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Abstract: Power system operators are confronted with a multitude of new forecasting tasks to ensure
a constant supply security despite the decreasing number of fully controllable energy producers. With
this paper, we aim to facilitate the selection of suitable forecasting approaches for the load forecasting
problem. First, we provide a classification of load forecasting cases in two dimensions: temporal
and hierarchical. Then, we identify typical features and models for forecasting and compare their
applicability in a structured manner depending on six previously defined cases. These models are
compared against real data in terms of their computational effort and accuracy during development
and testing. From this comparative analysis, we derive a generic guide for the selection of the best
prediction models and features per case.

Keywords: load forecasting; time series; energy flexibility; day-ahead market; supply security

1. Introduction

The transition to renewable energy sources for the generation of electricity has strong
implications for electricity markets. In contrast to conventional power plants, the output
of the majority of renewables is more volatile, as it is strongly dependent on weather
conditions. On the one hand, the market value of variable renewable energy source (VRES)
is affected by the uncertainty of its output, as forecast errors need to be balanced with
short lead times, which imply higher balancing costs [1]. On the other hand, the marginal
costs of VRES are often close to zero, and therefore lower the overall electricity market
value whenever they are available. The application of more advanced forecasting models
poses one possible mitigation strategy to counteract the increased balancing costs of VRES
and thereby to increase their market values. By reducing the forecast error, the extent
of day-ahead positions that need to be adjusted in the intraday or imbalance market at
adverse prices can be reduced [2]. In addition to that, reduced forecast errors for longer
lead times increase the number of assets that can ramp their capacities up or down and
therefore increase the number of available flexibility options, leading to lower balancing
costs. This can be explained by the better observability of limitations stemming from
ramp-up and ramp-down times of conventional power plants [3].

Several socio-economic trends further emphasize the increasing need for more ad-
vanced forecasting techniques in addition to the expansion of VRES. The increasing grid
loads that result from electric mobility and electric heating need to be closely monitored to
take countermeasures such as demand-side management on potential grid congestion. The
deregulation of the electric supply industry has led to more conservative infrastructure
upgrades, causing a more stressed operation of electrical grids [4].
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While first research on load forecasting dates back to the 1960s, selecting the most
appropriate model for a specific forecasting scenario has since become a much more difficult
task [5]. The majority of research in the subject area is conducted on increasing the accuracy
of load forecasts, while the resulting (economic) value of forecasts is rarely addressed [6,7].
A recent review on energy forecasting [8] reveals that few research contributions deal
with residual load forecasting. For load forecasting in operational grid planning though,
on-site energy generation is of utmost importance. To incorporate the intermittent energy
generation, the grid operators can either aggregate separate models dedicated for each
domain, generation and load, or make use of integrated forecasting methods that deliver
directly a residual load forecast. In some cases, it is not possible to separate generation
forecasting and load forecasting, for instance, when the metering data only provide net
metering information. This is mostly the case when dealing with smaller microgrid type of
grid structures with few monitoring devices; the work in [9] considers a set of forecasting
models (a naïve persistence model, an autoregressive model and an Artificial Neural
Network (ANN) model) and shows that the integrated approach outperforms the additive
one. Due to missing separation of generation and load metering data researches, the
authors of [10,11] have explored further integrated models by applying machine learning
models (ANNs and Recurrent Neural Networks (RNNs), in particular) for residual load
forecasting. Thus, the present study focuses on the evaluation of integrated residual load
forecasting models to predict the energy consumption in a section of the electrical grid
that is not covered by controllable and intermittent local energy supply. Note that this
largely influences the predictive performance of the forecasting models under study due
to the larger uncertainty of the prediction variable. In order to conduct a systematic and
comprehensive comparative analysis of forecasting method accuracies and their economic
value, first a generic methodology must be available upon which different forecasting
methods can be evaluated. One missing element in such an holistic economic study
(e.g., as undertaken in [12]) is a fundamental preparation of potential forecasting method
candidates. Thus, the present work contributes a generic guide for the feature and model
selection to facilitate the parametrization needs in the development of forecast models for
day-ahead (DA), intraday (ID) and imbalance (IB) markets over two use case dimensions—the
forecast horizon and the load aggregation level—to facilitate targeted power operation and
planning, from a broader scope.

The forecasting horizon is analyzed in the categories of (i) very short-term load
forecasting (VSTLF) with predictions up to one hour ahead, (ii) short-term load forecasting
(STLF) for day-ahead predictions and (iii) medium-term load forecasting (MTLF) for
forecasts up to one month ahead. We study this dimension, as varying input variables
affect the load forecasts for different lead times. Forecasts with very short horizons usually
consider historical load values as their only input factor. In contrast, short-term and
medium-term forecasts typically also take exogenous variables such as time factors or
meteorological data into account. Therefore, the selection of an appropriate prediction
approach is highly dependent on the respective forecast horizon [13].

The second dimension, the aggregation level (also known as the hierarchical dimen-
sion [14]), has an important impact on the forecast quality, as aggregated loads tend to be
more predictable. Therefore, typically, the individual consumption patterns of customers
are increasingly smoothed out, the more consumers are combined into one load [15]. As
part of this work, we evaluate a total of three Swedish distribution system datasets on three
aggregation levels within the same region:

• High: exemplified by net load forecasts for a high voltage (EHV/HV) distribution
node.

• Medium: exemplified by net load forecasts for a (HV/MV) node to a local geographi-
cal island.

• Low: exemplified by net load forecasts for a large residential customer.

The literature is manifold on up-to-date surveys [16] and performance studies [14,17,18]
of advances in the application of forecasting for specific use cases. Further, several studies exist
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that compare forecasting techniques across one of the above-mentioned dimensions [14,15]. To
the best of our knowledge, though, there is no publication that evaluates a variety of the most
common forecast models across both the temporal and the aggregation dimension, in order to
derive recommendations for the appropriate selection for a given load forecasting problem.
The expected learning outcome is that potentially already existing forecasting methods in
the system operators’ control room are very well suited for use with related forecasting
problems. Thus, the motivation for this study is to elaborate on the research gap concerning
the transferability of well-performing forecasting methods across different aggregation levels
and different time horizons.

The present work is structured as follows. Section 2 outlines the underlying data and
methodology that are applied in this study and that are merged into a representative guide for
forecasting in power systems. The results are discussed in Section 3, while Section 4 concludes.

2. Materials and Methodology

In this study, we focus on forecasts that are used by power system operators for
operational tasks covering up to one year, i.e., categorized as VSTLF, STLF and MTLF [14].
As the influence of external economic and demographic effects increases for longer fore-
casting horizons, we limit the horizon of forecasts in the group of MTLF to one month
ahead. Table 1 summarizes the forecasting horizons investigated in this paper.

Table 1. Examined forecasting horizons with corresponding cut-off times and data resolutions.

Forecast Horizon Category Cut-Off Time Resolution

VSTLF 1 h 15 min
STLF 1 day 1 h
MTLF 30 days 1 day

2.1. Datasets and Data Processing

As the goal of this work is a performance comparison of different forecasting models
for several load-forecasting horizons and aggregation levels, a total of three different time
series datasets that strongly differ in their load pattern characteristics and origins are used.
The datasets all originate from the SE4 bidding area in Southern Sweden and contain the
residual load data points at an hourly resolution. Here, the residual load (also known
as net load) denotes the difference between the system load profile and the feed-in from
renewable energy sources, i.e., the load which still has to be covered by conventional power
plants [19]. In order to enable forecasts with forecasting horizons of less than one hour
ahead, load values and corresponding weather data are interpolated to quarter-hourly
resolution for the respective forecasts. Similarly, for MTLF the data are resampled to daily
resolution through an aggregation by the average hourly load value of each respective
calendar day. While predictions in the categories of VSTLF and STLF are applied for
operational purposes, the longer prediction period of MTLF at daily resolution is helpful,
e.g., for early mitigation of potential congestion situations via bipartite contracts. To comply
with data protection regulation policies, the load levels were normalized in advance using
a Min-Max scaler, according to Equation (1):

yscaled =
y− ymin

ymin − ymax
. (1)

ymin and ymax are the minimum and maximum load levels measured in the training
set of each dataset. As the datasets were all measured for different time periods, the
overlapping time frame for which all datasets are available, i.e., 24 January 2017 to 7 March
2019, is reviewed as part of this work. This period comprises a total of 18,552 data points at
an hourly resolution. The datasets are labeled according to their aggregation level in the
following manner:

• H—High Aggregation Level
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• M—Medium Aggregation Level
• L—Low Aggregation Level

Dataset H features residual load levels on the highest aggregation level considered
in this work, as they were measured for an extra-high-voltage (EHV) transmission line
in Southern Sweden that acts as the link between a larger metropolitan area and the
overarching transmission grid. While several power plants and an offshore wind park
are part of the regional DSO’s grid, approximately 80% of the total energy demand of the
region is supplied through the overlying grid.

Figure 1 shows a recurring pattern of significantly higher energy demand for the
winter months and lower consumption levels for the summer months. The daily peak load
is measured in the morning hours on weekdays and in the evening hours on weekends,
while the weekends show a lower load than the weekdays. The augmented Dickey–
Fuller (ADF) test, conducted using Python 3.9 with the statsmodels package and the
corresponding tsa.stattools.adfuller function, indicates stationarity for the dataset.
Thus, the ARIMA and Exponential-Smoothing (ES) model should be able to predict accurate
values without the need for prior differentiation. However, the wide band around the load
curve, depicted on the right, shows the high variation in the data over the studied weeks.

Jan
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Figure 1. Residual load curve (a) and average weekly load curve (b) for the high aggregation level (Case H). The area
around the load curve (b) represents ±1 standard deviation.

Dataset M originates from an island off the coast of Sweden. The dataset is of particular
interest, as the island has a high share of renewable energy sources on the island itself
and was able to operate independently from the overlaying grid about 25% of the time
in the period under study. The residual load was measured at the sea cable connection
between mainland Sweden and the geographical island. The load curve exhibits a constant
mean and no salient seasonality. The ADF-test results in a stationary statement. Due to an
original lack of weather information, the meteorological information was gathered from
the SMHI Open Data API for the station closest to the island.

With reference to the Swedish standard industrial categorization [20], dataset L com-
prises the load data collected for an apartment building. For this time series dataset, the
ADF-test indicates non-stationarity. As the exact location of the customer site is handled
confidentially, obtaining data from the closest weather station is not possible. However, it
is known that the customer is also connected to the SE4 bidding area in Sweden. Thus, the
weather information is taken for the Hästveda station that is closest to the geographical
center of the SE4 area, provided by the SMHI platform.

2.2. Implementation

We implemented the different forecasting approaches in Python 3.9, utilizing mainly the
statsmodels [21], sklearn [22], and keras modules and frameworks as listed in Table 2.
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Table 2. Utilized Python packages for the implementation of common forecast models.

Model Implemented Using Package

ARIMA statsmodels v0.12.2
SARIMA statsmodels v0.12.2
(S)ARIMAX statsmodels v0.12.2
Holt Winters statsmodels v0.12.2
Random Forests sklearn v0.24.2
K-Nearest Neighbors sklearn v0.24.2
Support Vector Machines sklearn v0.24.2
Artificial Neural Networks keras v2.5.0
Recurrent Neural Networks keras v2.5.0

For our analysis we generated a total of eleven features. While we created these
features for each forecast horizon and dataset, not all of the variables are selected as input
factors for all models. That is, for each model and forecast horizon, a separate selection
from the pool of available features is performed later on. The features most commonly
used in the area of load forecasting can be grouped into three distinct categories: (i) past
load data, (ii) calendric data and (iii) meteorological data [23]. For the univariate models,
we use all past observations as endogenous features. For the other models, we generate a
feature that holds the load value lagged by the number of time steps in the forecast horizon.
For example, the feature for the 30-day-ahead forecast comprises the load value lagged by
30 days.

For the temporal and calendric feature categories, we use two different approaches. In
the first one, we generate one-hot encoded values [24] of the current hour (hi, i ∈ {0, 1, ..., 23},
weekday (di, d ∈ {1, 2, ..., 7}) and month (mi, d ∈ {1, 2, ..., 12}). In addition to that, we
generate two cyclic features by applying the trigonometric functions to the hour of the
day and the month of the year. This is done in order to bypass potential problems for the
one-hot encoded features that numerically suggest a large difference between the beginning
and end of each daily, weekly and monthly cycle. Another important factor for the load
values on a given day are working days, as the activity of industrial and business customers
causes higher energy consumption during the week in comparison to the weekends. In
addition to the day-of–the-week feature that we introduced above, we generate a single
dummy variable that is equal to one if a day is a working day and zero if it is on a weekend.
The feature also considers public holidays in Sweden.

As meteorological information, we include features for the temperature and wind
speed as exogenous variables. The corresponding data sources for these features differ for
each dataset and have been pointed out as part of the detailed description of the time series
in the last section. Similar to the residual load values, both the temperature and windspeed
values are normalized using the Min-Max scaler from Equation (1). A summary of all
generated features, their corresponding abbreviations and value ranges is given in Table 3.

The options for the parameter tuning orange from applying the default values of
the software package used, the use of recommendations from the literature regarding
tuning strategies that try to minimize an error metric on the test set by analyzing numerous
configurations in a defined parameter search space [25]. As part of this work, we derive a set
of several possible parameter values for each model from literature recommendations and
then measure the resulting accuracy for all possible parameter combinations. The evaluated
parameters and the selected values for each model can be found in the Appendix A as
part of Tables A2–A8. The entire process of selecting the model parameters and features is
shown as a flow chart in Figure 2. We distinguish the so-called first-level model parameters
and hyper-parameters which both have to be carefully optimized to achieve an optimal
prediction output. First-level model parameters are for instance the order of auto-regression
and moving averages in the ARIMA models, while hyperparameters refer to the calibration
of the training process in machine learning based methods, such as the RNN.
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Table 3. Overview of all exogenous features.

Abbreviation Description Value Range

lh Load value, lagged by h time steps [0, 1]
hi, i ∈ {0, 1, ..., 23} Hour of day indicator {0, 1}
di, i ∈ {1, 2, ..., 7} Day of week indicator {0, 1}
mi, i ∈ {1, 2, ..., 12} Month of year indicator {0, 1}
hc Hour of day cos indicator [−1, 1]
hs Hour of day sin indicator [−1, 1]
mc Month of year cos indicator [−1, 1]
ms Month of year sin indicator [−1, 1]
dw Workday indicator {0, 1}
T Temperature [0, 1]
W Wind speed [0, 1]

Dataset

Calculation of 
parameter and 
feature grid

Normalization

Feature Generation

Split into k-folds

Training Test

Jan 24, 2017 Dec 06, 2018

1

2

Removal of 
Validation Set Part

k

Training Test

Training Test

……

n 
repetitions

n possible parameter and 
feature combinations

Calculation of average Test-MSE of the k-folds

Selection of the parameter-feature combination 
that yielded minimum average MSE

Preselection 
of appropriate 

features 

Preselection 
of appropriate 

parameters

Figure 2. Parameter and feature selection process, conducted for each of the models and datasets.

2.3. Validation Approach

The validation parts of the datasets that range from 7 December 2018 to 7 March 2019
(and were not considered during the model selection stage) are therefore utilized to simulate
the model predictions on newly added data. For this, an expanding window approach as
shown in Figure 3 is applied to each parametrized model. In the first step, all observations
including the full training and validation parts of the datasets are loaded into the system.
The observations are then normalized using the Min-Max-Scaler (see: Section 2.1). In order
to avoid any bias from knowing future load values, the Min-Max-Scaler is applied using
the parameter values (i.e., the minimum and maximum loads) from the training part of
the dataset instead of those of the validation set. In addition to the meteorological features
of temperature and wind speed that are already included in the datasets, the temporal
features are generated, provided they have been selected for a specific model. The models
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are then initialized using the parameter configurations that showed the best performance
on the training set.

Training N-Step Prediction

Training N-Step Prediction

Training N-Step Prediction

Jan 24, 2017 Dec 07, 2018 Mar 07, 2019

…

1

2

20

Prediction 
Results

Calculation of Performance 
Indicators

…

Figure 3. Validation approach for each of the selected models.

Twenty expanding windows are then used to evaluate the model performances: While
in the first window, only the observations of the training dataset are used for the model
fitting, the second expanding window also uses the observations from the validation
set-up to the beginning of the expanding window for the model training. This approach
is used because the autoregressive models that are part of this work produce accurate
predictions for a short period of time but tend to become inaccurate when the time period
between the last observation used for the model fitting and the prediction target grows.
By adding newer observations in every new window, the accuracy of the models can
be evaluated for a relevant forecasting horizon for multiple times. In each window, the
fitted model is performing a prediction for a predefined number of future time steps, e.g.,
30 days for the MTLF case. The number of windows was selected arbitrarily as a trade-off
between calculation time and biases due to a small sample size. By evenly distributing the
20 windows across different hours of day and days of the week, potential statistical biases
are further minimized.

The model predictions are saved separately for each window. This then allows the
evaluation of error metrics such as the mean squared error (MSE) and mean absolute error
(MAE) as an average of the prediction of the 20 windows. As residual loads that can show
values close or equal to zero are forecasted in this work, relative metrics show unstable
values for our analysis and will therefore not be considered any further. In addition to
the predicted load time series, the fitting and prediction times are also captured to allow
conclusions about the computational effort during the model development phase.

3. Results and Discussion

The validation set ranges from 7 December 2018 to 7 March 2019 and was not used as part
of the model selection. It is therefore utilized to simulate the model predictions on unknown
data in order to measure the models’ ability to generalize on the so-called out-of-sample data.
We evaluate the prediction accuracy of each model in each case, based on MAE and MSE
metrics. Further, we measure the training and prediction times to allow conclusions on the
required computational effort during the forecast deployment stage. At this point, due to
the fact that our numerical results for the large set of discussed cases are far too many to be
reported here in a comprehensive manner, we refer our readers to the result tables in this
paper’s appendix (Table A1) and open-source code mentioned in the last paragraph.

To allow a meaningful comparison of the forecasting models selected in the previous
section, we now define two naïve forecasting approaches that act as baseline models for
a benchmarking of the performance of the more complex forecasting methods. The first
naïve model, which we refer to as Naive1, assumes all future values to be equal to the last
observed value [26], as given in Equation (2):

ŷt...t+T = yt−1. (2)
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The second baseline model (Naive2) assumes the load value to recur periodically
based on a defined seasonal period k. The mathematical representation of this model is
given in Equation (3):

ŷt...t+T = yt−m(k+1)with k = b t− 1
m
c, (3)

where m is the number of time steps in one period.

3.1. Very Short-Term Load Forecasting

The parametrized VSTLF models predict load values for a lead time of one hour at a
quarter-hourly resolution, i.e., a prediction of four discrete time steps ahead is conducted.
The accuracy benchmark on the expanding window validation for each model dataset,
compared on the basis of MSE, are shown together with the required fitting (FT) and
prediction times (PT) per sliding window in Figure 4. The relative improvement compared
to the benchmark models is calculated as given in Equation (4):

Rel-ChangeModel = (1− MSEModel
MSEBenchmarkModel

) · 100%. (4)

It can be seen that the ARIMA models were the best-performing ones across the datasets
in terms of minimizing the error functions. Aside from the Holt–Winters model for dataset
H that scored a slightly lower MSE than the respective ARIMA models, ARIMA always
represented the best forecasting approach. As can be seen in the upper part of Figure 4,
ARIMA was the only method that outperformed the naïve prediction for all datasets. The
average improvement for all datasets in terms of the MSE for ARIMA amounted to 64.1%.

What the ARIMA and HW models have in common is that they do not consider any
exogenous predictor variables, i.e., pose univariate methods [27]. We derive from these
observations that for the VSTLF case no exogenous variables should be included as part of
the forecast. Regarding the model selection, we recommend the consideration of ARIMA
and Holt–Winters models for the time horizon of up to one hour. These observations can
confirm previous findings, e.g., the results of empirical studies conducted by [28,29]; both
found univariate models to outperform more sophisticated approaches for very short time
horizons. Our observations also coincide with the variable selection recommendations
given by [4] that classify exogenous variables as not required for the VSTLF case.

The seasonal period of 24× 4 time steps for the VSTLF case is quite long in comparison
to the forecast horizon of only four predictions. This entails the effect of a considerably more
relevant and accurate Naive1 forecast performance in comparison to the seasonal Naive2
approach. This can be explained by the closer temporal proximity of the last observed load
value to the forecast horizon. Consequently, the model performance of the selected models
almost entirely outperformed the Naive2 forecast. As this, however, does not come with
any practical value for the VSTLF forecast horizon, the in-depth analysis of the comparison
with the second naïve model is omitted at this point. The longest fitting and prediction
times were observed for the deep neural network approaches of ANN and RNN. The
lowest computation times were measured for the univariate time series models (ARIMA
and HW) as well as for ARIMAX and Support Vector Regression (SVR). Unexpectedly,
we observed ARIMAX models to require shorter times than the corresponding ARIMA
models with the same model order but without exogenous variables. We assume the effect
to be caused by the use of different regression parameter estimation approaches in the
statsmodels implementation when including exogenous variables.
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Figure 4. Relative improvement of the models’ MSE metrics compared to Naive1 (a) and correspond-
ing prediction and fitting times (b) for datasets H, M and L in the VSTLF case.

Interestingly, the prediction accuracy did not appear to be overly affected by the load
aggregation levels of the respective datasets. Some of the evaluated models, such as HW
and KNN, showed increased MSE and MAE values for datasets originating from lower
aggregation levels. Other models, including the ARIMA models, scored slightly better in
terms of accuracies for the customer load dataset than for the datasets using a medium
aggregation level. This finding further emphasizes our recommendation for the use of
ARIMA models across all aggregation levels, while we narrow down our recommendation
for the use of HW models to the application on highly aggregated loads only.

3.2. Short-Term Load Forecasting

Analyzing the results for the short-term time horizon of one day ahead that are
reported in Figure 5, it can be seen that the accuracies of the models showed much more
variation across the different datasets. Random Forests showed the best accuracy for the
customer dataset L and for the medium aggregation level dataset M. For the high level of
aggregation (dataset H), the RF model was outperformed by the SVR model.

The univariate models that performed best in the VSTLF case scored significantly
lower in terms of accuracy for the day-ahead forecasting case. This corresponds to the
findings in [4], the authors of which state that exogenous predictors, and especially me-
teorological variables, are required in addition to endogenous load data for accurate
STLF forecasts.

Further, Figure 5 shows that the MSE improved for almost all of the evaluated models.
This, however, did not apply to the RNN models, which performed worse than the naïve
approach in all but one case. The ANN model in comparison showed good performance
for the datasets on the high and medium aggregation levels but a poorer performance
for the customer datasets. We assume overfitting related to not interrupting the training
process early enough to be the cause for the overall fair to medium performances of
the deep learning approaches of ANN and RNN. One accuracy outlier can be seen in
the performance of the HW model on dataset M. The model was parametrized with a
smoothing parameter of α = 0.894. This value was already noticed as possibly being
unsuitable during the parameter selection, yet still yielded the smallest MSE on the training
part of the dataset. The insufficient performance of the model on the validation dataset is
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therefore not surprising. Due to the clear seasonality in the load pattern over the course of
one day, the SARIMA and SARIMAX models were able to outperform the corresponding
non-seasonal ARIMA models. Interestingly, the missing seasonality factor appeared to
be substituted by the inclusion of exogenous variables into the regression for dataset H
and M, as the ARIMAX models showed considerably higher accuracies. As expected, the
MSE appears to increase, the longer the forecast lead time is. This trend is weaker for the
neural network models, which might be explained by an overall weak performance of
these models in our study. The Holt–Winters model for dataset M that was identified as
unsuitable before shows an almost linear increase of the MSE over the lead time.

As the MSE error curves are all relatively close to each other, we cannot observe a
specific pattern in the predictability of the different aggregation levels across all models.
SARIMA and SARIMAX also showed the lowest accuracies on the medium level for
dataset M. The deep learning approaches performed worst for the low aggregation level
of dataset L. The findings regarding average required fitting and prediction times match
the observations from the VSTLF case. The computational effort for ANN and RNN was
among the highest. The SARIMA and SARIMAX models that were not part of the VSTLF
also showed relatively long fitting times. This can be explained by the greater number
of first-level model parameters that require fitting and stem from the seasonal part in
the regression, as compared to the ARIMA models. Random forest regression models
show consistently low error metrics across the datasets and also exhibit comparably low
computational effort. This combination makes them a highly effective forecasting approach
for the STLF time horizon which coincides with the findings in [30].
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Figure 5. Relative improvement of the models’ MSE metrics compared to Naive1 (a) and correspond-
ing prediction and fitting times (b) for datasets H, M and L in the STLF case.

3.3. Medium-Term Load Forecasting

In contrast to the previously analyzed time horizons, Figure 6 reveals a clear connec-
tion between the model accuracies and the load aggregation level of the corresponding
datasets. The ARIMAX models performed the best in terms of both MAE and MSE for the
low aggregation level of dataset L. SARIMAX models in comparison showed the lowest
accuracy in terms of MSE for the medium aggregation level. The best accuracies for the
high aggregation level (dataset H) were reached by the machine learning algorithms RF
and SVR.
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Figure 6. Relative improvement of the models’ MSE metrics compared to Naive1 (a) and correspond-
ing prediction and fitting times (b) for datasets H, M and L in the MTLF case.

All of the analyzed models for the medium to high aggregation level datasets show
a relative reduction of MSE in comparison against Naive1. For the dataset L, merely the
models HW, SARIMAX and ANN show decreased accuracy values. Across the datasets,
it can be observed that the univariate models of the ARIMA, SARIMA and HW type per-
formed noticeably inferiorly than for the two shorter time horizons. This can be explained
by the fact that the only input for these models are historic load values. The further away
the predicted time point is from the last observed load value, the higher the forecast error
becomes. This also explains the superior performance of the autoregressive models with
exogenous predictors as described in the last paragraph. These models receive the value
of the predictor variables in each time step and are therefore able to better predict loads
for longer lead times. Across all datasets the RF models showed the highest accuracy im-
provement compared to the naïve models. This underlines our observation from the STLF
case of RF models not being overly affected by the aggregation level. As the comparison
with the Naive2 forecast leads to the same conclusions, the corresponding graphic is not
discussed at this point.

The required fitting and prediction times are considerably lower than for the previ-
ously discussed forecast horizons. This can be explained by the overall lower number of
samples in the training set, as the datasets were evaluated at a daily resolution for the MTLF
case. Despite this observation, the results can be compared to the previous time horizons.
The deep neural network models showed the longest fitting times. In terms of prediction
times, the RNNs are followed by the RF and ANN models. The seasonal autoregressive
models showed shorter fitting times than for the STLF case, which on the one hand may be
explained by the data resolution. On the other hand, the length of one seasonal period of
seven samples is lower than the 24 samples used in the STLF case. This implies a smaller
number of regression parameters to be estimated during the fitting process, leading to
lower computational effort. The KNN and SVR models also showed both very low fitting
and prediction times. The fitting and prediction time differences might not be significant in
absolute terms for our particular datasets. However, the relative differences between them
indicate that for larger datasets the choice of model can have a significant impact on the
required computational effort and therefore on the necessary hardware.
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4. Conclusions and Outlook

Examining the validation results for the developed models, we find univariate models
to perform best for the VSTLF of up to one hour ahead. This includes their forecast accuracy
as well as the low computational effort needed to fit the models and to perform predictions.
While HW showed varying results for the different aggregation levels, ARIMA was able
to accurately forecast across all evaluated datasets. Such a clear conclusion could not
be drawn for the STLF time horizon of one day ahead. As for this time horizon, a clear
seasonal pattern is visible in the load curve, and the autoregressive models SARIMA and
SARIMAX showed high accuracies, but required longer model fitting times. Random
Forest models also showed consistently low errors, while requiring lower computational
effort. All other models exhibited strongly varying accuracies across the evaluated models,
which implies the requirement of an in-depth evaluation prior to the application of these
approaches on new use cases.

For the MTLF case that predicts load values of up to 30 days ahead, we saw the
accuracy of Random Forests to again be consistently high across all aggregation levels.
Compared to other approaches however, they showed longer prediction times. ARIMAX
models exhibited high accuracies at the low aggregation level, while SARIMAX resulted
in lower error metrics for medium aggregation datasets. For the high aggregation level,
all machine learning based approaches created forecasts with high accuracies. Especially
the SVR model showed extremely low computational effort for this dataset. Therefore, we
draw the conclusion that if the computational effort is not of highest priority, RF models
should be used for medium-term forecasts. If the prediction times are of high concern, the
model should be selected according to the aggregation level of the evaluated dataset.

Interestingly, we observed ANN and RNN models to score relatively low in terms
of accuracies across the different time horizons. As we expected them to rank among the
best approaches, we assume the reason for this to be overfitting to the training data points.
Therefore, our performance results for these specific model types cannot be generalized for
the case where data analytics experts are developing the models. Thus, this aspect counts
in general against the ease of the application of such advanced forecasting methods in the
traditional power system operation business, as they do not serve a highly-accurate model
that is usable straight out-of-the-box. All in all, it can be concluded that while we were able
to draw some recommendations on the model selection for pre-defined load forecasting
tasks, the proposed selection guideline does not boil down to a single solution that would
perform well enough for all use cases.

For future studies, we see the need to quantify the economic value of higher perfor-
mance accuracies and how this may further affect the selection of the optimal forecasting
technique for the cases discussed in this work. Materials, Methods and detailed Result
Tables available under: https://github.com/leonardbu/energies (accessed on 23 October
2021), doi:10.5281/zenodo.5345621.
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ADF Augmented Dickey-Fuller
ANN Artificial Neural Network
API Low Aggregated Load Case
ARIMA Auto-Regressive Integrated Moving Average
ARIMAX Auto-Regressive Integrated Moving Average Exogenous Variable
DA Day-Ahead
DSO Distribution System Operator
EHV Extra-High Voltage
ES Exponential Smoothing Model
FT Fitting Time
H Highly Aggregated Load Case
HV High Voltage
HW Holt-Winters Model
IB Imbalance Market
ID Intraday Market
KNN K-Nearest Neighbors
L Low Aggregated Load Case
M Medium Aggregated Load Case
MAE Mean Absolute Error
MSE Mean Squared Error
MTLF Medium Term Load Forecasting
MV Medium Voltage
PT Prediction Time
RF Random Forest Model
RNN Recurrent Neural Network
SARIMAX Seasonal Auto-Regressive Integrated Moving Average Exogenous Variable
SMHI Swedish Meteorological and Hydrological Institute
STLF Short-Term Load Forecasting
SVR Support Vector Regression
VRES Variable Renewable Energy Sources
VSTLF Very Short Term Load Forecasting

Appendix A

Table A1. Performance indicators for the three forecast horizons (VSTLF, STLF and MTLF) and data sets used (H, M and L).

H M L
VSTLF STLF MTLF VSTLF STLF MTLF VSTLF STLF MTLF

Naive1 MAE 0.02191 0.10745 0.15186 0.03191 0.10457 0.22742 0.03200 0.10029 0.09697
MSE 0.00081 0.01791 0.03659 0.00178 0.01773 0.07869 0.00170 0.01645 0.01445

Naive2 MAE 0.07386 0.11174 0.15885 0.08059 0.11517 0.23853 0.17380 0.08169 0.09489
MSE 0.00733 0.01834 0.03768 0.01082 0.01949 0.08585 0.03397 0.01003 0.01352

ARIMA MAE 0.00792 0.08354 0.12494 0.01774 0.08490 0.15747 0.01651 0.10471 0.09167
MSE 0.00018 0.01065 0.02371 0.00071 0.01091 0.03803 0.00066 0.01816 0.01278

FT 2.27597 1.59910 0.37247 1.45997 2.00909 0.43342 1.61464 0.11611 1.23961
PT 0.00863 0.02415 0.00317 0.00881 0.02438 0.00328 0.00916 0.02209 0.00468

ARIMAX MAE 0.06007 0.05853 0.11117 0.06927 0.08148 0.13169 0.05573 0.07609 0.03925
MSE 0.00548 0.00497 0.01704 0.00589 0.01053 0.02652 0.00543 0.00846 0.00256

FT 0.29530 0.30320 0.09219 0.32113 0.25716 0.13118 0.29770 0.15288 0.15240
PT 0.00825 0.03767 0.00436 0.00756 0.02275 0.00506 0.00740 0.02164 0.00468
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Table A1. Cont.

H M L
VSTLF STLF MTLF VSTLF STLF MTLF VSTLF STLF MTLF

HW MAE 0.00760 0.09248 0.12668 0.04052 0.28814 0.15869 0.04389 0.09525 0.11010
MSE 0.00017 0.01294 0.02384 0.00310 0.18413 0.04025 0.00415 0.01368 0.01990

FT 0.18801 0.01566 0.00862 0.15953 0.02042 0.01006 0.06343 0.00547 0.00926
PT 0.01918 0.01100 0.00699 0.01319 0.00841 0.00652 0.01332 0.00404 0.00716

RF MAE 0.04211 0.05049 0.05909 0.07296 0.07114 0.12674 0.05678 0.05979 0.04817
MSE 0.00265 0.00377 0.00481 0.00648 0.00846 0.02589 0.00469 0.00523 0.00324

FT 3.39467 1.26984 1.15574 2.47612 0.30422 1.12497 4.37455 0.65880 1.05151
PT 0.26120 0.09841 0.10195 0.19809 0.02821 0.08571 0.27926 0.06953 0.09159

KNN MAE 0.04750 0.06280 0.09525 0.07739 0.08548 0.16376 0.07482 0.09014 0.09107
MSE 0.00367 0.00643 0.01477 0.00733 0.01108 0.04145 0.00810 0.01181 0.01133

FT 0.00344 0.00221 0.00112 0.00340 0.00237 0.00110 0.00344 0.00199 0.00115
PT 0.04481 0.26031 0.01237 0.04586 0.17546 0.01219 0.04572 0.15955 0.01268

SVR MAE 0.03099 0.04953 0.05839 0.06372 0.08330 0.13674 0.07749 0.06922 0.05583
MSE 0.00151 0.00388 0.00536 0.00571 0.01073 0.02760 0.00903 0.00676 0.00434

FT 0.30091 1.21318 0.03714 0.07704 0.83955 0.02004 0.14052 0.17390 0.01044
PT 0.01045 0.23775 0.00326 0.00492 0.18398 0.00220 0.00604 0.02831 0.00180

ANN MAE 0.04047 0.09243 0.06807 0.06299 0.08522 0.16019 0.07378 0.20818 0.06708
MSE 0.00237 0.01429 0.00651 0.00573 0.01092 0.03802 0.00778 0.08266 0.00714

FT 13.99676 14.21762 3.77915 8.92345 19.70053 2.85564 50.88402 11.35866 3.46877
PT 0.09992 0.06275 0.05142 0.10870 0.06304 0.04629 0.09905 0.05584 0.07906

RNN MAE 0.04754 0.11490 0.06222 0.06307 0.09489 0.16202 0.06604 0.20780 0.07163
MSE 0.00310 0.01975 0.00571 0.00536 0.01352 0.03850 0.00563 0.06900 0.00811

FT 30.09069 32.36344 11.89653 27.41129 41.23049 4.89644 105.96070 17.10136 19.43588
PT 0.44646 0.44619 0.39260 0.81637 0.44181 0.22849 0.45823 0.24939 0.38948

MAE: Mean absolute error, MSE: Mean squared error, FT: Fitting Time (sec), PT: Prediction Time (sec).

Table A2. Selected ARIMA orders (p, d, q) and sample sizes for the three forecast horizons (VSTLF, STLF and MTLF) and
data sets used (H, M and L).

Dataset
VSTLF STLF MTLF

(p,d,q) SS∗ (p,d,q) SS∗ (p,d,q) SS∗

H (5,0,2) 650 (4,0,5) 800 (5,1,3) 250
M (5,0,3) 500 (5,0,5) 900 (4,1,2) 450
L (1,0,5) 650 (2,1,1) 500 (5,0,5) 450

SS∗: Sample size.

Table A3. Selected SARIMA orders (p, d, q)(P, D, Q, m) and sample sizes for the three forecast horizons (VSTLF, STLF and
MTLF) and data sets used (H, M and L).

Dataset
VSTLF STLF MTLF

Order SS∗ Order SS∗ Order SS∗

H -not considered- – (1,0,0)(2,0,0,24) 800 (0,1,1)(0,0,0,7) 400
M -not considered- – (2,1,3)(2,0,1,24) 900 (5,0,2)(1,0,0,7) 450
L -not considered- – (3,1,0)(2,0,0,24) 500 (1,1,2)(2,0,2,7) 450

SS∗: Sample size.

Table A4. Selected hyperparameters for the random forest models in the three forecast horizons (VSTLF, STLF and MTLF)
and data sets used (H, M and L).

VSTLF STLF MTLF
B m smin B m smin B m smin

H 1100 0.5p 50 800 0.5p 5 1100 0.5p 5
M 800 0.33p 50 200 0.33p 25 1100 0.33p 5
L 1400 0.2p 50 500 0.5p 50 1100 0.5p 50

B: Number of trees in the forest, m: Number of features to consider, smin: Minimum number of samples required per node.
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Table A5. Selected hyperparameters for the k-nearest neighbor models in the three forecast horizons (VSTLF, STLF and
MTLF) and data sets used (H, M and L).

VSTLF STLF MTLF

K Weight
Function K Weight

Function K Weight
Function

H 5 distance 8 uniform 70 distance
M 50 uniform 15 uniform 70 distance
L 150 uniform 150 uniform 120 uniform

K: Number of nearest neighbors.

Table A6. Selected hyperparameters for the support vector regression models in the three forecast horizons (VSTLF, STLF
and MTLF) and data sets used (H, M and L).

VSTLF STLF MTLF
C ε C ε C ε

H 0.125 0.03125 0.5 0.03125 2 0.0078125
M 0.03125 0.125 0.03125 0.0625 2 0.125
L 0.125 0.125 0.5 0.125 0.125 0.125

C: Error cost, ε: width of ε-insensitive tube.

Table A7. Selected hyperparameters for the ANN models in the three forecast horizons (VSTLF, STLF and MTLF) and data
sets used (H, M and L).

VSTLF STLF MTLF
L lr N O do L lr N O do L lr N O do

H 1 0.001 16 adm 0.1 2 0.001 16 adm 0.1 2 0.001 128 adm 0.1
M 2 0.001 16 adm 0.1 2 0.001 128 adm 0.1 1 0.001 128 adm 0
L 1 0.001 16 adm 0 1 0.001 32 adm 0 2 0.001 128 rms 0

L: Number of hidden layers, lr: learning rate, N: Number of cells per layer, O: Optimizer, do: Layer Dropout.

Table A8. Selected hyperparameters for the RNN models in the three forecast horizons (VSTLF, STLF and MTLF) and data
sets used (H, M and L).

VSTLF STLF MTLF
L C lr N O do L C lr N O do L C lr N O do

H 1 gru 0.001 16 adm 0.1 2 gru 0.001 16 adm 0.1 2 gru 0.001 128 adm 0
M 1 gru 0.001 16 adm 0.1 1 gru 0.001 16 adm 0.1 2 gru 0.001 16 adm 0.1
L 1 lstm 0.001 16 adm 0 1 gru 0.001 32 adm 0 1 lstm 0.001 64 rms 0.1

L: Number of hidden layers, C: cell type, lr: learning rate, N: Number of cells per layer, O: Optimizer, do: Layer Dropout.
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24. Klimo, M.; Lukáč, P.; Tarábek, P. Deep Neural Networks Classification via Binary Error-Detecting Output Codes. Appl. Sci. 2021,
11, 3563. [CrossRef]

25. Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of Hyperparameters of Machine Learning Algorithms. J. Mach.
Learn. Res. 2019, 20, 1934–1965. Available online: https://jmlr.org/papers/v20/18-444.html (accessed on 23 October 2021).

26. Makridakis, S.; Wheelwright, S.C. Forecasting: Issues & Challenges for Marketing Management. J. Mark. 1977, 41, 24. [CrossRef]
27. Chatfield, C. Time-Series Forecasting; Chapman & Hall/CRC: Boca Raton, FL, USA, 2000.
28. Taylor, J.W.; de Menezes, L.M.; McSharry, P.E. A comparison of univariate methods for forecasting electricity demand up to a day

ahead. Int. J. Forecast. 2006, 22, 1–16. [CrossRef]
29. Ferreira, A.; Leitão, P.; Barata, J. Prediction Models for Short-Term Load and Production Forecasting in Smart Electrical Grids. In
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