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c Department of Industrial Economics and Technology Management, NTNU, Sem Sælands vei 5, Trondheim, Norway   

A R T I C L E  I N F O   

Keywords: 
IAQ 
DCV 
CO2 

Air temperature 
RH 
PM2.5 

Formaldehyde 

A B S T R A C T   

CO2 is customarily used to control ventilation as it is a proxy for bio-effluents and pollutants related to the 
presence and activity of people in the room. However, CO2 could not be a satisfactory indicator for pollutants 
that do not have a metabolic origin, i.e., emissions from building materials or emissions from traffic. A meth-
odology to select pollutants besides or instead of CO2 is presented in this article. This methodology sets to study 
(i) the suitable location to measure air pollutants and (ii) which parameters to measure. The answers to these two 
questions are based on correlation analysis between pollutants and indoor/outdoor ratios. 

Measurements of CO2, air temperature, relative humidity, formaldehyde, and particulate matter have been 
taken in an office, an industrial kitchen, and a gym and are used to show how to apply the methodology. Cor-
relations were studied in detrended (pre-whitened) time series. Studying correlations in detrended time series via 
cross-correlation functions is recommended because correlation coefficients may be overestimated because of the 
trends in the time series. In contrast to Pearson’s correlation coefficient, the cross-correlation function studies the 
correlation between pollutants concurrently (as Pearson) but also at different time lags. 

From the measurements we can conclude on the need to measure at least one parameter representing: 1) 
pollutants related to human activities 2)pollutants that infiltrate from processes like combustion or traffic out-
doors, 3)pollutants related to combustion indoors, 4)pollutants related to degassing from building materials, 5) 
pollutants related to other “non-combustion-related activities” indoors and moisture loads.   

1. Introduction 

Buildings have evolved from having high rates of uncontrolled and 
unfiltered leakages to very tight envelopes with very reduced leakages to 
save energy [1–3]. Ventilation and filtering of air are necessary to secure 
the minimum requirements for indoor pollutants levels and thermal 
comfort in modern buildings [4,5]. The indoor environment is among 
the essential factors for a person’s cumulative air pollutant intake [6]. 
Outdoor air pollutants enter the indoor air via infiltrations and venti-
lation systems. Pollutants are generated also indoors as a result of 
different activities [7]. All adverse airborne pollutants, disregarding 
their origin, must be ventilated away to ensure good indoor air quality. 
The World Health Organization defines the maximum threshold con-
centrations for various contaminants based on health effects [8]. These 
guidelines intend to inform national policymakers on the selection of 

appropriate targets for healthy air quality. However, national thresholds 
vary among countries and standards define different requirements of 
VR. In the USA and many countries in Asia, HVAC system sizing and VR 
are chosen to provide comfort, not health, though ASHRAE Standard 
62.1 defined the acceptable indoor air quality to be without any known 
contaminants at harmful concentrations [4]. Logue [9] proved that in 
residences in the US and countries with similar lifestyles, air pollutant 
concentrations indoors exceed health-based standards for chronic and 
acute exposures in many measured cases. The WHO concluded that 
about 3.8 million people die annually due to household air pollution 
[10]. 

Thus there is a growing interest in monitoring IAQ by using low-cost 
sensors and developing platforms that can integrate sensing with actu-
ating at low cost [11]. Guyot et al. [12] analyzed literature related to 
smart residential ventilation. In their review, they refer to ventilation 
controls using CO2, temperature, relative humidity, and total volatile 
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organic compounds (mostly in bathrooms). Chiesa [11] developed an 
IoT application that controlled ventilation based on CO2, volatile 
organic compounds, atmospheric pressure, RH, and temperature. They 
concluded that the proposed system defined proper airflow rates so that 
IAQ indexes are maintained. This article builds upon the possibility of 
using several parameters for ventilation control and develops a method 
that will be helpful to unveil correlations among pollutants to choose 
which ones are necessary and which ones are “nice to have”. The same 
methodology can also be used to know where sensors should be placed 
so that they are useful for a ventilation control. 

1.1. CO2 as a marker for demand-controlled ventilation 

CO2 is often monitored as a proxy for occupancy in rooms [13,14]. 
People produce CO2 proportionally to their body mass and metabolic 
rate. CO2 concentrations are also understood as an indicator of the hy-
giene of the indoor air. 

DCV is a ubiquitous choice to save energy in buildings where the 
occupancy varies throughout the day, e.g., in office buildings. The de-
mand is defined from the level of one or several parameters. CO2-DCV 
targets keep CO2 below a set point concentration. If CO2 indoor levels 
are below the defined threshold, VR can be reduced [15]. The airflow 
rate decrease is the mechanism by which CO2-DCV realizes energy 
savings [16]. 

Carrer et al. [17] questioned using CO2 as a measure of the ventila-
tion’s ability to dilute and remove pollutants. More than 50% of the 
pollutants present in offices are not emitted by humans [18]. In addition, 
the air supplied to the room can be taken from outdoors (via mechanical 
ventilation plus filter or infiltrating via cracks), it can be recirculated 
from the extracted air or infiltrated from other rooms. Depending on the 
air’s origin or its pollutants concentration, it has different “dilution 
power”. 

Ramalho et al. [19] investigated correlations of CO2 concentrations 
and selected indoor pollutants (formaldehyde, acetaldehyde, benzene, 
PM2.5, PM10) in 567 dwellings and 310 educational buildings (nurseries, 
kindergartens, and schools). They concluded that the correlations be-
tween CO2 and pollutant concentrations were weak or very weak. Their 
study concluded that the probability of exceeding pollutant health 
guideline values correlates with high CO2 concentration, but the possi-
bility of exceedance is still high at low CO2 levels. Choe et al. [20] found 
that air cleaners could reduce PM concentrations while CO2 concen-
trations were still high. Wu et al. [21] presented measurements in green 
buildings with one-to three-star ratings. In their case, CO2 and PM where 
lower than in ordinary buildings but VOC was higher. Therefore, some 
authors specify that CO2 should only be used as a signal of 
occupant-related pollutants [22,23]. Others suggest that CO2 should be 
observed as an IAQ indicator and a pollutant impacting health and 

cognitive functions [24,25]. Some authors suggest also controlling other 
parameters [17,19,23,26]. However, to the knowledge of the authors, 
there is no clear guideline why or when several pollutants should be 
measured in addition to CO2 and temperature. Morawaska et al. confirm 
that there are no ventilation guidelines to specifically control the con-
centration of benzene, carbon monoxide, formaldehyde, and other 
chemicals, indoors [27] In this article we set the goal of developing a 
methodology to know which parameters should be measured in different 
types of rooms based on detrended correlation studies. Sun et al. [28] 
show the need of increasing the number of pollutants measured when 
correlating health outcomes and concentrations of pollutants. In their 
case they propose to use weights for the correlations. Here we propose a 
stepwise approach,1) measuring several pollutants, 2) study de-trended 
correlations and 3) Parameters that are correlated don’t need to be 
further measured as correlation equations can be deployed. Uncorre-
lated pollutants need to be continuously measured. In the next section, 
selected pollutants that can be measured with low-cost sensors will be 
discussed. 

1.2. Other (selected) indoor air pollutants: sources 

Fine particles and UFP (<0.1 μm) can infiltrate buildings through 
leakages [29] and ventilation (mechanical or natural) openings. Me-
chanical ventilation using filters can reduce the I/O of PM2.5 compared 
to natural ventilation [30]. The chosen filters in the HVAC systems, the 
precision of the mounting and their condition will also affect the I/O 
ratio. Chen & Zhao [31] concluded that the I/O varied importantly also 
due to the cracks geometry in building envelopes, and the air exchange 
rates. The principal indoor sources of PM2.5 are smoking, cooking, fuel 
combustion for heating, human activities, hair, skin, and burning in-
cense [32]. Indoor UFP can be generated from candles, cleaning and 
aerosol products, cooking, and other sources [33]. Morawska et al. [34] 
assessed that 10–30% of the total burden of disease from PM exposure 
was due to indoor-generated particles. 

Particle’s chemical composition, size, shape, deposition, and resus-
pension and hygroscopic growth appear to depend on RH [35]. RH af-
fects also the rate of degassing of formaldehyde and VOC from indoor 
materials [36], the formation of molds and allergens and pathogens 
[37]. Gładyszewska-Fiedoruk [38] claimed that if humans are the most 
significant contributors to moisture generation, CO2 and RH are also 
highly correlated, at least in naturally ventilated buildings. For air 
conditioning, where the air is cooled or dehumidified, correlations 
cannot be determined [38]. 

Salthammer summarized sources and intensity of formaldehyde in 
European housing [39] Formaldehyde is widely used in the manufacture 
of building materials and numerous household products. It is also a 
by-product of combustion from candles, incense sticks, mosquito coils, 

Nomenclature 

AR Autoregressive model 
ARIMA Autoregressive integrated moving average model 
ARMA Autoregressive moving average 
CAV Constant air volume 
CCF Cross-correlation function 
CO2 Carbon Dioxide 
DCV Demand-Controlled Ventilation 
HVAC Heating, ventilation, and air-conditioning 
HOCH Formaldehyde 
IAQ Indoor Air Quality 
I/O Ratio between indoor and outdoor pollutant 

concentrations 
IoT Internet of things 

MA Moving average model 
MET Metabolism 
NOx Nitrogen oxides 
O3 Ozone 
PCP Pentachlorophenol 
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PAH Polycyclic Aromatic Hydrocarbon 
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SBS Sick Building Syndrome 
TVOC Total Volatile organic compound 
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VR Ventilation Rate 
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M. Justo Alonso et al.                                                                                                                                                                                                                          



Building and Environment 209 (2022) 108668

3

cigarettes, wood-burning fireplaces [39] and a preservative in some food 
packing [40]. Air cleaning devices, textiles, cooking, carpets and surface 
coatings, plywood, MDF are also sources for formaldehyde [39]. Huang 
et al. [41] concluded that formaldehyde, acetaldehyde, or benzene can 
be derived from cooking activities. 

Sources of VOC in indoor air could be building materials, furnishings, 
cooking, household products, cleaning products, products for personal 
hygiene, etc. [42]. 

Nitrogen oxides (NOx), Ozone (O3), Pentachlorophenol (PCP), 
Polycyclic Aromatic Hydrocarbon (PAH), bio effluents, tobacco smoke 
are also main indoor pollutant substances, but they will not be further 
studied in this article as low-cost sensors for measuring them were not 
found. 

Thus, additionally to occupancy measured by CO2, and thermal loads 
measured by temperature, the following parameters should be moni-
tored:1) pollutants that infiltrate from processes like combustion or 
traffic outdoors, 2) pollutants related to combustion indoors, 3) pollut-
ants related to degassing from building materials, 4) pollutants related 
to other “non-combustion-related activities” indoors and moisture loads 
so that the main sources for pollutants are covered. 

1.3. Other (selected) indoor air pollutants: main health effects 

Indoor air humidity, defined as the perceived dry air or dryness 
(usually of eyes, upper airways, mucosae, or skin), is essential due to the 
associated health effects [37]. Fewer tears are produced, and precorneal 
and epithelial damage has been observed at low RH [37]. Dry air 
perception can be connected to mucous membrane irritation of eyes and 
upper airways in the presence of sensory irritants [43]. The reported 
“stuffy or dry air” may be affected by alteration of the composition, 
dynamics, deposition and resuspension of inhaled particles, possibly in 
concert with sensitive eyes or mucous membranes in the upper airways 
at low RH [37]. Cain et al. [44] claimed that temperature and RH altered 
VOC emission profiles and this correlated to the perception of IAQ. 

Moisture and microbial contamination in the building structure and 
HVAC systems have adverse health effects [45]. The growth of micro-
organisms (fungi, bacteria, viruses) and the occurrence of allergens were 
linked to high RH [46]. Thus, indoor RH should be kept below 
mold-or-mites growth thresholds by ventilation or air conditioning [45]. 
However, too low indoor temperatures and low RH were associated with 
increased occurrence of respiratory tract infections. Influenza virus 
increased survival rate and transmission efficiency at low RH [37,47]. 
Contrarily, RH>40% dramatically reduced the infectivity of some other 
virus [48]. Coronavirus seemed to decay faster close to 60% RH than at 
other levels [49]. In general, there is a good agreement in the literature 
that many viruses decay faster in the range 40–60% [50–52]. 

Multiple studies with varying populations and regions showed 
consistent correlations between PM and cardiovascular problems. The 
data demonstrated a dose-dependent relationship between PM in 
ambient air and human disease [53]. Chronic PM2.5 exposure affects the 
respiratory and cardiovascular systems [54]. Chronic bronchitis, stroke, 
heart disease, and thickening of arterial walls, diabetes, and reduced 
lung function were also connected to PM2.5 exposures [55–57]. 

The relations between indoor particulate matter (PM10, PM2.5) and 
associated health risks are less known [53,58]. Venn et al. [59] proved 
an increasing risk of wheeze with increasing proximity for children 
living within 150 m of a main road. Peters et al. [60] concluded that 
decreases in peak expiratory flow, feeling ill during the day, and 
coughing were associated with the concentration of fine and UFP on 
asthmatics. PM impacts the IAQ and health, but may also be the carrier 
of viruses such as influenza [37]. 

According to the INDEX project results [61], the EU’s risk assessment 
of IAQ agrees on prioritizing: formaldehyde, carbon monoxide, nitrogen 
dioxide, benzene, and naphthalene. Formaldehydes exist in the indoor 
air at a concentration that is larger than the outdoor air [39]. Formal-
dehyde has been classified as a potential human carcinogen by the US 

EPA and International Agency for Research on Cancer as a Class 2A 
carcinogen. Also, it irritates humans mostly in the upper airways, 
mucosae, and eyes [62]. Formaldehyde is a sensitizing agent that can 
cause an immune system response and sensory irritation [63]. 

VOCs at typical indoor environment concentrations may yield 
adverse health effects, depending on their composition. VOC concen-
trations indoors are generally below thresholds for sensory irritation in 
eyes and airways, but above odor thresholds [64]. Even if there is 
confirmation of a variety of dangerous effects probably linked to VOC, 
established scientific knowledge about direct health risks of VOCs is 
absent [65]. 

To sum up, when it comes to health effects the following parameters 
should be measured as exposures as these pollutants have important 
health effects: 1) RH as it affects the perception of IAQ and mostly the 
survival of viruses, 2) PM as the exposure to them is connected to car-
diovascular and breathing problems and 3) formaldehyde as it is known 
as an irritant and a potential human carcinogen. 

1.4. Exposure vs. concentration measurements 

Most of the epidemiological studies discuss the relations between 
exposures and sickness. The NAS report [66] defines personal exposure 
as E = 1

T
∫

C(t)dt where E is personal exposure, C(t) is the time-variant 
concentration, and t is the time that the person experiences a specific 
concentration. Children and adults may be exposed differently as the 
particles have different spatial positions and particle size distribution 
[67–69]. Wilson & Suh [70] concluded that the relevant epidemiologic 
parameter was the concentration of the ambient particles that have 
penetrated the indoor microenvironment and remained suspended. The 
settling velocity is directly proportional to the particle diameter (to the 
square) and the density of the particle. Particles smaller than 10 μm can 
remain suspended for longer periods [71,72]. Guak & Lee [73] studied 
the relationship between personal exposure and ambient concentration 
of PM10 and PM2.5 for different time-activity patterns. They concluded 
that personal exposure and PM2.5 were highly correlated. 

Therefore, in this study, it is assumed that when measuring con-
centration, an imperfect indicator of exposures is obtained, but that 
there is a correlation between concentrations and exposures. 

1.5. Objectives of the study 

Today, DCV deploys CO2 and temperatures as control parameters as 
they are linked to comfort and productivity and sensors are highly 
available. From the conclusions of chapters 1.2 and 1.3 RH, PM2.5 and 
formaldehyde should be measured additionally to CO2 and temperature 
to account for the main pollutants from non-metabolic activities and 
their health effects. We hypothesize that the other pollutants may be at 
adversely high concentrations, despite CO2 and temperature values 
being below thresholds. 

The main objectives of this article were:  

1) Development of a methodology for selecting which pollutants to use 
as control parameters for flow rates and to control the share of out-
door air in the supplied air:  
a. A methodology to determine which pollutants can be proxy for 

others was deployed using CCF. With CCF the study can focus on 
the i) present time correlation: looking for a mutual relationship 
between two pollutants at the same point in time, and ii) deter-
mining the correlation between the variables at different time 
lags. The CCF pattern is affected by the underlying time series 
structures, by the autocorrelation or trends of each of the two 
variables. Thus, it is helpful to de-trend the data by pre-whitening.  

b. An I/O -study approach was used to allow a deeper insight into 
the origin of the pollutants (indoor or outdoor). Based on the 
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origin of the pollutant, increasing ventilation with outdoor air 
would be either beneficial or harmful for the IAQ.  

2) Examine the suitability of the methodology with 3 case studies. RH, PM2.5 
and formaldehyde have been measured for at least one week, addi-
tionally to CO2 and temperature in an office, a gym and a canteen/ 
kitchen. The results were used to evaluate the suitability of the 
method and not to do a thorough mapping of correlations for the 
studied types of rooms and situations. 

To the knowledge of the authors: i) pre-whitening of data for 
studying correlations in detrended time series has not been applied for 
selection of pollutants to control DCV before. ii) the same combination 
of pollutants has not been previously evaluated. 

2. Methods 

2.1. Methodology for data analysis 

Fig. 1 summarizes the methodology of this work. 
The data analysis focused on correlations between the selected pa-

rameters: CO2, RH, temperature, formaldehyde, and PM2.5, as well as 
between the location where parameters were measured: the corre-
sponding breathing height in each room (see Fig. 2) and the supply air 
terminals. 

Previous studies have based their criteria for correlation on Pearson’s 
analyzes with non-pre-whitened time series [74–78]. The correlation 
coefficient between two time series following the same trend often 
suggests a high correlation. However, the high value may be due to 
auto-correlation in the respective time series, rather than due to a real 
correlation between the two series [79]. The correlation patterns are 
affected by underlying time series structures of each of the two variables 
and the trends that each series has. Thus, it is helpful to de-trend the 
data. By pre-whitening data, detrended time series are attained. 
Pre-whitening of data should always be done before deriving correla-
tions in trended time series [80,81]. Unless studying de-trended corre-
lations, nothing can be assured about the causal relationship of these 
two-time series. 

In this article, the calculation of the correlation of two time series is 
expressed by the linear correlation of different time lags between the 
two series [82] via the cross-correlation function (CCF). The correlation 
that the CCF shows is not pure inter-series-correlation, it is also affected 
by the autocorrelation of each of the two series (intra--
series-correlation). By using CCF instead of simple Pearson coefficients, 
“time-shifted” correlations can be also studied. The Pearson correlation 
only studies the contemporaneous relationship between the two-time 
series and not how the variation of one parameter may affect another 
in time. Let’s consider formaldehyde, the emission of this pollutant can 
be affected by RH and temperature. If we only look at Pearson co-
efficients, there may be no relationship, but if we studied several lags of 
time an effect of the variation of RH may be a predecessor of a peak in 
formaldehyde. In addition, not all the sensors have the same response 
time, or not all the reactions happen equally fast, thus studying the 
cross-correlation function is more complete. 

One approach to isolate the correlation between the time series is to 
remove the autocorrelation, i.e., to detrend the series [83]. This 

approach is called pre-whitening. 
Considering two time series, x, and y, of equal length. The three steps 

of pre-whitening are:  

1. Determine a time series model for x, in this case, an Autoregressive 
Integrated Moving-Average Model (ARIMA) was used for trend 
removal [82]. The goal of this step is to describe x up to residuals that 
are white noise, e.g., a time series without autocorrelation.  

2. Transform (filter) y by using the model used for x (using the same 
coefficients).  

3. Calculate the CCF between the residuals from step 1 and the filtered 
y-values from step 2. 

The cross-correlation that is left in step 3 corresponds to the corre-
lation between the time series. It is proportional to the impulse response 
function between x and y. If pre-whitening was not done, then the CCF 
would have been affected by the autocorrelations in the signals. Y has 
(normally/always) autocorrelation, but this is not a problem if x is 
“white”. 

ARIMA models belong to the class of linear time series models. 
Hence, it was assumed that the concentration of all pollutants behaved 
linearly over time, i.e., each measurement could be represented as a 
linear combination of its past values. ARIMA models were chosen 
because they are the most general form of linear time series models, and 
they include simpler models such as AR (Auto-regressive), MA (moving 
average), or ARMA (autoregressive moving average) models. Note that 
it was not our foremost goal to identify a perfect model to describe the 
time series, but rather a model whose residuals are close to white noise, 
to remove autocorrelation from the series. 

Some pollutants were generated in the considered space and some 
infiltrated from outdoors. In a room with a high concentration of out-
door produced pollutants, increasing the airflow rate would not be 
beneficial for diluting their concentration. For example, in a room where 
the concentration of pollutants from traffic was too high, increasing the 
ventilation airflow rate from outdoors would further increase the con-
centration of these pollutants (supposing that these pollutants were not 
filtered. Filter efficiency plays a big role in the concentration of pollut-
ants). To define the best ventilation procedure to dilute measured pol-
lutants I/O has been evaluated. When an I/O was below one, it meant 
that the pollutant was produced outside the room. In this case, it would 
not be useful to increase outdoor air ventilation rates to dilute the out-
doors generated pollutant. For example, in a room where plastics and 
old papers are stored, the formaldehyde values can be high. In this case, 
the I/O of formaldehyde may be over 1 and increasing the ventilation 
rate of outdoor air would reduce the formaldehyde concentration. 

2.2. Measurement spaces 

The criteria for selecting the measured spaces were as follows:  

1) Similar exposure to outdoor pollutants as they were all placed in the 
same building. East-oriented with similar airtightness,  

2) Same ventilation solution, constant air volume (CAV) and equal 
ceiling-mounted diffuser whose jets generated strong mixing of the 
air in the room assumed to be, fully mixed 

Fig. 1. Summary of methodology for the selection of the pollutants to be used to control ventilation.  
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3) Different activities performed in the room and  
4) Connection to the same air handling unit (AHU). The AHU was East 

oriented, on the sixth floor, about 30 m away from the street 
measured in a straight line 

Owing to these criteria and to validate the Methodology for data 
analysis, measurements were performed at the supply terminal of an 
office and a gym and breathing height in an office, a canteen, a kitchen 
and a gym. All the measured spaces were in the same building in 
Trondheim, Norway less than 40 m away from the road (measured in a 
straight line). Fig. 2 shows the layout of the rooms and the placement of 
sensors. The red dots represent the location and height of the mea-
surement at “breathing height” in the three rooms and the blue dots 
represent the measurement at the supply air terminal. Table 1 summa-
rized the equipment and characteristics of the three measured locations. 

The 36 m2 office on the second floor was dimensioned for five oc-
cupants and had a constant airflow rate of 300 m3/h from 06:00 to 20:00 
during working days. Outside this period or during weekends, the 
ventilation was off. The measurements lasted three weeks during June. 
The room was renovated with new walls, painting, windows, and a 
ventilation system about one year before the measurements. 

Measurements in the 100 m2 canteen and the 15 m2 kitchen lasted 
one week. These two rooms were placed on the 6th floor. The kitchen 
was used by one cook that was responsible for baking bread, general 
cooking, and washing. The canteen was occupied from 11:30 to 13:30. 
Up to 50 people could be sitting at the most crowded periods. The 
canteen measurements were done close to the kitchen door. The supply 
and exhaust airflow rates were not measured, but the ventilation was 
constant during the same periods as the office. The canteen and kitchen 
had not been renovated in the last years. 

The 50 m2 gym was in the basement of the building. Measurements at 
the gym lasted twenty days. The occupancy was irregular from 15 
people to long-vacant periods (users reported use of the room in a diary). 
The supply and exhaust airflow rates were not measured, but they were 
constant from 06:00 to 20:00 during weekdays. This gym was open to a 

large corridor (no wall, see dashed line in Fig. 2). The gym was built one 
year before measurements, and the ventilation system was not 
upgraded. 

2.3. Equipment 

The activities in these rooms were very different and the pollutants 
produced were expected to be different in quantity and type. Table 2 
shows the expected contaminants based on the different types of 
activities. 

Fig. 3 shows pictures of the installation of the sensors. 
Measurements were done with low-cost sensors. Low-cost sensors 

were preferred as they could economically replace the “normal” CO2- 
temperature sensor typically installed in these types of rooms. Table 3 
summarizes the sensors, the accuracy, the measuring range, and the 
response time. More information about the calibration can be found in 
Ref. [84] (under publication). Demanega et al. discuss as well the per-
formance of the particle sensors Sensirion SPS30 [85], Tryner et al. 
discussed the use of SCD30 CO2 sensor [86] that measures as well hu-
midity and temperature. Measurements were taken every 1 min. 

In all measurements, the sensors were protected from direct contact 
with the users, direct disturbance from the ventilation supply air and 
solar irradiation. Measurements happened at a single point to mimic the 
normal measurement procedure when measuring CO2 and temperature. 
For the reduced size of the rooms (not applying for the canteen where 
the representativeness is more limited), we assume that the single 
measurement was representative for the occupied breathing zone as the 
ventilation was mixing air ventilation. 

3. Results 

3.1. Correlation between different variables in each room 

Correlations were sought for the whole measured period. 
The pre-whitening process and CCF described in section “Correla-

tions Analysis” were carried out to find correlations between two time 
series as described in the methodology chapter. In the plots of CCF, the 
x-axis (lag) represented the offset between both series, its sign deter-
mined in which direction the series were shifted. The y-axis showed the 
Pearson correlation coefficient of the two respective time lags. The 
larger the y-value, the larger was the correlation. The lag i value 
returned by CCF (x, y) estimates the correlation between x [t + i] and y 
[t] [87]. A negative correlation value CCF (x, y) < 0 meant that if one 
parameter increased, the other decreased. The lag times showed how 
long it took for one perturbance to propagate in the other series. A 
positive time index between two pollutants at lag i (i > 0) represented 
that the current value of a pollutant (current meaning at time [t]) was 
correlated with the future value of the other pollutant at time [t + i]. 
Equally, a negative value at lag i (i < 0) meant that the previous value of 

Fig. 2. Placement of measuring equipment. The blue dot shows the positioning in the supply air terminals and the red dots the positioning of the measurement 
equipment and the breathing height. Blue rectangles show the windows. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 

Table 1 
Description of equipment and parameters measured.   

Office Kitchen/ 
Canteen 

Training room 

Area (m2) 36 15 + 100 
(two rooms) 

50 

Occupants # 5 desks. 2–3 
occupants during 
measurements 

Variable, 
0–50 persons 

Variable, 0–8 persons 

Ventilation 
principle 

CAV mix ventilation 
350 m3/h 

CAV mix 
ventilation 

CAV mix ventilation 
+ one wall open to the 
lab 

Floor Second Sixth Underground − 1 
Duration Three weeks One week 20 days  
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one pollutant at time [t + i] was correlated with the present value of the 
other pollutants at time [t]. This can be read as one pollutant was a 
predecessor for the current value of the other. The dashed blue line 
represented the 95% confidence bound (blue dashed lines) for a signif-
icant correlation. 

3.1.1. Correlations between pollutants from the gym 
As shown in Fig. 4, both supply and room levels of absolute humidity 

and temperature followed similar trends. CO2 levels were mostly below 
700 ppm for the presented period. Mostly, one person trained at the 
time, and no group training was presented in Fig. 4. In general, during 
training activities, the MET increased, the temperature rose quickly, and 

Table 2 
Expected pollutants generated in the studied rooms based on the different activities.  

Type of room Type of 
activity 

Expected indoor air quality sources 

CO2 Air temperature Formaldehyde PM2.5 RH 

Office Sitting and 
PC working 

Breathing Heat gain from MET, sun and 
computers 

Beauty products, papers, 
wall painting furniture 

Infiltration MET 

Gym Physical 
activity 

Breathing: proportional to 
occupancy and activity: ↑ MET: 
↑exhalation 

Heat relative to occupancy and 
activity level: ↑ MET: ↑sweat and 
↑exhalation 

Apparels and carpets Infiltration 
Friction treadmill 
Climbing wall 
dust 

↑ MET: ↑sweat and 
↑exhalation 

Industrial 
kitchen 

Cooking Breathing limited to the chef Heat gain from cooking, oven, 
dishwasher, sun 

Trash and cleaning 
products 

From cooking, 
oven 

From cooking, 
oven, dishwasher 

Canteen Eating Breathing: proportional to 
occupancy 

Heat gain from ↑ occupancy short 
period, sun 

Food wrapping? ↑ occupancy +
food remaining 

↑ occupancy +
food vapor  

Fig. 3. Installations of measurement equipment: (A) in the office; (B), (C) and (D): in the gym; (E) in the kitchen; (F) in the canteen.  

Table 3 
Properties of deployed sensors.  

Parameter Sensor type Accuracy Measurement range Response time 

Relative humidity Capacitive ±3% at 25 ◦C 0–100% 8s 
CO2 Nondispersive infrared (NDIR) ±30 ppm ± 3% of reading (500–1500 ppm) 400–10000 ppm 20s 
Temperature 10K NTC Thermistor ±0.4 ◦C + 0.023 (t [◦C] - 25 ◦C) − 40 ◦C–70 ◦C >10s 
Particle concentration Optical sensor ±10 μg/m3 (0–100 μg/m3) 

±10% (100–1000 μg/m3) 
0–1000 μg/m3 20 ms 

Formaldehyde Electrochemical sensor (MOS) ≤0.02 ppm formaldehyde equivalent 
< ± 2% repeatability 

0.03–2 ppm <40S  
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the production of CO2 was much higher. Formaldehyde concentrations 
rose towards the end of the day while ventilation was shut down and 
decreased every morning when ventilation started. Formaldehyde levels 
also seem to rise together with the periods of training read as peaks of 
CO2. Regarding PM2.5, the level of particles was continuously very low, 
the levels only rose during climbing activities (read from gym diary). 

Fig. 5 shows the cross-correlation functions of the detrended time 
series of each two pollutants in the gym (room values). There were very 
few significant correlations between PM2.5 and temperature or absolute 
humidity or formaldehyde, and those that were over the 95% confidence 
bands are very small in value. There is a significant correlation between 
PM2.5 and CO2 probably corresponding to the particle creation by gym 
users. However, judging by the module of the correlation and the few 
time lags with significant correlations, CO2 does not seem to be 
describing PM2.5 concentrations unquestionably. There was a weak 
correlation between CO2 and temperature or absolute humidity in 
higher lags. The lags were related to the simultaneity, higher lags can be 
read as a delay in the effect. Occupants would come into the gym and 
CO2 will rise faster than temperature and absolute humidity or PM2.5. 
However, the absolute value of the correlation factors was still low, 
which meant a low effect. There was a strong correlation between 
temperature and absolute humidity at lag zero, i.e., simultaneously. 
Formaldehyde is correlated to CO2 and absolute humidity. Many points 
were over the 95% confidence bands, and even if they were small, a 
large number of smaller values will add up to a large total effect. Even if 
we cannot conclude on a causal relationship, we can conclude that using 

these two parameters is important to describe formaldehyde. That is 
exactly another strength of this method that describes the effects of 
several parameters. Formaldehyde values were correlated positively to 
temperature in lag zero. When the temperature rose, the formaldehyde 
also rose. 

The CCF when using non-detrended time series is presented in Fig. S1 
in the appendix. In the trended analysis, the correlations appeared to be 
stronger than the detrended and all variables are significant (outside the 
95% confidence interval). Mathematically, the assumptions to use 
covariance methods as Pearson’s are: 1) that the cases should be inde-
pendent to each other, 2) that the two variables should be linearly 
related to each other and 3) the residuals scatterplot should be roughly 
rectangular-shaped. This is not the case when using a non-de-trended 
time series. 

3.1.2. Correlations between pollutants from the office 
Occupants of the office reported that the door was only opened and 

closed to allow them to enter. They kept a diary of when they arrived 
and left the office, but they did not record short vacancies. Fig. 6 pre-
sents the room air and supply air concentrations of the five pollutants. 
The occupancy of the office was low, CO2 stayed mostly below 650 ppm. 
The ventilation of the office was dimensioned to constantly deliver 
100% design airflow rate for five persons from 06:00 to 20:00, but the 
maximum registered occupancy was 3 persons. CO2 peaks seem to be 
simultaneous to formaldehyde and PM2.5 peaks but not to the ones of 
temperature and absolute humidity. 

Fig. 4. Evolution of the concentration of different pollutants in the supply and room air in the gym. Training periods are shaded in orange. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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The levels of formaldehyde in supply air were almost always below 
indoor levels. Formaldehyde is produced continuously in small amounts 
by occupants, paper, and many other sources [48]. The emissions from 
the furniture and paintings were very low in this case as the university 
confirmed using low emitting materials and paintings and the renova-
tion was done one year before the measurements. Most of the peaks 
happened while the ventilation was on, thus not necessarily because of 
the emission from materials but more related to occupants’ activities. 
Therefore, a correlation with CO2 could be justified. The same applies to 
PM2.5 given that the outdoor air is very little polluted. Road construction 
works were happening, and the traffic was limited. The concentration of 
PM2.5 in Trondheim’s air is generally low in June. The spring cleaning of 
the roadway finished in May, and the studded snow tires are no longer 
used [88]. 

Fig. 7 shows the results for the cross-correlation function of the de- 
trended data series. Only temperature and absolute humidity correlate 
at a high value. There is also a correlation between CO2 and temperature 
and CO2 and absolute humidity that happened at low lags. However, the 
values were very small in the range (ca. 0.075) and had few occurrences. 
The absolute value of the function may depend on the number of ob-
servations, and probably a more extended sample should be analyzed to 
have stronger conclusions. Formaldehyde correlated significantly with 
absolute humidity, temperature and CO2 at low lags, and these seem 
important as many different lags are significant. 

3.1.3. Correlations between pollutants from the kitchen 
Fig. 8 shows the development of the pollutants in the canteen and 

kitchen for three consecutive working days. In this case, due to the high 
temperature in the kitchen, the cook ran an additional personal air- 
cooling system. Besides, the kitchen had solar shading, which justifies 

the temperature difference with the canteen despite being both rooms 
connected. 

The absolute humidity in both rooms depended mostly on the ac-
tivities. During dishwashing, baking, or floor mopping, humidity levels 
rose. Regarding CO2, both rooms followed each other as they were 
communicating through a large opening. During busy periods, up to fifty 
people can sit for lunch. These high occupancies are followed by peaks of 
CO2. After 14:00, there was seldom anyone in the kitchen beside the 
cook that left around 15:00. 

The high concentration levels of formaldehyde after the room was 
vacant were probably connected to the trash bin being left open in the 
room (emptied every third day). Thus, the first two days had high 
concentrations from probably the trash bin, and the third did not show 
the same pattern. The door separating the canteen and kitchen was left 
open during the first night and closed during the second. 

PM2.5 levels were generally low during the measurement period. 
During the food preparation and bread baking, some PM2.5 spikes were 
recorded. Otherwise, the levels were almost consistently below 2.5 μg/ 
m3 despite the cooking activities. The kitchen was on the sixth floor thus, 
hardly exposed to traffic-related sources. 

Fig. 9 shows the CCF for the de-trended time series. In this case, only 
the measurements inside the kitchen were analyzed. There was a higher 
correlation in the low lags between absolute humidity and PM2.5 or 
formaldehyde. Formaldehyde and PM2.5 are also correlated in low lags. 
Baking and cooking yielded formaldehyde, PM2.5 and humidity. Abso-
lute humidity and temperature were also correlated in low lags. CO2 
correlated temperature and absolute humidity in low lags, but not with 
PM2.5 or formaldehyde. 

Fig. 5. Cross-correlation function between the different pollutants for the gym measurements (room measurements). The x-axis (lag) represents the offset between 
both series, its sign determines in which direction the series are shifted. The y-axis shows the Pearson correlation coefficient of the two respective time lags. 
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3.1.4. Results using pearson correlations assessment 
The widely used procedure for analyzing correlation in measure-

ments of air pollutants is to use Pearson’s correlation. The Pearson co-
efficients are indicators of a linear correlation between two sets of data. 
The Pearson correlation has two assumptions: i) the two variables are 
normally distributed and ii) the relationship between the two variables 
is linear. 

However, if the time series show trends, it is crucial to remove these 
first to avoid autocorrelation interferences. A common way to de-trend 
is not to use the absolute values of the series but their relative changes 
over time. Hence, one applies Pearson’s correlation coefficient on the 
differenced time series [89]. In this case, the de-trend of the values was 
done using ARIMA models as explained in steps 1 and 2 of the chapter of 
methodology for data analysis. 

Fig. S2 to Fig. S7 presented in the Appendix show the correlation 
values for the pollutants in the three different rooms, first using the raw 
data and then using the de-trended time series. In the kitchen using the 
raw data would have induced us to conclude a correlation between 
absolute humidity and CO2 that is not confirmed when using the de- 
trended data. Looking at the de-trended values in the kitchen there is 
only a correlation between the absolute humidity and the PM2.5 or 
temperature. In the gym, there is a strong correlation between absolute 
humidity and temperature and a smaller correlation between absolute 
humidity and CO2. In the office, there is only a correlation between 
absolute humidity and temperature. Using de-trended values is neces-
sary to avoid overestimating correlations. 

Pearson’s correlations analyze correlation only the lag 0, whereas 
the cross-correlation functions analyze the whole time series. Thus, 
when using Pearson’s correlations delays in response from different 
sensors would not be reflected in the result. For instance, the correlation 
in the kitchen between absolute humidity and formaldehyde or PM2.5 
are neglected when only looking at lag zero as these happen at lag − 2 

and − 3. 

3.2. Correlation of the different pollutants between supply and breathed 
air 

This chapter presents the CCF between the same pollutants in the 
supplied air and breathed air and the I/O. No analysis of the kitchen/ 
canteen is presented as the measurements were not at supply and 
breathing height but only at breathing height. 

3.2.1. Correlation between room and supply air at the office 
There was a high correlation between the room and the supply air in 

the variables PM2.5, temperature, and absolute humidity in the office. 
Most of the particles in an office are derived from infiltrations from the 
outdoors. Thus, it was expected to see a correlation in PM2.5. For ab-
solute humidity and temperature, given that the measurements were 
taken under summer conditions for low occupancy periods, there were 
no large sources of moisture or heat, and correlation was expected. The 
CO2 levels of supply and breathed air correlate weakly, which was 
plausible, given that indoors the largest source of CO2 was human 
exhalation, but the ventilation rate is very high. Formaldehyde had a 
low correlation as most sources happened indoors. These findings 
agreed with the plots on Fig. S8 in the appendix. 

From chapter 3.1.2 it was concluded that control to modify the 
supply airflow rates in this office should use CO2 (representing tem-
perature and absolute humidity indoors), formaldehyde and PM2.5. 
Absolute humidity, temperature, formaldehyde and PM2.5 correlate 
between indoor and outdoor, thus in this case measuring only indoor 
should be sufficient. Fig. 10 right shows the I/O. For all the presented 
pollutants, the I/O is larger than one meaning that increasing ventilation 
to remove these pollutants is an effective solution. 

Fig. 6. Evolution of concentration of different pollutants in the office room.  
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3.2.2. Correlation between room and supply air at the gym 
The gym had no window to the road that could let in PM2.5 caused by 

traffic. PM2.5 was mostly brought to the room via activities such as 
climbing. Hence, correlations for PM2.5 deviate from the ones at the 
office as shown in Fig. S9 in the Appendix. Formaldehyde is brought to 
the room via the activities; thus, we do not see correlations with the 
supply air. The same applies to CO2. For absolute humidity and tem-
perature, as there is no heating of the air neither humidification there is 
a correlation between the supply and the room values. 

In this case, most of the I/O ratios are over one for PM2.5, formal-
dehyde and CO2 as shown in Fig. 11. For PM2.5, formaldehyde and CO2 it 
is efficient to increase the airflow rates. For absolute humidity and 
temperature increasing the ventilation (given that there is no cooling 
nor dehumidification) may not be a good way of reducing over-
temperature or too high absolute humidity. 

For absolute humidity and temperature, the values are correlated 
between room and supply, but as the values can be below 1, both indoor 
and outdoor should be measured. As the I/O ratios are over 1 for 
formaldehyde, PM2.5 and CO2, increasing ventilation airflow rates to 
remove the pollutants is a good measure. Given the lack of correlation 
between indoor and outdoor and that the I/O is over one for CO2, 
formaldehyde and PM2.5 probably measuring only indoors is enough. 
However, for more conclusions regarding the removal of sensors longer 
measurement periods are recommended. 

4. Discussion 

CCF in de-trended time series is more accurate than CCF in non- 
detrended time series as autocorrelation could suggest stronger corre-
lations [80,81]. The differences between Fig. 5 and Fig. S1 in the Ap-
pendix show the large effect of having trends in the data when analyzing 

with CCF. If only Fig. S1 in the Appendix was used for the analysis, 
overestimations of the correlations would be assumed. Using CCF 
instead of simple Pearson’s correlation at lag zero studies both the 
contemporaneous relationship and delayed correlations. Fig. S2-Fig. S7 
in the Appendix prove the need of expanding the analysis to CCF instead 
of only simultaneous correlations. When there is a risk for delayed ef-
fects, using Pearson would not suffice. 

In this article, ARIMA models have been used to remove the auto-
correlation. The assumption of linearity when using an ARIMA model 
has not been proven for these pollutants. However, in this work, we limit 
ourselves to linear models. With longer measurement periods the line-
arity could be tested as well. 

In general, due to health hazards and possibilities for energy savings 
connected to reductions of VR, measuring several parameters, and using 
them for control of ventilation is recommended. Formaldehyde, PM2.5, 
moisture and VOC were selected, additional to CO2, because they 
represent the most plausible sources of pollutants in the measured in-
door environment. Other pollutants, as ozone, bioaerosols, bacteria, 
NOx, or SOx could have been additionally measured but no available/ 
reliable low-cost sensors were found for them. 

The robustness of the conclusions from the measurements is limited, 
as the measurement campaign was too short and only in one season. 
Seasonal variations of outdoor-generated pollutants such as PM are ex-
pected. These are not reflected when measuring only for such a short 
period. For this methodology, the larger the data sample, the more 
robust conclusions. A one-week measurement period was sufficient only 
to demonstrate the methodology and this is how these results should be 
read. For the data presented for the rooms considered, the following can 
be concluded. 

Fig. 7. Cross-correlation function between the different pollutants for the office measurements (room measurements).  
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• For most of the measured cases, the absolute humidity and room 
temperature were correlated (see Fig. 5, Figs. 7 and 9). Conse-
quently, using only one to be representative of the other may be 
sufficient. Note that in these measurements, there were no large 
sources of humidity as it may happen in a bathroom.  

• CO2 did not capture most of the peaks in PM2.5 (Fig. 4, Figs. 6 and 8), 
for the three measured spaces CO2 and PM2.5 did not correlate (see 
Fig. 5, Figs. 7 and 9), thus using CO2 would not have been a good 
proxy to control PM2.5. PM2.5 was not strongly correlated to any of 
the other pollutants and should, therefore, be measured both in 
supply and room air. However, in the measurement period, the 
concentrations of PM2.5 were very low indoors and outdoors. More 
data would be required representing a period with higher occupancy 
and higher outdoor PM2.5 to have a better background. If the values 
were to be high and still not represented by the measurements of CO2 
as in the measurement period, they should be included in the 
ventilation control. 

• Formaldehyde measurements may be exacerbated due to cross sen-
sitivities. However, in some rooms such as the kitchen or gym where 
sources were available, it should at least be monitored to avoid 
surpassing safe limits. In the measured office and gym, formaldehyde 
was correlated to relative humidity, temperature, and CO2. 

These three cases show the need to measure PM2.5 additionally to 
temperature and CO2 to map all the different sources of pollutants. 
During the measurements in this article, the risk of exceedance of health 
guidelines was low as most of the rooms were ventilated with very high 
airflow rates. But the correlation between CO2 and PM2.5 was weak as 
for Ramalho et al. [19] measurements. 

The proposed methodology provides a reliable way to select which 
parameters to use in the ventilation control. Correlation between the 

parameters does not induce causation. Causal relationships between the 
parameters are not subject of this study. In this study, correlation is used 
to determine which parameters can serve as a proxy for others. In 
practice, the correlations between parameters should be considered in 
the logic of IAQ control, either by monitoring all the parameters or by 
developing correlation equations that would ensure maintaining non- 
measured pollutants within a satisfactory range. Even if parameters 
are correlated, their absolute values are still important. For instance, 
formaldehyde should be at least measured to develop correlation 
equations. Formaldehyde peaks may be described by measurements of 
CO2, temperature and absolute humidity. This is justified as in the 
measured cases; people and their activities are the largest reason for 
formaldehyde emissions. If we compare this methodology to the one 
proposed by Sun et al. [28], in their case, using weighting factors, would 
not allow for developing descriptive relations for the pollutants that are 
correlated. However, more measurements are needed as the ones pre-
sented here do not represent the design occupancy of the rooms or 
different seasons. The development of the control strategy must be 
case-and-space-dependent. An example of the protocol to formulate VR 
and a ventilation control based on the parameters that are not correlated 
in an office can be seen in the article from the authors [90] where a 
traffic pollutant and CO2 are used for control. 

Several reviews have studied existing knowledge about low-cost 
sensors. Coulby et al. [91] concluded on several sensor having varying 
accuracy compared to reference devices, but most of them responding 
similarly to environmental changes. Thus, several sensors were deemed 
to have high precision but reduced accuracy. In such cases, calibration 
can increase the accuracy [91]. However, Giordano et al. concluded that 
low cost sensors are subjected to the biases and calibration dependencies 
and the correction of such can range from simple linear regressions to 
very complex machine learning algorithms [92]. Therefore, low-cost 

Fig. 8. Evolution of the concentration of various pollutants in the industrial kitchen and canteen.  
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Fig. 9. Cross-correlation function between the different pollutants for the kitchen measurements.  

Fig. 10. I/O of pollutants measured in supply and room air at the office.  
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sensors seem to be acceptable for this kind of study, but they must be 
calibrated always. When used for control of air quality using changes in 
concentration may be more suitable than using absolute values. Un-
certainty of the measurements may jeopardize the selection of the main 
pollutants. 

4.1. Limitations  

• Short time measurements: The measurements in this study have been 
taken to map correlations between pollutants in different spaces. In 
observational studies like this, there is a potential for bias based on 
the representativeness and the short duration of the measurements. 
The difference in sampling duration is owed to the accessibility of the 
rooms. The presented measurements are in this case proof of concept 
of the methodology. Due to the small sample size and having only 
one room of each type, the representability of the results is limited. If 
these measurements would be used to develop a ventilation control, 
a longer measurement period would be needed to draw more robust 
conclusions. We would recommend having at least one week of 
measurements in every season at different occupancy levels so that 
the results are more representative. The results in this article should 
be read as the validation of the methodology. A generalization from 
the conclusions is not recommended.  

• In practice, the deployment of this methodology would be very labor- 
intensive as first many sensors would need to be installed leaving the 
building “free float” with constant ventilation, and then the venti-
lation control strategy would need to be developed. However, with 
the development of deep learning algorithms and with a collection of 
data from different buildings, it is expected that the load of work to 
migrate to such a more holistic control strategy would be mitigated.  

• Use of low-cost sensors: Manufacturers have started marketing low- 
cost air quality sensors to measure air pollution. The availability of 
such sensors will likely continue to grow [98]. Provided that they 
could produce reliable data, they could improve current ambient air 

monitoring. The providers of many of these sensors report limited 
information about sensor reliability and accuracy. Yet, due to their 
“low cost” and ease of use, they are used more and more. However, 
preliminary tests performed in the U.S. [99], [100] and in Europe 
[101], [102] suggest uncertain reliability, some do not perform well 
under ambient conditions, and do not correlate with data from 
“standard” measurement methods employed by regulatory agencies. 
They may also stop communicating with the system or may just have 
a shorter lifetime or show incorrect measurements Therefore, it is 
urgent to characterize the actual performance of IAQ sensors and to 
educate the public and users about the potential and limitations of 
these devices [98]. Drift was not followed up as calibration was done 
before the measurements, and the sampling duration was short. 
However, when using this methodology in practice, if low-cost sen-
sors are used, their correct performance should be followed up. 
Several authors recommend using differential rather than absolute 
values in control [92,93]. 

Placement of the sensor and using single point: With the universal-
ization of the use of low-cost sensors, better recommendations regarding 
placement should be delivered together with the sensor datasheets as the 
users are less expert on IAQ measurements. In this article, the placement 
of the sensor is the same as for the customarily CO2 - temperature sen-
sors. However, this affects, among others, the measurement of PM2.5, 
which depending on the size, may distribute differently, or the formal-
dehyde that is heavier than air. The discussion of the optimal placement 
of sensors in the different types of rooms (e.g., with different functions, 
areas, height, and sources) is not taken in this article. However, to follow 
“standard control strategies”, the sensor prototype measuring the five 
parameters at the same time is placed in breathing height (1.2 or 1.8 m 
high depending on the normal tasks of the occupants). The location of 
the sensor, low-cost or “standard”, is very important as this measure-
ment must be representative of the room. In the measured cases the air is 
provided via terminals that encourage full mixing. The placement of the 

Fig. 11. Left: CCF of supply and room air concentrations of pollutants at the gym, Right I/O of pollutants measured in supply and room air at the gym.  
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sensor was protected from direct disturbances such as sunlight, heat 
from radiators, close to a trash bin, etc. 

Using a single point to represent the whole occupied volume is a bold 
assumption. Even more in this case where we have not proven that the 
air is fully mixed. This is a practical and technical limitation related to 
the cost of sensors and the limitations on the disturbance to the users of 
the sampled rooms. We acknowledge that using one single point is an 
imperfect indicator of exposures and that it cannot provide high- 
resolution spatiotemporal data that would be important for an accu-
rate evaluation of a dynamic indoor environment. However, this is 
standard practice when measuring temperature and CO2 in DCV-systems 
and we have decided to follow it for practical reasons.  

• The formaldehyde sensor has known cross-sensitivity issues with 
methanol, ethanol, isopropanol, carbon monoxide, phenol, acetal-
dehyde H2, H2S, and SO2 [94]. Many low-cost PM2.5 sensors are 
affected by RH and temperature [95]. Additionally, converting the 
light spreading to concentrations of PM depends on chemical and 
physical properties, size, and shape of particles and others that are 
not measured. Also, the air intake affects the particles entering the 
equipment by entraining smaller particles along. In general, these 
sensors are recommended for cases where the particle types are 
known and remain unchanged [96] what may not be the case here. 

• Low concentration of pollutants: This building had very high venti-
lation rates per person during the measured period (due to vacancies 
as some measurements were done in summer periods). It would be 
very interesting to repeat the measurements when lower ventilation 
rates per person would be supplied. However, once again the mea-
surements here are to be seen as an illustration of the methodology. 

5. Conclusions 

This paper presented a methodology to select the pollutants that 
should be used to control ventilation. 

1. A methodology for the selection of pollutants to use as control pa-
rameters for supply flow rates and to control the share of outdoor air 
in the supplied air was developed. This is based on the study of CCF 
in pre-whitened data series. Additionally, an I/O -study approach 
was used to allow a deeper insight into the origin of the pollutants 
(indoor or outdoor). This methodology sets to study (i) Where to 
measure, supply, or/and breathing height and (ii) Which parameters 
to measure. The methodology should be used to give answers that are 
case-and-space-dependent.  

2. Time series were detrended and correlations due to autocorrelation 
were removed. Studying correlations in detrended (pre-whitened) 
time series instead of Pearson’s coefficients is superior as autocor-
relation on the time series could imply stronger correlations and 
using CCF allows for studying the correlations at different time lags.  

3. The methodology was studied with three case studies, an office, a 
gym and a kitchen. Measuring the five selected parameters (CO2, 
PM2.5, temperature, RH and formaldehyde) seems to give a more 
complete picture of the IAQ in the studied rooms than using only CO2 
and temperature. For most of the measured cases, the absolute hu-
midity and temperature were correlated; CO2 or temperature did not 
capture most of the peaks in PM2.5. and formaldehyde was correlated 
to temperature and CO2.  

4. From the measurements we can conclude on the need to measure at 
least one parameter representing: 1) pollutants related to human 
activities 2) pollutants that infiltrate from processes like combustion 
or traffic outdoors, 3) pollutants related to combustion indoors, 4) 
pollutants related to degassing from building materials, 5) pollutants 
related to other “non-combustion-related activities” indoors and 
moisture loads. These are not undoubtedly covered using only CO2 
and temperature.  

5. In conclusion, this is a promising methodology that should be used 
further. 
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