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Abstract

By streamlining operations, a road construction company can potentially save substan-

tial amounts of time and resources. It is therefore interesting to investigate alternative

approaches to routing on-site vehicles. This master’s thesis aims to formulate and solve

the mass relocation aspect of a road construction site by expressing it as a robust op-

timization problem. The work was conducted in collaboration with SINTEF Digital on

assignment from Skanska.

This thesis first explores the field of Vehicle Routing Problems (VRPs) and examines

how known variations can be adapted to fit this problem. We find that the Vehicle

Routing Problem with Pickup and Delivery (VRPPDTW) closely resembles the given

description of our problem, and we modify it into what we call the Mass Reloca-

tion Problem (MRP). To include uncertainty into the formulation, we investigate the

known robustness techniques commonly used for VRPs; the Soyster approach and the

Bertsimas-Sim approach. We also develop a new robustness approach that we call the

Removing Outliers Approach (ROA). Using these approaches, we formulate the Mass

Relocation Problem with Uncertainty (MRPU). To assess the performance of our MRP

and MRPU formulations, we implement them in the optimization software Gurobi. We

consider both a simple test case and a real-world case with data provided by Skanska.

Our results show that the formulation provides feasible solutions but is currently too

computationally expensive for modeling a full work day. Lastly, we present possible

improvements to the problem formulation and its implementation to remedy these

issues.
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Sammendrag

Ved å effektivisere driften kan et veibyggingsselskap potensielt spare mye tid og res-

surser. Det er derfor interessant å undersøke alternativer for hvordan de burde rute

kjøretøyene sine. Denne masteroppgaven tar sikte på å formulere og løse masseflyt-

tingsaspektet til et veibyggingsanlegg ved å uttrykke det som et robust optimerings-

problem. Arbeidet ble utført i samarbeid med SINTEF Digital på oppdrag fra Skanska.

Denne oppgaven undersøker først kjente kjøreruteproblemer (VRPs) og ser på hvordan

de kan brukes til å formulere dette problemet. Vi finner at kjøreruteproblemet med

henting og levering og tidsvinduer (VRPPDTW) ligner på den gitte beskrivelsen av

anleggsplassen så vi omformulerer dette problemet til det såkalte masseflyttingsprob-

lemet (MRP). Ettersom vi også ønsker å inkludere usikkerhet i formuleringen un-

dersøker vi deretter de to mye brukte robusthetsteknikkene: Soyster-tilnærmingen

og Bertsimas-Sim-tilnærmingen. Vi utvikler også vår egen robusthetstilnærming som

vi kaller metoden for ekstremverdifjerning (ROA). Ved hjelp av disse formulerer vi

masseflyttingsproblemet med usikkerhet (MRPU). For å vurdere ytelsen til våre MRP-

og MRPU-formuleringer implementerer vi dem i optimaliseringsprogramvaren Gurobi.

Vi undersøker de tilhørende løsningene for et enkelt testforsøk og for ekte data fra ett

av Skanskas veibyggingsanlegg. Resultatene våre viser at formuleringen gir gode løs-

ninger, men at beregningstiden er for høy til at metoden kan brukes til å modellere en

hel arbeidsdag. Til slutt, presenterer vi mulige forbedringer av problemformuleringen

og implementasjonen.
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Chapter 1

Introduction

Operations research (OR) techniques have been rising in popularity over the last

couple of decades for managing and facilitating the logistics behind goods and ser-

vices. Using these techniques can save between 5% to 20% of the transportation costs

[23]. With 14.7% of the Norwegian mainland’s GDP in 2007 directly tied to the cost

of logistics [12], the potential savings are substantial

The building and construction sector in Norway provides essential infrastructure and

plays a significant role in national employment and value creation. In 2016, this in-

dustry employed 227 400 people and had a gross product of NOK 182.2 billion, making

it Norway’s second-largest mainland industry when excluding the public sector [19].

However, between 2001 and 2016, the total factor productivity of the industry fell

by 1.3% annually, while for mainland Norway in general it increased by 1.1% annu-

ally [19]. This indicates that the construction industry is falling behind in terms of

productivity and could benefit from streamlining productions.

We should also consider the environmental benefits of employing OR techniques. Ap-

proximately 24% of carbon dioxide emissions worldwide are directly correlated to

distribution processes [18]. In Norway, just the construction site machinery account

for 20% of the total emissions released by construction sites [20]. As machines at con-

struction sites are idle for up to 40% of working hours [20], a lot can be saved by

employing OR techniques.

1



2 Ella Frederika Johnsen: The Mass Relocation Problem with Uncertainty

This thesis will focus on the Vehicle Routing Problem (VRP). It was introduced by

Dantzig and Ramser in 1959 as an extension of the Traveling Salesman Problem (TSP)

[8]. It depicts a fleet of homogeneous vehicles that serves a set of customers and tries

to find the least total distance travelled by all vehicles while serving all customers.

In 1964, Clarke and Wright generalized the problem into what we today recognize

as the VRP [7]. The problem has been widely studied and one of the main pillars of

Operations Research.

The size and composition of the problem can be adapted to fit the requirements of

many different problems. The general formulation describes a fleet of vehicles located

at one or more depots that satisfies a set of requests using a given road network such

that the transportation costs are minimized, and operational constraints are satisfied.

Such constraints can for example describe how the road network can be traversed or

the carrying capacity of the vehicles. Thus, the VRP can be modified to fit several prob-

lems, such as mail delivery, transportation of passengers, or, as in this thesis, pickup

and delivery of mass.

Determining the optimal solution of a VRP is NP-hard. In other words, no algorithm

can guarantee optimality for an arbitrary instance in polynomial time of instance size.

However, there exists extensive literature on possible solution methods, as the VRP

has been widely studied. Exact methods, heuristics, and metaheuristics are some of

the most commonly used techniques, where metaheuristics in particular have been

widely studied the last couple of decades. Thus, it is easier than ever before to solve

or approximate large NP-hard problems.

Today, few, if any, construction sites in Norway use routing tools to schedule the mass

relocation on their site [20]. A goal of the research project called "Datadrevet anleggs-

plass", by the construction company Skanska and the research organization SINTEF, is

to make a routing tool of their own. This master’s thesis aims to solve part of this prob-

lem by formulating the mass relocation aspect of a road construction site as a variation

of the VRP. We have called this problem the Mass Relocation Problem (MRP). The idea

is that the mass relocation aspect of a road construction site is similar to a VRP as it

concerns the pickup and delivery of mass using a fleet of vehicles often subject to time

windows. Furthermore, as there is a lot of uncertainty in real world situations, the



Chapter 1: Introduction 3

routing tool must be able to produce feasible solutions in many different cases. This

is why we also formulate the Mass Relocation Problem with Uncertainty (MRPU) as a

robust variation of the improved MRP.

This thesis is split into seven stages:

Chapter 1 provides insight into the context, motivation and objectives of this thesis.

Chapter 2 presents the known theory on the VRP, and some of its variations and

two of the commonly used robustness approaches for VRPs.

Chapter 3 investigates the potential for improvement of the previous formulation

and constructs a new mathematical description of the MRP.

Chapter 4 describes how we can apply robustness approaches to the MRP to for-

mulate the MRPU.

Chapter 5 inspects the performance of both the MRP and the MRPU by implement-

ing and solving them for a simple test case.

Chapter 6 demonstrates how the MRPU can be applied to a real-world problem

and analyzes the results.

Chapter 7 suggests future work and concludes the thesis.





Chapter 2

Preliminaries

This chapter introduces known theory on the Vehicle Routing Problem (VRP) and some

of its variations, as well as the theory behind some of the robustness approaches often

applied for VRPs. Section 2.1 introduces the VRP and the mathematical formulation of

its variation; the Vehicle Routing Problem with Pickup and Delivery and Time Windows

(VRPPDTW). Section 2.2 introduces two common robustness techniques for VRPs; the

Soyster approach and the Bertsimas-Sim approach.

2.1 The Vehicle Routing Problem

The objective of a VRP is to find the optimal route for a set of vehicles, servicing a

set of vertices, using a given road network. One must also adhere to a given set of

constraints, and the vehicles must start and end at a centralized depot. Usually, each

vehicle only serves a subset of the customers. The optimal solution is the route with the

lowest total costs that upholds all constraints and that contains no subtours. A subtour

is when a vehicle traverses a route that returns it back to where it started, as illustrated

in Figure 2.1. The costs can be calculated from the total distance travelled, the fixed

cost of each utilized road, the total time spent, among others. A simple case of the VRP

is depicted in Figure 2.2. The top image depicts a road network and transportation

5
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v1

v2

v3

v4

v5

v6

(a)

v1

v2

v3

v4

v5

v6

(b)

Figure 2.1: An illustration of subtours, where the vertices vi depict geographic locations and
the edges between them depict the calculated route using the VRP. (a) depicts a route contain-
ing a subtour in v2, v3, v4, and v5, and (b) contains none.

costs, and the two following figures are examples of solutions to the VRP applied to

this instance.

The VRP lays the groundwork for many types of problems concerning the transport

of goods. The VRP has two main constraints; 1) every vehicle must start and end

its route at the depot, and 2) all customers must be served. Beyond that, one must

look to its variations. The most common are the Capacitated Vehicle Routing Problem

(CVRP), the Vehicle Routing Problem with Time Windows (VRPTW), and the Vehicle

Routing Problem with Pickup and Delivery (VRPPD). The CVRP describes a VRP where

every vehicle has a specified carrying capacity, i.e. a limit on how many goods it can

carry at once. As this is almost always the case in real life, the CVRP has become

almost synonymous with the VRP. Furthermore, the VRPTW is, as its name suggests, a

VRP with the addition of time windows specifying when vehicles are allowed to visit

individual site. This is a common occurrence when one deals with, for example, the

transportation of people or other time-sensitive objects. Finally, the VRPPD references

a VRP where the vehicles both pickup and deliver items along their route.

The presented VRP variations can be further combined into the Capacitated Vehicle
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(a)

(b)

(c)

Figure 2.2: Illustration of a basic case of the VRP. (a) is an example instance, (b) is a solution
with a total cost of 30, and (c) is a suboptimal solution with a total cost of 40.
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CVRPPDTW MRP

CVRPTW CVRPPD

VRPTW CVRP VRPPD

VRP

Figure 2.3: Variations of the Vehicle Routing Problem

Routing Problems with Pickup and Delivery and Time Windows (CVRPPDTW) as de-

picted in Figure 2.3. The CVRPPDTW is as close we get in literature to the Mass Relo-

cation Problem (MRP), which we define in the next chapter and is the main topic of

this thesis. Therefore, we will look closer at the CVRPPDTW’s mathematical formula-

tion as it lays the foundation for the later formulation of the MRP. For simplicity, we

will from here on out omit the "capacitated"-term and assume that all VRPs, unless

otherwise specified, are capacitated.

2.1.1 Mathematical Formulation

The VRPPDTW has been previously expressed by Toth and Vigo [23], and Parragh,

Doerner, and Hartl [17], among others, and this formulation is largely based on their

work. We let G = (V, E) define the directed graph where V = {0, 1, . . . , n, n+1, . . . , 2n+

1} are the vertices of n pickup locations and n delivery locations. Furthermore, vertex

0 and 2n+ 1 denote the start- and end-depot, respectively. E denotes the edges that

connect the vertices, i.e. the road network. We also define that a request i represents

the mass needed at vertex i. Now, we define the necessary parameters as

K set of vehicles,

ck
i j cost of traversing the edge (i, j) ∈ E for vehicle k ∈ K , here given as the

distance of (i, j),

dk
i j travel time between vertex i ∈ V and j ∈ V for vehicle k ∈ K ,
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C k capacity of vehicle k ∈ K ,

ui number of units needed for request i,

li load to be delivered from vertex i to n+ i, where li = ui and ln+i = −ui,

si service duration of vertex i,

[ai, bi] time window in which vertex i must be served,

and the pickup and delivery subsets as

P set of pickup vertices, P = {1, . . . , n},

D set of delivery vertices, D = {n+ 1, . . . , 2n}.

Lastly, we define the decision variables as

x k
i j binary flow variable that equals 1 if edge (i, j) ∈ E is traversed in the op-

timal solution by vehicle k ∈ K , and 0 otherwise,

tk
i beginning of service time at vertex i for vehicle k ∈ K ,

Lk
i load of vehicle k ∈ K after serving vertex i.

We can then formulate the objective function of the VRPPDTW as

TravelCost(c)=
∑

k∈K

∑

i∈V

∑

j∈V

ci j x
k
i j (2.1)

which calculates the cost of all traversed edges in the solution and is the standard

formulation for VRPs. To find the optimal solution, we wish to minimize this function

subject to a set of constraints to find the routes that use the least possible resources.

The first constraint we define is
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∑

k∈K

∑

j∈V

x k
i j = 1∀ i ∈ V\{0,2n+ 1}. (2.2)

It ensures that all vertices are visited exactly once by establishing that there should

only be one edge leading out of the given vertex in the optimal solution with the

exception of the depots. This is beneficial as it prohibits multiple vehicles from serving

the same request, assuming that every vertex only makes one request. Next, we have

the constraints

∑

j∈P

x k
0 j = 1∀ k ∈ K (2.3)

and

∑

i∈V

x k
i,2n+1 = 1∀ k ∈ K (2.4)

which guarantees that vehicles only can travel to and from the depots once. Note that

vehicles can still remain unused since there exists a fictional edge from start-depot to

end-depot with zero cost. We also want to ensure the flow of the graph is correct, so

we introduce the constraint

∑

i∈V

x k
i j −

∑

i∈V

x k
ji = 0∀ j ∈ V\{0, 2n+ 1}, k ∈ K . (2.5)

We state that in the solution, the number of traversed edges entering a vertex j must

equal the number of traversed edges leaving it for all vertices except for the depots. In

essence, a vehicle cannot end its route at a vertex that is not a depot. Thus, we have

defined how the vehicles can traverse the graph, and we now need to define the time

limitations. The first constraint on the decision variable t can be defined as

x k
i j(t

k
i + si + dk

i j − tk
j )≤ 0∀ i, j ∈ V, k ∈ K . (2.6)
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It says that if edge (i, j) is traversed in the optimal solution, then the arrival time at

vertex j, t j, must be larger or equal to the sum of the arrival time at vertex i, t i, the

service time required at the vertex, si, and the travel time between i and j, dk
i j. This

constraint also disallows subtours since it prohibits a vehicle from visiting the same

vertex more than once by tracking arrival times. As an illustration, if a vehicle travels

from vertex i to vertex j, it cannot return as the constraint gives the impossibility

tk
i ≤ tk

i − si − dk
i j − s j − dk

ji with si, s j, dk
i j, dk

ji > 0. We note, however, that this is a

quadratic constraint.

Furthermore, we wish to require that pickup sites are visited before the paired delivery

site. To ensure this, we introduce the constraint

tk
i + si + dk

i,n+i ≤ tk
n+i ∀ i ∈ P, k ∈ K , (2.7)

that guarantees the arrival time in the paired delivery vertex, n+ i, is larger or equal

to the arrival time at vertex i and the travel time between them. Next, we define the

time windows in which a vertex can be served with the constraint

ai ≤ tk
i ≤ bi ∀ i ∈ V, k ∈ K , (2.8)

We set that the arrival time at a vertex i must be in the given time window, [ai, bi].

Lastly, we preserve the carrying capacity by introducing the quadratic constrain

x k
i j(L

k
i + l j − Lk

j ) = 0∀ i, j ∈ V, k ∈ K . (2.9)

It guarantees that the whole request is picked up or delivered at its paired vertex. To

ensure that we never exceed the vehicle’s capacity, we require

li ≤ Lk
i ≤ C k ∀ i ∈ P, k ∈ K (2.10)
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and

0≤ Lk
n+i ≤ C k + ln+i ∀ n+ i ∈ D, k ∈ K , (2.11)

for pickup and delivery vertices, respectively. Lastly, we want to establish that vehicles

are empty when leaving the depot, which we ensure by introducing the constraint

Lk
0 = 0∀ k ∈ K . (2.12)

Now finally, we only need to define the decision variables. We start by saying that

x k
i j ∈ {0,1} ∀ i, j ∈ V, k ∈ K , (2.13)

which is the binary requirement of x . Furthermore, we set the limits on the continuous

variables t and L as

0≤ tk
i ∀ i, j ∈ V, k ∈ K , (2.14)

and

0≤ Lk
i ≤ C k ∀ i, j ∈ V, k ∈ K . (2.15)

We have now defined all the constraints for the VRPPDTW, and thus, we can define

the complete problem as
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VRPPDTW(c, d, C , u, l, s, a, b) =














minx ,t,L TravelCost(c) as defined in (2.1)

subject to (2.2), (2.3), (2.4), (2.5), (2.6), (2.8), (2.7), (2.9),

subject to (2.10), (2.11), (2.12), (2.13), (2.14) and (2.15).

(2.16)

2.2 Robust Optimization

In traditional optimization problems, the data sets are precisely known, and uncer-

tainty is not considered. However, real-world problems are rarely deterministic as

many factors are nearly impossible to predict accurately. The weather, the traffic, or

even measuring errors can cause the real coefficients to differ from those used in the

mathematical model. The difference, i.e. the perturbation on coefficients, may influ-

ence the solutions in an undesirable manner. It is possible that the solution is optimal

for the chosen coefficients but infeasible for real life. Therefore, including uncertainty

parameters should be considered for real-world optimization problems.

There are two standard practices on how to include uncertainty; stochastic modeling

and robust optimization. Stochastic modeling solves the problems by using informa-

tion about the likelihood of certain events [6]. Conversely, robust optimization is used

when the uncertainties have unknown probability distributions [3, 13, 22]. Instead of

defining the likelihood of events, the method assumes a degree of conservativeness on

the lower and upper bounds of the coefficients to achieve feasible solutions.

The degree of conservativeness is an essential factor in robust optimization and must

be chosen with care. Let us say we have uncertainty in a minimization problem, and

we have a solution space that contains risky solutions with low objective values. If

we chose a low degree of conservativeness, these risky solutions would be optimal.

However, there is no guarantee that these solutions are feasible in real life. With a

higher degree of conservativeness, the solutions would have a higher objective value

but would more likely provide feasible solutions. Thus, the degree of conservativeness
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Figure 2.4: Illustration of VRP instance where the uncertainty of travel times is expressed in
the interval form.

Figure 2.5: Illustration of VRP instance where the uncertainty of travel times is expressed in
the discrete form.

should be directly linked to how much risk one is willing to take for better solutions.

In robust optimization, there are mainly two ways of representing uncertainty; as a

continuous interval or as a discrete set of values, as illustrated in Figure 2.4 and Fig-

ure 2.5, respectively. A continuous interval would arise if we were to look at travel

times from A to B and only knew the minimum and maximum possible time travel.

On the other hand, a discrete set of values would occur if there existed uncertainty in

how many vehicles were available. In both cases, all values within the defined domains

are assumed equally probable as we do not have any data stating otherwise.
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2.2.1 The Soyster Approach

The Soyster Approach was developed by A. L. Soyster in 1973 [21]. The approach

ensures robustness by assuming the worst case scenario of an optimization problem.

To better understand the approach, we consider a simple 0-1 linear program, where

we introduce the decision variable

x j binary decision variable that equals 1 if j is chosen in the optimal solution, and 0

otherwise,

the parameters

c j cost of using x j,

ai j the j-th left-hand side coefficient of the i-th constraint,

bi the right-hand side constant of the i-th constraint,

and finally the sets

I set of indices for the constraints,

J set of indices for the coefficients.

We also assume that ai j, bi, c j ≥ 0 for all i ∈ I , j ∈ J . Then we can define the optimiz-

ation problem as

LinearProblem(x) =



























minimize
∑

j∈J

c j x j

subject to
∑

j∈J

ai j x j ≤ bi ∀ i ∈ I ,

sub jec t to x j ∈ {0, 1} ∀ j ∈ J .

(2.17a)

(2.17b)

(2.17c)



16 Ella Frederika Johnsen: The Mass Relocation Problem with Uncertainty

Furthermore, we consider the uncertainty in interval form where c j ∈ [¯
c j, c̄ j] and ai j ∈

[
¯
ai j, āi j]. Thus, the Soyster approach of LinearProblem as given in (2.17) becomes

Soyster(x) =



























minimize
∑

j∈J

c̄ j x j

subject to
∑

j∈J

āi j x j ≤ bi ∀ i ∈ I ,

sub jec t to x j ∈ {0, 1} ∀ j ∈ J .

In other words, we minimize the objective function subject to the constraints and

based on the maximum possible value of each coefficient. The approach looks at the

same when considering a discrete uncertainty set, because then c j = {¯
c j, ..., c̄ j} and

ai j = {¯
ai j, ..., āi j}. Thus, the Soyster approach ensures feasibility for every solution of

LinearProblem.

Note that the maximum value of each coefficient does not always correlate with the

worst case scenario. For example, five vehicles would generally produce better solu-

tions to a VRP than just one vehicle. Thus, for the Soyster approach to guarantee

feasible solutions one would have to include the worst-case coefficients into the prob-

lem.

2.2.2 The Bertsimas-Sim Approach

The Bertsimas Sim-Approach is a robust optimization method where one can modify

the degree of conservatism [4, 5]. The main idea of this approach is that the uncer-

tainty is bounded by the uncertainty budgets Γ0, Γi ≥ 0, which determine the degree

of conservativeness for the objective function and the constraint i, respectively. The

uncertainty budget represents the number of perturbations allowed, and by determ-

ining its value, we are determining the degree of conservativeness. More specifically,
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we decrease the associated Γ by one for each coefficient we fully perturb. If Γ = 0.5,

we would perturb the coefficient with half of the maximum perturbation and decrease

the uncertainty budget correspondingly.

In a minimization problem, we would allocate perturbations starting with the coeffi-

cients that have the worst possible maximum values and continue until the uncertainty

budget is empty. The remaining coefficients would assume their best case value. Thus,

by setting Γ0 = 0 or Γi = 0, we would be non-conservative and assume best case val-

ues for all coefficients of the objective function or the given constraint. By setting the

associated Γ equal to the number of coefficients, one would get a fully conservative

and guaranteed feasible solution.

When applying the Bertsimas-Sim approach to the minimization problem given in

(2.17), we get the optimization problem

Bertsimas_Sim(x) =































































minimize
∑

j∈J ¯
c j x j +max

§

¯
c j x j + η̂

c
j(c̄ j −¯

c j)x j

�

�

∑

j∈J

η̂c
j ≤ Γ ; 0≤ η̂c

j ≤ 1∀ j ∈ J
ª

subject to
∑

j∈J ¯
ai j x j +max

§

¯
ai j x j + η̂

a
i j(āi j − ¯

ai j)x j

�

�

∑

j∈J

η̂a
i j ≤ Γi; 0≤ η̂a

i j ≤ 1∀ j ∈ J
ª

≤ bi

∀ i ∈ I ,

sub jec t tox j ∈ {0,1} ∀ i ∈ I ,

where we have defined the parameters η̂c
j , η̂

a
i j ∈ [0, 1] as the estimated perturbation

of c j and ai j, respectively.

In summation, the Bertsimas-Sim approach seeks to find the highest perturbation set

within a strict uncertainty budget. In other words, this formulation assumes that we

perturb the Γi number of coefficients so that we ensure that the constraints are as

close as possible to their feasibility boundary bi. The same goes for the Γ0 number of
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coefficients that provide the highest cost.



Chapter 3

The Mass Relocation Problem

This chapter will formulate the Mass Relocation Problem (MRP). More specifically,

Section 3.1 introduces the idea behind the MRP, as well as how the MRP can be for-

mulated as an extension of the Vehicle Routing Problem with Pickup and Delivery and

Time Windows (VRPPDTW). Then, Section 3.2 will review how we can advance this

formulation of the MRP, while Section 3.3 will formulate the refined version, and lastly,

Section 3.4 will investigate a reduced version of the MRP.

3.1 Background and Early Formulation

In general, a road construction site consists of a long stretch of terrain. The preliminary

objective is to flatten this land to make the road as level as possible. Therefore, the

construction company places their excavators by the unwanted mass and has a fleet

of dumpers transporting the surplus mass to the delivery sites. This thesis is limited to

this preparatory component of the construction process.

The MRP describes the problem of mass relocation at a road construction site. The

objective is to maximize the amount of mass moved throughout the day while keeping

costs and resources needed at a minimum. Thus, the problem can be recognized as a

variation of the VRPPDTW. It shares the characteristics of time windows and limited

19
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(a)

(b)

Figure 3.1: Illustration of a basic case of a MRP. (a) is an example instance, and (b) is a solution
of the MRP where the dumpers can drive freely between the pickup and delivery sites as many
times as necessary within a certain time limit.

capacity limits while performing both pickup and delivery. An illustration of the MRP

is depicted in Figure 3.1. The figure visualizes both how a construction site can be

imagined as a graph consisting of pickup and delivery sites, and a possible solution.

The MRP differs from the VRPPDTW (2.16) in three principal aspects; load capa-

city, linearity, and vertex visitation. In the VRPPDTW, we have constraints limiting

the amount a given vehicle can transport. For the MRP, we move away from this by

assuming that all vehicles can carry the same amount of mass and that they are fully

loaded and unloaded at every pickup and delivery vertex, respectively. In real life, it

is not fair to assume that all vehicles on-site have the same carrying capacity. But as

we do not have any available data on how much a dumper can carry in this thesis, we

will proceed regardless. By doing so, we can drop the load capacity constraints (2.9),
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0

11.1 4 4.1

33.1 2 2.1

Figure 3.2: An illustration of duplicated vertices, where the decimal number of each vertex
denotes the duplication index. This is the graph depicted in Figure 3.1a with two duplicates
of each vertex. The purple vertices depict pickup sites, and the blue depict delivery sites.

(2.10), (2.11), (2.12), and (2.15). This makes the model easier to compute.

Furthermore, we want the MRP to be a mixed-integer linear optimization problem.

This is because we then can use known exact solution methods such as the Simplex

method with branch and bound. The VRPPDTW, as formulated in (2.16), is a quadrat-

ically constrained optimization problem and thus needs to be modified appropriately.

Lastly, we introduce the idea of duplicate vertices for each pickup and delivery site.

In traditional VRPs, all vertices must be serviced once and only once. However, in

the MRP, we want to visit the same locations multiple times. To account for this, we

duplicate the pickup and delivery sites. This means that instead of revisiting the same

vertices, we create duplicates representing the same location. This gives the illusion

of visiting multiple vertices when in reality, we are revisiting the same one. This way,

we can still use the traditional constraints defined for VRPs, such as defining flow

conservation in the road network. An illustration of how the idea works is depicted in

Figure 3.2. It illustrates the earlier example of an MRP given in Figure 3.1a drawn as

a graph with one duplicate of each site. Notice that all the vertices in this new graph

are connected the same way the original vertices were since they still represent the

same geographic location.

This thesis defines two variations of the MRP that are later used to solve both test
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problems and problems based on real data. To better understand how they connect to

the VRPPDTW, we first introduce a simple formulation of an MRP as a direct extension

of the VRPPDTW. This version, which we will present shortly, will be later dissected in

Section 3.2 to investigate how it can be rewritten into a more viable formulation for

a real-life setting.

3.1.1 Preliminary Formulation

To define this preparatory formulation of the MRP, we designate the needed parameters

as

K set of vehicles,

ck
i j cost of traversing the edge (i, j) ∈ E for vehicle k ∈ K , here given as the

distance of (i, j),

dk
i j travel time between vertex i ∈ V and j ∈ V for vehicle k ∈ K ,

si service duration of vertex i,

[ai, bi] time window in which vertex i must be served,

W total amount of working hours per day,

and the pickup and delivery subsets as

P set of pickup vertices, P = {1, . . . , n},

D set of delivery vertices, D = {n+ 1, . . . , 2n}.

where the mass picked up at vertex i must be delivered at vertex n+ i. Lastly, we define

the decision variables as

x k
i j binary flow variable that equals 1 if edge (i, j) ∈ E is traversed in the op-

timal solution by vehicle k ∈ K , and 0 otherwise,
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tk
i beginning of service time at vertex i for vehicle k ∈ K .

We are now ready to define the objective function as

TravelCost(c)=
∑

k∈K

∑

i∈V

∑

j∈V

ci j x
k
i j, (3.1)

which remains unchanged from the objective function of the previously formulated

VRPPDTW. The first constraint of the MRP,

∑

k∈K

∑

j∈V

x k
i j = 1∀ i ∈ V\{0, 2n+ 1}, (3.2)

is also equivalent to (2.2) from the formulation of the VRPPDTW. It ensures that only

one edge leaving the vertex can be traversed. This applies for all vertices, except the

depots. Furthermore, we define that

∑

j∈P

x k
0 j = 1∀ k ∈ K , (3.3)

and

∑

j∈D

x k
0 j = 0∀ k ∈ K , (3.4)

to replace (2.3) in establishing that all vehicles must start their route at a pickup vertex.

By removing the load capacity constraints, we also removed the implicit property that

all vehicles must start and end their route at a depot. Therefore, we also need to

introduce

∑

i∈P

x k
i,2n+1 = 0∀ k ∈ K , (3.5)
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and

∑

i∈D

x k
i,2n+1 = 1∀ k ∈ K , (3.6)

to replace (2.4). They state that the last vertex a vehicle visits before leaving for the

depot must be a delivery vertex. This also ensures that the vehicles end their route

empty. Furthermore, we also need a constraint that establishes that the vehicles must

move directly between the paired pickup vertices and delivery vertices. Thus, we write

that

∑

k∈K

x k
i,n+i = 1∀ i ∈ P. (3.7)

In real life, this constraint may not be necessary. This is because we typically only

have one type of mass being excavated in the entire road construction site, and thus,

delivery sites are interchangeable. We will investigate this closer in Section 3.2.1. Next,

we want to guarantee flow conservation, so we introduce

∑

i∈V

x k
i j −

∑

i∈V

x k
ji = 0∀ j ∈ V\{0, 2n+ 1}, k ∈ K . (3.8)

As in the VRPPDTW, this makes sure that if a vehicle enters a vertex j, it must also exit

vertex j. Now, we are on to defining the constraints for the decision variable t. To do

so, we start with a linear version of constraint (2.6) that we define as

tk
i + si + dk

i j − tk
j ≤ (W + si + dk

i j) · (1− x k
i j)∀ i, j ∈ V, k ∈ K . (3.9)

This states that if an edge from i to j is traversed, then the arrival time at j must be

later than the arrival time at i, plus the service time at i, and the travel time to get to j.

Else, the time difference cannot be larger than the allocated working hours per day. It

is beneficial that this constraint is linear instead of quadratic as then one can use well-
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established algorithms such as the Simplex algorithm. Furthermore, this constraint

ensures that the MRP contains no subtours, just as (2.6) did for the VRPPDTW. Next,

we want to define the time windows as

ai ≤ tk
i ≤ bi ∀ i ∈ V, k ∈ K , (3.10)

which is the same as (2.8) for the VRPPDTW. The last two constraints of the MRP

establishes the domain of the decision variables. We enforce the binary requirement

of x by

x k
i j ∈ {0,1} ∀ i, j ∈ V, k ∈ K , (3.11)

and we ensure that the continuous variable t has the correct limits by stating

0≤ tk
i ≤W ∀ i ∈ V, k ∈ K . (3.12)

As we have now defined the objective function and all the constraints for MRP, we can

define it in its entirety as

preliminaryMRP(c, d, s, a, b, W ) =














minx ,t TravelCost(c) as given in (3.1)

subject to (3.2), (3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.9),

subject to (3.10), (3.11), and (3.12).

(3.13)

3.2 Potential for Improvement

The mathematical formulation of the MRP as presented in Section 3.1 is not ideal. It is

a complex model with many parameters and decision variables. Furthermore, several
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underlying assumptions are not realistic, such as knowing exactly how many vertices

one can visit during a day or when exactly to set the time windows. Therefore, we will

in this section further investigate what the main drawbacks of this model are and how

we can resolve them. We start by looking closer at how we have previously defined

the cost matrix c, and what this entails for how vertices can be paired.

3.2.1 Pairing Vertices

The cost matrix c is an integral part of the MRP as it defines what edges a vehicle can

traverse and the cost of doing so. For the improved version of the MRP, we disallow the

edges between pickup vertices and the edges between delivery vertices, i.e. we force

all vehicles to only travel from pickup to delivery or delivery to pickup. To do so, we

formulate the cost matrix as

0 0 . . . 0 M . . . M 0
M M . . . M c1,n+1 . . . c1,n+m M
...

...
. . .

...
...

. . .
...

...
M M . . . M cn,n+1 . . . cn,n+m M

M cn+1,1 . . . cn+1,n M . . . M 0
...

...
. . .

...
...

. . .
...

...
M cn+m,1 . . . cn+m,n M . . . M 0

M M . . . M M . . . M M

























































Pickup vertices

Delivery vertices

Pickup vertices Delivery vertices

c =

where the pickup vertices are defined as the set P = {1, . . . , n} and the delivery vertices

as D = {m + 1, . . . , n + m}. Here, n is the number of pickup vertices and m is the

number of delivery vertices. By forcing c to take this form we can remove the constraint
∑

k∈K x k
i,n+i = 1 for all i ∈ P as given in (3.7). We can do so because it is implicitly stated

that if (i, j) is an edge in the graph, then ci, j 6= M .

One can take this idea even further. We can reformulate the MRP from a matrix for-

mulation to a graph formulation. This would mean that we only incorporate edges

that exist in the graph G = (V, E), instead of including all combinations of i and j
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for i, j ∈ V . So if ci j = M , we would not add this edge in the graph. This makes it

possible to pair vertices together, i.e. ensuring that a vehicle servicing a given pickup

vertex can only travel to a specific delivery vertex. This reduces the problem size and

thus increases efficiency and decreases resource requirements. It also opens for that

some sites may have a particular type of mass being transported which can only be de-

livered at specified locations. We will investigate the graph formulation in Section 3.3

and Section 3.4.

3.2.2 Dimensions of Decision Variable t

In the earlier formulation of the MRP, we defined that the continuous decision variable

tk
i represented the beginning of service time for vehicle k ∈ K at vertex i. To simplify

the model, we wish to remove the k-term as it does not add any information to the

solution that cannot be calculated from x . Thus, we rewrite the constraint tk
i + si +

dk
i j − tk

j ≤ (W + si + dk
i j) · (1− x k

i j) for all i, j ∈ V, k ∈ K as given in (3.9), as

t i + si + dk
i j − t j ≤ (W + si + dk

i j) · (1− x k
i j) ∀ i, j ∈ V, k ∈ K .

We now prove that the new formulation of the constraint still disallows cycles. We

imagine a subtour that visits all vertices {vα, vα+1, ..., vβ−1, vβ} ∈ V before returning to

vα. The arrival time constraint for vertices vα and vα+1 is then

tα + sα + dk
α,α+1 ≤ tα+1 ∀ k ∈ K

since
∑

k∈K x k
α,α+1 = 1. Furthermore, the arrival time constraint for vα+1 and vα+2 is

tα+1 + sα+1 + dk
α+1,α+2 ≤ tα+2 ∀ k ∈ K ,

which is equivalent to
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tα + sα + dα,α+1 + sα+1 + dk
α+1,α+2 ≤ tα+2 ∀ k ∈ K .

After continuing calculating the arrival time for each next vertex in the cycle, we finally

get that

tα + sα + dk
α,α+1 + · · ·+ sβ + dk

β ,α ≤ tα ∀ k ∈ K .

when we are returning back to the beginning. This statement is a contradiction since

si, dk
i j > 0 for all i, j ∈ V and k ∈ K . Thus, a solution of the MRP contains no subtours

even when removing k from t.

3.2.3 Duplication of Vertices

We must service all vertices in a typical formulation of the VRP. This is also the case for

the preliminaryMRP as described in (3.13). However, for the MRP this will be highly

resource-intensive. We would need to calculate how many times all vehicles would

visit the vertices during a given day. This negates the objective of the MRP, as the

number of visits is what we wish to maximize. Therefore, we seek to express that all

vertices do not have to be visited in this formulation of the MRP.

We start by looking at constraint (3.2) which is given by
∑

k∈K

∑

j∈V x k
i j = 1 for all

i ∈ V\{0, n+m+1}. It states that all vertices which are not the depots must be visited

exactly once. We instead formulate the constraint as

∑

k∈K

∑

j∈V

x k
i j ≤ 1∀ i ∈ V\{0, n+m+ 1},

i.e. all vertices must be visited at most once. Now, we only need to specify a sufficiently

high number of duplicates to achieve a feasible solution. Keep in mind that for every

duplicate we include, we also increase the size of the problem. It is therefore advisable

to minimize the amount of excess duplicates in the graph.
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We also note that if we modify this constraint and leave the rest of the formulation

unchanged, the optimal solution is that the vehicles remain at the depot. To avoid this,

we can include a penalty function to the objective function to ensure that the vehicles

are incentivized to transport mass.

3.2.4 Objective Function

The objective function of preliminaryMRP is defined as
∑

k∈K

∑

i∈V

∑

j∈V ci j x
k
i j as spe-

cified in (3.1). This straightforward function only calculates the total cost of the tra-

versed edges. However, this previous formulation of the objective function is not bene-

ficial for the MRP as we no longer specify that all vertices must be visited. Therefore,

we wish to introduce a penalty associated with not visiting a vertex. We establish a

parameter µ that represents the sum of all available edges in the graph [9, 16]. Thus,

we can write a penalty function as µ
∑

j∈V

�

1−
∑

k∈K

∑

i∈V x k
i j

�

and the new objective

function we wish to minimize becomes

∑

k∈K

∑

i∈V

∑

j∈V

ci j x
k
i j +µ

∑

j∈V

�

1−
∑

k∈K

∑

i∈P

x k
i j

�

.

Here, we see that, as before, we wish to minimize the total cost by choosing the edges

with the least cost. In addition, we add the penalty term µ to the objective value for

each unvisited pickup vertex. This will ensure that the solution does not benefit from

keeping all the vehicles at the depot because then significant penalties will rack up,

and the objective value will become quite large. By only penalizing unvisited pickup

vertices, we simplify the objective function. However, as there are no edges from the

pickup vertices directly to the depot, we implicitly also punish unvisited delivery ver-

tices.

There is more that we can adjust in the objective function. We can also introduce a

priority term, pi, which we defined as
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pi =







1 if i has low priority

λ if i has high priority.
(3.14)

where λ > 1 defines how high priority a given vertex i has. If we set λ= 2, that means

that vertex i is more worth than two visits of a vertex with priority 1. We include this

into the objective function by writing

∑

k∈K

∑

i∈V

∑

j∈V

ci j x
k
i j +µ

∑

j∈V

�

1−
∑

k∈K

∑

i∈P

pi x
k
i j

�

.

We could also consider adding a time penalty to the objective function. However, this

results in problems with scaling the terms, as it is difficult to weigh the benefit of

saving time against the penalties of not visiting a vertex. We therefore leave this for

another time.

3.2.5 Starting Point of Each Vehicle

To resemble a real-life problem, we also need to define where the vehicles start their

routes. Since the depots here are fictional, the model picks where the vehicles start

their route independently from where the vehicles are stored. To counteract this, we

introduce the set of starting points for each vehicle k ∈ K that we call Sk. Now, we can

introduce the new constraint

x k
0Sk
= 1 ∀ k ∈ K ,

which ensures that each vehicle leaves the start-depot to its correct starting position.

We assign a zero cost to each of these edges since this is an imagined route.

However, this constraint can be overly restrictive as it forces a vehicle to serve the

route’s starting vertex before any other vertex. This is only fair if we assume that it
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takes less time to wait for its turn at the starting point than leaving to help somewhere

else without serving it. This will often not be the case. A remedy is presented as future

work in Section 7.1.

Another complication is that we now force all vehicles to be used. This is not always

cost beneficial for a construction company. It can be more cost effective to use fewer

vehicles, as this requires fewer drivers. A fix would be to introduce a new edge directly

from the starting position to the fictional depot. However, it will always be beneficial

to use more vehicles from the way we have specified the objective function, as then

there would be less driving back and forth between sites. Therefore, we could assign

a negative cost to these edges to correct for the subsequent lower objective value

resulting from not using an extra vehicle.

3.2.6 Time Windows

In the preliminaryMRP as described in (3.13), we relied on knowing exact time win-

dows for when to service each vertex. This was formulated in (3.10) as ai ≤ tk
i ≤ bi for

all i ∈ V, k ∈ K which is problematic. It is difficult to accurately predict when vertices

are ready to be serviced beforehand as it depends on many uncertain factors, such as

when the vertex last was visited. Therefore, in this new formulation, we introduce the

parameter dig rate as ri and the sets PD and DD, which are the sets of pickup duplicates

and delivery duplicates, respectively. The dig rate denotes how long time an excavator

uses to excavate a truckload worth of mass.

Now, we can define the time windows of the vertices by setting that the vertices can

only be served if the earlier duplicates that have already been served. In other words,

vertex i j+1 can only be served if vertex i j already has been serviced, and i j and i j+1 are

duplicates of the same vertex. The purpose of this is to ensure that no two vehicles

service the same vertex simultaneously.
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3.3 Mathematical Formulation

With these preliminary refinements explained, we are now ready to express the im-

proved version of the MRP. We start by defining the weighted and directed graph G =

(V, E) as the set of edges and vertices at a given construction site, like we did before. We

set that n+m+2 is the total number of vertices, where vertices 0 and n+m+1 are the

start- and end-depot, respectively. We set that n is the number of pickup vertices and m

is the number of delivery vertices, such that V = {0,1, . . . , n, n+1, . . . , n+m, n+m+1}.

Next, we define the sets

P set of pickup vertices, P = {1, . . . , n},

D set of delivery vertices, D = {n+ 1, . . . , n+m},

PD set of duplicates of pickup vertices, where PD ⊂ P,

DD set of duplicates of delivery vertices, where DD ⊂ D,

e−(i) edges out of vertex i ∈ V in graph G = (V, E),

e+(i) edges into vertex i ∈ V in graph G = (V, E),

ip the previous duplicate of vertex i ∈ PD ∪ DD ⊂ V ,

and the parameters

K set of vehicles,

ci j cost of traversing the edge (i, j) ∈ E given in distance between i and j,

di j duration of time needed to traverse the edge (i, j) ∈ E,

si service duration of vertex i,

ri time needed to prepare a truckload of mass at pickup vertex i ∈ P,

µ penalty term calculated as the sum of the cost of all edges in G,
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W total allowed amount of working hours per day,

Sk starting position of vehicle k ∈ K ,

pi priority of vertex i as defined in (3.14).

Notice that we remove the k-term from travel time d. We do this because we do not

have any data on the different speeds vehicles use to traverse certain edges. Thus,

including the k-term would only complicate the formulation. Lastly, we express our

decision variables as

x k
i j binary flow variable that equals 1 if edge (i, j) ∈ E is traversed in the op-

timal solution by vehicle k ∈ K , and 0 otherwise,

t i beginning of service time at vertex i.

Then we are ready to formulate the MRP. We start with the objective function

MostVertices(c,µ, p) =
∑

k∈K

∑

i∈V

∑

j∈e−(i)

ci j x
k
i j +µ

∑

j∈e−(i)

�

1−
∑

k∈K

∑

i∈P

pi x
k
i j

�

. (3.15)

The function MostVertices is what we wish to minimize in the MRP. It calculates the

cost of the chosen route and punishes for every unvisited pickup vertex according to

its priority as previously explained in Section 3.2.4. Next, we define our constraints

dealing with flow conservation. We introduce

∑

k∈K

∑

j∈e−(i)

x k
i j ≤ 1 ∀ i ∈ V\{0, n+m+ 1}. (3.16)

which establishes that every vertex should be visited at most once. This prohibits mul-

tiple vehicles from serving the same vertex while also specifying that not all vertices

must be visited. Next, we have the constraint
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∑

j∈e−(0)

x k
0 j = 1 ∀ k ∈ K (3.17)

which guarantees that every vehicle must leave the start-depot. On the same note,

constraint

∑

i∈e+(n+m+1)

x k
i,n+m+1 = 1 ∀ k ∈ K (3.18)

ensures that all vehicles end their route at the end-depot. Next, we wish to specify the

starting position of each vehicle so we introduce the constraint

x k
0Sk
= 1 ∀ k ∈ K . (3.19)

It requires a vehicle k ∈ K to start its route at vertex Sk. Note that (n+m+ 1) ∈ e−(i)

for all i ∈ Sk, so that vehicles can remain unused. Furthermore, we wish to ensure

flow conservation by the constraint

∑

j∈e+(i)

x k
ji −

∑

j∈e−(i)

x k
i j = 0 ∀ i ∈ V, k ∈ K . (3.20)

This guarantees that a vehicle cannot suddenly appear at a vertex, but must follow

the given road network. It also guarantees that a vehicle cannot start or end its route

anywhere except the depots. Now, onto the time limit constraint. We set that

t i + si + di j − t j ≤ (W + si + di j) ·
�

1−
∑

k∈K

x k
i j

�

∀ i ∈ V, j ∈ e−(i), (3.21)

which ensures that a vehicle is limited by the travel and service times of the graph. This

constraint, as we have previously proved, will also prevent subtours. Furthermore, we

also set time limitations on when these vertices can be visited by asserting that
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t i ≥ sip + rip +
�

∑

k∈K

∑

j∈e−(ip)

x k
ip j − 1

�

�

sip + rip

�

+ t ip ∀ i ∈ PD. (3.22)

This constraint guarantees that we cannot visit the next duplicate of a pickup location,

before the previous duplicate is serviced and the excavator at the vertex has had time

to prepare a new truckload. Similarly,

t i ≥ sip +
�

∑

k∈K

∑

j∈e−(ip)

x k
ip j − 1

�

sip + t ip ∀ i ∈ DD (3.23)

ensures the same for delivery vertices. We recognize that the formulation as of now is

a highly symmetrical problem, i.e. many solutions will give the same objective value.

This is because the duplicated vertices of the same location are interchangeable. There-

fore, we want to introduce a symmetry-breaking constraint to reduce the solution

space of the model [10, 15]. We introduce the constraint

∑

k∈K

∑

j∈e−(i)

x k
i j ≥

∑

k∈K

∑

j∈e−(i′)

x k
i′ j ∀ i, i′ ∈ {Pi|δi < δi′}, (3.24)

where δi denotes the duplicate index of vertex i and Pi denotes the set of duplicates of

pickup vertex i. It states that we must visit the duplicates in lexicographical order. In

other words, if i0 is the first duplicate of vertex i, then i0 must be visited before i1, i2,

and so on. This way we remove a lot of the solutions that would have given identical

objective values. Lastly, we state that

∑

i

x k
i j ∈ {0,1} ∀ i, j ∈ V, k ∈ K (3.25)

and

∑

i

0≤ t i ≤W ∀ i ∈ V, k ∈ K (3.26)
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define the domain of the problem. Thus, the MRP is defined as

MRP(c,µ, s, r, W, p) =














minx ,t MostVertices(c,µ, p) as given in (3.15)

subject to (3.16), (3.17), (3.18), (3.19), (3.20), (3.21), (3.22),

subject to (3.23), (3.24), (3.25), and (3.26).

(3.27)

3.4 Reduced Mathematical Formulation

In this section, we will formulate a reduced version of the MRP where we assume a

homogeneous fleet of vehicles. We investigate this case because we, in this thesis, do

not have data on the types of vehicles the construction sites have available. Thus, we

can formulate a more computationally efficient model by assuming the fleet is homo-

geneous. Note that if the fleet is heterogeneous but the vehicles have approximately

the same speed and carrying capacity, the solutions could still be relevant.

For this model, we redefine our decision variable, x , as

x i j binary flow variable that equals 1 if edge (i, j) ∈ E is traversed in the op-

timal solution, and 0 otherwise,

or in other words, we remove the k-dimension from x . The objective function will then

become

modifiedMostVertices(c,µ, p) =
∑

i∈V

∑

j∈e−(i)

ci j x i j +µ
∑

j∈e−(i)

�

1−
∑

i∈P

pi x i j

�

, (3.28)

which has the same purpose as before, i.e. minimizing costs and penalizing unserviced

pickup vertices. The only difference is that we do not sum over k ∈ K anymore. The
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same goes for the constraint

∑

j∈e−(i)

x i j ≤ 1 ∀ i ∈ V\{0, n+m+ 1}, (3.29)

that details how many times each vertex can be visited. For constraint

∑

j∈e−(0)

x0 j = K , (3.30)

and

∑

i∈e+(n+m+1)

x i,n+m+1 = K , (3.31)

we ensure that the number of vehicles leaving and entering the depot equals the num-

ber of available vehicles. Moreover, constraint

x0Sk
= 1 ∀ k ∈ K , (3.32)

states that every starting point for each vehicle must be visited, but we do not specify

which vehicle starts where, as it is no longer relevant. The flow conservation,

∑

j∈e+(i)

x ji −
∑

j∈e−(i)

x i j = 0 ∀ i ∈ V, (3.33)

still assumes that the same amount of vehicles must both enter and exit a given vertex

i. Furthermore, the constraints detailing the arrival time,

t i + si + di j − t j ≤ (W + si + di j) ·
�

1− x i j

�

∀ i ∈ V, j ∈ e−(i), (3.34)
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t i ≥ sip + rip +
�

∑

j∈e−(ip)

x ip j − 1
�

�

sip + rip

�

+ t ip ∀ i ∈ PD, (3.35)

and

t i ≥ sip +
�

∑

j∈e−(ip)

x ip j − 1
�

sip + t ip ∀ i ∈ DD, (3.36)

are the same as stated previously, except that we no longer sum over k ∈ K . The

symmetry breaking constraint is defined as

∑

j∈e−(i)

x i j ≥
∑

j∈e−(i′)

x i′ j ∀ i, i′ ∈ {Pi|δi < δi′}, (3.37)

which is also nearly unchanged as we have only removed the k-term. Lastly, we denote

the domain of the decision variables as

∑

i

x i j ∈ {0, 1} ∀ i, j ∈ V (3.38)

and

∑

i

0≤ t i ≤W ∀ i ∈ V. (3.39)

Thus, the reduced formulation of the MRP is
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reducedMRP(c,µ, s, r, W, p) =














minx ,t modifiedMostVertices(c,µ, p) as given in (3.28)

subject to (3.29), (3.30), (3.31), (3.32), (3.33), (3.34), (3.35),

subject to (3.36), (3.37), (3.38), and (3.39).

(3.40)





Chapter 4

The Mass Relocation Problem with

Uncertainty

The goal of this thesis is to solve the Mass Relocation Problem (MRP) for a real-world

problem. Thus, we will in this chapter investigate how to include uncertainty in the

travel times d, and the dig rates, r, to achieve the Mass Relocation Problem with

Uncertainty (MRPU). Section 4.1 introduces how the Soyster approach can be applied

to reducedMRP, while Section 4.2 presents the Bertsimas-Sim approach and Section 4.3

proposes a new approach specifically for the MRPU.

4.1 The Soyster Approach

The Soyster approach is a method of ensuring the strict robustness of a solution and

is introduced in Section 2.2.1. The approach entails using the maximum value of the

uncertain parameters to guarantee feasibility. This method is appropriate for the MRP

as we want to limit the uncertainty in travel times and dig rates, which worst values

directly correlate to the worst possible objective value. If we increase the travel time

or dig rate, the vehicles will have less time to visit vertices and may not have time

to service as many vertices as they would in a best-case scenario. Note that there is

41
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uncertainty in other parameters than d and r, such as the service time s. However,

in this thesis we assume that d and r are the most significant terms which makes the

others negligible.

4.1.1 Mathematical Formulation

To formulate the reduced MRP as the MRPU, we need to apply the Soyster approach

to the constraints that include uncertainty; (3.34) and (3.35). As such, the new, robust

constraints are denoted as

t i + si + d̄i j − t j ≤ (W + si + d̄i j) ·
�

1− x i j

�

∀ i ∈ V, j ∈ e−(i), (4.1)

and

t i ≥ sip + r̄ip +
�

∑

j∈e−(ip)

x ip j − 1
�

�

sip + r̄ip

�

+ t ip ∀ i ∈ PD, (4.2)

where we have assumed the worst possible values for all di j and ri, i.e. d̄i j and r̄i.

We have d̄i j on each side of the equation (4.1) so that if there is no path (i, j) in the

optimal solution, the maximum time limit W will not be affected. Thus, the MRPU can

be defined as

MRPU_Soyster(c, s, d, r, W, p) =














minx ,t modifiedMostVertices(c,µ, p) as given in (3.28)

subject to (3.29), (3.30), (3.31), (3.32), (3.33), (3.36), (3.37),

subject to (3.38), (4.1), and (4.2).

(4.3)

where we have replaced constraints (3.34) and (3.35) with (4.1) and (4.2), respect-

ively. Similarly, if we would want to apply the Soyster approach to the full MRP given
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in (3.27), we would do the same and replace di j and ri with d̄i j and r̄i in the relevant

constraints.

4.1.2 Drawbacks

The Soyster approach is an easy way of guaranteeing the feasibility of a solution,

but it has some drawbacks. It will always provide feasible solutions, given that the

uncertainty sets are accurate. The uncertainty sets given for the MRPU will not be

able to take into account every possible scenario. For example, a driver could get sick

or a vehicle could break down. Such events are usually not included in the uncertainty

sets as they happen so rarely.

Furthermore, it is not the ideal way of ensuring robustness. Let us say that the uncer-

tainty in specific parameters mainly revolve around the weather conditions. By using

the Soyster approach, one would then get the parameters corresponding to the worst

possible weather. We can safely assume it will not storm every day, and it would there-

fore be wasteful to schedule the site based on the assumption that it does. We will

therefore also investigate other options for including robustness.

4.2 The Bertsimas-Sim Approach

The Bertsimas-Sim approach is a way of configuring the degree of conservativeness

in a solution [4]. The idea is presented in Section 2.2.2. It introduces an uncertainty

budget, Γ , that represents how conservative we want the solution to be. If Γ equals

the number of edges in the graph, then the method will be strictly robust as all edges

would take the worst possible value. If Γ is smaller than the number of edges, then

the Γ edges with the worst values in the worst-case scenario will assume these values,

while the rest will take the values of the best-case scenario. In such a way, we construct

a robust solution by applying the worst-case scenarios to the parameters that make the

largest negative impact on the arrival time decision variable.
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We remark that the Bertsimas-Sim method will not guarantee feasibility for the MRPU.

This is because this method is based on solving for the best case scenario and then

modifying the given solution to handle travel time uncertainty. This means that we

no longer adhere to the constraints restricting multiple vehicles visiting the same geo-

graphic location at once. Nevertheless, we will investigate it as it lays the foundation

for the new robustness approach presented later in Section 4.3.

4.2.1 Mathematical Formulation

The formulation of the MRPU using the Bertsimas-Sim approach is based on the works

of Agra et al. [1], Lee et al. [14], and Toklu et al. [22]. We start by introducing the

following notation:

Γ number of edges in the solution that we choose to have the worst pos-

sible value for the objective function.

sol[k] route of vehicle k ∈ K of the optimal solution.

|sol[k]| number of visits by vehicle k ∈ K of the optimal solution when not count-

ing the depot.

sol[k, n] nth visit of vehicle k ∈ K of the optimal solution.

To use the Bertsimas-Sim approach, we first solve the MRPU for the best-case scenario.

We introduce the new constraints

t i + si + ¯
di j − t j ≤

�

W + si + ¯
di j

�

· (1− x i j) ∀ i ∈ V, j ∈ e−(i) (4.4)

to replace constraint (3.34) and

t i ≥ sip +¯
rip +

�

∑

j∈e−(ip)

x ip j − 1
�

�

sip +¯
rip + t ip

�

∀ i ∈ PD (4.5)
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to replace (3.35). The next step is to apply the uncertainty budgets with two recurs-

ive functions d_MaximumLatency(sol[k], n, Γ d) and r_MaximumLatency(sol[k], n, Γ r).

They were first proposed by Agra et al. [1] and are adapted here like so:

d_MaximumLatency(sol[k], n, Γ d) =











































































































































0 if n= 0

max{t j,

d_MaximumLatency(sol[k], n− 1,0) + t i + si + ¯
di, j}

if 1≤ n≤ |sol[k]| and Γ d = 0

max{t j,

d_MaximumLatency(sol[k], n− 1,0) + si + ¯
di, j + Γ

d(d̄i, j − ¯
di, j),

d_MaximumLatency(sol[k], n− 1, Γ d) + si + ¯
di, j}

if 1≤ n≤ |sol[k]| and 0< Γ d < 1

max{t j,

d_MaximumLatency(sol[k], n− 1, Γ d − 1) + si + d̄i, j,

d_MaximumLatency(sol[k], n− 1, Γ d) + si + ¯
di, j}

if 1≤ n≤ |sol[k]| and 1≤ Γ d ≤ n− 1

−∞ if 1≤ n≤ |sol[k]| and Γ d ≥ n

and
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r_MaximumLatency(sol[k], n, Γ r) =











































































































































0 if n= 0

max{t i,

r_MaximumLatency(sol[k], n− 1,0) + s j +¯
r j}

if 1≤ n≤ |sol[k]| and Γ r = 0

max{t i,

r_MaximumLatency(sol[k], n− 1,0) + s j +¯
r j + Γ

r(r̄ j −¯
r j),

r_MaximumLatency(sol[k], n− 1, Γ r) + s j +¯
r j}

if 1≤ n≤ |sol[k]| and 0< Γ r < 1

max{t i,

r_MaximumLatency(sol[k], n− 1, Γ r − 1) + s j + r̄ j,

r_MaximumLatency(sol[k], n− 1, Γ r) + s j +¯
r j}

if 1≤ n≤ |sol[k]| and 1≤ Γ r ≤ n− 1

−∞ if 1≤ n≤ |sol[k]| and Γ r ≥ n

where we the uncertainty budgets Γ d and Γ r are assigned to d and r, respectively.

These functions recursively loop through all vertices used in the solution sol[k] and

update the arrival time, t, with respect to the Bertsimas-Sim approach. It does not

matter in which order one employs them because we have not included the maximum

arrival time, W , which they must adhere to. We will instead do this at a later stage.

Thus, the result is the same regardless of the order in which they are employed.

Next, we wish to introduce a new term for configuring the robustness as

ξ=
Γ

∑

k∈K |sol[k]|
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which was first done by Toklu et. al [22]. The parameter ξ will always be between 0

and 1, as we compare our uncertainty budget Γ against the total amount of traversed

edges in the solution. In other words, ξwill be a term we configure on the basis of how

conservative we wish the solution to be. If ξ = 1, we have a strictly robust solution,

and if ξ= 0, we assume the best case values for all edges. We introduce this term as it

is more intuitive than Γ , since we no longer need to know how many edges there are

in the graph.

Now, we can calculate a robust solution based on the Bertsimas-Sim approach by Al-

gorithm 1, where MRPU_BestCase is defined as

MRPU_BestCase(c, s, d, r, W, p) =














minx ,t modifiedMostVertices(c,µ, p) as given in (3.28)

subject to (3.29), (3.30), (3.31), (3.32), (3.33), (3.36), (3.37),

subject to (3.38), (4.4), and (4.5).

(4.8)

Algorithm 1 Calculating a Robust Solution with Bertsimas-Sim

1: function ROBUSTSOLUTION_BERTSIMASSIM(ξd ,ξr , c, s, d, r, W )
2: sol ← MRPU_BestCase(c, s, d, r, W )
3: Γ d ← ξd

∑

k∈K |sol[k]|
4: Γ r ← ξr

∑

k∈K |sol[k]|
5: for each vehicle k in K do
6: d_MaximumLatency(sol[k], |sol[k]|, Γ d)
7: r_MaximumLatency(sol[k], |sol[k]|, Γ r)
8: for each visit sol[k, n] in sol[k] do
9: if tn > W then

10: sol[k]← sol[k, 0 : n]
11: break
12: end if
13: end for
14: end for
15: return sol
16: end function
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4.2.2 Drawbacks

There are some pitfalls regarding this approach. First and foremost, we can no longer

guarantee feasible solutions as the solutions does not necessarily comply with the con-

straints for the MRP. It is also more resource-intensive than the other approaches we

investigate as we have to manipulate the given initial solution. This results in a longer

computation time and more resources being occupied with solving this problem. Fur-

thermore, this method is, similarly to the Soyster approach, very dependent on the

values in the uncertainty set. If the uncertainty set mainly concerns the weather con-

ditions and the worst-case scenario is gathered from a once-in-a-decade storm, then

even just a few of the worst case values would obscure a meaningful solution. The last

approach we will consider resolves this issue.

4.3 The Removing Outliers Approach

By removing outliers in the uncertainty sets, we can achieve feasible solutions without

overzealous uncertainty assumptions. The idea is to introduce a parameter that con-

figures the degree of conservativeness by removing the specified amount of outliers. It

is inspired by both the Soyster approach and the Bertsimas-Sim approach. We keep the

simplicity of the Soyster approach by optimizing based on the maximum allowed val-

ues. We also want to be able to configure the degree of conservativeness, as we could

with the Bertsimas-Sim approach. However, instead of calculating the uncertainty by

only adjusting the uncertainty coefficients that have the largest negative impact on

the objective value, we adjust all uncertainty coefficients but to a lesser degree. The

thought is that this will result in a comparable conservativeness of the solution, while

not overvaluing potential outliers in the data sets. This approach is what we will de-

note as the Removing Outliers Approach (ROA). It is beneficial for cases where there

exists anomalies in the uncertainty sets, such as with the MRPU.
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4.3.1 Mathematical Formulation

We introduce ξ ∈ [0, 1] which is a parameter that determines the degree of conservat-

iveness by picking the dξ · |U |e element of uncertainty in the discrete uncertainty set U ,

where dxe denotes the rounding up of a parameter x and |U | denotes the size of U , i.e.

the number of elements in U . We set ξ as the parameter that determines how many per-

cent of the values in the discrete uncertainty sets we want to consider. This is beneficial

for the MRP with real data as the travel time is given as a set U di j = {d1
i j, d2

i j, . . . , dn
i j}

where we have n different possible values of the travel time of edge (i, j). We assume

all such sets will be sorted from shortest to highest time, d1
i j ≤ d2

i j ≤ ... ≤ dn
i j. As such,

by using this method, one excludes the highest values. For the MRP, this can be ad-

vantageous as the highest travel times are often exceptions that could stem from, for

example, the tracking of the vehicles’ positions being wrong or the vehicle getting a

flat tire. The resulting constraints with this method will be

t i + si + d̂i j − t j ≤
�

W + si + d̂i j

�

·
�

1− x i j

�

∀ i ∈ V, j ∈ e−(i) (4.9)

where we set that d̂i j is the ν-th element of the uncertainty set for di j as such

d̂i j = U di j
ν , ν= dξd · |U di j |e.

Furthermore, we also have

t i ≥ sip + r̂ip +
�

∑

j∈e−(ip)

x ip j − 1
�

�

sip + r̂ip + t ip

�

∀ i ∈ PD (4.10)

where

r̂i = U ri
ν

, ν= dξr · |U ri |e
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and ξd and ξr denote the uncertainty configuration parameter for d and r, respectively.

Now, we can write the MRPU with the ROA as

MRPU_Outliers(c, s, d, r, W, p) =














minx ,t modifiedMostVertices(c,µ, p) as given in (3.28)

subject to (3.29), (3.30), (3.31), (3.32), (3.33), (3.36), (3.37),

subject to (3.38), (4.9), and (4.10).

(4.11)

4.3.2 Drawbacks

The ROA only works well if one has some knowledge of what the uncertainty sets

contain. By recognizing approximately how large part of the sets are outliers, one

would get rather good robust solutions that do not encourage excessive downtime.

Furthermore, the method may also work better if the uncertainty sets are large. With

small sets and a high ξ, the approach would often be equivalent to Soyster approach

as we would then likely pick the maximum value. This is not a problem in itself but

would entail that we would potentially include outliers that do not represent actual

events, such as data errors for example.



Chapter 5

Performance of Model

This chapter will investigate the performance of the Mass Relocation Problem (MRP)

and the Mass Relocation Problem with Uncertainty (MRPU) as defined previously. Sec-

tion 5.1 looks into how the MRP functions for a test case and investigates potential

faults. Section 5.2 looks closer at the MRPU and the different robustness approaches.

5.1 The Mass Relocation Problem

To test the performance of our formulation of the MRP, we first implement it for a test

case to simplify the interpretation of the results. We keep the test case in the same

format as the data provided by Skanska, which we will investigate closer in Chapter

6, to simulate a real-life solution.

The test case we will use from here on out is presented in Figure 5.1. In Figure 5.1a we

depict of the graph G′ = (V ′, E′), as it would look in real life. A crossroad is depicted

in white, the pickup vertices in purple and the delivery vertices in blue. In Figure 5.1b

we have the test case in the desired format for the MRP with two duplicates of each

pickup and delivery vertex. We define the graph depicted here as G = (V, E) where

51
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(a) (b)

Figure 5.1: (a) A depiction of the geographic location of the vertices and connecting road
network for a test case, and (b) a depiction of the road network after formatting with two
duplicates of each vertex. Purple vertices depict pickup sites, blue vertices are delivery sites,
and white vertices are crossroads. The cost of edges is given in meters.

E = {(i, j) | (i ∈ P ∧ j ∈ D)∨ (i ∈ D ∧ j ∈ P)}

and V is the set of vertices. Furthermore, P and D are the sets of pickup and delivery

vertices in the graph G, respectively. The cost of each edge, ci j for all (i, j) ∈ E, is

calculated from the shortest path algorithm Dijkstra of G′. We assume there will never

be road congestion so that vehicles can traverse the graph freely.

Next, we set the parameters of the model. We define the travel times as di j = ci j/speed,

where we assume that all vehicles hold a constant speed of 16 km/h. Furthermore,

we set that the service time of all vertices is 5 minutes, and that all excavators prepare

a truckload worth of materials every 10 minutes, meaning that si = 5 for all i ∈
V\{0, n+m+1} and ri = 10 for all i ∈ P. We have assumed for this test case that these

values are constant and independent. This will not be the case for a real construction

site. However, as we do not have the data available on how they relate to each other,

we will proceed with this assumption for the rest of this thesis. Moreover, we do not

include any priority vertices, or in other words pi = 1 for all i ∈ V . We also do not
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include any negative cost on the edges leading from the starting positions to the depot

unless stated otherwise.

To solve the MRP, we have used the optimization software Gurobi Optimizer version

9.1.1 with build v9.1.1rc0 for mac64 with the Gurobi Python Interface, gurobipy. It

is one of the fastest solvers available [2] and can be used for linear, quadratic, and

mixed-integer linear programming, among others [11]. Furthermore, the solver was

used on a Macbook Air (M1, 2020) running Python 3.9.1 with 8 physical cores and 8

logical processors that could use up to 8 threads.

5.1.1 Model Choice

The first assessment of the solutions for the MRP will investigate the differences between

the full MRP formulation given in (3.27) and the reduced version as given in (3.40). To

refresh, MRP facilitates a heterogeneous vehicle fleet while reducedMRP assumes a ho-

mogeneous one. In this thesis, there will not be any differences between the vehicles,

so we expect the models to produce the same objective value.

To perform this test, we must define the remaining parameters. We set that we have

10 duplicates of each pickup and delivery site and that the fleet size, K , is equal to

3. The vehicles will start in the vertices 1.0, 1.01, and 2.0. Lastly, we set the allowed

working time, W to 100 minutes.

By solving MRP and reducedMRP we get the solutions presented in Figure 5.2 and Fig-

ure 5.3. Figure 5.2 presents the optimal routes for both models while Figure 5.3 il-

lustrates the optimal schedules. The objective value of both solutions is 7.01760 ·106,

meaning that both models provide equally good solutions, as expected. However, we

can see that the suggested routes are not identical. This points to an underlying sym-

metry in the problem. Because we have included duplicates, many of the edges will

have the same exact cost. This leads to some cases, where it does not make a differ-

ence for the objective function exactly which edges are traversed. There will be no

preference on whether an edge (i0, j0) or (i1, j1) should be traversed if we are able to

service just as many vertices with both choices. As such, there will be symmetry in the
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(a) (b)

Figure 5.2: The calculated optimal routes for the test case. The purple vertices depict pickup
sites while the blue depict delivery sites. The edges between the vertices show the optimal
route of each vehicle. (a) is the optimal route calculated from the full model, while (b) is
calculated from the reduced model.

model that can result in multiple solutions with the same objective value. We will see

more examples of this later. To further reduce the computation time of the MRP, we

could remove this symmetry but then we would have to have more data on how we

wish to traverse the graph.

Moreover, MRP used 99.54 seconds and reducedMRP used 13.88 seconds to find the op-

timal solution, meaning they have vastly different computation times. This is clearly

a trend as seen in Table 5.1. Thus, if the assumption of a homogeneous vehicle fleet is

fair, there is a lot of time and computation resources to be saved by utilizing reduced-

MRP. Furthermore, notice that we have a computation time that is quite a lot smaller

than W for all cases of W . If the computation time had been larger than, or of equal

size to W that would mean we would use more time on planning the schedule than

executing it, making the model inadequate.

Next, we also remark that we do not visit all vertices in Figure 5.2. This is a critical

aspect of the MRP, as we do not wish the vehicles to be able to visit all vertices within

the given W . If we were to do so, that would mean that the solution includes spare

time for the drivers. By not visiting all vertices and penalizing every missed vertex,
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(a)

(b)

Figure 5.3: The calculated optimal schedule for the test case. The purple and blue blocks
describe when the given vehicle on the y-axis is servicing the corresponding pickup and delivery
vertex, respectively. The pink stripes depict when the vehicle is travelling between vertices, and
where there are no blocks the vehicle is standing still and waiting. (a) is the optimal schedule
calculated from the full model, while (b) is calculated from the reduced model.

W Duplicates Computation time of MRP Computation time of reducedMRP
100 min 10 100s 14s
150 min 15 463s 21s
200 min 20 1102s 215s

Table 5.1: The computation times of the full MRP given in (3.27), and the reduced MRP, given
in (3.40), for varying parameters. All other parameters are held constant.

we ensure that the vehicles traverse the graph as efficiently as possible. However, this

means that we need to be vigilant when choosing how many duplicates each vertex

should have, as too many slows down the computation time, and too few makes the

solution redundant.

Lastly, we also wish to address the scheduled downtime between servicing vertices in

Figure 5.3. As we see in Figure 5.3a for example, Vehicle 3 has approximately half an

hour of waiting between servicing vertex 5.01 and 2.04. This gap occurred as there

are too few jobs in the test case. We can, by definition, not service 2.04 at the same

time as 2.03 as they represent the same on-site location. Thus, because we have three

vehicles but only two pickup sites, there will be time wasted.
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Since the MRP and the reducedMRP obtained the same objective value, we will from here

on out only use the reducedMRP from (3.40). This is because as we do not have any data

on the vehicles to account for using the MRP, we wish to use the more computationally

efficient version.

5.1.2 Size of Fleet

Next, we wish to assess how the size of the vehicle fleet alters the optimal solution

and running time. To do so, we keep the problem size fixed with the exception of the

fleet size, K . As before, we set that we have W = 100, and that we have 10 duplicates

of each pickup and delivery site. We wish to test for K = 1, K = 5, and K = 10, so we

need also to define the corresponding starting positions. For K = 1, we set that the

vehicle starts in vertex 1, and for K = 5, we use the vertices 1.00-1.02 and 2.00-2.01

as starting positions. Lastly, for K = 10, we set 1.00-1.04 and 2.00-2.04 as the starting

positions. These were chosen to distribute the vehicles equally between pickup sites.

The resulting optimal solutions for these cases are depicted in Figure 5.4 and Fig-

ure 5.5. The resulting objective values were 1.30039 ·107 for K = 1, 6.01770 ·106 for

K = 5, and 6.01350 · 106 for K = 10, i.e. the more vehicles the better the solution.

This is because one has to drive less back and forth between vertices, and therefore

one also has the possibility of servicing more vertices.

In these solutions, we can see the consequence of how we have defined the constraints

describing the starting position of each vehicle, (3.32). The same goes for the con-

straint (3.19) in the full MRP. We made these constraints with the requirement that

the vertex a vehicle starts its route must be served before leaving. This, therefore, res-

ults in a stunted start for every vehicle and ensures excess downtime at the beginning.

We also see that it would be beneficial in a real-life setting not to use all the vehicles

as many are mostly waiting around. Therefore, it may be an idea to introduce a neg-

ative cost for the edge leading from the starting position to the fictional depot. We

investigate this next.
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(a) (b)

(c)

Figure 5.4: The calculated optimal routes for the test case. The purple vertices depict pickup
sites while the blue depict delivery sites. The edges between the vertices show the optimal
route of each vehicle. (a) is the optimal route for K = 1, (b) is for K = 5, and (c) is for K = 10.
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(a)

(b)

(c)

Figure 5.5: The calculated optimal schedule for the test case. The purple and blue blocks
describe when the given vehicle on the y-axis is servicing the corresponding pickup and delivery
vertex, respectively. The pink stripes depict when the vehicle is travelling between vertices, and
where there are no blocks the vehicle is standing still and waiting. (a) is the optimal schedule
for K = 1, (b) is for K = 5, and (c) is for K = 10.
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(a) (b)

Figure 5.6: The calculated optimal routes for the test case. The purple vertices depict pickup
sites while the blue depict delivery sites. The edges between the vertices show the optimal
route of each vehicle. (a) is the optimal route calculated when there is no benefit of returning
directly to the depot, while (b) sets this benefit to -µ

5.1.3 Negative Costs

We have observed that the formulation of the MRP is not ideal when there are few

sites and many vehicles. Thus, we now wish to explore if this can be remedied by in-

troducing a negative cost to the edges leading from the starting position to the fictional

end-depot. We set this negative cost to equal the penalty parameter, i.e. cSk ,n+m+1 = −µ
for all k ∈ K . This means that we are asserting that it is not beneficial to use an extra

vehicle to reach one more vertex, which is a reasonable assumption for real life. This

parameter can, however, be adjusted freely based on how strict we want to be. The

rest of the parameters are defined as K = 5, W = 100, and ten duplicates of each

site. We set that the starting positions are vertices 1.00-1.05. The results are shown in

Figure 5.6 and Figure 5.7.

As seen in the solutions, we use only one of the available vehicles instead of the entire

fleet when including a negative cost. However, we can also see a pitfall with how we

have defined our starting positions. As we have stated that every vertex can only be

visited once and that every vehicle needs a starting position, we prohibit any other
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(a)

(b)

Figure 5.7: The calculated optimal schedule for the test case. The purple and blue blocks
describe when the given vehicle on the y-axis is servicing the corresponding pickup and delivery
vertex, respectively. The pink stripes depict when the vehicle is travelling between vertices, and
where there are no blocks the vehicle is standing still and waiting. (a) is the optimal schedule
when there is no benefit of returning directly to the depot, while (b) sets this benefit to -µ

vehicle from servicing this starting position. This is exemplified in Figure 5.7b, where

location 1 is unavailable throughout almost the entire day because of the starting

positions. Thus, further work on this model should correct this. A suggestion is shown

later in Section 7.1.

5.1.4 Priority Vertices

Prioritized sites are common at real-life construction sites, as often, some processes

need to be finished quicker than others. We, therefore, have a priority parameter, p,

that determines the importance of each vertex. We wish to investigate how this para-

meter influences a solution of the MRP. To do so, we use the previously defined test

case, with K = 2, W = 100, and 15 duplicates of each site. Furthermore, we also

change the dig rate of the excavators from 10 to 6 and define the starting positions

as vertex 1.0 and 2.0. We wish to test how the solution changes if we set pi = 5 for

all 2-indexed vertices and compare it to a solution with no prioritized vertices. These
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(a) (b)

Figure 5.8: The calculated optimal routes for the test case. The purple vertices depict pickup
sites while the blue depict delivery sites. The edges between the vertices show the optimal
route of each vehicle. (a) is the optimal route calculated when there is no prioritized vertices,
while (b) has a priority of 5 in vertex 2.

solutions are depicted in Figure 5.8 and Figure 5.9.

The objective values of these solutions were 3.82653 · 107 for the case without prior-

itization and −2.69803 · 107 for the other. Note that the route’s costs and the object-

ive value are not equal as we include the penalizing factor for unvisited vertices in

the objective value. The total cost of each solution is 15300 and 18700, respectively,

meaning that the solution with no prioritization is more cost and time-efficient. This

is because it is free to choose the most cost efficient route. However, since we have set

the parameter pi = 5, that means that one of the 2-indexed vertices are worth five of

the 1-indexed ones. In other words, we reward the visited prioritized vertices much

more to make up for this cost difference. Thus, the objective value of the solution with

prioritization is negative as the benefit of visiting these vertices outweighed the cost of

the process. We remark that we have to be careful when setting the priority parameter

as it far offsets the travel costs.



62 Ella Frederika Johnsen: The Mass Relocation Problem with Uncertainty

(a)

(b)

Figure 5.9: The calculated optimal schedule for the test case. The purple and blue blocks
describe when the given vehicle on the y-axis is servicing the corresponding pickup and delivery
vertex, respectively. The pink stripes depict when the vehicle is travelling between vertices, and
where there are no blocks the vehicle is standing still and waiting. (a) is the optimal schedule
when there is no prioritized vertices, while (b) depicts the optimal schedule when vertex 2 has
a priority of 5.

5.2 The Mass Relocation Problem with Uncertainty

We have now investigated how the MRP performs, so next, we wish to explore how

the different robustness methods behave on a test case. To do so, we need to introduce

uncertainty into the model. For the Skanska construction site we will be investigating,

we only have data on the uncertainty in travel times d. Therefore, we will only invest-

igate this uncertainty for the test case as well. We present the new discrete uncertainty

sets for di j in Table 5.2.

i/ j 1 2 3 4 5
1 (M) (16,17,18,36) (2,3,4,8) (9,10,11,22) (14,15,16,32)
2 (16,17,18,36) (M) (19,20,21,42) (6,7,8,16) (11,12,13,26)
3 (2,3,4,8) (19,20,21,42) (M) (6,7,8,16) (17,18,19,38)
4 (9,10,11,22) (6,7,8,16) (12,13,14,28) (M) (4,5,6,12)
5 (14,15,16,32) (11,12,13,26) (17,18,19,38) (4,5,6,12) (M)

Table 5.2: The discrete uncertainty sets for the travel times di j .
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The uncertainty sets are structured to be similar to the composition of the real data. We

have four discrete values for all edges in the graph, where three are similarly valued,

and one is much larger. In the real data, there are more values in each set, but they

follow a similar pattern. These larger values likely signify that the vehicle stopped for

gas or the driver had a lunch break, for example, or a data inaccuracy. The rest of the

set is the approximate actual travel time.

To illustrate the robustness methods we use the same test case as before, only now

with the presented uncertainty in d. We use the same service rate, si = 5 for all i ∈
V\{0, n + m + 1}, and dig rate, ri = 10 for all i ∈ P, as well as W = 100, K = 3,

and the starting positions are the vertices 1, 1.01, and 2. Lastly, we also define that we

have ten duplicates of each site and for the Bertsimas-Sim approach and the Removing

Outliers Approach (ROA), we set ξd = 0.7. The results are depicted in Figure 5.10 and

Figure 5.11.

The results show the optimal route and schedule given the Soyster approach presented

in equation (4.3), the Bertsimas-Sim approach, formulated in Algorithm 1, and lastly

the ROA as presented in equation (4.11). To recollect, the Soyster approach uses the

maximum value of the uncertainty sets to ensure strict robustness. The Bertsimas-Sim

approach assumes worst-case values for the coefficients that have the worst impact

on the objective value, within an uncertainty budget, ξ. Lastly, the ROA optimizes the

problem based on the maximum value of the coefficients after removing the outliers.

If we look closer at the suggested optimal routes for each robustness method, we

can see some of the differences between the approaches. We see that the ROA is the

most efficient, as it services the largest number of vertices. The Soyster approach is

just behind in terms of performance. This is expected as the Soyster has taken into

account all the worst-case outlier values, while the ROA used the second largest coef-

ficients, which are potentially more realistic. The Bertsimas-Sim approach produces an

infeasible solution. As seen in Figure 5.11b for the Bertsimas-Sim approach, Vehicle

1 and Vehicle 3 both service a 2-indexed vertex in the time interval between 50 and

60 minutes. This means that there is no time for the excavator placed here to pre-

pare a new truckload of mass, making the solution infeasible. This can be remedied,

but would likely result in an even worse solution. One could potentially apply the
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(a) (b)

(c)

Figure 5.10: The calculated optimal routes for the test case. The purple vertices depict pickup
sites while the blue depict delivery sites. The edges between the vertices show the optimal route
of each vehicle. (a) is the robust route with the Soyster approach, (b) is with the Bertsimas-Sim
approach, and (c) is with the ROA.
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(a)

(b)

(c)

Figure 5.11: The calculated optimal schedule for the test case. The purple and blue blocks
describe when the given vehicle on the y-axis is servicing the corresponding pickup and delivery
vertex, respectively. The pink stripes depict when the vehicle is travelling between vertices, and
where there are no blocks the vehicle is standing still and waiting. (a) is the robust schedule
with the Soyster approach, (b) is with the Bertsimas-Sim approach, and (c) is with the ROA.
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W Duplicates Best case Soyster Removing outliers
100 min 10 16 24 20
150 min 15 24 36 28
200 min 20 32* 48* 38*

Table 5.3: The number of unvisited vertices for each feasible approach given different para-
meters and ξ = 0.7 for the ROA. If number is marked with "*", that means that the case was
stopped by time limit on computation time, W , i.e. optimal solution was not found.

constraints of the MRP into the Bertsimas-Sim algorithm. This would however result

in having to further offset the service times, making the model more inefficient. We

therefore deem this model insufficient for calculating the MRPU.

Lastly, we investigate the price of robustness for the MRPU. This term was coined

by Bertsimas and Sim [5] and is commonly thought of as the sacrifice made by the

decision-maker to ensure robustness. In thesis thesis, we analyze the price of robust-

ness by examining the number of unvisited vertices for both the Soyster and the ROA

and compare them to the best case scenario for the test case. The comparison is shown

in in Table 5.3, where we have modified W and the number of duplicates but kept all

other parameters as before. We have not included the Bertsimas-Sim approach as it is

not sensible comparing infeasible solutions to feasible ones.

As seen, this table shows that the ROA performs consistently better than the Soyster ap-

proach, and they both perform worst than the best-case scenario. However, as the best

case solution is unrealistic, we decide that the ROA is best suited for the MRPU, since

we can achieve a sufficiently robust solution by fine-tuning the uncertainty budget,

ξ. The Soyster is overly cautious with our uncertainty sets and works better for mod-

els where the uncertainty is more compounded. Therefore, we will use the ROA for

further work with real data.

We also observe that for W = 200, none of the instances were able to provide optimal

solutions before the computation time surpassed W . This is not ideal, as it means

that once the problem has increased to a certain size, it is no longer computationally

efficient to solve. We will discuss this closer in the next section. We also remark that

when investigating of the differences between MRP and reducedMRP we were able to

find the optimal solution for W = 200 and 20 duplicates, as seen in Table 5.1. This is



Chapter 5: Performance of Model 67

likely because then the vehicles traveled at higher speeds, meaning that it was easier

to pick which vehicles not to service. The exact reasoning should be investigated closer

in future work.





Chapter 6

The Mass Relocation Problem with

Uncertainty on Real-Life Data

We will now finally investigate how the Mass Relocation Problem with Uncertainty

(MRPU) works on real data provided by the construction company Skanska. Sec-

tion 6.1 summarizes the assumptions we have made about the data, Section 6.2 presents

the data and how we have chosen to structure it, and lastly, Section 6.3 discusses the

results.

6.1 Assumptions

Before we start solving the MRPU for actual data, we want to describe the assumptions

we have made. First, since we use the reduced MRP as given in (3.40), we assume a

homogeneous vehicle fleet. This will mean that we assume that all vehicles travel at

the same speed and have the same carrying capacity. This will usually not be true in

real life, but as we do not have any data on the different vehicles, we will proceed

regardless.

Next, we assume that if multiple vehicles start their route at the same position, that

it takes less time to wait for the vehicle’s turn than to traverse to a different pickup
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vertex. This is also not entirely reasonable and should be amended in future work. A

suggestion to how is presented in Section 7.1.

Furthermore, we assume that we have constant and independent service times and

dig rates. In real life, this is a crude assumption. Weather, for example, will rarely only

affect one vertex, thus making the uncertainty in both of these parameters intercon-

nected.

Lastly, we also assume there will be no congestion on the road network. The way

we have formatted the graph means that we have not considered that roads can be

occupied and thus not available at all times for any vehicle to traverse. If we were to

take this into account, we could no longer use a shortest path algorithm and create an

edge between each pickup and delivery pair.

6.2 Solving the MRPU

As this thesis is done in collaboration with SINTEF on behalf of the construction com-

pany Skanska, we have solved the MRPU on the data gathered from their road con-

struction site in Jevnaker, Norway. The coordinates of the pickup and delivery sites

make up the vertices in the graph. The edges are calculated from the coordinates of the

paths the vehicles have driven. We transform this information into a graph as depicted

in Figure 6.1. The travel times are given as a set of times, where each instance rep-

resents the actual duration of a vehicle traversing the edge. As mentioned previously,

there is a considerable range of uncertainty in these sets. We can show this with an ex-

ample. We look closer at the travel times between vertex 1 and vertex 2 in the graph de-

picted in Figure 6.1 and see that d12 = [203.4s, 207.8s, 221.8s, 229.0s, 310.5s, 600.8s,

2100.0s]. Notice that there is a significant variation in the travel times as in most

cases, it takes approximately 4 minutes to traverse, but it can also take 10 minutes

or 35 minutes. This may be due to data inaccuracies or random occurrences such as

stopping for vehicle maintenance. However, as this has not been the subject of this

thesis, we will assume that all data is a correct portrayal of real life.

We now wish to depict the road network as a graph on which we can solve the MRPU.
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Figure 6.1: The real road network of a construction site, marked with purple pickup locations,
blue delivery locations, white crossroads, and blue roads between them, which is drawn on
top of a map from ©Kartverket
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(a) (b)

Figure 6.2: The formatting of the real-life data as a graph. The purple vertices depict pickup
sites while the blue depict delivery sites, while the edges between them depict the road net-
work. (a) is the actual road network depicted as a graph, while (b) illustrates the graph on
which we will solve the MRPU with two duplicates per site.

The translation from the graph depiction of the actual construction site into a correctly

formatted graph with two duplicates is depicted in Figure 6.2. Previously, we have

defined that there exists edges between all pickup and delivery vertices. Here, however,

we have paired some pickup and delivery vertices to reduce the complexity of the

problem. These pairings are given in Table 6.1.

From vertex: To vertex:
17 12, 14
18 10
19 10, 12, 13, 14
20 13
21 8, 9, 11, 15, 16

Table 6.1: The only allowed paths out of the pickup vertices after pairing.

As seen in this table, we have only connected vertices that already were close to each

other geographically. For example, we pair pickup site 21 with the delivery vertices

8, 9, 11, 15, and 16, as they are clustered together in real life. Notice that we have
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not set any restrictions on the edges out of pickup vertices. This ensures that pairing

vertices does not give a predefined solution to the MRPU. Ideally, we would only pair

vertices if certain types of mass could only be delivered at specific locations. For this

case, we pair vertices to reduce the computation time since we do not have any data

on what type of mass is being excavated where.

An outline of the implementation of the MRPU with the ROA is given in Algorithm 2.

Algorithm 2 Solving the MRPU
1: Set parameters
2: Collect graph information
3: Define pickup- and delivery sites
4: Define all edges with Dijkstra
5: Define travel times of edges given robustness approach
6: Duplicate edges and vertices
7: Pair relevant vertices
8: Solve MRPU_outliers as given in (4.11)
9: Collect solutions

To solve the MRPU, we use the same computer as in Chapter 5.

6.3 Results

We do not have data for all parameters in this real-life case, and must therefore choose

some ourselves. We set a constant service time of 5 minutes for every vertex, and a

constant dig rate of 10 minutes for every pickup vertex. It could be interesting to look

at the uncertainty in these parameters, but we will leave it for another time as we do

not have any data on this. Furthermore, we set that K = 5 where all vehicles start

in different pickup vertices, namely vertex 17.0, 18.0, 19.0, 20.0, and 21.0. We also

determine that we have no prioritized vertices and that the penalty term, µ, is defined

as before as the sum of all edges in the graph. We also set a cost of −µ on the edges

leading from the starting positions to the end-depot to discourage vehicles from being

used unnecessarily.

We use the Removing Outliers Approach (ROA) to ensure robustness in the MRPU as
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it is the best-suited method for the MRPU, as we have shown previously. In this real-

data case, we set ξ= 0.9 to give a high likelihood of a feasible solution. However, this

should be adjusted more precisely when we have more knowledge about the reasons

behind the uncertainty in future work.

6.3.1 Solving for a Half Working Day

The first case we will look at is the calculated route for a half-day. Thus, we set that

W = 360 minutes, which is six hours. We only look at a half-day as the computation

time needed grows exponentially for larger models. We also assume that in real life,

we can only accurately predict what will happen for approximately the next six hours

before something unexpected happens that throws off the schedule. Furthermore, we

need to duplicate each site. Since we want to reduce the problem size as much as

possible, we wish to include an as small as possible surplus of duplicates that will

never be reached. The amount of duplicates for each site in this graph is specified in

Table 6.2.

Vertex: 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Duplicates: 5 5 22 5 20 15 5 5 5 20 22 5 15 10

Table 6.2: The number of duplicates for every vertex in the real case.

These numbers were found by trial and error by running the case for different val-

ues and seeing how many duplicates were needed for each site. In a real life setting,

this would not be efficient as we would waste a lot of resources on solving test runs.

However, a real construction site would probably have more preferences on which

sites should be visited and how often, which would suggest the number of necessary

duplicates. We would therefore not have to guess blindly.

Notice that in this case, we specifically set that pickup vertex 21 has more duplicates

than all of its paired delivery vertices. If we set them to equal amounts, we would get

only pairing between vertex 21 and 15 as they are the closest to each other. In real

life, we could potentially only need five truckloads to a specific delivery vertex. Thus,

by modeling it this way, we can also investigate what it means for the solution.
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We also set a time limit on the computation time since the solver can potentially run

for many days. We set this limit to be W , as the model is not practical if it runs any

longer than this. If we wish to solve the MRPU for six-hour intervals, it would be un-

reasonable for it to take six hours as we would then have to start running the next time

interval once the previous ended. This would result in us assume nothing unexpected

happened as we would have to determine the starting position of each vehicle.

The following results of this case are shown in Figure 6.3. These solutions are not the

guaranteed optimal solutions, as the solver was terminated because it passed the time

limit. Despite that, we get a rather interesting solution. We note that the symmetry in

the problem plays a prominent role in this solution and may be why the computation

is inefficient. We see, for example, that Vehicle 5 traverses between pickup site 15 and

the delivery sites 15 and 16. Since we have no preference on when the vehicles should

visit the closest vertex, the objective is the same no matter the order in which we

service these delivery vertices. This may be the reason it is challenging for the solver

to prove the optimality of a solution. The same happens with pickup vertex 16 and the

delivery vertices 12 and 14.

Furthermore, the choice that Vehicle 1 should go from vertex 17.08 to vertex 14.01 is

rather odd as there is no reason we should not visit the closer vertex 12.09 instead.

This is probably due to the fact that this is not the optimal solution. The objective of

this solution is 7.516692 · 108 and the penalty factor is µ = 44212470. That means

that the total cost of the solution is approximately 57 000, or rather, the vehicles in

total drove 57 kilometers during the modeled six hours. Thus, wasting two kilometers

on driving to vertex 14 is not critical in the big picture but it is not the purpose of

the MRP. We wish to find the absolute shortest allowed path while visiting as many

vertices as possible.

The reported optimality gap of this solution was 99.9893 percent when the solver was

interrupted. This means that we were far off the optimal solution, and we can conclude

that the formulation of the MRPU with the ROA as given in (4.11) for this real-data

problem is not sufficient. However, we cannot conclude that the MRPU with the ROA

will not be sufficient for other data sets. But this would have to be investigated further.
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(a)

(b)

Figure 6.3: The calculated route and schedule for the real data after 6 hours computation
time. The purple vertices and blocks represent the pickup sites, while the blue represent the
delivery sites. (a) is the route suggested for the vehicles, where the edges between the vertices
represent the paths for each vehicle.(b) is the calculated schedule for each vehicle, where
the pink stripes depict travel time for each vehicle, and the white spaces means the vehicle is
waiting its turn.
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6.3.2 Comparing Computation Time for Different W -Parameters

Since we did not find an optimal solution of a realistic instance for a real-life situ-

ation, we will analyze when an optimal solution is no longer able to be found within

reasonable time limits. To do so, we will examine the real-life case for different W -

parameters and comparing the needed computation time. The results of this analysis

are visualized in Table 6.3

W: 60 min 90 min 120 min
Computation time: 0.8s 5.5s 120 min*

Table 6.3: The computation time of a real-life depiction of a construction site with varying
total allowed working hours, W . If number is marked with "*", that means that the case was
stopped by time limit on computation time, W , i.e. optimal solution was not found.

We can observe that there is a large jump in computation time from W = 90 to W =

120. For W = 120, the solver had to terminate itself as the time limit was surpassed.

This is an interesting observation because that means that once we exceed W = 90 for

this real case, we get too many options for Gurobi to solve efficiently. Thus, we cannot

schedule the vehicles for more than 90 minutes at a time and guarantee that we find

an optimal solution within the time limit of W . Therefore, it is not surprising that we

previously did not find the optimal solution for the realistic depiction of a real-world

site for six hours.

However, this is bad news for the formulation of the MRP as it will likely not be efficient

enough for any real-world cases with a realistic time horizon. It would not be sufficient

to only compute for 90 minute intervals, as we cannot guarantee that it would result

in the optimal solution for a full working day. Thus, in future work, one should try to

improve the computation time. We discuss this further in Section 7.1.

6.3.3 Comparing Different ξ-Parameters

We also want to investigate how the ROA works with different uncertainty budgets

for real-life data. In this case, we will compare ξ = 0.25, ξ = 0.5, and ξ = 0.75 for

a smaller version as the same real-life case. We only change W and the number of
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duplicates by setting that W = 60 and duplicating the vertices as specified in Table

6.4. The results are shown in Figure 6.4 and Figure 6.5.

Vertex: 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Duplicates: 5 5 10 5 10 10 10 5 5 10 10 10 10 10

Table 6.4: The number of duplicates for every vertex in the real case when we are comparing
ξ-values.

We observe that the resulting schedules service 32, 30, and 26 vertices within the time

limit for ξ = 0.25, ξ = 0.5, and ξ = 0.75, respectively. As expected, the lower the ξ

value, the less time is used on traveling between vertices. What is not entirely expected,

is that the vehicles service different sets of vertices for the different ξ-parameters. This

means that it is not necessarily straightforward that the closest vertex in distance is

the wisest to serve next. For example, we see that the vehicles are scheduled to service

site 19 three times for ξ = 0.25 and ξ = 0.5, and only once for ξ = 0.75. This is

probably due to that it takes less time to travel to vertex 19 for the lower-valued ξ’s,

than it does to wait for a new truckload to be prepared at the vertex the vehicles are

currently placed at. This way, they are able to service more vertices than we do for

ξ= 0.75, even though they are travelling a larger distance.

Furthermore, we can observe that the travel time between site 12 and site 17 is ap-

proximately the same for all investigated ξ-values. Let us look closer at the uncertainty

set for this edge. We have 48 instances of a vehicle taking around seven seconds to

traverse this edge, and then three instances where it takes respectively 325 seconds,

582 seconds, and 3774 seconds. Thus, we exclude these outliers by not using a ξ-value

of more than 0.95, and as such, we get similar travel times for the different cases. This

is a testament to the fact that the ROA seems to be very beneficial for the MRPU.

Lastly, we can also notice the vehicles wait around before ending their schedule. Since

we have not added minimizing the makespan into the objective function, the optimal

solution is not dependent on finishing the jobs quickly. Also, note that since vehicles

have to end their routes at a delivery vertex, they will not be able to make use of their

remaining time if they cannot reach both a pickup and delivery vertex before the day

is passed. This could also explain why Vehicle 5 in our previous case for a half-day,

shown in Figure 6.3b, waited around for half an hour at 210 minutes.
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(a) (b)

(c)

Figure 6.4: The calculated optimal routes for the test case. The purple vertices depict pickup
sites while the blue depict delivery sites. The edges between the vertices show the optimal
route of each vehicle. (a) is the optimal route for ξ = 0.25, (b) is for ξ = 0.5, and (c) is for
ξ= 0.75.
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(a)

(b)

(c)

Figure 6.5: The calculated optimal schedule for the test case. The purple and blue blocks
describe when the given vehicle on the y-axis is servicing the corresponding pickup and delivery
vertex, respectively. The pink stripes depict when the vehicle is travelling between vertices, and
where there are no blocks the vehicle is standing still and waiting. (a) is the optimal schedule
for ξ= 0.25, (b) is for ξ= 0.5, and (c) is for ξ= 0.75.



Chapter 7

Conclusion

7.1 Future Work

As we have seen, the formulation of the MRP is not optimal. We have taken some

crude assumptions, and the computation time for actual data is still too slow since it

surpasses W . Therefore, we will review some of the potential improvements to make

the formulation and implementation more functional for real-life situations.

7.1.1 Computation Time

First and foremost, we want to reduce the computation time to make the MRP applic-

able to real life. There are a couple of ways we could do this. The most obvious solution

would be to use a computer with more computing power. Another suggestion would

be to remove the remaining symmetries in the problem to make the Branch & Bound

algorithm more efficient. We could also introduce cuts to tighten the relaxations of the

problem.

Lastly, to reduce computation time, we could have implemented some sort of learning

algorithm. The data set will rarely change, as a construction company works on the

same site for many months and possibly years. Thus, if we construct an algorithm that
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Figure 7.1: An illustration of an alternative for the starting position constraint in the MRP.
The vertices Ds and and De are the fictional start- and end-depots. Vertices S f

i and S f
j are the

fictional starting position depots, for starting position pi and p j respectively. Lastly, di and d j
represent the delivery sites in the graph.

we train on previous optimal solutions, we could produce new ones faster with fewer

resources. This would not guarantee optimal solutions, but could be an acceptable

alternative if we relax the requirements on solution accuracy.

7.1.2 Assumptions

Future work should not only reduce the computation time but also make better as-

sumptions about the data. As we have mentioned previously, one should improve the

formulation of the starting positions. One way to remedy this constraint is to intro-

duce a fictional depot for each of the vehicles. This depot can only be entered from

the start-depot, and the edges out of the depot lead to all pickup locations and the

end-depot. We set the cost of the edges between the starting depot and the starting

location to zero. The rest of the edges cost the distance from the starting position to

the other pickup vertices. This way, a starting position would not be categorized as

serviced, and thus other vehicles would be able to service it. A simple illustration of

the idea is depicted in Figure 7.1.

Furthermore, we should move away from the assumption of a homogeneous fleet of

vehicles. We could potentially still use reducedMRP formulated in (3.40) as a found-

ation. We would then have to reintroduce k into the travel time parameter d and re-

formulate the associated set of constraints. We would also need to adjust the starting
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position constraint to take into account vehicle-specific locations. However, this would

still assume that all vehicles have the same carrying capacity. Thus, if we wanted to

eliminate this assumption, we would have to back to the full model given in (3.27).

Lastly, an accurate formulation of the MRP should include potential congestion. In real

life, there will not be unlimited space on every edge in the graph. Some graphs include

one-way streets or one-lane streets, and as such, they cannot fit as many vehicles as

we may want. To account for this, we need more constraints restraining how the road

network can be traversed and more data about the given roads. Alternatively, one

could assess if it would be easier to include congestion by not using a VRP as the

groundwork for our formulation of the MRP.

7.1.3 Data Sets

Another improvement would be to have better data on the uncertainty in the graph.

The range between the smallest and largest element in the potential travel times of an

edge is significant in our available data. Since we do not know the reasoning behind

this, we cannot know for sure that it is not due to data errors. If it is, then the er-

ror would propagate throughout the solution, giving possibly infeasible or inefficient

solutions.

Furthermore, if we had more data on what the uncertainty sets contain, we could

refine our robustness approaches based on the likelihood of certain travel times. We

could potentially even model feasible solutions given the weather forecasts for the

specified day. Ideally, we would also include uncertainty to even more parameters to

ensure the feasibility of the solution. However, as this data is not available, this will

have to be done in future work.
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7.2 Concluding Remarks

This thesis has succeeded in formulating a robust variant of the Vehicle Routing Prob-

lem (VRP) that models a real world road construction site, the Mass Relocation Prob-

lem with Uncertainty (MRPU). With data collected from Skanska, we have been able

to make a routing tool that provides good and feasible solutions. Unfortunately, the

computation time when solving the MRPU is too large for the formulation to be useful

for real-world scenarios. However, we have shown that it could be possible and it is

worthy of further exploration. We therefore remain optimistic about this formulation

and anticipate large improvements with, potentially, only minor adjustments such as

those suggested previously.



Bibliography

[1] A. Agra, M. Christiansen, R. Figueiredo, L. M. Hvattum, M. Poss and C. Re-

quejo, ‘The robust vehicle routing problem with time windows,’ Computers &

Operations Research, vol. 40, pp. 856–866, 2013.

[2] R. Anand, D. Aggarwal and V. Kumar, ‘A comparative analysis of optimization

solvers,’ Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 623–

635, 2017.

[3] A. Ben-Tal and A. Nemirovski, ‘Robust solutions of linear programming prob-

lems contaminated with uncertain data,’ Mathematical Programming, vol. 88,

pp. 411–424, 2000.

[4] D. Bertsimas and M. Sim, ‘Robust discrete optimization and network flows,’

Mathematical Programming, vol. 98, pp. 49–71, 2003.

[5] D. Bertsimas and M. Sim, ‘The price of robustness,’ Operations Research, vol. 52,

pp. 35–53, 2004.

[6] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer,

1997.

[7] G. Clarke and J. Wright, ‘Scheduling of vehicles from a central depot to a num-

ber of delivery points,’ Operations Research, vol. 12, pp. 568–581, 1964.

[8] G. B. Dantzig and J. H. Ramser, ‘The truck dispatching problem,’ Management

Science, vol. 6, pp. 1–140, 1959.

[9] Google OR-Tools. (n.d.). ‘Penalties and dropping visits,’ [Online]. Available:

https://developers.google.com/optimization/routing/penalties (vis-

ited on 30/03/2021).

85

https://developers.google.com/optimization/routing/penalties


86 Ella Frederika Johnsen: The Mass Relocation Problem with Uncertainty

[10] A. H. Gundersen, M. Johansen, B. S. Kjær, H. Andersson and M. Stålhane, ‘Arc

routing with precedence constraints: An application to snow plowing opera-

tions,’ Lecture Notes in Computer Science, vol. 10572, 2017.

[11] Gurobi Optimization LLC. (n.d.). ‘Gurobi optimizer,’ [Online]. Available: https:

//www.gurobi.com/products/gurobi-optimizer/ (visited on 08/01/2021).

[12] I. B. Hovi and W. Hansen, ‘Logistikkostnader i norske vareleverende bedrifter,’

Transportøkonomisk institutt, 2010.

[13] P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applications. Springer,

1997.

[14] C. Lee, K. Lee and S. Park, ‘Robust vehicle routing problem with deadlines and

travel time/demand uncertainty,’ Journal of the Operational Research Society,

vol. 63, pp. 1294–1306, 2012.

[15] F. Margot, ‘Symmetry in integer linear programming,’ in 50 years of Integer Lin-

ear Programmin 1958-2008: From the Early Years to the State-of-the-Art, M.

Jünger, T. Liebling, D. Naddef, G. Nemhauser, W. Pulleyblank, G. Reinelt, G.

Rinaldi and L. Wolsey, Eds., Springer Berlin Heidelberg, 2010, ch. 17, pp. 647–

686.

[16] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006.

[17] S. N. Parragh, K. F. Doerner and R. F. Hartl, ‘A survey on pickup and delivery

problems,’ Journal für Betriebswirtschaft, vol. 58, pp. 81–117, 2008.

[18] J.-P. Rodrigue, The Geography of Transport Systems. Routledge, 2013.

[19] K. L. Rødseth, R. B. Holmen, F. R. Førsund and S. A. Kittelsen, Effektivitet og

produktivitet i norsk veibygging 2007-2016. Ex ante akademiske forlag, 2019.

[20] Skanska. (n.d.). ‘Skanska vil kutte utslipp med kunstig intelligens,’ [Online].

Available: https://www.skanska.no/hvem-vi-er/media/aktuelt/skanska-

vil-kutte-utslipp-med-kunstig-intelligense/ (visited on 18/06/2021).

[21] A. L. Soyster, ‘Convex programming with set-inclusive constraints and applic-

ations to inexact linear programming,’ Operations Research, vol. 21, pp. 1154–

1157, 1973.

https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/
https://www.skanska.no/hvem-vi-er/media/aktuelt/skanska-vil-kutte-utslipp-med-kunstig-intelligense/
https://www.skanska.no/hvem-vi-er/media/aktuelt/skanska-vil-kutte-utslipp-med-kunstig-intelligense/


Bibliography 87

[22] N. E. Toklu, ‘Matheuristics for robust optimization - application to real-world

problems,’ Ph.D. dissertation, Università della Svizzera Italiana, 2014.

[23] P. Toth and D. Vigo, The Vehicle Routing Problem. Society for Industrial and Ap-

plied Mathematics, 2002.





Appendix

A Implementation of MRP in gurobipy

def solve_MRP(c, K, s, r):

m = gp.Model('fullMRP')

m.Params.SolutionNumber = 10

m.Params.TimeLimit = W*60

# Decision variables

x = m.addVars(K, Gd.edges(), vtype=GRB.BINARY, name='x')

t = m.addVars(nnodes, vtype=GRB.CONTINUOUS, lb=0, ub=W, name='t')

# If we want to warm-start the solver

#m.update()

#m.read('previous_solution.sol')

# Constraints

# Constraint (3.16)

m.addConstrs(((gp.quicksum(x[k,i, out_edge[1]] for k in range(K) for

out_edge in Gd.out_edges(i)) <= 1) for i in G.nodes()), name =

'3.16')

,→

,→

# Constraint (3.17)
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m.addConstrs(((gp.quicksum(x[k,0,out_edge[1]] for out_edge in

Gd.out_edges(0)) == 1) for k in range(K)), name='3.17'),→

# Constraint (3.18)

m.addConstrs(((gp.quicksum(x[k,in_edge[0],end_depot] for in_edge in

Gd.in_edges(end_depot)) == 1) for k in range(K)), name='3.18'),→

# Constraint (3.19)

m.addConstrs((x[k,0,S[k]] == 1 for k in range(K)), name='3.19')

# Constraint (3.20)

m.addConstrs(((gp.quicksum(x[k,in_edge[0], i] for in_edge in

Gd.in_edges(i)) - gp.quicksum(x[k,i, out_edge[1]] for out_edge

in Gd.out_edges(i)) == 0) for k in range(K) for i in G.nodes()),

name='3.20')

,→

,→

,→

# Constraint (3.21)

for i in G.nodes():

for out_edge in Gd.out_edges(i):

if out_edge[1] != end_depot:

m.addConstr((t[dup_to_ind[i]] + s[dup_to_ind[i]] +

d[dup_to_ind[i]][dup_to_ind[out_edge[1]]] -

t[dup_to_ind[out_edge[1]]] <= (W + s[dup_to_ind[i]]

+ d[dup_to_ind[i]][dup_to_ind[out_edge[1]]]) * (1 -

x.sum('*',i,out_edge[1]))), name = '3.21')

,→

,→

,→

,→

# Constraint (3.22)

m.addConstrs((t[dup_to_ind[i]] >= (s[dup_to_ind[i]-1] +

r[dup_to_ind[i]-1] + (gp.quicksum(x[k,i,out_edge[1]] for

out_edge in Gd.out_edges(i) for k in range(K)) - 1) *

(s[dup_to_ind[i]-1] + r[dup_to_ind[i]-1]) + t[dup_to_ind[i]-1])

for i in pick_duplicates), name = '3.22')

,→

,→

,→

,→
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# Constraint (3.23)

m.addConstrs((t[dup_to_ind[i]] >= (s[dup_to_ind[i]-1] +

(gp.quicksum(x[k,i,out_edge[1]] for out_edge in Gd.out_edges(i)

for k in range(K)) - 1) * (s[dup_to_ind[i]-1]) +

t[dup_to_ind[i]-1]) for i in deli_duplicates), name = '3.23')

,→

,→

,→

# Constraint (3.24) for pickup vertices

for it in range(len(pi)):

for im in i_pick_duplicates[it]:

for i in i_pick_duplicates[it][:dup_to_ind[im]-1-

pick_lengths[it]]:,→

m.addConstr(gp.quicksum(x[k,i,out_edge[1]] for out_edge

in G.out_edges(i) for k in range(K)) >=

gp.quicksum(x[k,im,out_edge[1]] for out_edge in

G.out_edges(im) for k in range(K)), name = '3.24

pickup')

,→

,→

,→

,→

# Constraint (3.24) for delivery vertices

for it in range(len(de)):

for im in i_deli_duplicates[it]:

for i in i_deli_duplicates[it][:dup_to_ind[im]-1-

deli_lengths[it]-len(pick_all)]:,→

m.addConstr(gp.quicksum(x[k,in_edge[0],i] for in_edge in

Gd.in_edges(i) for k in range(K)) >=

gp.quicksum(x[k,in_edge[0],im] for in_edge in

Gd.in_edges(im) for k in range(K)), name = '3.24

delivery')

,→

,→

,→

,→

# Objective function (3.15)
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m.setObjective(gp.quicksum(c[dup_to_ind[j]][dup_to_ind[out_edge[1]]]

* x[k,j,out_edge[1]] for j in G.nodes() for out_edge in

G.out_edges(j) for k in range(K)) +

gp.quicksum(c[dup_to_ind[i]+1][-1] * x[i,end_depot] for i in S)

+ mu * gp.quicksum(1 - gp.quicksum(p[dup_to_ind[i]] *

x[k,i,out_edge[1]] for k in range(K) for out_edge in

Gd.out_edges(i)) for i in pick_all), GRB.MINIMIZE)

,→

,→

,→

,→

,→

,→

m.optimize()

m.write('solution.sol')

return m
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B Implementation of reducedMRP in gurobipy

def solve_reducedMRP(c, K, s, r):

m = gp.Model('reducedMRP')

m.Params.SolutionNumber = 10

m.Params.TimeLimit = W*60

# Decision variables

x = m.addVars(Gd.edges(), vtype=GRB.BINARY, name='x')

t = m.addVars(nnodes, vtype=GRB.CONTINUOUS, lb=0, ub=W, name='t')

# If we want to warm-start the solver

#m.update()

#m.read('previous_solution.sol')

# Constraints

# Constraint (3.29)

m.addConstrs(((gp.quicksum(x[i, out_edge[1]] for out_edge in

Gd.out_edges(i)) <= 1) for i in G.nodes()), name='3.29'),→

# Constraint (3.30)

m.addConstr(((gp.quicksum(x[0,out_edge[1]] for out_edge in

Gd.out_edges(0)) == K)), name='3.30'),→

# Constraint (3.31)

m.addConstr(((gp.quicksum(x[in_edge[0],end_depot] for in_edge in

Gd.in_edges(end_depot)) == K)), name='3.31'),→

# Constraint (3.32)

m.addConstrs((x[0,S[k]] == 1 for k in range(K)), name='3.32')

# Constraint (3.33)
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m.addConstrs(((gp.quicksum(x[in_edge[0], i] for in_edge in

Gd.in_edges(i)) - gp.quicksum(x[i, out_edge[1]] for out_edge in

Gd.out_edges(i)) == 0) for i in G.nodes()), name='3.33')

,→

,→

# Constraint (3.34)

for i in G.nodes():

for out_edge in Gd.out_edges(i):

if out_edge[1] != end_depot:

m.addConstr((t[dup_to_ind[i]] + s[dup_to_ind[i]] +

d[dup_to_ind[i]][dup_to_ind[out_edge[1]]] -

t[dup_to_ind[out_edge[1]]] <= (W + s[dup_to_ind[i]]

+ d[dup_to_ind[i]][dup_to_ind[out_edge[1]]]) * (1 -

x[i,out_edge[1]])), name = '3.34')

,→

,→

,→

,→

# Constraint (3.35)

m.addConstrs((t[dup_to_ind[i]] >= (s[dup_to_ind[i]-1] +

r[dup_to_ind[i]-1] + (gp.quicksum(x[i,out_edge[1]] for out_edge

in Gd.out_edges(i)) - 1) * (s[dup_to_ind[i]-1] +

r[dup_to_ind[i]-1]) + t[dup_to_ind[i]-1]) for i in

pick_duplicates), name = '3.35')

,→

,→

,→

,→

# Constraint (3.36)

m.addConstrs((t[dup_to_ind[i]] >= (s[dup_to_ind[i]-1] +

(gp.quicksum(x[i,out_edge[1]] for out_edge in Gd.out_edges(i)) -

1) * (s[dup_to_ind[i]-1]) + t[dup_to_ind[i]-1]) for i in

deli_duplicates), name = '3.36')

,→

,→

,→

# Constraint (3.37) for pickup vertices

for it in range(len(pi)):

for im in i_pick_duplicates[it]:

for i in i_pick_duplicates[it][:dup_to_ind[im]-1-

pick_lengths[it]-len(deli_all)]:,→
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m.addConstr(gp.quicksum(x[i,out_edge[1]] for out_edge in

G.out_edges(i)) >= gp.quicksum(x[im,out_edge[1]] for

out_edge in G.out_edges(im)), name = '3.37 pickup')

,→

,→

# Constraint (3.37) for delivery vertices

for it in range(len(de)):

for im in i_deli_duplicates[it]:

for i in i_deli_duplicates[it][:dup_to_ind[im]-1-

deli_lengths[it]]:,→

m.addConstr(gp.quicksum(x[in_edge[0],i] for in_edge in

Gd.in_edges(i)) >= gp.quicksum(x[in_edge[0],im] for

in_edge in Gd.in_edges(im)), name = '3.37 delivery')

,→

,→

# Objective function (3.28)

m.setObjective(gp.quicksum(c[dup_to_ind[j]][dup_to_ind[out_edge[1]]]

* x[j,out_edge[1]] for j in G.nodes() for out_edge in

G.out_edges(j)) + gp.quicksum(c[dup_to_ind[i]][-1] *

x[i,end_depot] for i in S) + mu * gp.quicksum(1 -

gp.quicksum(p[dup_to_ind[i]] * x[i,out_edge[1]] for out_edge in

Gd.out_edges(i)) for i in pick_all), GRB.MINIMIZE))

,→

,→

,→

,→

,→

m.optimize()

m.write('solution.sol')

return m
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C Gurobi Logs Excerpts

All Gurobi log excerpts for the cases I have run in this thesis are to find at:

https://github.com/ellafj/Repo-Masters-Thesis/tree/main/Gurobi-Log-Excerpts

https://github.com/ellafj/Masters-Thesis/tree/main/Gurobi-Log-Excerpts
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