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Abstract

Power systems throughout the world are, to a more prominent extent, getting

interconnected. Together with a higher share of renewable generation sources,

this is causing stability issues in the grids. The amount of inter-area oscillations

in power systems are increasing, which historically have been the cause for

several blackouts. New measurement units such as synchrophasors/PMUs are

improving situational awareness. These are essential for enabling wide-area

measurement systems and wide-area damping control schemes for mitigating

arising problems. Utilizing these measurements for controlling energy storage

systems are promising solutions for damping inter-area oscillations.

In this thesis, a Battery Energy Storage System (BESS) model is developed and

implemented in the Python Dynamic Power System Simulator (DynPSSimpy)

developed by PhD student Hallvar Haugdal at the Norwegian University of

Science and Technology. The installed device’s chosen control feedback signal

and location considerably impact its performance and capability of providing

power oscillation damping in the system. Using information about transfer

function residues, observability, and controllability of a given mode, these can be

selected optimally for providing the most extensive amount of damping in the

pre-defined steady-state operation point of the system. In addition, the transfer

function residues contain valuable information for appropriately determining

the controller parameters. The performance and legitimacy of the method are

through calculations and non-linear simulations in different versions of the Nordic

44 test network validated. The damping anticipated by the new modal positions

coincides reasonably with the non-linear simulation results for small disturb-

ances. However, for more immense disturbances, the properties of the linearized

system do not accurately contain information about the actual response, as the

internal power limitation of BESSs is not accounted for in the modal calculations.

Linear analysis is a valuable tool for selecting the feedback signal com-

binations and BESSs locations, and proves beneficial for controller selection and

parameter tuning when maximizing the amount of damping is the objective.

However, keeping in mind the constantly changing operating conditions of

real-world systems and power limitations of BESSs is of uttermost importance.

The results and conclusions have illustrated the importance of considering

different aspects through simulations and the necessity for conducting non-linear

simulations for verifying the linear results. Further development and research

are needed, but the potential benefits for systems operators utilizing available

wide-area measurements and properties of the linearized power system as a tool

for controller selection are evident.
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Sammendrag

Kraftsystemer over hele verden blir i mer fremtredende grad koblet sammen. I

tillegg til en større andel fornybare generasjonskilder, for̊arsaker dette stabilitet-

sproblemer i nettene. Mengden oscillatoriske svingninger mellom ulike omr̊ader i

kraftsystemene øker, noe som historisk har vært årsaken til flere strømavbrudd.

Nye m̊aleenheter som synkrofasorer/PMUer forbedrer situasjonsbevisstheten.

Disse er avgjørende for å muliggjøre presise og nøyaktige systemm̊alinger og

legger til rette for kontrollsystemer som kan redusere problemer i nettet. Å

bruke disse m̊alingene for å kontrollere energilagringssystemer er lovende for å

dempe svingninger mellom ulike omr̊ader i nettet.

I denne oppgaven utvikles og implementeres et batterilagringssystem (BESS-

modell) i en dynamisk kraftsystemsimulator (DynPSSimpy) utviklet av

doktorgradsstudent Hallvar Haugdal ved Norges teknisk-naturvitenskapelige

universitet i Python. Inngangssignalet til den installerte enhetens kotrollsystem

og plassering av batterisystemet p̊avirker i stor grad ytelsen og evnen til å

gi demping i systemet. Ved å bruke informasjon om åpen sløyfe transfer

funksjoners residualverdier, samt observerbarhet og kontrollerbarhet for en

gitt eigenverdi, kan disse velges optimalt for å gi best mulig demping i det

forh̊andsdefinerte operasjonspunktet til systemet. Metodens ytelse og legitimitet

er gjennom beregninger og simuleringer i forskjellige versjoner av Nordic

44-testnettverket validert, og kontrollerparametrene velges basert p̊a residual-

verdiene. Resultatene blir videre bekreftet gjennom ikke-lineære simuleringer

som replikerer tradisjonelle forstyrrelser i kraftsystemer. Dempingen som de

nye posisjonene til eigenverdiene indikerer sammenfaller med de ikke-lineære

simuleringsresultatene for sm̊a forstyrrelser. For større forstyrrelser inneholder

derimot ikke egenskapene til det lineariserte systemet nøyaktig informasjon om

den faktiske responsen, da den interne effektbegrensningen til BESSene ikke blir

tatt hensyn til i de modale beregningene.

Lineær analyse er et verdifullt verktøy for valg av tilbakekoblingssignaler

og plassering BESS i kraftsystemer for å effektivt bidra til demping, og viser seg

gunstig for valg av kontrollere og parameterinnstillinger. Imidlertid er det ytterst

viktig å huske p̊a de stadig skiftende driftsforholdene til virkelige systemer

og effektbegrensninger for BESSene. Resultatene har illustrert viktigheten

av å vurdere ulike aspekter gjennom simuleringer og nødvendigheten av å

gjennomføre ikke-lineære simuleringer for å verifisere de lineære resultatene.

Det er behov for videre utvikling og forskning, men de potensielle fordelene

for systemoperatører som bruker tilgjengelige m̊alinger og informasjon om det

lineære kraftsystemet som et verktøy for valg av kontrollere er tydelige.
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1 Introduction

The power grids throughout the world are transitioning into becoming smarter but

more complex, and an essential element in this transition is the advancement of the

Wide-Area Monitoring Systems (WAMS)[1]. Traditionally, the use of WAMS has been

directed towards monitoring and situational awareness. However, the amount of re-

search related to WAMS for automatic feedback control for meeting the requirements

of the grids has increased in the past decades [2].

Higher utilization, secure operation, and more accurate control of power systems require

monitoring system dynamics more precisely. An important element in this is the intro-

duction of Phasor Measurement Units (PMUs), offering close to real-time synchronized

measurements when deployed [3]. The technology behind PMUs was introduced in the

mid-1980s but has lately gotten an increased focus due to prior blackouts [4] and op-

erational requirements of modern power systems. PMUs are deployed for a wide range

of applications such as monitoring, wide-area protection, Wide-Area Damping Con-

trol (WADC), and state estimation, all of which are essential when transitioning to a

smarter grid [5]. While the traditional SCADA systems typically gather new measure-

ments every 2-4 seconds, PMUs based on synchrophasor measurements time-stamped

with clock signals obtained from Global Positioning Systems (GPS) are collected with a

rate of 30-50 snapshots per second [6], making electromechanical frequency oscillations

in the range 0.1 Hz to 2.0 Hz detectable and opening up for research utilizing these

measurements for effective inter-area damping control [7]–[9].

Several types of technologies offer promising results in the field of WADC utilizing

PMU measurements in the grid. Conventional FACTS-devices [10], HVDC-links [11]–

[13] and demand response by actively participating loads [14] show promising results

when deployed with ancillary controls for Power Oscillation Damping (POD). Modern

power systems are characterized by bidirectional power flows and higher penetration

of renewable energy sources. Energy storage systems are to a greater extent being in-

stalled in the grids to cope with the associated excess power production. The changes

in modern power systems are causing new types of challenges and possibilities that

need to be addressed for safe and efficient operation.

Mitigating the amount of low-frequency electromechanical oscillations between inter-

connected areas by utilizing phasor measurements for control of grid-connected Battery

Energy Storage Systems (BESSs) is a promising solution for meeting the requirements

of future power systems [15], [16]. Appropriately choosing the feedback signal from the

available measurements and locating the BESS at a suitable location in the system is

crucial for making it both economical and operationally beneficial [17].
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1.1 Scope and Objective

1.1 Scope and Objective

Due to the importance of mitigating inter-area oscillations in modern and future power

systems, using available devices and control systems present in power systems effect-

ively are of great significance. Hence, the main objectives of this thesis are related

to:

1. Selection of the optimal controller input signal and BESS location in a system

for providing the largest dampening capabilities aiming at mitigating inter-area

oscillations.

2. Appropriately deciding control parameters to make the overall system more stable

and increase the capabilities of handling dynamic disturbances.

Doing so requires a fundamental literature review to obtain knowledge and inspira-

tion based on previously conducted research on the topics and implement appropriate

dynamic models relying on writing code for presenting the simulations results. This

thesis can briefly be divided into four major parts, which essentially covers the scope;

literature review, theoretical foundation, development and implementation of dynamic

models, and simulations.

• Literature review for getting insights into the field of Wide-Area Monitoring and

Control, working as a guideline, and staking out the path of the thesis.

• Based on the literature review, the theoretical foundation and background needed

for implementation and analysis are established. The theory can be divided into

several parts; linear analysis for modal analysis containing information about sys-

tem response and mode excitation, control loop selection using transfer function

residues and observability- and controllability properties of the linearized sys-

tem. The transfer function residues provide information about mode sensitivity

for different choices of feedback controllers, being suitable to use for controller

parameter selection.

• The simulations and analysis heavily rely on Python implementations of the dy-

namic models, built upon the DynPSSimpy developed by doctoral student Hallvar

Haugdal at NTNU. Instead of relying on commercially available software such as

Simulink or PowerFactory, Python is chosen due to its flexibility allowing for

custom-made dynamic simulations and providing the user/author with freedom

and insights into the differential- and algebraic equations establishing the nature

of the conducted simulations. Using Python instead of commercially available

software increases the time spent working on simulations employing appropriate

2



1.2 Outline of Thesis

dynamic models. However, it is deemed the most suitable solution as the learn-

ing outcome and intuitive understanding of power system operation and control

are significantly increased, making working with this thesis more exciting and in-

spiring. A BESS model is implemented for providing ancillary control through a

Power Oscillation Damper controller. Several other models suitable for providing

grid-enhancing performance are created, some of which are provided and dis-

cussed in the Appendix. However, this thesis focuses on the BESS as the general

results apply to various underlying physical models.

• Lastly, testing and simulations are conducted for verifying the obtained results

in different versions of the Nordic 44 test network. Non-linear simulations are

compared with the proposed system response received from the linear analysis

and controller selection, aiming to exploit the proposed procedure’s limitations

and validate the optimality of the selected controller loop. Different types of

common disturbances in power systems worldwide are investigated.

Hence, the main contributions of this thesis can be summarized as:

• Implementation of dynamic power system models suitable for use in Python or

other open-source software.

• Application of transfer function residues for effectively selecting optimal feedback

signals and locations of BESS devices for providing inter-area oscillation damping.

In the literature, this has proved to be an effective tool for other devices in power

systems, and to some extent, for energy storage devices. However, conducting

the selection procedure in a Python environment using DynPSSimpy for different

Nordic 44 test network versions is considered a distribution.

• Simultaneously, this thesis contributes to the selecting procedure of controller

signals and location by a step-by-step approach presenting the needed theoretical

background, using the theory for control loop selection in a straightforward way

and, hopefully, suitable and easy to follow for students and researchers unfamiliar

with the topic.

1.2 Outline of Thesis

The structure of the proceeding chapters of the thesis can roughly be described as

follows.

Chapter 2 - Background, Motivation and Literature Review, serves as a foundation

for introducing Wide-Area Monitoring and Control and presents relevant literature for

3



1.2 Outline of Thesis

different devices used for providing oscillatory damping in Power Systems, and motiv-

ates the work to be conducted in the thesis.

Chapter 3 - Theoretical Background, provides the necessary theoretical foundation,

with emphasis regarding linear theory and transfer function residues and their applic-

ation to feedback controller design and parameter selection.

Chapter 4 - Modelling and Implementation of Dynamic Models, presents dynamic mod-

els utilized in the investigated test systems, including considerations and implementa-

tions regarding the BESS model and the underlying Battery model.

Chapter 5 - Simulations and Results, starts by presenting the initially unstable base

case system, followed by the selection of the optimal feedback signal and BESS location

based on the theory presented in Chapter 3. The controller parameters are determined,

and non-linear simulations for performance validation are conducted. A final summar-

izing discussion of the main findings is provided in the end.

Chapters 6 - Conclusion and Further Work, concluding remarks on the findings in

the thesis and suggestions for further work.

Appendix - Appendix, provides additional theoretical background and some consider-

ations and examples of other models that are implemented but not used in the thesis.

Lastly, calculations and simulations in other Nordic 44 test network versions are presen-

ted for further validation of the selection procedure.

The topics and research conducted for this thesis are based on a preceding special-

ization project conducted during the autumn semesters. Hence, parts of the introduc-

tion, literature review, theoretical background, and modeling are inspired and partly

adopted from the project work.

4



2 Background, Motivation and Literature Review

Modern power systems use various control systems and devices to maintain safe oper-

ation and control of the systems. This section intends to briefly describe some usual

compensation techniques and ways of integrating these to meet the requirements of

future power systems. Some key technologies will be introduced, along with a liter-

ature review on modern research related to using available measurements to enhance

grid stability. Emphasis is directed towards research conducted for using these techno-

logies for wide-area damping control and mitigate frequency stability issues in power

systems, especially regarding challenges related to low-frequency inter-area oscillations.

Different methods for choosing control system signals and locations will be highlighted.

Although Battery Energy Storage Systems (BESSs) are the main focus of this thesis,

research conducted for other devices related to oscillatory damping is covered. This

is motivated by the fact that in terms of adding Power Oscillation Damping (POD)

in power systems, the same principles and knowledge obtained for FACTS-devices,

HVDC-links, and Demand Response schemes might be equally applicable for Energy

Storage Systems.

Parts of this Chapter are based on and motivated by a literature review conducted

for a preceding specialization project conducted during the autumn semester for get-

ting familiar with the topics. Hence, citations and topics discussed coincides with the

project work, but the presented literature review is restructured and rewritten for the

topics covered in this thesis.

2.1 Research on Wide-Area Monitoring and Control

Research in wide-area monitoring and control has gotten increased focus after the intro-

duction of synchrophasor-based measurement systems. The root cause of oscillations

in electrical power systems is the mismatch between the instantaneous power demand

and available power provided by generator sources at any given instant. Due to the

increased complexity and distance between generators and loads in modern power sys-

tems, together with the reduction of inertia characterizing modern renewable power

systems, the presence of low-frequency oscillations between interconnected areas are

likely to increase [18].

By introducing PMUs, the situational awareness in the systems has improved sig-

nificantly, but there are still challenges to overcome before fully utilizing the potential

of these measurements. Chakrabortty and Khargonekar list fundamental research chal-
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lenges for benefiting of wide-area measurement and control in future power systems [1].

The authors claim that the most important ones related to data handling are associated

with the scalability of the control systems, real-time processing of data and communic-

ation challenges related to distributed control system. Other important challenges are

utilizing these measurements for improving the operation and prevent outages in the

systems. Wide-area oscillation damping for providing damping of low frequency oscil-

lations in the system, wide-area voltage control and wide-area disturbance localization

are mentioned as research topics of highest concern in the upcoming years [1].

A survey conducted in 2009 [19] showed that wide-area monitoring and control, and es-

pecially oscillation monitoring, were listed as the highest priority for most of the Nordic

TSOs. Controller using local signals is easier to implement and works conveniently for

appending damping to local modes, but are rather weak in detecting inter-area oscil-

lations of low-frequency. Therefore, wide-area damping control have gotten increased

focus lately [20].

2.2 Introduction to PMU technology

Phasor Measurement Units (PMUs) provides time-synchronized phasor information

about voltages and currents in approximately real-time. With the measurement rate,

they are highly preferred compared to traditional SCADA systems. They offer better

monitoring and facilitate new ways of implementing control systems, especially related

to the choice of input signals. There are major potential benefits for modern power

grids when employing real-time measurement devices. Control systems no longer solely

have to rely on local measurements, as the transmission rates of these signals promote

the use of Wide-Area Measurements (WAMs) for accurate and potentially better con-

trol.

PMUs are making use of clock signals delivered by global positioning systems (GPS)

for providing synchronized phase angle measurements and are often referred to as syn-

chrophasors [21, p. 569]. The fundamental principles behind PMUs will be described

in the following and are inspired by a paper written by Tsebia and Betarzi [22].

From introductory courses in electrical systems, one has that a pure sinusoidal wave-

form can be represented by a complex number, often referred to as a phasor [21], [23].

A pure sinusoidal voltage might be written as

v = Vmcos(ωt+ φ), (2.1)

where Vm is the voltage amplitude, ω is the frequency of the signal in radians per second,

and φ is the phase angle determined by the magnitude of the sinusoidal voltage at t =
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0. Making use of Euler’s identity, ejθ = cosθ + jsinθ, Equation (2.1) is rewritten into

v = Vmcos(ωt+ φ)

= Vm<{ej(ωt+φ)}
= <{Vmejφejωt}.

(2.2)

The part Vme
jφ is defined to be the phasor transform of the given time-varying sinus-

oidal voltage. The fundamental motivation for using phasors is that for an ideal system,

everything varies with the same frequency, and accounting for the time-varying part,

ωt, is unnecessary. What matters for power transfers in grids is system topologies,

magnitudes, and relative angular differences between the different quantities, and the

phasor representation captures the latter two. The magnitudes and relative angles of

the currents and voltages in the systems are captured by the phasor representation and

provide good system measurability when the deployment rate is satisfactory.

The fundamental idea behind the PMUs, sometimes referred to as synchophasors [24]

and what makes it suitable for observability of power systems is the synchronization

with GPS. Measurements are thus becoming reliable and obtainable in close to real-

time. Furthermore, without proper synchronization between the measurement units,

the phasors would not accurately describe the system. A more in-depth introduction

of the PMUs can be found in the literature [22], including immaturity stage thoughts

on the technology and its working principles discussed in 1994 [25].

Figure 2.1: Basic components in PMU. GPS signal not included. Source: Adapted

from [26].

The basic working principles of the PMU are presented in Figure 2.1. Several filters are

included due to the input being discrete sampled measurement signals. The sampled

data and the phasor estimator then provide a phasor estimate, which is the output

measurement available for operators.
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2.3 FACTS

Flexible Alternating Current Transmission Systems (FACTS) have in the last decades

become predominant in the power systems [27]. These compensation devices are in-

stalled in transmission and distribution systems worldwide by injecting power to the

grid to enhance grid performance and improve the operation. The main objective of

FACTS has traditionally been to increase the useable power flow capacity of transmis-

sion lines and controlling the power transmission routes in the systems [27]. However,

most of the available FACTS devices are not equipped with energy storage systems

and are thus relying on injection of reactive power to the grid by the use of passive

components such as inductors and capacitors [28]. These passive devices are generally

bulky and require substantial space, especially if significant compensation is required

in transmission systems.

2.3.1 Research on FACTS devices for oscillatory damping

In addition to conventional grid services such as increasing transfer capabilities, the

FACTS devices can be controlled for dampening inter-area oscillations. Ramirez et al.

[29] carried out an analysis on a linearized power system and concluded that the devices

could, if properly controller, effectively provide damping and improve the transient

stability of the system. However, they carefully mentioned that the control parameters

should be chosen with care as certain choices of controller parameters could penalize

other controllers in the system and make the overall system more unstable. Kazemi and

Sohrforouzani [30] conducted simulations in the widely used Kundur’s two-area system

[31] with different types of FACTS-devices. Their results indicate that FACTS-devices

injecting both active and reactive power can provide a greater amount of damping of

inter-area oscillations than FACTS devices solely relying on reactive power injections.

These results are further confirmed by Li et al. [10] who did an extensive review on

input signal selection for wide-area damping control using FACTS and HVDC. In this

paper, the damping assignment of each controller is chosen based on Residual Residue

Ratios (RRR), which essentially says that if a controller and its location possesses a

high value of RRR, it represents a high impact on this mode. The motivation behind

this approach was to reduce the complexity of designing multiple controllers by not

having to account for controller coordination, which might be a necessity if the RRR

is low and interactions between control loops are significant. Their results suggest that

whether one is having FACTS-based WADC or HVDC-WADC, effective damping of

inter-area oscillations is enabled. The results were validated by conducting non-linear

simulations for different disturbances such as load shedding, three-phase short-circuits

events, and line outages, coinciding well with the linear results.
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2.4 HVDC in Power Systems

Power systems worldwide are getting interconnected by using High Voltage Direct

Current (HVDC) transmission lines, which could prove to have several advantages

for satisfactory system operation. By intelligent and efficient monitoring and control,

areas with high generation can send some of their excess energy to other regions lacking

power. In addition to providing massive amounts of power with lower losses than the

alternative AC lines, these high-power links can be equipped with ancillary control

systems to offer grid-enhancing services to the interconnected systems.

2.4.1 Research on HVDC for Stability Enhancement

An extensive amount of research regarding ancillary control of HVDC-links for damp-

ing of inter-area oscillations has been conducted. Swathi and Poothullil [11] used speed

deviation measurements for controlling the active power injection of an HVDC-link,

and their results indicated that they could add damping to the inter-area oscillations.

Similar research has been conducted by Harnefors et al. [12] using machine speed devi-

ation as input signal for active-power modulation of HVDC-link aiming at dampening

inter-area oscillations. Their initial guess suggested that choosing generators with

small inertia should be a good candidate for feedback signals due to their sensitivity to

changes in the system. However, their results demonstrated that choosing a feedback

signal having the largest transfer function residue magnitude could be a preferable

solution.

A paper submitted by Preece et al. [13] indicates that active power modulation of

HVDC lines can effectively add damping to multiple inter-area modes within large net-

works by using power flows on selected lines as a feedback signal. For their simulation

setup, the HVDC converter station was modeled as a current injection model connected

in parallel to the AC-transmission line [13]. Zhang et al. [20] conducted case studies on

a power system in China containing a large amount of Power System Stabilizers (PSSs)

while still struggling with poorly damped inter-area modes. Different tests using an

important HVDC link having frequency differences between remotely located areas as

a feedback signal for the supplementary control were analyzed. Their results indicated

that this had a massive positive impact on mitigating inter-area oscillations following

different types of disturbances.
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2.5 Actively Participating Loads by Demand Response

Already back in 1979, research was focused towards load-management for improving

system stability and operation [32]. Controlling the load consumption was deemed a

promising solution for reducing frequency deviations during disturbances. Trudnowski

et al. [14] challenged the conventional power systems characterized by uncontrollable

loads by proposing a much more active role for loads for providing frequency control

and improving the dynamic stability of power systems. By a simple control rule where

the loads are controlled proportionally to the local speed deviations in the system,

their simulations showed a significant improvement in transient system stability. Al-

though they are cautiously warning about generalizing from the obtained results, they

demonstrated the potential for improving stability by using intelligent decentralized

loads serving as a foundation for additional benefits such as cost-effective transmission

systems and efficient operation of power plants [33].

There are several types of loads seen as ideal candidates for participating in frequency

regulation and damping. Shi et al.. [34] used thermostatic (heating, ventilation, air-

conditioning systems, and electric water heaters) load control for primary and second-

ary frequency regulation. Thermostatic loads are ideal candidates for such controls

due to their high power ratings and thermal inertia [34]. Their simulations show that

controlling the thermostatic loads improves the dynamic performance for systems con-

taining a high share of renewable generation while having a negligible effect on customer

comfort.

Jonsdottir et al. [35] aimed at providing damping in the Icelandic power system using

a load control algorithm for industrial aluminum plants for providing Power Oscilla-

tion Damping (POD). The authors use Real-Time Hardware-In-the-Loop (RT-HIL) for

testing the active load control algorithm, sending three-phase voltages and currents to

the PMUs. Eight different signals obtained from the PMUs are tested as candidate

input signals to the controller, ranging from active power transfer between the areas,

positive sequence voltage magnitudes, and voltage angle differences in the system.

Simulations are carried out in Real-Time Software-in-the-Loop (RT-SIL) and RT-HIL

configurations, and for the latter case, one sees that the damping is reduced compared

to RT-SIL, presumably due to time delays, scaling, and noise in the hardware setup.

The authors conclude that for the different signals considered, voltage angle differences

at the machine buses outperformed the other candidates in terms of damping.
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2.6 Battery Energy Storage Systems

Battery Energy Storage Systems (BESSs) offers solutions to many operational problems

in modern power system due to their fast-acting abilities. Other than providing peak-

shaving and facilitate certain areas to be operated isolated from the central grid [36],

these systems can participate in inter-area oscillations damping by properly designed

controllers utilizing available phasor measurements.

2.6.1 Research on Battery Energy Storage Systems for Stability Enhance-

ment

The location of BESSs and properly selecting controllers are essential considerations

during the design and installation process. Tsang and Sutanto [15] conducted simula-

tions using speed deviations for active power injection control and voltage magnitude

deviations for reactive power compensation. To find the optimal placement of the

BESS, the authors observed the movement of the eigenvalues for various locations in

the system. The concluding remarks were that using speed deviation signals for both

active and reactive power injection had the best damping abilities while using speed

deviation as input for active power and voltage magnitude deviation for reactive power

injection sacrificed a small amount of oscillatory damping in return for more stable

terminal voltages. They also concluded that the optimal placement of the BESS, in

general, will be dependent on the type of input signal used for the controller.

Some authors have compared STATCOMs with integrated energy storage performance

in oscillatory damping against conventional STATCOMs [37]. The control of the en-

ergy storage is based on decoupled proportional-integral (PI) controllers, with a change

in transmitted power taken as a feedback signal. The results show that having energy

storage integrated into the STATCOM facilitates effective damping of the oscillations

and avoids the sudden dip in voltage following disturbance.

There are several delays related to communication latency and the underlying physics

of the system components for a real-world control system. Zhu et. al [16] are ac-

counting for this by using a power reference signal to the BESS being proportional

to the input signal and having the inner current loop modeled as a first-order time

delay with a time constant of 0.02 seconds. In addition, the authors use a version of

Mixed-Integer Particle Swarm Optimization (MIPSO) to select the BESS location and

its corresponding controller parameters.

Batteries come in a wide range of sizes and ratings, having different performance char-

acteristics. Neely et al.. [38] are focusing on inter-area oscillation damping using
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ultra-capacitors/super-capacitors, which essentially is high power version of conven-

tional BESSs [39]. Their simulations indicated the feasibility and potential value for

power systems by the inclusion of a fast-acting energy storage damping controller.

The damping provided increases for increasing proportional gain, but communication

latency in the input signal might have a deteriorating effect.

2.7 Concluding Remarks on Feedback Signal Selection

Regarding controller design for inter-area oscillation damping, most authors emphasizes

which kind of feedback signal they are utilizing for the controller. The chosen feed-

back signal should be selected based on the aim of the control system, and a feedback

signal easily measurable in real-world systems is highly desired [40]. For the purpose

of damping the oscillations in the system, a majority of the available literature are

making use of speed measurements at different machines in the system [11], [12], [15],

[20], some are using differences in terminal voltage angles [35], while others are making

use of active power flow measurements available in the systems [13], [37].

Chompoobutrgool and Vanfretti [41] looked at different feedback signals for control

of a PSS aiming at damping oscillations in the system. Their results indicated that

voltage angle difference was the most effective feedback signal for the PSS and had

superior damping performance compared to other signals such as voltage magnitudes

and generators speeds.

Voltage angle differences might be a suitable feedback signal type, but selecting the

most appropriate angles in the system is of major concern. Chompoobutrgool and

Vanfretti [41] concluded that signals having a larger mode shape towards the given os-

cillatory mode achieved higher damping. This is also emphasized by Uhlen et al. [42]

who conducted an actual implementation and testing of a Wide-Area Power Oscillation

Damper (WAPOD) controlling a 180 MVar SVC installed in the Hasle substation of

the Norwegian 420 kV transmission grid. The authors argue that for different PMU

signals being candidates for feedback signal, those having good observability of inter-

area modes can be advantageous to use, but further testing of the WAPOD using PMU

signals with stronger observability will be helpful to illustrate the advantage of this ap-

proach clearer. Ge et al. [43] are using Damping Torque Analysis (DTA) for selecting

feedback signals and controller location but argues that this approach is equivalent to

using the residue magnitudes, which fundamentally is equivalent to using observability

index and controllability index.

Although selecting the feedback signals based on the signal yielding the largest residue

magnitude might be tempting, Ray et al. [44] highlights the importance of considering
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the phase angle of the residues in addition to the magnitude. For some applications,

especially in systems characterized by large eigenvalue movement from the different

operating conditions, selecting feedback signals such that the residue angles do not

vary significantly is preferred. Considerations are also undertaken by Li et al. [10]

and Lin et al. [45] who selects the feedback signal by comparing the residue ratio for

the different input signals, such that the chosen control loop does not influence other

control loops in the system significantly.

2.8 Concluding Remarks on Control System Location Selec-

tion

From the variety of literature covering a wide range of devices aiming at providing

damping of inter-area oscillations, it is evident that different authors utilize different

methods for deciding the location of the controller. Whereas some authors are us-

ing eigenvalue movements [15] or more advanced methods based on observability and

controllability index [46], Residual Residue Ratios or Relative Residue Index [10] and

Mixed-Integer Particle Swarm Optimization [16] for determining optimal location, oth-

ers are more focused towards finding a dominant path for placing the additional control

system [47].

Xiao et al. [46] concluded that locating the controller based on controllability in-

dex yielded the largest additional damping of the mode of interest. A similar result is

found by Aboul-Ela et al. [48] who emphasizes that a PSS aiming at damping inter-

area oscillations of a given mode should be located nearby the machine having the

largest residue value for the specific mode. This approach is also used by Prashash et

al. [49] where the highest measure of joint controllability and observability is utilized

for selecting the optimal feedback loop.

2.9 POD Controller Design

Whilst the actual physical devices may vary, most control systems providing POD to

the grid are utilizing similar controller design. A conventional design consists of a

washout filter for removing the impact of dc-signals and low-frequency oscillations and

lead-lag compensators for providing the desired amount of phase compensation [45],

[48], [50].

When designing controllers aiming at improving the reliability and performance of

power systems, linear analysis is often used as a baseline. Uhlen et al. [51] concluded

that linear techniques could be of great benefit when designing damping controllers for
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larger power systems by comparing the results obtained for the linearized system with

non-linear dynamic simulations.

Other authors are more specific in the POD design, showing how information about the

residue for the chosen controller-loop can be used for tuning the lead-lag compensators

of the PSS controller by applying an appropriate phase shift of the mode of interest [48].

This approach is not only applicable for the design of PSS, but might work equally well

for the design of POD applied to FACTS-devices such as Static Voltage Compensators

(SVCs) [50] and Unified Power Flow Controllers (UPFCs) [52].

Using information about the residue corresponding to the mode of interest for tun-

ing the controller parameters seems to be the most common procedure for selecting

controller parameters, although some authors are using more advanced schemes such

as Particle Swarm Optimization Algorithms [16], [53]. However, a general trend is that

regardless of the methods deployed for selecting controller parameters, most papers use

information about the linearized system and the new positions of the system modes for

determining whether the selected parameters is offering the desired amount of damping.

Adamczyk et al. [54] stress that when the residual method lays the foundation for

parameter selection, the effective mode shift is not only dependent on the residue value

but is affected by other system dynamics too. This is especially true when considerable

gains are required, as the interactions between the different control loops in the system

might be severe. Simulations carried out by et al. in [55] showed that the performance

of the controller deteriorates considerably if the communication delay is greater than

the time period of the oscillations of dominant modes in the system. Hence, when

designing a controller for obtaining a specific amount of damping and phase compensa-

tions, checks should be undertaken to assure that the controller performs as expected.

2.10 Summary

It is evident that there are several ways of enhancing grid stability and provide ad-

ditional damping to poorly damped modes in the system. There has been extensive

research on more actively participating loads and ancillary controls of existing power

system components such as FACTS-devices, HVDC-links, and Energy Storage for pre-

serving system stability.

Several devices are suitable for providing POD to the systems. The design criterion

in selecting optimal feedback signals and device locations seems similar for the differ-

ent devices utilized in the literature. A common approach is to use transfer function

residues to determine the signals and location. The selection of these has a significant
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impact on the damping performance. Knowing the residues and their corresponding

phase shifts, the controller parameters needed for obtaining the required phase com-

pensation and gain can be determined satisfactorily. If the required controller gain

is considerable, the interaction between different control loops in the system is signi-

ficant, or communication delays in the system are an issue, considerations should be

undertaken during design.
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3 Theoretical Background

In order to create valuable simulations and interpreting results, a fundamental the-

oretical background is necessary. This chapter intends on presenting key theoretical

foundations regarding the topics discussed in this thesis, and some deviations deemed

important for intuitive understanding of the results and linear analysis are presented.

Additional theory not being fundamental for the thesis, but still valuable, can be found

in Appendix A.

Certain parts of the theoretical background are based on work from a preceding spe-

cialization project conducted during the autumn semester. This is especially related

to state-space representation and modal analysis which are adopted, but rewritten and

modified with the inclusion of illustrative figures.

3.1 Small Signal Stability and the Swing Equation

The swing equation is fundamental for understanding dynamics in power systems.

Conventional generating units are traditionally based on some rotating masses, whether

it is due to water flowing through pipes, burning of gas, or steam turbines. The swing

equation contains information about how the angular speed of masses changes based

on mechanical input power and electrical power. The common way of finding the

associated equations starts by using Newton’s second law for rotating mass. Assuming

one has a generator and turbine with a total moment of inertia J and rotor shaft

velocity ωm, where the turbine is producing a torque τt, while having a counteracting

electromagnetic torque τe, with a damping torque coefficient of Dd, one has [56]

J
dωm
dt

= τt − τe −Ddωm. (3.1)

Making use of the fact that during a disturbance, one normally finds oneself in an op-

erating state where the speed of the synchronous machine is close to the synchronous

speed, and expressing the mechanical rotational speed and angle in terms of electrical

quantities and deviations from steady-state, it can be shown that with a proper defin-

ition of M and D, Equation (3.1) can be rewritten as the following set of first-order

equations

M
d∆ω

dt
= Pm − Pe − PD = Pm − Pe −D∆ω = Pacc

d∆δ

dt
= ∆ω,

(3.2)

which is also illustrated in the block diagram provided in Figure 3.1.
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Figure 3.1: Block diagram describing the classical swing equation.

In Equation (3.2) and Figure 3.1, the variables are given as:

• Pm is the net shaft input power to the generator

• Pe the electrical air-gap power

• M is called the inertia coefficient

• D is the damping coefficient

• PD is the damping power.

• ∆ω is the deviation in rotor speed relative to steady-state speed, ∆ω = ω − ω0

• ∆δ is the deviation in rotor angle position, ∆δ = δ − δ0

For the interested reader, the derivation of the equation can be found in Machowski

[56, p. 169-172] and other typical textbooks within the field of power systems. This

equation relates speed deviations in the generators, thereby frequency, to power im-

balances in the grid. The change in rotor speed deviation depends on the accelerating

power and the inertia coefficient M , where M is effectively a measure of rotational

inertia present in the machine. A machine with large inertia will experience a lower

change in frequency following disturbance than a machine with small inertia. This fol-

lows because large inertia essentially translates to a rotational mass containing a high

amount of kinetic energy due to its rotational speed. Some of this kinetic energy is

discharged during disturbance and reducing the rate of change of frequency. The term

accounting for the damping power, PD, is rather complex to express analytically as it

relies on several assumptions. However, it is generally dependent on the rotor angle

positions and damper winding reactances in the machine and the grid of which it is

connected [56]. For many simulations, the influence of PD is neglected in the analysis,

but one should be aware of its presence.

The equilibrium point of a set of first-order differential equations is point where all

the derivatives are zero [57] and the system is in a so-called steady-state operational

point. By using the Swing Equation (3.2), one have that this will be a point yielding
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net shaft input power equal to electrical air-gap power, as the damping power depends

on the rotor speed deviation. If the resistance and shunt admittance’s are neglected,

the electrical power in steady-state for a salient pole machine is given by

Pe = PEq =
EqVs
xd

sin(δ) +
V 2
s

2

xd − xq
xqxd

sin(2δ), (3.3)

where Eq is the internal generated emf within the generator Ef , Vs is the voltage at the

connected bus, δ is the angle between these voltage phasors and xd and xq accounts

for all the d- and q-components of reactances connected between the machine and

the bus, given that one are representing the generator in an equivalent d-q-axis circuit

diagram as done in [56, p. 87]. Assuming a round-rotor machine (xd = xq), the equation

simplifies to the familiar relation for power transfer between two buses connected by

an equivalent reactance

Pe(δ) = PEq(δ) =
EqVs
xd

sin(δ). (3.4)

The maximum power transfer for this ideal case is found by setting δ = π/2. Figure 3.2

shows the power output for round-rotor and salient pole machines, and the differences

between them should be evident from the plot.

Figure 3.2: Electric Power output Pe for generators with different rotor configurations.

The value of xq is smaller than the value of xd, such that the maximum power power

output occurs at a smaller rotor angle for a salient pole machine compared to round

rotor machines. Hence, for providing the same amount of electrical power, for instance

Pe = 1.0 (dotted black horizontal line), the salient pole machine is operating at a

smaller rotor angle δsal,0.

The Electrical Power Equation (3.4) is sinusoidal which is also observable from the blue

solid line in Figure 3.2, thus having two different angles in the interval (0, π) yielding
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the same electrical power Pe. It is highly desired to find oneself in an operating point

lying the first quarter of the period. This will allow the system to fall back into a

new steady-state after disturbance. A machine initially operating at a power angle δ

in the range [π
2
, π] would lose synchronism with the rest of the grid following a small

disturbance in the system as it would oscillate away from a steady-state point in case

of an unregulated generator [56].

In terms of stability, the damping power plays a significant part. When a disturb-

ance happens, speed deviations will be observable in the system. With damping power

present, this will either decelerate or accelerate the system’s response, essentially help-

ing it reach a steady state much faster than cases without it. This is highly relatable

to the theory presented for modal analysis (to be covered in Section 3.2.3), as the

damping coefficient D is seen to account for the real part of the eigenvalues in terms of

a simple Single-Machine Infinite Bus (SMIB) system. Without any damping present,

the system would contain sustained oscillations after a disturbance.

3.2 Linear Theory

3.2.1 Linearising non-linear Systems

Modern power systems are non-linear dynamic systems in nature. Computing eigenval-

ues for determining dynamic response and analyzing system stability relies on a linear

representation of the system. Linear analysis is well suited for accurately describing

the dynamic response for small changes around a given operating point and is thus

a useful tool for obtaining first-hand knowledge about system stability. However, a

good practice is to validate the results obtained using linear analysis with a non-linear

simulation as deviations between these will be present for larger system changes. A

general description of a non-linear dynamic system can be given as

ẋ = F (x, u), (3.5)

which says that the solution in time of a state variable xi(t) is given as a function of

all the other state variables in the system. Several of the entries are zeros in most

systems, as most states are only related to a couple of the other states in the system.

Using Taylor series expansion for the purpose of linearizing the system around a given

operating point (x̂, û) [57], and neglecting the higher order terms which are generally

quite small yields the following system description for a small region around the defined

operating point

∆ẋ = A∆x+B∆u, (3.6)

where ∆x = x− x̂ and A = ∂F /∂x is the Jacobi matrix. Similarly, the change in the

input vector and input matrix are given by ∆u = u− û and B = ∂F /∂u respectively.
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By this linearization, the state-matrix A and the linearized input matrix B for the

system3.1 is found to be [58]

A =
∂f

∂x

∣∣∣∣
(x̂,û)

=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

...
...

...
...

∂fn
∂x1

∂fn
∂x2

. . . ∂fn
∂xn


∣∣∣∣∣∣∣
(x̂,û)

B =
∂f

∂u

∣∣∣∣
(x̂,û)

=


∂f1
∂u1

∂f1
∂u2

. . . ∂f1
∂un

...
...

...
...

∂fn
∂u1

∂fn
∂u2

. . . ∂fn
∂un


∣∣∣∣∣∣∣
(x̂,û)

(3.7)

Notice that this system representation is basically the same as presented in section

3.2.2. The system matrix A will be essential in several parts of this report as this

is the one containing information about eigenvalues and mode shapes which will be

discussed further in the upcoming section. A numerical approach for calculating the

system matrix A and input matrix B utilized for this report is provided in Appendix

A.2.

It can be shown based on Lyapunov’s first theorem that if the generally non-linear

system described in Equation (3.5) can be approximated by the linear Equation (3.6),

the system is asymptotically stable if all eigenvalues of state matrix A are located in

the left half of the complex plane [56], that is

Re{λi} < 0 ∀{λi : det(A− λiI) = 0}. (3.8)

The eigenvalues contain significant information about the system stability. They are

also used extensively when designing controllers for systems, as will be shown in the

following section. Ogata includes a proof of this in his book ”Modern Control En-

gineering” [40, pp. 241] utilizing residues3.2 and other linear properties for deriving

it.

3.2.2 State-space Representation

For a continuous time-invariant linear system a general representation of the system

cab be written in the following form

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(3.9)

which is also illustrated in the block diagram given in Figure 3.3, inspired by a Figure

found in a course book in control system engineering [58, p. 92].

3.1By assuming there are n state variables in the system.
3.2Residues are covered in Section 3.3.1.
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3.2 Linear Theory

Figure 3.3: A general block diagram showcasing the state-space representation in Equa-

tion (3.9) for a continuous time-invariant linear system. The variables and notations

used are described in the text and corresponds to commonly selected names in the

literature.

This is referred to as the State-space representation of the system. The aforementioned

representation has the following terms:

• x is the state-vector

• y is the output vector

• u is the input vector

• A is the system matrix

• B is the input matrix

• C is the output matrix

• D is the feed-forward matrix

The Laplace transform of such a system description will be valuable in terms of de-

scribing the concepts introduced in Section 3.3.1 and is thus given below:

sX(s)− x(0) = AX(s) +BU (s)

Y (s) = CX(s) +DU(s)
(3.10)

Stability of such a linear time-invariant system can be studied from the eigenvalues of

the system matrix (also called state-matrix). For a continuous linear time-invariant

system as in (3.9) the eigenvalues λ are the values satisfying the characteristic equation

det(A− λI) = 0. (3.11)

For an extensive system, calculating the eigenvalues might be rather computational

heavy and complex. However, with the development in computer power, this has

become a manageable task.
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3.2.3 Modal Analysis

This section is intended to provide the necessary background for doing and using modal

analysis. The deviations are based on the work presented in [56]. Firstly, the theory is

presented with some motivation behind the different steps before providing a small sim-

ulation highlighting the main observations is presented to validate the theory and show

the power of modal analysis in power system dynamic analysis and control. This devi-

ation might seem unnecessary to present in its entirety. However, due to the importance

of the topic for the rest of the thesis, it was decided to give a complete overview of the

steps as these contain much valuable information employed for the rest of the report.

Textbooks and literature often provide a rather theoretical view on this topic, for in-

stance, Machowski [56], some figures showing how to interpret modal analysis and the

information contained in it is included in Section 3.2.5 to illustrate the concepts for the

unfamiliar reader and provide an intuitive first-hand visualization of the interpretation.

In the following, the ∆-notation is removed from Equation (3.6) for simplicity and

the part related to the input B∆u is set to zero, yielding the matrix form of the linear

differential homogeneous equation as

ẋ = Ax, (3.12)

where x is denoted the state vector and A is called the state matrix. This system rep-

resentation can, for instance, be thought about as a linearization of a dynamic system

around a steady-state operating point. The following deviations will be a good approx-

imation for the system’s dynamic behavior for small changes away from this operating

point. The main advantage of the following deviation is to be able to represent the

generally infinitely high order system as a linear combination of decoupled first- and

second-order systems, which simplifies the system analysis significantly [58].

An eigenvalue of matrix A is a value λi satisfying the following equation for a nonzero

eigenvector .

Aφi = φiλi, (3.13)

where φi is the right eigenvector corresponding to eigenvalue λi Using Equation (3.13)

for every pair of eigenvalues and eigenvectors in the system, one can write

AΦ = ΦΛ

Λ = Φ−1AΦ
(3.14)

where the matrix Φ is a matrix whose columns are the right eigenvectors of the state

matrix A structured as

Φ =
[
φ1 φ2 . . . φn

]
, (3.15)

22



3.2 Linear Theory

and φi is the right eigenvector corresponding to eigenvalue λi. The matrix Λ is a square

diagonal matrix containing all the eigenvalues in the system such that

Λ =


λ1 0 . . . 0

0 λ2 0

0 . . .
. . . 0

0 . . . . . . λn

 . (3.16)

This idea of factorizing A such that it can be presented as Equation (3.14) is funda-

mental in several applications of linear algebra and are a useful way to analyze dynamic

systems [59]. Using a linear transformation of the state vector in Equation (3.12) and

transforming the state vector into a new state vector with a linear transformation based

on the relation shown in Equation (3.14), one gets

x = Φz, (3.17)

The vector z is contains the modal variables or simply modes in the system. One

could, in principle, use all thinkable invertible matrices satisfying the dimensions of

the original system for this transformation. However, the choice of using the matrix

W whose columns are the right eigenvectors in the system is not arbitrary, as will be

made clear in the following. Defining the inverse matrix of Φ as Ψ, one sees that the

new state vector z can be written as

z = Ψx. (3.18)

It can be shown that the matrix Ψ contains the left eigenvectors, defined similarly as

the right eigenvectors presented in Equation (3.14),

ΨA = ΨΛ, (3.19)

but structured like

Ψ =
[
ψT1 ψT2 . . . ψTn

]
, (3.20)

where ψTi is the transposed left eigenvector corresponding to the i-th eigenvalue. Using

the Equation (3.18) in equation 3.12 describing the system, one gets

ż = Φ−1AΦz = ΨAΦz. (3.21)

The last expression is rather tedious to work with, but making use of the relation found

in Equation (3.14) into Equation (3.21), it is evident this can be rewritten as

ż = Λz. (3.22)

This representation is often simply referred to as the modal form of the state equation

presented in Equation (3.12) [56]. The system is significantly simplified due to Λ being

a diagonal-matrix (whose off-diagonal elements are zero). In contrast, the original
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system relied on matrix A which in principle could contain non-zero elements in every

entry. Equation (3.22) is called decoupled since none of the modal variables solutions

depends on the dynamics of the other modes, which comes as a consequence of the

diagonal matrix off-diagonal zeros. The derivative of the new state vectors does only

depend on their own corresponding state variable

żi = λizi, (3.23)

which makes this a system of first-order differential equations on arguably on of the

simpler forms3.3, having the solution

zi(t) = eλitzi0, (3.24)

where zi0 is the initial value of this modal variable i. The above is valid for a specific

modal variable zi, but it is straightforward to express it for the whole system by defining

a new matrix

eΛt =


eλ1t 0 . . . 0

0 eλ2t . . . 0
...

...
. . .

...

0 0 . . . eλnt

 , (3.25)

which yields the following solution in time for the overall system

z(t) = eΛtz0 (3.26)

The state vector x and modal vector z are related by the linear transformation given in

Equation (3.17), such that by combining equation (3.17) and (3.24) the state variable

time responses are given by

x = ΦeΛtz0. (3.27)

or, when written it in a less compact form
x1(t)

.

.

.

xn(t)

 =


φ11 φ12 φ13 ... φ1n

. . . . .

. . . . .

. . . . .

φn1 φn2 φn3 . φnn




eλ1t 0 0 ... 0

0 eλ2t 0 ... 0

0 0 eλ3t ... 0

0 0 0 ... 0

0 0 0 ... eλnt




z10

.

.

.

zn0



=


φ11e

λ1t φ12e
λ2t ... φ1ne

λnt

. . . .

. . . .

. . . .

φn1e
λ1t φn2e

λ2t ... φnne
λnt




z10

.

.

.

zn0



(3.28)

3.3A first order differential equation being presented in the form ẋ = λx is usually the first type of

equation one look at when studying differential equations [57].
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From the above equation, one sees that for a given state variable xk, its dynamics is

described by

xk(t) = φ11z10e
λ1t + φ12z20e

λ2t + ...+ φ1nzn0e
λnt. (3.29)

That is, the response of a state variable xk(t) is a linear combination of the modal

variables in the system. The vector of initial conditions of the vector z0 can be found

by using Equation (3.18).

From Equation (3.18), it can be seen that equivalently to the state variables in the

system being described as a linear combination of the modal variables as in (3.29), the

modal variable zi can be expressed as a linear combination of the state variables in the

system

zi(t) =
n∑
j=1

ψijxj(t), (3.30)

where ψij is an entry in the matrix Ψ containing the left eigenvectors. By expanding

the sum in (3.30)

zi(t) = ψi1x1(t) + ψi2x2(t) + ...+ ψinxn(t) (3.31)

It is evident from Equation (3.31) that each state variable xk is having an impact on the

value of the modal variable zi, and to which extent being dependent ψik. As discussed

previously, the entries in Ψ are the left eigenvectors entries. It is therefore said that the

left eigenvectors contain information about the controllability of a given modal variable

by individual state variables. In other words, how much will the modal variable zi be

changed by controlling the state variable xk. If ψik is approximately zero, controlling

xk will have a negligible impact on the modal variable zi. The left-eigenvectors turn

out to have essential properties when defining control systems.

Another way to make observations about this system is to look at equation (3.29),

which describes how the modal variables affect the dynamics of the state variables.

Each modal variable zi is contributing to the state variable xk, and to which extent

is given by the entry of the right eigenvectors corresponding to this modal variable,

φki. As the state variables are a linear combination of the modal variables, it can

be said that the modal variables are observed in the state variables. Thus, the right

eigenvectors carry information about the observability of the different modal variables

in the state variables. By normalizing the eigenvectors, φki, which generally is a com-

plex value determining the magnitude and phase of the share of modal variable zi(t)

in state variable xk. The latter is often referred to as mode shape [56] and plays a

major part in the stability analysis of power systems as it shows to which extent the

oscillatory modes influence the dynamic behaviors of individual states. The relations

between state variables and modal variables together with left- and right-eigenvectors

presented here will be of great importance for the rest of this thesis when determ-
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ining control systems’ locations and making qualified guesses to the system response

following different disturbances.

3.2.4 Damping and Frequency of Oscillatory Modes

The state variables contained in the state vector x is defining the dynamics of the

system. From the deviations above, it is made clear that the solution in the time

domain of a state variable xk(t) depends on the initial conditions of all modes z0 as

well as the coefficients obtained from the right eigenvectors. An important point to take

on from this is that if the system contains complex eigenvalues, they appear in pairs

as complex conjugates. As a result, these complex pairs of eigenvalues λi = αi ± jωi
introduces a response to state variable xk(t), which depending on the values of the

corresponding eigenvectors, is proportional to eαitcos(ωit + θki). The real part of the

eigenvalue αi should be less than zero for the oscillatory mode to be stable as per (3.8).

The frequency of oscillations for the i-th mode is given by the imaginary part of the

mode, ωi = =(λi), given in rad/s. As all the oscillatory modes (λ ∈ Λ | =(λ) 6= 0) in

the system appears in pairs, a common approach is to perform analysis for the modes

having =(λi) > 0, as positive frequencies have a physical intuitive interpretation.

The relative damping ratio of the modes provides information about how fast the

oscillatory responses for the given modal variables decays towards zero and is normally

expressed as

ζi =
−αi
|λi|

=
−αi√
α2
i + ω2

i

, (3.32)

whereas the frequency of the oscillatory mode in expressed in Hz is given by

fi =
ωi
2π
. (3.33)

A negative sign is included in Equation (3.32) such that damping is defined as pos-

itive if the eigenvalue is located in the left-half plane, whereas, for an asymptotically

unstable operating condition, at least one of the eigenvalues (two if the eigenvalues

appear as complex pairs) is defined to be negatively damped; thus (3.8) is not satisfied.

Figure 3.4 shows the fundamentals behind the different dynamics associated with a

given eigenvalue λi. There are several ways to compute the relative damping of the

eigenvalue/mode. However, all of them are essentially a measure of the angular dis-

placement of the eigenvalue from the imaginary axis. In Figure 3.4, this angular dis-

placement is denoted ψi, and the larger the angle, the greater is the relative damping

of the corresponding mode.
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Re(λ) [1
s
]

Im(λ) [ rad
s

]

λi

|λi|

⊗

αi

ωi = 2πfi

ψi sin(ψi) = ζi

Figure 3.4: Graphical interpretation of the eigenvalue λi = αi + jωi.

It should be noted that since the relative damping ratio in (3.32) depends on the

angular frequency of the mode3.4, two modes having the same relative damping ζ, will

correspond to a response where the oscillatory mode having the largest frequency dies

out faster. Thus, in terms of oscillations in a system, the lowest frequency mode is

more severe to take care of, as the associated oscillations are sustained longer. These

low-frequency modes often turn out to be inter-area modes, making it clearer why these

modes are of deepest concern in power system operation. This is illustrated by a simple

example in Figure 3.5.

3.4Therefore called relative damping ratio.
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Figure 3.5: Illustrative example showing that for two eigenvalues having the same

relative damping, the oscillation originating from the eigenvalue having the lowest

frequency will sustain for a longer period of time.

The problems related to low-frequency oscillations should be clear from Figure 3.5.

The output signal, y(t) is the sum of two signals originating from eigenvalues having

a frequency of 1 Hz and 3 Hz, respectively. Both eigenvalues have the same relat-

ive damping of 5%. However, the oscillations due to the lowest frequency mode are

sustained for a longer time.

3.2.5 Example showing the Interpretation of Modal Analysis

The theory presented here might be pretty tedious to look at theoretically. Therefore,

a small example is included below by conducting a simulation in Kundur’s two-area

system further described in Section 4.3.1. The motivation behind this is to visualize

the theory presented here and thereby have an increased understanding of the funda-

mental principles and modal analysis power as a tool for investigating system stability.

The example is focused on readers not familiar with the modal analysis.

The results from the modal analysis are first presented. Then a discussion is made

on the eigenvalues and right eigenvectors in the system to estimate the speed responses

in the system, solely relying on the linearised properties of the system. Then, the actual

speed responses from the system are shown, showing that knowledge of modal proper-

28



3.2 Linear Theory

ties is quite robust in terms of small-signal system response assessments. Compared to

the default representation of the system given in Appendix C.1, inertia constant H at

Generator 4 was halved, while AVRs and PSS’s was disconnected to better highlight

the theory by having eigenvalues that are easily distinguishable—running the simula-

tion yields to following eigenvalues and mode shapes (normalized right-eigenvector) in

the system.

Table 1: Eigenvalues in the system having frequency in the range 0.5 Hz to 1.5 Hz.

Eig Frequency [Hz] Damping ratio Type

-0.35 ±j3.97 0.63 0.088 Inter-area

-0.25 ±j5.37 0.85 0.046 Local area 1

-0.88 ±j9.41 1.50 0.093 Local area 2

Figure 3.6: Mode shapes corresponding to the eigenvalues presented in Table 1. The

state variables corresponding to the considered mode shapes are generator speeds.

Blue: G1. Green: G2. Red: G3. Orange: G4

Based on the theory presented above, one should, in principle, be able to say something

about the dynamic behavior of the system following a small disturbance by looking at

Table 1 and Figure 3.6. One would expect that the 0.63 Hz oscillatory mode is almost

negligible in Area 1 (Generator 1 and Generator 2), while being more observable in

Generator 3 than Generator 4, as the mode shape length has a greater magnitude.

The oscillatory mode corresponding to 0.85 Hz should, in theory, be visible in both

Generator 1 and Generator 2 to approximately the same extent. At the same time, the

small damping ratio would make it last for quite a few cycles before eventually dying

out. With the given mode shapes for the eigenvalue having a frequency of 1.5 Hz,

one should expect that this oscillatory mode will only be present in the state variable

corresponding to speed at Generator 4. Figure 3.7 shows the actual speed responses in

the systems when running the simulation.
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Figure 3.7: Generator speed responses. The system parameters are chosen to showcase

how the linearized properties such as mode shapes and eigenvalues can be used to

anticipate the system’s small-signal response. By using Figure 3.6 one recognizes the

oscillatory modes anticipated by the mode shapes in the speed/frequency deviations

at the different generators.

Looking at the actual speed response from the simulation in Figure 3.7, it is clear

that the anticipated response when looking at the eigenvalues and corresponding mode

shapes accurately describes the dynamic behavior of the system. Keep in mind that the

eigenvalues and mode shapes are all calculated at a steady-state at t = 0; nevertheless,

they contain a significant amount of information about what happens when a small

disturbance is applied, which shows the power of modal analysis. For instance, one

observes that the oscillations between speed deviation at Generator 1 and Generator 2

have a period of a little bit more than 1 second. Measuring the time taken between two

consecutive maximum values of the oscillations of, for instance, Generator 1, one can

see that this correspond to oscillation with a frequency of 0.85 Hz, which was the same

as was presumed by looking at the eigenvalues and mode shapes in Figure 3.6. The

damping ratios are also observable, as the oscillatory mode corresponding to eigenvalue

with frequency 0.63 Hz decays significantly faster than the oscillations in Generator 1

and Generator 2.
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3.2.6 Participation Factors

From Section 3.2.3, it should be clear that the matrices Φ and Ψ containing the right

and left eigenvectors plays an essential role in the small-signal stability of power sys-

tems. Knowledge of these matrices allows for determining the sensitivity of a given

modal variable zi(t) based on system parameters [56]. This is especially relevant when

choosing the parameters of controllers in the system, and it could also be beneficial to

use it for the optimal placement of power system stability-enhancing devices. Look-

ing at one specific eigenvalue λi of the matrix A, with the associated right and left

eigenvectors φi and ψi, one have by combining Equation (3.21) and (3.22) that this

eigenvalue can be expressed as

λi = ψiAφi (3.34)

Now let β be a parameter in the system, for instance an inertia constant at a generator

or a line reactance between two connected buses. In this deviation, the goal is to say

something about the sensitivity towards certain system parameters, which naturally

includes some derivative
∂λi
∂β

= ψi

∂A

∂β
φi. (3.35)

The value of ∂A/∂β yields information about whether or not a given change in system

parameter β yields better damping in the system, thereby improving the stability.

Taking the system parameter β to be equal to a diagonal element of the system matrix,

β = Akk,

∂λi
∂Akk

= ψi

∂A

∂Akk
φi =

[
ψi1 ... ψik ...

]
0 ... 0 ...

. . . .

0 ... 1 .

. . . .



φ1i

.

φki

.

 = ψikφki = pki, (3.36)

where pki is referred to as the participation factors. Thus, the participation factor

contains information about the sensitivity of eigenvalue λi to the k’th diagonal ele-

ment of the state matrix A. Since the participation factors are a product of elements

from both right and left eigenvector corresponding to the eigenvalue, they provide

a good measure of the correlation between modal variable zi and state variable xk.

Normally system enhancing controllers such as a stabilizer, damping controller, or a

battery energy storage system is best located where modal variables associated with

a given eigenvalue to a certain amount are both observable and controllable, which is

essentially what the participation factors measures. Several previous papers have used

participation factors for determining the optimal placement of PSSs in power systems

[60], [61], and this will also be investigated further in this report. One could argue

that looking at the controllability matrix would be sufficient in terms of determining

the location of a control system. However, then one is not getting the effect of which

state variables related to this location contain the oscillatory modes of interest as the
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observability matrix measures. Thereby, suppose local measurements are used as feed-

back signals. In that case, even if the controllability matrix contains large values, there

will be little interaction between the controller and the system as the mode of interest

is almost non-observable at that location when observability entries are small. Thus,

as the participation factors provide a measure of both of these simultaneously, they

can be a valuable tool for determining controller locations, especially for controllers

acting on local signals. For wide-area controllers acting on global signals, the particip-

ation factors do not necessarily contain that much information. For such cases, other

procedures could prove to be a more valuable tool, for instance, the use of Transfer

Function Residues which will be discussed in Section 3.3.1.

3.3 Transfer Function Residues and Applications

3.3.1 Transfer Function Residues in MIMO-systems

Using the state-space representation presented in Section 3.2.2 and including the input

matrixB, the output matrixC and the feedforward matrixD, the diagonalized system

in terms of modal variables might be written3.5

ż(t) = Λz(t) + ΨBu(t)

y(t) = CΦz(t) +Du(t),
(3.37)

which when doing a Laplace transformation can be written

sZ(s)− z(0) = ΛZ(s) + ΨBU (s)

Y = CΦZ(s) +DU(s)
(3.38)

A convenient tool for designing controllers is the concept of residues. From section 3.2.3

it can be seen that since Λ is a diagonal matrix, one has that ψBi measures how much

the k-th mode is excited by the i-th input. Analogously Cjφi measures the visibility

of k-th mode in the j-th output, and therefore noted controllability and observability

matrices respectively [54].

By ignoring the steady-state term z(0) and rearranging the first line of Equation (3.38)

before inserting it into the second line, one have that the output matrix Y (s) is related

3.5Using the Laplace-transform of state-space system presented in (3.10) and rewriting to modal

variables, x(t)→ z(t), by making use of the right- and left-eigenvector matrices presented in Section

3.2.3.
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to the input matrix U(s) such that

Y (s)

U(s)
= CΦ(sI −Λ)−1ΨB +D

= CΦ


1

s−λ1 0 . . . 0

0 1
s−λ2

...
...

. . .

0 . . . 1
s−λn

ΨB +D

= G(s),

(3.39)

where G(s) is the transfer function matrix connecting the inputs and outputs in the

system. The relationship between the input variables and output variables for such a

system is illustrated in Figure 3.8.

Figure 3.8: Multiple-input-multiple-output (MIMO) diagonalized compact representa-

tion.

Looking at one specific input and output combination from Equation (3.39), the open

loop transfer function between the i-th input and j-th output is given by

Yj(s)

Ui(s)
= Gij(s) = Dij +

n∑
k=1

cj
Tφkψk

Tbi
s− λk

= Dij +
n∑
k=1

Rij,k

s− λk
, (3.40)

which is graphically presented in Figure 3.9.

Figure 3.9: Open-loop transfer function Gij between an input Ui and output Yj ex-

pressed in terms of the system modes and residues.

The term Rij,k is the transfer function residue of the open-loop transfer function

between the i-th input and j-th output in the system corresponding to eigenvalue λk.

Hereinafter, the transfer function residue will be referred to as the residue for simpli-

city. Generally, the residue is a complex scalar value which can be seen by looking
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at the dimensions of the vectors included in the computation of the residue Rij,k in

Equation (3.40). This is presented below.

Rij,k

(1×1)

= cj
T

(1×n)

φk

(n×1)

ψk
T

(1×n)

bi

(n×1)

= cj
Tφk

(1×1)

ψk
Tbi

(1×1)

Therefore, for having a complete mapping of the residues in the system, this will be a

three-dimensional structure with the dimensions being input signal, output signal, and

mode numbering, respectively.

3.3.2 Residues for Feedback-Controller Design

The fundamental reason for discussing residues and including these in this thesis is that

the k-th residue Rij,k mapping the i-th input to the j-th output contains information

about the sensitivity of the k-th mode to a proportional gain feedback controller. Hav-

ing calculated the residue, one possesses information about the mode shift of the k-th

mode given that one are assuming proportional feedback control from the j-th output

to the i-th input, thereby being valuable in terms of designing feedback controllers in

the system with desired phase compensation for the mode of interest. Hence, feed-

back controllers can be designed based on this theoretical foundation for increasing the

damping of specific modes in the system.

When the input-output combination is decided, and the mode of interest is determined,

a feedback controller H(s) can be inserted to the system for obtaining the desired gain

and phase shift. Such a configuration is shown in Figure 3.10.

Figure 3.10: Open-loop transfer function Gij(s) and the tunable feedback-controller

H(s) between the input ui and output yj.
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The eigenvalue phase shift and amplitude for small feedback gains can be shown to be

∆λr = H(jωr)Rr = |H(jωr)|∠H(jωr)|Rr|∠Rr. (3.41)

Hence, by properly tuning the feedback controller, one could provide additional damp-

ing to mode of interest in the system. The mode shift when an arbitrary feedback

controller aiming at adding damping to mode λr is used is illustrated in Figure 3.11.

Re

Im

⊗
×

|Rr|

|H(jωr)||H(jωr)||Rr|

λrλr + ∆λr

∠Rr

∠H(jωr)

∠H(jωr) + ∠Rr

Figure 3.11: The basic principles behind design of feedback controller H(jωr) using

the residue angle ∠Rr for obtaining the desired shift of the mode of interest λr. This

figure is essentially a visualization of equation 3.41.

To obtain the desired gain response, the proportional gain should be chosen such that

the desired mode shift is obtained. Looking at the magnitude of change in Equation

(3.41) and extracting the proportional gain constant out of the controller H(s), one

have that the gain constant should be chosen as

Kp =

∣∣∣∣ λid − λiRiH(λi)

∣∣∣∣ , (3.42)

where λid denotes the desired position of the mode and λi is the original mode position.

It is usually a requirement and good practice to not alter significantly with mode

frequency as this may effect several other control loops in the system. Consequently,

the imaginary parts in the nominator of (3.42) cancels out. The same thing happens

with the denominator when the feedback controller H(s) is tuned based on (3.61) for

moving the eigenvalue in a straight line leftwards in the complex plane, and the gain

constant Kp can thus be chosen

Kp =
∆λi

|Ri||H(ωi)|
, (3.43)

where ∆λi is the change in the eigenvalue needed for moving the eigenvalue by an

appropriate amount left-wards in the complex plane.
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Proof of Residue Sensitivity for Feedback Controller Design

Due to the significance of residue direction related to the scope of this thesis, a short

proof is provided to justify the mode sensitivity. This proof is based on the work

done by [62, p. 83-84]. The angle of the k-th residue indicates the direction of the

k-th mode when assuming a proportional feedback controller with sufficiently small

gain. By inserting a feedback controller in the system and changing the proportional

feedback gain, the mode is expected to follow the direction indicated by the residue

in the complex plane. To derive this, a SISO system with input ui = Kyj can be

considered which is shown in Figure 3.12.

Figure 3.12: Open-loop transfer function Gij(s) and the proportional feedback control-

ler between the input ui and output yj.

This input signal ui is chosen such that it effectively accounts for a scalar feedback

from the output yj to the input ui with the proportional feedback gain being K. From

(3.40), the Laplace domain response yj(s) is found, when replacing Dij by D and Rij,k

by Ri

yj(s) = Gij(s)ui(s) = (
n∑
i=1

Ri

s− λi
+D)ui(s) = (

n∑
i=1

Ri

s− λi
+D)Kyj(s). (3.44)

Dividing by yj(s) on both sides, and rearranging yields

1− (
n∑
i=1

Ri

s− λi
+D)K = 0. (3.45)

Applying a small change to the r-th eigenvalue, such that the new value is λr + ∆r,

and substituting s = λr + ∆λr into Equation (3.45)

1− (
n∑
i=1

Ri

λr + ∆r − λi
+D)K = 0. (3.46)

Assuming distinct eigenvalues in the system (λi 6= λr ∀ i 6= r) and taking the limit

of this equation as the change in the eigenvalue ∆λr and proportional gain K goes to
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zero, one gets:

1− lim
∆λr,K→(0,0)

[(
n∑
i=1

Ri

λr + ∆λr − λi
+D)K] = 1− lim

∆λr,K→(0,0)
[
Rr

∆λr
K] = 1− Rr

∆λr
K = 0.

(3.47)

Hence, by making use of the last expression, one sees that the change in the r-th

eigenvalue, or the sensitivity of this, is given by

∆λr = RrK. (3.48)

Consequently, it can be seen that for a scalar feedback from output yj to input ui,

the residue contains information about the sensitivity of the r-th eigenvalue, and is

valid for small scalar gains. This can purposely be used for designing desired feedback

controllers in the control system.

This deviation is not only valid for proportional feedback controllers as will be seen.

Suppose one are designing a feedback controller H(jω) as in Figure 3.10 for targeting

a specific eigenvalue with frequency ωr. Then, by replacing K by H(jωi), Equation

(3.44) might be rewritten as

yj(s) = [
n∑
i=1

(
Ri

s− λi
+D)H(jωi)]yj(s), (3.49)

where ωi is the frequency of the i-th mode. Taking the limit as the feedback controller

gain |H(jωr)| and ∆λr goes to zero yields

∆λr = H(jωr)Rr = |H(jωr)|∠H(jωr)|Rr|∠Rr,

which is the same as presented in Equation (3.41). Thus, by adjusting the feedback

controller gain and phase shift at the frequency of interest ωr, one are able to change the

eigenvalue of interest with an appropriate length and phase. The general idea behind

Equation (3.41) is graphically provided in Figure 3.11. This derivation is undertaken by

making the change in eigenvalue and controller gain go towards zero. Hence, Equation

(3.41) is only valid for small controller gains, and care should be taken when using

it using large gain values as the interaction between the different control loops in the

system might be significant.

3.3.3 Residues for Determining Small Signal Time-Domain Responses

From Equation (3.44) it is clear that by neglecting the feed-forward term D, having

the input u being a dirac pulse for simplicity, the Laplace domain signal of the output

y(s) can be written as:

y(s) = (
n∑
i=1

Ri

s− λi
)U(s) = (

R1

s− λ1

+
R2

s− λ2

+ ...+
Rn

s− λn
), (3.50)
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where one take advantage of the fact that the Laplace transform of a dirac pulse is a

constant. Thus, by using that

L {Ce−at} = CL {e−at} = C
1

s+ a
,

where C is a constant value, one have

y(t) = L −1{y(s)} = R1e
λ1 +R2e

λ2 + ...+Rne
λn . (3.51)

The time-domain response of the output variable will be a sum of exponentials weighted

(and phase-shifted) by the corresponding residue, and the amount of oscillations de-

pends on the damping and frequency of the corresponding eigenvalue. This correlates

well with the theory presented in section 3.2.3, as it essentially is two different ways of

looking at the same thing. This can be applied for simplifying the analysis significantly.

Larger systems generally tend to yield computationally burdens for longer simulations.

Hence, extracting the transfer function from a chosen input to output by calculating

the residues as in section 3.3.1, one can efficiently run simulations to give a preliminary

understanding of how a system input will affect a specific output of the system.

To further simplify the problems related to this, one could use the fact that, in reality,

most of the residues turn out to have a value close to zero. Thus, by neglecting terms

having an absolute value of residues lower than the desired threshold while neglecting

terms corresponding to eigenvalues with high damping3.6, one could significantly reduce

the complexity of a system and still being able to run valuable simulations.

3.4 Feedback Controller Signal and Location Selection

When it comes to local Power Oscillations Controllers (PODs) such as conventional

PSSs, the participation factors discussed in Section 3.2.6 provide knowledge of which

locations in the system are suitable for applying damping to specific modes. However,

the participation factor approach assumes local control with local input signals. Thus,

it is a suitable tool for these purposes, but it does not necessarily indicate the optimal

feedback signals and controller location when global signals are to be used.

When it comes to wide-area measurement and controllers, one could take advantage of

the fundamental theory for local controllers and somehow extend this further. For a

BESS installment in the system or any POD controller in general, a major design cri-

terion would be to minimize the installed batteries’ total capacity while still providing

a satisfactory amount of damping in the system. Hence, selecting the feedback signal

and location based on maximizing the residue value for the mode of interest should, in

3.6Responses originating from eigenvalues with high relative damping die out quickly.
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theory, yield the largest magnitude change of the mode as per Equation (3.3.2) and the

required feedback controller gain (or BESS capacity) needed for obtaining a desired

amount of shift is reduced.

Since the BESS is injecting/subtracting power from the power system, this is essen-

tially the same as modifying the y-bus in the system. Thus, by choosing the system

input to be a change in y-bus, calculating the corresponding B-matrix (which will be

a vector when SISO-systems are considered), and then choosing the system output

(feedback signal to the controller) to be some combination of the state variables in

the system, a suitable selection of feedback signal and controller location should be

possible to obtain.

Figure 3.13: Multiple-input multiple-output (MIMO) power system with feedback con-

troller between the j-th output and the i-th input. The general idea behind location

and feedback signal selection is to choose the i-th input and j-th output yielding the

largest residue magnitude for the mode of interest, such that the gain of the feedback

controller (equivalent to the BESS capacity) can be minimized as per Equation (3.3.2).

This is illustrated briefly in Figure 3.13. It is generally a good practice to select feed-

back signals that are easily measurable in real-world systems [40]. Thus, the voltage

angles at the buses in the system is considered for most of this thesis, as these are to a

greater extent becoming available with the introduction of PMUs in the modern power

systems as discussed in Section 2.2. One could potentially use several voltage angles

as the feedback signals, but to limit the scope and not introduce further complex-

ity, voltage angle deviations between two different buses in the system are considered.

This is deemed to yield a satisfactory result. Hence, when seen in relation to the

MIMO-system shown in Figure 3.13, the different outputs yk correspond to different

combinations of voltage angle deviations in the system. The inputs ul corresponds to

change in active power injection at different buses in the system. The objective would

then be to find the combination of the input signal and feedback signal yielding the

largest residue value for the mode of interest. This would minimize the needed BESS

capacity installment for obtaining increased damping of the mode.
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The voltage angles in the system are heavily correlated with the active power flows

in the system (3.4) and should thereby be a good candidate for feedback signal aiming

at controlling the active power injection at a given bus. It should be noted that the ter-

minal voltage angles are not a state variable in the present configuration of the system.

However, these correlate with the generator angles (state variables) in the system to a

great extent. These prove to give a similar performance in terms of additional damping

and phase shift. Therefore, using the generator angles for analysis purposes could be

justified. Furthermore, the feedback signal could be changed to bus voltage angles

when the actual batteries are implemented and non-linear simulations are performed.

This is done in order to remove some of the complexity in building up the C-matrix (or

vector for SISO-systems) when calculating the modal properties discussed in Section

3.2.3. A deviation showing the correlation between generator voltage angle ∆δ and

terminal voltage angle ∆θ is provided in Appendix A.4 together with a short simula-

tion showcasing how these angles are essentially having the same response following a

disturbance.

3.4.1 Feedback Signal Selection

Denoting the vector storing the state variables in the system as x and having Xδ,idx being

the set of indexes corresponding to generator angle state variables in the state variable

vector x, a good choice of feedback signal would be a difference in generator angles

satisfying

max
(j,ĵ)

|Ri,(j,ĵ),k| = |c(j,ĵ)
Tφkψk

Tbi|

s.t. j ∈ Xδ,idx

ĵ ∈ Xδ,idx

cT (j) = 1

cT (ĵ) = −1

cT (l) = 0 ∀ l 6= j, l 6= ĵ

(3.52)

where the k-th mode is the mode of interest (usually the lowest damped mode in the

system), bi is the linearized b-vector in the system (the values depend on where which

entries in y-bus is modified in the system), j is the index of of the generator angle in

the system included positively as feedback signal, and ĵ is the index of the generator

angle in the system included negatively as feedback signal to the controller. The last

constraints of Equation (3.52) assures that one are taking the difference between two

signals in the system, which is shown to more easily capture the inter-area oscillation in

the system compared to cases using local signal only. Since Equation (3.52) essentially

is a multiplication of the controllability and observability, one could further reduce the
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3.4 Feedback Controller Signal and Location Selection

size of this objective function as will be shown.

Writing out the residue computation for a arbitrarily chosen index of j and ĵ, one

have

Rk =
[
0 . . . 1 . . . −1 . . .

]


φk,1
...

φk,j
...

φk,ĵ
...


[
ψk,1 . . . ψk,j . . . ψk,ĵ . . .

]


b1

...

bj
...

bĵ
...


(3.53)

where φk,1 is the first entry in the right eigenvector corresponding to the k-th eigenvalue,

and ψk,1 is the first entry of left-eigenvector. Carrying out the multiplication in (3.53)

and rewriting into a suitable compact representation one have

Rk = (φk,j − φk,ĵ)ψk
Tb. (3.54)

Hence, by using fundamental properties from linear algebra [59] one have that for a

given input signal selection (j, ĵ), the residue magnitude and phase shift is found by

|Rk| = |φk,j − φk,ĵ||ψk
Tb| (3.55)

∠Rk = ∠(φk,j − φk,ĵ) + ∠(ψk
Tb). (3.56)

This relation can be interpreted in different ways, but for this purpose, as the BESS

location is held constant, the term |ψk
Tb| is the same for all candidates of feedback

signal combinations. Consequently, as the objective in Equation (3.52) is to select

signals yielding the largest residue magnitude, the problem reduces so simply looking at

which combination of feedback signals yields the highest absolute value of the difference

between right eigenvector entries related to the k-th mode, |φk,j − φk,ĵ|, fundamentally

being the same as choosing the difference between two mode shapes (discussed in

Section 3.2.3) yielding the vector of largest magnitude. Thus, the objective function

in Equation (3.52) could naturally be reduced to

max
(j,ĵ)

|c(j,ĵ)
Tφk|

s.t. j ∈ Xδ,idx

ĵ ∈ Xδ,idx

cT (j) = 1

cT (ĵ) = −1

cT (l) = 0 ∀ l 6= j, l 6= ĵ

(3.57)

which simplifies the optimization problem quite significantly. To summarize, by using

the objective stated in (3.57), one are able to determine the feedback signal combina-

tion yielding the largest magnitude of the residue and thereby maximizing the mode
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shift seen in (3.3.2) without having to take into consideration the controller location.

However, the important information about the residue angle for the optimal case is lost

when using Equation (3.57), but it allows for deciding the feedback signal and location

independently.

3.4.2 BESS Location Selection

When the feedback signal is chosen based on the previously discussed optimization

problem, the natural next step would be to determine the optimal placement of the

BESS. The same procedure used for the optimal feedback signal could be used. Simil-

arly as for the feedback signal, one could use the residue approach as in (3.52) However,

as the term |φk,j−φk,ĵ| is fixed, one could remove the necessity of using residues, as the

required information would be stored in the the complex scalar value ψk
Tb. Denoting

B to be a set of the buses in the system and the vector bi being the linearized input

vector calculated when y-bus is modified at the i-th bus, the objective to solve in terms

of deciding the optimal placement of the battery could be written

max
i

|ψk
Tbi|

s.t. i ∈ B

where B is the set of buses in the system.

(3.58)

The optimal location of the BESS is decided based on the amplitude of ψk
Tbi and

the term that is getting maximized is the controllability of mode k from the j-th

bus/generator in the system. It should be made clear that bi does not solely consist

of zeros and ones in general as was the case for the output vector cT in (3.57), but it

is found by calculating the value of B = ∂f/∂u|(x̂,û) as in Equation (3.7) for every

input location i being considered.

3.5 Tuning of Lead-Lag Filters

Lead-lag blocks are commonly used when designing control systems in power systems,

especially for applications regarding Power Oscillation Damping. The lead-lag blocks

offer tunable phase shifts in controller design. They can easily be cascaded for achieving

desired phase shift at the frequencies of interest. A figure showing a proposed POD

controller for the BESS is given in Figure 3.14.
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Figure 3.14: A BESS connected to an external AC-system deployed with the proposed

controller. The different variables in the figures should be clear from the labelling.

When it comes to tuning of the lead-lag blocks, a reasonable procedure is to look at

these blocks separately, without considering the washout filter in the control system

in Figure 3.14. This is justified by the small phase shift originating from the washout

filter at the frequencies of interest. The desired phase shift appended by the lead-lag

blocks could be chosen to account for this. The general algebraic representation of m

series-connected lead-lag blocks employed with a proportional gain factor Kp can be

written out in the Laplace domain as

H(s)lead,lag,m = Kp

(
1 + sT1

1 + sT2

)m

(3.59)

The proportional gain constant Kp have major impact on the transfer functions gain

response |H(s)|, but does not influence the phase shift of the transfer function [58].

The amplitude response of the lead-lag blocks is then found to be

|Hlead−lag,m| =
∣∣∣∣(1 + sT1

1 + sT2

)∣∣∣∣m , (3.60)

where m denotes total number of lead-lag blocks with the same parameters. Hence,

based on the desired phase shift φcomp to be applied in the control structure and the

frequency of interest (the frequency of the mode one are aiming to damp), ωi, the

parameters can be selected as

α =
1 + sin(φcomp

m
)

1− sin(φcomp

m
)

T2 =
1

ωi
√
α

T1 = αT2.

(3.61)

Choosing the lead-lag parameters based on (3.61) assures that the desired phase shift

is applied at the frequency of interest, but does not account take care of providing the

desired gain response. However, it should be mentioned that several authors are ex-

pressing α in Equation (3.61) inversely [63], [64], such that α = (1−sin(φcomp/m))/(1+

sin(φcomp/m)), but this is simply a matter of which sign one applies to the desired phase

shift φcomp, and both approaches could be used as long as one are confident in the an-

gular direction of movement of the eigenvalue. If in doubt, it is straightforward to get

a visual representation of the BODE-plot of the transfer function H(s) to see whether

or not the desired phase shift at the frequency of interest is obtained.
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3.6 Numerical Identification of Modes of Interest when Sys-

tem Topology and Parameters Change

When new control systems are inserted into the system, the eigenvalues in the system

will change slightly, reflecting that the damping of the system and frequency of the

different modes are changing slightly. Hence, some problems may arise in determining

the correlation between the no-controlled-system eigenvalues and the eigenvalues when

new controllers are deployed. Large systems contain a significant amount of eigenval-

ues, and determining the movement of the eigenvalues based on controller parameters

is useful when designing control systems.

Suppose that one is interested in a specific poorly damped inter-area mode in the

system, especially the movement of this mode when system parameters change. The

most accurate way of doing so could potentially be to look at the participation factors

discussed in Section 3.2.6, but this is a rather time-consuming way of recognizing the

inter-area mode. A more suitable and numerically fast way of doing so in a pro-

grammable environment is to look at a small region around the initial position of the

eigenvalue by assuming that the frequency and damping do not change too significantly.

Choosing the region around the initial eigenvalue position to be sufficiently small

yields a fast-way of overcoming this problem, and is seen to be very effective unless

two-eigenvalues are overlapping. This method is inspired by the criterion Perić and

Vanfretti used for selecting the appropriate mode for a similar application [65]. Making

eigenvalue λk0 have an initial frequency of ωk0 and relative damping ζk0, the check to

be undertaken could be summarized in the following set of equations

ωk0 − εω < ωk < ωk0 + εω

ζk0 − εζ < ζk < ζk0 + εζ ,
(3.62)

where εω and εζ is a sufficiently small change in frequency and relative damping re-

spectively. The eigenvalue in the ”new system” satisfying (3.62) is λk, being the

new/updated value of the eigenvalue originally being λk0. During the work with this

thesis, this numerical way of determining the new modal positions have been utilized

to a great extent, proving to yield good results for all modes being of interest. The

method is illustrated for a specific more of interest in Figure 3.15.
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Re(λ)

Im(λ)

⊗
λk0

×
λk

ωk0 − εω

ωk0 + εω

ωk0

ωk0 + εω

ωk0 − εω

ζk0 − εζ

ζk0 + εζ

ζk0

Figure 3.15: Illustration of how to appropriately select the desired mode when system

parameters have changed. The initial position of the mode is λk0, and since λk is

located within the dotted red and blue lines indicating the allowed shift in frequency

and relative damping respectively, this is the new position of the mode. This way of

searching for the mode produces accurate results when εω and εζ are chosen sufficiently

small, and the mode of interest does not overlap with other modes in the system.
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4 Modelling and Implementation of Dynamic Mod-

els

Regardless of the software being used, the different components present in the sys-

tem and their implementation creates the foundation for the results. Capturing the

essential dynamics seen in real-world systems requires accurate modeling of the essen-

tial components. This section is intended to introduce the Python Dynamic Power

System Simulation, considerations to be taken when implementing different control

blocks, presentation of the test systems used in this thesis, and discussions on different

dynamic models employed for crucial components in the systems. Parts of this chapter

are based on and adapted from the modeling conducted for the preceding specialization

project.

4.1 Python Dynamic Power System Simulator (DynPSSimpy)

A Python Dynamic Power System Simulator (DynPSSimpy) developed by PhD stu-

dent Hallvar Haugdal at the Norwegian University of Science and Technology is used to

perform calculations, develop and implement dynamic models, and perform power sys-

tem simulations. This section will serve as a brief introduction to the Python package

and are based on a paper written by Haugdal and Uhlen [66] describing the working

principles of the software, together with the author’s consideration after working with

the package for nine months.

DynPSSimpy is an open-source package for performing dynamic RMS simulations of

preferably small to medium-sized power systems. Using DynPSSimpy instead of com-

mercially available software such as PowerFactory or Simulink was chosen due to its

flexibility, transparency, and expandability, facilitating the deployment of custom-made

dynamic models. Thus, the package could arguably prove beneficial for researchers and

students, creating a foundation for developing an intuitive understanding of power sys-

tem operation and control due to the necessity of creating self-made models, requiring

a real-time interaction and a fundamental understanding of their operation. Further-

more, the package is entirely built within a Python environment, promoting the use

of built-in Python packages and libraries, which proves to be tedious and complicated

to interact with for other available software [66]. Hence, this allows for straightfor-

ward implementation of appropriate dynamic models while allowing the user to create

custom-made plots suitable for the research being conducted.

The package relies on Differential-Algebraic Equations (DEAs) describing the dynamics

of the system. It is further based on solving linear equations on the form Y V = Iinj ,
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where Y is the system admittance matrix, V is bus voltages and Iinj is the injected

bus currents. Therefore, current injection models are preferred/suitable due to their

simplicity in interacting with the rest of the systems. On the other hand, the dynamic

simulations rely on solving Ordinary Differential Equations (ODEs) and facilitating

the use of any suitable integration method, allowing the user to decide on the trade-off

between computational burden and solving accuracy by selecting appropriate solvers

in the Python environment, or using self-created solvers if that is preferred. Most of

this thesis is utilizing an older version of the package (August 2020), being slightly

unorganized and not structured as clearly as the new version. However, in the new

version available [67], the dynamic models are represented by classes, significantly sim-

plifying the implantation of new models and providing a more transparent and intuitive

structure.

In order to validate the performance of DynPSSimpy, Haugdal conducted simulations

in the Kundur Two-Area system using the Python package and compared the results

with results obtained by the use of PowerFactory [66]. The results correlated well and

showcased that simulations conducted in DynPSSimpy could reproduce results from

commercially available software.

4.2 Block Diagrams to Differential Equations

When it comes to implementing different models and controllers in dynamic simulation

tools, some key points are to be aware of, which will be presented here. This section is

intended to give a fundamental introduction and possibly inspiration to future students

on how the block diagrams and their dynamics might be implemented when writing

code.

The design and structure of control systems and power system components are com-

monly given in the Laplace domain. However, in terms of implementing it in software,

understanding and knowledge of how to go from Laplace-domain blocks to differen-

tial equations in time-domain are necessary4.1. These are the bottom layer of the

implementations of all the models and control systems, and doing this correctly is of

significant concern for representing the systems as intended.

A general control block Hi(s) is shown in Figure 4.1. The controller input and output

are denoted ui(s) and yi(s) respectively. The dotted lines and other variables named

u(.) and y(.) represents other inputs and outputs in the overall system.

4.1Laplace transforms, and their inverses are covered in introductory courses in Mathematics and

Control System Engineering and will thus not be covered in this thesis. For the interested reader, this

can be found in Kreyszig [57].
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Figure 4.1: A general control block Hi(s) being a part of a larger system. The variables

subscripted with ’i ’ corresponds to the block of interest, and the block one are supposed

to implement in a differential equation solver.

The three expressions needed for implementing Hi(s) into the dynamic equations that

the DynPSSimpy is built upon are listed below:

1. An expression for the change in the state variable, ẋ(t). Most of the commer-

cially available software in the field of power system dynamics relies on solving

a set of differential equations, and ẋ(t) contains information about the change of

the state variable for every consecutive step in the simulation.

2. The output from the control block, y(t). A large power system model consists

of blocks connected, and the output from one block might be the input to another

block and vice versa.

3. The initial value of the output from the block, y0 = y(t = 0). This value holds

the steady-state value of the output from the block, thus being important as

solutions of differential equations rely on the initial values [57].

As an introductory example, a relatively simple block corresponding to a first-order

time delay is considered. The transfer function together with its associated input and

output is given in Figure 4.2a).

(a) Compact representation. (b) Enlarged version for facilitating extraction of the

information about the state variable derivative and

block output.

Figure 4.2: Block diagram of a first-order low-pass filter in compact and enlarged

versions.

For instance, this block could represent a time delay in a controller or a low-pass filter

aiming at removing high-frequency input signals and is one of the most basic control
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blocks. It can be seen that the block contains a Laplace-variable s, hence introducing

a new state variable in the system [58]. Thus, to find expressions for the derivative

of the state variable, a general procedure would be to enlarge the block diagram such

that the derivative can more easily be obtained. One have that

y(s) =
1

1 + sT
u(s), (4.1)

where y(s) is the block output, 1/(1 + sT ) is the transfer function associated with the

block, and u(s) is the block input. Thus, by taking the inverse Laplace of both sides

of the equation, one gets

L −1{u(s)} = L −1{(1 + sT )y(s)} = L −1{y(s)}+ TL −1{sy(s)}
u(t) = y(t) + T ẏ(t).

(4.2)

Having the output correspond to the state variable, such that y = x, the block diagram

shown in Figure 4.2a) can be redrawn into Figure 4.2b). By reading and interpreting

the figure, one sees that the set of equations describing the system is found to be

ẋ(t) =
1

T
(u(t)− x(t))

y(t) = x(t)

y0 = L −1

{
1

1 + sT

∣∣∣∣
s=0

u0

}
= u0

(4.3)

When the equations in (4.3) are established, one has the information necessary for

defining this control block in the power system simulator tool.

The previous block might be relatively simple to implement, and other blocks might

not be as trivial. Such blocks might require more extensive block diagram manipulation

in order to develop the necessary expressions. An example of this is the lead-lag block,

commonly used in AVRs, PSSs, and PODs applications, hence being a fundamental

block for the topics covered in this thesis. A lead-lag block on its classical form is

shown in Figure 4.3a).

(a) Compact representation. (b) Enlarged representation.

Figure 4.3: Block diagram of a lead-lag block in compact and enlarged version.
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For such a block, one have from Figure 4.3a)

y(s) =
1 + sT1

1 + sT2

u(s). (4.4)

Rearranging and dividing by sT2 yields

y(s)

(
1

sT2

+ 1

)
= u(s)

(
1

sT2

+
T1

T2

)
, (4.5)

which can be further simplified to

y(s) = u(s)
T1

T2

− 1

sT2

[y(s)− u(s)]. (4.6)

Hence, by interpreting (4.6), it should be clear that the lead-lag block can be repres-

ented as in Figure 4.3b). Similarly as was the case for the simpler first-order low-pass

filter block discussed in the start of the section, it simply is a matter of manipulating

the original block diagram and transfer function in an attempt to make it more read-

able in terms of extracting the necessary equations to be implemented. From Figure

4.3b), the following relations are found

ẋ(t) = y(t)− u(t)

y(t) = u(t)
T1

T2

− 1

T2

x(t)

y0 = L −1

{
1 + sT1

1 + sT2

∣∣∣∣
s=0

u0

}
= u0,

(4.7)

which are the three expressions needed for implementing the lead-lag block into the

dynamical system.

Similar procedures are used for the other types of control blocks. Knowledge of how

to implement the lead-lag blocks makes implementing other control blocks relatively

straightforward by using the same procedure. As it turns out, the different control

blocks used for implementing models and control systems in power system models are

usually similar among the different models, and having a good understanding of a

few of the fundamental blocks seems to be sufficient for most applications. However, it

could be seen that the implementation of the lead-lag block was not as easily observable

from the initial block diagram representation. Therefore, it should be mentioned that

MATHWORKS is providing the differential equations and initial conditions necessary

for several common control blocks and filters [68].

4.3 Test Networks

When designing components and controls that could have a real impact on the op-

eration of modern power systems, the test networks used, or system models, are of
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great importance. A common hypothetical and simple power system model that is

used for a wide range of research related to operation and control is the Kundur two-

area system, originally developed by Kundur in 1991 for simulating the interactions

between different areas connected by weak grids [31]. This system is rather small and

consists of two areas separated by a long tie-line, where each area are employed with

two generators. Through numerous research papers, it has become clear that the dy-

namics and responses obtained for this system gives accurate first-hand knowledge of

how different controllers will behave in a larger systems. Thus, due to its simplicity

and capabilities in terms of providing valuable information scalable to larger system,

its widely being used in the literature [31], [61], [63], [69]–[71]. Consequently, a com-

mon procedure when designing new control systems is to validate the results through

simulations in this simple system, before testing it in a larger and more realistic system.

For this thesis, the larger system is chosen to be a version of the Nordic 44 system

[72]. This system is more complex than Kundurs system, and aims at replicating load

demand, generating units and power lines in the Nordic power system. Its not neces-

sarily true that it is accurately describing the real-life power system for all operating

conditions, but the size of it is sufficiently big such that it should work as intended for

validating control systems and models. Both systems will be described more deeply in

the following.

4.3.1 Kundur’s Two-Area System

The original Klein-Rogers-Kundur system, or commonly referred to as Kundur’s two-

area system, [31] was modified slightly in this report, and the parameters used can be

found in Appendix C.1. If not otherwise stated, all of the controls are active, and the

parameters are as shown in the tables. The slightly modified version4.2 of the system

is shown in Figure 4.4. The BESS could, in principle, represent any component having

a controllable current injection to the grid. For this thesis, this system will mostly be

used for testing purposes, and for simulations verifying the implemented models.

4.2The modification is essentially the BESS connected in Area 2.
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Figure 4.4: Kundur’s two-area system with Battery Energy Storage System (BESS)

connected at the load bus in Area 2 through a transformer. System parameters used

when conducting simulations in this network can be found in Appendix C.1.

From the parameter list in Appendix C.1, one notices that the droop constants of

the different governors might be a little high. These are chosen solely as they proved

to showcase the oscillations of interest for this thesis more clearly when performing

simulations. This could easily be adjusted if more realistic simulations are needed for

future work. The inertia constants for generators located in the same area are the same

but slightly modified compared to the original system [31]. This was purposely done in

order to be able to distinguish the local area modes corresponding to Area 1 and Area

2, which are highly dependent on the inertia constants. The transformer connected

between the BESS and its converter to the external AC-system is somehow arbitrary

and does not influence the simulations extensively as it is made modeled to be lossless

in this thesis. Therefore, it is omitted for most of the simulations but included in Figure

4.4 to represent a more realistic real-world connection of BESS to an ac-system.

4.3.2 Nordic 44

A version of the Nordic 44 system is used for validating the controllers and models

in different types of simulations. The model is inspired by previous work of Jacobsen

[73], and the system parameters used for this thesis can be found in Appendix C.2.

Not all generators are installed with governors and AVRs, and for those with these

control systems, they will be the same for all generators. This is rather unrealistic, but

generalizable results are still obtainable. More realistic values and control systems could

be employed for future simulations if deemed necessary, but the fundamental results

are still valid for this setup. The last claim is justified by running a large number of

simulations in different system configurations. The system is shown in Figure 4.5 and
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a larger version is provided in Appendix C.2 in Figure C.1 to facilitate reading of the

bus names.

Figure 4.5: The Nordic 44 test network. System parameters used (if not otherwise

stated) in the simulations are listed in tabular forms in Appendix C.2, in addition to

a larger figure (Figure C.1) showing the system for easifying the reading of the bus

names. Source: Adapted from [74].

The test network is employed to see the performance of the different implemented

units in a larger and more complex system than the hypothetical and straightforward

Kundur’s two-area system. For this thesis, the main purpose of the system network

is to carry out dynamical simulations and analyze the performance and characteristics

of different models and controls. Hence, more information about the development

of the system is out of the scope for this thesis, but detailed information about the

development of the test network written by Jacobsen and Solvang is available for the

interested reader [72].

4.4 Generator Models

Accurate simulations and analysis in power systems are greatly affected by the gener-

ator models, as these are of uttermost concern regarding the system dynamics. Thus,
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this section intends to give a brief introduction to two commonly used approached for

modelling the generators. The first one being the classical generator model commonly

used for theoretical deviations and for obtaining general knowledge about the system

dynamics. A more detailed model is the sixth-order generator model, which more ac-

curately captures the dynamics within the generator, hence more modelling real-world

generators more detailed and accurately.

4.4.1 Classical Model

Several theoretical deviations, simplifications, and system reductions make use of the

classical generator model, which is noticeably simpler than the sixth-order model. In

the classical generator model, two differential equations containing information about

the rotor angle and speed dynamics are represented in the generator dynamics. This

model is developed by assuming that the d-axis armature current and the internal emf

remain constant during simulations. Hence, a model represented by a constant emf

behind the transient d-axis reactance X ′d is used. The set of first-order differential

equations for the generator are fundamentally the same as the swing equation (3.2)

and are given by

M∆ω̇ = Pm − Pe −D∆ω

δ̇ = ∆ω.
(4.8)

The algebraic equations describing the relationship between the d- and q-axes currents

and voltages are found by utilizing assumptions given in Machowski [56, p. 457]. By

having the phasor quantities written in bold names, one have

Ig = Iq + jId

Ef = Eq + jId

Vg = Vq + jId,

(4.9)

where Ig is the generator current, Ef is the generator internal emf and Vg is the

generator terminal voltage. Subscript d and q represent d-axis and q-axis components

respectively, where the axis are defined based on internal generator voltage angle δg.

Therefore, by choosing the axis alignment such that the d-axis internal emf component

is 0, one have that Ef = Eq. The internal emf can then be found by

Ef = Vg + jXdId + jXqIq +RIg. (4.10)

Assuming the generator is lossless by having R = 0 and using the expression for current

in (4.9) into (4.10), one have by rearranging

Ef = Vg + jXqI + j(Xd −Xq)Id

= EQ + j(Xd −Xq)Id,
(4.11)
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where EQ is a new phasor defined for the sole purpose of having an easy expression

for the generator voltage angle, δg. Since the d- and q-axis alignment is chosen such

that Ed = 0 and these axes are separated 90 degrees apart, the quantity j(Xd −Xq)Id

corresponds to a phasor in the same direction as the q-axis in the system. Consequently,

the generator voltage angle δg can be found based on the newly defined phasor EQ such

that

δg = ∠Ef = ∠EQ = ∠(Vg + jXqI). (4.12)

Hence, it is sufficient to have information about generator terminal voltage, generator

current, and generator q-axis reactance to calculate the generator voltage angle. This

process and the relationship between the different quantities are illustrated in Figure

A.2.

I

q − axis

d− axis

Id

Iq jXdId

jXqIq

j(Xd −Xq)Id

Re

Im

Vg

Ef

EQ

jXqI
δg

θ

Figure 4.6: Illustrative example of how the different quantities in the generator model

are related to one another. Special emphasizes is given towards the procedure behind

algebraically finding the generator voltage angle δg

4.4.2 Sixth Order Model

For this thesis, a more advanced model is used. As a result, the simulations will be

closer to what is being observed in the real world, and more details are captured.

Although the generator actions are not of the most significant interest in this thesis,

having an accurate generator model will be crucial. One of the most fundamental, if

not the most fundamental, component in power systems are the generators. There are

several way to model these generators which yields a different results in terms of model

accuracy and simulation computational time. Without going to deep into the theory on

the generator models, the basic equations are presented here. The dynamic simulator

used in Python are based on the sixth-order generator model [56, p. 454]. The sixth-

order model contains six state variables and six differential equations describing its

dynamics, hence the name. This model is represented by sub-transient dq-axis emf’s
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behind sub-transient reactaces X ′′d and X ′′q which is compactly written in the form[
Vd

Vq

]
=

[
E ′′d
E ′′q

]
−

[
R X ′′q
−X ′′d R

][
Id

Iq

]
(4.13)

The set of first-order differential equations describing the generators dynamics, ẋgen =

F (xgen), are then found to be

M∆ω̇ = Pm − Pe
δ̇ = ∆ω

T ′d0Ė
′
q = Ef − E ′q + Id(Xd −X ′d)

T ′q0Ė
′
d = −E ′d − Iq(Xq −X ′q)

T ′′d0Ė
′′
q = E ′q − E ′′q + Id(X

′
d −X ′′d )

T ′′q0Ė
′′
d = E ′d − E ′′d − Iq(X ′q −X ′′q ),

(4.14)

One recognizes that the two first differential equations are essentially the swing equation

in it’s simplest form as in (3.2). The implementation of the generator models is written

in Python by Hallvar Haugdal, and is shown in Figure 4.7

Figure 4.7: Sixth-order model DynPSSimpy (version August 2020) implementation.

Comparing the Python implementation in Figure 4.7 with the system described in

Machowski and rewritten in Equation (4.14), it is clear that these are essentially the

same. The only noticeable difference is that the Python implementation is making use

of the fact that in p.u. values, one have M = 2H, while the damping term from the

Swing Equation (3.2) is included in the Python code. However, if not stated otherwise,

D = 0 in simulations conducted for this thesis.

4.5 Battery Energy Storage System Model

The number of storage devices installed in the power systems is constantly increasing.

Traditionally, Battery Energy Storage Systems (BESSs) have been used for peak shav-

ing, storing excess power from renewable energy sources, and helping the grid during

critical operating conditions [75]. When installed, these installations could also provide

a significant amount of ancillary support to the transmission system operators. With
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the increased focus on wide-area measurement systems throughout the world, utilizing

the available data for grid-critical operation support and especially inter-area oscilla-

tion damping through the use of storage systems is promising.

Therefore, a BESS model was implemented in the dynamic power system simulator

in Python. A significant number of analyses were performed to validate the implemen-

ted model and see how it could be controlled to improve the dynamic stability in power

systems. A typical grid storage solution consists of a DC-system, a power conversion

system, and a grid connection [75]. Hence, a diagram showing the general principles

being considered for the implementation of the BESS model is shown in Figure 4.8,

were arbitrarily chosen buses present in the Kundur’s system presented in Section 4.3.1

and seen in Figure 4.4 are chosen as the location of the BESS.

Figure 4.8: AC-system with grid connected BESS. A Phase-Locked-Loop (PLL) control

system is usually employed for real-world systems, but is not included in the figure due

to space limitations.

From Figure 4.8 it is evident that there is a lot of complexity and consideration to be

taken when implementing a BESS model. A significant challenge to be addressed is the

conversion between the AC- and DC-system and whether or not the DC-DC converter

employed for some storage systems is to be included. When doing dynamic simulations

in Python, most of the underlying dynamics in the battery, including the associated

converters, can arguably be approximated by simplifications, as these dynamics are not

of concern for system performance regarding damping of the oscillatory modes. How-

ever, when developing models, there is always a tradeoff between the model accuracy
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and computational time [75]. Including the switching dynamics of the converters might

be a necessity for future research but is deemed out of scope for this thesis.

Simplifications have been undertaken to remove some of the underlying dynamics

present in Figure 4.8, and a simpler BESS model suitable for the work conducted

in this thesis is presented in Figure 4.9.

Figure 4.9: Overview of simplified BESS model implemented in Python. The converters

from Figure 4.8 are replaced by first-order time-delays as the underlying dynamics is

out of the scope for this thesis. This simplified representation allows for a decreased

computational time when conducting analysis, but the most important dynamics for

the work of this thesis are still present.

A first-order time delay with a time constant T is included for the input signal in an

attempt to account for communication delays in the input signal, which is often of

concern for Wide-Area Measurements applications [55]. However, this time constant is

kept at a value close to zero for the simulations conducted in this report if not otherwise

stated. The converter dynamics are replaced by first-order time delays represented by

the block 1/(1 + Tdqs), where the time constant Tdq account for the time of which

the underlying switching dynamics present in real-world converter uses for making the

currents corresponds to the controller reference values. The next section covers the

underlying battery model represented by the green rectangle in Figure 4.9.
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4.5.1 Battery Model Considerations

While modeling the battery, some challenges had to be overcome. A significant amount

of work was conducted to interconnect it with the rest of the power system in a desir-

able way and represent real-world batteries accurately.

The battery model accounts for losses by the inclusion of an internal resistance in

each battery, while also accounting for discharge/charging dynamics by considering the

state-of-charge (SOC) of the battery. One could argue that a the BESS is supposed

to be deployed for damping of inter-area oscillations in the system over a relatively

short duration, the SOC could in principle be made constant, as most battery systems

installed in the grids uses hours to discharge fully/charge [76].

The battery model implementation in Python is to a great extent motivated by the

BESS implementation found in DigSilent PowerFactory [77]. Generally, the available

power to be extracted from a battery is dependent on the rate at which the battery is

being charged and discharged [78], and the amount of available energy follows Peukerts

law

C = Ikt, (4.15)

where C is the battery capacity at 1 Ah discharge rate, I is the current of which

the battery is discharged, k is Peukert’s constant having different values for different

battery technologies [79], and t is time in hours of which the battery is discharged.

Battery ratings are usually given by producers in Ah-ratings together with a specified

time of full discharge. A battery rated 200 Ah with a given discharge time of 20 hours

can provide 10 A for 20 hours which is its rated condition [21, p. 370]. This would

correspond to a C-rate of C/20 with the given terminology. Peukert’s law says that for

Peukert constants larger than 1, which is generally true for most technologies available

[79], the available power to be extracted from the battery decreases with increasing

current discharge rates. Although this is true for batteries, this is not specifically ac-

counted for in the proposed battery model, but the internal losses increase when the

discharge/charging rate is high, yielding a decrease in the power output.

In this model, it is assumed that the SOC will not be allowed to drop lower than

20%, and the voltage can then be assumed to be linearly dependent on the SOC [80].

These ensure that if the SOC drops to 20%, it will not provide more power and keeps

the batteries within a safe operational region [81]. Although this is not of significant

concern for this thesis due to the small changes seen in the SOC for short-simulations,

this might be of concern if the battery model is used for replicating, for instance, a

super-capacitor which exhibits higher rates of charge/discharge [39].
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The dynamics regarding the SOC of the battery is modeled by the following relation

SOC(t) = SOC0 −
1

C

∫ t

0

Idt, (4.16)

which can also be found in other papers [82]. The variable SOC0 is the initial state-

of-charge, I is the battery cell current, and C is the battery’s capacity. If not stated

otherwise, the SOC0 is initialized to 0.5 for the simulations conducted in this thesis.

This allows the BESS to extract and inject power while keeping it away from the

SOC limits presented above. The internal voltage in the cell is assumed to be linearly

dependent on the SOC, and by including an internal resistance replicating losses, one

has

Vcell = VmaxSOC + Vmin(1− SOC)− rcellIcell. (4.17)

The finalized BESS model, not including the simplifications made for representing the

converter dynamics, together with a proportional controller is shown in Figure 4.10.

Figure 4.10: The implemented BESS model being made up by npar ∗ nseries equivalent

battery models together with a proportional controller acting on the arbitrarily selected

input signal ∆f . Some limiters are included to assure that the battery is not operating

above its rated conditions. Internal resistance is included to represent a more realistic

scenario, while the state-of-charge (SOC) ensures that each battery has limited storage

capacity.

The BESS model presented in Figure 4.10 consists of the input controller and a total

of npar ∗nseries equivalent underlying battery models connected together. It is assumed

that each battery holds the same cell voltage and provides the same current. Making

the AC-side power coincide with the provided power on the DC-side is taken care of

by the block ”Conversion DC to AC” which essentially is a conversion between the per

unit systems. The output of the block diagram is denoted PAC , being the reference

power to be provided by the BESS into the external AC system.

The converter switching dynamics are simplified and approximated by first-order time

delays with time constants Tdq, such that the reference power to be provided by the
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BESS is delayed when interacting with the external system. Utilizing this, the current

control scheme presented in Figure 4.11 are proposed.

Figure 4.11: The current dynamics in the controlled current source injection within

the given BESS model. The ability of the currents to follow their references values are

modelled by a first order time delays with time constants Tdq.

This controller takes the power output PAC from the BESS as input and then calculates

the corresponding reference currents to be provided to the external grid. When using

dq-reference frame of currents and voltages it can be shown [83], [84] for a balanced

three-phase systems that the powers (excluding the scalar factors needed for certain

varieties for the transform) can be calculated as

P = vdid + vqiq ≈ vqiq (4.18a)

Q = vqid − vdiq ≈ vqid. (4.18b)
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Figure 4.12: Reference frame alignment used for the battery model. For this illustration

it is assumed that the BESS is connected to bus 12 in the system, but this could

be chosen as any arbitrary bus in the system. For the conducted simulations, the

dq-components of the voltage will be dependent on the bus of which the BESS is

connected.

With the reference frame aligned such that vd ≈ 0.0 as illustrated in Figure 4.12, one

have that the reference q-component of the current, iq∗, can be calculated by iq∗ = p/vq,

which is essentially what the control system in Figure 4.11 does. The regulator also

contains regulation for the d-component of the current, although this is approximately

zero throughout this thesis. In the end, the obtained dq-component of the currents are

transformed back into abc-representation, such that the injected current components

are appropriately interacting with the power system.

4.5.2 Simulation Showing the Power and Current Dynamics

The consequences of introducing a first-order time delay on the injected currents are

shown by a simulation conducted in Kundur’s two-area system. The time delay was

set to a value of Tdq = 0.2 seconds, which is significantly higher than the ones that

will be used for the other simulations. This is solely set so for illustrating the concepts

and effects of including the first-order time delays. The other parameters used in the

Kundur system are similar to the values found in Appendix C.1.
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(a) Power provided by the BESS (solid blue) and

speed deviations in Area 1 (dotted blue) and Area

2 (red).

(b) Current components and their ref-

erence values. Id∗ is kept at zero, while

the Iq component are following its ref-

erence value Iq∗.

Figure 4.13: Time-domain simulation with first-order time delay on current controls.

Tdq is set to 0.2 seconds, which is significantly larger than real-world dynamics, but

used for illustration purpose.

From Figure 4.13 one observes that the q-component of the current is not able to reach

its reference value fast enough, consequently limiting the power output of the BESS

and its ability to provide dampening. Nevertheless, these controls will naturally include

some time delay in a real-world system, assuring a more accurate representation. A

value of 0.02 seconds is usually representing real-world inner current controls quite

accurately [16], which is ten times smaller than the one used for obtaining the results

in Figure 4.13. One also sees that the d-component of the current stays approximately

zero throughout due to the reference frame alignment described and illustrated in

Figure 4.12. Suppose the time constant is set to 0.02 seconds instead, the q-component

of the current is more or less a square wave initially following the disturbance, as Iq

and Iq∗ would essentially be overlapping.

4.5.3 Effective Gain of the BESS Model

The BESS model presented in Figure 4.10 included an arbitrarily chosen input signal

∆f and a proportional controller with gain K. When further simulations are conduc-

ted for providing damping to critical modes in the system, the internal gain of the

BESS model will be of great importance. Thus, having a fundamental idea of how the

different parameters in the BESS model influence its capability of providing damping

is needed.

Assuming one are not exceeding the current limits of the batteries, having the in-

ternal resistance of each individual cell set to zero and approximating the SOC to be

constant which is a valid assumption for short-duration simulations, one sees that the
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output of the block diagram in Figure 4.10 yields

∆PDC = K∆fnparnseries

∆PAC = ∆PDC
Pbattery
SAC

= Knparnseries
Pbattery
SAC

∆f = Kkbess∆f
(4.19)

where ∆PDC is the total dc-side power in per unit, PAC is the per unit value of the

AC-side power provided by the BESS. Pbattery and Sac is the power rating of one battery

unit and apparent power base value in the external power system respectively, and K

is the gain constant used in the arbitrarily chosen proportional controller. The fraction

fraction Pbess/Sac is converting the power provided by the BESS to p.u. power values

in the AC-system, represented by the block conversion DC to AC pu in Figure 4.10.

Hence, one have that for the given assumptions, the BESS model internal gain is found

to be

kbess = nparnseries
Pbess
SAC

(4.20)

Thus, when looking at the effective gain of a feedback loop utilizing the BESS model,

having in mind that Equation (4.20) contains an approximate value of the internal gain

of the BESS model will be crucial. For instance, if the proportional gain controller K

is replaced by a general controller H(s), the total effective gain of the feedback loop is

|H(s)|kbess.
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5.1 Base Case System Response

Stability issues in power systems can often be addressed by calculating the eigenval-

ues/modes for a given steady-state operational point. For this thesis, a marginally

unstable version of the Nordic 44 test system is chosen as the base case, and the sys-

tem parameters are given in Appendix C.2. By linearizing the system around the

pre-defined operating point, it is seen that it contains a pair of eigenvalues barely

inside the right-half of the complex plane, indicating oscillatory responses with in-

creasing amplitudes following a disturbance. Figure 5.1 shows the eigenvalues having

an imaginary part/frequency greater than or equal to zero, and real part greater than

-5.

Figure 5.1: Eigenvalues in the base case system. The region marked with ”Eigenvalues

of interest” corresponds to the five lowest damped modes in the system, and the dotted

lines indicates constant relative damping lines. The poorest damped mode, marked

with (0.37 Hz, -0.24%), have a value of λia,0 = 0.005695 + j2.3257.

Although the presented eigenvalues are not showing all of the eigenvalues in the sys-
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tem5.1, it is clear that the system contains a large number of eigenvalues5.2. Most eigen-

values are satisfactorily damped, but five of the eigenvalues contain relative damping

of approximately 10% or smaller. These eigenvalues are highlighted in the blue region

Figure 5.1. The most noticeable eigenvalue is the one slightly to the right of the ima-

ginary axis, having a frequency of f = 0.37Hz and relative damping ζ = -0.24%. In

order to have a stable operating point and safe operation of the power system, somehow

shifting this eigenvalue leftwards in the complex plane will be of uttermost importance.

Without addressing this, any small disturbance in the system will eventually make the

system unstable.

The right- and left-eigenvectors corresponding the five poorliest damped modes and

generator speeds in the system is provided in Figure 5.2 and 5.3 respectively. The par-

ticipation factors5.3, which essentially is a measure of both right- and left-eigenvectors,

is presented in Figure 5.4. The coloring of the arrows in the eigenvector plots are cor-

responding to the colors used in the participation factor plots. That is, a red arrow in

one of the eigenvector plots will correspond to generator 6100 which is the generator

colored red in the participation factor plot in Figure 5.4.

Figure 5.2: Right eigenvectors (mode shapes or observability) in the base case system.

The coloring complies with the coloring used in Figure 5.4

5.1The eigenvalue plot is zoomed in, thus not showing the eigenvalues containing a negative real part

with large magnitudes or eigenvalues with imaginary part less than zero (this will only be a mirrored

image of the eigenvalue having a positive imaginary part).
5.2Number of eigenvalues equals number of state variables in the system, in the region of 400-500

for this system configuration.
5.3Participation factors are presented in Section 3.2.3.
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5.1 Base Case System Response

Figure 5.3: Left eigenvectors (controllability) in the base case system. The coloring

complies with the coloring used in Figure 5.4.

Figure 5.4: Magnitudes of the participation factors for the base case system. The

numbering of the eigenvalues are ordered from lowest to highest damping ratio of the

five eigenvalues of interest. The subscripts contain two indexes indicating that the

eigenvalues appear in complex pairs, but only the positive frequency eigenvalues are

shown in Figure 5.1.

From the theory presented in Section 3.2.3, one have that the right eigenvectors or

mode shapes contains information about the observability of certain modes in the spe-
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5.1 Base Case System Response

cific state variables. Thus, by interpreting Figure 5.2, one should expect the oscillatory

mode of 0.37 Hz (lowest damped) to be mostly observable in the speed response of

generator 6100, followed by generator 5300. As the green arrow (G7000) is essentially

180◦ shifted compared to the red arrow (G6100), one should expect the oscillatory

response of speed at G7000 to be out of phase with the response in G6100. Thus,

it should be clear that the poorliest damped mode having a frequency of 0.37 Hz is an

inter-area mode as the west-coast of Norway will be oscillating against Finland5.4. In

contrast, the mode having a frequency of 1.05Hz is a local area mode, as two gener-

ators (G6100 and G5600) being geographically in the same region (see Figure 4.5) is

oscillating against one another.

Looking at the left-eigenvectors, it is evident that G6100 is not only the most ob-

servable generator, but also the most controllable. Thus, it should intuitively be clear

from the theory in Section 3.2.3 that the participation factor corresponding to this

generator for the mode of 0.37 Hz will be the largest for the mode of interest. This is

observed in the participation factor plot in Figure 5.4. Hence, if only local controllers

using local measurements were to be applied in the system, placing it close to G6100

should, in theory, have the largest dampening capabilities on this mode.

A simulation is conducted by increasing the load demand at load L6100-1 by 100MW

at 1.0 seconds. It then decreases by the same amount at 1.05 seconds to showcase the

troubles associated with this negatively damped eigenvalue. The sole purpose of the

disturbance is to excite the oscillatory modes5.5. The speed responses of a few selected

generators in the system are presented in Figure 5.5.

5.4Take a look at the system presented in Figure 4.5 to see the approximate geographical locations of

the different buses in the system, alternatively in Appendix C.2 where a larger version of the system

is presented in Figure C.1.
5.5Exciting the system for illustrating the response could in principle be done by any disturbance,

for instance, a generator outage or short-circuit, but a load-change lasting for a short duration is seen

to illustrate the general oscillatory response clearly.
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5.1 Base Case System Response

Figure 5.5: Speed response in the system for a few chosen generators following the

disturbance.

From the simulation results presented in Figure 5.5 it is evident that the disturbance is

exciting the system. Before the load change is applied (t < 1.0 seconds), the speeds of

the selected generators are constant, reflecting the fact that the system is initially in a

steady-state equilibrium point. After the load events are applied at t = 1.0 seconds and

t = 1.05 seconds, the speed responses can be seen to be somehow distorted, reflecting

the fact that it consists of the sum of all of the oscillatory modes with different frequen-

cies. Eventually, most of these frequency components die out due to the amount of

damping present at most eigenvalues in the system. Approximately at t = 5.0 seconds,

the only noticeable frequency of oscillation left in the system is found to be 0.37 Hz.

This frequency component is slightly increasing5.6 during the entire duration of the

simulation, which should be anticipated when knowing that the corresponding eigen-

value is located marginally right of the imaginary axis in the eigenvalue plot. Hence,

the system will not return to the steady-state operational point, nor will it find a new

operational point before the overall system collapses due to failure. The amplitude of

the oscillations of the speed of G6100-1 is slightly larger than the amplitude of oscilla-

tions at G5300-1. This could be foreseen from the right eigenvector plot in Figure 5.2,

as the arrow corresponding to G6100-1 is slightly larger than the arrow corresponding

to G5300-1. The 180◦ phase shift between the speed at G6100-1 and G7000-1 anticip-

5.6The response is close to standing oscillations. Damping of 0.0% would correspond to standing

oscillations. However, this eigenvalue is marginally in the right-half of the complex plane, thereby

giving rise to moderately increasing system response.
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ated by the mode shapes is also evidently seen in the speed responses present in as

these are oscillating in counter phase. Notice how the speed response of G3359-1 stays

relatively constant towards the end of the simulation after the majority of the excited

modes have decayed to zero. This could be anticipated by the participation factor plot

in Figure 5.4 together with the mode shape for this generator5.7 in Figure 5.2, implying

that the observability of the 0.37 Hz is almost non-observable at this generator.

The 0.37 Hz mode in the system response is also present in the power flows between

different buses in the system. Figure 5.6 shows the power flowing between an important

connection between Eastern Norway (bus 5101) and Western Sweden (bus 3359).

Figure 5.6: Power flow between bus 5101 (east Norway) and bus 3359 (west Sweden).

Similarly, as for the speed responses, the magnitude of oscillations in power flows in-

creases when a pair of eigenvalues is located in the right half of the complex plane.

Again, for a real-world system, this could relatively fast prove to exceed the thermal

limitations in the power lines, potentially causing catastrophic results.

Based on the eigenvalues and the linear properties of this system, together with the

non-linear simulation carried out, it should be clear that one is in desperate need of

addressing the problem related to the poorly located pair of eigenvalues. Thus, the rest

of this thesis will be focused on figuring out a good choice of BESS location, together

5.7The mode shape for this generator for the 0.37 Hz mode is close to zero, being the ”arrow” located

at the origo of the polar plot.
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with an appropriate BESS controller feedback signal and controller parameter selection

in an attempt to dampen out these oscillations. The theory presented in Section 3 will

serve as a foundation for doing so, especially the theory covering the linearized proper-

ties of the system and transfer function residues. Therefore, the next section attempts

to validate the residue implementation in Python to confirm that the implementation

and corresponding results are as expected.

5.2 Validation of Transfer Function Residue Implementation

For the rest of the thesis, the transfer function residues will be of significant importance.

Having this implemented correctly is of the most profound concern. To see whether

the residue-way of finding the open-loop transfer function between an input ui and

output yj in the system (discussed in Section 3.3.1) is implemented correctly, linear

simulations based on calculated open-loop transfer functions are compared with non-

linear simulation results. A linear simulation based on open-loop transfer functions

should in theory correspond well with non-linear simulations for small disturbances

from Equation (3.51). Therefore, if the linear simulations coincide desirably with the

non-linear simulations, one could arguably conclude that the implementation of the

transfer function residues is working as intended.

The simulations are conducted in Kundor’s two-area system, where the input is chosen

to be a load change at L2, PL2, and the output is the terminal voltage at the corres-

ponding bus θB3. An additional simulation including a feedback-loop connected BESS

with arbitrarily chosen parameters using the terminal voltage angle θB3 as feedback

signal is included to see whether the transfer function residues calculation works as

intended for changing system topologies. The setups without BESS and with BESS

are shown in Figure 5.7a) and 5.7b) respectively.

(a) Open-loop transfer function without any

external feedback controllers.

(b) Transfer function from input to output

with a BESS feedback controller.

Figure 5.7: The setup for the different simulations carried out for verifying the im-

plementation of the residues by comparing linearized system response by the use of

calculated open-loop transfer functions with non-linear simulation results.
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Calculating the open-loop transfer function from the input to the output for the two

different cases (without and with BESS) yields transfer functions of order 40, thus

not given here5.8. Hence, to check whether these transfer functions accurately describe

the dynamics between the input and output, a small step change is applied at L2

at t = 1.0 seconds before a new oppositely directed change is applied at t = 1.1

seconds, essentially being a small-signal disturbance in the system. Results for the

linear simulations (dotted lines) and non-linear simulations (solid lines) are presented

in Figure 5.8.

Figure 5.8: The time-domain simulation results for both non-linear simulations and

simulations solely using the calculated open-loop transfer functions, both with and

without BESS. The transfer function-based simulations are carried out twice the length

of the non-linear simulations. It is evident that they can predict non-linear simulation

responses.

Neglecting the responses during the time of disturbance from t = 1.0 to t = 1.1 seconds,

one sees that the transfer function-based linear simulations coincide well with the non-

linear simulations. This is the case both when BESS is included in the system and

without BESS. Thus, as the solid blue line and the blue dotted line is overlapping,

which is also true for the red lines, it is evident that the calculation of the transfer

function between the input and output PL2 and θB3 yields the expected response in

the system when a small-signal disturbance is applied. Consequently, the residue im-

5.8The order of the open-loop transfer function is the same as the number of state variables in the

system.

72



5.3 Feedback Signal and BESS Location Selection

plementation works as intended.

When the transfer function is calculated, one also notices that this could effectively

be used for having first-hand knowledge of the system response for a longer simula-

tion period than what is being carried out in the non-linear simulations. Non-linear

simulations use extensively longer computational time as these rely upon solving the

entire set of differential and algebraic equations characterizing the system. Thus, the

transfer function approach could be suitable if more extended simulations are required

and limited computational resources are available. This last claim could especially be

relevant to use for larger systems that use significantly longer time to compute if only

some specific outputs are of interest for the user.

5.3 Feedback Signal and BESS Location Selection

5.3.1 Signal Selection

The residue implementation is now validated by the simulation carried out in Section

5.25.9. The feedback signal selection is crucial to get the most out of the BESS to be

installed. Assuming PMUs are installed in the system and all bus voltages in the sys-

tem are measurable, the feedback signal is determined to be a difference between two

terminal voltage angles in the system, (θx-θy)
5.10, as Jonsdottir et al. [35] found that

voltage angles gave the best damping performance of the candidate feedback signals,

while also being obtainable from PMUs. The calculations carried out in this section

and the next section for the base case system, aiming to select the optimal feedback

signal and BESS location, are also carried out in two different versions of the Nordic

44 test network, and is provided in Appendix D.2 and Appendix D.3.

In an attempt to select the optimal voltage angles in the system, the general pro-

cedure discussed in Section 3.4.1 would be to calculate the residue corresponding to

the mode of interest for the different combinations of angles in the system. From the

theory presented in Section 3.4.1, the feedback signal can be selected independently

from the input location, as long as the same input location is considered for the dif-

ferent candidate feedback signals. Therefore, the input is simply denoted Pi, where Pi

in principle could be the power input to any bus present in the system. The general

procedure can be summarized by the Figure 5.9 and 5.10.

5.9A large number of additional simulations are carried out for verifying the implementation of the

residues and the corresponding transfer functions due to the significance regarding feedback signal

and location selection.
5.10The notation of j and ĵ is switched with x and y for simplicity for this case, while also yielding

more intuitive reading of the provided plot as will be seen.
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Figure 5.9: Open-loop transfer function Gi,(θx,θy)(s) between an arbitrarily chosen bus

power input Pi and output θx-θy, with a feedback controller named BESS.

The total open-loop transfer function Gi,(θx,θy)(s) is excessive when deciding the optimal

feedback signal. The important part, as discussed in the optimization problem given

in (3.52), is to figure out which combination of voltage angles θx-θy yields the largest

residue magnitude for the mode of interest, λia. Hence, Figure 5.9 could be enlarged

and represented as in Figure 5.10, where the part of concern is highlighted in a yellow

rectangle.

Figure 5.10: Transfer function between the input Pi and output θx-θy in an enlarged

version. The yellow box is denoting the block associated with the mode of interest,

λia, and the feedback signal θx-θy maximizing Ri,(x,y),ia is whats being looked after.

Thus, the objective is to maximize the residue related to the mode of interest Ri,(x,y),ia,

by systematically checking the residues for the possible combinations of terminal voltage

angles in the system for the given arbitrarily chosen input signal. The number of com-

binations to be checked will correspond to the number of generators in the system

squared and then divided by two5.11.

5.11Divided by two since taking the absolute values of Ri,(x,y),ia and Ri,(y,x),ia is the same, but the

phases are 180◦ shifted.
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The different feedback signal combinations with the calculated residue amplitude cor-

responding to the mode of interest (0.37 Hz) are shown in Figure 5.11. A colormap

representation is chosen, as this allows for a simple, intuitive comparison of the residue

magnitudes.

Figure 5.11: Colormap showing the residue magnitude for different feedback signal

combinations, θx-θy. The combination giving the highest residue magnitude is a good

choice of the feedback signal to the BESS. Buses containing more than one generator

are represented by the first generator at this bus (for instance, G6100 is representing

G6100-1) to reduce the size of the plot. This does not alter the results.1
1 This does not influence the final result and has been validated by considering every single combination of generators.

Buses containing several generators have essentially the same generator parameters as can be seen in the parameters

presented in Appendix C.2

By interpreting the results presented in Figure 5.11, it is evident that using the differ-

ence between the voltage angle at bus 6100 and bus 7000, ±(θB6100− θB7000), is a good

choice of feedback signal as this corresponds to the difference in angles yielding the

largest magnitude of the residue of interest. One also notices that the largest residues

75



5.3 Feedback Signal and BESS Location Selection

generally tend to correspond to voltage angle combinations related to different areas

in the system. This is expected, as the mode of interest, in this case, is an inter-area

mode, and using signals from different areas tends to be good candidates for influencing

such modes [64]. The plot presented in Figure 5.11 is symmetrically around the diag-

onal line going from lower left to upper right, whereas the amplitude of the diagonal

elements is zero5.12.

Figure 5.12: Colormap showing the absolute value of differences in observability vector

(mode shape) entries.

A plot is also provided for differences in observability vector entries without considering

the effect of controllability and input location to show that the simplification made in

the theory section is valid. This is presented in Figure 5.12, which visually is exactly

the same as residue magnitude plot Figure 5.11, but with different scaling. This is in

accordance with the theory presented in 3.4.1, namely that accounting for the location

of the BESS, represented by Pi, scales all the residues by the same amount, thus not

5.12Since the diagonal elements correspond to taking the angle at one bus and subtracting the same

angle, for instance, θG3000-θG3000 = 0.
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altering the relative differences between the magnitudes of the residues for the different

feedback signals. Therefore, looking at differences in observability vector entries yields

the same conclusion as the residue approach in deciding the optimal feedback signal

based on maximizing the magnitude of the residue.

In a general case, one could be interested in selecting feedback signal combinations

for other modes, for instance, a local-area mode. An example of this is provided in

Appendix D.1.1, where the largest residues are strongly correlated with two specific

buses in the system where the local-area mode are mostly observable.

5.3.2 Location Selection

The optimal feedback signal combination is selected in Section 5.3.1 to be a difference

between the voltage angle at bus 6100 and bus 7000. A natural next step would be to

determine a suitable location of the BESS to have it as effective as possible in terms

of adding damping to the inter-area mode. The theory behind this, and the proposed

optimization problem is presented in Equation (3.58) in Section 3.4.2.

Similarly, as for the feedback signal selection, this relies on changing the BESS location

iteratively around in the system, and figuring out which open-loop transfer function

between the input Px and output θ6100-θ7000 are having the largest magnitude of the

residue corresponding to the inter-area mode, λia. Hence, the feedback signal combin-

ation is fixed, and the problem reduces to determining the optimal location, Px, where

x denotes a bus in the system. The setup for this problem is similar to the problem

considered in Section 5.3.1, and is presented in Figure 5.13.

Figure 5.13: Setup for selecting the optimal BESS location. The feedback signal

θ6100-θ7000 is fixed, and the optimization problem aims at finding the location x such

that the residue Rx,(6100,7000),ia is maximized.
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Considering the generator buses in the system5.13, the result presented in Figure 5.14

is obtained:

Figure 5.14: Residue magnitude related to the inter-area mode λia for variations in

BESS location. The vector b(x) (present in the y-axis label) is denoting the input

vector b for BESS located at bus x in the system calculated by using Equation (3.7).

The residues directed in the positive direction are in phase with the largest residue,

whereas the negatively directed residues are oppositely directed in the complex plane.

Hence, it is evident that by using the optimal feedback signal found in Section 5.3.1,

the optimal location of the BESS will be at bus 6100. Thus, two major things are now

determined, stated below for easily being readable and also illustrated in Figure 5.15:

1. Optimal feedback signal combination: θ6100-θ7000.

2. Optimal BESS location: Bus 6100.

5.13Selecting the BESS location is a one-dimensional problem when the feedback signal is determined.

When selecting feedback signals in Section 5.3.1, a difference between two signals were considered,

thereby yielding a two-dimensional solution space.
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Figure 5.15: Block diagram illustrating the optimal feedback signal combination

θ6100-θ7000 and location bus 6100. The BESS-block is accounting for both the BESS-

model transfer function and the associated control system.

When both the feedback signal combination and BESS location are determined, a

natural way to proceed would be to account for the actual residue amplitude and

phase shift to design an appropriate controller. The directions and magnitudes of the

residues for the different candidate locations are presented in Figure 5.16.

Figure 5.16: Residue variations in the complex plane for different BESS locations

when the feedback signal (θ6100-θ7000) is fixed, containing information about residue

magnitudes and phase shifts.

From Figure 5.16, one have that the largest residue (BESS at Bus 6100) is directed
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left-wards in the complex plane. Hence, based on the theory presented in Section 3.3.2,

a proportional feedback controller would move the mode of 0.37 Hz in the direction an-

ticipated by the red dot. Therefore, as it is generally undesirable to alter the frequency

of the oscillatory mode5.14, phase compensation is needed in the feedback controller for

moving the mode straight left-wards in the complex plane, which will be considered in

the upcoming section.

5.4 Feedback Controller Parameters Tuning

At this point, both the feedback signal combination and BESS location is determined.

Hence, the next step would be to decide the controller parameters needed in order to

move the eigenvalue leftwards in the complex plane. The overall control loop is given

in Figure 5.17.

Figure 5.17: Battery controller and BESS-model in the feedback loop from the selected

feedback signal and location determined in Section 5.3.1 and Section 5.3.2, respectively.

The Figure is essentially the same as Figure 5.15, but the BESS-block is enlarged to

illustrate the BESS-model and the associated controller independently. The propor-

tional gain factor Kp is given as an individual block as it does not influence the phase

shift of the controller [58], hence this value will be determined separately.

5.4.1 Selection of BESS Parameters

The BESS parameters used while conducting simulations are important and heavily

influence the amount of damping obtainable from the BESS as seen in Equation 4.20.

For this thesis, the effects of the different BESS model parameters are not covered

5.14A change in the imaginary part of the mode corresponds to change in modal frequency as per

Equation (3.33).
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deeply, as this is conducted in the preceeding spezialization project, and will essentially

only cause slightly different choices of controller parameters. Hence, the parameters

are pre-determined, and the essential ones are set as follows:

Table 2: Fixed BESS parameters

pmax [kW] npar nseries T [sec] Tdq [sec]

245 12 1 0.035 0.035

The parameters are described in Section 4.5, but essentially pmax is the power rating

of the individual batteries chosen in the power region of commercially available Tesla

Powerpacks [76], npar and nseries are number of parallel- and series-connected batteries

in the BESS model, respectively. Consequently, the total rating of the BESS affecting

the feedback loop gain response is close to 3 MW, but the available power depends on

the state-of-charge. Furthermore, due to the time constants representing delays in the

input signal, T , and converter dynamics, Tdq, some internal phase shifts of the BESS

model should be expected and thereby accounted for when designing the feedback

controller.

5.4.2 Parameter Tuning for Desired Phase Compensation

A conventional control system for providing Power Oscillation Damping (POD) to

power systems are utilizing a washout filter, lead-lag compensates and a proportional

gain constant [45], [48], [50]. The washout filter, sTwash/(1 + sTwash) is included to

remove the steady-state and low-frequency signal inputs to the controller. A common

choice of the parameter Twash is 10 seconds when considering inter-area oscillations

[85], which will also be used for this controller, even though other values in the region

1-20 seconds might be suitable [86]. Thus, as the inter-area mode of interest has a

frequency of 0.37Hz, the washout filter will only have minimal effect on the gain and

phase shift.

Hwash(s) =
sTwash

1 + sTwash

|Hwash(j2π0.37Hz)| = 2π0.37Hz ∗ 10s√
1 + (2π0.37Hz ∗ 10s)2

≈ 1

∠Hwash(j2π0.37Hz) = 90◦ − 87.54◦ = 2.46◦ ≈ 0◦

(5.1)

The BESS model itself is responsible for some phase shifts. This is related to the first-

order time-delays incorporated in the input signal and current components injected

into the grid, which can be seen from the BESS model implementation presented in

Section 4.5. Hence, when plotting the eigenvalues for different phase shifts, the straight

81



5.4 Feedback Controller Parameters Tuning

lines indicating a constant phase shift are accounting for this internal shift in the BESS

model. That is, the line indicating 0◦ phase shift does not exactly correspond to the

residue direction but is slightly skewed to account for the inner dynamics present in the

BESS-model. This is done in order to see the relative accuracy of the estimated phase

shifts for different targeted phase shift by having a starting point that falls exactly on

the 0◦-line for small gains. For a proportional gain value of Kp = 2.0 and having the

lead-lag blocks, (1 + sT1)/(1 + sT2), using parameters such that there is no additional

phase shift (T1 = T2 ≈ 0), the internal phase shift is found to be 5.05◦, which is how

much the original residue direction is shifted. Doing an iterative simulation where the

feedback controller gain at the frequency of interest (Kp|H(j2π0.37)|) is held constant

for different targeted phase shifts (or different values of T1 and T2), the results provided

in Figure 5.18 is obtained.

Figure 5.18: Eigenvalues for different controller gains and targeted phase shifts. The

colored circles surrounding the initial mode position indicates points where the con-

troller gain Kp|H(j2π0.37)| is held constant. The original direction anticipated by the

residue is shown as a gray dot indicates the mode movement if a simple proportional

feedback controller is used, without accounting for the inner dynamics of the BESS-

model and the associated phase shifts. This dot/direction is the same as the residue

direction of BESS at Bus 6100 from Figure 5.16.

It is clear that for different gain values (although all of them are in principle very small),

the different phase shifts targeted by the tuning of the lead-lag blocks is well capable

of predicting the new modal position. Ideally, all the blue dots (mode positions for

the largest gain) would fall on the dotted blue circle (constant gain) and the targeted
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phase shift straight lines, and the same thing goes for the green and red modes. This is

somehow accurate but not necessarily perfectly fitting. To illustrate this more clearly,

a plot is provided in Figure 5.19 to see the relation between the targeted and actual

phase shifts.

Figure 5.19: Difference between the targeted and actual phase shift for different para-

meter gains and targeted phase shifts (x-axis). Notice how the difference between

actual and targeted phase shift for K=2 and targeted phase shift of 0◦ is 0◦, as this

is made the relative starting position of the 0◦-line in Figure 5.18 to account for the

internal BESS model phase shifts.

It is evident that the targeted phase shift and actual phase shift are correlating signi-

ficantly better when the lowest gain is used, and the deviation between these increases

for higher gains and larger targeted phase shifts. This corresponds well with the the-

ory behind residue sensitivity provided in Section 3.3.2, which states that the mode

movement given a feedback control is valid for small gains only, and deviations should

be expected for larger gains.

To further investigate the results from Figure 5.18, a BODE-diagram is provided in

Figure 5.20 where the mode shift from large gains is plotted in the phase response of

the BODE-diagram too see how well it corresponds with the phase compensation of

the controller.

83



5.4 Feedback Controller Parameters Tuning

Figure 5.20: BODE-diagram for different parameters of the lead-lag filters and propor-

tional gain constant Kp. The product Kp|H(j2π0.37)| is held constant for the three

different gains considered, such that regardless of the desired phase shift of a given

gain, the gain response at 0.37Hz (2.33 rad/s) is the same. This should be seen in

relation to the colored circles in Figure 5.18, indicating constant controller gains. The

dots in the phase response indicates the actual phase shift for the given mode for the

largest investigated gain, which can be seen to fall approximately on the desired phase

shifts indicated by the points of which the curves cross the vertical line at 2.33 rad/s

(0.37Hz).

From the BODE-diagram given in Figure 5.20 it is clear that the amplitude/gain re-

sponse collapses at the frequency of the inter-area mode, 2.33 rad/s, which essentially

was a criterion made when selecting the parameters and especially the proportional

gain constant Kp for creating the plot shown in Figure 5.18, such that all modes would

end up approximately the same Euclidean distance away from the original modal pos-

itions. It should be evident that the tuning of the lead-lag blocks presented in Section

3.5 together with the information about the residue presented in Section 3.3.1 is capable

of moving the critical mode away from its initial position by appropriately selecting the

feedback controller parameters based on the desired phase shift, but some inaccuracy

is seen for larger gains.

In terms of deciding the actual parameters to be used for the BESS-controller, a closer

look should be taken into Figure 5.18. For the given system, the chosen BESS-location

and feedback signal, it can be seen that in order to move the mode leftwards in the

complex plane, a phase shift somewhere in the region of 60◦ to 70◦ relative to the
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initial direction suggested by the residue should yield a satisfactory result. However,

this will depend on the amount of damping which is desired, as it could be seen in

Figure 5.19 that the accuracy of the proposed tuning method depends on the desired

gain. Choosing a phase shift of 60◦ initially, and then moving on by figuring out the

amount of gain needed.

5.4.3 Proportional Gain Parameter for Obtaining a 5% Damping of the

Critical Mode

By Equation (3.3.2), the change in the eigenvalue will be a product of the total feedback

transfer function and the residue related to the mode of interest for the analysis. The

total feedback transfer function will consist of both the internal BESS-model transfer

function, the feedback controller aiming at a desired phase shift H(s) and the propor-

tional gain factor Kp, where the latter one is the one to be determined for obtaining the

desired eigenvalue movement in the system. Since the phase shift needed for shifting

it leftwards is determined, one are only interested in the magnitude of change as of

now. By using Equation (3.42) and rewriting the term H(ωi) to include the different

controller blocks present in the feedback controller seen in Figure 5.17, one have

|∆λia| = Kp|Hbess(s)||Ria|
∣∣∣∣ sTwash
1 + sTwash

∣∣∣∣ ∣∣∣∣(1 + sT1

1 + sT2

)∣∣∣∣2
∣∣∣∣∣
s=j2π0.37

, (5.2)

whereRia is the residue value for the chosen loop for the given inter-area mode, Kp is the

proportional gain to be determined, |Hbess(s)| is the gain due to the inner dynamics of

the battery model discussed in Section 4.5 and the two last expressions are the washout

and lead-lag compensators amplitude gains at the frequency of interest, respectively.

Rearranging gives that for a desired change in the eigenvalue, the proportional gain

parameter can be determined by

Kp =
|∆λia|

|Hbess(s)||Ria|
∣∣∣ sTwash

1+sTwash

∣∣∣ ∣∣∣(1+sT1
1+sT2

)∣∣∣2∣∣∣∣
s=j2π0.37

(5.3)

For many applications it is desirable to have at least 5% damping of the critical mode,

as this yields satisfactory damping for most systems while providing some margins in

the system [54]. This will be the chosen damping to aim for in this application too.

Consequently, as the initial value of the mode is λia,0 = αia,0 + jωia,0 = 0.005695 +

j2.3257, the real value of the new modal position can be found by using Equation

(3.32) and having the imaginary part (frequency) of the mode to be constant

αia = −

√
ζ2ω2

ia,0√
1− ζ2

= −0.05 ∗ 2.3257√
1− 0.052

= −0.116, (5.4)
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where the negative solution of the square-root equation is used as the mode is intended

to be moved to the left-half of the complex plane. This corresponds to a change in the

mode of

|∆λia| = |λia − λia,0| = |αia − αia,0| = 0.1218. (5.5)

• The desired mode change is established, and from (5.1) one have that the washout

block contributes to a gain of approximately 1.0 at the given frequency when

Twash = 10 sec.

• For an initially chosen5.15 phase shift of 60◦, the lead-lag parameters can be

found from Figure 5.18 to be T1 = 0.745 and T2 = 0.248. Thus, the two lead-lag

blocks contributes to a total gain of 3.0 at the given frequency by using Equation

(3.60) with m = 2.

• The residue value |Ria| can be read from Figure 5.14 to be |Ria| = 0.804.

• Lastly, one need to determine the value of |Hbess(j2π0.37)|. As can be seen

in Section 4.5.3, this value will depend on the individual battery ratings, the

number of batteries series and parallel connections, the apparent power rating in

the system, and the scheduled voltage (in p.u.) at the bus of which the BESS

is connected. One could utilize the formula presented in the battery section if

accounting for the apparent generator ratings of the generators connected at the

bus of which the BESS is connected (Bus 6100). For convenience, this conversion

factor is found by running a simulation and using the fraction of the battery power

signal relative to the battery input signal of the BESS. Doing so, this value is

found to be |Hbess(j2π0.37| = 0.00402. This value might seem low initially, but

remember that the power system base rating is 1000 MVA, and the batteries are

only rated a couple of hundreds kW. And, currently, the BESS system consists of

an equivalent of 12 parallel connected batteries, such that this conversion factor

should be reasonable.

• For a 5% targeted damping having the lead-lag parameters tuned to give a phase

shift of 60◦, the proportional gain factor Kp is calculated to be Kp = 12.56 by

Equation (5.3) for this specific operating point of the system.

In order to see how well this targeted gain shift is predicting the new position of the

mode, the Kp values is calculated for targeting 1% and 3% damping in addition to

the desired damping of 5%, giving the values of Kp = 2.98 and Kp = 7.67 by using

Equation (5.3) and (5.4). The simulation is carried out for phase shift targets in the

region [60◦, 70◦] with steps of 2◦, and the results can be seen in Figure 5.21.

5.15Will be slightly changed later to account for the deviations between the actual and desired phase

shifts at the chosen gain.
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Figure 5.21: The new modal positions for proportional gain factors calculated to be

Kp = [2.98, 7.67, 12.56] for targeting a damping of 1%, 3% and 5% respectively based on

Equation (3.42). The results are shown for different phase shifts and the proportional

gain is slightly adjusted for each simulation to account for the increased gain response

of the lead-lag blocks when parameters are selected for providing larger phase shifts.

From the results seen in Figure 5.21, it is evident that the proposed way of deciding

the proportional gain parameter seems to yield a suitable solution. For all three of

the targeted dampings (1%, 3% and 5%), deciding Kp in the proposed way yields

decently accurate results. However, it can be seen that when 5% damping is desired,

the Kp parameter is slightly underestimating the mode shift, causing marginally better

damping than anticipated. This is not of major concern, as larger damping is generally

desired, and the deviation between the targeted and actual damping is thus deemed

insignificant. One also notices that the deviation between the phase shift that is being

aimed for and the actual phase shift is larger the greater the gain is. The errors between

the targeted and actual phase shift for different phase shifts and amplitude gains is

shown in Figure 5.22.

87



5.4 Feedback Controller Parameters Tuning

Figure 5.22: The difference between the targeted and actual phase shift for different

proportional gain constants aiming for 1%, 3% and 5% damping. The larger the pro-

portional gain (and thereby desired damping), the larger is the error in the targeted

phase shift.

One of the modes in Figure 5.21 is marked with a text-box stating (0.37Hz, 5.24%).

Relative to the initial position of the mode, this mode is seen to be located approx-

imately at the same imaginary value (frequency), but moved by a desirable amount

left-wards in the complex plane. Therefore, as this mode is mode number three when

counted downwards (the blue modes), this corresponds to a phase shift of 64◦. For a 64◦

targeted phase compensation of the lead-lag blocks, the actual compensation is found

to be 68.5◦ by adding the difference between targeted and actual phase compensation

in Figure 5.22 at a target of 64◦ and damping approximately equal to 5%. The lead-lag

block is yielding a slightly higher amplitude gain for larger phase shifts5.16, hence the

original proportional gain constant Kp = 12.56 would have to be modified slightly to

5.16See Equation (3.60).
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account for this.

Kp,final = Kp,0

∣∣∣(1+sT1
1+sT2

)∣∣∣2∣∣∣∣
60◦,s=j2π0.37∣∣∣(1+sT1

1+sT2

)∣∣∣2∣∣∣∣
64◦,s=j2π0.37

= 12.56

∣∣(1+s0.745
1+s0.248

)∣∣2∣∣∣
s=j2π0.37∣∣(1+s0.776

1+s0.238

)∣∣2∣∣∣
s=j2π0.37

= 11.56

(5.6)

Thus, the proportional gain should be chosen to Kp = 11.56 when a phase compensa-

tion of 64◦ is to be appended by the lead-lag blocks.

To further showcase how the residue sensitivity approach fails when gains get large,

the feedback controller gain is changed in steps from 0 to 50, where Kp = 11.56 is the

value chosen for this application and the lead-lag filters are fixed to provide 64◦ phase

compensation. The results are shown in Figure 5.23.

Figure 5.23: Inter-area mode of interest for different proportional gain constants Kp

in the region [0, 50]. For small gains, the modes is located relatively accurately on the

straight line anticipating the phase compensation of the controller. However, for larger

gains, the mode movement is not following the anticipated direction of 64◦ relative to

the residue direction, as the assumptions used for deriving Equation (3.41) (Kp → 0) is

not valid for such cases. The mode marked with a text-box (0.37Hz, 5.46%) corresponds

to Kp = 12, which is close to the chosen value of Kp = 11.56.
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From Figure 5.23 it is clear that for the larger gains the residue approach fails, and the

method should be used with caution if large relative movement of the modal position

is required. Nevertheless, for a targeted damping close to 5%, it is seen to perform

desirably in this system.

5.4.4 Validating the Controller Parameters

The final values for the controller parameters is listed in Table 3.

Table 3: Final choices of the BESS controller parameters to increase the damping of

the poorest damped mode

Proportional gain Washout filter 2nd order lead-lag

Kp Twash [sec] T1 [sec] T2 [sec]

11.56 10 0.776 0.238

To have an initial validation of the BESS performance, a short simulation is carried out

where a BESS using the controller parameters listed in Table 3 is included. Figure 5.24

shows some of the eigenvalues in the system for such a case, both with and without

the BESS included.

Figure 5.24: Eigenvalues in the system (zoomed-in) both with and without the BESS

using the controller defined in Table 3. The mode of interest, λia, is changed desirably,

whereas the other observable modes in the plot are affected to a low-extent, which is

also confirmed for modes not shown in the figure.
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When looking at these linearized properties, it is seen that the controller is operat-

ing desirably, namely by imposing a straight horizontal left-wards shift on the mode

of interest and reaching a new position of approximately 5% damping. Hence, the

finalized parameters of the controllers work as intended for this linear analysis. Non-

linear simulations will be looked more into at a later point to validate the controller

performance for different types of faults. Figure 5.25 shows the different input signals

and output signals to the blocks used in the controller5.17 for a small load disturbance

lasting 0.05 seconds. For simplifying the reading, a block diagram showing where the

different signals in Figure 5.25 are measured is provided in Figure 5.26.

Figure 5.25: Input and output signals for the different controller blocks in the system.

An illustration showing where the different signals are measured during the dynamical

simulation is given in Figure 5.26.

Figure 5.26: Block diagram showing where the different signals in Figure 5.25 are

measured during the simulation.

5.17Excluding the impact of the proportional gain (which will only act as a scaling factor)

91



5.4 Feedback Controller Parameters Tuning

From Figure 5.25 some of the properties of the different controller blocks can be ob-

served.

1. The input signal, and the signal measured after the washout filter are essentially

overlapping. This is as expected, since the amplitude gain of the washout filter

was seen to be approximately 1.0 at the frequency of interest, while providing a

phase shift close to zero from (5.1).

2. The first lead-lag block is imposing a phase shift on the signal, as well as an

amplitude gain5.18.

3. Similarly, the second lead-lag block, which is tuned with the same parameters

as the first one, imposes an equal phase shift on the signal and increases the

amplitude of the signal by the same factor as the first lead-lag block.

4. By looking at the time of which a local maximum value happens on the output

signal and input signal, it can be seen that the time differences between these

tops are found to be approximate ∆t = 0.5275 seconds (towards the end of the

simulation). The inter-area mode of interest is having a frequency of approxim-

ately 0.37 Hz, such that the overall phase shift from the input signal and output

signal can be found to be, φ = ∆t
1/fia

360◦ = 70.26◦.

5. Having in mind that the tuning of the lead-lag blocks aims at applying a phase

compensation of 64◦, while also having a few degrees deviation due to the relat-

ively large proportional gain and accounting for the small phase shift imposed by

the washout filter, a 70.26◦ phase shift from input to output seems reasonable.

5.4.5 Validating the Optimality of the Selected Signal and Location

Up until this point, the feedback signals and BESS location is chosen as the optimal

combination based on the theory presented in Section 3.4.1 and 3.4.2. However, no

analysis has been conducted for validating that the chosen location and feedback signal

actually yields the best solution for the given system. Thus, this section is investigat-

ing this further by comparing the mode shift and additional damping applied to the

mode of interest for different combinations of BESS location and feedback signals. The

feedback signal and BESS location selection procedure is also conducted for two other

versions of the Nordic 44 test network, and can be found in Appendix D.2 and Ap-

pendix D.3.

For the base case system, the optimal feedback signal presumably is ±(θ6100-θ7000)

5.18Which is expected when looking at the Equation for amplitude response of lead-lag filters (3.60)

and T1 > T2.
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from the results presented in Figure 5.11. However, the residue obtained by choosing

the feedback signal as ±(θ6100-θ3249) is also having a large value and could potentially

be a good solution. Additionally, the feedback signal ±(θ5300-θ3249) yields a relatively

large value of the residue from the residue plot and is thus worth looking further into.

Hence, choosing these three feedback signal combinations to look further into in an at-

tempt to justify the improved performance when using the suggested optimal feedback

signal.

The residue values for different BESS locations in the system, given that the feed-

back signal is chosen to be θ6100-θ7000, are shown in Figure 5.14. The three different

locations to be investigated are chosen as the optimally selected location B6100, the

supposedly next best location B5300, and, lastly, B3249, which corresponds to the

maximum residue location in the opposite half of the complex plane. It should be

made clear that in a general case, one would have to adjust the controller parameters,

especially related to the phase compensation of the lead-lag filters. However, it was

seen in Figure 5.16 that the residues for different BESS locations are located approx-

imately on a straight line through origo, such that the desired phase compensation for

the different BESS locations is approximately the same, or 180◦ shifted if the residue

is located in the opposite half of the complex plane (which is the case for B3249).

The BESS with fixed controller parameters are given in Table 3 is thus deployed for

all three of these locations, together with the three aforementioned feedback signal

combinations, and the results are presented in Table 4.

Table 4: Frequency and relative damping of the inter-area mode for different locations

of the BESS using different feedback signals. Without BESS in the system, the ei-

genvalue is having a frequency of 0.37 Hz and relative damping of -0.24%. The new

frequency and relative damping of the inter-area mode are given by fia and ζia, respect-

ively, and ∆ζia is the change in relative damping compared to the base case system.

BESS LOCATION FEEDBACK SIGNAL fia ζia ∆ζia

B6100

θ6100-θ7000 0.37 Hz 5.24 % 5.49 %

B6100 θ6100-θ3249 0.37 Hz 4.99 % 5.24 %

θ5300-θ3249 0.37 Hz 3.50 % 3.75 %

B5300

θ6100-θ7000 0.37 Hz 4.52 % 4.77 %

B5300 θ6100-θ3249 0.37 Hz 4.32 % 4.57 %

θ5300-θ3249 0.37 Hz 2.74 % 2.99 %

B3249

-(θ6100-θ7000) 0.37 Hz 1.24 % 1.49 %

B3249 -(θ6100-θ3249) 0.37 Hz 0.91 % 1.16 %

-(θ5300-θ3249) 0.37 Hz 0.76 % 1.01 %
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The ordering of the table is chosen based on the presumably best solution. That is,

the location apparently having the largest effect on the mode (B6100) is placed at the

top, followed by B5300 and then lastly B3249. From the absolute value of the residues

provided in Figure 5.14, one should expect that for the same feedback signal at these

three locations, the top one (B6100) should provide the largest amount of damping,

followed by the second (B5300), and then the smallest amount of damping provided

by the BESS located at B3249. By reading the tables for the different locations and

feedback signals, one sees that this is true for all of the three feedback signals considered.

The different values of the residues for different feedback signal combinations is provided

in Figure 5.11. Similarly as for the different locations, the feedback signals analyzed

(θ6100-θ7000, θ6100-θ3249, θ5300-θ3249) are ordered based on the presumed effect they would

have on the mode of interest as read from the residue plot in Figure 5.11. For each

of the different locations, one observes that the change in the relative damping ∆ζia

is larger the greater the value of the residue for the corresponding feedback signal is.

Thus, it seems evident that the chosen BESS location and feedback signal combination

does, in fact, correspond to the optimal solution for this system5.19.

In an attempt to validate the selection procedure and optimally of the selected in-

put/output combinations, the same method employed for this system is conducted in

two other versions of the Nordic 44 system. These results are presented in Appendix

D.2 and D.3, and for both of those systems, being fundamentally different from the

base case system, the results indicates that the procedure is proficient at accurately

selecting the optimal feedback signal and BESS location, yielding different results com-

pared to the base case system, as one would expect when system topologies are heavily

modified.

5.5 System Disturbance Selection Based on Mode Excitation

For power system analysis, the disturbance location significantly impacts the extent to

which the modes are being excited. Thus, before performing the non-linear analysis for

validating the performance of the selected BESS with its corresponding location and

input signal, first-hand knowledge about the disturbance locations having the highest

impact on the system excitation seems necessary. From Equation (3.37) one have5.20

that the derivative of the change in the modal variables is given by ∆ż = Λ∆z+ΨB∆u.

Thus, the product ΨB∆u contains information about the excitation of the modal vari-

5.19Numerous other combinations are considered too, all of them providing a smaller amount of

damping compared to the chosen solution. The procedure is also conducted for other version of the

Nordic 44 system, which can be found in Appendix D.2 and Appendix D.3.
5.20By including the ∆ notation which is dropped for simplicity in Equation (3.37).
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ables.

In an attempt to figure out the most critical disturbance locations in the system,

an iteration is performed through the different generator buses in the system. For each

of the considered buses, the product ΨB is calculated, where the B-matrix (which is a

vector as only one input is considered in each iteration) is calculated for each iteration

by using Equation (3.7). The element of the vector ΨB corresponding to the mode

of interest is thus extracted for each iteration (using Equation (3.62) from Section

3.6 when searching for the index of the mode of interest), and the magnitude of this

element for the different locations is presented in Figure 5.27.

Figure 5.27: Excitation of the mode of interest for different locations of disturbances

in the system.

The y-axis contains the magnitude of the product ΨB on the element position cor-

responding to the mode of interest. The plot should be interpreted such that the bar

containing the largest magnitude will excite the modal variable of interest the most.

Notice how the plot is fundamentally the same as Figure 5.14 used for selecting the op-

timal BESS location, the only difference being the scaling of the y-axis. This should be

anticipated due to the chosen feedback signal used for obtaining Figure 5.14 is seen to

only provide scaling of all elements in ΨB. This was also discussed in theory presented
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in Section 3.4.2, where it was stated that the optimal BESS location could be determ-

ined independently of the chosen feedback signal. Intuitively, it seems reasonable that

the location being most critical in terms of disturbances in the system is simultaneously

the location best suited for adding system stability improvement controllers.

To validate that the modal excitations for different disturbance locations in the system

are depending on the magnitude of the bars presented in Figure 5.27, a simulation is

carried out where four different small-signal load events lasting 0.05 seconds are ap-

plied to the system. Firstly, a load-change is applied at B6100 (presumably being the

location exciting the mode the most). When the oscillations eventually die out, the

load-change is applied at B5300, which in theory should excite the mode quite a bit, but

not as much as the first one. Thirdly, a load-event is happening at B3249, which should

cause lower excitation than the previous two events. Lastly, the load-event is applied

at B8500, which from Figure 5.27 should correspond to an almost negligible amount of

excitation for the given mode. All of the load events are of the exact same magnitude

(± 10MW). The signals associated with the controller are the results being presented

since only the excitation of the mode of interest (0.37 Hz) is what’s of interest. Some

of the locations might excite other modes in the system by a great amount, thereby

being hard to distinguish in, for instance, the generator speed response5.21. The pro-

portional gain factor determined in Section 5.4 to being 11.56 (targeting 5% damping)

is increased without loss of generality, simply to let the oscillations following the dif-

ferent events die out faster, such that a reasonable steady-state is obtained before a

new load-change is happening. The simulation results are presented in Figure 5.28.

5.21Various locations will cause high excitation of other modes in the system, such that for instance

the speed response will be very distorted and not being meaningful in terms of analyzing the amount

of excitation for the mode of interest.
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Figure 5.28: BESS controller signals for four different load events of 10MW, each lasting

0.05 seconds. The different load event locations are based on descending magnitudes

from Figure 5.27 and in the order [B6100, B5300, B3249, B8500].

As anticipated, output signals from the controller are highest when the load event hap-

pens at B6100 containing the largest magnitude from Figure 5.28, and decreases based

on the magnitudes seen in this figure. The output signal of the controller is correlated

and almost proportional to the input signal to the BESS controller5.22, thereby being

a useful signal to measure when looking at the actual modal excitation. Due to the

filtering and BESS targeting damping of the mode having a frequency of 0.37 Hz, this

signal is a great measure for looking at the excitation of the mode of interest without

having to consider the excitation of all other modes in the system. Therefore, when

performing non-linear simulations validating the controller, a useful approach would

be to have in mind Figure 5.28 when selecting disturbance locations in the system; for

instance, a load-change at B8500 would have minimal impact on the mode of interest.

5.6 Non-linear Simulations for Verifying the Performance of

the Selected Controller

The BESS controller signals, locations and parameters are now selected, the validity of

the suggested optimal solution is discussed in Section 5.4.5 and the modal excitation

5.22Some phase shifts and filtering are included.
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for different fault/disturbance location is presented in Section 5.5. Thus, up until this

point, most of the simulations and selections are based on linearized properties of the

system around the given operational point in the system. In order to validate the

controller, non-linear simulations will be conducted in this Section to see the perform-

ance of the BESS and whether or not the anticipated responses from the linear system

can be seen. The design of the BESS controller has been fundamentally based on the

linearized properties of the system, hence presumably being well able to handle small

signal stability issues. During larger disturbances such as line- and generator outages,

what happens is not described accurately through linear analysis.

5.6.1 Switching to Bus Voltage Angle Signals

Firstly, one seemingly major change will be done to the BESS controller signals. Up

until this point, when talking about differences in angles regarding the feedback signal,

one has been utilizing the generator angle for the different generators in the system.

However, for a real-world system, the measurable angles in the system are related to

the terminal voltage angles in the system. Using generator angles instead of terminal

voltage angles simplified the calculation of the Eigen-properties of the system signific-

antly. Appendix A.4 provides a deviation and includes an illustrative example of why

these quantities are closely related, essentially providing the same signal under some

given assumptions. These assumptions are not met for a large system like Nordic 44

using the sixth-order generator model. Therefore, before completely exchanging the

generator angle signals with bus terminal voltage angles, a closer look into the eigenval-

ues for the different cases is undertaken. For the given selected controller parameters

selected in Section 5.4 and presented in Table 3, the new modal position of the mode of

interest ended up being at 0.37 Hz with a damping of 5.24%. If the mode of interest is

located approximately at the same location when switching to terminal voltage angles,

keeping the controller parameters at the chosen values is justified.

Computing the eigenvalues in the system without BESS, with BESS utilizing generator

angle differences and a BESS utilizing the difference in bus voltage angles, yields the

plot shown in Figure 5.29.
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Figure 5.29: The mode of interest for three different cases: No BESS, BESS utilizing

terminal voltage angles and BESS using generator voltage angles.

From the plot, one observes that when the feedback signals are switched to being dif-

ferences in terminal voltage angles at B6100 and B7000, the damping of the mode of

interest is marginally reduced compared to the case employing differences in gener-

ator angles. Nevertheless, the phase compensation designed for the controller using

generator angle is seemingly a good choice when using terminal voltage angles too.

Therefore, keeping the parameters are the previously determined values is reasonable.

Hence, the non-linear simulations conducted for the rest of this section utilize the

real-world measurable bus voltage angles replicating PMU installed in the actual grid.

5.6.2 Load Change Events

Small Period Lasting Load Change
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Figure 5.30: Illustration showing the load change of 100MW lasting 0.05 seconds at

L5300-1.

The first type of disturbance to be checked is a load change applied at Bus 5300.

Based on the result found in Section 5.5 and presented in Figure 5.27, applying a

change at Bus 6100 would have the largest effect on the excitation of the mode of

interest. However, as this coincides with the BESS location, the disturbance is applied

at Bus 5300 instead, such that the disturbance location is somehow remotely located5.23

seen from the BESS bus. Running the simulation by applying a 100MW load increase

at 1.0 seconds, and 100MW load decrease at 1.05 seconds as illustrated in Figure 5.30,

the results presented in Figure 5.31 and 5.32 is obtained.

5.23Bus 6100 and Bus 5300 are relatively close geographically, though.
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Figure 5.31: Speed response in the system following the load change of 100MW at

L5300-1 lasting 0.05 seconds. Solid lines is the responses when the BESS is included,

whereas the dotted lines indicates the base case system (no BESS) response.

Figure 5.32: Power flow between Bus 5101 and B3359 connected between Norway and

Sweden following load change of 100MW at L5300-1 lasting 0.05 seconds with (solid

line) and without (dotted line) BESS included in the system.

The frequency starts dropping (especially for G5300-1 being connected to the bus of

which the disturbance happens) immediately after 1.0 seconds, before increasing again

when the same amount reduces the load after 1.05 seconds. This response could be

anticipated by the Swing Equation (3.2), and the oscillatory response of approximately

0.37 Hz strongly suggests excitation of the mode of interest.
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Suppose the BESS is not included (dotted lines). In that case, the amplitude of the

oscillations will marginally increase during the simulation. It will not be able to return

to a steady state, and the system is thus unstable. When the BESS is included (solid

lines), the opposite effect can be seen. The oscillations of the speed deviations in the

system decrease during the simulation period and almost reach a steady equilibrium

point towards the end of the simulation. These results could be anticipated by only

having information about the system modes obtained from the linear analysis. The

effect of the BESS might be most easily seen from the power flowing between Bus 5101

and Bus 3359. When the load change of 100MW is only lasting 0.05 seconds, this

essentially translates to a small disturbance in the system, which correlates well with

the type of faults where the linearized theory is somehow accurately estimating the

system response.

Sustained Load Change in the System

Figure 5.33: Illustration showing where the sustained load-change is applied.

The simulation mentioned above included a load decrease of 100MW at 1.05 seconds.

The disturbance in the system is only active for a short duration of 0.05 seconds.

However, if one carry one with the same type of simulation, but this time the load

increase of 100MW is sustained as seen in Figure 5.33, one should expect from the

theory presented in Section 3.1 and Appendix A.1 that the steady-state frequency in

the system will change compared to the initial value. For such a case, the loading in

the system is suddenly increased. From the Swing Equation (3.2), the new steady-state

frequency should be slightly lower than the scheduled frequency in the system. The
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simulation results are presented in the Figures below.

Figure 5.34: Speed response for a few selected generators when a load increase at

L5300-1 of 100MW is applied. Solid lines is the responses when the BESS is included,

whereas the dotted lines indicates the base case system (no BESS) response.

The speed response in Figure 5.34 is somehow as anticipated. When the load is in-

creased, one has from the Swing Equation (3.2) that the frequency in the system will

decrease. This is true both for the case using BESS (solid lines) and the case without

(dotted lines) as the BESS controller is not aiming at reducing the frequency drop in

the system but dampening the oscillations following disturbances; the latter is evident

from the response in Figure 5.34. If the BESS is not included, the system will not

return to a steady-state, and approximately standing oscillations are observed.
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Figure 5.35: Power flowing from B5101 to B3359 when load L5300-1 increases by

100MW at 1.0 second. Solid lines is the responses when the BESS is included, whereas

the dotted lines indicates the base case system (no BESS) response.

Following the disturbance, there will be a mismatch between power production and

power demand in Norway. Thus, the power flowing from Norway to Sweden will de-

crease slightly to account for this, as can be observed from the power flow presented

in Figure 5.35, but the oscillatory damping imposed by the BESS is evident.

Figure 5.36: BESS controller signals when load L5300-1 increases by 100MW at 1.0

seconds.

Some interesting things can be seen when looking at the different signals associated

with the BESS controller in Figure 5.36. Towards the end of the simulation, one

sees that the input signal has an offset from the initial angular difference between the
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terminal voltages at B6100 and B7000. However, the controller’s output signals (black

line) are not making controller actions based on this. This follows because the washout

filter is employed in the BESS controller to remove the impact of low-frequency (and

zero frequency DC-signals) input to the controller.

Figure 5.37: Current components (Id = 0) injected by the BESS when load L5300-1

increases by 100MW at 1.0 seconds.

By looking at the dq-components5.24 of the current injected into the system by the

BESS in Figure 5.37 one notices a response similar to responses seen in the literature

for devices having internal limitations [42], [54]. Due to the power limitations in the

BESS system, the injected current component (Iq) initially looks like a square wave for

the first few periodic cycles. As the amplitude of the oscillations and the magnitude

of the controller input signal decreases, the current injected into the grid is more or

less becoming a sinusoidal wave having the frequency of the mode of interest, namely

0.37 Hz. The first-order time-delay included representing the delay associated with

real-world converters is having a time constant of 0.035 seconds. Therefore, for a

simulation time of 30 seconds, the differences between the reference value of the current

component (Iq∗) and the actual current component injected to the grid (Iq) is almost

non-observable, but can be observed when zooming in on the plot.

5.24Id = 0 by design.
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5.6.3 Short-Circuit Events

Figure 5.38: Illustration showing the short-circuit event initiated at Bus 5300 after 1.0

seconds before being cleared at 1.04 seconds.

Short-circuit Event with Base Case BESS Power Rating

Short-circuits happens from time to time in the power system. These are often cleared

rather quickly but cause excitation of the equipment installed in the system. For this

Section, a short-circuit event lasting 0.04 seconds before clearance is being investigated.

Due to the small duration of the fault, one should expect a similar response as when

the load was increased for a short period of time. However, the system’s excitation is

presumed to be significantly increased in the case of a short-circuit event compared to

a relatively small load-change event previously simulated. The short-circuit is applied

at Bus 5300, which from Figure 5.27 could be seen to yield a high excitation of the

mode of interest. The setup for this simulation is illustrated in Figure 5.38 and the

results are presented in Figure 5.39 and 5.40.
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Figure 5.39: Speed response in the system following the short-circuit event at Bus

5300. Solid lines is the responses when the BESS is included, whereas the dotted lines

indicates the base case system (no BESS) response.

Figure 5.40: Line flowing from Bus 5101 to Bus 3359 following the short-circuit event

at Bus 5300. Solid lines is the responses when the BESS is included, whereas the dotted

lines indicates the base case system (no BESS) response.

One sees that a short-circuit event, even when lasting only 0.04 seconds, excites the

system significantly. The simulation period is increased for this simulation due to the

slow decay of the responses. Although only marginally, the BESS responses (solid

lines in both figures) prove to dampen the responses. For instance, by looking at the

speed response in Figure 5.39, the system not equipped with the BESS are reaching

approximately 50.15Hz as the maximum value of frequency towards the end of the

simulation. For the system equipped with BESS, this value is ”only” 50.08Hz towards

the end. Nevertheless, the amount of damping is not necessarily satisfactory, as these

oscillations withstand for a prolonged period. Looking at the current injected by the
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BESS5.25, the BESS limit is reached every cycle during the simulation period. Hence,

one could naturally deduce that increasing the BESS capacity by a certain amount

could be beneficial.

Short-circuit Event with Increased BESS Power Rating

Therefore, the BESS capacity is increased from about 3 MW to 18 MW before the

same simulation is conducted once more. The results are presented in Figure 5.41, 5.42

and 5.43, and the simulation period is reduced to 60 seconds to have a better overview

of the interesting parts of the response. The simulation not including BESS (dotted

lines) is only carried out for 30 seconds this time, but the response is exactly the same

as was seen in the dotted lines of Figure 5.39 and Figure 5.40 .

Figure 5.41: Speed response in the system following the short-circuit event when the

BESS power rating is increased by a factor of six. Solid lines is the responses when the

BESS is included, whereas the dotted lines indicates the base case system (no BESS)

response.

5.25The plot is not provided in this thesis for simplicity, but it is essentially the same as the first half

of Figure 5.43.
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Figure 5.42: Line flowing from Bus 5101 to Bus 3359 following the short-circuit event

when the BESS power rating is increased by a factor of six. Solid lines is the responses

when the BESS is included, whereas the dotted lines indicates the base case system

(no BESS) response.

Figure 5.43: Current components injected by the BESS when the BESS power rating

is 18 MW.

From the presented figures, it should be evident that increasing the BESS power rating

does significantly better in terms of dampening the oscillations. When the BESS was

only rated 3 MW, one could still see a marginally dampening effect. However, when

the rated power is increased till 18 MW, the dampening effect is much more evident,

especially when looking at the power flow in Figure 5.42. Up until about 35 seconds,

the BESS reaches its rated power for each oscillation which can be seen in Figure 5.43.

After this, the controller input signal (difference in voltage angles at Bus 6100 and
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Bus 7000) is sufficiently small, keeping the BESSS within its power limits. Therefore,

the oscillations can be seen to fade out rather quickly after this. Hence, as long as

the input signal is making the controller provide a power reference within the rated

capacity of the BESS, the dampening effect can be observed to a great extent. As a

consequence, one observes that the power flow oscillations in Figure 5.42 decay with

the same rate from about 5.0 seconds until 35 seconds, before eventually disappearing

rather quickly around 40 seconds, which coincides with the point in time of which the

power signal to the BESS is within its limits.

Short-Circuit event at Less Critical Bus

Figure 5.44: Short-circuit event at a less critical Bus based on the results presented in

Section 5.5.

It was previously seen in Section 5.5 that the fault or disturbance location plays a

significant role in terms of looking at the excitation of the modal variables. The short-

circuit event previously shown was initiated at Bus 5300, which excites the mode of

interest the most (when looking apart from Bus 6100, of which the BESS is connected).

Therefore, the short-circuit event previously looked at is a somehow worst-case scenario,

and increased BESS capacity was needed to see a significant effect in the oscillatory

damping. However, if the short-circuit happens at other buses in the system, the

original BESS capacity of 3 MW might be sufficient. Therefore, a short-circuit is

conducted at Bus 8500, which from Figure 5.27 could be seen to have minimal impact

on the excitation of the 0.37 Hz mode. The results are presented in Figure 5.45 and

Figure 5.46.
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Figure 5.45: Line flow following the short-circuit event at Bus 8500. Solid lines is the

responses when the BESS is included, whereas the dotted lines indicates the base case

system (no BESS) response.

Figure 5.46: Controller signals following the short-circuit event at Bus 8500. Notice

how the signals are more distorted compared to the previous simulations due to higher

excitation of other modes in the system.

The controller signals are shown instead of frequency/speed in the system for this

case. The reason being that from the controller signals, it is evident that the signal

is more distorted for this case due to the amount of excitation of other modes in the

system. For the previous simulations, it could be seen that the oscillatory responses

in the system almost only consisted of the 0.37 Hz frequency component. In contrast,

for this disturbance, other modes are being excited by a more significant amount.

However, it can be seen from the power flow in Figure 5.46 that the BESS is helping

out significantly. The oscillations in the system are almost non-observable (solid lines)

after 15 seconds. When the BESS is not included (dotted lines), one sees that the

oscillations are slightly increasing towards the end of the simulation period, reflecting

that one has a pair of modes located marginally inside the right-half of the complex

plane.
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5.6.4 Line Outage

Figure 5.47: Illustration showing the line outaging of L3359-5101-1 at 1.0 seconds in

Nordic 44.

The lines connecting Norway and Sweden through the southeast part of Norway and

the West part of Sweden are represented by the two lines connected between B5101

and B3359. These are the lines on which the power flow is plotted for the various

simulations conducted in this thesis. It can be seen from previous simulations that the

power flowing between these lines are close to being 2000MW (for instance, in Figure

5.46), thus being a connection of significant concern. For the case of a real-world sys-

tem, one could potentially find oneself in a situation where one of these lines is having

an outage. Consequently, a line outage of one of these key lines is presumed to impact

the system’s stability significantly.

Line Outage with Base Case BESS Power Rating

Keeping the BESS and its corresponding control system as it is, and having a line

outage of L3359-5101-1 at 1.0 seconds, the results presented in Figure 5.48 and 5.49

are obtained.
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Figure 5.48: Speed response in the system for a few selected generators following a

disconnection of L3359-5101-1 at 1.0 seconds. Solid lines is the responses when the

BESS is included, whereas the dotted lines indicates the base case system (no BESS)

response.

Figure 5.49: Power flow between Bus 5101 and Bus 3359 following a disconnection of

L3359-5101-1 at 1.0 seconds. Solid lines is the responses when the BESS is included,

whereas the dotted lines indicates the base case system (no BESS) response.

Both the system containing BESS (solid lines) and the system not employed with BESS

(dotted lines) cannot return to a new steady-state. The line outage causes instability

for both cases. The disturbance has a noticeable impact on the system, and the BESS

system having a rating of around 3 MW cannot prevent a disaster. Although, it can be

seen that the solid lines (response when BESS is employed) are somehow delaying the

time of which the instability is present the most. Hence, one could naturally presume
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that a larger BESS power rating could somehow help out for this situation, similarily

as was the case for the short-circuit event discussed previously.

Line Outage with Increased BESS Power Rating

Changing the proportional gain factor Kp of the BESS controller might initially seem

like a good choice, but this would not have any noticeable effect due to the power

limitations of the internal BESS system. Therefore, the simulation is conducted once

more. However, this time the BESS power rating is increased by a factor of six, al-

most reaching 18 MW. This new rating is still a realistic BESS power rating for real-

world power systems [87]. Conducting the same simulation with this higher rated

BESS containing the exact same controller parameters as previously, the results seen

in Figure 5.50 and 5.51 is found.

Figure 5.50: Speed response in the system for a few selected generators following a

disconnection of L3359-5101-1 at 1.0 seconds, with BESS power capacity of 18 MW

installed. Solid lines is the responses when the BESS is included, whereas the dotted

lines indicates the base case system (no BESS) response.
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Figure 5.51: Power flow between Bus 5101 and Bus 3359 following a disconnection

of L3359-5101-1 at 1.0 seconds when the BESS power rating is increased, with BESS

power capacity of 18 9MW installed. Solid lines is the responses when the BESS is

included, whereas the dotted lines indicates the base case system (no BESS) response.

It should be noted that the dotted lines in Figure 5.50 and Figure 5.51 exactly matches

the dotted lines in Figure 5.48 and 5.49 respectively, as this is the system response

without BESS for both cases. When this higher-rated BESS is utilized, it is evident

that the response with BESS (solid lines) can damp out the oscillations in the system.

The system is thus stable and able to withstand the large disturbance of the line

outage is. The BESS capacity and rating will have a major impact on how the BESS

can provide grid enhancing performance for larger systems during large disturbances.

By having a sufficiently large power rating, it might be able to perform satisfactorily.

5.7 Discussion and Remarks

Non-linear simulations have been conducted to verify the results based on linear ana-

lysis for feedback controller design and tuning. However, certain things should be

clarified, and this section aims at discussing and summarize findings from the results

and simulations.

Remarks on BESS model Implementation

Python has enabled the study of a self-defined BESS model to replicate dynamics

associated with grid-connected Energy Storage systems. The BESS model works as

intended for analyzing small-signal stability and inter-area oscillation damping. Still,

some simplifications were utilized to represent the inverter/converter switching dynam-

ics appropriately for this thesis. Including the first-order time-delays for representing
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these is deemed satisfactory without influencing the final results significantly. For the

conducted simulations, the actual power provided by the BESS is carefully checked to

assure that the implementation does not allow the BESS model to operate outside of

its rated conditions, and having the power on the DC-side of the model coincides with

the AC-power injected to the grid as the converter are modeled lossless. For possible

future research on the actual BESS model and its operation, a more detailed model

might be desired, but the proposed model sufficient when analyzing the grid-enhancing

performance in larger systems when system stability is the main topic.

Optimality of Selected Feedback Signal and BESS location

Using the transfer function residues given by observability and controllability for de-

termining the optimal feedback signal and BESS location respectively arguably works

as intended to provide the largest amount of damping to the poorliest damped mode

in the system for the given operating condition. Given that the feedback signal is pre-

determined to be a difference between the terminal voltage angle signals that are easily

measurable if PMUs installments in the system are located appropriately, selecting the

combination of voltage angles yielding the largest residue value (or equivalently, the

difference in observability vector entries) selects the most suitable combination having

the largest effect on the mode of interest for the given operating condition.

Generalizing the obtained results should be done with caution if applied in a real-world

system where the operation condition of the grid is constantly changing. Therefore,

measures should be taken to account for different characteristic operation conditions.

The performance obtained by using other input signal types (for instance, power flows

or speed measurements) has not been looked into in this thesis. This could prove to

yield satisfactory results, and more research seems necessary. One could also argue

that considering several voltage angles (not only the difference between two distinct

voltage angles) could prove to be suitable.

Tuning of Controller Parameters based on Residue Approach

The selection of the controller parameters based on the residue approach yields ac-

curate results when small gains and low phase compensation are required. For more

considerable gains and phase shifts, errors between the targeted and actual compensa-

tion increases, especially for large gains, the mode movement anticipated by the residue

and feedback controller has its shortcomings.

Besides looking at modal plots for the initial mode positions and their new positions

after the BESS is installed, little effort is undertaken regarding the interaction between

the different control loops in the system. For the different versions of the Nordic 44

systems investigated, it could be seen that some of the other modes in the system are
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getting influenced by the BESS installment. However, except for the critical mode,

none of the other poorly damped modes (having approximately 10% relative damping)

was affected significantly by the introduction of BESS. For other systems containing a

more significant amount of sophisticated control systems, the interaction between the

different control loops might be predominant, and measures such as relative residue

index (see Appendix A.3) or similar might be appropriate to utilize when selecting

feedback signal and BESS location.

Non-linear Simulations compared with Linear Analysis

For small-signal disturbances, such as relatively small load changes, the linear analysis

accurately contains information about the system response following the events. How-

ever, for more considerable disturbances (short-circuit events and line outages) that

significantly impact the system and excitation of the modes, the 5% damping proposed

by the linear analysis is not seen. When calculating the modes in the system, the lim-

itations of the system components, devices, and controllers are not accounted for due

to the small perturbation applied in the modal calculation process. Hence, the modes

are not accurately representing the amount of damping present when the power limita-

tions of system components are reached. However, a certain amount of damping might

be observed anyhow. Consequently, it is shown through simulations that if the power

rating of the BESS installment is increased, still being within the range of conventional

energy storage systems in real-world power systems, the BESS handles a wide range of

disturbances satisfactorily if ancillary control providing POD is employed.
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6.1 Conclusion

Through a literature review, development and implementation of a Battery Energy

Storage System (BESS) model and other system components, together with dynamic

simulations conducted in Python, this thesis has illustrated the grid-enhancing per-

formance obtainable by appropriately selecting feedback signal and BESS location for

effectively providing inter-area oscillation damping in power systems.

A promising solution for adding damping to power systems is using available phasor

measurements obtainable through PMUs in the system. Information about the open-

loop transfer functions in the system can effectively be used as a decision criterion for

appropriately selecting the optimal terminal voltage angles to be used as the input

signal to the controller and optimal BESS location for power oscillation damping. The

proposed method is based on maximizing the transfer function residue corresponding

to the mode of interest, usually the poorest damped inter-area mode. The controller

selection procedure is verified through analyses conducted in different versions of the

Nordic 44 test network. Each version yields slight variations in the optimal feedback

signal and BESS location, further strengthening the procedure’s validity.

The transfer function residues facilitate the selection and tuning of the POD-controller

parameters as they contain information about the mode sensitivity for a proportional

feedback controller, being generalizable to an arbitrarily chosen feedback controller.

However, the accuracy of the tuning procedure worsens when considerable gains and

phase compensations are required.

The performance of the installed BESSs is validated through numerous non-linear sim-

ulations taking into consideration the differential- and algebraic equations describing

the dynamics of the system. For small-signal disturbances, the damping proposed by

the modal analysis is observed in the simulations, and the BESSs are performing as

anticipated from the linear analysis. The limitations of the power system components

are not accounted for in the modal calculations, causing deviations between the lin-

ear and non-linear results for more immense disturbances, which further promotes the

necessity of using non-linear simulations for exploiting drawbacks and shortcomings of

the linearized model.

Linear analysis is a valuable tool for selecting the feedback signal and BESS locations

and proves beneficial for controller parameter tuning. However, the constantly chan-

ging operating conditions of the systems and the power limitations of BESSs should

be accounted for when employed for real-world applications. Further development and
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research are needed, but the potential benefits for systems operators utilizing avail-

able phasor measurements and properties of the linearized power system as a tool for

controller selection are evident.

6.2 Further Work

Although the study indicates the possibilities of using transfer function residues and

available phasor measurements for appropriately selecting feedback signal and BESS

location, further work is needed to verify the selection procedure and exploit the

proposed method’s possibilities and shortcomings for different operating conditions.

Hence, suggestions on further work to be conducted for increasing the knowledge and

utilizing available measurements effectively for real-world applications are identified.

• Look further into different controller input signal types, or possibly a com-

bination of more than two voltage angles.

• Enhance the Nordic 44 model by a more accurate model, representing the real-

world system in more detail. Although the results in this thesis are validated for

different versions of the Nordic 44 test network, a more realistic system might

prove to exploit some shortcomings not captured by the results in this thesis.

• Specifically, more sophisticated load models could conveniently be implemen-

ted and used for capturing real-world dynamics more accurately. This thesis

relies on constant impedance load models having shortcomings in representing a

non-negligible amount of real-world loads dynamic behaviors.

• The optimal feedback signal and BESS location are in this thesis selected based

on a pre-defined given operating condition of the test network. However, real-

world systems have constantly varying power demand and thus production, and

more research is needed for validating the selection procedure of the optimal

control loop for changing operating conditions of the grid. Adaptive

controller parameter tuning might be a suitable way to cope with this to obtain

the desired amount of phase compensations and better handle grid uncertainty

and changing system topologies.

• A significant concern is the interaction between the different control loops

in the system, which for the investigated systems in this thesis did not accom-

pany any significant problems. However, for other systems containing a greater

amount of local controllers, measures of interaction should be investigated and

possibly used together with maximizing the residues for appropriately selecting

the damper control loops.

• Using remote phasor measurement signals naturally exhibits communication

delays. Further research seems necessary to understand how the uncertainty in

communication systems affects the performance of the selected feedback signals.
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Appendix

A Supplementary Theory and Deviations

A.1 Frequency Stability and Control

Suppose a sudden disturbance happens in a power system. In that case, there will be a

power imbalance in the system, and as a consequence, the frequency in the system will

change [56]. This change in frequency is often divided into several stages describing

the different characteristic steps of the frequency response. The rotational speed of a

generator is proportional to frequency, such that if the speed of the generator rises,

so does the frequency in the system [88]. A turbine-governor control system ensures

that load fluctuations in the system only cause low speed changes ∆ω. Figure A.1

shows the system response with and without governorsA.1 in the system following a

load increase of 0.05 p.u. of load located in area 1 based on a base of 900 MVA. The

system parameters can be found in Appendix C.1.

(a) RG1 = RG2 = 0.06, RG3 = RG4 = 0.12 (b) RG1 = RG2 = RG3 = RG4 = 0.02

Figure A.1: Simulations conducted for different governor droop constants. Dotted lines

shows the system response if governors are not included in the system. One observes

that having governors employed (solid lines) yields a new steady-state frequency in

the system, whereas smaller droop constants (Figure ??) reduces the initial drop in

frequencies due to faster changes of generator power reference set-points.

One observes that in the case of governors included in the system, the frequency drop

is less significant compared to the case without governors. The generators are able to

adjust their power outputs based on the power imbalance and thereby speed deviations

in the system. The amount of speed drops would change if other droop values where

used. When the valve position c of the generator is assumed to vary linearly between

0 (fully closed) and 1 (fully open), the change in valve position given a change in

A.1Governors is described more detailed in Section B.1.1, but is essentially a controller that adjusts

the mechanical power reference of the generators.
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generator speed can be expressed as ∆c = −∆ω/R, where R is noted the droop if

taken in per units of nominal speed, that is, R[pu] = R/ωn, which is often denoted ρ

[56]. The idealized speed-droop characteristics can then be shown to be

∆ω

ωn
= −ρ∆Pm

Pn
, (A.1)

where subscript n indicate nominal values. This equation simply says that if the valve

gating position c is linearized between 0 and 1, there will be a linear relationship

between speed deviation and power imbalance in the system. If the power demand is

increased in the system, the speeds and thereby frequency, will drop. The latter comes

as a consequence of the swing equation discussed in Section 3.1. Generalizing Equation

(A.1) to account for all generators i in the system NG, where the total power change

in the system is denoted ∆PT one may write

∆PT =

NG∑
i=1

∆Pmi = −∆f

fn

NG∑
i=1

Pni
ρi

= −∆f

NG∑
i=1

Pni
ρifn

. (A.2)

This equation defines the total system ability to account for power imbalances at the

cost of deviation in system frequency ∆f . Equation (A.2) essentially says that it is a

sum of the power regulations capabilities of the individual generators present in the

system, which from a physical aspect seems reasonable.

Some important definitions of the different stages of frequency control are needed.

From Machowski, one reads that

”The action of turbine governors due to frequency changes when reference

values of regulators are kept constant is referred to as primary frequency

control.” [56, p. 340]

This is basically what is shown by Equation (A.2). However, when the generators are

already operating at the maximum power output, they cannot participate in primary

frequency control. In a real-world power system, it is of uttermost importance to as-

sure that the system always has some spare capacity available as the total load in the

system is constantly changing [89]. This additional capacity is often referred to as spin-

ning reserves, and system operators need a sufficient amount of this in order to have

a satisfactory system operation. Although out of the scope of this report, it is worth

mentioning that with an increasing share of renewable generation in the power system,

there is less conventional inertia in the system. Research is being done into how these

new generation types can participate in primary frequency control, for instance, by

the introduction of auxiliary control systems providing virtual inertia to power system

components [90].
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From Figure A.1 one notices that although the generators can adjust their power output

for compensating for the load increase, a steady-state error in terms of the frequency

is observed. In order to account for this, additional controllers providing secondary

control, aiming at removing this steady-state deviation, is needed. This corresponds to

changing the frequency-power linear characteristics upwards or downwards, depending

on the sign of frequency deviation in the system. In interconnected areas, such addi-

tional control would have to be centralized as there are several different control areas,

and decentralized secondary control would cause undesirable changes on power tie-lien

flows [56]. Without going further into detail, such controllers are usually based on PI

regulators. The change in reference power settings is adjusted based on tie-line flows

and frequency error in the system, aiming at removing steady-state errors. Secondary

control is out of the scope for the topics covered in this thesis. However, a secondary

control system utilizing local measurements and tie-line flows was developed during

the work with this thesis and is provided for the interested reader in Appendix B.3.

The slowest working, and last step of frequency control, is referred to as tertiary con-

trol. This control step is often based on economic dispatch and optimal power flow,

such that the generation in the system is redistributed based on some external control

signals while still maintaining the system frequency at its reference value. This con-

trol can either be done manually or automatically and changes the different generator

setpoints based on specific standards such as maintaining enough spinning reserves,

optimal dispatch of units participating in secondary control, and maintaining a satis-

factory amount of secondary control reserves in the system [56].

A.2 Numerical calculation of state-matrix A

The way this matrix is calculated in the Python simulator used for this thesis is by

the use of difference equations [57]. A short description of this is provided here. It

is essential to calculate modal properties in the system and thus be fundamentally

important for the conducted simulations and analysis. A derivative of a multi-variable

function f(x, y) is a point (x = a, y = b is by definition given by

∂f

∂x
(a, b) = lim

h→0

f(a+ h, b)− f(a, b)

h
. (A.3)

By using a difference equation which can be proved by the use of Taylor series expansion

and neglecting higher-order terms [57], one obtains a decently accurate representation

of the derivative at a given operating point

∂fk
∂xi

(x̂, û) ≈ fk(x̂1, ..., x̂i + ε, ..., x̂n, û1, ..., ûn)− fk(x̂1, ..., x̂i − ε, ..., x̂n, û1, ..., ûn)

2ε
.

(A.4)
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Choosing ε small enough allows for accurately finding the linearized system matrix

numerically. Thus, by simply adding and subtracting ε on the index corresponding to

the i’th state variable in the state variable vector and computing the difference from

Equation (A.4), an accurate estimation of the partial derivative terms can be found

numerically. The derivative terms associated with the input, ∂fk
∂ui

(x̂, û), is calculated in

the same way.

A.3 Relative Residue Index

When the open-loop transfer functions between inputs and outputs in the system are

computed using the residue method, one obtains multiple residue values. For most

purposes covered in this thesis, one is mostly interested in the residue corresponding

to the mode of interest, usually the weakest damped mode in the system. Most of

the analysis and parameter tuning is based on the value of this residue. However,

when a WADC is deployed in the system, the controller loop will be influenced by the

interaction of the WADC and other modes in the system [86]. The larger the RI is,

the weaker is the interaction between the WADC and the other modes in the system,

and the higher is the accuracy of the controller tuning. For an input ui, output yj and

mode of interest λk, the RI can be defined as [86]:

RI =
|Rij,k|∑

t=1,t6=k |Rij,t|
, (A.5)

where Rij,k is the residue in the open-loop transfer function between the input ui and

output yj corresponding to the k-th mode.

A.4 Generator Angle and Terminal Angle Correlation

As the linear analysis and the linear theory is mostly built up by using state variables

and other quantities in the system, a justification of why the terminal voltage angle

follows the generator voltage angle is given. This is of major importance in this thesis,

as the analysis and discussion is based on using generator voltage angle (state-variable

in the system) as feedback signal, whereas from PMUs, the available measurement is

terminal voltage angles. It is confirmed through simulations that one gets satisfactory

results by doing it this way, with some small deviations in the results, but an analytical

approach seems necessary in order to justify the structure and analysis performed in

this thesis. Hence, the motivation behind this deviation is to showcase that under some

assumptions, the generator voltage angle follow the generator terminal voltage angle

such that the relationship

δ = δ0 + ∆δ = δ0 + ∆θ (A.6)
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A.4 Generator Angle and Terminal Angle Correlation

is valid, where δ is the generator voltage angle, δ0 is the steady-state value of the gen-

erator voltage angle relative to the generator terminal, ∆δ is the change in generator

voltage angle and ∆θ is the change is generator terminal voltage change. That is,

the generator voltage angle follows the changes in the generator terminal voltage angle

such that for a change in terminal angle ∆θ, one observes a change in generator voltage

angle ∆δ satisfying ∆δ = ∆θ. This relationship is shown in Figure A.2.

I0

I1 Re

Im

Vg,0

Vg,1

Ef,0

Ef,1

EQ,0

EQ,1

δg,0

δg,1 ∆δg

φ

∆θ

Figure A.2: Illustrative example showing what is discussed in the previous equations.

The figure shows that when the terminal voltage magnitude |Vg|, current |I| and power

factor angle φ is held constant, the change in internal generator angle ∆δg equals the

change in terminal voltage angle ∆θ.

Although this relation could somehow be anticipated from Figure A.2, a mathematical

deviation is deemed necessary in order to show it clearly. From the classical generator

model being discussed in Section 4.4.1 connected to a stiff grid, one have the following

EQ = Vg + jXqIg = Vg + jXq

S∗
g

V ∗
g

, (A.7)

where the angle of EQ is defining the generator voltage angle (state variable in the sys-

tem), Xq is the q-axis reactance of the generator, Ig is the generator current given by

Sg
∗ and Vg

∗ of which are the complex conjugate of the power provided by the generator

and the generator terminal voltage respectively. The motivation behind this deviation

is to show that when the terminal voltage angle changes, the generator angle changes

with the same amount when assuming that the terminal voltage amplitude stays con-

stant, the power provided by the generator is constant (no governor interaction). Thus,

one have an analytical way of showing that the deviations between terminal voltage

angles in the system will essentially be the same input signal as deviation between

generator voltage angles.

Assuming the terminal voltage is constant at 1.0 p.u and denoting the complex con-

stant number jXqS
∗
q as A = |A|ejα and the generator terminal voltage angle as θ,
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A.4 Generator Angle and Terminal Angle Correlation

equation (A.7) might be rewritten as

EQ(θ) = 1.0ejθ +
A

1.0e−jθ
= 1.0ejθ +

|A|ejα

1.0e−jθ

= [cos(θ) + |A|cos(α + θ)] + j[sin(θ) + |A|sin(α + θ)].

(A.8)

Enforcing a small change in the terminal voltage angle of ∆θ, one can rewrite this into

EQ(θ0 + ∆θ) =[cos(θ0 + ∆θ) + |A|cos(α + θ0 + ∆θ)]

+ j[sin(θ0 + ∆θ) + |A|sin(α + θ0 + ∆θ)],
(A.9)

where θ0 is the initial steady-state terminal voltage angle. The generator voltage angle

δ is found to be ∠EQ [56] and by using (A.9), it can be expressed as

δ(θ0 + ∆θ) = ∠EQ(θ0 + ∆θ) = arctan(
=(EQ(θ0 + ∆θ))

<(EQ(θ0 + ∆θ))
)

= arctan
sin(θ0 + ∆θ) + |A|sin(α + θ0 + ∆θ)

cos(θ0 + ∆θ) + |A|cos(α + θ0 + ∆θ)

= arctan
cos∆θ[sinθ0 + |A|sin(α + θ0)] + sin∆θ[cosθ0 + cos(α + θ0)]

cos∆θ[cosθ0 + |A|cos(α + θ0)]− sin∆θ[sinθ0 + sin(α + θ0)]
,

(A.10)

where one are making use of the trigonometric identities

sin(α + β) = sin(α)cos(β) + cos(α)sin(β)

cos(α + β) = cos(α)cos(β)− sin(α)sin(β).
(A.11)

Dividing Equation (A.10) by cos∆θ(cosθ0 + cos(α + θ0)) and rearranging yields

δ(θ0 + ∆θ) = arctan
tan∆θ + sinθ0+|A|sin(α+θ0)

cosθ0+|A|cos(α+θ0)

1− tan∆θ sinθ0+|A|sin(α+θ0)
cosθ0+|A|cos(α+θ0)

. (A.12)

Hence, by making use of the trigonometric identity

arctanα + arctan β =


arctan α+β

1−αβ if arctanα + arctan β ∈ (−π
2
, π

2
)

arctan α+β
1−αβ + π if arctanα + arctan β ∈ (π

2
, π)

arctan α+β
1−αβ − π if arctanα + arctan β ∈ (−π,−π

2
),

(A.13)

one can rewrite Equation (A.12) into

δ(θ0 + ∆θ) = arctan
sinθ0 + |A|sin(α + θ0)

cosθ0 + |A|cos(α + θ0)
+ arctan(tan ∆θ) + ψ

= δ0 + ∆δ = δ0 + ∆θ

(A.14)

where the value ψ is a constant taking a value of 0, π, or −π, as seen in Equation

(A.13). Consequently, it can be concluded that under the assumptions that the voltage
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A.4 Generator Angle and Terminal Angle Correlation

magnitude stays constant and no governor interactions with the power being provided

from the generator, the generator voltage angle δ follows the shift in the terminal angle

∆θ. This concludes the proof and shows that if the analysis is done using generator

angle instead of generator terminal voltage angle, both of these signals will follow one

another (given the ideal assumptions assumed here), and should therefore be a valid

way of overcoming the problem of generator terminal voltages not being present in

the state variable vector in the system. However, some small deviations should be

expected for simulations utilizing the sixth-order generator model and not completely

satisfying constant terminal voltage magnitude, but these are seen to only account for

minor deviations from numerous simulations.

As a closing point for this deviation, a small simulation is carried out in a fictive

and simple power system consisting of two generators. This allows for looking at how

the deviation conducted in this thesis performs when the generator voltage magnitudes

are held constant (as was assumed in the analytical deviation), while also gaining fun-

damental insight into the accuracy of the assumption ∆θ ≈ ∆δ when the voltage

magnitudes are varying (representing more realistic behaviour). The generator ter-

minal voltage angle is decaying with a frequency of 0.4 Hz for representing a somehow

realistic behaviour of an inter-area mode. Figure A.3 shows the generator voltage

angles δi and terminal voltage angles θi as a function of time.
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A.4 Generator Angle and Terminal Angle Correlation

Figure A.3: Visual comparison of the terminal voltage angles θi and the generator

voltage angles δi. It is clear that when the voltage magnitude is assumed constant, the

difference between the local terminal voltage angle and generator voltage angle is con-

stant, that is, they would provide the same magnitude of input signal. When the voltage

magnitudes are varying as a decaying sinusoid, |Vg| = 1.0+0.05e−0.1tsin(2π0.4t), there

are some slight deviations, but not really worrying. The amplitude of the change in

angles at bus 2 is chosen to be 0.2, while it is 1.0 at bus 1. This is done in order to

account for differences in observability vector present in more realistic power systems

as discussed in Section 3.2.3.

One observes that for the upper Figure (constant voltage magnitudes) the deviation

between the generator angle and terminal angle is a constant line (approximately at

-0.6 rad), such that the relationship ∆δi = ∆θi is withheld during the simulation for

both generators. When the voltage magnitudes are varying sinusoidal with the same

frequency as the terminal angles, the deviation between these signals are not constant

anymore, and small oscillations (differences) are present. However, the magnitudes of

these oscillations are small, such that both signals should in theory yield approximately

the same response in a non-linear simulation for a larger and more complex system.
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A.5 Direct Quadrature Zero Transformation

Figure A.4: Wide area measurements and signals. When the terminal voltage mag-

nitudes are constant, one are obtaining the exact same input signal if one are using

differences in terminal voltage angles or differences in generator voltage angles in the

system, hence the constant line at -0.4 rad in the upper figure. When the voltage

magnitudes are allowed to be changed (similar as for local signals in Figure A.3), small

oscillations are present in the signal (θ1 − θ2)− (δ1 − δ2).

The same justification goes for the wide-area signals presented in Figure A.4. When

the terminal voltage magnitudes are constant, the difference between the signals is

simply a constant line, such that whether one are using differences in generator angles

or terminal angles in the system as feedback signal, the same controller action would

be undertaken. Similarly, when the voltage magnitudes are being represented more

realistically and allowed to vary, one sees small oscillations in the differences between

the signals. Nevertheless, it should be evident from the simulation that the magnitude

of these oscillations are rather small, which prove that using generator angles instead of

terminal angles when designing controllers should be a valid way of tuning controllers

employing terminal voltage angles as input signal.

A.5 Direct Quadrature Zero Transformation

In terms of implementing control systems in a power system, a common approach is to

transform the coordinate systems for obtaining decoupled control of active and reactive

power in the system. The general idea behind abc-dq0 transformations is to represent

the three-phase quantities as constant values in steady-state for simplifying the controls.

In a three-phase power system, one usually denotes voltage quantities as va, vb, and
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A.5 Direct Quadrature Zero Transformation

vc, where the subscripts indicate the associated phase or axis. These voltages are in

a balanced system phase shifted by 120 degrees, and one defines their reference axis

likewise. The phase voltages vary in magnitude, from a maximum positive value to a

minimum value during a half period, given that one is operating in a steady-state. The

Clark transform, commonly known as αβ-transform transforms three-phase quantities

into a single rotating vector, given that it is a balanced system, va + vb + vc = 0

[91]. For instance, if one is looking at the voltages measured at a bus, it is tempting

to transform them into a single rotating vector, maintaining all the properties of the

original quantities. This is made possible by the transform below, which defines two

new orthogonal planes. vαvβ
vγ

 =

√
2

3

 1 −1
2
−1

2

0
√

3
2
−
√

3
2

1√
2

1√
2

1√
2


vavb
vc

 (A.15)

The last scalar, vγ, will only be present if the condition va + vb + vc = 0 is not met,

otherwise the vector to αβγ vector will be on the α− β-plane [91]. The scalar in front

of the matrix in Equation (A.15) is rather arbitrary. It can be chosen freely as long as

one is accounting for this while doing the inverse transformation. However, the value

of
√

2/3 makes the transformation power conservative. Another common choice is 2/3,

which makes the voltage amplitudes consistent in both abc-reference frame and dq0.

Suppose the newly created vector in the α−β plane is a rotating vector with constant

length and speed. In that case, it should, in theory, account for this speed and make

the vector stationary. This is made possible by the Park transformation, first proposed

by Park in 1929 for use in synchronous machines [83]. The transformation takes the

rotating vector defined in the α−β-plane and takes advantage of the fact that one has

preliminary information about the rotating speed of the quantities. The transformation

from αβγ quantities to dq0 can be done by the following transformation [92]vdvq
v0

 =

 cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1


vαvβ
vγ,

 (A.16)

where the angle theta is given by

θ(t) =

∫ t

0

ω(τ)dτ + θ0, (A.17)

where ω is the instantaneous fundamental angular frequency [93] and θ0 is the angular

position at t = 0 for the given transformation alignment [91]. This transformation al-

lows for the three-phase quantities to be represented as constant values in steady-state,

which makes the control significantly easier. Going from abc-quantities directly into

dq0 components is also possible in one step, by using the appropriate transformation
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matrix. vdvq
v0

 = Tdq0

vavb
vc

 , (A.18)

and the transformation matrix, Tdq0 is then found to be, by combining equation (A.15)

and (A.16)

Tdq0 =

√
2

3

 cos(θ) cos(θ − 2π/3) cos(θ + 2π/3)

−sin(θ) −sin(θ − 2π/3) −sin(θ + 2π/3)
1√
2

1√
2

1√
2

 (A.19)

Figure A.5: Graphical representation of the abc-αβγ-dq0 transforms. In this figures

the q-axis is leading the d-axis by 90 degrees which is the chosen reference frame for

the implementations used in the modelling for this report. The dq-axes are rotating

with the grid frequency (ωt) yielding constant values for dq-components for balanced

conditions in the phases. Source: Adapted from [94]

Figure A.5 provides a visual representation how the different quantities are related.

It is evident that the α − β planes are defined as two new orthogonal axes, and one

sees that the α − β vector is rotating with a rate given by ωt. This representation is

assuming the frequency to be constant, which is why the angular position, given by

the integral in Equation (A.17) is simplified. Transforming the system into equivalent

quantities in the dq0 reference frame usually employed one of two possible alignments.

One either chooses the angular position at t = 0 to be such that vd = 0, or choose

another reference alignment such that vq = 0 in steady-state. Proceeding work is sim-

plified substantionally if one can remove the impact of one of these, but the system

dynamics are still intact.
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A useful property of the transformation is that active and reactive power will be related

to the dq0-components in a familiar way [83]

p = vdid + vqiq

q = vqid − vdiq,
(A.20)

where p and q is the instantaneous active and reactive power respectively. As the

transformation generally relies on reference frame alignment such that either vd or vq

becomes zero, the active and reactive power can be controlled in a decoupled manner

by the use of (A.20), which will be taken advantage of when designing a battery model

together with its controlA.2, as well as demand response in the systemA.3.

B Supplementary Dynamic Models

B.1 Conventional Control Systems - Operation and Control

B.1.1 Governor (GOV)

Governors are essential for the operation of power systems. The governors are a control

system included in the different generators in the system, which allows for adjustable

power supply from the generating units. Consequently, one can control the overall

system such that generation equals demand. Conventional governors usually take local

speed/frequency deviation measurements as input and adjust the mechanical input

power to the turbines based on this input and the droop characteristics of the control

system.

There are several types of commonly used governors in power systems, and for this

report two different models will be used. The first one is a conventional governor

usually denoted TGOV1 and its schematic block diagram can be seen in Figure B.1.

A.2The battery model is presented in Section 4.5
A.3Demand response implementations is covered in Appendix B.2.
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Figure B.1: Governor model TGOV1.

A second type of governor is also implemented in the simulation tool in order to rep-

licate hydraulic turbine governing systems, and the implementation is based on the

work presented in Machowski [56, p. 480]. The motivation for implementing this was

to facilitate simulations using hydro-governor systems, which accounts for most of the

generating units in Norway. Hydro-governor systems are characterized by transfer

functions containing a zero in the right-half of the complex plane. This corresponds

to a delayed response and is a consequence of the gate valve openings and the water

pressures in the penstocks [58]. The flow rate of the water in the penstocks is incap-

able of changing instantaneously. Hence, immediately after a change in valve position

is applied by the governor actions, the water velocity responds with an opposite effect,

before gradually stabilizing and responding towards the desired response [56, p. 479].

This effect can be seen by the block diagram illustrating the turbine-governor in Figure

B.2. The presence of a zero in the right-half plane for the transfer function between

the change in valve position ∆c and the output change in mechanical power reference

∆Pm corresponds to this undesired behavior. A transient feedback element aiming

at reducing governor gain for fast-changing valve positions is included to compensate

for this [56, p. 480]. A simplified model is implemented for the dynamic simulations,

presented in Figure B.3. The relations between the block parameters seen in Figure

B.2 and Figure B.3 together with typical values can be found in Machowski [56, p. 481].

Figure B.2: Governor model HYGOV with Transient Gain Reduction (TGR).
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Figure B.3: Governor model HYGOV simplified. This configuration is essentially the

same as the more detailed scheme shown in Figure B.2, where some simplifications are

utilized to easify the implementation while the fundamental dynamics are maintained.

To visualize the effects of having Governors installed in the system, a small simulation

is conducted. For this simulation, the AVRs are kept active such that the terminal

voltages remain close to constant. The parameters for these control systems can be

found in Appendix C.1. For the part using Governors, every generator in the system is

equipped with a Hydro-governor, each having a droop constant of 5%. A similar but

slower response could be observed by using the governor model TGOV1, which has a

faster response, but hydro-governor is chosen to showcase the effect of the right-half

zero in the open-loop transfer function seen in the block diagram in Figure B.3. The

disturbance applied to the system is a reduction of power demand in Area 1 by 50MW,

and one should expect the mechanical power input to the different generators in the

system to be reduced as a response to this when the Governors are installed in the

system.
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(a) Mechanical power input to the different

generators. For the case without governors

(dotted constant value lines), the mechanical

input powers can be seen to be constant val-

ues, whereas when governors are active, the

mechanical power input is reduced to account

for the decrease in load-demand. The initial

opposite response of the mechanical power as-

sociated with hydro-governors (seen approx-

imately in the interval t=1.0s to t=3.0s) is

observable from the plot.

(b) Speed response in the system. For the case

without governors in the system, the speed is

not able to fall back to the initial value, and

keeps on increasing. Thus, in order to reach

the scheduled frequency in the system follow-

ing a disturbance, the power provided by the

generators needs to be adjusted by the help of

governors. There are no integrator-effects in

the governors, hence a small deviation away

from the scheduled frequency is expected.

Figure B.4: Mechanical power input to the generators and speed response in the system

following a reduction of L1 by 50MW at t = 1.0 seconds. The solid and dotted lines

indicates the response with and without hydro-governors connected, respectively.

B.1.2 Automatic Voltage Regulator (AVR)

The generator’s terminal voltage is controlled by controlling the excitation current [56]

by the use of Automatic Voltage Regulators (AVRs). These are essentially used for

all generators in the system, as keeping a somehow constant terminal voltage is of key

interest for safe power system operation. The measured terminal voltage is compared

to the reference terminal voltage, and based on the deviation between these signals; the

AVRs aim at adjusting the exciter current for obtaining the desired terminal voltage.

An additional input signal originating from a Power System Stabilizer (PSS) is often

added for providing additional dampening torque in the system for improved transient

stability. The fundamental principles behind the PSS will be discussed in Section B.1.3.

A common practice is to equip control systems with limiters to reduce the number of

controller interactions, keep the controlled components within safe operating limits,

and avoid disastrous situations. For a standard AVR, these limiters are often included

in order to reduce the magnitude of the excitation current, which can be seen in the
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last block of the AVR model in Figure B.5

Figure B.5: Automatic Voltage Regulator (AVR) model SEXS.

Although the generator and its components may be able to withstand operation over

their nominal values for a short duration, thermal limitations in equipment are what is

being considered for steady-state safe operation [58, p. 554]. Therefore, in addition to

the current limiters, the SEXS AVR model utilized for this thesis contains a lead-lag

block and a low-pass filter for phase shifts and removing the influence of high-frequency

input signals, respectively.

In practice, every generator is equipped with an AVR to maintain the terminal voltage

close to its given reference point, but a fast-acting/responding AVR may cause the

system to lose stability. In addition, AVRs introduce a detrimental effect on systems

as the damping introduced by the field winding are weakened [56] which reduces the

stability limits of the overall system. A more detailed and in-depth discussion about

the working principles of these regulators can be found in Machowski [56]. A simula-

tion is carried out to show the influence of having AVRs present in the system. The

governors are active in both cases, but the AVRs are either included or not. Line L7-8-1

is disconnected for 0.1 seconds.
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(a) The local modes and inter-area modes

are shifted rightwards in the complex

plane when AVRs are included, thereby

reducing the damping of the oscillatory

modes.

(b) Terminal voltages of generator buses in the

system. The dotted lines indicates the voltages

when the AVRs are disconnected. It is clear

that including the AVRs have a stabilizing effect

on the terminal voltages of the generator buses.

Figure B.6: Modal plot and terminal voltages for simulations carried out with and

without AVRs active.

In Figure B.6b) the voltages at the generator buses are shown. The AVRs are undeni-

ably making the terminal voltages more stable, which is their main task. However,

they may turn out to decrease the damping in the system, which is evident from the

calculated modes presented in Figure B.6a). The three modes of interest all end up

with a weaker dampening after the introduction of the AVRs.

B.1.3 Power System Stabilizer (PSS)

Power System Stabilizers (PSSs) have gotten increased attention in the last decades.

Lately, the majority of new generation units installed in power systems are being

equipped with AVRs, and it has become evident that these have a detrimental impact

on the dynamic stability of the systems [95]. PSSs were developed to address this

by properly dampening the electromechanical oscillations for increased stability in the

systems. It is commonly thought of to be one of the most cost-effective methods

for enhancing stability [56] as it essentially only relies on providing the AVRs with an

additional input signal. The block diagram for a widely used PSS referred to as STAB1

[96] is presented in Figure B.7.
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Figure B.7: Power System Stabilizer (PSS) model STAB1

This is the PSS used for all generators in this report where it is stated that ”PSS

is being used”, or similar. Several different input signals could be used for obtaining

desired responses from the PSSs, for instance, local speed measurements and terminal

bus frequency [97] or accelerating power versus electrical power [98]. From Figure B.7

one sees that STAB1 uses local speed measurements at the individual generators as

input signals which have been shown to increase PSSs mode dampening abilities [97].

The additional voltage signal provided by the PSS to the corresponding AVR helps to

dampen the electromechanical oscillations in the system if the stabilizers parameter val-

ues are adequately selected. The input signal to the PSS is passed through a lowpass-

and/or highpass-filter to remove the impact of noisy measurement and dc-offsets before

the output of these filters is passed through lead-lag blocks for obtaining the desired

phase shift of the signal. This phase shift is required as the PSS task is to add a signal

that compensates for the voltage errors at the generator terminals while providing a

damping component in phase with the generator speed deviation. A more in-depth

explanation of these blocks and their fundamental principles can be found in Machow-

ski [56]. Some limiters are included towards the end of the open-loop control diagram

shown in Figure B.7 in order to limit the amount of controller action provided by the

PSS during prominent disturbances [99]. Increasing these limits extends the PSS’s

ability to influence the system during disturbances. Previous research has shown that

higher output limits can improve the performance of the PSS and enhance transient

stability performance in the systems [99].

The effect of having PSSs in the system is illustrated in the modal plot and speed

response shown in Figure B.8. A small-signal disturbance (disconnection of line 7-8-1)

is applied for 0.1 seconds, and governors and AVRs with values listed in Appendix C.1

are used for both simulations (with and without PSSs included). For the simulation

part where PSSs are employed, the values can be found in Table 12. The PSSs propor-

tional gain constant and lead-lag parameters are not necessarily tuned as one would

do for real-world applications, but the fundamental effect of having these stabilizers in

the system is showcased.
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(a) Eigenvalues with and without PSSs.

PSSs adds a significant amount of damp-

ing especially for local modes, but simultan-

eously the inter-area mode.

(b) Speed response to small disturbance with

and without PSS’s.

Figure B.8: Simulations showing the effect of PSSs on modes and speed response in

the system. The dotted lines in Figure B.8b) indicates the response when the PSSs

are not active, whereas the solid lines is the response when these are active. The

simulation clearly indicates that the oscillatory response in the system is significantly

damped when PSSs are included as the eigenvalues are moved from the blue crosses

to the red dots. However, it should be mentioned that a usual design criterion for the

PSS are to not alter the mode frequency too much, which is not really satisfied for the

tuning employed here. Nevertheless, it should be evident from Figure B.8a) that the

stabilizers are able to shift the modes leftwards, thus increasing the damping in the

system which can be seen from the non-linear simulation results presented in Figure

B.8b.

From the simulations carried out and visualized in Figure B.8 it is evident that the

modes of interest are significantly more damped when PSSs are included, and the in-

creased damping capabilities are validated by the non-linear system response in Figure

B.8b).

B.2 Load Model and Demand Response Implementation

When running power system analysis, there are several options for modeling the loads

in the system. The simplest load models can be thought of as a combination of con-

stant power demand (P), constant current demand (I), and a constant impedance (Z)

[56]. A combination of these can be said to be modeled as a ZIP Model. This model

is commonly used for steady-state and dynamic studies but is usually unsatisfactory

for transient analysis. The extent to which the load is characterized by either the Z,

I, or P component might vary from analysis to analysis, depending on which types of
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system loads one is trying to represent. For instance, electrical motor loads will have

different characteristics when compared to lightning loads or other load types. In cases

of rapid voltage drop, a load model based on piece-wise approximation might be the

most accurate [56]. Several loads in a power system are also highly dependent on the

grid’s frequency, and some models are accounting for this.

In the simulations done in this report, all loads are modeled as constant impedance

loads, which could be named Z-model. This type of model is reasonable for some light-

ning loads as the power consumption varies proportionally to the voltage squared but

might have some downsides when modeling other system components [56]. Neverthe-

less, the voltage variations are pretty tiny in the analysis performed in this report, so

the load model chosen might not be as significant.

Implementation of Demand Response by Changing the Admittance Matrix

The main objective of this control system was to use measurements in the system,

which could be assumed to be PMU measurements, for regulating the load consump-

tion at load buses in an attempt to damp inter-area oscillations in the system. A

significant amount of time was spent trying to implement such a controller in the Py-

thon environment such that it complies and runs together with the rest of the code.

Aiming for a PID-controller would include 2n new state variables in the system, where

n is the number of loads being controlled. The first attempt in doing so resulted in a

PID controller acting on an input signal, either local frequency measurement or speed

deviations in the system, for regulating the impedance at the load bus. The need to

regulate the impedance at the load bus is inherited because the Z-modelling approach

modeled all the loads. It turned out that adjusting the power demands at those buses

by making changes to the impedance was a bit more unpredictable than one would like.

Firstly, changing the impedance would influence the bus admittance matrix in the sys-

tem. In the dynamic simulations performed, the admittance matrix was transformed

into a reduced admittance matrix using Kron-reduction. The latter was done to reduce

the computational time for each simulation but proved to complicate the load control-

ler approach. With this way of controlling it, it was evident that every call to the

ordinary differential equation describing the system would have to modify the admit-

tance matrix. From then, calculate the new reduced admittance matrix representation.

Although some controller parameter settings were yielding promising results related

to damping, this was rather inconvenient. It made it difficult to get any numerical

values on the extent of load changes at the buses. It was also clear that in terms of

the linearization done in order to compute the eigenvalues, changes in eigenvalues did

not replicate the actual amount of damping present in the speed responses. Very high

gains were needed in order to see changes at all. It was later figured out that since
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the numerical solver algorithm for solving the differential equations were based on the

Runge-Kutta method proposed by Bogacki-Shampine [100], the ordinary differential

equation was called a different number of times for each step in the simulation, and

the step sizes are adaptive. Consequently, with the given structure and functioning of

the proposed load controller, the admittance matrix was changed a significant amount

of times during each simulation time-step, which in turn gave results differing from the

expected responses anticipated by the modal plots.

Figure B.9: Demand response implemented by changing the admittance matrix. Z is

the pre-defined impedance value defining the load of interest, while ∆z is the change

in impedance based on input signal and the PID-controller.

Implementation of Demand Response by the use of Controlled Current

Source Injections

A second approach for modeling and simulation time response was later developed.

The Z-model still models the loads in this approach. However, the demand response is

modeled using current source injections at the controlled loads. Thus, the controlled

loads can kind of be thought about as Z-models with varying current injection for this

purpose, as they consist of the constant impedance part, and at the same time, have a

varying current source reflecting the changes due to the regulation.
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Figure B.10: Demand response implemented as controlled current source injection.

The impedance Z corresponds to the predefined loading at the given bus given by

the corresponding system initialization and represent as a Z-model load, while the

controlled current source are accounting are modelling demand response at the given

load.

This proved to be a somewhat decent approach, and a descriptive model is shown in

Figure B.10. For instance, in cases where the loads is supposed to be reduced based on

the measurements in the system, this is simulated by having the current source inject

positive current to the system, which in turn adjust the net power demand at this bus.

For cases where an increase in the load demand is needed, injection of negative current

to the grid represents increased power demand at the current bus. This approach of

modeling the demand response gave much more anticipated results both for the state

variables responses in the system, while at the same time being reflected accurately in

the eigenvalue calculations on the system in that sense that the observed damping in

the speed responses correlated with the expected behavior when looking at the system

eigenvalues and mode shapes. The implementation is very similar to the approach used

for designing the battery model in Section 4.5, without the use of the inner dynamics of

the battery. Basically, it used a PID-regulator for obtaining the desired power demand

change at the given bus and then injected dq-axes current components based on a

reference frame alignment made such that vd = 0.

B.3 Secondary Control - Load Frequency Control and Area

Control Error

In an attempt to reduce the time used developing and implementing for potential fu-

ture students, a secondary control system developed during the work of this thesis is

presented in this section. As it turned out, this model and its behavior were out of the

scope for the topics covered in this thesis. Nevertheless, someone might find it helpful.

The general idea behind secondary control is to remove frequency deviations in the

grid and keep the tie-line flows at their scheduled values. Secondary control is of major
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interest for real-world operation and control of power systems. It is briefly introduced

in Appendix A.1, but more information and an in-depth description of secondary con-

trol can be found in Machowski [56, p. 341-345], which also served as the inspiration

for the implementation of secondary control in the first place. A general block diagram

representation of the central regular associated with secondary-control/load-frequency-

control is provided in Figure B.11. The idea is to remove the Area Control Errors

(ACEs) with the use of a central regulator equipped with a PI-regulator, whose output

∆Pref is distributed to the different generators participating in the secondary control

with the weighting factors αi.

Figure B.11: Block diagram showing a standard control system associated with sec-

ondary control and Area Control Error. Ptie,0 and ω0 corresponds to the refer-

ence/scheduled values of tie-line flow and rotational speed, respectively.

Figure B.11 shows that the ACE is a sum of the errors in the frequency/speed and tie-

line flows. The parameter λR is usually called the frequency bias factor [56, p. 343] and

is essentially a constant value amplifying the speed-deviation signal ∆ω. Machowski

provides an intuitive explanation of the importance of the choice of this factor [56,

p. 343], but it is practically a measure of whether the most important objective is

to keep to the frequency at its scheduled value or the tie-line flows. Implementing

the central regulator in Python does not require that much code when built into the

dynamic simulation tool. This is inherently a fact due to the simplicity of the block

diagram shown in Figure B.11. Hence, due to the few amounts of lines required, the

code is provided in Figure B.12.
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Figure B.12: The Implementation in DynPSSimpy. To include such a system, some

changes are needed in the dynamic file as well, but the correlation between the block

diagram presented in Figure B.11 should be observable in the code.

It should be made clear that implementing new blocks requires several changes in the

dynamic.py file. This file is somewhat large and consequently not shown here. How-

ever, by looking at the implementations of the other models in the file dynamic.py, it

is assumed to be a manageable part, where the most challenging part is to distribute

the output signal ∆Pref (or output[’Pace’][:] in the code in Figure B.12) to the different

generators participating in the secondary control. A relatively straightforward way to

work around this problem in an initial attempt to see whether the control system is

working as expected is to equip each generator with its own ”central regulator”, all of

which are using the same input signals and controller parameters. However, if used

extensively for future work, one should aim to find a way to remove the necessity of

this brute-force method.

For illustrating the performance of the secondary control and to get a better under-

standing of the working principles, a small simulation is carried out, and the results

are provided in Figure B.13. The system used is the Kundor-two-area system using the

values given in Appendix C.1 and all control systems active, and the disturbance in the

system is a reduction in L2 of 200MW at t=10.0 seconds. The sole purpose is to see

how the load-frequency control is performing and how the system’s frequency and tie-

line flows are improved during secondary control. In terms of parameters used for the
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load-frequency controllers, these are chosen somehow justifiable concerning the theory

presented in Machowski [56]. However, the exact parameter values are deemed unne-

cessary to include here. This simulation is solely meant to be an illustrative example

showing the fundamental principles of the LFC. Figure B.13 shows the simulation res-

ults with and without LFC active, and a discussion around the results is provided in

the caption of the figures.
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(a) Speed deviations in the

system. For the case with

LFC active (lower figure), one

observes that the frequency is

moving towards the scheduled

value. For the case without

LFC active (upper figure), the

system reaches a new steady-

state frequency differing from

the reference value.

(b) ACEs (upper part of

each sub-figure) and line flows

(bottom part of each sub-

figure) between the two re-

gions. In the case of LFC

active, one sees that the sys-

tem is having a step-change

in power flowing between the

regions immediately after the

disturbance, but it gradually

moves towards the scheduled

value (lowest plot).

(c) Power delivered by the

generators. When LFC are

active (bottom figure), the

generators located in the faul-

ted area (Area 2) have a

change in the delivered power

(green and red line). In

contrast, generators located

in Area 1 (orange line) ap-

proach their scheduled power

production. Hence, gener-

ators located in the faulted

area are responsible for cov-

ering the power deficit [56,

p. 343]. Without LFC (upper

figure), all generators change

their power output to cover

the power imbalance.

Figure B.13: Simulation showing the fundamentals behind load-frequency control

(LFC). The upper plots show the system response without LFC active, and the lower

plots show the response when LFC is active. The author is well aware that axis-ticks

numbers are not entirely readable without zooming in. However, the sole purpose of

this is to showcase the general behavior of the system and not the actual numerical

values.
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B.4 HVDC-implementation and Bifurcation Limit Cycle

HVDC-implementation in Python

During the work of this thesis, an HVDC model was developed and implemented.

HVDC implementations are essentially relying on current injections to the system,

thus having fundamental similarities to the Battery Model described in Section 4.5.

Hence, it was chosen to exclude simulations with HVDC and HVDC for damping pur-

poses for this thesis. The general results coincided to a prominent extent with the

results obtained by using BESS.

However, future students might find it helpful to have a guideline and considerations

about a proposed way of defining an HVDC-link in the Python Dynamic Power System

Simulator (DynPSSimpy) or any dynamic simulator in general. With that in mind, the

basic principles behind the HVDC model development and implementation conducted

during the time spent working on this thesis are provided. The basic idea is to be able

to represent a general HVDC-cable as shown in Figure B.14

Figure B.14: HVDC-cable in a simple power system consisting of two areas where each

area is represented by an equivalent generator and total loading. The power converters

needed for a HVDC-cable is included, together with the ohmic cable resistance, R.

Hence, the question that arises is how to implement this into the dynamic system. The

first thing that should be kept in mind is that an HVDC cable essentially is a positive

power injection at the receiving bus and a negative power injection at the sending bus.

This is illustrated in Figure B.15.
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Figure B.15: Two-area power system, where the HVDC-cable from Figure B.14. For

this case, the cable resistance is neglected for simplicity.

The generator models and system components utilized in the simulator are using the

DQ0-transformation discussed in Appendix A.5. Hence, this is a natural way to im-

plement the HVDC (although other methods could presumably give the same results).

Thus, for such a case, the HVDC emulator from Figure B.15 will be a component that

injects the desired amount of q-axis current into the system. Including the effect of the

cable resistance, this is illustrated in Figure B.16.

Figure B.16: Two-area power system where the HVDC-cable is represented as q-

axis current injections. The sending end injects the negative of this component (-Iq),

whereas the sending end injects Iq-Iq,R, where Iq,R is reflecting the decrease in current

due to cable power losses originating from the cable resistance R.

The Battery Model presented in Section 4.5 was built up injecting currents at a given

bus, but for the HVDC-cable, as can be seen in Figure B.16. However, the fundamental

principles behind both of them are the same. A lot of the inner dynamics of the Battery

Model are neglected for the HVDC implementation. However, the HVDC-model does

also contain a time-delay part, capturing the fact that when a reference current Iq,ref

is provided, there will be a short amount of time before the actual power converters

can respond. The final model with an arbitrary chosen HVDC-controller (which could,

for instance, be as simple as a proportional regulator) is presented in Figure B.17.
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Figure B.17: Two-area system with HVDC-cable implementation visualized. The input

signal to the controller is for this case chosen to be the difference in voltage angles

between the connected buses, but this could in principle be any measurable signal in

the system.

The code is appended to give an illustration behind the principles and the thought

process behind the DQ0-transformation and the computation of the Iq,ref current. It

should also be valuable in terms of calculating the current component accounting for

cable losses, Iq,R. The proposed implementation is found in Figure B.18, but some of

the input variables are included solely for plotting and model verification purposes.

Hence the model could arguably be simplified when used for simulations.
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Figure B.18: Code for implementing the HVDC model. This implementation should

be somehow following Figure B.17. However, the HVDC-controller is chosen to be

a separate model supplying the HVDC-model with a power reference signal named

”pctrl”. In principle, this control system could be any appropriate controller, for in-

stance, a simple P-regulator acting on voltage angle deviations in the system. The

important part is that the HVDC controller should supply the HVDC model with a

power reference. It should be mentioned that the code presented as-is is implemented

for the authors’ use only, hence not been cleaned up before presented, and some of

the parameters are solely used for plotting purposes. Nevertheless, it should serve as

a decent example of how to model an HVDC cable.

Boiled down, it simply is a matter of injecting the desired amount of power at two
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buses connected by the HVDC cable, and the power calculation together with the

power losses due to the cable resistance is calculated in dq-components by the use of

equation (A.20).

Bifurcation Limit Cycle simulation

In terms of operation and controller performance capabilities, the HVDC implement-

ation and its controller exhibits similar characteristics as the BESS model used for

the simulations conducted in this thesis. However, when running simulations using

the HVDC-cable present in the system between buses 3020 and 7010 B.1 in Nordic 44,

see Figure 4.5, an interesting phenomenon usually known as Hopf Bifurcation arises.

Historically, the Hopf Bifurcation has been the cause of significant disturbances in

power systems [102]. When this phenomenon arises, the person implementing the dy-

namic model might assume an implementation error. Being aware of this phenomenon

could be rather valuable for avoiding confusion during model and controller develop-

ment. The simulation is carried out by disconnecting one of the lines between bus

3100 and 3200 without re-connection. Without re-connection, the system topology

changes significantly; hence, the eigenvalues obtained by doing a linearization around

the steady-state initial operating point might not be valid anymore.

Figure B.19: Speed response after disconnection of L3100-3200-1 without HVDC-cable

present in the system. The frequency of the grid is increasing following the disturb-

ance, as the system impedance is increased, hence by the swing equation (3.2) and

power transfer for a synchronous machine (3.3), the electrical power Pe injected by the

generators is slightly decreasing the equivalent d-axis reactance xd have increased.

B.1The HVDC-cable terminal buses is chosen based on the LCC-HVDC connection ”Fenno-Scan”

present in the real-world Nordic power system [101] between Northern Norway and Western Sweden.
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Figure B.20: Speed response when HVDC is present in the system as described in the

text. The response is similar to the response without HVDC present in the system

as seen in Figure B.19, but oscillations starts occurring at t = 10.0 seconds, before

gradually dying out at approximately t = 30.0 seconds.

By comparing the response without HVDC in Figure B.19 with the response with

HVDC present in Figure B.20, one notices the appearing oscillations around t = 10.0

seconds. This response is the major reason for presenting this simulation. Oscillations

like this are highly unwanted but maybe appearing for certain types of faults. When

working with HVDC, one should be aware of the possibility of responses like this being

present. The fundamental reason is the eigenvalue movement during the simulation.

It might be easier to look at the injected HVDC-power at the HVDC terminals in the

system to explain this. This is shown in Figure B.21. It is evident that oscillations

increasing in amplitude start at approximately t = 10.0 seconds, t = 25.0 seconds, and

t = 50.0 seconds (although small-amplitude oscillation for the last one). Figure B.22

shows a zoomed-in version of the last two cycles containing a noticeable increase in

oscillations.
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Figure B.21: Power injected at the HVDC terminals following the disturbance. Notice

how the negative injection (sending side) amplitude is greater than the receiving end.

This is due to the inclusion of a cable resistance of 0.1 p.u. (which is larger than the

values in real-world systems but is made for making the cable losses observable in the

simulation).

Figure B.22: Zoomed in version of the power injections at the HVDC-terminals towards

the end of the simulation period. The results clearly indicated that the oscillations

almost dies out, before suddenly starting to increase in amplitude several times during

the simulation.

This phenomenon could be described as the Bifurcation Limit Cycle. Bifurcation can

occur in power systems and cause the nominal equilibrium of the system to lose its
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stability [103]. Several different phenomena can lead to bifurcations, for instance,

improperly tuned control parameters and non-linear loads [103]. The HVDC-cable

model presented here can represent non-linear loads at the HVDC-terminal buses,

which might explain why this phenomenon arises here. Without going further into

detail on this phenomenaB.2, this simulation was included to showcase some of the

problems that may arise when working with self-developed models, and the results

might not be unrealistic. However, it might look like an implementation error initially.

While reading literature for this thesis, some examples of this phenomenon happening

without explicitly discussing it was seen. In a paper written by Li et al. [104] it is

clear that for some of their simulations, the oscillations decrease in amplitude before

gradually increasing later in the simulation. Although their simulations do not show

it as clearly as Figure B.22B.3, it is still present.

C System Parameters

C.1 Kundur’s Two-Area System Parameters

Include the base case system paramters in Kundur two-area system here.

Table 5: K2A - GENERATOR MODEL PARAMETERS

Gen Bus Sn Vn P V H D Xd Xq X′d X′q X′′d X′′q T′d0 T′q0 T′′d0 T′′q0

G1 B1 900 20 700 1.03 7.0 0.0 1.2 0.9 0.3 0.55 0.25 0.25 5.0 0.1 0.03 0.05

G2 B2 900 20 700 1.01 7.0 0.0 1.2 0.9 0.3 0.55 0.25 0.25 5.0 0.1 0.03 0.05

G3 B3 900 20 719 1.03 5.0 0.0 1.8 1.7 0.3 0.55 0.25 0.25 8.0 0.4 0.03 0.05

G4 B4 900 20 700 1.01 5.0 0.0 1.8 1.7 0.3 0.55 0.25 0.25 8.0 0.4 0.03 0.05

Table 6: K2A - LINE PARAMETERS

From To Length Sn[MVA] Vn[kV ] unit R X B

B5 B6 25 100 230 pu 0.0001 0.001 0.00175

B6 B7 10 100 230 pu 0.0001 0.001 0.00175

B7 B8 110 100 230 pu 0.0001 0.001 0.00175

B7 B8 110 100 230 pu 0.0001 0.001 0.00175

B8 B9 110 100 230 pu 0.0001 0.001 0.00175

B8 B9 110 100 230 pu 0.0001 0.001 0.00175

B9 B10 10 100 230 pu 0.0001 0.001 0.00175

B10 B11 25 100 230 pu 0.0001 0.001 0.00175

B.2There is much available literature on this, especially related to voltage stability issues in power

systems.
B.3The proportional controller gain was set satisfactory high such that the phenomena were easily

observable, although a lower gain might be used for an actual real-world control system.
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Table 7: K2A - TRANSFORMERS PARAMETERS

From To Sn[MVA] V1[kV ] V2[kV ] R [Ω] X [Ω]

B1 B5 900 20 230 0.0 0.15

B2 B6 900 20 230 0.0 0.15

B3 B11 900 20 230 0.0 0.15

B4 B10 900 20 230 0.0 0.15

B9 B12 100 230 0.4 0.0 0.30

Table 8: K2A - LOADS

Bus Vn[kV ] P [MW] Q [MVAr] Model

B7 230 967 100 Z

B9 230 1767 100 Z

Table 9: K2A - SHUNTS

Bus Vn[kV ] Q [MVAr] Model

B7 230 200 Z

B9 230 350 Z

Table 10: K2A - GOVERNOR MODEL PARAMETERS

Gen Model R Dt Vmin Vmax T1 T2 T3 Pm0 Tw

G1 HYGOV 0.06 0.0 0.0 1.0 0.36 6.0 67.6 0.777 1.0

G2 HYGOV 0.06 0.0 0.0 1.0 0.36 6.0 67.6 0.777 1.0

G3 TGOV1 0.12 0.0 0.0 1.0 0.1 0.09 0.2 - -

G4 TGOV1 0.12 0.0 0.0 1.0 0.1 0.09 0.2 - -

Table 11: K2A - AVR MODEL PARAMETERS

Gen Model K TA TB TE Emin Emax

G1 SEXS 250 2.0 10.0 0.05 -3.0 3.0

G2 SEXS 250 2.0 10.0 0.05 -3.0 3.0

G3 SEXS 250 2.0 10.0 0.05 -3.0 3.0

G4 SEXS 250 2.0 10.0 0.05 -3.0 3.0

Table 12: K2A - PSS MODEL PARAMETERS

Gen Model K T T1 T2 T3 T4 Hlim

G1 STAB1 50 10.0 0.5 0.5 0.05 0.05 0.03

G2 STAB1 50 10.0 0.5 0.5 0.05 0.05 0.03

G3 STAB1 50 10.0 0.5 0.5 0.05 0.05 0.03

G4 STAB1 50 10.0 0.5 0.5 0.05 0.05 0.03
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C.2 Nordic 44 System Parameters

Figure C.1: The Nordic 44 test network in an enlarged version. Source: Adapted from

[74].
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Table 13: N44 - GENERATOR PARAMETERS

name bus S n V n P V H D X d X q X d t X q t X d st X q st T d0 t T q0 t T d0 st T q0 st

G3000-1 3000 1300.000 0 550.000 1.000 5.9700 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 5.0000 1 0.050 0.05

G3000-2 3000 1300.000 0 550.000 1.000 5.9700 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 5.0000 1 0.050 0.05

G3000-3 3000 1300.000 0 0.000 1.000 5.9700 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 5.0000 1 0.050 0.05

G3115-1 3115 1450.620 0 1175.000 1.000 4.7410 0 0.9460 0.56500 0.29000 0.56500 0.23000 0.23000 7.5700 1 0.045 0.10

G3115-2 3115 1450.620 0 1175.000 1.000 4.7410 0 0.9460 0.56500 0.29000 0.56500 0.23000 0.23000 7.5700 1 0.045 0.10

G3115-3 3115 1450.620 0 1175.000 1.000 4.7410 0 0.9460 0.56500 0.29000 0.56500 0.23000 0.23000 7.5700 1 0.045 0.10

G3245-1 3245 1234.570 0 1000.000 1.000 3.3000 0 0.7500 0.50000 0.25000 0.50000 0.15385 0.15385 5.0000 1 0.060 0.10

G3249-1 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3249-2 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3249-3 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3249-4 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3249-5 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3249-6 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3249-7 3249 1357.000 0 1042.000 1.000 4.5430 0 1.0360 0.63000 0.28000 0.63000 0.21000 0.21000 10.1300 1 0.060 0.10

G3300-1 3300 1100.000 0 998.734 1.000 6.0000 0 2.4200 2.00000 0.23000 0.41080 0.16000 0.16000 10.8000 1 0.050 0.05

G3300-2 3300 1100.000 0 998.734 1.000 6.0000 0 2.4200 2.00000 0.23000 0.41080 0.16000 0.16000 10.8000 1 0.050 0.05

G3300-3 3300 1100.000 0 998.734 1.000 6.0000 0 2.4200 2.00000 0.23000 0.41080 0.16000 0.16000 10.8000 1 0.050 0.05

G3359-1 3359 1350.000 0 1110.000 1.000 4.8200 0 2.1300 2.03000 0.31000 0.40300 0.19370 0.19370 4.7500 1 0.050 0.05

G3359-2 3359 1350.000 0 1100.000 1.000 4.8200 0 2.1300 2.03000 0.31000 0.40300 0.19370 0.19370 4.7500 1 0.050 0.05

G3359-3 3359 1350.000 0 1100.000 1.000 4.8200 0 2.1300 2.03000 0.31000 0.40300 0.19370 0.19370 4.7500 1 0.050 0.05

G3359-4 3359 1350.000 0 0.000 1.000 4.8200 0 2.1300 2.03000 0.31000 0.40300 0.19370 0.19370 4.7500 1 0.050 0.05

G3359-5 3359 1350.000 0 0.000 1.000 4.8200 0 2.1300 2.03000 0.31000 0.40300 0.19370 0.19370 4.7500 1 0.050 0.05

G3359-6 3359 1350.000 0 0.000 1.000 4.8200 0 2.1300 2.03000 0.31000 0.40300 0.19370 0.19370 4.7500 1 0.050 0.05

G5100-1 5100 1200.000 0 972.437 1.000 3.9871 0 1.1332 0.68315 0.24302 0.68315 0.15135 0.15135 4.9629 1 0.050 0.15

G5300-1 5300 1574.890 0 1275.661 1.000 3.5000 0 1.1400 0.84000 0.34000 0.84000 0.26000 0.26000 6.4000 1 0.050 0.15

G5300-2 5300 1574.890 0 1275.661 1.000 3.5000 0 1.1400 0.84000 0.34000 0.84000 0.26000 0.26000 6.4000 1 0.050 0.15

G5400-1 5400 1611.516 0 1305.328 1.007 4.1000 0 1.0200 0.63000 0.25000 0.63000 0.16000 0.16000 6.5000 1 0.050 0.15

G5400-2 5400 1611.516 0 1305.328 1.007 4.1000 0 1.0200 0.63000 0.25000 0.63000 0.16000 0.16000 6.5000 1 0.050 0.15

G5500-1 5500 1450.000 0 1131.563 1.004 3.0000 0 1.2364 0.65567 0.37415 0.65567 0.22825 0.22825 7.1980 1 0.050 0.15

G5600-1 5600 1538.265 0 1245.995 1.010 3.5000 0 1.0000 0.51325 0.38000 0.51325 0.28000 0.28000 7.8500 1 0.050 0.15

G5600-2 5600 1538.265 0 1245.995 1.010 3.5000 0 1.0000 0.51325 0.38000 0.51325 0.28000 0.28000 7.8500 1 0.050 0.15

G6000-1 6000 896.590 0 735.730 1.005 3.5000 0 1.2800 0.94000 0.37000 0.94000 0.28000 0.28000 9.7000 1 0.050 0.15

G6100-1 6100 1634.960 0 1329.061 1.000 3.0000 0 1.2000 0.73000 0.37000 0.73000 0.18000 0.18000 9.9000 1 0.050 0.15

G6100-2 6100 1634.960 0 1329.061 1.000 3.0000 0 1.2000 0.73000 0.37000 0.73000 0.18000 0.18000 9.9000 1 0.050 0.15

G6100-3 6100 1634.960 0 1329.061 1.000 3.0000 0 1.2000 0.73000 0.37000 0.73000 0.18000 0.18000 9.9000 1 0.050 0.15

G6100-4 6100 1634.960 0 1329.061 1.000 3.0000 0 1.2000 0.73000 0.37000 0.73000 0.18000 0.18000 9.9000 1 0.050 0.15

G6100-5 6100 1634.960 0 1329.061 1.000 3.0000 0 1.2000 0.73000 0.37000 0.73000 0.18000 0.18000 9.9000 1 0.050 0.15

G6500-1 6500 1100.000 0 814.333 1.000 3.5580 0 1.0679 0.64200 0.23865 0.64200 0.15802 0.15802 5.4855 1 0.050 0.15

G6500-2 6500 1100.000 0 814.333 1.000 3.5580 0 1.0679 0.64200 0.23865 0.64200 0.15802 0.15802 5.4855 1 0.050 0.15

G6500-3 6500 1100.000 0 814.333 1.000 3.5580 0 1.0679 0.64200 0.23865 0.64200 0.15802 0.15802 5.4855 1 0.050 0.15

G6500-4 6500 1100.000 0 0.000 1.000 3.5580 0 1.0679 0.64200 0.23865 0.64200 0.15802 0.15802 5.4855 1 0.050 0.15

G6700-1 6700 2144.444 0 1753.000 1.020 3.5920 0 1.1044 0.66186 0.25484 0.66186 0.17062 0.17062 5.2400 1 0.050 0.15

G6700-2 6700 2144.444 0 1753.000 1.020 3.5920 0 1.1044 0.66186 0.25484 0.66186 0.17062 0.17062 5.2400 1 0.050 0.15

G7000-1 7000 1278.000 0 1085.500 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-2 7000 1278.000 0 1085.500 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-3 7000 1278.000 0 1085.500 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-4 7000 1278.000 0 1085.500 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-5 7000 1278.000 0 1085.500 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-6 7000 1278.000 0 1085.500 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-7 7000 1278.000 0 0.000 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-8 7000 1278.000 0 0.000 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7000-9 7000 1278.000 0 0.000 1.000 5.5000 0 2.2200 2.13000 0.36000 0.46800 0.22500 0.22500 10.0000 1 0.050 0.05

G7100-1 7100 1000.000 0 715.333 1.000 3.2000 0 0.7500 0.50000 0.25000 0.50000 0.15385 0.15385 5.0000 1 0.060 0.10

G7100-2 7100 1000.000 0 715.333 1.000 3.2000 0 0.7500 0.50000 0.25000 0.50000 0.15385 0.15385 5.0000 1 0.060 0.10

G7100-3 7100 1000.000 0 715.333 1.000 3.2000 0 0.7500 0.50000 0.25000 0.50000 0.15385 0.15385 5.0000 1 0.060 0.10

G8500-1 8500 1300.000 0 994.000 1.020 7.0000 0 2.4200 2.00000 0.23000 0.41080 0.17062 0.17062 10.0000 1 0.050 0.05

G8500-2 8500 1300.000 0 0.000 1.020 7.0000 0 2.4200 2.00000 0.23000 0.41080 0.17062 0.17062 10.0000 1 0.050 0.05

G8500-3 8500 1300.000 0 0.000 1.020 7.0000 0 2.4200 2.00000 0.23000 0.41080 0.17062 0.17062 10.0000 1 0.050 0.05

G8500-4 8500 1300.000 0 0.000 1.020 7.0000 0 2.4200 2.00000 0.23000 0.41080 0.17062 0.17062 10.0000 1 0.050 0.05

G8500-5 8500 1300.000 0 0.000 1.020 7.0000 0 2.4200 2.00000 0.23000 0.41080 0.17062 0.17062 10.0000 1 0.050 0.05

G8500-6 8500 1300.000 0 0.000 1.020 7.0000 0 2.4200 2.00000 0.23000 0.41080 0.17062 0.17062 10.0000 1 0.050 0.05
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C.2 Nordic 44 System Parameters

Table 14: N44 - LINE PARAMETERS

name from bus to bus length S n V n unit R X B

L3000-3020 3000 3020 1 0 0 p.u. 0.00000 0.0060 0.000

L3000-3115 3000 3115 1 0 0 p.u. 0.04500 0.5400 0.500

L3000-3245 3000 3245 1 0 0 p.u. 0.00480 0.0720 0.050

L3000-3245 3000 3245 1 0 0 p.u. 0.01080 0.1200 0.050

L3000-3300 3000 3300 1 0 0 p.u. 0.00360 0.0480 0.030

L3000-3300 3000 3300 1 0 0 p.u. 0.00540 0.0600 0.025

L3100-3115 3100 3115 1 0 0 p.u. 0.01800 0.2400 0.110

L3100-3200 3100 3200 1 0 0 p.u. 0.02400 0.1440 0.200

L3100-3200 3100 3200 1 0 0 p.u. 0.02400 0.1440 0.200

L3100-3200 3100 3200 1 0 0 p.u. 0.02400 0.1440 0.200

L3100-3249 3100 3249 1 0 0 p.u. 0.01800 0.2580 0.160

L3100-3359 3100 3359 1 0 0 p.u. 0.04800 0.3000 0.250

L3100-3359 3100 3359 1 0 0 p.u. 0.02400 0.1380 0.240

L3115-3245 3115 3245 1 0 0 p.u. 0.02700 0.3000 0.140

L3115-3249 3115 3249 1 0 0 p.u. 0.00900 0.1200 0.080

L3115-6701 3115 6701 1 0 0 p.u. 0.02400 0.2400 0.100

L3115-7100 3115 7100 1 0 0 p.u. 0.02400 0.0780 0.130

L3200-3300 3200 3300 1 0 0 p.u. 0.01200 0.1200 0.060

L3200-3359 3200 3359 1 0 0 p.u. 0.00600 0.1200 0.070

L3200-8500 3200 8500 1 0 0 p.u. 0.00600 0.1020 0.060

L3244-6500 3244 6500 1 0 0 p.u. 0.00600 0.1200 0.060

L3249-7100 3249 7100 1 0 0 p.u. 0.01200 0.0450 0.078

L3300-8500 3300 8500 1 0 0 p.u. 0.01200 0.1380 0.060

L3300-8500 3300 8500 1 0 0 p.u. 0.00720 0.1620 0.100

L3359-5101-1 3359 5101 1 0 0 p.u. 0.00960 0.1560 0.090

L3359-5101-2 3359 5101 1 0 0 p.u. 0.01200 0.1320 0.060

L3359-8500 3359 8500 1 0 0 p.u. 0.00720 0.1620 0.100

L3359-8500 3359 8500 1 0 0 p.u. 0.01500 0.1920 0.090

L3701-6700 3701 6700 1 0 0 p.u. 0.15000 1.2000 0.030

L5100-5500 5100 5500 1 0 0 p.u. 0.01620 0.1560 0.044

L5100-6500 5100 6500 1 0 0 p.u. 0.04800 0.5400 0.060

L5101-5102 5101 5102 1 0 0 p.u. 0.00480 0.0600 0.090

L5101-5103 5101 5103 1 0 0 p.u. 0.00600 0.0840 0.040

L5101-5501 5101 5501 1 0 0 p.u. 0.00600 0.0900 0.550

L5102-5103 5102 5103 1 0 0 p.u. 0.00240 0.0420 0.030

L5102-5304 5102 5304 1 0 0 p.u. 0.01020 0.1440 0.070

L5102-6001 5102 6001 1 0 0 p.u. 0.01800 0.2760 0.130

L5103-5304 5103 5304 1 0 0 p.u. 0.01200 0.1500 0.070

L5103-5304 5103 5304 1 0 0 p.u. 0.00780 0.1200 0.060

L5300-6100 5300 6100 1 0 0 p.u. 0.01260 0.1320 0.010

L5301-5304 5301 5304 1 0 0 p.u. 0.00600 0.1200 0.060

L5301-5305 5301 5305 1 0 0 p.u. 0.00420 0.0720 0.031

L5301-6001 5301 6001 1 0 0 p.u. 0.00780 0.1200 0.050

L5304-5305 5304 5305 1 0 0 p.u. 0.00600 0.0900 0.050

L5304-5305 5304 5305 1 0 0 p.u. 0.00780 0.0102 0.040

L5400-5500 5400 5500 1 0 0 p.u. 0.00540 0.5640 0.050

L5400-6000 5400 6000 1 0 0 p.u. 0.01980 0.2160 0.025

L5401-5501 5401 5501 1 0 0 p.u. 0.01050 0.1620 0.080

L5401-5602 5401 5602 1 0 0 p.u. 0.00960 0.1530 0.090

L5401-6001 5401 6001 1 0 0 p.u. 0.00384 0.0600 0.028

L5402-6001 5402 6001 1 0 0 p.u. 0.00042 0.0060 0.003

L5500-5603 5500 5603 1 0 0 p.u. 0.03000 0.3600 0.050

L5600-5601 5600 5601 1 0 0 p.u. 0.01800 0.2040 0.020

L5600-5603 5600 5603 1 0 0 p.u. 0.01200 0.1320 0.020

L5600-5620 5600 5620 1 0 0 p.u. 0.00000 0.0060 0.000

L5600-6000 5600 6000 1 0 0 p.u. 0.01200 0.1200 0.070

L5603-5610 5603 5610 1 0 0 p.u. 0.00000 0.0060 0.000

L6000-6100 6000 6100 1 0 0 p.u. 0.02040 0.2520 0.030

L6500-6700 6500 6700 1 0 0 p.u. 0.10200 1.0800 0.100

L6500-6700 6500 6700 1 0 0 p.u. 0.06000 0.7800 0.120

L7000-7010 7000 7010 1 0 0 p.u. 0.00000 0.0060 0.000

L7000-7020 7000 7020 1 0 0 p.u. 0.00000 0.0060 0.000

L7000-7100 7000 7100 1 0 0 p.u. 0.02400 0.0720 0.130

L7000-7100 7000 7100 1 0 0 p.u. 0.02400 0.0720 0.130

L7000-7100 7000 7100 1 0 0 p.u. 0.02400 0.0840 0.130

L8500-8600 8500 8600 1 0 0 p.u. 0.00000 0.0060 0.000

L8500-8700 8500 8700 1 0 0 p.u. 0.00000 0.0060 0.000
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C.2 Nordic 44 System Parameters

Table 15: N44 - LOAD PARAMETERS

name bus P Q model

L3000-1 3000 1420.656 567 Z

L3000-2 3000 1420.656 567 Z

L3000-3 3000 1420.656 567 Z

L3020-1 3020 1219.000 616 Z

L3100-1 3100 621.000 110 Z

L3115-1 3115 621.000 650 Z

L3249-1 3249 2265.000 650 Z

L3300-1 3300 1217.358 400 Z

L3300-2 3300 1217.358 400 Z

L3359-1 3359 1460.829 600 Z

L3359-2 3359 1460.829 600 Z

L3359-3 3359 1460.829 600 Z

L3359-4 3359 1460.829 600 Z

L3360-1 3360 -330.000 262 Z

L5100-1 5100 1154.170 70 Z

L5300-1 5300 2651.000 -70 Z

L5400-1 5400 1149.765 100 Z

L5500-1 5500 2203.415 200 Z

L5500-2 5500 2203.415 200 Z

L5600-1 5600 674.862 125 Z

L5600-2 5600 674.862 125 Z

L5610-1 5610 1412.000 363 Z

L5620-1 5620 414.000 175 Z

L6100-1 6100 1199.755 400 Z

L6100-2 6100 1199.755 400 Z

L6500-1 6500 1013.000 333 Z

L6500-2 6500 1013.000 333 Z

L6500-3 6500 1013.000 333 Z

L6700-1 6700 2489.000 150 Z

L7000-1 7000 1593.526 70 Z

L7000-2 7000 1593.526 70 Z

L7000-3 7000 1593.526 70 Z

L7000-4 7000 1593.526 70 Z

L7000-5 7000 1593.526 70 Z

L7010-1 7010 -1219.000 600 Z

L7020-1 7020 343.000 -4 Z

L7100-1 7100 1431.684 200 Z

L7100-2 7100 1431.684 200 Z

L8500-1 8500 1240.000 433 Z

L8500-2 8500 1240.000 433 Z

L8500-3 8500 1240.000 433 Z

L8600-1 8600 546.000 10 Z

L8700-1 8700 628.000 0 Z

158



C.2 Nordic 44 System Parameters

Table 16: N44 - TRANSFORMER PARAMETERS

name from bus to bus S n V n from V n to R X ratio

T3244-3245 3244 3245 1000 0 0 0.0050 0.0200 1

T3701-3249 3701 3249 1000 0 0 0.0200 0.5000 1

T3359-3360 3359 3360 1000 0 0 0.0050 0.0200 1

T5101-5100 5101 5100 1000 0 0 0.0008 0.0305 1

T5300-5301 5300 5301 1000 0 0 0.0016 0.0610 1

T5400-5401 5400 5401 1000 0 0 0.0032 0.1200 1

T5400-5402 5400 5402 1000 0 0 0.0004 0.0150 1

T5500-5501 5500 5501 1000 0 0 0.0004 0.0150 1

T5601-6001 5601 6001 1000 0 0 0.0002 0.0076 1

T5603-5602 5603 5602 1000 0 0 0.0008 0.0305 1

T6000-6001 6000 6001 1000 0 0 0.0004 0.0150 1

T6700-6701 6700 6701 1000 0 0 0.0050 0.0200 1

Table 17: N44 - GOVERNOR PARAMETERS

name gen R D t V min V max T 2 T 3 T 4 P m0 T w

GOV2 G3000-1 0.05 0 0 1 0.36 6 67.6 0.424 1

GOV3 G3000-2 0.05 0 0 1 0.36 6 67.6 0.424 1

GOV4 G3000-3 0.05 0 0 1 0.36 6 67.6 0.100 1

GOV5 G5400-1 0.05 0 0 1 0.36 6 67.6 0.810 1

GOV6 G5400-2 0.05 0 0 1 0.36 6 67.6 0.810 1

GOV7 G6700-1 0.05 0 0 1 0.36 6 67.6 0.820 1

GOV8 G6700-2 0.05 0 0 1 0.36 6 67.6 0.820 1

GOV9 G7100-1 0.05 0 0 1 0.36 6 67.6 0.715 1

GOV10 G7100-2 0.05 0 0 1 0.36 6 67.6 0.715 1

GOV11 G7100-3 0.05 0 0 1 0.36 6 67.6 0.715 1
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Table 18: N44: AVR PARAMETERS

name gen K T a T b T e E min E max

AVR2 G3000-1 100 2.0 10.0 0.5 -3 3

AVR3 G3000-2 100 2.0 10.0 0.5 -3 3

AVR4 G3000-3 100 2.0 10.0 0.5 -3 3

AVR5 G5400-1 100 2.0 10.0 0.5 -3 3

AVR6 G5400-2 100 2.0 10.0 0.5 -3 3

AVR7 G6700-1 100 2.0 10.0 0.5 -3 3

AVR8 G6700-2 100 2.0 10.0 0.5 -3 3

AVR9 G7100-1 100 2.0 10.0 0.5 -3 3

AVR10 G7100-2 100 2.0 10.0 0.5 -3 3

AVR11 G7100-3 100 2.0 10.0 0.5 -3 3

AVR18 G6100-1 100 2.0 10.0 0.5 -3 3

AVR19 G6100-2 100 2.0 10.0 0.5 -3 3

AVR20 G6100-3 100 2.0 10.0 0.5 -3 3

AVR21 G6100-4 100 2.0 10.0 0.5 -3 3

AVR22 G6100-5 100 2.0 10.0 0.5 -3 3

D Supplementary Simulations and Results

D.1 Local Mode - Signal and Location Selection

This thesis is focusing on adding additional damping to the lowest damped inter-area

mode. However, in a general case, one might be interested in adding damping to a local

mode in the system. The approach used for deciding the feedback signal combination

in Section 5.3.1 and BESS location in 5.3.2 is equally applicable for such cases.

D.1.1 Feedback Signal Selection

Aiming at finding the optimal feedback signal for appending damping to the 0.92Hz

mode from the base system presented in Section 5.1, the following colormap showing the

magnitude of the corresponding residue for the different feedback signal combinations

is shown in Figure D.1.
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D.1 Local Mode - Signal and Location Selection

Figure D.1: Colormap showing the absolute values of residues for different feedback

signal combinations when considering the local-area mode having a frequency of 0.92Hz.
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D.1 Local Mode - Signal and Location Selection

Figure D.2: Colormap showing the absolute values of differences in right eigenvector

entries for different feedback signal combinations.

For this case, it is evident from the colormap plot that this is a local-area mode, as

the two most suitable voltage angle signals are related to bus 6500 and 6700 (in com-

bination with another voltage angle). It is also evident that a majority of the possible

combinations will have a negligible effect as feedback signals for dampening the 0.92Hz

mode, as most of them are having a residue absolute value close to zero (signal combin-

ations having blue colors in Figure D.1.1). Similarly as seen when selecting feedback

signal for dampening the poorliest damped mode in Section 5.3.1, the difference in

mode shapes (Figure D.2) contains the same information about the relative difference

between the residue magnitudes for a given feedback signal combination, such that

Figure D.1 and D.2 looks exactly the same, but have a different scaling.

D.1.2 BESS location selection

To follow up the feedback signal selection from Appendix D.1.1, a small check is done to

verify the optimal BESS location when the feedback signal is chosen such that damping
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D.1 Local Mode - Signal and Location Selection

of the 0.92 Hz is what’s of interest. The theory behind this is presented in Section 3.4.2,

and is essentially covering the same topics as in the simulations conducted in Section

5.3.2, but this time the local-area mode of 0.92 Hz is what is being targeted.

Figure D.3: Residue magnitudes for variation in BESS location when aiming at damp-

ing the local mode of 0.92Hz. From the plot it is evident that two locations is signi-

ficantly better than the other possible locations, which is expected as it is a local-area

mode.
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D.2 Validating the Selection Procedure in a Slightly Modified System

Figure D.4: Residues capturing both magnitudes and directions for variations in BESS

location aiming at damping the local area mode. The feedback signal is chosen to be

θ6700-θ7000 which from Appendix D.1.1 is seen to be the optimal feedback signal when

aiming at damping this mode. The grey dot with largest magnitude (bottom right)

is corresponding to BESS placed at Bus 6700, which is evident by comparing the plot

with Figure D.3

Hence, if the objective were to damp this mode, the optimal location would be to place

the BESS at Bus 6700. This would have the largest dampening capabilities for the

given local-area-mode.

D.2 Validating the Selection Procedure in a Slightly Modified

System

To validate the proposed method of selecting feedback signals to the controller and an

appropriate location of the BESS, the same analysis conducted for the base case sys-

tem is performed in a slightly modified system. In the original system, bus 6100 seems

to strongly influence the results, as could be observed initially from the participation

factors in the system. Therefore, the new modified system attempted to remove some

164



D.2 Validating the Selection Procedure in a Slightly Modified System

of the influence of this bus to create a system that has another optimal solution than

the previously discussed system.

Hence, some changes are applied to the system, which is listed below and illustrated

in Figure D.5.

1. Three of the generators located at bus 6100 are taken out of the system, and for

the remaining two, the inertia constant is reduced by a factor of three.

2. The power production at bus 7000 is reduced by an amount equivalent to three

generators. The inertia constant of the generators at this bus is reduced by a

factor of three.

3. Load located at bus 5300 (close to bus 6100), one of the loads at bus 6100 and

two of the loads at bus 7000 are set to zero. This is done to account for the

loss in generation capacity and have a steady-state operational point with power

production equal to demand.

4. The previously used HYGOVs are replaced by TGOV1 which is discussed in Sec-

tion B.1.1. This is done to make the system more stable, thereby notably different

from the base case system.

Figure D.5: Highlighting the major modifications made on the base case system seen

in Figure 4.5 for creating the new and modified system.

Doing so, the inter-area mode of interest is now having a frequency of 0.53Hz and

relative damping of 7.33%. This mode is still the lowest damped mode in the system,

but the overall stability is significantly increased. Thus, if the results are valid for this

system, one has a clear indication of the proposed method of figuring out the optimal
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D.2 Validating the Selection Procedure in a Slightly Modified System

controller signals, location, and parameters.

The general procedure is the same as for the base case system, which was presen-

ted quite in detail. However, for this system, a more compact presentation of the

results is provided. Suppose more information about the algorithm is needed. In that

case, the reader can quickly return to the results presented for the base case system,

where the results are discussed in more detail.
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D.2 Validating the Selection Procedure in a Slightly Modified System

D.2.1 Signal Selection

Firstly, the feedback controller signals is to be determined, and the results are presented

in Figure D.6.

Figure D.6: Residues for feedback signal selection in the new system.

For this system, the feedback signal combination yielding the largest residue is the

difference between the voltage angles at bus 5300 and 3245, such that the feedback

signal is chosen to be θ5300-θ3249. However, it can be seen that the feedback signal is

chosen for the original system, θ6100-θ7000, is still yielding a large value of the residue,

but not the largest.
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D.2.2 Location Selection

Secondly, the BESS location should be selected and the results are presented in Figure

D.7.

Figure D.7: BESS location selection.

Similarly, as for the base case system, bus 6100 turns out to yield the optimal placement

of the BESS. Placing it at bus 5300 would presumably yield decent results, but not as

good as locating it at bus 6100. The residues with their corresponding directions in

the complex plane are shown in Figure D.8.
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Figure D.8: Residues and their corresponding directions for different BESS locations

in the system. The feedback signal (θ5300-θ3249) is held constant during the residue

calculations. Bare in mind the scaling of the axis, that is, the residues are located

approximately at a straight line parallel and close to the imaginary axis.

For the base case system, the residues for different locations of the BESS ended up

approximately on a straight line. Although it might not seem like this for this case,

notice how the real values and scaling of the x-axis are significantly smaller than the

imaginary values in Figure D.8, such that this is still the case for this new system. To

summarize, for this system, one have:

1. Optimal feedback signal combination: θ5300-θ3249.

2. Optimal BESS location: Bus 6100.

It turns out that the optimal feedback signal is not correlating with the BESS placement

in the investigated system. This is made possible after introducing PMUs in the system,

allowing controllers to effectively use remotely located signals in the system, and could

therefore be a potential solution for a real-world system for given operating conditions.
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D.2.3 Controller Parameters Selection

Lastly is the tuning of the controller. The eigenvalues sensitivity for different gains

and phase shifts are shown in Figure D.9.

Figure D.9: Eigenvalues for the new system for different gains and phase compensa-

tion utilized on the BESS controller. The colored circles indicates constant controller

amplitude gains, Kp|H(jωia)|.

Notice how the phase shifts for this case is negative, whereas they were defined posit-

ively in the base case. This is done in order to account for the fact that for the given

feedback signal combination, the residues are located in the right-half plane; hence a

phase compensation larger than ±90◦ is needed. One can quite straightforwardly get

a 180◦ phase compensation by reverting the sign of the input signal. In contrast, the

rest of the needed shift is captured by the two lead-lag blocks depending on the needed

compensation. From Figure D.9, it seems likely that the desired phase compensation

by the lead-lag blocks should be in the region of [−60◦,−70◦]. A choice of selecting

−65◦ is taken as it is previously seen (for instance, in Figure ??) that the error between

the desired and actual phase compensation increases for larger gains.

The next step would be to determine the proportional gain factor Kp, and the cal-

culation of this utilizes the same formula as used for the base case system, given in

equation (5.3). Most of the terms occurring in the Equation are the same for this

system.

• The internal gain of the BESS-model is the same as previously (see Section 5.4),
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namely 0.00402.

• The washout filter provides a gain even closer to unity compared to the base case

when the inter-area mode frequency is increasedD.1.

• When the lead-lag blocks are aiming for a 65◦ phase compensation, one have that

T1 = 0.160 and T2 = 0.532, given a total amplitude gain of these blocks of 0.301.

• The absolute value of the residue is found to be 0.51 by looking at the numerical

values used for establishing Figure D.7.

• For a desired inter-area mode relative damping of 10%, the real value of the new

modal position is calculated to being αia,new = −0.3437 by using Equation (5.4),

yielding a change in the mode of |∆λia| = |∆αia| = 0.092.

• Thus, the proportional gain factor is calculated to Kp = 149 by Equation (5.3).

Selecting the proportional gain factor, washout filter and lead-lag filters with these

parameters, yields to modal plot shown in Figure D.10.

Figure D.10: Inter-area mode of interest for system without and with BESS tuned with

the aforementioned parameters aiming for a straight left-wards shift in the complex

plane and a targeted damping of 10%.

D.1Since lims→∞| sT
1+sT | = 1 yields a washout filter gain closer to unity when the frequency of the

inter-area mode is larger.
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It can be seen that the mode is moved left-wards in the complex plane as expected.

However, the desired relative damping is not met as accurately as was the case for the

base case system in Section 5.4. The Relative Residue Index could explain the mismatch

between the targeted and actual gain in damping (see Appendix A.3). For this case,

the residue value is lower than the case for the base case system (0.51 vs. 0.80), which

intuitively could be interpreted as the residue ratio to the rest of the residues in the

considered control loop system is smaller. Thus, it seems evident that the interaction

with other modes in the system is greater for this case, thereby increasing the amount of

error present when designing the controller for targeting a desired value of the relative

damping.

D.2.4 Validation of Optimality

Similarly as for the base case system, the validity of the supposedly optimal feedback

signal combination and location is checked further. This is done by selecting three

different locations and three different feedback signal combinations, and see whether

one of them outperforms the selected location/signal combination.

Table 19: Frequency fia and relative damping ζia of the inter-area mode for different

locations of the BESS using different feedback signals in the second system. Without

BESS in the system, the eigenvalue is having a frequency of 0.54 Hz and relative

damping of 7.33%.

BESS LOCATION FEEDBACK SIGNAL fia ζia ∆ζia

B6100

θ3249-θ5300 0.54 Hz 9.50 % 2.17 %

B6100 θ3249-θ6100 0.54 Hz 9.43 % 2.10 %

θ7000-θ6100 0.54 Hz 9.39 % 2.06 %

B5300

θ3249-θ5300 0.54 Hz 9.45 % 2.12 %

B5300 θ3249-θ6100 0.54 Hz 9.39 % 2.06 %

θ7000-θ6100 0.54 Hz 9.36 % 2.03 %

B3249

-(θ3249-θ5300) 0.54 Hz 8.52 % 1.19 %

B3249 -(θ3249-θ6100) 0.54 Hz 8.39 % 1.06 %

-(θ7000-θ6100) 0.54 Hz 8.35 % 1.02 %

From Table 19, it seems evident that the selected location and feedback signal provides

the largest amount of additional damping in the system. Notice the small difference

in performance by selecting either B6100 or B5300 in combination with the feedback

signal θ3249-θ5300, an increase in damping of 2.17% and 2.12% respectively. This could be

anticipated from the residue plot for variations in BESS locations provided in Figure
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D.7. The difference between the bar corresponding to B6100 and B5300 is almost

negligible, thus being reflected as similar performance in terms of damping the mode.

In addition, the residue corresponding to placing the BESS at B3249 is slightly larger

than half of the two others, thereby yielding an approximated halving of the additional

damping ∆ζia for all three different feedback signals considered. Similarly, as for the

base case, the proposed method of selecting feedback signals and BESS location seems

to identify the optimal combination for this system having a fundamentally different

system topology. One also notices that the optimal feedback signals (θ3249-θ5300) do not

correspond to quantities measurable at the optimal placement location B6100. Hence,

this example illustrates that in terms of wide-area damping controllers, the best-suited

controller signals might be remotely located in the system and not associated with the

actual controller location.

D.3 Validating the Selection Procedure in a Highly Modified

System Containing a Line Between Western Norway and

Eastern Sweden

A somehow unrealistic system is created to investigate the proposed method for signal

and location selection and justify the validity further. The motivation is to reduce the

impact of bus 6100, such that, most likely, a new feedback signal and BESS location will

yield the optimal solution. The system is fundamentally the same as the system ana-

lyzed in Section D.2, but an additional low impedance line between the west-coast of

Norway (bus 6100) to Forsmark (bus 3300) is included. The modification is illustrated

in Figure D.11.
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Figure D.11: Illustrating the change made to the system for obtaining a fundamentally

different system topology by inserting a highly unrealistic line between Norway and

Sweden.

In reality, one would never build this line due to the geographical distance separating

the buses. However, it could, in principle, be a suitable solution in some countries for

lowering the total system impedance from production cites and high-demand areas.

However, it fundamentally changes the system topology, thereby influencing the op-

timal feedback signal and BESS location significantly and yielding an exciting system

for a ”what if” scenario. For this analysis, the proportional gain factor will be con-

sidered neither tuned for applying specific additional damping. This aims to showcase

how another solution is the optimal solution for a system where the topology has

changed significantly. Hence, only the relative difference between the gains obtained

for the different feedback signals and BESS location selections will be considered.
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D.3.1 Signal Selection

The residue magnitude plot used for selecting the optimal signal for this system is

presented in Figure D.12, which naturallyD.2 suggest that the impact of signals associ-

ated with Bus 6100 is significantly reduced compared to the base case system in Figure

5.11 and the second investigated system in Figure D.6.

Figure D.12: Residues for feedback signal selection for the 3rd system.

For this system, the optimal feedback signal is a combination of the voltage angle at bus

6000 and bus 3249. This is not easy to see when looking at Figure D.12 but is evident

from looking at the actual numbers used for creating the plot. When the feedback

signal is determined, the next step is to determine the optimal BESS location.

D.2Removing some of the impacts of Bus 6100 was a design criterion when creating the system.
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D.3.2 Location Selection

When deciding the optimal BESS location, the result shown in Figure D.13 are used.

Figure D.13: Selecting optimal BESS location for the 3rd system.

For this system, it seems like several candidate locations would be appropriate loca-

tions. However, Bus 3249 stands out by having a slightly larger value of the residue

compared to Bus 7000 and Bus 7100.
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D.3.3 Controller Parameters Selection

A further look is taken into the phase shifts of the residues for the different locations.

Figure D.14: Residues for different BESS location. Bare in mind the scaling of the

axis.

From Figure D.14 one have that the residues for the different locations investigated

seem to be laying on an approximately straight lineD.3.

Without providing the details behind the tuning of the parameters and proportional

gain factorD.4, the lead-lag filter is aiming at providing a phase shift of −70◦, and the

proportional gain factor is chosen to Kp = 200. The purpose of analyzing this system

is to see further the validity of the proposed method for selecting feedback control

signal and BESS location. The shift in the eigenvalue when using the selected optimal

feedback signal and BESS location is shown in Figure D.15.

D.3Notice the scaling of the axis. The values on the real axis are significantly smaller than the values

in the imaginary axis.
D.4The same procedure used for the other systems are applied.
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Figure D.15: Inter-area mode of interest for system without and with BESS tuned with

the aforementioned parameters aiming for a straight left-wards shift in the complex

plane in the 3rd system

It can be seen from Figure D.15 that the mode is shifted left-wards in the complex plane,

and the damping has increased. Due to the low value of the residue for this system,

together with the small amplitude gain of the lead-lag blocks for a −70◦ targeted phase

compensation, the Kp would have to be increased further if more damping is desired in

this system. However, this is not looked further into, as the relative difference between

the different feedback signals and BESS locations is of interest when validating that

the chosen signals are the optimal solution.

D.3.4 Validation of Optimality

In order to validate that the chosen signal and location is the optimal, analysis are car-

ried out by investigating three different locations, together with three different feedback

signal combinations, in a similar matter that is conducted for the base case system in

Section 5.4.5 and the modified system in Section D.2. For this system containing the

unrealistic line between Norway and Sweden, B3249 is the suggested optimal placement

of the BESS. In addition, B5300 and B6100 are also considered, both of which showed

promising solutions in the other systems considered. The feedback signals looked fur-

ther into for this case corresponds to the signal yielding the maximum residue value

for this given system ±(θ6000-θ3249), and the two feedback signals yielding the optimal
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solution in the other systems, ±(θ6100-θ7000) and ±(θ5300-θ3249) respectively. The results

are presented in Table 20.

Table 20: Frequency and relative damping of the inter-area mode for different loca-

tions of the BESS using different feedback signals. Without BESS in the system, the

eigenvalue is having a frequency of 0.62 Hz and relative damping of 6.40%.

BESS LOCATION FEEDBACK SIGNAL fia ζia ∆ζia

B3249

θ6000-θ3249 0.62 Hz 7.21 % 0.81 %

B3249 θ5300-θ3249 0.62 Hz 7.17 % 0.77 %

θ6100-θ7000 0.62 Hz 6.91 % 0.51 %

B5300

-(θ6000-θ3249) 0.62 Hz 6.95 % 0.55 %

B5300 -(θ5300-θ3249) 0.62 Hz 6.93 % 0.53 %

-(θ6100-θ7000) 0.62 Hz 6.84 % 0.44 %

B6100

-(θ6000-θ3249) 0.62 Hz 6.83 % 0.43 %

B6100 -(θ5300-θ3249) 0.62 Hz 6.81 % 0.41 %

-(θ6100-θ7000) 0.62 Hz 6.75 % 0.35 %

Similarly, as for the other systems considered, the suggested optimal feedback signal

combination and BESS locations yield the largest change in the relative damping ∆ζia

of the mode of interest for the different combinations presented in Table 20D.5. In addi-

tion, it can be seen from Table 20 that for a given feedback signal, the magnitude of the

additional damping of the mode is larger the greater the magnitude of the residue for

the corresponding Bus is in Figure D.13. Furthermore, by keeping the BESS location

fixed, it is evident that the amount of damping provided is correlated with the residue

value for the given feedback signal combination seen in Figure D.12. The suggested

optimal feedback signal combination ±(θ6000-θ3249) only slightly outperforms the al-

ternative feedback signal ±(θ5300-θ3249), which could be anticipated from the residue

magnitudes from Figure D.12. Hence, even for this system having a fundamentally dif-

ferent system topology than the other systems analyzed, employing residue magnitudes

for choosing the feedback signal combination and BESS location seems to yield the op-

timal solution. The validity of the proposed method for signal and location selection

is thus strengthened even further. Interestingly, for all of the investigated systems,

the optimal combination of signal and location is different, strengthening the proposed

method’s credibility.

D.5A large amount of other seemingly suitable combinations are also checked, although not presented

in the table. None of them outperformed the suggested optimal solution.
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