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Summary

Field development planning is an essential phase in the life of an offshore field as many vital

decisions, such as type of platform, production and drilling schedule, and capacity of processing

facilities, are made during this stage. To address these challenges, SUBPRO, a research center for

subsea production and processing, and BRU21, a research program on digitalization and automa-

tion solutions for the oil and gas industry, performed research to develop automated methods to

provide decision-support in early field development.

This thesis picked up and continued the specialization project work of Bonti (2020). In the work

of Bonti (2020), non-linear programming (NLP) optimization model was developed to determine

drilling and production schedules and capacity of processing facilities that maximize project net

present value (NPV). All wells were considered identical and part of a subsea network. This

thesis studied the effect of uncertainties on the optimization results and developing and testing

methods to determine the best field design considering such uncertainties. The effect of uncertain

parameters such as initial oil in place, cost factor, well performance, and oil price was studied using

simulation-based optimization and the Latin Hypercube Sampling (LHS) method.

Several field design methods using the results of the LHS simulations were tested, i.e., drilling

schedule and processing capacities were selected using several criteria. The performance of the

resulting design was then tested by repeating the LHS study but optimizing the production profile

only and compared against the original results of the LHS. The analysis using the LHS method

also evaluated the effect of 1) relaxing the upper bound in the number of producer wells allowed

and 2) considering flexibility in the drilling schedule by having wells that can be ”optional” to be

drilled or not. The study showed that the base uncertainty model utilized an adequate number

of producer wells (9). On the other hand, the inclusion of wells that are optional to be drilled or

not significantly decreased the percentage difference of the NPV figures with respect to the base

simulation results.

Stochastic programming (SP) was also employed to determine the optimal field design considering

uncertainties. However, due to its computational complexity, it was not possible to include all

uncertain parameters evaluated in the LHS. The optimal field design using the SP and the best

methods based on the LHS results are very similar and have similar economic performances. Due

to the complexity and the high running time required by the SP model, it is therefore recommended

to use a design method based on LHS.

Lastly, the non-linear model was improved by including the distinct well performance in the produc-

tion performance model and pipeline length in the cost model. The results and the computational

performance of the revised model were compared against the model of Alkindira (2020), who em-

ployed piecewise linearization (PWL) using SOS2 variables instead of a non-linear formulation.

The comparison showed that both models produced almost identical drilling schedule, production

profile, and NPV figure. However, the non-linear model was superior to the linear model in running

time, with 1.8 seconds compared to 21544.5 seconds. Therefore, the non-linear model seems to be

a superior modeling and optimization approach to the PWL formulation.
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Chapter 1
Introduction

1.1 Background

Field development planning is an essential phase in the life of an offshore field as many vital

decisions, such as type of platform, production and drilling schedule, and capacity of processing

facilities, are made during this stage. Those decisions could have huge impacts on the economic

aspects of the field. For instance, increasing the production rate could cause two contradicting

outcomes, higher revenue or higher capital expense due to different production facilities. Thus, an

organized effort of deciding them has to be made for the purpose of maximizing the value of the field.

It is often not possible to explore all possible scenarios to determine the most optimal concept

due to time limitations and extended analysis time. Moreover, difficulties in integrating multiple

disciplines and transferring important data between the discipline groups are also obstacles that

slow down the process. To address these challenges, SUBPRO, a research center for subsea produc-

tion and processing, and BRU21, a research program on digitalization and automation solutions

for the oil and gas industry, performed research to develop automated methods to provide decision-

support in early field development. The main idea of the method is to screen and search for the

best combination of decisions but in an automated manner using numerical optimization.

The methodology has been developed, studied, and implemented by several previous works to

optimize the net present value (NPV) of the field development. Up to date, the developed meth-

odologies are capable of determining the most optimum production profile, drilling schedule, and

recovery mechanism that maximize the net present value (NPV) of the field. All previous works

have something in common in which the non-linear equations (e.g., production deliverability equa-

tion) are approximated by performing a piecewise linearization (PWL). Unlike them, the specializ-

ation project work of Bonti (2020) has successfully implemented the automated field development

to formulate the NPV optimization problem by using non-linear programming (NLP) techniques.

However, the formulation made some simplifications, such as assuming that all the wells have sim-

ilar performance and neglecting the gas and water production rate.

This thesis will pick up and continue the specialization project work by studying the uncertainties

in the life of an offshore field, such as oil in place, cost factor, oil price, and well performance.

The study aims to propose an optimal design of the field based on the uncertainties. Another

work of this thesis is to improve the formulation to include the distinct well performance. The

1



improved formulation will also consider a gas-oil ratio (GOR) and water cut (WC) curves, instead

of fixed values, to calculate the gas and water production rates, respectively. The ultimate goal is

to compare the results and performance of the non-linear formulation with the reference case from

the work of Alkindira (2020) in which the PWL approximation is performed.

1.2 Objective

The primary objective of this project is to further develop the non-linear NPV optimization for-

mulation developed by Bonti (2020) to make it more realistic, quantify the effect of uncertainty,

and optimize its computational performance. The thesis is divided into the following four tasks:

1. Extend the non-linear formulation developed in the specialization project by including gas

and water production rate in addition to the injection well factor and define it as the base

formulation.

2. Compare the deterministic simulation performance between two different tools, Pyomo and

GAMS. The most optimal tool will be utilized for further studies.

3. Study the effect of several uncertainties such as oil in place, well performance, cost factor,

and oil price on the base model using the selected tool. The study will be performed using

two methods, Latin Hypercube Sampling (LHS) and Stochastic Programming (SP). At the

end of the study, an optimal design from each method will be proposed.

4. Further improve the base formulation by including the distinct well performance in the pro-

duction performance model and pipeline length in the cost model. A comparison will be made

with the work of Alkindira (2020) to quantify the difference between linear and non-linear

programming approaches.

1.3 Case Study: The Alta-Gohta Field

Figure 1.1: Location of Loppa High Area (Alkindira, 2020)

The field which is used as the case study for this thesis is located at the Loppa High Area, and

it consists of two non-communicating reservoirs, reservoir 1 and reservoir 2. The illustration in

Figure 1.1 shows the location of Loppa High Area. They are both saturated oil with the presence of

2



gas cap. It has been estimated that Reservoir 1 has recoverable reserves of oil of 15.6 million Sm3

and Reservoir 2 of 6.5 million Sm3. While the production wells in reservoir 1 will be completed

with a gas lift system, the wells in reservoir 2 will not use any artificial lift. The project horizon is

20 years long. In this work, taxes and royalties are neglected. The discount factor is 12 percent.

1.4 Programming Languages and Platforms Employed

There are several platforms available that can be used to formulate and solve the optimization

problem. Two specific platforms that are utilized in this thesis are called GAMS and Pyomo.

GAMS is a high-level modeling system for mathematical programming and optimization. It con-

sists of a language compiler and a range of associated third-party solvers. GAMS is commercial

software, and a license is needed to access its full feature. The features include a higher number of

variables and constraints limit and access to the selection of solvers. All works in this thesis use

GAMS version 34.2.0 and a community license.

On the other hand, Pyomo, which is also used in the specialization project of Bonti (2020), is

a Python-based open-source optimization modeling language (Hart et al. (2017)). It supports the

formulation of complex mathematical models for optimization applications which is usually asso-

ciated with commercial algebraic modeling languages (AMLs) such as AMPL. As the definition

implies, such capabilities are accessible within Python, an open-source high-level programming

language with a large set of supporting libraries. Pyomo also supports a wide range of solvers

to solve optimization problems. However, these solvers need to be installed manually or accessed

through the NEOS web server, a free internet-based service for solving numerical optimization

problems, as they are not available in the basic Pyomo package. Pyomo version 5.7 is used to solve

some of the models in this thesis.

Other than the software or programming language itself, a careful selection of the solving en-

gine is needed to solve the problems accordingly. For instance, the model built in this thesis is a

mixed-integer non-linear programming problem, and hence, a strict non-linear programming (NLP)

solver such as IPOPT could not be used. In this thesis, three MINLP solvers are selected based on

their availability and difficulty in the implementation. The model that is formulated in Pyomo uses

the KNITRO solver as it is available in NEOS and solves the problem very well. In comparison, the

GAMS formulated model uses two solvers, which are GAMS/LINDO and DICOPT. The former is

a bit more flexible in which it can be used to solve an uncertainty analysis model (i.e., solve the

model multiple times in the same run). At the same time, the latter is only capable of simulating

a deterministic model.
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Chapter 2
Literature Review

This chapter has been reproduced from the specialization project work of Bonti (2020) and serves

as a brief introduction to the following literature used in the thesis.

2.1 Production Potential

2.1.1 Definition of Production Potential

The production potential is defined as the maximum rate that a field can produce at a particular

point in time (Stanko (2020a)). The maximum production rate is usually reached when the optimal

condition of the production system is fulfilled (e.g., fully open choke, optimal injection rate from

the injection well, and so on).

The production potential is determined by intersecting the inflow performance relationship (IPR)

and tubing performance relationship (TPR) curve, as shown in Figure 2.1. Hence, the production

potential changes over time due to the change in reservoir deliverability and production system.

While reservoir deliverability is reduced in a similar trend to reservoir pressure (i.e., decreased

with time), changes in the production system are usually made on purpose (e.g., drilling new wells,

adjusting the choke opening, and well stimulation, etc.).

Figure 2.1: Illustration of production potential calculation using IPR-TPR (Stanko (2020a))
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As discussed earlier, the reservoir deliverability is decreased with time in a similar trend to reser-

voir pressure. However, it is more dependent on the amount of fluid that has been produced over

time than the time itself. Hence, it can be concluded that the production potential at a particular

point in time is dependent on the cumulative fluid production up to that point in time (Stanko

(2020a)).

The production potential curve is a curve that describes the relationship between the production

potential and cumulative production. The curve can be very useful in planning the production

schedule as it controls the production rate at any point in time, i.e., the field can produce at any

rate which is no greater than the production potential. Figure 2.2 shows that the area below the

curve is a feasible region for rates.

Figure 2.2: Illustration of production potential curve (Stanko (2020a))

There are two production modes in the oil/gas field: plateau mode and decline mode. In the plateau

mode, the field is produced at a constant rate until the production potential can no longer support

it. The production then continues in decline mode. On the other hand, the main objective of the

decline mode is to produce as much as possible, which typically will follow the production potential

since the beginning of the field. Producing in decline more is often not the most economical way

to produce the field because production facilities must be sized for high rates and their cost often

overweighs the gains of early production (Stanko (2020a)).

2.1.2 Construction of Dimensionless Production Potential Equation

Alkindira (2020) and Stanko (2020b) determined that, for many cases, production potential curves

can be computed from curves of current dimensionless potential. The curves of current dimen-

sionless potential are production potential curves where the cumulative production is normalized

by initial oil or gas in place and production potential is normalized by the upper bound of the

production potential.

The procedure in constructing the dimensionless production potential equation is straightforward

if the data are available. The data required is a production potential curve (i.e., qpp vs Np) and

the initial oil in place N .

Consider a production potential curve in Figure 2.3a. The first step is to extract some data
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(qpp, Np) from the original curve. Secondly, divide the values of qpp by the maximum production

rate (i.e., when Np = 0) and Np by N . Finally, plot the new data and the resulting curve can be

represented with a polynomial with a sufficient degree. In this case, a 5th-degree polynomial is

used and Figure 2.3b shows the dimensionless equation with all the coefficients. It is important to

note that the polynomial must intercept the y-axis at qpp,dim = 1.

(a) Production Potential Curve (Alkindira (2020))
(b) Dimensionless Production Potential Curve and its

Equation

Figure 2.3: An illustration of constructing a dimensionless production potential curve and equation

Therefore, the field production potential can be written as:

qpp,f = qpp,max,f · polynomial eq. (2.1)

where qpp,f is the field production potential and qpp,max,f is the maximum production potential of

the field. In the following subsections, qpp,max,f will be discussed in more detail.

2.1.3 Effect of Multi-wells Production System on Production Potential

In an early phase of field planning, the wells are usually assumed to be standalone and identical. If

this is the case, qpp,max,f is merely the maximum potential of a single well qpp,max,well multiplied

by the number of wells available at a given time Nw. However, if a gathering system is applied,

the previous calculation is no longer valid as the contribution of additional wells is no longer

proportional. Thus, a modeling approach is suggested to capture this effect using a ”pancake”

factor (fp) which represents the effect of adding wells to an existing gathering network. The new

formulation can be stated as:

qpp,max,f = qpp,max,well ·Nw · f (Nw−1)
p , {fp ∈ R, 0 ≤ fp < 1} (2.2)

The value of fp is always lower than 1, indicates that the effect of additional wells will be lower

than the product of the maximum potential of a single well multiplied by the number of wells.

For instance, let us consider a case where a field has one well with qpp,max,f = qpp,max,well and

fp = 0.95. Instead of having a double production potential when an additional well is drilled, the

field now has qpp,max,f = 1.9 · qpp,max,well. A better illustration can be seen in Figure 2.4 where

an approximated fp is better fitted to the actual field rate than the one neglecting the effect of the

gathering system.
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Figure 2.4: Illustration of pancake factor curve fitting

The assumption of identical wells is often appropriate for early phases of field planning where there

is limited information about the field.

2.2 Previous Works

As mentioned in the previous chapter, the work in this thesis is based on previous work on auto-

mated field development methodology. The first one, Gonzalez (2020), maximized the NPV of

the Wisting field case by finding the most optimum production and drilling schedule. Gonzalez

performed some analysis to study the effect of some uncertainties such as cost values, reservoir

size, well productivity, and layout of the production system, using probability trees. Based on the

results of her work, Gonzalez concluded that the optimal production profile was mainly influenced

by the recovery method used. At the same time, the drilling schedule was highly affected by the

cost of drilling a well. Furthermore, it was controlled by the maximum number of wells allowed to

be drilled each year until the maximum number of wells in the field is reached.

The next one was the work from Angga (2019), where he applied the same methodology to maxim-

ize two separate objective functions, the plateau duration and NPV, of a three reservoirs synthetic

field case. Angga continued the works of Gonzalez by including the recovery mechanism of each

reservoir as one of the decision variables and added constraints in the scheduling of injection

wells. Angga also performed some uncertainty analysis using Latin Hypercube Sampling (LHS)

and probability trees, which took the uncertainties of oil in-place, oil price, and development and

operational costs. One of the conclusions that Angga made was that the inclusion of both drilling

schedule and recovery method as decision variables alongside the production profile prolonged the

plateau duration. Furthermore, it also significantly increased the NPV of the model compared to

the one that only used production profile as the decision variables. He also showed that quantifying

uncertainty using probability trees and LHS gives similar results.

Finally, Alkindira (2020) further developed the method by considering that wells had distinct

performance and a given well combination had unique production deliverability. By doing so, Al-

kindira increased the complexity of the problems while also increasing the accuracy of the solution.
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Alkindira formulated a model that maximized the NPV of a two non-communicating reservoirs case

by optimizing the production and drilling schedule. To understand the effect of distinct perform-

ance of the well, Alkindira compared the results of a reference case in which the drilling schedule

was fixed with the results of the base case. At the end of the study, Alkindira stated that the

drilling schedule was an important decision variable as it slightly increased the NPV and allowed

the field to drill fewer producer wells than the reference case.

Other than the base formulation, Alkindira also performed NPV optimization for some extreme

cases. It was done by considering the possible changes in water cut (WC) and gas-oil ratio (GOR)

value of the reservoirs to some extreme values in which she maximized or minimized the production

of gas and water. Based on the results, Alkindira concluded that a case where the water and gas

productions were simultaneously minimized has a slightly higher NPV than the base case, while

an extreme case in which a field was producing high water and gas yielded a lower NPV than

the base case. Similar to the previous two works, an uncertainty study was also performed in her

work, where the probability tree method was chosen to understand the effect of some uncertainty

parameters. The uncertainties include oil in place, water and gas production profiles, cost figures,

production potential, and oil price. However, the level of complexity in the formulation forced her

to limit the running time of each case in the uncertainty analysis to accommodate the project time

restriction.

As it is based on Gonzalez (2020) and Angga (2019), the model that Alkindira formulated in her

thesis utilized an identical approach where she represented the non-linear equations (e.g., produc-

tion deliverability equation, gas and water cumulative production) by using Piecewise linearization

(PWL). Such a method made the problem categorized as a mixed-integer linear programming

(MILP) problem instead of mixed non-linear programming (MINLP) problem. In general, the

piecewise linear models are more complex than employing the original nonlinear function. On

the other hand, the nonlinear approach sometimes can converge to local optimal, and additional

heuristics are usually required to find the global optimal. Additionally, MINLP problems are often

challenging to solve. A comparison is needed to understand the benefits and drawbacks of using

such a method.

Provided in Table 2.1 is the comparison between the works of Gonzalez, Angga, and Alkindira.

Table 2.1: Comparison between the previous three works

Works of
Objective

Function(s)
Variables Case Improvement

Gonzalez NPV
Production profile,

Drilling Schedule

Wisting

field

Angga

Plateau

duration,

NPV

Production profile,

Drilling schedule,

Recovery

mechanism

Safari

field - 3

reservoirs

Inclusion of recovery

mechanism as decision

variables

Alkindira NPV
Production profile,

Drilling schedule

Barent

sea - 2

reservoirs

Considering distinct

well performance
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2.3 Mathematical Programming

2.3.1 Non-linear Programming

Definition. Non-linear Programming (NLP) problem is a mathematical problem in which the

objective function is non-linear and/or the feasible region is defined by non-linear constraints

(Bradley et al. (1977)). Non-linearities are sometimes important to represent a problem correctly

so that convergence can be reached. A general form of a non-linear minimization program is stated

as:
Minimize f(x)

Subject to: gi(x) ≤ ai (i = 1, 2, ..., n)

hi(x) = bi (i = 1, 2, ..., n)

x ⊆ R

(2.3)

with x in the equations denote the vector of n decision variables that is x1, x2, ..., xn or can be

written as x = (x1, x2, ..., xn).

Interior Point: Method to solve NLP problems. The interior-point (or barrier) method

was first introduced by Kachiyan in the late 1970s. However, this method was impractical and

could not compete with the simplex method that had been around since 1951. In 1984, a new

method with the same complexity as the previous one and also had a good practical performance

was developed by Karmarkar. Ten years later, a sub-class named the primal-dual method arose

and turned out to be more effective than barrier sub-class, as reported by Schmidt (2015). The

main difference between them is that a single iteration is performed in primal-dual as there is no

distinction between inner and outer iterations. Furthermore, the primal and dual iterations do not

have to be feasible. The differences made primal-dual a preferred method due to its effectiveness

and accuracy.

Consider a non-linear problem below:

min f(x)

s.t. c(x) = 0

x ≥ 0

(2.4)

where the objective function f and constraints c are assumed to be smooth functions. In order to

eliminate the inequality constraints, the barrier method is used in which Equation 2.4 is replaced

with a series of barrier problems written as:

min ϕµ(x) := f(x)− µ
n∑
i=1

lnxi s.t. c(x) = 0 (2.5)

with the barrier parameter (µ > 0) needs to be driven to zero. Equation 2.5 is equivalent to the

following primal-dual system that has been applied with a homotopy method:

∇f(x)−∇c(x)Tλ− z = 0

c(x) = 0

XZe− µe = 0

(2.6)

with ∇c(x) is the Jacobian matrix of the constraint vector c and e is the vector of all ones with

suitable dimesion. The capital letters (X and Z) denote diagonal matrices made up of the corres-

ponding vectors, x and z. λ and z are the dual variables that correspond to Lagrange multipliers
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of the equality constraints and variable bounds, respectively.

The following Karush-Kuhn-Tucker (KKT) system of equations presented in Equation 2.6 is then

solved to yield the search directions (∆x(k),∆λ(k),∆z(k)):
H(x(k)) −∇c(x(k))T −I

∇c(x(k)) 0 0

Z(k) 0 X(k)




∆x(k)

∆λ(k)

∆z(k)

 = −


∇xL(y(k))

c(x(k))

X(k)Z(k)e− µ(k)e

 (2.7)

with ∇xL and H denote the Lagrangian gradient and Lagrangian Hessian, respectively.

The search directions are then used to compute the primal and dual step lengths (α
(k)
pri and α

(k)
dual)

using the following fraction-to-boundary rule:

α
(k)
pri := max

α∈(0,1]
{x(k) + α∆x(k) ≥ (τ − 1)x(k)}

α
(k)
dual := max

α∈(0,1]
{z(k) + α∆z(k) ≥ (τ − 1)z(k)}

(2.8)

where τ ∈ (0, 1) is the fraction-to-boundary parameter.

The new search directions are computed using the following equations:

x(k+1) = x(k) + α
(k)
pri∆x

(k)

λ(k+1) = λ(k) + α
(k)
dual∆λ

(k)

z(k+1) = z(k) + α
(k)
dual∆z

(k)

(2.9)

The barrier parameter µ(k) can also be updated to a different value while ensuring that the sequence

is converging to zero. The iterations stop when the following condition is met:

e(k) := max{‖ ∇xL(y(k)) ‖∞, ‖ c(x(k)) ‖∞, ‖ X(k)Z(k)e ‖∞≤ ε (2.10)

2.3.2 Mixed-Integer Non-linear Programming

Definition. Mixed-Integer Non-linear Programming (MINLP) problem is a mathematical prob-

lem that addresses the non-linear problem with both continuous and integer decision variables

(Sahinidis (2019)). It is crucial for problems that have at least one restricted integer variable.

For instance, one can model complex chemical processes with non-linear equations while integer

variables model discrete decisions. The general form is similar to Equation 2.3 with an addition of

integer restriction for decision variables.

Minimize f(x, y)

Subject to: gi(x, y) ≤ ai (i = 1, 2, ..., n)

hi(x, y) = bi (i = 1, 2, ..., n)

x ⊆ R, y ⊆ Z

(2.11)

Branch and Bound: Method to solve MINLP problem. The branch and bound method

used for MINLP problems is based on the same idea used in Mixed-Integer Linear Programming

(MILP) problems. First, the problem is relaxed to be an NLP problem and solved. If it yields an

integer solution, the procedure stops instantly. Otherwise, the solution becomes the upper bound

to the optimal solution. Then, a tree branch enumeration is performed in which each node of the

tree represents different subset relaxation of the integer constraints. When an integer solution is
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found, it becomes the lower bound to the optimal solution.

In the 1990s and early 2000s, several branch and bound improved methods are introduced. One of

them is the Quesada-Grossman algorithm which Quesada and Grossman developed in 1992. The

main difference between them is that in the Quesada-Grossman algorithm, the nodes remain as LP

subproblems that can be easily updated. If an integer solution is found, the NLP subproblem is

then solved, as shown in Figure 2.5. Consequently, stronger upper bounds are generated to reduce

the branch and bound enumeration (Quesada and Grossmann (1992)).

Figure 2.5: Illustration of Quesada-Grossman algorithm

2.4 Latin-Hypercube Sampling

Sampling is a process used in statistical analysis in which a predetermined value is taken from

its probability distribution. There are many selections of sampling methods and Latin-Hypercube

Sampling (LHS) being one of them. LHS method is an improvement from the conventional sampling

method known as random sampling or Monte Carlo Simulation (MCS), in which it can provide

a more accurate sampling in fewer iterations. The main principle of LHS is to divide the cumu-

lative curve into equal intervals on the cumulative probability scale (0 to 1.0). A sample is then

randomly taken from each interval of the probability distribution. By doing so, sampling is forced

to represent values in each interval, and at the same time, is forced to recreate the probability

distribution (UiO (2019)).

As an illustration, let us consider an example where five random samples are expected from a

cumulative density function (CDF) curve. The distribution is a collection of numbers between 0

and n. First, the CDF curve must be divided into five equal intervals. The first sample must

be taken from the interval between (0,n/5). The second sample would be taken from the inter-

val between (n/5,2n/5) and so on. The approach being used during the LHS is called ”sampling

without replacement”. Once a sample is taken from a particular interval, it is not sampled from

again as its value is already represented in the sample set. The above illustration is shown in

Figure 2.6.
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Figure 2.6: Illustration of LHS method

The LHS method can also be used to sample from multiple variables. However, it is important

to ensure that the values sampled from one variable are independent of those samples from other

variables. It is done by randomly selecting the interval to draw a sample from each variable. For

instance, at the first iteration, variable x may be sampled from interval five while variable y is

sampled from interval one. At the second iteration, variable x is sampled from interval three and

variable y is sampled from interval two, and so on. As a result, the variables will not correlate with

each other and maintain the desired randomness. The above illustration is shown in Figure 2.7.

Figure 2.7: Illustration of LHS method implementation on multiple variables
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2.5 Stochastic Programming

Stochastic programming refers to a collection of methods for maximizing or minimizing an objective

function when randomness is present (Lauren (2015)). The main idea of stochastic programming

is to require the decision-maker to decide one or more variables now and then to minimize the

expected costs based on that decision. There are two forms of stochastic programming: two-stages

and multi-stages. The former resolved all the uncertainties in the second stage and recourse actions

can be taken given this new information. For the latter, uncertainties that are resolved per stage

are based on the definition in the formulation. In this thesis, the only form that will be considered

is the two-stages stochastic programming and to understand things clearly, an example about the

newsvendor problem presented in Birge and Louveaux (2011) will be reproduced below.

The newsvendor has to decide early in the morning the number of newspapers to buy from the

publisher on a particular day to be sold to the customer. Let x be the number of newspapers

bought in the morning, c be the buying price per paper, y be the number of newspapers sold, and

q be the selling price per paper. The vendor can only carry a maximum of u newspaper each day.

At the end of the day, any unsold newspaper can be returned to the publisher for a returned price

of r in which r is less than c. The number of newspapers being returned to the publisher is denoted

by w. Based on the experience of the newsvendor, demand for newspapers varies over days and is

described by a random variable d.

Problems displayed above can be formulated as follows:

minx c(x)− L(x)

s.t. 0 ≤ x ≤ u

where

L(x) = Ed Q(x, d)

and
Q(x, d) = miny,w − qy − rw
s.t. y ≤ d

y + w ≤ x
y,w ≥ 0

where Ed denotes the mathematical expectation (i.e., average) with respect to d. L(x) represents

the expected revenue on sales and returns while Q(x, d) is the revenue on sales and returns if the

demand is equal to d. The formulation showed above illustrates the two-stages form of stochastic

programming where the amount of newspaper bought has to be decided before any information

about the demand is known. When the information about the demand is given in the second stage,

the profit can be computed.
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Chapter 3
Base Model

The base model formulation in this thesis is based on the specialization project work of Bonti

(2020), in which the objective function is to maximize the net present value (NPV). The decision

variables of the formulation are the production profile and the drilling schedule of the field. One

of the objectives of this chapter is to make a slight adjustment to the model formulated in the

project. The other objective is to decide the most optimum tool-solver combination to solve the

model as it will be utilized for further studies in the thesis. It is done by using each option to run

the simulation several times using a fixed input or widely known as a deterministic simulation.

3.1 Base Model Formulation

The base model is formulated similar to the one in the specialization project with a slight improve-

ment that includes the gas-oil ratio (GOR) and water cut (WC) curves as a function of recovery

factor and the injection well factor for each reservoir. The GOR and WC curves are used to

calculate the gas and water production rate. The more detailed formulation is discussed below:

3.1.1 Sets

Sets are an important aspect of optimization model as almost all variables and constraints are

indexed by them. The following are sets that are defined in this model:

• T = {1, . . . , 21}
T is a set of years, which in this case is limited to 1 year of production startup and 20 years

of production horizon.

• Res = {r1, r2}
Res is a set of reservoirs, which in this case is limited to 2 reservoirs.

3.1.2 Parameters

Parameters act as inputs in the optimization model. The value, in general, is constant but can be

changed for sensitivity study in the later stage. The following are parameters defined that are in

this model:
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• Scalar Parameters

– Nw,f,year: Maximum number of producer wells drilled at the field each year

value: 3

– fp: Factor represent the effect of adding more wells to an existing gathering network.

value: 0.973

– days: Number of operational days per year.

value: 365

• Indexed Parameters

– Nr, ∀r ∈ Res
Initial oil in place of reservoir-r.

value: see Table 3.1

– qpp,well,r, ∀r ∈ Res
Maximum oil production potential for each well at reservoir-r.

value: see Table 3.1

– Nw,pd,r, ∀r ∈ Res
Number of pre-drilled producer wells at reservoir-r.

value: see Table 3.1

– Nw,max,r, ∀r ∈ Res
Maximum number of producer wells for each reservoir.

value: see Table 3.1

– Nw,injprod,r, ∀r ∈ Res
Ratio between the number of production and injection wells drilled at reservoir-r.

value: see Table 3.1

Table 3.1: Parameters value for each reservoir

r Nr (×106 Sm3) qpp,well,r (Sm3/d) Nw,r,pd Nw,r,max Nw,r,injprod

1 56.25 4592.47 3 6 0.50

2 39.25 2852.22 0 3 0.33

– Dimpoti,r, ∀i ∈ {1, 2, 3, 4, 5} ∀r ∈ Res
Coefficients of the dimensionless oil production potential polynomial equation of reservoir-

r.

value: see Table 3.2

– gori,r, ∀i ∈ {1, 2, 3, 4, 5} ∀r ∈ Res
Coefficients of the gas-oil ratio polynomial equation of reservoir-r.

value: see Table 3.3

– wci,r, ∀i ∈ {1, 2, 3, 4, 5} ∀r ∈ Res
Coefficients of the water cut polynomial equation of reservoir-r.

value: see Table 3.4

Table 3.2: Dimensionless potential equation coefficients for each reservoir

r Dimpot1,r Dimpot2,r Dimpot3,r Dimpot4,r Dimpot5,r

1 -39.4 -13.9 6.3 12.7 -6.7

2 7067.6 -3761.5 553.0 21.8 -12.7
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Table 3.3: Gas-oil ratio equation coefficients for each reservoir (in 103 Sm3/Sm3)

r gor1,r gor2,r gor3,r gor4,r gor5,r

1 556.88 -353.19 92.64 -5.27 0.32

2 11358.98 -3064.03 288.79 -5.49 0.15

Table 3.4: Water cut equation coefficients for each reservoir

r wc1,r wc2,r wc3,r wc4,r wc5,r

1 -111.57 119.26 -42.60 6.84 0.011

2 -178.94 95.27 -16.31 0.96 0.03

• Economic Parameters

– D1: Coefficient of DrillEx equation (in Million NOK/well)

value: 500

– Ci, ∀i ∈ {1, 2, 3, 4, 5}
Coefficients of CapEx equation

value: see Table 3.5

Table 3.5: CapEx equation coefficients

i Ci Units

1 50 Million NOK/Wells

2 0.856 Million NOK/Sm3/d

3 4.42E-2 Million NOK/Sm3/d

4 2.35E-4 Million NOK/Sm3/d

5 2150 Million NOK

– Oi, ∀i ∈ {1, 2, 3, 4, 5}
Coefficients of OpEx equation

value: see Table 3.6

Table 3.6: OpEx equation coefficients

i Oi Units

1 723.3 Million NOK

2 6.5 Million NOK/Wells

3 2.36E-2 Million NOK/Sm3/d

4 1.85E-18 Million NOK/Sm3/d

5 3.04E-21 Million NOK/Sm3/d

– i: Discount factor

value: 0.12
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– Po: Oil price (in USD/bbl)

value: 60

– vc: Volume conversion (in bbl/Sm3)

value: 6.29

– xr: Exchange rate to convert oil price (in NOK/USD)

value: 8.5

3.1.3 Variables

A variable is a quantity that is assumed to be capable of varying in value during the optimization

process. Unless stated otherwise, all variables in this model are within real values. The following

are variables that are defined in this model:

• Independent Variables

– qo,r,t ∀r ∈ Res ∀t ∈ T
Oil production rate of reservoir-r at time-t (in Sm3/d)

– Nw,r,t ∀r ∈ Res ∀t ∈ T
Number of producer wells in reservoir-r at time-t

• Dependent Variables

– qo,f,t ∀t ∈ T
Oil production rate of the field at time-t (in Sm3/d)

– qo,f,max: Oil production rate capacity of the field throughout the field life (in Sm3/d)

– qpp,r,t ∀r ∈ Res ∀t ∈ T
Oil production potential of reservoir-r at time-t (in Sm3/d)

– qg,r,t ∀r ∈ Res ∀t ∈ T
Gas production rate of reservoir-r at time-t (in 106 Sm3/d)

– qg,f,max: Gas production rate capacity of the field throughout the field life (in 106 Sm3/d)

– qw,r,t ∀r ∈ Res ∀t ∈ T
Water production rate of reservoir-r at time-t (in Sm3/d)

– qw,f,max: Water production rate capacity of the field throughout the field life (in Sm3/d)

– Nw,f,t ∀t ∈ T
Number of wells in the field at time-t

– Np,r,t ∀r ∈ Res ∀t ∈ T
Cumulative oil production of reservoir-r at time-t (in Sm3/d)

– Np,f,t ∀t ∈ T
Cumulative oil production of the field at time-t (in Sm3/d)

– PVd,t ∀t ∈ T
Present value of CapEx at time-t (in Million NOK)

– PVc.t ∀t ∈ T
Present value of subsea CapEx at time-t (in Million NOK)

– PVpre: CapEx made prior the production start for the production facility (in Million

NOK)

– PVo,t ∀t ∈ T
Present value of operational expenditure at time-t (in Million NOK)
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– PVr,t ∀t ∈ T
Present value of revenue at time-t (in Million NOK)

– DCFt ∀t ∈ T
Discounted cash flow at time-t (in Million NOK)

– NPV : Net present value (in Million NOK)

3.1.4 Objective Function

The objective of the model is to maximize the net present value (NPV). It can be expressed as:

Maximize NPV (3.1)

3.1.5 Constraints

A constraint is defined as a condition of an optimization problem in which the solution must satisfy.

In this formulation, the constraints mainly control the two main decision variables, the production

profile and the drilling schedule. However, several constraints quantify the economic variables of

the problem as the objective function is to maximize the NPV. The following are constraints that

are defined in this formulation:

Equality Constraints

• At the initial condition, the cumulative oil production for both reservoirs equals to zero,

while the number of producer wells equals to pre-drilled wells for each reservoir.

Np,r,0 = 0 ∀r ∈ Res (3.2)

Nw,r,0 = Nw,r,pd ∀r ∈ Res (3.3)

• Cumulative production for each reservoir is calculated using the backward trapezoidal integ-

ration method. This constraint will be iterated for each reservoir and time step.

Np,r,t+1 = Np,r,t +
(qo,r,t+1 − qo,r,t) · days

2
, ∀r ∈ Res ∀t ∈ T \ {21} (3.4)

• Oil production potential is calculated using a 5th-degree polynomial equation derived from

the actual plots. It includes a ”pancake” factor which represents the effect of additional wells.

qpp,r,t = Nw,r,t · qpp,well,r · f (Nw,r,t−1)
p ·

(
dimpot1,r

(
Np,r,t
Nr

)5

+ dimpot2,r

(
Np,r,t
Nr

)4

+ dimpot3,r

(
Np,r,t
Nr

)3

+ dimpot4,r

(
Np,r,t
Nr

)2

+ dimpot5,r

(
Np,r,t
Nr

)
+ 1
)
, ∀r ∈ Res ∀t ∈ T

(3.5)

• Gas and water production rates are a function of oil production rate and each corresponding

parameter (GOR for gas and WC for water).

GOR = gor1,r

(
Np,r,t
Nr

)5

+ gor2,r

(
Np,r,t
Nr

)4

+ gor3,r

(
Np,r,t
Nr

)3

+ gor4,r

(
Np,r,t
Nr

)2

+ gor5,r

(
Np,r,t
Nr

)
+ 1
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qg,r,t = qo,r,t ·GOR, ∀r ∈ Res ∀t ∈ T (3.6)

WC = wc1,r

(
Np,r,t
Nr

)5

+ wc2,r

(
Np,r,t
Nr

)4

+ wc3,r

(
Np,r,t
Nr

)3

+ wc4,r

(
Np,r,t
Nr

)2

+ wc5,r

(
Np,r,t
Nr

)
+ 1

qw,r,t = qo,r,t ·
WC

1−WC
, ∀r ∈ Res ∀t ∈ T (3.7)

• Each variable that represents the field is defined as the summation of relevant variable of

each reservoir.

qo,f,t =
∑
r∈Res

qo,r,t ∀t ∈ T

qg,f,t =
∑
r∈Res

qg,r,t ∀t ∈ T

qw,f,t =
∑
r∈Res

qw,r,t ∀t ∈ T

Nw,f,t =
∑
r∈Res

Nw,r,t ∀t ∈ T

Np,f,t =
∑
r∈Res

Np,r,t ∀t ∈ T

(3.8)

Inequality Constraints

• Production rate of each reservoir at any point in time should never exceed its production

potential.

qo,r,t ≤ qpp,r,t, ∀r ∈ Res ∀t ∈ T (3.9)

• The following constraints are related to the field and each reservoir number of producing

wells. First, it must be guaranteed that the number of producing wells for each reservoir are

non-decreasing.

Nw,r,t+1 −Nw,r,t ≥ 0, ∀r ∈ Res ∀t ∈ T \ {21} (3.10)

The next one is that each reservoir number of producing wells is not greater than the specified

maximum number of producing wells.

Nw,r,t ≤ Nw,r,max, ∀r ∈ Res ∀t ∈ T (3.11)

The last one represents that at most, three new producer wells can be drilled in the field

each year.

Nw,f,t+1 −Nw,f,t ≤ Nw,f,year, ∀t ∈ T \ {21} (3.12)

• Cumulative production of each reservoir at certain time must be greater than or equal to the

one from previous time step. Furthermore, it should not exceed its initial oil place.

Np,r,t ≤ Np,r,t+1 ∀r ∈ Res ∀t ∈ T \ {21}
Np,r,t ≤ Nr ∀r ∈ Res ∀t ∈ T

(3.13)

• The following inequality constraints are used to determine the fluid production capacity by

finding the maximum fluid production rate throughout the field life.

qo,f,t ≤ qo,f,max, ∀t ∈ T
qg,f,t ≤ qg,f,max, ∀t ∈ T
qw,f,t ≤ qw,f,max, ∀t ∈ T

(3.14)
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Economic Constraints

• As it is calculated before the production started at t = 1, the expenditure for the pre-drilled

wells is not discounted and calculated as follows:

PVd,1 =
∑
r∈Res

(Nw,r,1 · (1 +Nw,injprod,r)) ·D1 (3.15)

The present value of DrillEx for each point of time since the beginning of field life is formulated

as follows:

PVd,t+1 =

∑
r∈Res ((Nw,r,t+1 −Nw,r,t) · (1 +Nw,injprod,r)) ·D1

(1 + i)t
∀t ∈ T \ {21} (3.16)

• CapEx for subsea equipment is computed using similar equations as Equation 3.15 and

Equation 3.16. The only difference is that the coefficient used in this formulation is for the

cost of subsea equipment instead of the well itself.

PVc,1 =
∑
r∈Res

(Nw,r,1 · (1 +Nw,injprod,r)) · C1

PVc,t+1 =

∑
r∈Res ((Nw,r,t+1 −Nw,r,t) · (1 +Nw,injprod,r)) · C1

(1 + i)t
∀t ∈ T \ {21}

(3.17)

• CapEx for production facility is dependent on fluid production capacity and some other

related parameters. It is calculated as follows:

PVpre = qo,f,max · C2 + qw,f,max · C3 + qg,f,max · C4 + C5 (3.18)

• Operational expenditure is a function of field fluid production rate and the number of wells

at a certain point in time. Hence, the present value of it is defined as:

PVo,t =
O1 +O2 ·Nw,f,t +O3 · qo,f,t +O4 · qw,f,t +O5 · qg,f,t

(1 + i)t
∀t ∈ T (3.19)

• Revenue for each year is calculated by multiplying the oil production in one year with the

oil price, which in this case is kept fixed. On the other hand, gas is assumed to be reinjected

and not sold. therefore gas sales are equal to zero.

PVr,t = Po · xr · vc ·
Np,f,t −Np,f,t−1

(1 + i)t
∀t ∈ T (3.20)

• Discounted cash flow (DCF) is a function of the present value of revenue, DrillEx, CapEx,

and OpEx.

DCF0 = −(PVpre + PVd,0 + PVc,0)

DCFt = PVr,t − PVd,t − PVc,t − PVo,t ∀t ∈ T
(3.21)

• Finally, the NPV is calculated using the following equation:

NPV =
∑
t∈T0

DCFt (3.22)

3.2 Implementation in Pyomo and GAMS

The implementation of the base formulation in Pyomo is similar to the specialization project work

of Bonti (2020), in which the models are built using two files structure, the model file and the data
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file. The formulation presented in the previous sections (i.e., sets, parameters, variables, objective

function, and constraints) is declared in the .py extension file called as model file. It also contains

a command to load the data file as well as a command to solve the model. With an extension of

.dat, the data file stores the value of each declared parameters; thus, it is important to load the

file before the model is solved. Another important thing to be defined is the solver in which the

KNITRO solver from NEOS web server is chosen to solve the Pyomo model.

On the other hand, the implementation of the base formulation in GAMS is slightly different from

Pyomo, where the model and data are included in one single .gms extension file. It also requires

a different style in writing the line/code. One thing important in implementing the formulation

in GAMS is that the type of problems and solvers have to be defined correctly. For instance, the

problem formulated in this study is a mixed-integer non-linear programming (MINLP) problem

and GAMS/LINDO solver is chosen as the solver. Thus, there should be a line specifying the

type of problem to be MINLP and the solver name by typing ”option minlp = LINDO” before the

problem is solved. An incorrect statement would lead to error as some limitations, such as the use

of discrete variables in common non-linear problem (NLP) or the use of power sign (**) in linear

problem (LP), are applied.

3.3 Deterministic Simulations

Deterministic simulations usually refer to simulations of a certain formulation where parameter

values fully determine the output. In contrast to stochastic simulations, where random variables

are present due to uncertainties, all parameter values in the deterministic simulations are known.

In this chapter, the deterministic simulations are performed to compare two combinations of plat-

form and solver. The comparison is made to select the most optimum platforms for further studies

in the thesis. Using the most optimum option increases the effectiveness of the solving process and

the accuracy of the results. The optimum level of the platforms is defined by two criteria, running

time and results stability. Results stability is an important criterion as a different starting point

could lead to an infeasible solution.

In the specialization project work of Bonti (2020), the model is formulated using Pyomo and

solved using the KNITRO solver. While the running time on the project is relatively good, a

comparison with other platforms and solvers is needed to make sure that the study is done using

the best available option. As a comparison, the same model will be formulated using another

platform called GAMS and solved using GAMS/LINDO solver. A good comparison will include a

combination of GAMS and KNITRO solver as one of the options. Unfortunately, it is not possible

to use the KNITRO solver in GAMS because the formulation exceeds the number of variables and

constraint limitations on the community license.

The running time varies slightly in each run and thus, a minimum of three runs per case while

running it in the same condition (e.g., same computer, all software but the platform is closed, etc.)

is needed to calculate the average running time. A minimum of three runs is done to make sure

that it is a fair comparison. The effect of the initial seed is also studied. Three initial conditions

are used to study the variability of the solutions in each case. The 3 initial oil production rate are

5,000, 10,000, and 15,000 Sm3/d. The NPV yields from each run will then be compared to the

base NPV by calculating the percentage difference using equation as shown below:

δ =

∣∣∣∣νoriginal − νinitial iνoriginal

∣∣∣∣× 100% (3.23)
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3.4 Results and Discussions

3.4.1 Deterministic Simulation

As shown in Table 3.7, although the running time differences between the two options are not that

significant, the GAMS-LINDO running time is lower for most samples. The main cause is that

Pyomo-KNITRO uses NEOS web server to access the solver instead of having it built-in within the

Pyomo package or installed in the computer. Thus, the running time is highly dependant on the

connection between the server and computer in addition to the workload of the server itself. On the

other hand, the GAMS/LINDO solver is available within GAMS and included in the community

license used in the study. Hence, the running time of problem-solving in GAMS is solely dependant

on the complexity of the formulation.

Table 3.7: Running time comparison between Pyomo-KNITRO and GAMS-LINDO

Platform-Solver
Running Time (s)

1 2 3 Average

Pyomo-KNITRO 5.44 11.98 8.63 8.68

GAMS-LINDO 6.74 6.72 6.47 6.64

The second comparison, which is based on the variability of the solutions, is shown in Table 3.8.

Again, the GAMS-LINDO combination comes superior in which the average percentage difference

figure is 0%. It indicates that no matter what initial condition is chosen, the solver always solves

the problems and yields a similar NPV result with the base NPV value. On the contrary, the only

time Pyomo-KNITRO gives in an identical figure is when the initial condition is defined as 10,000

Sm3/d, which is close to the optimal field plateau rate shown in Figure 3.3. The instability of the

KNITRO solver in this formulation could cause a significant problem once the solver is used for

sensitivity analysis in which the value for some parameters changes from one scenario to another.

Based on the two criteria, the GAMS-LINDO combination of platform and solver is chosen and

will be used for further studies in this thesis.

Table 3.8: Variability of solutions comparison between Pyomo-KNITRO and GAMS-LINDO

Platform-Solver
NPV (Million NOK) Average Perc.

5000 Sm3/d 10000 Sm3/d 15000 Sm3/d Difference (%)

Pyomo-KNITRO 26179.20 26254.37 23772.00 3.25

GAMS-LINDO 26254.37 26254.37 26254.37 0.00

3.4.2 Base Model

Figure 3.1 shows the drilling schedule of the base model. While assuming that the wells have

similar performance, the most optimal drilling schedule for the field is to drill wells on reservoir 1

first. While the maximum number of wells drilled per year is limited by 3, the field is only required

to drill one more well from reservoir 1 in the second year to maintain the plateau production rate.

In the following year, however, a total of 3 wells have to be drilled in order to maintain the desired

plateau rate. From year 3, all available wells have been drilled and the number of wells is constant
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throughout the remaining field life.

Figure 3.1: Optimal field drilling schedule of the base model

The solver opted to drill wells from reservoir 1 first as the value of the objective function (i.e., net

present value) increases if more oil volumes are produced in the early years in which the discount

factor is low. As the production potential of wells in reservoir 1 is higher than wells in reservoir 2,

drilling more wells with greater potential would lead to higher revenue which resulting in higher

NPV. The interesting point is that this figure is based on a relatively low maximum number of

wells defined earlier. There is a possibility of a different approach to the drilling schedule if the

limitation of the number of wells drilled is changed. The relaxation on the maximum number of

producer wells will be one of the studies performed in the sensitivity analysis.

The production profile obtained from the base case is shown in Figure 3.2 and Figure 3.3. It can

be seen that the constraint which stated that the oil production rate is controlled by production

potential is active for both each reservoir production rate and the field production rate. An

interesting point from the figure is that the field is producing oil in plateau mode for the first

three years, with a plateau production rate of around 10,000 Sm3/d, instead of decline mode from

the beginning. When the potential of wells from reservoir 1 could not support the plateau rate

anymore, wells on reservoir 2 start to produce (consistent with the drilling schedule for reservoir 2

shown in Figure 3.1). In other words, wells from both reservoirs are drilled to maintain the plateau

rate of the field, especially in the early years. Ultimately, the potential of both reservoirs cannot

maintain the plateau rate any longer, and the production profile starts to decline following the

production potential curve until the end of the production horizon.

As discussed in the previous chapter, plateau mode (i.e., producing a constant rate lower than

the production potential) is usually the most preferred mode to produce an oil and gas field. The

main reason is that if the production rate is made equal to the production potential, particularly

in the first year, the oil production capacity should also be increased. Increasing the rate in the

early years increases the revenue and increases capital expenditure (CapEx), as more production

requires bigger processing capacities. At some point, the increase in revenue does not compensate

for the increase in cost. However, it is not always the case as there is a possibility of decline mode

to be chosen if the cost of the production facility is not that high or in the case of extremely high

oil price.

The discounted cash flow (DCF) and NPV figures are presented in Figure 3.4. The NPV figure
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Figure 3.2: Optimal reservoir oil rate and production potential of the base model

Figure 3.3: Optimal field oil rate and production potential of the base model

shows that the initial investment is returned within four years while keeping in mind that the

time needed to prepare the production facility is assumed to be zero. The early years’ values of

DCF play an important role in ensuring that the investment is paid out quickly. By keeping the

production at a plateau for several years and selecting the most optimum production capacity (i.e.,

production plateau rate), it generates enough revenue to maximize the NPV of the field.

As discussed in the formulation section, the oil price is kept fixed all the time. The consequence

is that the DCF figure is consistently decreasing as the production is either plateau or declining.

Furthermore, the effect of the discount factor is also getting more significant along with time. If

the oil price fluctuates and can be predicted, the DCF figure might also fluctuate. That being said,

the production profile and drilling schedule could be optimized in a slightly different strategy, such

as drilling wells on both reservoirs simultaneously, not starting the production until the oil price is

high enough, etc. Oil price trajectories would be one of the uncertainties in the sensitivity study

in this thesis.
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Figure 3.4: DCF and Cumulative NPV figure of the base model
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Chapter 4
Uncertainty Analysis

The information used in field development and planning, especially in the early phase, is full of

uncertainties in which most of them are originated from incomplete information and knowledge

about the reservoir, production system, and economic data. Therefore, it is important to quantify

the effect of uncertainty in early phases of field development to ensure the decisions (e.g., production

system design, drilling schedule, etc.) made following the FDP study are suitable for the expected

variability of uncertain data.

In this chapter, the effect of uncertainties in initial oil-in-place, well performance, development and

operational costs, and oil price on the optimization results are analyzed. The main objective of this

uncertainty analysis is to propose optimal designs of the field (i.e., production capacity and drilling

schedule) considering these uncertainties. The optimization formulation was modified slightly to

evaluate the effect of 1) relaxing the upper bound in the number of producer wells allowed and

2) considering flexibility in the drilling schedule. The first modification is done to analyze the

possibility of improvement in net present value (NPV) distribution by increasing the maximum

number of producer wells. On the other hand, the second one is a modification which applied to

both the base case and the upper bound of the number of producer wells case. It is performed to

further improve the optimal design from each case by having some wells that can be optional to

be drilled or not, instead of a fixed one.

In order to produce the optimal designs, two methods of uncertainty analysis are used in this

thesis. The first one is the Latin Hypercube Sampling (LHS) method, while the second is the

Stochastic Programming (SP) method. At the end of this chapter, a comparison between these

two methods in terms of their formulation complexity, required time to produce the optimal design,

and accuracy of the results are also discussed.

4.1 Uncertainty Parameters

The optimization formulation was modified slightly to consider uncertain parameters. For some

parameters, the base value was multiplied by a factor to represent uncertainty. The details of each

uncertainty parameter are described below:

1. Initial oil-in-place (Nr)

• As there are two reservoirs in the model, the uncertainty in the initial oil-in-place value
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is assigned independently to both parameters in the formulation.

• The initial oil-in-place uncertainty in each reservoir is modeled with a log-normal dis-

tribution.

• Reservoir 1 in-place is distributed between 10 and 80 million Sm3 while having a scale

(i.e., exp(µ)) and standard deviation (σ) of 4.00 and 0.43, respectively. On the other

hand, the initial oil-in-place of reservoir 2 has a minimum value of 5 million Sm3 and a

maximum value of 60 million Sm3. The scale and standard deviation of the distribution

are 3.70 and 0.20, respectively.

• The in-place log-normal distribution of both reservoirs is shown in Figure 4.1a and

Figure 4.1b.

2. Well performance factor (Fw,r)

• This parameter multiplies the oil production potential. It represents the uncertainty in

reservoir parameters that affect well productivity, e.g., the permeability of the rocks,

properties of the fluids, etc.

• Similar to the initial oil-in-place uncertainty, the well performance is also assigned in-

dependently to both reservoirs.

• Well performance uncertainty for both reservoirs is uniformly distributed between 0.8

and 1.2.

• The uniform distribution of well performance is shown in Figure 4.1c.

3. Cost factor (Fc)

• This parameter multiplies all cost items in the model (DrillEx, CapEx, OpEx), and it

represents uncertainty on the cost model.

• The cost factor is modeled with a normal distribution with a mean and standard devi-

ation value of 1.0 and 0.2, respectively. The normal distribution is also limited between

0.6 and 1.4.

• The normal distribution of the cost factor is shown in Figure 4.1d.

4. Oil price (Po,t)

• Instead of using a fixed oil price as formulated in the base model, the oil price is now

variable in time. A certain number of trajectories were considered, each with pair points

of oil price versus year, and in this study is defined as oil price trajectory.

• The oil price trajectory is calculated using the Schwartz-Smith model (programmed by

Ph.D. candidate Leonardo Sales).

• An illustration of the oil price trajectory generated from the model is shown in Fig-

ure 4.1e.

4.2 Adjustments to the Optimization Formulation

As several new parameters are introduced in the previous section, the following adjustments are

needed to include them in the optimization formulation:
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(a) Log-normal distribution of N1 (b) Log-normal distribution of N2

(c) Uniform distribution of Fw for both reservoirs (d) Normal distribution of Fc

(e) Illustration of oil price trajectory

Figure 4.1: Distribution of the uncertainties considered in the study

• The oil production potential equation needs to be modified by including the well performance
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factor (Fw,r) as a multiplication factor:

qpp,r,t = Fw,r ·Nw,r,t · qpp,well,r · f (Nw,r,t−1)
p ·

(
dimpot1,r

(
Np,r,t
Nr

)5

+ dimpot2,r

(
Np,r,t
Nr

)4

+ dimpot3,r

(
Np,r,t
Nr

)3

+ dimpot4,r

(
Np,r,t
Nr

)2

+ dimpot5,r

(
Np,r,t
Nr

)
+ 1
)
, ∀r ∈ Res ∀t ∈ T

(4.1)

• The cost model also needs some adjustments as the cost factor (Fc) is introduced to accom-

modate the uncertainty in the cost of development and operation of the field:

– Drilling Expenditure (DrillEx) equation:

PVd,1 = Fc ·
∑
r∈Res

(Nw,r,1 · (1 +Nw,injprod,r)) ·D1

PVd,t+1 = Fc ·
∑
r∈Res ((Nw,r,t+1 −Nw,r,t) · (1 +Nw,injprod,r)) ·D1

(1 + i)t
∀t ∈ T \ {21}

(4.2)

– Capital Expenditure (CapEx) equation:

PVc,1 = Fc ·
∑
r∈Res

(Nw,r,1 · (1 +Nw,injprod,r)) · C1

PVc,t+1 = Fc ·
∑
r∈Res ((Nw,r,t+1 −Nw,r,t) · (1 +Nw,injprod,r)) · C1

(1 + i)t
∀t ∈ T \ {21}

(4.3)

– CapEx for production facility (Pre-CapEx) equation:

PVpre = Fc · (qo,f,max · C2 + qw,f,max · C3 + qg,f,max · C4 + C5) (4.4)

– Operational Expenditure (OpEx) equation:

PVo,t = Fc ·
O1 +O2 ·Nw,f,t +O3 · qo,f,t +O4 · qw,f,t +O5 · qg,f,t

(1 + i)t
∀t ∈ T (4.5)

• The revenue equation requires a slight modification in which the oil price is now formulated

as a trajectory instead of a fixed value:

PVr,t = Po,t · xr · vc ·
Np,f,t −Np,f,t−1

(1 + i)t
∀t ∈ T (4.6)

4.3 Base Uncertainty Analysis using LHS

In this section, the uncertainty analysis utilizes Latin Hypercube Sampling (LHS) as the method

to sample the uncertainties from their distributions. As discussed in the previous chapter and

based on results from previous work, LHS is one of the most preferred sampling methods as it

could rebuild the distributions with fewer iterations than Monte Carlo Simulation (MCS). More

detailed descriptions about the study are presented in the following subsections:

4.3.1 Sampling

In the specialization project work of Bonti (2020), an uncertainty analysis to study the effect of oil

price trajectory was performed. The main objective of the analysis was to determine the minimum
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number of trajectories needed to achieve convergence on the distribution of the optimal parameters

computed. The study shows that using 400 samples of oil price trajectories is sufficient such that

the results are considerably similar to those obtained using a much higher number of trajectories.

Assuming that it also applies to the other uncertainty parameters, 400 is chosen as the number of

samples generated from each distribution of uncertainties in this study.

As there are hundreds of samples/cases in the uncertainty analysis, the five-number summary

(i.e., minimum value, maximum value, average value, first quartile, and third quartile) and some

parameters that are related to the NPV (i.e., P90, P50, and P10) will be calculated, and the

definition of these parameters are provided as follows:

• min : minimum value of the data

• max : maximum value of the data

• Q1 : 25% of the data is below this number

• mean : average of the data

• Q3 : 75% of the data is below this number

• P90 : 90% of the data exceed this number

• P50 : 50% of the data exceed this number

• P10 : 10% of the data exceed this number

The LHS is done in Python. Since nonphysical samples had to be discarded (e.g., negative initial

oil-in-place or negative cost factor), the LHS process is programmed from scratch. The general

workflow of the function is first to determine the cumulative distribution function (CDF) of the

minimum and maximum value as a function of the mean and standard deviation of the distribution.

Then, the length of each interval is calculated by dividing the differences between CDF of the

minimum and maximum value by the number of samples. By knowing the length of the interval,

the sampling could be performed by looping through each interval. The final step is to randomize

the generated samples to maintain the LHS method’s desired randomness.

4.3.2 Methodology

This study aims to determine a good field design (or a method to determine a good field design)

appropriate for the system variability caused by the multiple uncertainties considered. With this

goal, several optimizations using varying input must be performed. Then, the distribution of the

design parameters is studied to propose the ultimate optimal design based on the mean of the

results or other relevant statistical parameters.

Multiple simulations of the uncertainty analysis model are required to evaluate the optimal design

variability. The first step is to run several optimizations with varying (uncertain) input. The

uncertain input values come from the LHS method. Probability distributions of the results (op-

timal NPV, optimal drilling and production schedule, optimal fluid production capacity) are then

calculated. This study represents the ideal case that, when there is uncertainty, it will always be

possible to design the system optimally to attain maximum NPV. Therefore it represents a refer-

ence against which all other designs should be compared against. The first simulation is renamed

as ”Base simulation” for the comparison purpose of this is shown in Figure 4.2.
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(a) Field oil production profile (b) Field drilling schedule

Figure 4.2: Illustration of five-number summary calculation on the decision variables

The field design will be selected using these results. For example, a proposed design could be to set

oil, gas, and water processing capacities and drilling schedule equal to the expected value, as seen in

Figure 4.2. The second set of optimizations are then conducted to test the performance of a given

field design considering the variability in the input (uncertainties). The samples for this second

study are identical to the samples used in the first study. In this second set of optimizations, the

production schedule is set as a variable, but the drilling schedule, oil, gas, and water capacities are

considered fixed. The results of this second set of optimizations are then analyzed, and probability

distributions are computed. Results are compared against the expected NPV of the first step of

simulations. As these results consider that all design parameters can be modified to maximize

NPV, they represent the ideal case.

The overall goal of this section is to test several selection criteria to determine the best field design.

As discussed before, the five-number summary is calculated for each decision variable, and there is

always a possibility of changing the design. For instance, the design could be changed by increasing

the production capacity from the mean value to the third quartile value or choosing the maximum

value drilling schedule instead of the mean one. The most optimal design is selected based on the

lowest average percentage error between the NPV parameters of the base simulation and proposed

designs.

4.3.3 Implementation in GAMS

The uncertainty analysis using LHS requires several additional excel files. The files contain the

uncertainty parameters data, which need to be loaded to the model file using data exchange in

GAMS called gdxxrw. The data is stored in new dedicated parameters defined solely to store the

uncertainty parameters for all 400 scenarios. It will also be used to export the results from GAMS

to excel after the simulation of the model has been performed.

The uncertainty analysis, in which 400 scenarios are simulated on a single run, utilizes Gather-

Update-Solve-Scatter (GUSS) from GAMS. It enables several features which found to be useful

for the uncertainty analysis formulation. As mentioned above, the uncertainty parameters for

all scenarios are stored in dedicated parameters outside the formulation. GUSS could instantly

assign those parameters to the parameters from the formulation and it repeats for each scenario.

Another important feature from GUSS is that each scenario is guaranteed to be run using an

identical starting point to make sure that the results are valid. As the previous study shows,

different starting points could lead to different results. One last important feature from GUSS is
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that the results could be filtered, and GAMS will store only the desired one. he limitation of using

GUSS is that several solvers could not be utilized due to internal communication issues within

GAMS. For that reason, LINDO is the only solver available to solve both the mixed-integer non-

linear programming (MINLP) model and the GUSS feature for uncertainty analysis. The GAMS

implementation of the base uncertainty analysis is provided in Appendix A.

4.3.4 Results and Discussion

Evaluation of base simulation

Figure 4.3 shows the distribution of the field fluids production profile after 400 simulations are

performed. In each case, the processing capacity of the floating production storage and offloading

(FPSO) of oil, gas, and water are set to the maximum values of each curve. Figure 4.4 presents

the distribution of the optimal drilling schedule in each field.

(a) Field oil production profile (b) Field water production profile

(c) Field gas production profile

Figure 4.3: Distributions of the field fluids production profile
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(a) Reservoir 1 drilling schedule (b) Reservoir 2 drilling schedule

Figure 4.4: Distributions of the field drilling schedule

The ultimate field design will be defined considering the following:

• Regarding processing capacities, choosing a field design based on the minimum or maximum

oil, gas, and water production will most likely yield field designs that are very costly or

unable to process high rates and therefore, yield a very low NPV.

• Regarding the drilling schedule: A design based on the maximum and third quartile of the

drilling schedule is not feasible because the maximum number of producer wells drilled per

year is set to 3 in the model, and those two drilling schedules violate this constraint. Although

a design based on the minimum of the drilling schedule is feasible, it is also not considered

since a total of 4 wells is assumed to be insufficient to yield a higher NPV figure than the

expected value design.

Based on the discussion above, the alternative designs selected for this study are:

• Design method A: Expected value design. Mean value for all production capacities and the

drilling schedule.

• Design method B: Third quartile value for all production capacities. Mean value for the

drilling schedule.

• Design method C: First quartile value for all production capacities and the drilling schedule.

• Design method D: Mean value for oil and water production capacities as well as the drilling

schedule. Third quartile value for gas production capacity.

Evaluation of design based on the expected value: Design method A

The drilling schedule of the expected value design is shown in Table 4.1, while the oil, water,

and gas production capacities are displayed below:

• Oil production capacity (qo,f,max): 8915.93 Sm3/d

• Water production capacity (qw,f,max): 4752.47 Sm3/d

• Gas production capacity (qg,f,max): 4918875.76 Sm3/d
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Table 4.1: Drilling schedule of the expected value design

Design A
Number of producer wells (Nw,t)

1 2 3 4 5 6 ... 21

Reservoir 1 3 3 5 6 6 6 ... 6

Reservoir 2 0 0 1 3 3 3 ... 3

The second set of simulations is triggered with uncertain parameters and the field design suggested.

The production schedule is allowed to vary (optimization variable). Table 4.2 shows the NPV

results and runtime of both the base and expected value design. The run time of the proposed

design, in which the production capacities and drilling schedule are used as parameters, is shorter

than the base simulation. The significance difference makes sense as the production profile is the

only decision variable left in the formulation.

Table 4.2: Comparison between the base and expected value design

Design
NPV (Million NOK) / Perc. Difference (%)

Average (%) Run time (s)
P90 P50 P10

Base 5521.6 - 19225.3 - 37810.3 - - 2710.9

Design A 3560.5 35.5 17816.4 7.3 35703.8 5.6 16.1 66.06

Figure 4.5: CDF curve comparison between the base simulation and expected value design

The P90, P10, and P50 for this second set of simulations are lower than in the first set of simulations.

This is somewhat expected, as the only variable that is optimized is the oil production profile. As a

preliminary explanation, since the data is only based on one proposed design, it might be because

of the design selected at the moment. For instance, if the production capacity is set to 8915 Sm3/d,

and the well productivity is poor, then it could happen that the processing facilities are much more

expensive than what they should be to increase NPV. If, on the other hand, the well productivity

is very good, then the processing facilities might be too small and do not allow to increase the

field rate and ultimately the NPV. On the other note, the absolute differences of the distributions
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are similar throughout the distributions, as shown in Figure 4.5. The percentage difference of P90

could be higher than the other two NPV parameters due to its low value and thus causing a high

percentage.

Evaluation of alternative design: Design method B C and D

The average percentage difference of the expected value design is 16.1%. Although it is not a poor

percentage, the figure could be increased by adjusting the design parameters. The parameters,

however, are limited to the five-number summary calculated from the base simulation results. The

alternative designs proposed in this study are shown in Table 4.3 and Table 4.4.

Table 4.3: Production capacity of the alternative designs

Design
Oil Capacity Water Capacity Gas Capacity

[Sm3/d] [Sm3/d] [Sm3/d]

Design B 10705.6 5734.2 5494727.9

Design C 6850.8 3462.9 4094426.3

Design D 8915.9 4752.5 5494727.9

Table 4.4: Drilling schedule of the alternative designs

Design Reservoir
Number of producer wells (Nw,t)

1 2 3 4 5 6 7 ... 21

Design B
Reservoir 1 3 3 5 6 6 6 6 ... 6

Reservoir 2 0 0 1 3 3 3 3 ... 3

Design C
Reservoir 1 3 3 3 4 4 5 5 ... 5

Reservoir 2 0 0 0 1 3 3 3 ... 3

Design D
Reservoir 1 3 3 5 6 6 6 6 ... 6

Reservoir 2 0 0 1 3 3 3 3 ... 3

Based on the results shown in Table 4.5, design D is superior in almost all parameters with respect

to designs B and C. However, the improvement from the expected value is still moderate, with only

a 1% difference in the average percentage difference value. Although the P50 and P10 percentage

differences are considerably decreased, the P90 figure is still similar to the previous one. In the

previous discussion, it has been proposed that one of the most probable reasons for the extremely

high P90 percentage differences is the selected design parameters. However, after proposing three

alternative designs, the figure remains similar to or even worse than the expected value design.

Thus, the only viable explanation for these extreme differences is the low value of the P90 figure.

As per its definition, P90 is the value for which 90% of the population has equal or higher values.

Hence, it usually gives a conservative NPV in the lower part of the range. As a result, all of the

proposed designs are not able to reach a relatively similar P90 value to the base simulation even

though with a relatively similar absolute difference to the P50 and P10 figures.
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Table 4.5: Comparison between the base simulation and several proposed designs

Design
NPV (Million NOK) / Perc. Difference (%)

Average (%)
P90 P50 P10

Base 5521.6 - 19225.3 - 37810.3 - -

Design A 3560.5 35.5 17816.4 7.3 35703.8 5.6 16.1

Design B 2139.6 61.3 17478.21 9.1 36522.4 3.4 24.6

Design C 3490.5 36.8 16686.6 13.2 32401.8 14.3 21.4

Design D 3507.5 36.5 18129.1 5.7 36583.4 3.3 15.1

Regardless of the P90 percentage difference, design D is selected as the most optimal design of the

field as its average percentage difference is the lowest amongst the proposed designs. Figure 4.6

shows the inverse CDF curve of NPV figure for both base simulation and design D. It can be seen

that the curve of design D is getting closer to the base simulation curve apart from the lower NPV.

In the subsequent subsection, flexibility in the drilling schedule is introduced and considered to

design the field. Design method D will be used as a base in these studies.

Figure 4.6: CDF curve comparison between the base simulation and design D

4.3.5 Flexibility in the Drilling Schedule

Methodology

Instead of using a fixed value of drilling schedule, the following study considers the flexibility

in the field design, i.e., there will be a fixed drilling schedule and a number of ”optional” producer

wells that could be drilled or not, depending on the uncertainty that ”materializes”. Optimiza-

tion will be rerun using variability in the input (uncertainty parameters), but now, the drilling

schedule of the optional wells and the production schedule will be the optimization variables. The

formulation requires some modifications to accommodate the flexibility as discussed below:
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• Parameters

– Nw,r,t,min ∀r ∈ Res ∀t ∈ T
Minimum number of producer wells drilled in reservoir-r at time-t.

value: Defined by first quartile or minimum value of the base simulation results.

– Nw,r,t,max ∀r ∈ Res ∀t ∈ T
Maximum number of producer wells drilled in reservoir-r at time-t.

value: Defined by third quartile of the base simulation results.

• Variables

– Nw,r,t,add ∀r ∈ Res ∀t ∈ T
Additional Number of producer wells drilled in reservoir-r at time-t

• Constraints

Equation 3.3, Equation 3.10, Equation 3.11, and Equation 4.3 are removed or adjusted to

the following constraints:

– The number of producer wells (Nw,r,t) is now a function of the minimum number of

producer wells (Nw,r,t,min) and the additional number of producer wells (Nw,r,t,add):

Nw,r,t = Nw,r,t,min +Nw,r,t,add ∀r ∈ Res ∀t ∈ T (4.7)

– The number of producer wells in reservoir-r at time-t is bounded by the specified max-

imum number of producer wells:

Nw,r,t ≤ Nw,r,t,max ∀r ∈ Res ∀t ∈ T (4.8)

– The additional number of producer wells is bounded by the differences between the

maximum and the minimum number of producer wells:∑
t∈T

Nw,r,t,add ≤
∑
t∈T

(Nw,r,t,max −Nw,r,t,min) (4.9)

– Capital Expenditure (CapEx) must be computed using the maximum number of pro-

ducer wells, instead of the current number of producer wells, as the X-mass tree must

be prepared beforehand:

PVc,1 = Fc ·
∑
r∈Res

(Nw,r,1,max · (1 +Nw,injprod,r)) · C1

PVc,t+1 =Fc ·
∑
r∈Res ((Nw,r,t+1,max −Nw,r,t,max) · (1 +Nw,injprod,r)) · C1

(1 + i)t
∀t ∈ T \ {21}

(4.10)

The GAMS implementation of the study on the flexibility in the drilling schedule is provided in

Appendix B.

As all of the proposed designs fail to yield a relatively good percentage difference value with a fixed

drilling schedule, the flexibility of the drilling schedule is expected to improve the figure, especially

the P90 one significantly. The study is performed using the most optimal design from the previous

section to understand the significance of relaxing the drilling schedule to the NPV figures and the

running time.

Since the formulation has been slightly adjusted, especially the one related to the number of

producer wells, the third quartile curve of the drilling schedule could be considered for the maximum

number of producer wells parameter (Nw,r,t,max). In addition, the minimum curve could also be

utilized as the minimum number of producer wells parameter (Nw,r,t,min). The other two proposed

designs are described as follows:
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• Flexible A: First quartile curve as the minimum number of producer wells and third quartile

curve as the maximum number of producer wells. The total number of optional wells in this

design is 28 wells.

• Flexible B: Minimum curve as the minimum number of producer wells and third quartile

curve as the maximum number of producer wells. The total number of optional wells in this

design is 110 wells. The optional wells data for each reservoir are shown in Table 4.6.

Table 4.6: Drilling schedule of the alternative flexible designs

Design Reservoir
Number of producer wells (Nw,t)

1 2 3 4 5 6 ... 17 18 ... 21

Flexible A
Reservoir 1 0 1 3 3 2 1 ... 1 1 ... 1

Reservoir 2 0 0 2 2 2 2 ... 2 2 ... 2

Flexible B
Reservoir 1 0 1 3 3 3 3 ... 3 3 ... 3

Reservoir 2 0 0 2 3 3 3 ... 3 2 ... 2

Results and Discussions

The result of the study is shown in Table 4.7. In general, the flexibility in the drilling schedule

successfully decreased all the percentage differences by a fine margin. As expected, the P90 per-

centage differences for both flexible designs are significantly lower than the design D from the base

case. This could be due to the fact that the field now has an option whether to drill more wells

or wait for another year considering a particular situation (i.e., oil price, cost, etc.). For instance,

in a condition where the oil price is high, the field could opt to drill more wells to increase the

production potential of the field, leading to higher revenue. On the contrary, design D of the base

case must follow the fixed drilling schedule and missed the opportunity to yield more revenue by

drilling additional wells.

Table 4.7: Comparison between the fixed and flexible drilling schedule designs

Design
NPV (Million NOK) / Perc. Difference (%)

Average (%) Run time (s)
P90 P50 P10

Design D 3507.5 36.5 18129.1 5.7 36583.4 3.3 15.1 88.61

Flexible A 4273.6 22.6 18354.5 4.5 36705.7 2.9 10.0 773.92

Flexible B 4378.5 20.7 18439.2 4.1 36713.6 2.9 9.2 1873.07

The running times of both flexible designs are longer than the design method D with a fixed

drilling schedule. This is somewhat expected as the optimization problem now has more decision

variables to consider. Despite the fact that flexible B design has more optional wells for the solver

to choose from, the average percentage differences of both designs are quite similar. It indicates

that the optimal drilling schedule is mainly between Q1 and Q3 instead of min and Q3. Referring

back to Table 4.2, the running time of the base simulation is 2710.9 seconds. Although its average

percentage difference is the lowest amongst all designs, the flexible B running time is only about

30% faster than running the base case simulation. It indicates that the formulation is still complex.

Oppositely, the flexible A running time is approximately 70% faster than the best design. It shows

that the formulation has been simplified enough while at the same time producing a pretty decent
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average percentage difference value. Hence, it can be concluded that flexible A design is the most

optimal design considering both the similarity to the base simulation and the running time of the

formulation. The optimal design parameters are shown in Table 4.8.

Table 4.8: Flexible A: the most optimal design

Design Parameters
Value

[Sm3/d] or [-]

Oil Capacity 8915.9 - Mean

Water Capacity 4752.5 - Mean

Gas Capacity 5494727.9 - Q3

Drilling Schedule Between Q1 and Q3

4.4 Study on the Upper Bound of the Number of Producer

Wells

In this section, the maximum number of wells drilled in each reservoir is relaxed by increasing it to

20. It is done to understand whether the original formulation in which the maximum drilled wells

of reservoir 1 and 2 are 6 and 3, respectively, is adequate to optimize the field or if it is possible

to unlock additional value by increasing this number. Another slight modification includes the

uncertainty in both water and gas productivity by adding a multiplication factor to the equation

of gas and water production rates. More detailed descriptions about the study are presented in

the following subsections:

4.4.1 Sampling

As the formulation of this section is slightly more complex than the previous one (includes two

additional uncertain variables and increases the upper bound in the number of wells), it is crucial

to reduce the running time. With that objective, a study is conducted to determine the number

of samples to achieve convergence in the results. The study is carried with the model described in

section 4.3, not with the new model.

It is evaluated by calculating several parameters such as the Q1, Q3, expected value, etc., of NPV

and production profile of three number of samples (100, 200, and 300). They are then compared

against the values computed using the highest number of samples (400). A number of samples

is considered sufficient if the difference between its results and the results of the highest number

of samples is equal or less than 5%. Some of the results, which are a function of time, needs to

be analyzed using the mean absolute percentage difference (MAPE) calculated using the following

equation:

MAPE =
1

n
·
∑∣∣∣∣ν − νapproxν

∣∣∣∣× 100% (4.11)

Based on the results displayed in Figure 4.7, the differences between all results are visibly insigni-

ficant. Furthermore, all of the average MAPE for the production profiles showed in Table 4.9 are

below the defined threshold of 5 percent. It indicates that using even 100 samples could produce an

equally similar production profile distribution to the results where 400 samples are used. However,

the results still need to be complemented by the NPV distribution percentage differences.
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Figure 4.7: Comparison of oil production profile distributions using different number of samples

Table 4.9: Effect of number of samples on the production profile distribution

Number of samples
MAPE (%)

Average (%)
Q1 Mean Q3

100 1.11 2.17 2.13 1.80

200 3.63 1.39 1.86 2.30

300 0.75 0.62 0.72 0.72

Table 4.10 presented the NPV distribution percentage differences between the base results to the

one using fewer samples. Aside from the P90 figure, which is higher than the others due to its

low value (i.e., low denominator causes high percentage), the percentage difference of both 200

and 300 samples are all below the threshold. Considering both the production profile and NPV

distribution, 200 is selected as the most optimum number of samples for the second uncertainty

analysis. However, it is important to make sure that these 200 samples use oil price trajectories

that, on average, are ”similar” (or provide a similar statistical variability) to the case using the

highest number of samples (400 oil trajectories). Figure 4.8 shows the P90, P50, and P10 of the

oil price trajectories calculated for every year for the 200 and 400 samples.

Table 4.10: Effect of number of samples on the NPV distribution

Number of samples
Percentage difference (%)

P90 P50 P10

100 43.7 7.1 6.1

200 8.9 4.9 0.1

300 17.7 0.0 1.6
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Based on the comparison shown in Figure 4.8 and Table 4.11, the oil price trajectories used for

the base results and the one using 200 samples are similar. This supports the observation made

in Table 4.9 and Table 4.10, in which, for 200 samples, all MAPE values are below 5%. Thus, it

can be concluded that a similar accuracy in the results is guaranteed even when 200 samples are

used. The same sampling procedure, which utilizes the functions defined in Python, is applied to

generate 200 samples for the new uncertainties introduced in the following subsection.

Figure 4.8: Comparison of oil price trajectories distributions between 200 and 400 samples

Table 4.11: Validation of oil price trajectories

Parameters MAPE (%)

P10 4.16

P50 1.95

P90 2.39

4.4.2 Methodology

The tasks conducted previously in section 4.3 will be repeated using the same methodology as

follows:

1. To evaluate the effect of uncertainty, several optimizations will be executed with varying

input (generated with LHS).

2. Several design methods will be employed to determine the field design, and the performance

of these designs will be evaluated by running multiple optimizations (varying production

schedule only) with uncertain input.

3. Then, flexibility in the drilling schedule will be introduced by allowing the possibility to drill

optional wells.
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However, as mentioned before, one of the objectives of this study is to understand the effect of

allowing more wells to be drilled during the field life. Hence, a comparison will also be made

between the base simulation results of the two approaches. For comparison purposes, the first

uncertainty analysis is renamed the ”Original” case, while the second renamed the ”Increased Max

Nw” case.

There are two additional uncertainties added to the formulation, and the following adjustments

are required to accommodate those changes:

• Parameters

– Nw,max,r, ∀r ∈ Res
Maximum number of well for each reservoir is increased to 20 for both reservoir.

– Fgas: New parameter to represent the effect of uncertainty on the gas productivity.

value: follows the same distribution as shown in Figure 4.1c.

– Fwater: New parameter to represent the effect of uncertainty on the water productivity.

value: follows the same distribution as shown in Figure 4.1c.

• Constraints

Equation 3.6 and Equation 3.7 are adjusted to the following constraints:

– Gas production rate equation is adjusted by adding the gas productivity multiplication

factor:

qg,r,t = Fgas · qo,r,t ·GOR, ∀r ∈ Res ∀t ∈ T (4.12)

– Similar to the gas equation, the water production rate equation is also adjusted by

adding the water productivity multiplication factor:

qw,r,t = Fwater · qo,r,t ·
WC

1−WC
, ∀r ∈ Res ∀t ∈ T (4.13)

4.4.3 Implementation in GAMS

The exact implementation as presented in subsection 4.3.3 is applied to perform this study.

4.4.4 Results and Discussion

Comparison between two base simulations

The NPV CDF curves of both cases are shown in Figure 4.9, and it can be seen that the increment

in the maximum number of producer wells has considerable effects on the NPV figures. This is

validated by the calculation presented in Table 4.12, in which the percentage difference of P90,

P50, and P10 are around 5% mark.

As discussed before, the samples generated for the increased max Nw case is 200, which is half the

number used in the original case. Nevertheless, its running time is still longer than the original

case. The maximum number of producer wells controls the room of freedom of drilling schedule,

which is one of the most important decision variables. Thus, it is understandable that increasing

it has a significant effect on the complexity of the formulation. However, the difference of average

run time per case is quite significant as the increased max Nw case run time is more than doubled

the original case.
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Figure 4.9: CDF curve comparison between the original formulation and increased max Nw case

Table 4.12: Comparison between the original case and increased max Nw case

Case
NPV (Million NOK) / Perc. Difference (%)

Run time (%)
Average run

P90 P50 P10 time/case (s)

Original 5521.6 - 19225.3 - 37810.3 - 2710.9 6.7

Increased Max Nw 5957.7 7.9 19927.2 3.7 39814.3 5.3 3507.4 17.5

Although the improvement in NPV distribution is considerable, the additional complexity and

increased running time seem to indicate that the modified formulation has limited value. Moreover,

Figure 4.10 shows that the expected value of the number of producer wells at the end of field life

is 11, similar to the upper bound used in the original formulation, 9. Hence, it can be inferred

that the original formulation has utilized an adequate maximum number of producer wells as its

parameter value. However, in a case where the maximum number of producer wells has not been

determined, this adjustment is an important analysis which could optimize both the results and

run time of the formulation.

Evaluation of base simulation

Figure 4.11 shows the distribution of the field fluids production profile after 200 simulations are

performed on the increased max Nw case, while Figure 4.12 presents the distribution of the optimal

drilling schedule in each field. It can be seen that most of the cases fall in a narrow band around

the mean (Q1, Q3), while the maximum and minimum values are far apart. Therefore, similar

to what was done earlier in section 4.3, the design method to consider will include the expected

value, Q1, and Q3, instead of the maximum and minimum, because these extreme cases could lead

to poor NPV due to excessive costs or inability to process the production.

On the other hand, the design method for the drilling schedule will not follow a similar approach to

the previous section, where the expected value and Q1 curve are the only two chosen curves. The

design method will include the Q3 curve as the drilling schedule does not violate the constraint

which controls the maximum number of producer wells drilled per year. However, the study is

still not considering the minimum and maximum as the former curve might lead to NPV value
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(a) Original case drilling schedule (b) Increased max Nw case drilling schedule

Figure 4.10: Distributions of the field drilling schedule for both cases

(a) Field oil production profile (b) Field water production profile

(c) Field gas production profile

Figure 4.11: Distributions of the field fluids production profile of the increased max Nw case

which definitely lower than the expected value design, while the latter curve violates the maximum

number of producer wells drilled per year constraint.

Based on the discussion above, other than the expected value design, the alternative designs selected

for this study are:
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(a) Reservoir 1 drilling schedule (b) Reservoir 2 drilling schedule

Figure 4.12: Distributions of the field drilling schedule of the increased max Nw case

• Design A: Expected value design. Mean value for all production capacities and the drilling

schedule.

• Design B: Third quartile value for all production capacities and the drilling schedule. Design

B for the case where the number of producer wells is increased is different from the one in

section 4.3 as the third quartile value for the drilling schedule is now available to be chosen.

• Design C: First quartile value for all production capacities and the drilling schedule.

• Design D: Mean value for oil and water production capacities as well as the drilling schedule.

Third quartile value for gas production capacity.

Evaluation of design based on the expected value - Design method A

The drilling schedule of the expected value design of the increased max Nw case is shown in

Table 4.13, while the oil, water, and gas production capacities are displayed below:

• Oil production capacity (qo,f,max): 8812.6 Sm3/d

• Water production capacity (qw,f,max): 4344.2 Sm3/d

• Gas production capacity (qg,f,max): 5316119.6 Sm3/d

Table 4.13: Drilling schedule of the expected value design of the increased max Nw case

Design A
Number of producer wells (Nw,t)

1 2 3 4 5 6 7 ... 21

Reservoir 1 3 3 5 5 6 6 6 ... 6

Reservoir 2 0 0 1 2 3 4 4 ... 4

Table 4.14 shows the NPV results and run time of both the base simulation and expected value

design of the increased max Nw case. As expected, the run time of the expected value design

is faster than the base design. In fact, it is also faster than the run time of the expected value

design shown in Table 4.2. However, the difference is mainly because the number of samples used
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Figure 4.13: CDF curve comparison between the base simulation and expected value design of the

increased max Nw case

in the second study is halved of the first one. The average run time per case is still similar as both

formulations are equally simple (i.e., production profile as a sole decision variable).

As can be seen in Table 4.2, the most significant difference between the base simulation and the

field design based on the expected value is on the P90 NPV value. This also occurred in section 4.4.

Based on the P50 and P10 parameters, the expected value design yields a reasonably similar result

to the base design. However, Figure 4.13 shows that it is possible to further improve the design as

the absolute difference between the two curves are still visible.

Table 4.14: Comparison between the base simulation and expected value design of the increased

max Nw case

Design
NPV (Million NOK) / Perc. Difference (%)

Average (%) Run time (s)
P90 P50 P10

Base 5957.7 - 19927.2 - 39814.3 - - 3507.4

Design A 4668.5 21.6 18969.7 4.8 36150.9 9.2 11.9 36.8

Evaluation of alternative designs - Design method B C D

With an 11.9% average percentage difference in the NPV P90, P50, and P10 values, it seems the

design method A, considering an upper bound of 20 in the number of producers, is better than

design method A when an upper bound of 9 in the number of producers is considered (section 4.3).

However, several alternative designs will still be explored in order to determine the most optimal

design of the increased max Nw case. The designs proposed for the second study are shown in

Table 4.15 and Table 4.16.
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Table 4.15: Production capacity of the alternative designs of the increased max Nw case

Design
Oil Capacity Water Capacity Gas Capacity

[Sm3/d] [Sm3/d] [Sm3/d]

Design B 10604.2 5835.9 6588391.3

Design C 7082.1 3292.3 4148609.9

Design D 8812.6 4344.2 6588391.3

Table 4.16: Drilling schedule of the alternative designs of the increased max Nw case

Design Reservoir
Number of producer wells (Nw,t)

1 2 3 4 5 6 7 8 ... 21

Design B
Reservoir 1 3 5 6 7 7 7 8 8 ... 8

Reservoir 2 0 0 2 4 5 5 5 5 ... 5

Design C
Reservoir 1 3 3 3 3 4 4 4 5 ... 5

Reservoir 2 0 0 0 1 2 3 3 3 ... 3

Design D
Reservoir 1 3 3 5 5 6 6 6 6 ... 6

Reservoir 2 0 0 1 2 3 4 4 4 ... 4

The P90, P50, and P10 values of NPV of all these design methods and the base case are shown in

Table 4.17. Based on these results, the expected value design is still better than all the alternative

designs regarding the average percentage difference. The second best is design method D, although

the difference in the P90 value of NPV is considerable. Thus, the expected value design is selected

to be the most optimal design for the increase Nw case and will be used in the flexibility in the

drilling schedule analysis.

Another side note which is interesting to be looked at is that design B, which uses the third quartile

curves to design the field, is superior in terms of the P10 percentage difference. However, the P90

value of NPV is poor compared to the base case. On the other hand, design C is the best design

when comparing the P90 percentage difference while simultaneously also the most inferior design in

terms of the P10 percentage difference. It can be concluded that designs based on higher capacities

(e.g., Q3 for oil, gas, and water processing capacity) and a higher number of producer wells will do

well in P10 NPV estimates but will do poorly in P90 NPV estimates. On the other hand, designs

based on low capacities (e.g., Q1 for oil, gas, and water processing capacity) and a lower number

of producer wells will do well in P90 NPV estimates, but poor in P10 NPV estimates.
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Table 4.17: Comparison between the base simulation and several proposed designs of the increased

max Nw case

Design
NPV (Million NOK) / Perc. Difference (%)

Average (%)
P90 P50 P10

Base 5957.7 - 19927.2 - 39814.3 - -

Design A 4668.5 21.6 18969.7 4.8 36150.9 9.2 11.9

Design B 2875.4 51.7 19143.9 3.9 37012.7 7.0 20.9

Design C 5113.7 14.2 17966.8 9.8 32987.7 17.1 13.7

Design D 4320.0 26.6 16002.7 4.2 35856.2 7.8 12.9

4.4.5 Flexibility in the Drilling Schedule

Methodology

The same methodology as presented in subsection 4.3.5 is applied to perform this study. The two

proposed alternative designs are described as follows:

• Flexible A: First quartile curve as the minimum number of producer wells and Third quartile

curve as the maximum number of producer wells. The total number of optional wells in this

design is 101 wells.

• Flexible B: Minimum curve as the minimum number of producer wells and Third quartile

curve as the maximum number of producer wells. The total number of optional wells in this

design is 177 wells. The optional wells data for each reservoir are shown in Table 4.18.

Table 4.18: Drilling schedule of the alternative flexible designs of the increased max Nw case

Design Reservoir
Number of producer wells (Nw,t)

1 2 3 4 5 6 7 8 ... 15 16 ... 21

Flexible A
Reservoir 1 0 2 3 4 3 3 4 3 ... 3 3 ... 3

Reservoir 2 0 0 2 3 3 2 2 2 ... 2 2 ... 2

Flexible B
Reservoir 1 0 2 3 4 4 4 5 5 ... 5 5 ... 5

Reservoir 2 0 0 2 4 5 5 5 5 ... 5 4 ... 4
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Results and discussion

Table 4.19: Comparison between the optimal design and flexible drilling schedule designs of the

increased max Nw case

Design
NPV (Million NOK) / Perc. Difference (%)

Average (%) Run time (s)
P90 P50 P10

Design A 4668.5 21.6 18969.7 4.8 36150.9 9.2 11.9 36.8

Flexible A 5589.1 6.2 19801.4 0.6 36965.9 7.2 4.7 1243.2

Flexible B 5612.5 5.8 19801.4 0.6 36965.9 7.2 4.5 2939.2

The result of the study is shown in Table 4.19. The study yields similar results to the original case,

where the percentage differences are significantly reduced. The P90 percentage difference is the

parameter affected the most by the increment of the maximum number of producer wells as the

figure is nearly 5% from around 21.6%. The adjustment gives the solver more cases to explore and

thus increasing the accuracy of the results. In consequence, the formulation requires more time to

be solved.

However, an odd thing happens in the second study in which both flexible A and B designs yield

somewhat identical results (except for the P90 value) with a significant difference in running time.

One thing that could cause this is that most of the optimal drilling schedule falls in the range

between the first and third quartile curves. Although flexible B design considers the minimum

curve as the lower bound of the drilling schedule, the optimal drilling schedule is still the same as

for flexible A. However, considering that flexible B requires considerably more time to be solved,

flexible A is selected as the best design method for the increased max Nw case.

The most optimal design of the second case is shown in Table 4.20. Referring to Table 4.8, it can

be seen that both the original and the increased max Nw cases’ most optimal design are similar in

terms of value for the production capacities and range of distributions for the drilling schedule.

Table 4.20: Flexible A: the most optimal design of the increased max Nw case

Design Parameters
Value

[Sm3/d] or [-]

Oil Capacity 8812.6 - Mean

Water Capacity 4344.2 - Mean

Gas Capacity 5316119.6 - Mean

Drilling Schedule Between Q1 and Q3

4.5 Stochastic Programming Method

In this section, the stochastic programming (SP) method is applied to perform optimization con-

sidering uncertainty. Similar to the previous study, the objective of this analysis is to produce

the most optimal design of the field by considering all the specified uncertainties. Moreover, a

comparison will be made between the SP method and the methods studied earlier to compare

their formulation complexity, running time, and accuracy of results. The comparison is only made

to the first LHS study in which the maximum number of producer wells for each reservoir has
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not been increased to 20 described in section 4.3. More detailed descriptions about the study are

presented in the following subsections:

4.5.1 Spearman’s Rank Coefficient Correlation

Since stochastic optimization embeds uncertain parameters in the optimization, it usually results

in more complex formulations and time-consuming runs. Therefore, it is of interest to reduce the

number of uncertain parameters to a minimum, and consider those that have first-order effects. To

do this, an analysis will be performed on the results of the first study (section 4.3). The correlation

between the uncertainties of the first study and the objective function (i.e., NPV) will be assessed

by calculating a parameter called Spearman’s Rank Coefficient Correlation (SRCC). As the results

from the first study have been obtained, it is possible to calculate the SRCC parameter for each

uncertainty parameter. It is done to verify the worthiness of including a certain parameter in the

SP study. Considering only uncertainties that are correlated enough to the objective function will

increase the accuracy of the results and, at the same time, reduce the complexity of the formulation.

The SRCC parameter calculation requires the set of the uncertain parameter and the NPV results

with an equal number of samples. Since the uncertainty in oil price utilized trajectories instead

of a particular value of multiplication factor like the others, it is unfortunately not possible to

calculate the SRCC parameter. Thus, the calculation is only be made for the five parameters:

uncertainty in initial oil in place of both reservoirs (N1 and N2), uncertainty in well performance

(Fw,1 and Fw,2), and uncertainty in cost model (Fc). The calculation is performed using Python

and its pre-defined function called spermanr of the scipy.stat module.

The result of the calculation is shown in Table 4.21. The SRCC value indicates the correlation

between the variables, with a value that varies between -1 and 1, with both values imply an exact

monotonic relationship and 0 implying no correlation. As the SRCC between the well performance

of reservoir 2 (Fw,2) and the NPV is close to 0, it can be assumed that there is a very low to

none correlation between the two variables. Therefore, the uncertainty in the well performance of

reservoir 2 will be ignored in the stochastic optimization. Although the figures for the other four

parameters are pretty low, they can still be considered as a correlation with the objective function.

When comparing the magnitude of SRCC among each other, it can be concluded that the initial

oil in place of reservoir 1 and the cost factor have the most impact on the NPV, followed by the

initial oil in place of reservoir 2 and the well performance of reservoir 1.

Table 4.21: SRCC calculation of the uncertainty parameters

Parameters SRCC

N1 0.349

N2 0.147

Fw,1 0.133

Fw,2 0.06

Fc -0.302

4.5.2 Sampling

The SP method requires discretizing the probability distributions of the uncertain parameters

instead of using samples like the earlier sections. The method of bracket mean is used to discretize
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the cumulative probability distributions of the uncertain parameters. An illustration of the method

is shown in Figure 4.14. The distribution curve is discretized into three intervals, with each specified

length implying the probability. Then, a sample is generated from each interval by drawing a line

from the middle value of each interval y-axis (e.g., 0.15 from the first interval, 0.5 from the second

one, etc.) to the curve and then to the x-axis, which yields the value. Finally, the value is assigned

with each corresponding probability which in this case are 30 with 0.3, 45 with 0.4, and 65 with

0.3.

Figure 4.14: Illustration of bracket mean sampling method

Assuming that the number of bins (n) is the same for all parameters, this means that the stochastic

optimization will evaluate nx cases with x implying the number of uncertainty parameters involved

in the formulation. For the purpose of simplifying the formulation as well as keeping the accuracy

of the results, three is selected as the number of bins generated from each distribution. As an

illustration, the formulation used in the study has five uncertainties, with Fw,2 being left out due

to its uncorrelated behavior to the NPV, and if three samples are generated from each distribution,

35 = 243 samples will be explored during the simulation. It is more than half of the number of

samples used in the first uncertainty analysis study, and it has been proven that 200 is enough to

yield a result with identical accuracy. The discrete version of the distributions of the uncertain

parameters is shown in Figure 4.1, using three bins (probabilities) which are 0.3, 0.4, 0.3.

Regarding uncertainty in the oil price, It was decided to use a constant oil price in time instead

of using trajectories. Moreover, it was assumed that the oil price is uniformly distributed between

30 and 90 USD/Sm3. This distribution was discretized in 3 bins, similar to the other uncertain

parameters. The discretized version of all uncertain parameters included in the SP study is shown

in Table 4.22.
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Table 4.22: Uncertainty samples generated for random variable in SP formulation

Parameters
Value

0.3 0.4 0.3

N1 (in Million Sm3) 31 49 68

N2 (in Million Sm3) 33 40 49

Fw,1 0.86 1.0 1.3

Fc 0.81 1.0 1.18

Po (in USD/Sm3) 40 60 81

4.5.3 Methodology

The model is formulated based on the two-stages stochastic programming form. In this approach,

some decision variables are used in the first stage, while in the second stage, the remaining decision

variable and uncertainties are considered. In this specific formulation, the design (i.e., production

capacities and drilling schedule) are defined as the first stage variable, while the production profile

and the others are defined as the second stage variable. Consequently, all equations that are not

related to the design are defined as the second stage equations.

An important thing to point out is that the stochastic optimization proposed in this section is

well aligned with the approach taken in the first uncertainty analysis using the LHS method,

in which the design is decided after the first simulation. Then the simulations are re-run to

determine the production profile and NPV distributions. The only difference is that instead of

running the optimization multiple times, the stochastic programming approach could produce the

optimal design with one single run. However, the output of the SP method is the optimal design

parameters only, not the expected NPV of the project nor the statistic distribution of production

profile. To find these and compare against the results of the first study, it is necessary, as it

was done earlier, to run several optimizations (optimizing production profile only) using as input

samples of the uncertain input (e.g., generated with LHS). Thus, the NPV distribution yielded

from the simulation is now equivalent and could be compared to the NPV distributions of the first

study.

The following formulation of the stochastic programming model is used to determine the most

optimum design of the field:

First stage

All variables defined as first stage variables are fixed for all 243 scenarios as they are defined as

the optimal design of the field.

• Variables

– qo,f,max: Oil production rate capacity of the field throughout the field life (in Sm3/d)

– qw,f,max: Water production rate capacity of the field throughout the field life (in Sm3/d)

– qg,f,max: Gas production rate capacity of the field throughout the field life (in Sm3/d)

– Nw,r,t ∀r ∈ Res ∀t ∈ T
Fixed number of producer wells drilled in reservoir-r at time-t

• Constraints

Equations that are related to the drilling schedule are assigned in the first stage. On the
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other hand, the production capacities constraints need to be defined in the second stage as

it controls the production profile, which is categorized as the second stage variable.

Nw,r,0 = Nw,r,pd ∀r ∈ Res (4.14)

Nw,r,t+1 −Nw,r,t ≥ 0, ∀r ∈ Res ∀t ∈ T \ {21} (4.15)

Nw,r,t ≤ Nw,r,max, ∀r ∈ Res ∀t ∈ T (4.16)

∑
r∈Res

(Nw,r,t+1 −Nw,r,t) ≤ Nw,f,year, ∀t ∈ T \ {21} (4.17)

Second stage

Different from the first stage, all variables defined as second stage variables are varied for all 243

cases depending on the uncertainty parameters and the fixed design parameters.

• Variables

– qo,r,t ∀r ∈ Res ∀t ∈ T
Oil production rate of reservoir-r at time-t (in Sm3/d)

– qpp,r,t ∀r ∈ Res ∀t ∈ T
Oil production potential of reservoir-r at time-t (in Sm3/d)

– qg,r,t ∀r ∈ Res ∀t ∈ T
Gas production rate of reservoir-r at time-t (in 106 Sm3/d)

– qw,r,t ∀r ∈ Res ∀t ∈ T
Water production rate of reservoir-r at time-t (in Sm3/d)

– PVdc,t ∀t ∈ T
Present value of DrillEx and CapEx combination at time-t (in Million NOK).

– PVpre: CapEx made prior the production start for the production facility (in Million

NOK)

– PVo,t ∀t ∈ T
Present value of operational expenditure at time-t (in Million NOK)

– PVr,t ∀t ∈ T
Present value of revenue at time-t (in Million NOK)

– NPV : Net present value (in Million NOK)

• Objective Function

The objective of the model is also formulated in the second stage since it depends on variables

that are defined in the same stage. It is expressed as:

Maximize NPV (4.18)

• Constraints

All equality equations corresponding to the field (e.g., qo,f,t, Np,f,t, etc.) are removed to

reduce the complexity of the formulation. Consequently, adjustments in some constraints

are required to calculate the field corresponding variable within the equation themselves.

However, several constraints are still identical to the base model formulation.

55



Equality Constraints

– At the initial condition, the cumulative oil production for both reservoirs equal to zero.

Np,r,0 = 0 ∀r ∈ Res (4.19)

– Cumulative production for each reservoir is calculated using the backward trapezoidal

integration method. This constraint will be iterated for each reservoir and time step.

Np,r,t+1 = Np,r,t +
(qo,r,t+1 − qo,r,t) · days

2
, ∀r ∈ Res ∀t ∈ T \ {21} (4.20)

– The well performance factor in reservoir 2 is removed from the formulation. However,

instead of removing it completely from the equation, the factor, Fw,2 is equal to 1.

qpp,r,t = Fw,r ·Nw,r,t · qpp,well,r · f (Nw,r,t−1)
p ·

(
dimpot1,r

(
Np,r,t
Nr

)5

+ dimpot2,r

(
Np,r,t
Nr

)4

+ dimpot3,r

(
Np,r,t
Nr

)3

+ dimpot4,r

(
Np,r,t
Nr

)2

+ dimpot5,r

(
Np,r,t
Nr

)
+ 1
)
, ∀r ∈ Res ∀t ∈ T

(4.21)

– Gas and water production rates are a function of the oil production rate and each corres-

ponding parameter (GOR for gas and WC for water). The gas and water productivity

factor are also not included in the formulation. Hence, the constraints are similar to the

base model.

GOR = gor1,r

(
Np,r,t
Nr

)5

+ gor2,r

(
Np,r,t
Nr

)4

+ gor3,r

(
Np,r,t
Nr

)3

+ gor4,r

(
Np,r,t
Nr

)2

+ gor5,r

(
Np,r,t
Nr

)
+ 1

qg,r,t = qo,r,t ·GOR, ∀r ∈ Res ∀t ∈ T (4.22)

WC = wc1,r

(
Np,r,t
Nr

)5

+ wc2,r

(
Np,r,t
Nr

)4

+ wc3,r

(
Np,r,t
Nr

)3

+ wc4,r

(
Np,r,t
Nr

)2

+ wc5,r

(
Np,r,t
Nr

)
+ 1

qw,r,t = qo,r,t ·
WC

1−WC
, ∀r ∈ Res ∀t ∈ T (4.23)

Inequality Constraints

– The production rate of each reservoir at any point in time should never exceed its

production potential.

qo,r,t ≤ qpp,r,t, ∀r ∈ Res ∀t ∈ T (4.24)

– As mentioned before, the field production rates are calculated within the equations. All

three equations below use the capacities defined in the first stage in which the values

are fixed for all scenarios to control each fluid production rate.∑
r∈Res

qo,r,t ≤ qo,f,max, ∀t ∈ T∑
r∈Res

qg,r,t ≤ qg,f,max, ∀t ∈ T∑
r∈Res

qw,r,t ≤ qw,f,max, ∀t ∈ T

(4.25)
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Economic Constraints

– The drilling expenditure (DrillEx) and capital expenditure (CapEx) variables are com-

bined as they both are calculated using a similar equation with a different coefficient.

Combining them reduces the number of variables in the formulation and its complexity

at the same time.

PVdc,1 = Fc ·
∑
r∈Res

(Nw,r,1 · (1 +Nw,injprod,r)) · (D1 + C1)

PVdc,t+1 = Fc ·
∑
r∈Res ((Nw,r,t+1 −Nw,r,t) · (1 +Nw,injprod,r)) · (D1 + C1)

(1 + i)t
∀t ∈ T \ {21}

(4.26)

– As it is calculated using the production capacities which are fixed for all scenarios,

pre-CapEx in this formulation is only a function of the cost multiplication factor.

PVpre = Fc · (qo,f,max · C2 + qw,f,max · C3 + qg,f,max · C4 + C5) (4.27)

– Operational expenditure in this formulation is a function of field fluid production rate

and the cost multiplication factor as the drilling schedule is a fixed parameter defined

in the first stage.

PVo,t = Fc ·
1

(1 + i)t
(O1 +O2 ·

∑
r∈Res

Nw,r,t +O3 ·
∑
r∈Res

qo,r,t

+O4 ·
∑
r∈Res

qw,r,t +O5 ·
∑
r∈Res

qg,r,t) ∀t ∈ T
(4.28)

– Revenue for each year is calculated by multiplying the oil production in one year with

the oil price, which in this case is one of the random variables.

PVr,t = Po · xr · vc ·
∑
r∈Res (Np,r,t −Np,r,t−1)

(1 + i)t
∀t ∈ T (4.29)

– Instead of calculating the discounted cash flow and store the value in another variable,

this formulation calculates the NPV directly to eliminate one more variable and slightly

simplify the complexity of the model.

NPV = −PVpre +
∑
t∈T

(PVr,t+1 − PVo,t+1 − PVdc,t) (4.30)

4.5.4 Implementation in GAMS

Implementing the stochastic programming model in GAMS requires only one .gms extension file,

similar to the base formulation, as the LHS samples are no longer required. It will utilize the

Extended Mathematical Programming (EMP) feature in GAMS to formulate the SP model. In

the EMP section, the random variable (i.e., uncertainty parameter) needs to be defined using the

’randvar’ keyword along with the distribution type and the value. In this case, a discrete type

of distribution is selected as the samples are generated using the bracket mean sampling method,

which is performed without GAMS.

Another thing to be defined in the EMP section is the decision variables and equations defined for

each stage. For a two-stage stochastic model, the only stage required to be defined is the second

stage as the remaining decision variables and equations are assumed to be defined for the first

stage. As the uncertainty parameters are resolved in the second stage, they are also defined in the

second stage along with the decision variables. The GUSS feature is also applied to update the

random variables for each scenario and store the desired results. The GAMS implementation of

the stochastic programming model is provided in Appendix C.
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4.5.5 Results

Table 4.23: Optimal production capacities comparison between LHS and SP method

Method
Production Capacities [Sm3/d]

Oil Water Gas

LHS - Design D 8915.9 4752.5 5494.7E3

SP - 243 cases 9799.6 5688.3 5693.6E3

Table 4.24: Drilling schedule of the alternative designs

Design Reservoir
Number of producer wells (Nw,t)

1 2 3 4 ... 21

LHS - Design D
Reservoir 1 3 3 5 6 ... 6

Reservoir 2 0 0 1 3 ... 3

SP - 243 cases
Reservoir 1 3 4 5 6 ... 5

Reservoir 2 0 1 3 3 ... 3

The optimal design produced by the stochastic programming formulation, as well as the comparison

with the optimal design from the LHS study, are shown in Table 4.23 and Table 4.24. It can be

seen that all production capacities of the design proposed by the SP model are greater than the

one from the first study. It also can be observed that the design proposed by the SP model opts to

drill more producer wells in the early years than the LHS study. Unlike the LHS study in which the

design is selected based on the distribution curves, the SP model has more flexibility in choosing

the design.

The performance of the field design obtained with SP under uncertain conditions was evaluated

using LHS. Several optimizations were triggered considering the production profile as the decision

variable while the design (i.e., drilling schedule and oil, water, and gas production capacity) is

kept fixed. Table 4.25 shows P90, P50, and P10 values of base simulation, design D (optimal

design without considering optional well), flexible A (optimal design considering optional well),

and the SP model with 243 cases (3 samples from each uncertain parameters) along with their

corresponding running time.

Table 4.25: Results and runtime comparison between the LHS method and SP model

Method
NPV (Million NOK) / Perc. Difference (%) Average Run time

P90 P50 P10 (%) (s)

Base 5521.6 - 19225.3 - 37810.3 - - -

LHS - Design D 3507.5 36.5 18129.1 5.7 36583.4 3.3 15.1 3030.9

LHS - Flexible A 4273.6 22.6 18354.5 4.5 36705.7 2.9 10.0 5677.9

SP - 243 cases 3819.7 30.8 18253.2 5.1 36803.8 2.7 12.8 68147.5
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4.5.6 Comparison Between Field Design Using the LHS Method and

Stochastic Optimization

Based on the results presented in Table 4.25, the optimal design proposed by the SP model yields

lower average difference in all NPV parameters. It seems to indicate the following three things:

1. The bracket mean sampling method accurately generated the samples from the distribution

curves in a case where the probabilities are similar (i.e., 0.3 - 0.4 - 0.3).

2. The stochastic programming model successfully produces a better optimal design than the

LHS study. The flexibility in selecting the design parameters plays an important role in this

matter as the chance of finding a more optimal design is drastically increased.

3. Using a constant oil price in time and assuming that the oil price is uniformly distributed

between 30-90 seems to capture appropriately the variability of oil price in the case of tra-

jectories varying in time.

However, the difference between the two methods is not that significant, especially on the P50 and

P10 figures. Thus, it is safe to say that the first approach in which the design is selected based

on evaluating the expected value and the other five-number summary parameters (min, max, Q1,

and Q3) of the results (drilling schedule and production capacity) are accurate enough.

The total running time of the LHS model is the summation of the running time of the base design

(i.e., 2710.9 seconds) and four proposed designs, assuming that the proposed design (e.g., expected

value design, design B, C, and D) has an average run time of 80 seconds. The figure is not accurate

enough as there is some time that is not accounted for, such as the time needed to compute the

distributions of the results, comparing the results of all proposed designs, etc. Nevertheless, it will

not surpass the running time of the SP model, in which almost 19 hours is required to produce

the optimal design. The significance in time difference is expected since the SP model explored

every feasible set of design instead of limited by the distribution curves as the LHS model. The

improvement in the NPV figure does seem like a modest payback considering the time required to

yield the optimal design. Hence, it could be stated that a methodology to determine the best field

design using LHS and simulation-based optimization is appropriate, and it has a lower running

time than the SP model.

Table 4.25 also shows that the flexible A design (the most optimal design from the first study when

optional producer wells are considered) yields a better P90, P50, and P10 percentage difference

than the SP model. It is somewhat anticipated as the SP model has a fixed drilling schedule for all

243 cases. In order to include the flexibility in the drilling schedule, the model has to be modified,

and similar to the study using LHS, the complexity of the model and running time are expected

to be significantly increased. However, time constraints and limitations in the tools utilized in

the study hindered the possibility to evaluate the flexibility in the drilling schedule using the SP

model.

Even though the SP model running time is significantly longer than the LHS model, it only needs

one simulation to produce the optimal design. As mentioned before, the SP model removes some of

the processes required to find the optimal design, such as selecting several designs, re-running the

simulation, and comparing the results of each design. As a consequence, it limits the possibility of

human error during each process as all calculations are performed by the tool and solving engine

selected to solve the model. Hence, the LHS model is more preferred in regards to the procedure

since the accuracy of the results is guaranteed to be better than or at least similar to the LHS

model.
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One important thing to note is that the SP model requires a measured sampling process to generate

accurate samples that well-represent each uncertainty parameter distribution. The sampling must

be done carefully since it is only limited to 3 samples per parameter instead of 400 samples as

the LHS model. The 0.3-0.4-0.3 set of probability selected for this study is proven to be a good

approach. However, the variability in the probabilities has not been studied in this thesis. It could

be something interesting to analyze in the future to understand the effect of probabilities of the

uncertainties on the accuracy of the SP model results.

60



Chapter 5
Model Improvement

As the base model is still formulated with some simplifications, it will be further improved to make

it more realistic. The improvement is based on the works by Alkindira (2020), which involves several

modifications, such as including the distinct well performance in the production performance model

and pipeline length in the cost model. Alkindira (2020) approximated the non-linear functions in

the formulations using piece-wise linear models. The main objective of this section is to develop a

non-linear model comparable to the PWL (i.e., Linear) model presented by Alkindira (2020) and

compare their computational performance and results.

5.1 Improved Model Formulation

The inclusion of distinct well performance and pipeline length requires the introduction of binary

variables to represent the status of well (i.e., drilled or not drilled) in each reservoir and the selected

scenario. The status is used to compute the production potential and the required pipeline length.

A more detailed formulation of the improved model is specified as follows:

5.1.1 Sets

Besides the same two sets from the base model, there are several new sets defined in the new

formulation to accommodate the improvement:

• sr1 = {s1, . . . , s42}
sr1 is a set of scenarios for reservoir 1. Reservoir 1 has six wells, so the total number of

scenarios is 26 = 64 (status indicator to the power of the number of wells). However, for this

study, only scenarios in which at least three wells are producing are considered.

• sr2 = {s43, . . . , s50}
sr2 is a set of scenario for reservoir 2. Reservoir 2 has three wells, so the total number of

scenarios is 23 = 8.

• wr1 = {w1, . . . , w6}
wr1 is a set of wells in reservoir 1, which in this study is limited to 6 wells.

• wr2 = {w7, . . . , w9}
wr1 is a set of wells in reservoir 2, which in this study is limited to 3 wells.
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5.1.2 Parameters

Parameters defined for the improved model are similar to the one defined in subsection 3.1.2.

However, two parameters related to the production potential, such as the ”pancake” factor (fp) and

maximum oil production potential for each well in reservoir-r (qpp,well,r), are removed. The ratio

between the number of production and injection wells (Nw,injprod,r) was set to zero as the reference

model did not include this term in the formulation. In addition to the remaining parameters, two

tables are declared, by utilizing GAMS formatting, to define the distinct well performance and

pipeline length data, one for each reservoir. The tables and one new parameter are defined as

follows:

• Cpl: Coefficient of capital expenditure (CapEx) equation to calculate the cost of the pipeline.

• z1,s,w, ∀s ∈ sr1 ∀w ∈ wr1
Represents the data of each producer wells’ status in reservoir 1 for all scenarios. For instance,

z1,s2,w2 = 1 is shown in Table 5.1, indicated by a black circle.

• z1,s,qppo, ∀s ∈ sr1
Represents the data of each scenarios’ maximum production potential in reservoir 1. For

instance, z1,s20,qppo = 14333.6 is shown in Table 5.1, indicated by a blue circle.

• z1,s,pipe, ∀s ∈ sr1
Represents the data of each scenarios’ required pipeline length in reservoir 1. For instance,

z1,s1,pipe = 15.0 is shown in Table 5.1, indicated by a red circle.

• z1,s,∗, ∀s ∈ sr1
Represents the data for all scenarios of producer wells in reservoir 1. It is a combination of

the previous three parameters. An illustration of the data is presented in Table 5.1.

comments: The * sign represents three different things, such as the status of the producer

wells, the production potential, and the pipeline length of each scenario.

• z2,s,w, ∀s ∈ sr2 ∀w ∈ wr2
Represents the data of each producer wells’ status in reservoir 2 for all scenarios. For instance,

z2,s43,w9 = 0 is shown in Table 5.2, indicated by a black circle.

• z2,s,qppo, ∀s ∈ sr2
Represents the data of each scenarios’ maximum production potential in reservoir 2. For

instance, z2,s47,qppo = 6549.2 is shown in Table 5.2, indicated by a blue circle.

• z2,s,pipe, ∀s ∈ sr2
Represents the data of each scenarios’ required pipeline length in reservoir 2. For instance,

z2,s50,pipe = 17.0 is shown in Table 5.2, indicated by a red circle.

• z2,s,∗, ∀s ∈ sr2
Represents the data for all scenarios of producer wells in reservoir 2. It is a combination of

the previous three parameters. An illustration of the data is presented in Table 5.2.

comments: The * sign represents three different things, such as the status of the producer

wells, the production potential, and the pipeline length of each scenario.

5.1.3 Variables

The base formulation utilizes two types of variables: continuous and discrete variables. The former

represents measurable amounts in the model, such as the production profile, while the latter
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Table 5.1: Scenario data of producer wells in reservoir 1

Scenario (s)
Well status qppo pipe

w1 w2 w3 w4 w5 w6 [Sm3/d] [m]

s1 1 1 1 0 0 0 12386.6 15.0

s2 1 1 0 1 0 0 12581.3 8.5
...

...
...

...
...

...
...

...
...

s20 0 0 0 1 1 1 14333.6 15.8

s21 0 0 1 1 1 1 18750.0 22.3
...

...
...

...
...

...
...

...
...

s35 1 1 1 1 0 0 16714.5 15.0

s36 1 1 1 1 1 0 21479.9 17.7
...

...
...

...
...

...
...

...
...

s41 0 1 1 1 1 1 22713.5 24.6

s42 1 1 1 1 1 1 24010.6 27.7

Table 5.2: Scenario data of producer wells in reservoir 2

Scenario (s)
Well status qppo pipe

w7 w8 w9 [Sm3/d] [m]

s43 0 0 0 0 0

s44 1 0 0 4273.9 17.0
...

...
...

...
...

...

s47 1 1 0 6549.2 17.0

...
...

...
...

...
...

s50 1 1 1 8114.0 17.0

represents counts in the model, such as the drilling schedule. Those two variable types are not

enough to formulate the distinct well performance as the status of well is neither a count nor a

measurable amount. Hence, as previously mentioned, several binary variables are introduced in

the improved formulation to represent both the status of each producer wells and the selected

scenario. The binary variables and other new variables are defined as follows:

• Binary Variables

– zw1,w,t, ∀w ∈ wr1 ∀t ∈ T
Represents the status of producer well-w in reservoir 1 at time-t

comments: zw1,w,t is equal to 1 when the producer well in reservoir 1 has been drilled.

On the other hand, it is equal to 0 when the producer well has not been drilled.

– zw2,w,t, ∀w ∈ wr2 ∀t ∈ T
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Represents the status of producer well-w in reservoir 2 at time-t

comments: zw2,w,t is equal to 1 when the producer well in reservoir 2 has been drilled.

On the other hand, it is equal to 0 when the producer well has not been drilled.

– xs,t, ∀s ∈ sr1 ∀t ∈ T
Represents the status of scenario-s in reservoir 1 at time-t

comments: xs,i is equal to 1 when scenario-s is activated at time-t. As an illustration

and referring to Table 5.1, xs1,1 = 1 means that zw1,w1,1, zw1,w2,1, and zw1,w3,1 are

all equal to 1 and indicates that those wells are drilled in the first year. On the other

hand, zw1,w4,1, zw1,w5,1, and zw1,w6,1 are all equal to 0 showing that those wells are

not activated yet.

– ys,t, ∀s ∈ sr2 ∀t ∈ T
Represents the status of scenario-s in reservoir 2 at time-t

comments: ys,i is equal to 1 when scenario-s is activated at time-t. As an illustration

and referring to Table 5.2, ys50,1 = 1 means that zw2,w7,1 zw1,w8,1, and zw1,w9,1 are all

equal to 1 and indicates that those wells are drilled in the first year.

• Dependent Variables

– qppor,t, ∀r ∈ Res ∀t ∈ T
Represents the maximum oil production potential of reservoir-r at time-t (in Sm3/d)

– piper,t, ∀r ∈ Res ∀t ∈ T
Represents the pipeline length installed for wells in reservoir-r at time-t.

– pipemax
Represents the total pipeline length that must be installed throughout the field life.

5.1.4 Objective Function

The objective function defined in the improved formulation is the same as the objective function

defined in subsection 3.1.4.

5.1.5 Constraints

The improved formulation uses similar constraints presented in subsection 3.1.5 except for Equa-

tion 3.4, Equation 3.5, Equation 3.10, Equation 3.11, and Equation 3.17, in which they are either

adjusted to accommodate the improvement or completely removed from the formulation. In ad-

dition to that, several new constraints are introduced, mainly related to the scenarios of producer

wells. The adjusted and new constraints are defined as follows:

New Constraints

• The scenario is selected using the lookup table method, an array of data that maps input

values to output values. In this formulation, the constraint is used to help other constraints

selecting a specific scenario at each timestep that optimizes the objective function the most.

The lookup table constraint utilized the ”Big M” method, which is a functionality provided

by GAMS. It is defined as follows:∑
w∈wr1

aw,t ≥ m · xs,t, ∀s ∈ sr1 ∀t ∈ T∑
w∈wr2

bw,t ≥ n · ys,t, ∀s ∈ sr2 ∀t ∈ T
(5.1)
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where:

aw,t =

{
zw1,w,t, if z1,s,w = 1

1− zw1,w,t, if z1,s,w = 0

bw,t =

{
zw2,w,t, if z2,s,w = 1

1− zw2,w,t, if z2,s,w = 0

and m and n are the numbers of producer wells in reservoir 1 and 2, respectively. z1,s,w and

z2,s,w are taken from table Table 5.1 and Table 5.2, respectively.

An illustration is provided below for both active and inactive scenarios to provide a better

understanding of the lookup table constraint:

1. Active scenario

In a case where scenario 1 (s1) is observed and active, the constraint is defined as:

zw1,w1,t + zw1,w2,t + zw1,w3,t + (1− zw1,w4,t) + (1− zw1,w5,t) + (1− zw1,w6,t) ≥ 6 · 1
zw1,w1,t + zw1,w2,t + zw1,w3,t − zw1,w4,t − zw1,w5,t − zw1,w6,t ≥ 6 · 1− 3

It has been decided before that if a well is active, the value of zw is equal to 1, and

on the other hand, an inactive well is indicated by zw = 0. In scenario 1, the first 3

wells are active while the rest are inactive. It makes the left-hand side to be equal to

3, and at the same time, the right-hand side also equal to 3. Thus, an active scenario

is indicated by a condition in which the left-hand side of the equation is equal to the

value on the right-hand side.

2. Inactive scenario

On the other hand, in a condition in which scenario 1 (s1) is observed, but scenario 2

(s2) is the active one, the constraint is then defined as:

zw1,w1,t + zw1,w2,t + zw1,w3,t + (1− zw1,w4,t) + (1− zw1,w5,t) + (1− zw1,w6,t) ≥ 6 · 0
zw1,w1,t + zw1,w2,t + zw1,w3,t − zw1,w4,t − zw1,w5,t − zw1,w6,t ≥ 6 · 0− 3

Well 1, 2, and 4 are the active wells, and the sum of the left-hand side value is now equal

to 1. On the other hand, the right-hand side is equal to -3. Hence, an inactive scenario

is indicated by a condition in which the left-hand side of the equation is greater than

the value on the right-hand side.

• There is only one scenario selected for each timestep, and it is controlled by the following

constraints: ∑
s∈sr1

xs,t = 1, ∀t ∈ T∑
s∈sr2

ys,t = 1, ∀t ∈ T
(5.2)

• The maximum production potential of wells in reservoir-r at a certain timestep-t is a function

of the selected scenario yielded from the lookup table constraint. The constraint is defined

as follows:
qppor1,t =

∑
s∈sr1

(z1,qppo · xs,t) , ∀t ∈ T

qppor2,t =
∑
s∈sr2

(z2,qppo · ys,t) , ∀t ∈ T
(5.3)

• The following two constraints are related to the producer wells in each reservoir. First, a

well that has been drilled must stay active throughout the field life. Thus, the well status

variable is controlled by the following constraints:

zw1,w,t ≤ zw1,w,t+1, ∀w ∈ wr1 ∀t ∈ T \ {21}
zw2,w,t ≤ zw2,w,t+1, ∀w ∈ wr2 ∀t ∈ T \ {21}

(5.4)
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The second one stated that the number of producer wells is now a dependent variable as it

is a function of well statuses which is defined as follows:

Nw,r1,t =
∑

w∈wr1
zw1,w,t, ∀t ∈ T

Nw,r2,t =
∑

w∈wr2
zw2,w,t, ∀t ∈ T

(5.5)

• The following constraints are related to the length of pipeline installed for wells in each

reservoir. First, pipeline length for each reservoir is calculated using a similar structure to

Equation 5.3:

piper1,t =
∑
s∈sr1

(z1,pipe · xs,t) , ∀t ∈ T

piper2,t =
∑
s∈sr2

(z2,pipe · ys,t) , ∀t ∈ T
(5.6)

Similar to the well in which it cannot be undrilled, the pipeline length cannot be reduced:

piper,t ≤ piper,t+1, ∀r ∈ Res ∀t ∈ T \ {21} (5.7)

The last one is used to determine the total pipeline length required throughout the field.

This figure will be used to calculate the capital expenditure (CapEx) of subsea equipment.∑
r∈Res

piper,t ≤ pipemax, ∀t ∈ T (5.8)

Adjusted Constraints

• To make the model comparable with the case from Alkindira (2020), the method to calculate

the cumulative oil production was modified. Instead of using the backward trapezoidal

integration approach similar to Equation 3.4, the cumulative oil production of the improved

model is calculated using the forward rectangular approach. The equation assumes that the

oil production rate is identical for the whole year, thus reflecting a less accurate approach

than the previous one.

Np,r,t+1 = Np,r,t + qo,r,t · days, ∀r ∈ Res ∀t ∈ T \ {21} (5.9)

• Since the identical well assumption is removed and distinct well performance is applied,

Equation 3.5 is adjusted by removing the well-related parameters, Nw,r,t, qpp,well,r, and fp,

and changing it to be maximum oil production potential of the reservoir (qppo,r,t) instead.

However, the dimensionless production potential curve is assumed to be identical for each

scenario, and thus, the oil production potential is calculated as follows:

qpp,r,t = qppo,r,t ·
(
dimpot1,r

(
Np,r,t
Nr

)5

+ dimpot2,r

(
Np,r,t
Nr

)4

+ dimpot3,r

(
Np,r,t
Nr

)3

+ dimpot4,r

(
Np,r,t
Nr

)2

+ dimpot5,r

(
Np,r,t
Nr

)
+ 1
)
, ∀r ∈ Res ∀t ∈ T

(5.10)

• All required pipeline is assumed to be installed in the first year, even though the producer

wells around it have not been drilled. To accommodate the inclusion of the pipeline length

in the cost model, The first year of Equation 3.17 must be slightly modified, while the rest

of the timesteps remain similar.

PVc,1 =
∑
r∈Res

(Nw,r,1 · (1 +Nw,injprod,r)) · C1 + pipemax · Cpl

PVc,t+1 =

∑
r∈Res ((Nw,r,t+1 −Nw,r,t) · (1 +Nw,injprod,r)) · C1

(1 + i)t
∀t ∈ T \ {21}

(5.11)
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5.2 Implementation in GAMS

The exact implementation as presented in the second paragraph of section 3.2 is applied to perform

this study. The GAMS implementation of the improved model is provided in Appendix D.

5.3 Solver Selection

There are several solvers available to perform the optimization, for example, GAMS/LINDO and

DICOPT. DICOPT is also capable of solving a mixed-integer non-linear programming (MINLP)

model. The computational performance of the GAMS/LINDO solver was not satisfactory. The

inclusion of lookup table constraints made it difficult for GAMS/LINDO solver to find the most

optimum solution for the formulation. In this section, both solver results will be compared to

choose the most optimal solver for the improved formulation.

(a) GAMS/LINDO solver

(b) DICOPT solver

Figure 5.1: Optimal drilling schedule of the improved model using two different solving engines
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Figure 5.1 shows that GAMS/LINDO solver opt not to drill producer wells in reservoir 2 until the

16th year of the field life. Moreover, it chooses to only drill four producer wells from a maximum

of 6 in reservoir 1. On the other hand, the drilling schedule from the DICOPT solver seems to

follow a more realistic pattern (i.e., referring to the result from the base model in subsection 3.4.2)

in which all producer wells are drilled in the early years. It is done as an effort to maximize the

production in the early years where the discount factor effect is still insignificant.

(a) GAMS/LINDO solver

(b) DICOPT solver

Figure 5.2: Optimal field production profile of the improved model using two different solving

engines

As a consequence of the delay in the drilling schedule from the GAMS/LINDO solver, its optimal

production profile has two ”peaks”, the plateau rate from reservoir 1 and when wells are drilled

in reservoir 2 at year 16, as shown in Figure 5.2. Subsequently, the oil production capacity (i.e.,

maximum oil production rate) needed for the field is relatively low as the production from the two

reservoirs is done separately. By separately, it means that the production from reservoir 2 is started

as soon as the potential from reservoir 1 is low enough to ensure that the total production rate does

not surpass the plateau rate/capacity. In contrast, the DICOPT solver yields a result in which the
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production from the two reservoirs is done simultaneously. As a result, the production capacity

is higher than the one from the GAMS/LINDO solver. The difference in both the production

profile approach and production capacity will surely affect the discounted cash flow (DCF) and

cumulative net present value (NPV) figure.

Figure 5.3: DCF and cumulative NPV of the improved model using two different solving engines

The production capacity difference from the two solvers is quite significant, causing an equally

significant difference in the capital expenditure of the production facility (i.e., pre-CapEx, DCF at

year 0), as can be seen in Figure 5.3. Although the result from the DICOPT solver requires greater

capital and higher oil production than the GAMS/LINDO results, especially in the early years, it

is proven to be a more preferred approach as its return on capital (ROC) is faster by three years

than the result from GAMS/LINDO solver. Both low production capacity and the delay in drilling

for wells in reservoir 2 turns out to be invaluable as the DCF figure at year 16 is insignificant to

the NPV of the project. The difference in NPV figures is significant as the NPV resulted from

the GAMS/LINDO solver is 20609.6 Million NOK, around 9000 Million NOK less than the NPV

yielded by the DICOPT solver. However, the solutions of both solvers converged properly, which

makes the difference is due to the difficulty of the GAMS/LINDO solver to find the most optimal

scenario using the lookup table constraints defined in this formulation.

Table 5.3: Running time comparison between the two solvers

Solver Run time (s)

GAMS/LINDO 357.05

DICOPT 1.94

Other than its performance in solving the improved formulation, the two solvers are also compared

based on the running time. Table 5.3 shows that the DICOPT solver is significantly superior to the

GAMS/LINDO solver in which the former only requires less than 2 seconds to solve the problem,

whereas the latter runs for more than 6 minutes to find the optimal solution. Considering the fact

that DICOPT solves the problem faster while at the same time finding a better optimal solution for
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the formulation, change in the solving engine is essential in order to yield the most optimal result

as wells as a comparable one with the reference model (linear model from the work of Alkindira

(2020)).

5.4 Comparison against the Piecewise Linearization (PWL)

Model of Alkindira (2020)

(a) Non-linear Model

(b) Linear Model

Figure 5.4: Optimal drilling schedule comparison between the improved non-linear model and the

reference linear model

The comparison between the optimal drilling schedule of the two models is shown in Figure 5.4.

The drilling schedules of both models are quite similar. Both models were built by assuming

that the minimum number of producer wells in reservoir 1 at any time is three. Therefore, well

combinations that give less than three wells in reservoir 1 were excluded from the analyzes. As

a consequence, both models opt to drill three producer wells at the initial year of the production
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horizon in reservoir 1. The only difference is that the non-linear model chose to drill one producer

well in reservoir 2 at the second timestep, while the linear model waited until the third timestep

to drill two producer wells.

Table 5.4: Active wells comparison between the improved non-linear model and the reference linear

model

Year(s)
Model

Non-linear Linear

0 3 4 5 3 4 5

1 2 3 4 5 6 9 2 3 4 5 6

2 2 3 4 5 6 8 9 2 3 4 5 6 8 9
...

...
...

20 2 3 4 5 6 8 9 2 3 4 5 6 8 9

Besides the total number of producer wells being similar, the optimal well combination was almost

identical between the non-linear and linear models, as shown in Table 5.4. For example, the startup

well combination obtained with the non-linear and the linear model is wells 3,4,5, which gives a

maximum oil potential of 16219.3 Sm3/d. This combination is the one that provides the highest

production potential value among all other potential combinations (19) that also have three wells.

However, the non-linear combination obtains that it is better to drill well 9 a year earlier than the

PWL, i.e., in year 1 instead of in year 2.

Both models’ optimal production profiles of each reservoir are shown in Figure 5.5. In general, the

profiles are almost identical to each other, in which plateau mode is chosen as their production

strategy, except for the early and later years. In the second timestep, as the non-linear model opt

to drill one well from reservoir 2, the production in reservoir 2 started earlier than the linear model.

As for the later years, the linear model chose to stop the production on reservoir 1 and 2 around

the 19-th and 16-th timestep, respectively. This might have been done to reduce economic loss, as

in these years, the operational expenditure exceeds the revenue generated from the low production

in the later years. This is not the case for the non-linear model due to several possibilities of reason

such as 1) difference in calculation of gas and water production rates (which affects the operational

expenditure) and 2) production potential difference (which affects the production profile and cu-

mulative production). Nevertheless, the difference in the later stage of the production profile, in

most cases, is insignificant to the NPV calculation.

Figure 5.6 presents the optimal field production profile of both non-linear and linear models. As

a consequence of drilling more wells, the field plateau rate of the non-linear model turns out

to be slightly greater than the one from the linear model. However, the non-linear model is

not consistently producing oil at a greater rate than the linear model. There are also times

when the production rate of the linear model is greater than the production rate of the non-

linear model. Nevertheless, the differences between them are quite modest, concluding that the

production profiles are similar to each other.

The discussions made above regarding the similarities in both the drilling schedule and production

profile of both models are supported by the DCF and NPV figures presented in Figure 5.7. There

are some visible differences in DCF figures due to the slight difference in production profiles.

However, it turns out to be trivial as the cumulative NPV curves of both models are close to

indistinguishable from each other from the first year. In the end, however, the NPV of the non-

linear model is slightly higher than the NPV of the linear model with a difference of 0.5%, which
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(a) Non-linear Model

(b) Linear Model

Figure 5.5: Optimal production profile of each reservoir comparison between the improved non-

linear model and the reference linear model

still could be considered as a negligible difference between the figures.

The objective function value and the average running time of both models are shown in Table 5.5.

The running time has been evaluated four times under a pretty similar condition (i.e., same com-

puter and all software but the tool is closed). While the result of both the non-linear and linear

models are similar to each other, the required running time to solve a deterministic simulation of

the non-linear model is significantly lower than the running time of the linear model. The low

running time of the non-linear model could be due to the fact that the production potential curve

is represented with a polynomial equation and a multiplier representing the performance of a well

combination instead of PWL. In the PWL model, two interpolations are performed. One to find

the production potential of the system when all wells are producing at a given reservoir cumulative
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Figure 5.6: Optimal field production profile comparison between the improved non-linear model

and the reference linear model

Figure 5.7: DCF and cumulative NPV comparison between the improved non-linear model and

the reference linear model

production and a second one to scale this value to account for the presence of a different well

combination. Another disadvantage of using PWL approximation is that the formulation becomes

more complex as the number of interpolants (i.e., the number of breakpoints used to approximate

the non-linear function by piece-wise linearization) increases.

It can be concluded, based on the study and analyses conducted, that the non-linear model allows

to obtain results that are practically identical to the ones obtained with the PWL model and

in significantly less time. Therefore, the non-linear model seems to be a superior modeling and

optimization approach to the PWL formulation. However, this conclusion is based only on one
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Table 5.5: NPV and Running time comparison between the improved non-linear model and the

reference linear model

Model NPV (Million NOK) Run time (s)

Non-linear 29119.6 1.8

Linear 28968.5 21544.5

study case. Further evaluation is required using other cases and field data to generalize this

conclusion.
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Chapter 6
Conclusion and Further Work

6.1 Conclusion

The non-linear formulation developed in the specialization project of Bonti (2020) was successfully

extended by including gas and water production rate in addition to the injection well factor.

The formulation was then defined as the base formulation in which the objective function was to

maximize the net present value (NPV) while optimizing the production profile and the drilling

schedule of the field as well as the processing capacities of oil, gas, and water of the facilities. The

base formulation was then simulated, and the main observations of the results obtained are:

• The optimal drilling schedule depends on the magnitude of the production potential, and the

optimizer usually prioritizes reservoirs/wells with high production potential. For the base

case studied, wells in reservoir 1 have higher potential than those in reservoir 2. Thus, the

most optimal drilling schedule of the base formulation is to drill wells in reservoir 1 first.

• The production mode selected by the solver is plateau mode as in most cases, it is a typical

design choice to produce standalone oil and gas fields with dedicated processing facilities. As

a consequence, the wells, particularly in the early years, are drilled to maintain the plateau

rate.

• The base formulation employed a fixed oil price in time. The oil price trajectory (behavior

in time) affects the optimal solution.

Deterministic simulation on the base formulation had been performed using two different platform-

solvers (Platform-Solver), Pyomo-KNITRO (run in a web server) and GAMS-LINDO. Conclusions

derived from the results are:

• Running time of Pyomo was longer than GAMS. The running time is highly dependent on

the internet connection between the computer and the NEOS web server.

• GAMS-LINDO yielded the same results for all initial conditions tested. However, the results

using Pyomo-KNITRO depends on the initial conditions.

Based on those findings, GAMS-LINDO was chosen as a platform-solver combination utilized to

perform the uncertainty study.
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The effect of uncertain parameters such as initial oil in place, cost factor, well performance, and

oil price was evaluated using simulation-based optimization and Latin Hypercube Sampling (LHS)

method. The LHS method is used to generate 400 samples from each uncertain parameter. These

samples are used as input to the uncertainty analysis model.

Several field design methods using the results of the LHS simulations were tested, i.e., drilling

schedule and production capacity were selected using several criteria. The performance of the res-

ulting design was then tested by repeating the LHS study (but this time optimizing the production

profile only) and compared against the original results of the LHS. The analysis using the LHS

method also evaluated the effect of 1) relaxing the upper bound in the number of producer wells

allowed and 2) considering flexibility in the drilling schedule by having wells that can be ”optional”

to be drilled or not. Observation on the obtained field designs shows that:

• Design Method D (i.e., mean value for oil and water production capacities as well as the

drilling schedule and third quartile value for gas production capacity) was the most optimal

design method when the drilling schedule was assumed to be fixed throughout the field life.

The percentage difference of the NPV results to the base simulation results was the lowest,

with 15.1%.

• When flexibility in the drilling schedule was applied, flexible design method A (i.e., first

quartile curve as the minimum number of producer wells and third quartile curve as the

maximum number of producer wells) was selected as the most optimal design method. The

approach was successfully decreased the percentage difference to 10.0% while at the same

time keeping the complexity of the formulation to be minimum.

• When relaxing the upper bound in the number of producer wells to 20, instead of 9, the

expected value of the number of producer wells is 11. This could indicate that the current

maximum of 9 is adequate but that it might be beneficial for some cases to consider a few

additional producer wells.

• Design method A (i.e., expected value design in which the mean value are used for all pro-

duction capacities and the drilling schedule) was the most optimal design for the increased

max Nw case when the drilling schedule was assumed to be fixed throughout the field life.

The percentage difference of the NPV results to the base simulation results was the lowest,

with 11.9%.

• Flexible design method A (i.e., first quartile curve as the minimum number of producer wells

and third quartile curve as the maximum number of producer wells) was also selected as the

most optimal design method for the case with a higher allowed number of producers. The

percentage difference of the NPV results was significantly improved to 4.7%.

• While the design methods for both the base uncertainty analysis model and the increased

max Nw case are different (i.e., design method D for the base model and expected value

design for the second model), the value of the fluid production capacities and the range of

distributions for the flexible drilling schedule were similar to each other.

Stochastic programming (SP) was also employed to determine the optimal field design considering

uncertainties. The SP model was built to be a comparison for the base uncertainty model in terms

of its accuracy of the results, running time, and complexity. The main observations of the results

obtained are:

• The study on the Spearman’s Rank Coefficient Correlation (SRCC) showed that well per-

formance of reservoir 2 (Fw,2) had a very low correlation to the objective function and was

removed from the uncertain parameters of the SP model.
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• The SP model produced a better percentage difference of NPV figures than design method D

(i.e., the most optimal design of the base uncertainty model), with 12.8%. The improvement,

however, was very modest if compared to the difference in the running time of both methods.

The difference was mainly due to the fact that the SP model explored any possible design

while the base model only evaluated four alternative designs.

• SP model requires one single simulation to produce the optimal design. It could limit the

possibility of human error during each procedure needed to yield the optimal design using

the base uncertainty model.

• Despite having higher complexity in the procedure, it could be concluded that using the LHS

method and simulation-based optimization to produce a good field design provides good

accuracy and requires shorter running time than the SP model.

The base formulation was successfully improved by including the distinct well performance in the

production performance model and pipeline length in the cost model. A comparison with the PWL

model developed by Alkindira (2020) was made, and the following findings are acquired:

• The drilling schedule of both the non-linear model and the PWL model were quite similar.

However, the non-linear opted to drill one producer well in reservoir 2 at the second timestep

while the PWL model chose to wait for another one year to drill two producer wells in reservoir

2. The active wells at every timestep were also almost identical. The only difference is that

in the non-linear model, well 9 is drilled 1-year earlier than in the PWL model.

• Both models chose the plateau mode as their production strategy. Furthermore, their pro-

duction profiles were also almost similar to each other. However, the field plateau rate of the

non-linear model is slightly greater than the plateau rate of the PWL model due to the fact

that the former chose to drill one more producer wells in the second timestep.

• The NPV of the non-linear model is 0.5% higher than the NPV of the PWL model, with

29119.6 Million NOK compared to 28968.5 Million NOK.

• Despite the similarities in every aspect mentioned earlier, the non-linear model required only

1.8 seconds to be solved, a significant improvement to the PWL model in which nearly 6 hours

was needed to find the optimal solution. Based on the findings above, it could be concluded

that the non-linear model was a superior optimization approach to the PWL model.

6.2 Further Work

The following are works that the writer finds interesting and important to be studied but could

not be performed in this thesis due to time and resource limitations:

• Evaluate the current non-linear model using other cases in order to generalize the conclusion

made in this thesis.

• Perform the uncertainty analysis using the improved non-linear model (distinct well perform-

ance).

• Study on another objective functions such as the CO2 emissions and oil/gas recovery to the

formulation. It will be more realistic if the formulation includes several objective functions

and introduce a new parameter to adjust the weight of each objective function.
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• Further study the stochastic programming model such as 1) evaluate the effect of flexibility

in the number of producer wells using the SP model 2) study the effect of probabilities of

uncertain parameters on the accuracy of the SP model results and 3) study on the effect of

the number of samples from each uncertainty on the accuracy of the results.
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Appendix A
GAMS Code for the Base

Uncertainty Model

$Title Multi reservoir MINLP model.

Sets

i /t1*t21/

k /N1, N2, Fc, Fw1, Fw2/

res /r1*r2/;

*Defining parameters for the model

Scalars

R /0/

Tax /0/

a_drillex /5E8/

a_capex /50E6/

b_capex /8.56E5/

c_capex /4.42E4/

d_capex /2.35E2/

e_capex /2.15E9/

a_opex /723.3E6/

b_opex /6.5E6/

c_opex /2.36E4/

d_opex /1.855E-12/

e_opex /3.04E-15/

disc /0.12/

Nwf_year /3/

fp /0.973/

days /365/

Np_init /0.0/

Nw_init /3/

xr /8.5/

vc /6.29/

Fc /1.0/

* qoMax /9799.6/

* qgMax /5693604.2261/

* qwMax /5688.3126/;

Parameter

Nw_max(res)

/r1 6,
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r2 3/

qpp_well(res)

/r1 4592.475,

r2 2852.217/

Nw_injprod(res)

/r1 0.5,

r2 0.33/

a_dimpot(res)

/r1 -39.413,

r2 7067.6/

b_dimpot(res)

/r1 -13.968,

r2 -3761.5/

c_dimpot(res)

/r1 6.2734,

r2 553.01/

d_dimpot(res)

/r1 12.684,

r2 21.825/

e_dimpot(res)

/r1 -6.7185,

r2 -12.684/

a_gor(res)

/r1 556885.71,

r2 11358985.64/

b_gor(res)

/r1 -353194.93,

r2 -3064031.89/

c_gor(res)

/r1 92643.10,

r2 288797.17/

d_gor(res)

/r1 -5277.34,

r2 -5494.71/

e_gor(res)

/r1 316.34,

r2 150.00/

a_wc(res)

/r1 -111.57,

r2 -178.94/

b_wc(res)

/r1 119.26,

r2 95.27/

c_wc(res)

/r1 -42.60,

r2 -16.31/

d_wc(res)

/r1 6.84,

r2 0.96/

e_wc(res)

/r1 0.011,

r2 0.03/

N(res)

/r1 56.25e6

r2 39.25e6/

Fw(res)

/r1 1.0

r2 1.0/

Po(i)

/t1 60

t2 60

t3 60

t4 60
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t5 60

t6 60

t7 60

t8 60

t9 60

t10 60

t11 60

t12 60

t13 60

t14 60

t15 60

t16 60

t17 60

t18 60

t19 60

t20 60/;

*Table

* Nw_fx(res,i)

* t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21

* r1 3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

* r2 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3;

Parameter val(i);

val(i) = ord(i)-1;

*Defining variables

Variables

DCF(i)

NPV;

Positive variables

qo(res,i)

qo_f(i)

qoMax

qwMax

qgMax

qg(res,i)

qg_f(i)

qw(res,i)

qw_f(i)

Np(res,i)

Np_f(i)

Gp(res,i)

Gp_f(i)

Wp(res,i)

Wp_f(i)

qpp(res,i)

PV_d(i)

PV_c(i)

PV_pre

PV_o(i)

PV_r(i);

Integer variables

Nw(res,i)

Nw_f(i);

Nw.up(res,i) = Nw_max(res);

*Nw.fx(res,i) = Nw_fx(res,i);
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*Declaring equations

Equations

a1

a2

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23

a24

a25

a26

a27

a28

a29

a30

a31

a32

a33

a34

obj;

*OBJECTIVE FUNCTION

obj.. NPV =e= (1-R)*(1-Tax)*NPV;

a1(res).. Np(res,'t1') =e= Np_init;

a2.. Nw_f('t1') =l= Nw_init;

a4(i).. Nw_f(i) =e= sum(res, Nw(res,i));

a5(res,i+1).. (qo(res,i+1) + qo(res,i))*0.5*days =e= Np(res,i+1) - Np(res,i);

a6(res,i).. qg(res,i) =e= qo(res,i) * (a_gor(res) * (Np(res,i)/N(res))**4 + b_gor(res)

* (Np(res,i)/N(res))**3 + c_gor(res) * (Np(res,i)/N(res))**2

+ d_gor(res) * (Np(res,i)/N(res)) + e_gor(res));

a7(res).. Gp(res,'t1') =e= 0;

a8(res).. Wp(res,'t1') =e= 0;

a9(res,i+1).. (qg(res,i+1) + qg(res,i))*0.5*days =e= Gp(res,i+1) - Gp(res,i);

a10(res,i).. qw(res,i) =e= qo(res,i) * (a_wc(res) * (Np(res,i)/N(res))**4 + b_wc(res)

* (Np(res,i)/N(res))**3 + c_wc(res) * (Np(res,i)/N(res))**2

+ d_wc(res) * (Np(res,i)/N(res)) + e_wc(res))/(1-(a_wc(res)

* (Np(res,i)/N(res))**4 + b_wc(res) * (Np(res,i)/N(res))**3

+ c_wc(res) * (Np(res,i)/N(res))**2 + d_wc(res)

* (Np(res,i)/N(res)) + e_wc(res)));

a11(res,i+1).. (qw(res,i+1) + qw(res,i))*0.5*days =e= Wp(res,i+1) - Wp(res,i);

a12(i).. qo_f(i) =e= sum(res, qo(res,i));

a13(i).. qg_f(i) =e= sum(res, qg(res,i));

a14(i).. qw_f(i) =e= sum(res, qw(res,i));

a15(i).. Np_f(i) =e= sum(res, Np(res,i));
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a16(i).. Gp_f(i) =e= sum(res, Gp(res,i));

a17(i).. Wp_f(i) =e= sum(res, Wp(res,i));

a18(res,i).. qpp(res,i) =e= Fw(res) * Nw(res,i)*qpp_well(res) * fp**(Nw(res,i)-1) *

(a_dimpot(res) * (Np(res,i)/N(res))**5 + b_dimpot(res)

* (Np(res,i)/N(res))**4 + c_dimpot(res) * (Np(res,i)/N(res))**3

+ d_dimpot(res) * (Np(res,i)/N(res))**2 + e_dimpot(res)

* (Np(res,i)/N(res)) + 1);

a19(res,i).. qo(res,i) =l= qpp(res,i);

a20(res,i+1).. Nw(res,i+1) =g= Nw(res,i);

a21(i+1).. Nw_f(i+1) - Nw_f(i) =l= Nwf_year;

a22(i).. qo_f(i) =l= qoMax;

a23(i).. qg_f(i) =l= qgMax;

a24(i).. qw_f(i) =l= qwMax;

a25.. PV_d('t1') =e= Fc * sum(res, Nw(res,'t1')*(1+Nw_injprod(res))) * a_drillex

/(1 + disc)**val('t1');

a26(i+1).. PV_d(i+1) =e= Fc * sum(res, (Nw(res,i+1) - Nw(res,i))*(1+Nw_injprod(res)))

* a_drillex/(1 + disc)**val(i+1);

a27.. PV_c('t1') =e= Fc * sum(res, Nw(res,'t1')*(1+Nw_injprod(res)))*a_capex/(1+disc)**val('t1');

a28(i+1).. PV_c(i+1) =e= Fc * sum(res, (Nw(res,i+1) - Nw(res,i))*(1+Nw_injprod(res)))

* a_capex/(1 + disc)**val(i+1);

a29.. PV_pre =e= Fc * (qoMax * b_capex + qwMax * c_capex + qgMax * d_capex + e_capex);

a30(i+1).. PV_o(i+1) =e= Fc * (a_opex + b_opex * Nw_f(i) + c_opex * qo_f(i) + d_opex

* qw_f(i) + e_opex * qg_f(i))/(1 + disc)**val(i+1);

a31(i+1).. PV_r(i+1) =e= (Po(i) * (Np_f(i+1) - Np_f(i)) * xr * vc)/(1 + disc)**val(i+1);

a32.. DCF('t1') =e= -(PV_pre + PV_d('t1') + PV_c('t1'));

a33(i+1).. DCF(i+1) =e= (PV_r(i+1) - PV_o(i+1) - PV_c(i+1) - PV_d(i+1));

a34.. NPV =e= sum(i,DCF(i))/1E6;

*Generating model

Model mod3 /all/;

option minlp = lindo;

set s /s1*s400/

$call gdxxrw.exe LHS.xlsx par=LHS rng=Sheet1!A1:F401

Parameter LHS(s,k);

$gdxin LHS.gdx

$load LHS

$gdxin

Parameter N_s(s,res), Fc_s(s), Fw_s(s,res);

N_s(s,'r1') = LHS(s,'N1')*1e6;

N_s(s,'r2') = LHS(s,'N2')*1e6;

Fc_s(s) = LHS(s, 'Fc');

Fw_s(s,'r1') = LHS(s, 'Fw1');

Fw_s(s,'r2') = LHS(s, 'Fw2');

$call gdxxrw.exe OilPriceTrajectory.xlsx par=oilprice rng=Sheet2!B2:W402

Parameter oilprice(s,i);

$gdxin OilPriceTrajectory.gdx

$load oilprice

$gdxin

Parameter qoresult(s,res,i);

Parameter qppresult(s,res,i);

Parameter qgresult(s,res,i);

Parameter qwresult(s,res,i);

Parameter Nwresult(s,res,i);

Parameter Npresult(s,res,i);

Parameter Gpresult(s,res,i);

Parameter Wpresult(s,res,i);

Parameter NPVresult(s);
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Set mattrib / system.GUSSModelAttributes /;

Parameter

srep(s, mattrib) 'model attibutes like modelstat etc'

o(*)/ SkipBaseCase 0

RestartType 1/;

Set dict / s.scenario.''

o. opt .srep

Po. param .oilprice

N. param .N_s

Fc. param .Fc_s

Fw. param .Fw_s

qo. level .qoresult

qpp. level .qppresult

qg. level .qgresult

qw. level .qwresult

Nw. level .Nwresult

Np. level .Npresult

Gp. level .Gpresult

Wp. level .Wpresult

NPV. level .NPVresult/;

Solve mod3 maximizing NPV using minlp scenario dict;

execute_unload "results.gdx" qoresult qppresult qgresult qwresult Nwresult Npresult NPVresult

*=== Now write to variable levels to Excel file from GDX

*=== Since we do not specify a sheet, data is placed in first sheet

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=qoresult rng=qo!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=qgresult rng=qg!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=qwresult rng=qw!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=Nwresult rng=nw!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=NPVresult rng=npv!'
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Appendix B
GAMS Code for the Uncertainty

Model Considering Flexibility in

the Drilling Schedule

$Title Multi reservoir MINLP model.

Sets

i /t1*t21/

k /N1, N2, Fc, Fw1, Fw2/

res /r1*r2/;

*Defining parameters for the model

Scalars

R /0/

Tax /0/

a_drillex /5E5/

a_capex /50E3/

b_capex /8.56E2/

c_capex /4.42E1/

d_capex /2.35E2/

e_capex /2.15E6/

a_opex /723.3E3/

b_opex /6.5E3/

c_opex /2.36E1/

d_opex /1.855E-15/

e_opex /3.04E-15/

disc /0.12/

Nwf_year /3/

fp /0.973/

days /365/

Np_init /0.0/

Nw_init /3/

xr /8.5/

vc /6.29/

Fc /1.0/

qoMax /8915.93/

qgMax /5494.73/

qwMax /4752.47/;
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Parameter

qpp_well(res)

/r1 4592.475,

r2 2852.217/

Nw_injprod(res)

/r1 0.5,

r2 0.33/

a_dimpot(res)

/r1 -39.413,

r2 7067.6/

b_dimpot(res)

/r1 -13.968,

r2 -3761.5/

c_dimpot(res)

/r1 6.2734,

r2 553.01/

d_dimpot(res)

/r1 12.684,

r2 21.825/

e_dimpot(res)

/r1 -6.7185,

r2 -12.684/

a_gor(res)

/r1 556885.71,

r2 11358985.64/

b_gor(res)

/r1 -353194.93,

r2 -3064031.89/

c_gor(res)

/r1 92643.10,

r2 288797.17/

d_gor(res)

/r1 -5277.34,

r2 -5494.71/

e_gor(res)

/r1 316.34,

r2 150.00/

a_wc(res)

/r1 -111.57,

r2 -178.94/

b_wc(res)

/r1 119.26,

r2 95.27/

c_wc(res)

/r1 -42.60,

r2 -16.31/

d_wc(res)

/r1 6.84,

r2 0.96/

e_wc(res)

/r1 0.011,

r2 0.03/

N(res)

/r1 56.25e6

r2 39.25e6/

Fw(res)

/r1 1.0

r2 1.0/

Po(i)

/t1 60

t2 60

t3 60

87



t4 60

t5 60

t6 60

t7 60

t8 60

t9 60

t10 60

t11 60

t12 60

t13 60

t14 60

t15 60

t16 60

t17 60

t18 60

t19 60

t20 60/;

Table

Nw_min(res,i)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21

r1 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

r2 0 0 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3;

Table

Nw_max(res,i)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16 t17 t18 t19 t20 t21

r1 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

r2 0 0 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3;

Parameter val(i);

val(i) = ord(i)-1;

*Defining variables

Variables

DCF(i)

NPV;

Positive variables

qo(res,i)

qo_f(i)

*qoMax

*qwMax

*qgMax

qg(res,i)

qw(res,i)

Np(res,i)

Np_f(i)

qpp(res,i)

PV_d(i)

PV_c(i)

PV_pre

PV_o(i)

PV_r(i);

Integer variables

Nw(res,i)

Nw_add(res,i)

Nw_f(i);

*Declaring equations

Equations
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a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a16

a17

a18

a19

a20

a21

a22

a23

a24

a25

a26

a300

obj;

*OBJECTIVE FUNCTION

obj.. NPV =e= (1-R)*(1-Tax)*NPV;

a1(res).. Np(res,'t1') =e= Np_init;

a2(res,i).. Nw(res,i) =e= Nw_min(res,i) + Nw_add(res,i);

a3(res).. sum(i,Nw_add(res,i)) =l= sum(i,Nw_max(res,i)-Nw_min(res,i));

a300(res,i).. Nw(res,i) =l= Nw_max(res,i);

a4(i).. Nw_f(i) =e= sum(res, Nw(res,i));

a5(res,i+1).. (qo(res,i+1) + qo(res,i))*0.5*days =e= Np(res,i+1) - Np(res,i);

a6(res,i).. qg(res,i) =e= qo(res,i) * (a_gor(res) * (Np(res,i)/N(res))**4 + b_gor(res)

* (Np(res,i)/N(res))**3 + c_gor(res) * (Np(res,i)/N(res))**2

+ d_gor(res) * (Np(res,i)/N(res)) + e_gor(res))/1E3;

a7(res,i).. qw(res,i) =e= qo(res,i) * (a_wc(res) * (Np(res,i)/N(res))**4 + b_wc(res)

* (Np(res,i)/N(res))**3 + c_wc(res) * (Np(res,i)/N(res))**2

+ d_wc(res) * (Np(res,i)/N(res)) + e_wc(res))/(1-(a_wc(res)

* (Np(res,i)/N(res))**4 + b_wc(res) * (Np(res,i)/N(res))**3

+ c_wc(res) * (Np(res,i)/N(res))**2 + d_wc(res)

* (Np(res,i)/N(res)) + e_wc(res)));

a8(i).. qo_f(i) =e= sum(res, qo(res,i));

a9(i).. Np_f(i) =e= sum(res, Np(res,i));

a10(res,i).. qpp(res,i) =e= Fw(res) * Nw(res,i)*qpp_well(res) * fp**(Nw(res,i)-1) *

(a_dimpot(res) * (Np(res,i)/N(res))**5 + b_dimpot(res)

* (Np(res,i)/N(res))**4 + c_dimpot(res) * (Np(res,i)/N(res))**3

+ d_dimpot(res) * (Np(res,i)/N(res))**2

+ e_dimpot(res) * (Np(res,i)/N(res)) + 1);

a11(res,i).. qo(res,i) =l= qpp(res,i);

a12(res,i+1).. Nw(res,i+1) =g= Nw(res,i);

a13(i+1).. Nw_f(i+1) - Nw_f(i) =l= Nwf_year;

a14(i).. qo_f(i) =l= qoMax;

a15(i).. sum(res, qg(res,i)) =l= qgMax;

a16(i).. sum(res, qw(res,i)) =l= qwMax;

a17.. PV_d('t1') =e= Fc * sum(res, Nw(res,'t1')*(1+Nw_injprod(res))) * a_drillex

/(1 + disc)**val('t1');
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a18(i+1).. PV_d(i+1) =e= Fc * sum(res, (Nw(res,i+1) - Nw(res,i))*(1+Nw_injprod(res)))

* a_drillex/(1 + disc)**val(i+1);

a19.. PV_c('t1') =e= Fc * sum(res, Nw_max(res,'t1')*(1+Nw_injprod(res)))

* a_capex/(1+disc)**val('t1');

a20(i+1).. PV_c(i+1) =e= Fc * sum(res, (Nw_max(res,i+1) - Nw_max(res,i))

*(1+Nw_injprod(res))) * a_capex/(1 + disc)**val(i+1);

a21.. PV_pre =e= Fc * (qoMax * b_capex + qwMax * c_capex + qgMax * d_capex + e_capex);

a22(i+1).. PV_o(i+1) =e= Fc * (a_opex + b_opex * Nw_f(i) + c_opex * qo_f(i)

+ d_opex * sum(res, qw(res,i)) + e_opex

* sum(res, qg(res,i)))/(1 + disc)**val(i+1);

a23(i+1).. PV_r(i+1) =e= (Po(i) * (Np_f(i+1) - Np_f(i)) * xr * vc)/(1 + disc)**val(i+1)/1E3;

a24.. DCF('t1') =e= -(PV_pre + PV_d('t1') + PV_c('t1'));

a25(i+1).. DCF(i+1) =e= (PV_r(i+1) - PV_o(i+1) - PV_c(i+1) - PV_d(i+1));

a26.. NPV =e= sum(i,DCF(i))/1E3;

*Generating model

Model mod3 /all/;

option minlp = lindo;

set s /s1*s400/

$call gdxxrw.exe LHS.xlsx par=LHS rng=Sheet1!A1:F401

Parameter LHS(s,k);

$gdxin LHS.gdx

$load LHS

$gdxin

Parameter N_s(s,res), Fc_s(s), Fw_s(s,res);

N_s(s,'r1') = LHS(s,'N1')*1e6;

N_s(s,'r2') = LHS(s,'N2')*1e6;

Fc_s(s) = LHS(s, 'Fc');

Fw_s(s,'r1') = LHS(s, 'Fw1');

Fw_s(s,'r2') = LHS(s, 'Fw2');

$call gdxxrw.exe OilPriceTrajectory.xlsx par=oilprice rng=Sheet2!B2:W402

Parameter oilprice(s,i);

$gdxin OilPriceTrajectory.gdx

$load oilprice

$gdxin

Parameter qoresult(s,res,i);

Parameter qppresult(s,res,i);

Parameter qgresult(s,res,i);

Parameter qwresult(s,res,i);

Parameter Nwresult(s,res,i);

Parameter Npresult(s,res,i);

Parameter NPVresult(s);

Set mattrib / system.GUSSModelAttributes /;

Parameter

srep(s, mattrib) 'model attibutes like modelstat etc'

o(*)/ SkipBaseCase 0

RestartType 2/;

Set dict / s.scenario.''

o. opt .srep

Po. param .oilprice

N. param .N_s

Fc. param .Fc_s

Fw. param .Fw_s
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qo. level .qoresult

qpp. level .qppresult

qg. level .qgresult

qw. level .qwresult

Nw. level .Nwresult

Np. level .Npresult

NPV. level .NPVresult/;

Solve mod3 maximizing NPV using MINLP scenario dict;

execute_unload "results.gdx" qoresult qppresult qgresult qwresult Nwresult Npresult NPVresult

*=== Now write to variable levels to Excel file from GDX

*=== Since we do not specify a sheet, data is placed in first sheet

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=qoresult rng=qo!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=qgresult rng=qg!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=qwresult rng=qw!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=Nwresult rng=nw!'

execute 'gdxxrw.exe results.gdx o=results1.xlsx par=NPVresult rng=npv!'
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Appendix C
GAMS Code for the Stochastic

Programming Model

$Title Multi reservoir MINLP model.

Sets

i /t1*t21/

res /r1*r2/;

*Defining parameters for the model

Scalars

R /0/

Tax /0/

a_drillex /5E8/

a_capex /50E6/

b_capex /8.56E5/

c_capex /4.42E4/

d_capex /2.35E2/

e_capex /2.15E9/

a_opex /723.3E6/

b_opex /6.5E6/

c_opex /2.36E4/

d_opex /1.855E-12/

e_opex /3.04E-15/

disc /0.12/

Nwf_year /3/

fp /0.973/

days /365/

Np_init /0.0/

Nw_init /3/

xr /8.5/

vc /6.29/

Fc /1.0/

Po /60/;

Parameter

Nw_max(res)

/r1 6,

r2 3/

qpp_well(res)

/r1 4592.475,
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r2 2852.217/

Nw_injprod(res)

/r1 0.5,

r2 0.33/

a_dimpot(res)

/r1 -39.413,

r2 7067.6/

b_dimpot(res)

/r1 -13.968,

r2 -3761.5/

c_dimpot(res)

/r1 6.2734,

r2 553.01/

d_dimpot(res)

/r1 12.684,

r2 21.825/

e_dimpot(res)

/r1 -6.7185,

r2 -12.684/

a_gor(res)

/r1 556885.71,

r2 11358985.64/

b_gor(res)

/r1 -353194.93,

r2 -3064031.89/

c_gor(res)

/r1 92643.10,

r2 288797.17/

d_gor(res)

/r1 -5277.34,

r2 -5494.71/

e_gor(res)

/r1 316.34,

r2 150.00/

a_wc(res)

/r1 -111.57,

r2 -178.94/

b_wc(res)

/r1 119.26,

r2 95.27/

c_wc(res)

/r1 -42.60,

r2 -16.31/

d_wc(res)

/r1 6.84,

r2 0.96/

e_wc(res)

/r1 0.011,

r2 0.03/

N(res)

/r1 56.25e6

r2 39.25e6/

Fw(res)

/r1 1.0

r2 1.0/;

Parameter val(i);

val(i) = ord(i)-1;

*Defining variables

Variables

NPV;
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Positive variables

qo(res,i)

qoMax

qwMax

qgMax

qg(res,i)

qw(res,i)

Np(res,i)

qpp(res,i)

PV_d(i)

PV_pre

PV_o(i)

PV_r(i);

Integer variables

Nw(res,i);

Nw.up(res,i) = Nw_max(res);

Nw.fx('r1','t1') = 3;

Np.fx(res,'t1') = Np_init;

*Declaring equations

Equations

OilRate

GasRate

WaterRate

OilPotential

OilRate_Bound

NumWells_Bound

FieldNumWells_Bound

OilCapacity

GasCapacity

WaterCapacity

DrillExCapEx_1

DrillExCapEx

PreCapEx

OpEx

Revenue

Objective;

*Objective Function

Objective.. NPV =e= -PV_pre/1E3 + sum(i,PV_r(i+1) - PV_o(i+1) - PV_d(i))/1E3;

*Constraints

OilRate(res,i+1).. (qo(res,i+1) + qo(res,i))*0.5*days =e= Np(res,i+1) - Np(res,i);

GasRate(res,i).. qg(res,i) =e= qo(res,i) * (a_gor(res) * (Np(res,i)/N(res))**4

+ b_gor(res) * (Np(res,i)/N(res))**3 + c_gor(res)

* (Np(res,i)/N(res))**2 + d_gor(res) * (Np(res,i)/N(res))

+ e_gor(res));

WaterRate(res,i).. qw(res,i) =e= qo(res,i) * (a_wc(res) * (Np(res,i)/N(res))**4

+ b_wc(res) * (Np(res,i)/N(res))**3 + c_wc(res)

* (Np(res,i)/N(res))**2 + d_wc(res) * (Np(res,i)/N(res))

+ e_wc(res))/(1-(a_wc(res) * (Np(res,i)/N(res))**4

+ b_wc(res) * (Np(res,i)/N(res))**3 + c_wc(res)

* (Np(res,i)/N(res))**2 + d_wc(res) * (Np(res,i)/N(res))

+ e_wc(res)));

OilPotential(res,i).. qpp(res,i) =e= Fw(res) * Nw(res,i)*qpp_well(res)

* fp**(Nw(res,i)-1) * (a_dimpot(res) * (Np(res,i)/N(res))**5

+ b_dimpot(res) * (Np(res,i)/N(res))**4 + c_dimpot(res)

* (Np(res,i)/N(res))**3 + d_dimpot(res) * (Np(res,i)/N(res))**2

+ e_dimpot(res) * (Np(res,i)/N(res)) + 1);

OilRate_Bound(res,i).. qo(res,i) =l= qpp(res,i);

NumWells_Bound(res,i+1).. Nw(res,i+1) =g= Nw(res,i);

FieldNumWells_Bound(i+1).. sum(res, Nw(res,i+1)-Nw(res,i)) =l= Nwf_year;
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OilCapacity(i).. sum(res, qo(res,i)) =l= qoMax;

GasCapacity(i).. sum(res, qg(res,i)) =l= qgMax;

WaterCapacity(i).. sum(res, qw(res,i)) =l= qwMax;

DrillExCapEx_1.. PV_d('t1') =e= Fc * sum(res, Nw(res,'t1')*(1+Nw_injprod(res)))

* (a_drillex+a_capex)/(1E3*(1 + disc)**val('t1'));

DrillExCapEx(i+1).. PV_d(i+1) =e= Fc * sum(res, (Nw(res,i+1) - Nw(res,i))

* (1+Nw_injprod(res))) * (a_drillex+a_capex)

/(1E3*(1 + disc)**val(i+1));

PreCapEx.. PV_pre =e= Fc * (qoMax * b_capex + qwMax * c_capex + qgMax * d_capex

+ e_capex)/1E3;

OpEx(i+1).. PV_o(i+1) =e= Fc * (a_opex + b_opex * sum(res, Nw(res,i)) + c_opex

* sum(res, qo(res,i)) + d_opex * sum(res, qw(res,i))

+ e_opex * sum(res, qg(res,i)))/(1E3*(1 + disc)**val(i+1));

Revenue(i+1).. PV_r(i+1) =e= (Po * sum(res, Np(res,i+1) - Np(res,i)) * xr * vc)

/(1E3*(1 + disc)**val(i+1));

*Generating model

Model mod3 /all/;

*Choosing subsolvers for milp and nlp problems

option EMP = LINDO;

option minlp = lINDO;

File emp / '%emp.info%' /;

put emp '* problem %gams.i%'/;

$onput

randvar N('r1') discrete 0.3 31E6 0.4 49E6 0.3 68E6

randvar N('r2') discrete 0.3 33E6 0.4 40E6 0.3 49E6

randvar Fc discrete 0.3 0.81 0.4 1 0.3 1.18

randvar Po discrete 0.3 40 0.4 60 0.3 81

randvar Fw('r1') discrete 0.3 0.86 0.4 1 0.3 1.13

stage 2 qo qg qw Np qpp PV_d PV_pre PV_o PV_r NPV N Fc Fw Po

stage 2 OilRate GasRate WaterRate OilPotential OilRate_Bound OilCapacity GasCapacity

WaterCapacity DrillExCapEx_1 DrillExCapEx PreCapEx OpEx Revenue

$offput

putclose emp;

Set s "scenarios" /s1*s243/;

Parameter

s_N(s,res)

s_Fc(s)

s_Fw(s,res)

s_Po(s)

s_Nw(s,res,i)

s_qo(s,res,i)

s_NPV(s)

s_qoMax(s)

s_qgMax(s)

s_qwMax(s)

s_rep(s,*) "scenario probability" / #s.prob 0/;;

Set dict / s .scenario .''

N .randvar .s_N

Fc .randvar .s_Fc

Po .randvar .s_Po

Fw .randvar .s_Fw

qo .level .s_qo

Nw .level .s_Nw

NPV .level .s_NPV

qoMax .level .s_qoMax

qgMax .level .s_qgMax

qwMax .level .s_qwMax

'' .opt .s_rep/;
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Solve mod3 maximizing NPV using EMP scenario dict;

display s_NPV, s_rep, s_N, s_Fc, s_Po, s_Fw

execute_unload "results.gdx" s_NPV s_rep s_N s_Fc s_Po s_Fw s_Nw s_qoMax s_qgMax s_qwMax
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Appendix D
GAMS Code for the Improved

Formulation

$Title Multi reservoir MINLP model.

Sets

i /t1*t21/

res /r1*r2/

sr1 /s1*s42/

sr2 /n1*n8/

wr1 /w1*w6/

wr2 /w7*w9/;

*Defining parameters for the model

Scalars

R /0/

Tax /0/

a_drillex /5E5/

a_capex /50E3/

pl_capex /25E3/

b_capex /8.56E2/

c_capex /4.42E1/

d_capex /2.35E-1/

e_capex /2.15E6/

a_opex /723.3E3/

b_opex /6.5E3/

c_opex /2.36E1/

d_opex /1.855E-15/

e_opex /3.04E-18/

disc /0.12/

Nwf_year /3/

fp /0.973/

days /365/

Nw_init /3/

xr /8.5/

vc /6.29/

Fc /1.0/

Po /0.06/;

Parameter

Nw_max(res)
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/r1 6,

r2 3/

Nw_injprod(res)

/r1 0,

r2 0/

Nw_pd(res)

/r1 3,

r2 0/

a_dimpot(res)

/r1 -39.413,

r2 7067.6/

b_dimpot(res)

/r1 -13.968,

r2 -3761.5/

c_dimpot(res)

/r1 6.2734,

r2 553.01/

d_dimpot(res)

/r1 12.684,

r2 21.825/

e_dimpot(res)

/r1 -6.7185,

r2 -12.684/

a_gor(res)

/r1 556885.71,

r2 11358985.64/

b_gor(res)

/r1 -353194.93,

r2 -3064031.89/

c_gor(res)

/r1 92643.10,

r2 288797.17/

d_gor(res)

/r1 -5277.34,

r2 -5494.71/

e_gor(res)

/r1 316.34,

r2 150.00/

a_wc(res)

/r1 -111.57,

r2 -178.94/

b_wc(res)

/r1 119.26,

r2 95.27/

c_wc(res)

/r1 -42.60,

r2 -16.31/

d_wc(res)

/r1 6.84,

r2 0.96/

e_wc(res)

/r1 0.011,

r2 0.03/

N(res)

/r1 56.25e6

r2 39.25e6/

Fw(res)

/r1 1.0

r2 1.0/;

Table

z1(sr1,*)

w1 w2 w3 w4 w5 w6 qppo1 pl1
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s1 1 1 1 0 0 0 12386.60318 15

s2 1 1 0 1 0 0 12581.3048 8.5

s3 1 1 0 0 1 0 12737.3061 11.2

s4 1 1 0 0 0 1 10683.08899 19

s5 1 0 1 1 0 0 14200.41828 15

s6 1 0 1 0 1 0 13341.51113 17.7

s7 1 0 1 0 0 1 11287.29402 25.5

s8 1 0 0 1 1 0 14679.92228 11.2

s9 1 0 0 1 0 1 12625.70517 19

s10 1 0 0 0 1 1 11290.49405 21.2

s11 0 1 1 1 0 0 15417.52842 11.9

s12 0 1 1 0 1 0 15240.42695 14.6

s13 0 1 1 0 0 1 13186.30984 22.4

s14 0 1 0 1 1 0 15973.73306 8.1

s15 0 1 0 1 0 1 13919.51594 15.9

s16 0 1 0 0 1 1 13280.51062 18.1

s17 0 0 1 1 1 0 16219.3351 12.3

s18 0 0 1 1 0 1 14165.11799 20.1

s19 0 0 1 0 1 1 11977.89977 19.7

s20 0 0 0 1 1 1 14333.61939 15.8

s21 0 0 1 1 1 1 18750.05618 22.3

s22 0 1 0 1 1 1 18504.35413 18.1

s23 0 1 1 0 1 1 17771.14803 24.6

s24 0 1 1 1 0 1 18128.75101 22.4

s25 0 1 1 1 1 0 20182.86812 14.6

s26 1 0 0 1 1 1 17210.54336 21.2

s27 1 0 1 0 1 1 15872.13221 27.7

s28 1 0 1 1 0 1 16911.64087 25.5

s29 1 0 1 1 1 0 18965.85798 17.7

s30 1 1 0 0 1 1 15267.92718 21.2

s31 1 1 0 1 0 1 15292.52738 19

s32 1 1 0 1 1 0 17346.74449 11.2

s33 1 1 1 0 0 1 15097.82576 25.5

s34 1 1 1 0 1 0 17152.04287 17.7

s35 1 1 1 1 0 0 16714.53923 15

s36 1 1 1 1 1 0 21479.97892 17.7

s37 1 1 1 1 0 1 19425.76181 25.5

s38 1 1 1 0 1 1 19682.76395 27.7

s39 1 1 0 1 1 1 19877.36557 21.2

s40 1 0 1 1 1 1 21496.47906 27.7

s41 0 1 1 1 1 1 22713.5892 24.6

s42 1 1 1 1 1 1 24010.6 27.7;

Table

z2(sr2,*)

w7 w8 w9 qppo2 pl2

n1 0 0 0 0 0

n2 1 0 0 4273.936632 17

n3 0 1 0 4915.397104 15.7

n4 0 0 1 5222.198198 14

n5 1 1 0 6549.266422 17

n6 1 0 1 7120.101246 17

n7 0 1 1 7359.496494 15.7

n8 1 1 1 8114 17;

Parameter val(i);

val(i) = ord(i)-1;

*Defining variables

Variables

DCF(i)

NPV;
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Positive variables

qoMax

qwMax

qgMax

plMax

qppo(res,i)

qpp(res,i)

qo(res,i)

qo_f(i)

qg(res,i)

qw(res,i)

Np(res,i)

Np_f(i)

pipe(res,i)

PV_d(i)

PV_c(i)

PV_pre

PV_o(i)

PV_r(i);

Integer variables

Nw(res,i)

Nw_f(i);

Binary variables

zw1(wr1,i)

zw2(wr2,i)

x(sr1,i)

y(sr2,i);

*Declaring equations

Equations

OBJ

LookupTable_1

LookupTable_2

NumWells_Init

CumulativeProd_Init

OilRate

GasRate

WaterRate

MaximumPotential_1

MaximumPotential_2

OilPotential

NumWells_1

NumWells_2

FieldNumWells

FieldOilRate

FieldCumulativeProd

ActiveScenario_1

ActiveScenario_2

Pipeline_1

Pipeline_2

CumulativeProd_Bound1

CumulativeProd_Bound2

OilRate_Bound

BinaryWells_Bound1

BinaryWells_Bound2

FieldNumWells_Bound

Pipeline_Bound1

OilCapacity
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GasCapacity

WaterCapacity

PipelineMax

DrillEx_1

DrillEx

CapEx_1

CapEx

PreCapEx

OpEx

Revenue

CashFlow_1

CashFlow

;

*OBJECTIVE FUNCTION

OBJ.. NPV =e= (1-R)*(1-Tax)* sum(i,DCF(i))/1E3;;

*Lookup Table

LookupTable_1(sr1,i).. sum(wr1$(1=z1(sr1,wr1)), zw1(wr1,i)) + sum(wr1$(0=z1(sr1,wr1)),

1-zw1(wr1,i)) =g= card(wr1)*x(sr1,i);

LookupTable_2(sr2,i).. sum(wr2$(1=z2(sr2,wr2)), zw2(wr2,i)) + sum(wr2$(0=z2(sr2,wr2)),

1-zw2(wr2,i)) =g= card(wr2)*y(sr2,i);

*Equality Constraints

NumWells_Init(res).. Nw(res,'t1') =e= Nw_pd(res);

CumulativeProd_Init(res).. Np(res,'t1') =e= 0;

OilRate(res,i+1).. qo(res,i)*days =e= Np(res,i+1) - Np(res,i);

GasRate(res,i).. qg(res,i) =e= qo(res,i) * (a_gor(res) * (Np(res,i)/N(res))**4

+ b_gor(res) * (Np(res,i)/N(res))**3 + c_gor(res)

* (Np(res,i)/N(res))**2 + d_gor(res) * (Np(res,i)/N(res))

+ e_gor(res));

WaterRate(res,i).. qw(res,i) =e= qo(res,i) * (a_wc(res) * (Np(res,i)/N(res))**4

+ b_wc(res) * (Np(res,i)/N(res))**3 + c_wc(res)

* (Np(res,i)/N(res))**2 + d_wc(res) * (Np(res,i)/N(res))

+ e_wc(res))/(1-(a_wc(res) * (Np(res,i)/N(res))**4

+ b_wc(res) * (Np(res,i)/N(res))**3 + c_wc(res)

* (Np(res,i)/N(res))**2 + d_wc(res) * (Np(res,i)/N(res))

+ e_wc(res)));

MaximumPotential_1(i).. qppo('r1',i) =e= sum(sr1,z1(sr1,'qppo1')*x(sr1,i));

MaximumPotential_2(i).. qppo('r2',i) =e= sum(sr2,z2(sr2,'qppo2')*y(sr2,i));

OilPotential(res,i).. qpp(res,i) =e= Fw(res) * qppo(res,i) * (a_dimpot(res)

* (Np(res,i)/N(res))**5 + b_dimpot(res)

* (Np(res,i)/N(res))**4 + c_dimpot(res)

* (Np(res,i)/N(res))**3 + d_dimpot(res)

* (Np(res,i)/N(res))**2 + e_dimpot(res)

* (Np(res,i)/N(res)) + 1);

NumWells_1(i).. Nw('r1',i) =e= sum(wr1,zw1(wr1,i));

NumWells_2(i).. Nw('r2',i) =e= sum(wr2,zw2(wr2,i));

FieldNumWells(i).. Nw_f(i) =e= sum(res, Nw(res,i));

FieldOilRate(i).. qo_f(i) =e= sum(res, qo(res,i));

FieldCumulativeProd(i).. Np_f(i) =e= sum(res, Np(res,i));

ActiveScenario_1(i).. sum(sr1,x(sr1,i)) =e= 1;

ActiveScenario_2(i).. sum(sr2,y(sr2,i)) =e= 1;

Pipeline_1(i).. pipe('r1',i) =e= sum(sr1,z1(sr1,'pl1')*x(sr1,i));

Pipeline_2(i).. pipe('r2',i) =e= sum(sr2,z2(sr2,'pl2')*y(sr2,i));
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*Inequality Constraints

CumulativeProd_Bound1(res,i+1).. Np(res,i) =l= Np(res,i+1);

CumulativeProd_Bound2(res,i).. Np(res,i) =l= N(res);

OilRate_Bound(res,i).. qo(res,i) =l= qpp(res,i);

BinaryWells_Bound1(wr1,i+1).. zw1(wr1,i+1) =g= zw1(wr1,i);

BinaryWells_Bound2(wr2,i+1).. zw2(wr2,i+1) =g= zw2(wr2,i);

FieldNumWells_Bound(i+1).. Nw_f(i+1) - Nw_f(i) =l= Nwf_year;

Pipeline_Bound1(res,i+1).. pipe(res,i) =l= pipe(res,i+1);

OilCapacity(i).. qo_f(i) =l= qoMax;

GasCapacity(i).. sum(res, qg(res,i)) =l= qgMax;

WaterCapacity(i).. sum(res, qw(res,i)) =l= qwMax;

PipelineMax(i).. sum(res,pipe(res,i))=l= plMax;

DrillEx_1.. PV_d('t1') =e= Fc * sum(res, Nw(res,'t1')*(1+Nw_injprod(res))) * a_drillex;

DrillEx(i+1).. PV_d(i+1) =e= Fc * sum(res, (Nw(res,i+1) - Nw(res,i))*(1+Nw_injprod(res)))

* a_drillex;

CapEx_1.. PV_c('t1') =e= Fc * (sum(res, Nw(res,'t1')*(1+Nw_injprod(res)))*a_capex + plMax

* pl_capex);

CapEx(i+1).. PV_c(i+1) =e= Fc * sum(res, (Nw(res,i+1) - Nw(res,i))*(1+Nw_injprod(res))) * a_capex;

PreCapEx.. PV_pre =e= Fc * (qoMax * b_capex + qwMax * c_capex + qgMax * d_capex + e_capex);

OpEx(i+1).. PV_o(i+1) =e= Fc * (a_opex + b_opex * Nw_f(i) + c_opex * qo_f(i)

+ d_opex * sum(res, qw(res,i)) + e_opex * sum(res, qg(res,i)));

Revenue(i+1).. PV_r(i+1) =e= (Po * (Np_f(i+1) - Np_f(i)) * xr * vc);

CashFlow_1.. DCF('t1') =e= -(PV_pre + PV_d('t1') + PV_c('t1'))/(1 + disc)**val('t1');

CashFlow(i+1).. DCF(i+1) =e= (PV_r(i+1) - PV_o(i+1) - PV_c(i+1) - PV_d(i+1))/(1 + disc)**val(i+1);

*Generating model

Model mod3 /all/;

option minlp = dicopt;

Solve mod3 maximizing NPV using minlp;
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