prediction using
PSO, and Figure 16 for oil rate prediction using
Adam. The results of the performance analysis of
the two blind cases are presented in Table 10 for oil
rate prediction and in Table 11 for water rate pre-
diction. Figures 11, 12, and 13 demonstrate that
SGD results in a worse prediction at the beginning
of the production (at both targets of injection rate)
as compared to PSO and Adam. Despite this, the
developed SPMs (trained by both algorithms) for oil
rate prediction function were within an accept-
able range of accuracy. This is verified by the results
shown in Table 10. For water rate prediction,
according to Figures 14, 15 and 16, it is explicit that
the proxy trained with Adam yielded a better pre-
diction than the models trained with SGD and PSO.
However, it is challenging to determine whether
PSO was better than SGD. In this case, Table 11

shows that the model trained with PSO predicted
better. In this case, the AAPEs resulted from the
water rate prediction by using the model trained
with SGD were not provided due to the same reason
as discussed previously.

In general, when the two blind cases were em-
ployed, it was observed that the ANN models
trained with any of the three algorithms for both oil
and water rates prediction yielded results that are
within acceptable range of accuracy. Nevertheless,
the performance metrics illustrate that the SPMs
built here (for prediction of both oil and water rates)
trained by using Adam had a better predictive per-
formance as compared to the models trained by
SGD and PSO, whereas PSO outperformed SGD. In
addition, we noticed that the SPMs (trained by using
both algorithms) in this work had a better prediction
of the oil production rates than the prediction of the
water production rates. Hence, additional informa-
tion (e.g., water breakthrough time, total production

Figure 12. Oil rate prediction by PSO: plots of the comparison

of rates for the results predicted by the trained smart proxy for

the two blind cases: (a) injection rate of 676 m3/day; (b)

injection rate of 755 m3/day.

Figure 13. Oil rate prediction by Adam: plots of the

comparison of rates for the results predicted by the trained

smart proxy for the two blind cases: (a) injection rate of 676

m3/day; (b) injection rate of 755 m3/day.
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of water) can be included as input data to improve
the performance of the SPM for water rate predic-
tion.

After obtaining the flow rates predicted by the
built SPMs, we proceeded to the illustrative pro-
duction optimization task. As briefly discussed
above, the optimization task here was to select the
target of injection rate (between 676 m3/day and 755
m3/day) that maximizes the objective function in
Eq. (23). By using Eqs. (23) and (24) along with the
parameters listed in Table 2, the evolution of NPV
throughout the 30 years of production lifetime was
determined and is presented in Figure 17. The base
cases shown in Figure 17 correspond to the cases for
the flow rates derived from the numerical reservoir
simulation to determine the evolution of NPV. Both
proxy models can reproduce the general trend of the
NPV evolution that is close to the one generated by
the base cases. This observation is justifiable as all

the proxy models yielded the general trends of both
oil and water production rates as discussed earlier.
Furthermore, from Table 12, all the models reached
to the same decision that having the target of
injection rate to be 755 m3/day for 30 years (without
termination of production during the period of
30 years) will result in the maximum value of NPV.
For the target rate of 676 m3/day, the percentage
error of the NPV resulted from the smart proxy of
SGD was about 2.67%, that of PSO was around
1.41%, and that of Adam was about 0.61%. For the
target rate of 755 m3/day, the percentage errors of
the NPVs resulted from both proxy models of SGD
and PSO were close, namely 1.38% for SGD and
1.33% for PSO. However, for Adam, the percentage
error was approximately 0.43%. In this case, the
smart proxy trained by using Adam was deemed
better. We understand that the economic model
used here might be insufficient to reflect the real-life

Figure 14. Water rate prediction by SGD: plots of the

comparison of rates for the results predicted by the trained

smart proxy for the two blind cases: (a) injection rate of 676

m3/day; (b) injection rate of 755 m3/day.

Figure 15. Water rate prediction by PSO: plots of the

comparison of rates for the results predicted by the trained

smart proxy for the two blind cases: (a) injection rate of 676

m3/day; (b) injection rate of 755 m3/day.
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optimization case. However, we aimed to provide
insights regarding the use of SPMs in production
optimization on a fundamental level.

We also provide a brief discussion on the
computational time of these proxy models to high-
light the advantage of applying them. The compu-
tation here included all the training, validation,
testing phases as well as the prediction using the two
blind cases. It was done by using a PC with config-

urations that included Intel� Core� i9-9900 CPU
@3.10 GHz with 64.0 GB RAM. Here, the compu-
tation of one of the simulation scenarios listed in
Table 3 took about 160 s to finish. When all the five
simulation scenarios were run simultaneously, it
spent about 290 s to be fully completed. Neverthe-
less, for the SPM developed here, the computation
time of the proxy trained with SGD was about 110 s,
that of PSO was about 50 s, and that of Adam was
about 120 s.7 In this aspect, the computation of the
proxy trained with backpropagation algorithm was
more expensive than that of PSO because PSO is a
derivative-free method. In general, we saw that
there was still a noticeable (even not very signifi-
cant) difference in the computational time between
the numerical simulation and the proxy models de-
spite the low complexity of the reservoir model used
here.

Further, we proposed and demonstrated the
probabilistic application to investigate further the
overall performance of the SPMs. In this case, one of
the performance metrics, namely correlation coeffi-
cient R2, was used for illustrative purpose in this part
of the work. To do this probabilistic study of the
built SPMs, we conducted the process of SPM iter-
atively for 200 times. This implies that there were
200 samples of R2 for training phase, validation
phase, testing phase, and prediction for each of the
two blind cases. Thereafter, the normalized cumu-
lative frequency distribution (NCFD) for R2 that
ranged between 0 and 1 was computed for the 200
samples. In this context, NCFD can be understood
as the cumulative number of times for a sample to be
within a range of values of R2 over 200 times. The
plots of NCFD are presented in Figures 18, 19, 20,
21, and 22.

Figure 16. Water rate prediction by Adam: plots of the

comparison of rates for the results predicted by the trained

smart proxy for the two blind cases: (a) injection rate of 676

m3/day; (b) injection rate of 755 m3/day.

Table 10. Performance metrics of the smart proxy for the two

blind cases (oil rate prediction)

Injection

rate

AAPE

(%)

RMSE R2

Stochastic gradient

descent

676 m3/day 1.849 13.05 0.9924

755 m3/day 1.978 13.23 0.9932

Particle swarm opti-

mization

676 m3/day 1.391 5.701 0.9985

755 m3/day 0.708 5.695 0.9988

Adam 676 m3/day 0.999 2.501 0.9997

755 m3/day 1.057 2.830 0.9997

Table 11. Performance metrics of the smart proxy for the two

blind cases (water rate prediction)

Injection

rate

AAPE

(%)

RMSE R2

Stochastic gradient

descent

676 m3/day – 13.63 0.9917

755 m3/day 12.97 0.9935

Particle swarm opti-

mization

676 m3/day 8.623

7.266

8.454 0.9968

755 m3/day 8.975 0.9969

Adam 676 m3/day 8.049 2.790 0.9996

755 m3/day 7.061 4.385 0.9993

7 Computational time of the proxy built for oil rate prediction was

close to that of the proxy developed for water rate prediction.
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Based on Figure 18, for the training phase of the
SPMs, the models trained with PSO had relatively
higher chance to result in a healthy training trend

than the models trained with the backpropagation
algorithms. For the oil rate prediction, PSO had
0.5% chance to result in values of R2 less than 0.90,
whereas SGD had 31% chance and Adam had
37.5% of chance. For the water rate prediction, PSO
had about 99% chance to yield values of R2 that
ranged between 0.99 and 1, whereas SGD and
Adam, respectively, had only about 60% and 55%
chance to achieve that. According to these results,
we deduced that PSO was more likely to produce a
healthy trend of training compared to SGD and
Adam. This deduction is further justified by the re-
sults shown in Figure 19 for the validation phase.

For the testing phase, it was noted that the
proxy models trained by using PSO performed bet-
ter that those of SGD and Adam when the models
were evaluated against the testing dataset. As por-
trayed in Figure 20, for the case of oil rate, there was
26% chance that the model trained with PSO will
produce values of R2 less than 0.99 in the testing
phase, whereas there was 76% chance that the
model trained with SGD will do so; for Adam, the
chance was about 47%. Besides, for the case of
water rate, PSO had 4% chance to have values of R2

less than 0.99, whereas SGD had 41.5% and Adam
had 45.5%. This provided more confidence that PSO
has a higher chance to yield a better predictive
performance than SGD when the models were tes-
ted with the dataset from a blind scenario.

For the prediction of rates against the datasets
from the two blind cases, it can be noticed that, in
general, the proxy models by PSO more likely had a
better predictive performance than those by SGD
and Adam despite the fact that the former had
slightly higher chance to produce R2 values that are
less than 0.90 compared with that SGD had in terms
of oil rate prediction for injection scenario of
676 m3/day. This is because based on the prediction
of R2 that ranged between 0.99 and 1, the models by
PSO were deemed more reliable than those by SGD
and Adam. Besides, in terms of oil rate prediction,
Adam statistically had a better chance than SGD in
yielding R2 values between 0.99 and 1 for both
injection scenarios. However, for water rate predic-
tion, the chances of both algorithms were very close.
We have illustrated that, here, statistically speaking,
PSO had a better chance to perform better in
training and building the proxy model compared to
SGD and Adam. Because PSO is metaheuristics, in

Figure 17. Evolution of NPV throughout the lifetime of

production: (a) SGD; (b) PSO; (c) Adam.
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which both global search and local search are bal-
anced, it has a higher chance to have a more
exhaustive search in the solution space during the
neural network training. Nevertheless, we recom-
mend that this study is conducted using other per-
formance metrics for a more established
understanding regarding the outcomes of SPM.
Integration of this statistical study in SPM can pro-
vide insights about the reliability of an algorithm in
training a proxy model and the prediction accuracy
of the trained models.

HETEROGENEOUS MODEL

To demonstrate further the robustness of the
methodology, we used another fractured reservoir
model as a second case study. The general archi-
tecture and fluid properties of this new model are
similar to those of the previous model. However, we
changed the values of some reservoir parameters,
including the height of matrix block and the porosity
values of both matrix and fracture media, and
introduced heterogeneity to the permeability fields

Table 12. Optimal NPVs generated by using all the models

Injection rates 676 m3/day 755 m3/day

models Simulator SGD PSO Adam Simulator SGD PSO Adam

NPVoptimal (million USD) 346.36 337.11 341.49 344.27 357.35 352.43 352.59 355.84

Figure 18. NCFD of R2 for the training phase of the SPMs: (a)

oil rate; (b) water rate.
Figure 19. NCFD of R2 for the validation phase of the SPMs:

(a) oil rate; (b) water rate.
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of both media. In this case, the heterogeneity only
applies to permeability. The permeability values in
the x-, -y, and z- directions are the same. Thus, the
fractured model illustrated here is an isotropic
heterogeneous model. Refer to Table 13 for the new
values of the heights of matrix blocks and the
porosity values. Figure 23 shows the permeability
field of each layer in the unit of m2.

After building this new model by applying the
same methodology, the database was extracted and
used to develop the SPMs to correspondingly predict
the field oil and water production rates. The injec-
tion scenarios employed in this case study were the
same as in Table 3. The structure of ANN models
built here also remained the same as presented in
Table 6. This also applied to the use of essential
parameters of the three algorithms. For practical
and concise purposes, only two performance metrics,
namely RMSE and R2, were implemented to eval-
uate the training and predictive performance of
these proxy models. Table 14 shows the results of
training, validation, and testing of the SPM for oil
production rate forecasting, whereas Table 15 pre-
sents those of the model for water production rate
prediction. Generally, the models trained by all the
three algorithms yielded excellent training results
for both oil and water production rates. Based on

Table 13. Modified reservoir parameters for the heterogeneous

model

Layer Matrix block height (m) Porosity

Matrix med-

ia

Fracture med-

ia

1 4.572 0.150 0.0050

2 10.67 0.400 0.0020

3 7.620 0.280 0.0015

Figure 21. NCFD of R2 for the prediction of rate of the SPMs

when target rate was 676 m3/day: (a) oil rate; (b) water rate.

Figure 20. NCFD of R2 for the testing phase of the SPMs: (a)
oil rate; (b) water rate.
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both RMSE and R2, Adam had the best results for
both oil and water production rates. Nevertheless,
for the testing phase in oil rate proxy model, PSO
outperformed the others. For illustrative purposes,
only the production profiles estimated by the smart
proxies trained by using Adam are presented; the oil
profiles are shown in Figure 24, whereas the water
profiles are presented in Figure 25.

Thereafter, these models also underwent the
blind validation phases by using the two blind cases
as explained before. Table 16 records the results of
blind validation for oil rate prediction, and Table 17
shows the results for water rate forecasting. For this
case study, the PSO outperformed the others when it
was used to train the predictive model of oil pro-
duction rate. However, for the estimation of water
production rate, Adam still yielded the predictive
model that produced the best results. Then, the
production optimization was also done by using the

same price setting as shown in Table 2 to highlight
the fundamental practicality of the models devel-
oped in this case study. The optimal NPVs obtained
by using each of the proxy models are tabulated in
Table 18.

Based on Table 18, it was deduced that the
proxy models built by using Adam produced the
optimal NPV with the least percentage error under
two different injection scenarios, which were 0.117%
for injection rate of 676 m3/day and 0.329% for
injection rate of 755 m3/day. In addition, all the
proxy models reached the same option that the
injection rate of 755 m3/day was economically
preferable. Apart from these, for illustrative and
succinct purposes, the probabilistic application was
only implemented to analyze the predictive perfor-
mance of each model. The results of this application
are demonstrated in Figure 26 for the target rate of
676 m3/day and in Figure 27 for the target rate of
755 m3/day. In general, for this case study, it can be

Table 14. Performance metrics of the smart proxy for oil rate

prediction based on training, validation, and testing sets

RMSE R2

Stochastic gradient des-

cent

Training (758 data) 7.855 0.9977

Validation (163

data)

4.700 0.9992

Testing (162 data) 8.202 0.9978

Particle swarm optimiza-

tion

Training (758 data) 3.846 0.9995

Validation (163

data)

3.918 0.9995

Testing (162 data) 2.739 0.9997

Adam Training (758 data) 3.154 0.9997

Validation (163

data)

2.410 0.9998

Testing (162 data) 3.391 0.9996

Table 15. Performance metrics of the smart proxy for water rate

prediction based on training, validation, and testing sets

RMSE R2

Stochastic gradient des-

cent

Training (758 data) 2.401 0.9998

Validation (163

data)

2.273 0.9998

Testing (162 data) 2.379 0.9998

Particle swarm optimiza-

tion

Training (758 data) 1.869 0.9999

Validation (163

data)

1.961 0.9999

Testing (162 data) 1.824 0.9999

Adam Training (758 data) 0.540 0.9999

Validation (163

data)

0.478 0.9999

Testing (162 data) 0.422 0.9999

Figure 22. NCFD of R2 for the prediction of rate of the SPMs

when target rate was 755 m3/day: (a) oil rate; (b) water rate.
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Figure 23. Overview of the isotropic heterogeneous model. The matrix system

consists of (a) Layer 1, (b) Layer 2, and (c) Layer 3. The fracture system comprises

(d) Layer 1, (e) Layer 2, (f) Layer 3.
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deduced that PSO had a better chance than both
SGD and Adam to produce a predictive model with
higher accuracy level (i.e., R2 exceeding 0.99).

CONCLUSIONS

Here, we have shown how SPM can be con-
ducted by using a synthetic fractured reservoir

model. The purpose of this study was to provide
some insights and a more concrete demonstration
regarding the modeling of a smart proxy. We also
briefly discussed how the spatio-temporal database
can be generated, and we presented the selection of
input and output data which were used in the neural
network training. This procedure is of paramount
importance as a good database determines the suc-
cess of SPM. Apart from implementing the back-

Table 16. Oil rate prediction: performance metrics of the smart proxy for the two blind cases

Injection rate RMSE R2

Stochastic gradient descent 676 m3/day 12.45 0.9939

755 m3/day 13.04 0.9944

Particle Swarm Optimization 676 m3/day 2.097 0.9998

755 m3/day 3.827 0.9995

Adam 676 m3/day 4.489 0.9992

755 m3/day 5.468 0.9990

Figure 24. Oil rate prediction by Adam: plots of the results

predicted by the trained smart proxy for the two blind cases:

(a) injection rate of 676 m3/day; (b) injection rate of 755

m3/day.

Figure 25. Water rate prediction by Adam: plots of the results

predicted by the trained smart proxy for the two blind cases:

(a) injection rate of 676 m3/day; (b) injection rate of 755

m3/day.
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propagation algorithms, namely SGD and Adam, to
train the smart proxy, we also demonstrated how the
training of a smart proxy can be coupled with PSO.
Regarding this, for each training algorithm, we
developed two SPMs which correspondingly pre-
dicted oil production rate and water production rate.
During the development of the smart proxies, all the
three algorithms showed excellent training results.
However, for the proxy of water rate prediction
(trained with both SGD and PSO), some of the
resulting AAPEs were large due to the existence of
outliers. Despite this, the proxy still showed healthy
training and validation trend. In addition, both
models illustrated splendid predictive performance
as indicated by the results. This shows that the
overall predictive performance of the smart proxies
remains intact despite having outliers in the neural
network training. We consider this as one of the
important contributions derived from this work be-
cause most of the available literatures solely focus
on the use of traditional backpropagation algorithm
in SPM. Thereafter, we showed how these SPMs can
be used to optimize production through an illustra-
tive example. Besides, we used the performance
metrics of correlation coefficient (R2) for proba-
bilistic evaluation of the overall performance of the
SPMs. We summarize our main findings and results
derived from this work as follows.

1. Based on the deterministic analysis con-
ducted for SPM of oil rate prediction, the
performance metrics (based on training,
validation, and testing) showed that Adam
generally yielded lower AAPE, RMSE, and
higher R2 than SGD and PSO. However, for
the RMSE in the validation phase, PSO re-
sulted in the highest value due to the exis-
tence of outliers as previously discussed.
Besides, for SPM of water rate prediction,
the performance metrics portrayed that
Adam was also generally better than SGD
and PSO.

2. For oil rate prediction of the blind cases,
proxy model with Adam also had the lowest
AAPE, RMSE, and the highest R2. The same
results were obtained for water rate predic-
tion.

3. For the production optimization case, the
SPMs trained with all three algorithms
reached the same decision as what the base
case did, which was to select the target
injection rate to be 755 m3/day. However,
the NPVs calculated using the data obtained
from the proxy model built with Adam were
much closer to those estimated by using the
data from reservoir simulator.

4. According to the probabilistic analysis for
prediction of oil and water rates, it is inferred
that PSO has a higher chance to generate a
SPM that can result in excellent training and
predictive performance compared with SGD
and Adam.

5. The same methodology was also applied to
an isotropic heterogeneous fractured reser-
voir model to illustrate its robustness. For
this, it was generally found out that Adam
can outperform SGD and PSO in the
development of the SPMs. However, for oil
production rates, PSO produced a better
testing result. Regarding blind validation,
Adam also generally resulted in more accu-

Table 17. Water rate prediction: performance metrics of the

smart proxy for the two blind cases

Injection rate RMSE R2

Stochastic gradient descent 676 m3/day 5.723 0.9987

755 m3/day 10.25 0.9966

Particle swarm optimization 676 m3/day 9.966 0.9961

755 m3/day 7.705 0.9981

Adam 676 m3/day 1.589 0.9999

755 m3/day 1.921 0.9999

Table 18. Optimal NPVs generated by using all the models

Injection rates 676 m3/day 755 m3/day

Models Simulator SGD PSO Adam Simulator SGD PSO Adam

NPVoptimal (million USD) 428.92 421.77 424.31 429.43 447.22 440.97 444.04 448.69
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rate predictive models of water production
rates. Nonetheless, the predictive model of
oil rates established by using PSO estimated
the oil profile more accurately. Additionally,
PSO showed higher chance than SGD and
Adam to produce models with excellent
predictive ability.

Based on the findings presented, we conclude
that, in this work, a metaheuristic algorithm can be
applied aptly to train and build a good smart proxy
of a fractured reservoir model. Although it has been
demonstrated that PSO might not deterministically
outperform the considered backpropagation algo-
rithms in smart proxy modeling, statistically it still
has a better chance to yield a good performance in
this case study. Nonetheless, we understand that
there are still some shortcomings regarding these
SPMs. We hope that these proxies can be enhanced

to be more tractable and robust8 in terms of pre-
diction of any reservoir-related parameter. In short,
we believe that we have achieved the main goals of
this work, which include a vivid illustration of SPM,
an integration of metaheuristic algorithm in proxy
training, a presentation of practical use of the built
proxies in optimization on a fundamental level, and
an inclusion of a probabilistic application in evalu-
ating a proxy model.
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