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Abstract 
 

The field of systems biology has enjoyed increasing popularity and recognition over the last two 

decades. The systems biology approach is holistic in that it studies complex biological systems, such as 

cells or organisms, as a whole instead of reduced to their isolated parts. This approach requires a 

multidisciplinary skill base including biology, informatics, and statistics. An important subfield of 

systems biology is constraint-based modelling, which has become a widely used research tool within 

medicine and biotechnology. A particularly important ingredient in constraint-based analysis is genome-

scale metabolic models (GEMs). GEMs are mathematical reconstructions of metabolic networks where 

the presence of each metabolic reaction is based on the organism’s genome. All reactions and 

metabolites are represented in a stoichiometric framework. A key part of GEMs is the biomass objective 

function (BOF), which imitates biomass production by consuming energy, macromolecule monomers, 

and other molecules that make up the dry biomass composition of a cell. Biomass generation, i.e., the 

growth of an organism, is not just an important output in constraint-based analysis: growth maximisation 

is assumed to be the biologically logical goal, thus, the BOF is commonly used as the objective function.  

The stoichiometry of a BOF is defined by the amount of each metabolite that goes into 1 g of 

dry biomass, i.e., all compounds that the organism needs to grow. Consequently, the BOF has a great 

impact on prediction results and should therefore be an accurate representation of the biomass 

composition of the studied organism. Due to a lack of publications on complete molecular biomass 

compositions, BOFs are usually imported from previous GEMs or GEMs of related organisms. 

However, there can be a great variation in biomass composition, even between closely related 

organisms, which would cause inaccurate predictions in a GEM. Another approach commonly used in 

modelling is to base the content of various parts of the BOF on various publications. For example, by 

importing the protein content and composition from a proteomics study and the lipids from a lipidomics 

study. Even if the studies are using the same organism strain, an issue arising from this approach is that 

the growth conditions usually vary. As biomass composition also varies greatly between growth 

conditions for the same organism, this will also result in potential inaccuracies.  

The principal aim of this thesis is to construct condition-specific biomass objective functions 

for E. coli K-12 MG1655 based on experimental data. Consequently, we have grown E. coli under 

various controlled conditions and applied a set of analytical methods to measure the complete 

macromolecular composition. Proteins, carbohydrates, lipids, DNA, and RNA were quantified with an 

average total biomass recovery of 86 % for all cultures. The monomer distribution in proteins and 

carbohydrates was also measured directly achieving an increased resolution of carbohydrate monomers 

compared to what has been previously reported. Furthermore, our measurements are comparable to the 

gold-standard composition reported in literature for E. coli. The experimental pipeline was also applied 

to S. cerevisiae, S. salar, and A. thaliana to assess the potential for use on other organisms. 

The BOFs identified for E. coli were implemented to the iML1515 model – the leading GEM 

for E. coli K-12 MG1655. The BOF constructed from our measurements of E. coli growing 

exponentially had a 5 % increase in prediction accuracy compared to the more general wild-type BOF 

shipped with the model. Simulation of the remaining BOFs predicted biologically reasonable uptake 

rates of limiting nutrients at given growth rates. Our results show that there is a potential for increasing 

the prediction accuracy of GEMs by directly measuring the biomass composition of the modelled 

organism. Further, we show that the constructed measurement pipeline can easily be applied to 

determine such BOFs relevant for GEMs.   
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Sammendrag 
 

Systembiologi er et felt som har fått økende oppmerksomhet gjennom de siste to tiårene. Feltet 

baserer seg på en holistisk tilnærming, der komplekse biologiske systemer studeres i sin helhet i stedet 

for å reduseres til enkeltdeler. Dette er en interdisiplinær tilnærming som blant annet kombinerer biologi, 

statistikk og informatikk. Et viktig felt innen systembiologi er restriksjonsbasert modellering – en 

teknikk som nå er mye brukt innen medisin og bioteknologi. En populær type modell som brukes i 

restriksjonsbasert modellering er genomskala metabolske modeller (GEMer). GEMer er matematiske 

rekonstruksjoner av metabolske nettverk, der alle reaksjonene er basert på den studerte organismens 

genom. Alle reaksjoner og metabolitter er representert i et støkiometrisk rammeverk i en slik modell. 

Biomasseobjektivfunksjonen (BOF) er en viktig del av GEMer. Denne reaksjonen imiterer vekst ved å 

forbruke energi, makromolekylmonomerer og andre molekyler som utgjør biomassesammensetningen 

til en celle. Biomassegenerering, dvs. veksten til en organisme, er ikke bare en viktig del av resultatet i 

restriksjonsbasert analyse: maksimering av vekst anses å være det biologisk logiske målet, så en BOF 

brukes ofte som objektivfunksjon i restriksjonsbasert modellering. 

Støkiometrien til en BOF defineres av mengden av hver metabolitt som forbrukes i 

produksjonen av 1 g biomasse; dvs. alle stoffene en organisme trenger for å vokse. Dermed har BOFen 

stor innvirkning på prediksjonsresultater, noe som betyr at den bør være en mest mulig presis 

representasjon av biomassesammensetningen til den studerte organismen. På grunn av mangel på 

publikasjoner av den komplette biomassesammensetningen til organismer, importeres ofte BOFer fra 

tidligere GEMer, eller fra GEMer for beslektede organismer. Det er imidlertid store variasjoner i 

biomassesammensetning, selv mellom nært beslektede organismer, hvilket medfører unøyaktige 

prediksjoner i en GEM. En annen tilnærming som brukes mye i modellering er å basere innholdet av 

ulike deler av BOFen på ulike publikasjoner. For eksempel ved å importere proteininnhold og  

-sammensetning fra en proteomstudie og lipider fra en lipidomstudie. Selv om ulike studier skulle bruke 

samme stamme av organismen, vil det ofte være variasjoner i vekstbetingelser. Siden 

biomassesammensetning varierer betydelig med varierende vekstbetingelser, vil dette også resultere i 

potensielt unøyaktige prediksjoner. 

Hovedmålet med denne oppgaven er å konstruere vekstbetingelsesspesifikke biomasse-

objektivfunksjoner for E. coli K-12 MG1655. For å gjøre dette, har vi dyrket E. coli under ulike 

kontrollerte vekstbetingelser og brukt et sett analytiske metoder til å måle hele den makromolekylære 

sammensetningen. Proteiner, karbohydrater, lipider, DNA og RNA er kvantifisert og vi har målt 

gjennomsnittlig 86 % av den totale biomassesammensetningen i alle kulturene. For proteiner og 

karbohydrater har vi også målt monomerfordelingen. På denne måten har vi oppnådd mer detaljerte 

målinger av karbohydrater enn tidligere publikasjoner. Videre, er målingene våre sammenlignbare med 

den biomassesammensetningen av E. coli i litteraturen som anses som gullstandard. Settet av 

eksperimentelle metoder er også testet på S. cerevisiae, S. salar og A. thaliana for å undersøke 

potensialet for å bruke metodene på andre organismer. 

Vi implementerte BOFene vi konstruerte for E. coli i modellen iML1515 – den ledende GEMen 

for E. coli K-12 MG1655. BOFen som var konstruert fra våre målinger av E. coli i eksponentiell vekst 

oppnådde 5 % mer nøyaktige prediksjoner enn en mer generell villtype BOF fra modellen. Simuleringer 

med de resterende BOFene ga biologisk rimelige prediksjoner for opptaksrater av begrensende 

næringsstoffer ved ulike vekstrater. Resultatene våre tilsier at prediksjonsnøyaktigheten til GEMer kan 

forbedres ved å direkte måle biomassesammensetningen til organismen som modelleres. Videre har vi 

vist at settet av metoder vi har foreslått er en enkel måte å bestemme biomassesammensetning for bruk 

i restriksjonsbasert modellering. 
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1 Introduction 

Traditionally, reductionism has dominated life sciences. During the last two decades, however, 

the holistic approach of systems biology has received much attention (1, 2). Systems biology aims to 

understand whole biological systems and not just their isolated parts (3). Thusly, the systems biology 

approach exposes emergent properties that are often overlooked in reductionism (4). In the past, these 

holistic approach applications have been limited by a lack of data and tools. But now, as new technology 

improving computational power is developed and increasing amounts of large-scale omics data are made 

available, many scientists look to the systems biology approach to make sense of the complexity of 

biological processes(5). This approach has led to advances in a wide range of disciplines, such as 

immunology, biochemistry, and cancer research, to mention a few (6-8).  

An important subfield within systems biology is constraint-based modelling, which has been 

recognised as an important tool in fields such as medicine and food technology (9-11) Constraint-based 

modelling has contributed to unravelling the principles underlying metabolic networks by considering 

physical, enzymatic topological constraints regulating their phenotype (12). According to Resendis-

Antonio (12), the process of constraint-based modelling can be divided into four steps:  

1. Metabolic reconstruction of an organism  

2. Mathematical representation of the metabolic network  

3. In silico analysis  

4. Experimental assessment of computational predictions. 

The first two steps are accounted for by the construction of a genome-scale metabolic model 

(GEM) (13, 14). GEMs are widely used in biology as a tool to utilise large-scale omics data to predict 

metabolic phenotypes, discover gene functions and predict gene modification targets (15). A GEM is a 

mathematical representation of the metabolic network of a cell, a tissue, or a whole multicellular 

organism, in which all known reactions and metabolites are integrated into a stoichiometric framework 

and balanced for mass and energy (16). Furthermore, the gene-protein-reaction (GPR) relationships are 

annotated, meaning that each reaction in the model is linked to the protein(s) that catalyse it, and the 

proteins are linked to their respective encoding genes. The GPR annotation makes it possible to integrate 

both proteomic and transcriptomic data into one model (16). This possibility to combine, organize and 

utilise large-scale omics data might be why constraint-based modelling has received enormous 

popularity in the last decade. According to Gu et al. (13), GEMs had been constructed for 6239 different 

organisms in February 2019, and there is no reason to believe that this trend will turn any time soon. 

Representing metabolic models as GEMs allows researchers to run in silico analyses that cannot 

be performed using general metabolic databases. GEMs can be analysed using various COBRA 

(COnstraints Based Reconstruction and Analysis) methods, one of the simplest being flux balance 

analysis (FBA) (17). In an FBA, the flow of metabolites through the metabolic network is calculated by 

optimizing an objective function within a solution space limited by the assumption of steady-state and 

a set of applied flux constraints. The objective function can be any linear combination of fluxes, but 

often the biologically logical objective is to maximise growth (18, 19). To simulate this, a pseudo-

reaction called the biomass objective function (BOF) is used as the objective function.  

A BOF imitates growth by consuming metabolic precursors of proteins, carbohydrates, lipids, 

and nucleic acids, and in many cases also metabolites such as vitamins, minerals, and some high-energy 

metabolites (20). The amount of each metabolite consumed in a BOF should reflect the content of each 

metabolite that is needed to produce 1 g of the studied organism’s biomass (21).The BOF is not balanced 

for mass, in the sense that it usually only produces some lower energy metabolites, protons, and 

inorganic phosphates. The “lost” mass is assumed to make up the biomass of the organism. The 
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multidimensional direction of the objective function has a great impact on the solution in an FBA, thus 

the BOF must be an utmost precise representation of biomass generation in the studied organism (21-

26). Hence, knowledge about the biomass composition of the studied organism is essential in the 

construction of a BOF. 

Due to the lack of complete biomass composition data for various organisms, many BOFs today 

are either imported from previous GEMs of the same organism or GEMs constructed for related 

organisms (21, 27, 28). Another common approach is to construct BOFs based on biomass compositions 

of model organisms in literature (21). However, publications of complete biomass compositions are 

scarce, even for well-studied organisms. Hence, various parts of the BOF are often based on various 

publications (29, 30). While proteomic, lipidomic etc. studies provide detailed compositions of their 

respective macromolecules, there are often variations in the strains used between studies. Furthermore, 

there are many factors affecting organism growth, and the chance of finding separate studies with the 

exact same growth conditions are small (31). As biomass composition can vary considerably with strain 

and growth conditions, basing the BOF on separate studies can result in inaccurate predictions (22, 23, 

31).  

Considering condition-specific variations in biomass composition, the complete biomass should 

optimally be measured in one culture grown in conditions matching the simulation. However, a 

“standard” approach to do this is yet to be developed (32). Attempts have been made to measure the 

biomass composition of E. coli for genome-scale metabolic modelling purposes. Beck et al. (33) have 

reviewed various methods for measuring protein, carbohydrate, lipid, DNA, and RNA and 

experimentally determined the biomass composition of E. coli, Alicyclobacillus acidocaldarius, and 

Synechococcus  sp. PCC 7002 and for computational purposes. However, they could only recover up to 

65.2 % of the cell dry weight (CDW), which gives a high uncertainty when the composition is 

normalized to 100 % for BOF applications. In 2014 Long and Antoniewicz (34) developed a gas 

chromatography/mass spectrometry method for quantifying the content of proteins, lipids, RNA, and 

glycogen. They applied the method on three E. coli strains and recovered 82 % of the CDW of wild-

type E. coli. Even though the recovery percentage is high, the method has issues such as the requirement 

that the organism must be completely C13 labelled. Besides, the method does not measure the content 

of DNA and carbohydrates other than glycogen.   

In this work, we suggest a pipeline of analytical methods for determination of complete 

macromolecular composition. This pipeline involves amino acid quantification by HPLC; carbohydrate 

quantification by HPLC-MS; lipid extraction and quantification according to Folchs method; DNA 

extraction and spectrophotometric quantification; and RNA extraction and spectrophotometric 

quantification. The methods are relatively simple and time-efficient, and require no carbon labelling. 

We applied the methods to seven cultures of E. coli K-12 strain MG1655 and achieved an average 

biomass recovery of 86 %. For proteins and carbohydrates, we did not only measure the total content, 

but also the composition. The carbohydrate quantification method we applied resulted in an increased 

resolution of carbohydrate monomers compared to what has been previously reported. Furthermore, our 

measured values are comparable to the gold-standard E. coli composition reported by Neidhardt et al. 

(35). Additionally, some of the methods in our pipeline were tested on Saccharomyces cerevisiae cells, 

Salmo salar muscle, and Arabidopsis thaliana leaves to assess their potential for other organisms. 

The workflow in this thesis involves cultivation of the organism, experimental quantification of 

each macromolecule group, BOF construction, and BOF evaluation through FBA analysis. The  

E. coli cultures we have analysed were grown in bioreactors to ensure an aerobic environment and 

controlled growth conditions. Furthermore, growth rates and some exchange rates have been measured 

during cultivation, allowing experimental assessment of the computational predictions made using our 

BOFs. BOFs were constructed based on the experimentally determined macromolecule composition and 
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implemented to the E. coli GEM iML1515. To evaluate the BOFs, FBA analysis was performed with 

restrictions corresponding to the measured exchange rates. The simulation results showed potential for 

increasing prediction accuracy by using experimentally determined, condition-specific BOFs. 

 

The principal aim of this thesis is to construct condition-specific biomass objective 

functions for E. coli based on experimental data. To do this we have grown E. coli under controlled 

conditions and combined already existing methods of macromolecule quantification to measure the 

complete macromolecule composition of the cultures. 

 

. 
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2 Theory 

The problem addressed in this thesis is tripartite. The first part is analytical and consists of the 

experimental determination of an organism’s biomass composition. The second part is computational 

and consists of implementing the experimentally measured biomass into a computational model 

followed by simulation. The third part is the biological aspect, which should be considered when 

designing experiments, constructing biomass objective functions, and evaluating the simulation results 

by comparison to in vivo phenotypes.  

 In this chapter, I will first describe the principles behind the computational methods used. To 

avoid getting lost in the plethora of computational techniques used in systems biology, I have chosen to 

focus solely on the methods used directly in this work. Then I will address the biological aspect briefly, 

focusing on the biomass composition of E. coli. Lastly, I will touch upon the analytical methods used in 

this thesis. As the goal of this thesis is not to develop new methods but rather to combine relatively 

simple methods effectively, I will not go into the principles behind the methods or the newest 

technology.   

2.1 Models in systems biology 

Models are a central part of systems biology because biological systems are far too complex to 

be described without any degree of simplification (3). To make sense of the large amounts of data 

describing such systems, it must be put into a framework. Computational models provide frameworks 

into which various kinds of omics data can be combined (16). In constraint-based modelling, 

experimental data is incorporated into a model as constraints that will increase the accuracy of the 

models’ predictions (36). Various COBRA methods have been developed to analyse metabolic models, 

the most commonly used being FBA (18). FBA is a method for predicting the flux through a metabolic 

network at a steady state. It is a simple and efficient technique that is based on the principles of linear 

programming. 

2.1.1 Linear programming  

Linear programming or linear optimization is a technique in the field of operations research that 

historically has been used in company management, but relatively recently it has become an 

indispensable tool in systems biology as well (37). The linear programming (LP) problem consists of a 

function to be optimized (maximised or minimised) subject to certain linear constraints (38). The 

function to be optimized (Z) is called the objective function and is a linear function of a set of n decision 

variables xj: 

             Z = c1x1 +  c2x2 + ⋯ + cnxn .           2-1 

The constraints are linear equations or inequalities of the same decision variables as the 

objective function. Equation 2-2 shows the equation/inequality of a given constraint i. 

        ai 1x1 + ai 2x2 + ⋯ + ainxn  {
≤
 = 
≥
} bi          2-2 

Inequalities can easily be converted mathematically from “not less than” to “not greater than” 

and vice versa by multiplying b by –1, and each equation can simply be replaced with a set of two 

opposite inequalities. In this way the LP problem can be formulated with all restrictions as “less-than” 

inequalities, which is the standard form (38). The standard form of the LP problem with n decision 

variables and m constraints is shown in Equation 2-3, where �̅� is a vertical vector of the constants in the 

objective function, x̅ is a vertical vector of the decision variables xj, b̅ is a vertical vector of all the 
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constants bi that constraint i is bound to be “not greater than” and A̿ is an [m × n] matrix containing the 

constants aij of the constraints. In addition to the constraints defined by A̿, all decision variables must be 

non-negative in standard form. 

          maximise       c̅⏉𝒙           2-3 
     

subject to {   A̿x ̅≤ b̅
 x̅ ≥ 0̅

 

Any solution for �̅� that satisfies all the constraints is called a feasible solution (38). Out of all 

feasible solutions, the solution(s) that gives the objective function the most optimal value is/are the 

optimal solution(s). This is illustrated for an example LP problem with only two decision variables and 

three constraints in Figure 2.1. 

A 

 

 

maximise          Z = 2x1 + x2 

 

subject to 

{
 
 

 
 

    5x1 - x2 ≤ 24

  -
4x1

5
 - x2 ≤ - 8

      
    x1 - x2 ≤ - 5

  x1, x2 ≥ 0

 

B C 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Solving an LP problem. A: The LP problem in standard form. B: The constraints (blue lines) limit the 

solution space (blue area) of the problem. Any solution within this area is feasible. C: The optimal solution (red 

point) is the solution within the feasible area that maximises the value of the objective function (red arrow).   

All the constraints in an LP problem are linear, which means that at least one of the optimal 

solutions of the problem will be in a corner of the solution space. Furthermore, any local optimum in an 

LP problem is also a global optimum. Hence, LP problems can be solved efficiently with the right 

algorithms. One popular algorithm for solving LP problems is the SIMPLEX algorithm, which solves 

LP problems by iteratively investigating the corners of the solution space, moving from one corner to 

the next along the edge which optimized the objective function the most (38). When there is no edge 

along which the algorithm can move to further optimize the value of the objective function, it has found 

an optimal solution.  

2.1.2 Flux balance analysis 

Flux balance analysis (FBA) is a method that utilises the principles of linear programming to 

analyse GEMs and other metabolic reconstructions (18). In simplified terms, a GEM consists of a set of 

n chemical reactions with m different metabolites that represent all known reactions in the metabolism 

of the modelled system or organism. In FBA, these reactions and metabolites are represented 

mathematically in a stoichiometric m times n matrix �̿�, where Sij is the stoichiometric coefficient of 

metabolite Mi in reaction Rj. Furthermore, when running an FBA, each reaction will have a flux vj. The 

change in the concentration of metabolite Mi can be described as follows (39):  

                   
dMi

dt
=∑ Sijvj

n
j =1             2-4 

The FBA approach relies on the steady state approximation (SSA), in which it is assumed that 

the system has fully adapted to the environment, and the concentrations of all metabolites are constant 

(39). In terms of linear programming SSA can be translated to the following set of constraints: 
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                  S̿ v̅ = 0̅ ,             2-5 

where �̅� is a vertical vector containing the fluxes through all the n reactions. By assuming steady state, 

the FBA approach circumnavigates the need of information on enzyme kinetics and metabolite 

concentration. Hence, the metabolic fluxes through the system can be predicted based on only the 

stoichiometric coefficients in the metabolic network (18). 

In addition to the constraints imposed by SSA, each flux vj is constrained by a lower bound aj 

and an upper bound bj (18). Adjusting these bounds on uptake reactions, that is, reactions that produce 

metabolites such as glucose, oxygen, or ammonia without consuming anything, is a common way to 

simulate specific growth conditions. The whole LP problem in FBA is shown in Equation 2-6: 

                  maximise        Z = c̅⏉v̅            2-6 

subject to {
S̿ v̅ = 0̅

   α̅ ≤ v̅ ≤ β̅
  

Here, α̅ and β̅ are vertical vectors containing the lower and upper bounds for the fluxes in �̅�, respectively. 

The objective function Z is a linear combination of the fluxes in �̅�, specified by the constants in �̅�. 

Usually, the �̅� is a single-entry vector, meaning that the objective function is one of the reactions in the 

model. By running an FBA, the flux distribution that optimizes this objective function are calculated.  

While the FBA solution provides much information about the metabolic state of the studied 

system it does not say much about the factors determining the solution. One way to investigate which 

restrictions are limiting, is by calculation of shadow prices (40). The shadow price of a constraint i is 

defined mathematically as: 

           γ
i
=  

-∂Z

∂bi
 ,             2-7 

where 𝑏𝑖 is the i-th element in the vector b̅, which defines the right-hand side of the constraints in an LP 

problem (see Equation 2-3) (41). In FBA, the shadow prices are interpreted as the change in the objective 

function (Z) at an optimal point, given a change in the exchange rate of metabolite (42). This means that 

if the shadow price of an exchange reaction is 0, changing the exchange rate would not change the 

optimal location and the exchanged metabolite is not limiting.  

2.1.3 The biomass objective function 

When simulating an organism, a natural choice of objective is to maximise growth (18, 19). This 

can be done by using a pseudo-reaction called the biomass objective function (BOF) as the objective 

function. A BOF imitates growth by consuming metabolites that are substrates in the production of 

biomass components. Feist and Palsson (20) classify BOFs into three levels of detail: basic, 

intermediate, and advanced.  

A basic level BOF is formulated by defining the weight fractions of the different 

macromolecules in the cell and the distribution of monomers within each macromolecule group (20). 

Equation 2-8 shows the outline of the reaction equation of a basic level BOF, where the coefficients A, 

B, C, D, and E correspond to the amount of each macromolecule in the biomass composition of the 

modelled organism. Polymerisation rest products are typically water ADP and inorganic phosphates, but 

can also include other side products of macromolecule polymerisation reactions. 

     A Protein + B Carbohydrate + C Lipid + D DNA + E RNA → Polymerisation rest products       2-8 

Beck et al (33) have suggested an approach for constructing BOFs from experimental data of 

macromolecule composition. First, separate functions are calculated for each macromolecule group. 

These macromolecular functions were constructed to imitate the synthesis or polymerisation reactions 

of the macromolecules, and include all metabolites consumed and produced. For protein, carbohydrate, 
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DNA, and RNA the functions represent the elongation of a polymer by the addition of one average 

monomer. To construct these functions the monomer distribution must be known. As an example, the 

function of hypothetical DNA consisting of 60 % AT and 40 % GC is shown in Equation 2-9: 

    0.30 dATP + 0.20 dCTP + 0.20 dGTP + 0.30 dTTP = 1 DNA + 1 PPi         2-9 

 In the case of lipids, the macromolecule function represents the production of one average lipid 

molecule with an average fatty acid distribution. The chemical formula of the main product of the 

macromolecule functions is calculated as shown for the example DNA in Table 2.1. 

 Table 2.1: Calculation of DNA macromolecule formula. 

Compound Stoicheometry Chemical formula C H N O P Charge 

dATP 0.30 C10H12N5O12P3
−4 3.0 3.6 1.5 3.6 0.9 −1.2 

dCTP 0.20 C9H12N3O13P3
−4 1.8 2.4 0.6 2.6 0.6 −0.8 

dGTP 0.20 C10H12N5O13P3
−4 2.0 2.4 1.0 2.6 0.6 −0.8 

dTTP 0.30 C10H13N2O14P3
−4 3.0 3.9 0.6 4.2 0.9 −1.2 

PPi −1 HO7P2
−3

 0 −1 0 −7 −2 3 

DNA 1 C9.8H11.3N3.7O6P−1
 9.8 11.3 3.7 6 1 −1 

 

According to Beck et al. (33), the separate macromolecular functions can be incorporated into 

the total BOF by following the 4 steps described by: 

1. Calculate mass fractions as g of macromolecule per g of dry cell weight. And scale the fractions 

to make up 100 %  

2. Calculating the molar weight of each macromolecule from the elemental content (shown in 

Table 2.1 for DNA) 

3. Dividing the mass fraction of each macromolecule by its molar mass to calculate the 

stoichiometric coefficients (A, B, C, D, and E in Equation 2-8) given in mmol/gCDW.  

4. Incorporating the molar coefficients into the BOF by multiplying each macromolecule reaction 

by its respective stoichiometric factor.   

A BOF constructed according to this procedure would be of the basic level according to Feist 

and Palsson (20). A BOF in the intermediate level has all the information from the basic level, but it 

also includes energy requirements in the form of polymerisation energy and maintenance energy (20). 

In a BOF, energy is accounted for as consumption of nucleotide triphosphates and production of their 

corresponding nucleotide diphosphates, inorganic phosphate, and other rest products. Polymerisation 

energy can be calculated based on measured amounts of macromolecules and knowledge about their 

synthesis pathways, as done for DNA in Table 2.1. Maintenance energy, on the other hand, must be 

measured, e.g., by calorimetry (43), or estimated (26). One way to estimate maintenance energy is by 

plotting experimentally determined growth rates against maximal predicted ATP production at the same 

growth conditions (27). ATP production rates can be predicted using a BOF lacking any energy 

requirements and locking the growth rate to the experimentally determined values. By examining 

various growth conditions, one can make a linear regression, where the non-growth associated 

maintenance (NGAM) and the growth associated maintenance (GAM) can be estimated to be the y-line 

intercept and slope, respectively. When NGAM and GAM are incorporated into a GEM, only NGAM 

is included in the BOF. GAM is not growth-rate dependent and is therefore implemented as a separate 

reaction (27). This approach for maintenance energy estimation gives good predictions, however, it 

requires detailed phenotypic data.  

The BOF’s level of resolution can be further increased from the intermediate to the advanced 

level by including essential core components and necessary vitamins, elements, and cofactors needed 

for growth (20). A BOF containing all measured metabolites, both essential and non-essential, are often 
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referred to as a wild-type BOF. Another advanced BOF, called the core BOF, consists of only those 

metabolites that are essential for cell survival and growth, not all metabolites found in biomass. 

According to Feist et al. (24), a core BOF can have increased accuracy in the prediction of essential 

genes, metabolites, and reactions, compared to a wild-type BOF. When it comes to growth prediction 

by FBA, both types of BOFs predict similar growth rates, but the wild-type BOF predicts a more 

complex set of fluxes than the core BOF (24). Feist and Palsson (20) states that a BOF of at least the 

intermediate level is needed for predicting growth rate and the addition of the essential metabolites of 

an advanced BOF will increase the prediction accuracy. 

Aside from the level of detail, the organism- and condition- specificity is an important attribute 

of a BOF that affects prediction accuracy (21-26, 33). This was demonstrated for S. cerevisiae by 

Dikicioglu et al. (23) when they simulated the Yeast v7.0 model (44) with 72 in silico generated BOFs 

in addition to its original BOF under various limiting conditions. They found that the flux distribution 

varied greatly between BOFs, especially in some of the limited growth conditions. On the other hand, 

Széliova et al. (45) have measured the biomass composition of various Chinese hamster ovary cell lines 

to make specific BOFs, but the variation in biomass composition had only a small impact on the 

predicted growth rate.  

The BOFs constructed in this thesis will be implemented to the model iML1515 for evaluations. 

This model is considered the leading GEM for E. coli K-12 MG1655 per today (June 2021). It accounts 

for 1,515 open reading frames and 2,719 reactions involving 1,192 metabolites (27). iML1515 has two 

built-in BOFs of the advanced level: one wild-type BOF and one core BOF. Both BOFs are based on 

the gold-standard E. coli biomass composition reported by Neidhardt et al. (35). The maintenance 

energy term is calculated by plotting experimentally measured growth rates against predicted of ATP 

production, as described above. In the evaluation of one of the BOFs constructed in this thesis, the wild-

type BOF from iML1515 is used for comparison of prediction results. 

 

2.2 Escherichia coli metabolism and biomass composition 

E. coli is used as a model organism for all bacteria and is one of the most studied and best 

understood organisms today. It is a gram-negative heterotroph that can grow on various carbon sources 

(46, 47). E. coli is a facultative anaerobe meaning that it is capable of both aerobic and anaerobic growth 

(48). When oxygen is scarce it ferments glucose and produces various products, such as acetate, formate, 

and succinate in a process called mixed acid fermentation. The amount of ATP produced in mixed acid 

fermentation varies depending on the product. However, aerobic respiration produces more ATP per 

molecule of glucose and is therefore prioritized when oxygen is available (48). 

The primary habitat of E. coli is in the gastrointestinal tract of warm-blooded animals, but it can 

also survive and even grow in dramatically different habitats, such as soil and water (49).  The key to  

E. coli’s survival in alternative habitats is the flexibility of its metabolism, which gives it an ability to 

adapt to various environmental conditions (46). A wide variety of E. coli strains can be found in nature, 

some are beneficial and even essential for humans and other are pathogenic (49). E. coli strain K-12 

MG1655 is the first strain of E. coli that had its genome sequenced (27). This strain is naturally found 

in the human intestine, where it breaks down complex carbon compounds and facilitates digestion. 

In the five following subsections (2.2.1 – 2.2.5) I will describe the five macromolecule groups: 

proteins, carbohydrates, lipids, DNA, and RNA, with emphasis on their location and synthesis in E. coli 

and growth condition-dependent variations in their concentration and composition.  
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2.2.1 Protein 

Proteins are essential to all life forms. They perform a broad range of cellular tasks within 

structure, transport, and catalysation of chemical reactions and can be found in almost all parts of the 

bacterial cell (50). Proteins consist of one or more long, structured chains of amino acids that are 

synthesized according to a recipe encoded in the genome and transcribed as mRNA. Elongation of these 

polypeptide chains can be summarized into 4 steps: one step of amino acid activation in cytosol followed 

by three steps of elongation in ribosomes (Figure 2.2) (51).  

 

Figure 2.2: 4 steps of protein elongation. 1) Amino acid activation. 2) Decoding (binding to translation elongation 

complex). 3) Peptide bond formation. 4) Translocation and release of tRNA. AA = amino acid, EF = elongation 

factor. High energy metabolites are highlighted in yellow. 

From Figure 2.2 one can see that total energy spent when elongating a polypeptide chain by one 

amino acid is: 

                ATP + 2 GTP → AMP + 2 GDP + PPi + Pi              2-11 

The energy released in the reaction described in Equation 2-11 equals 4 molecules of ATP, which is 

higher than the polymerisation cost of the other biological polymers (52). Furthermore, the synthesis 

energy of many amino acids is high, making proteins energetically expensive molecules (53). The high 

energy cost associated with protein production might be one reason why gene expression is highly 

regulated. Growth conditions such as nutrient availability have a big impact on which proteins are 

produced (54, 55). Li et al. (56) report that the protein content is generally lower in E. coli grown in 

nitrogen-limited conditions than in carbon-limited conditions. This was partly explained by stalling of 

ribosome activity caused by glutamine deficiency. Bipatnath et al. (57) reported that the total protein 

concentration per mass in E. coli growing exponentially on unlimited media decreases with increasing 

growth rate. On the other hand, Li et al. found the protein levels to be stable with varying growth rates, 

both in carbon and nitrogen-limited growth (56). According to Neidhardt et al. (35), the dry biomass of 

E. coli is made up of 55 % protein. This percentage is based on analyses of E. coli strain B/r in balanced 

growth at 37 °C in a glucose minimal medium with a growth rate of 1.5 h−1. 

2.2.2 Carbohydrates 

Storage carbohydrates play an important role in microbial life. They serve as quickly accessible 

sources of energy in times of starvation. In E. coli the main storage carbohydrate is glycogen (58). 

Glucose molecules are stored in these polysaccharides when there is an excess of energy in a process 

that can be summarised as follows (59):  

             glucose-6-phosphate + ATP + glycogen
n
 + H2O → glycogen

n +1
 + ADP + 2 Pi       2-12 

When there is a depletion of energy, glucose molecules are released from glycogen and utilised. 

Glycogen levels are typically low in fast-growing E. coli, but when growth is limited by another nutrient 

than the carbon source, glycogen can contribute up to around 20 % of the dry biomass of a cell (58, 60).   

In addition to storage, carbohydrates serve important functions in the cellular envelope of 

bacteria. N-acetylglucosamine and N-acetylmuramic acid make up the glycan strains in peptidoglycan 
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and provide structure and rigidity to bacterial cells (61). Carbohydrates can also be found in 

lipopolysaccharides (LPS) in the outer membrane of gram-negative bacteria. LPS consists of a 

hydrophobic domain called lipid A, a core oligosaccharide and a repeating polysaccharide called the  

O antigen (62). Both carbohydrate domains of LPS vary among strains and growth conditions.  

2.2.3 Lipids 

Lipids are a diverse group of highly reduced hydrophobic molecules that are used for energy 

storage in many organisms (63). In E. coli, however, most lipids are glycerophospholipids found in the 

membranes of the cellular envelope (64). Glycerophospholipids consist of a glycerol backbone with two 

fatty acids and one polar head group and are synthesized as shown in Figure 2.3 (65). 

 

Figure 2.3: Biosynthesis of glycerophospholipids. Fatty acids are highlighted in green, high energy metabolites 

are highlighted in yellow, enzymes are blue. 

According to Neidhardt et al. (35), the lipids of E. coli are dominated by three classes of 

phospholipids: phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. The head group of 

these glycerophospholipids is attached as shown in Figure 2.4 (65). 

 

Figure 2.4: Phospholipid head group attachment of phosphatidylethanolamine, phosphatidylglycerol, and 

cardiolipin in E. coli. 

The distribution of lipid classes varies between strains, between the inner and outer membrane, 

and between growth temperatures (64). Neidhardt et al. (35) report that there are three dominating fatty 

acids in E. coli membranes: palmitic (16:0), palmitoleic (16:1), and cis-vaccenic (18:1) acids. There are 

also strain-dependent variations in fatty acid composition and experiments with different growth 

temperatures show that the amount of saturated fatty acids increases and the amount of unsaturated fatty 

acids decreases with increasing temperature (64). 
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2.2.4 DNA 

The genome of E. coli consists of one circular chromosome that forms the nucleoid. In addition, 

a small amount of DNA is found in plasmids (66). The chromosome is mostly found in a supercoiled 

state, but during DNA replication, it is uncoiled, and the double helix is opened. In DNA replication, 

new DNA is synthesized by DNA polymerases using old DNA as a template. The polymerisation 

reaction of DNA is summarised in Equation 2-13 (66): 

          dNTP + DNAn → DNAn +1 + PPi ,         2-13 

where dNTP represent any of the four deoxynucleotide triphosphates: dATP, dCTP, dGTP and dTTP. 

In addition to the energy directly spent in polymerisation, energy is spent on unwinding the double helix, 

removing supercoils, ligating, and proofreading (35). Because DNA replication is an important step in 

microbial growth, faster-growing cells will contain more nucleoids. Still, the relative concentration of 

DNA in cells is stable with varying growth rate (35). 

2.2.5 RNA 

RNA is similar to DNA in its structure, but instead of deoxyribonucleotides, it consists of 

ribonucleotides. Furthermore, it is mostly single-stranded and instead of thymine, it has uracil. RNA is 

synthesized by RNA polymerase using one DNA strand as a template. The polymerisation reaction can 

be summarised to (66):  

            NTP + RNAn → RNAn +1 + PPi ,        2-14 

where NTP represents ATP, CTP, GTP, or UTP.  

While the known functions of DNA are limited to information storage and transmission, there 

is a broad range of RNA types performing various functions. Neidhardt et al. (35) have reported that the 

RNA in E. coli is made up of 81% ribosomal RNA (rRNA), 8.6 % transfer RNA (tRNA), and 2.4 % 

(mRNA). However, other classes of RNA, such as small RNA (sRNA) and CRISPR RNA (crRNA) are 

also found in E. coli (67, 68). Since ribosomes are required for translation, the number of ribosomes 

affects the rate at which protein can be synthetised. In fast-growing cells there is a big demand for 

proteins, and hence, ribosomes. A linear relationship between the RNA/protein ratio and the specific 

growth rate has been observed (56, 69).  

2.3 Experimental methods 

2.3.1 Culturing in bioreactor 

When studying the behaviour of microorganisms, having a controlled and observable 

environment is of essence. A bioreactor provides the scientist with just that – a stable and controllable 

environment in which microorganisms be grown and observed. A bioreactor is a controlled system and 

everything that goes into it can be regulated, and everything that goes out can be monitored (70). Some 

factors, such as temperature, pH, and gas supply are typically kept stable in the system while others are 

allowed or even induced to change. The culturing process is often classified by the way the substrate is 

added to the system. Two common types of culturing processes are batch culture and chemostat. 

In a batch process, all the nutrients are added at the beginning of the cultivation without adding 

any more during the process that follows (19). This kind of cultivation results in a cell concentration 

that increases (exponential growth) as long as there are sufficient amounts of substrate in the media. The 

culture will reach a stationary phase when a substrate becomes limiting and a death phase when the 

nutrient is depleted (19).  

A chemostat is an open system in which the culture is kept in a steady-state of exponential 

growth limited by a substrate (71). This is done by regulating the inflow of new media containing the 
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substrate and removal of old media containing cells (the dilution rate). In a chemostat, the concentration 

of cells depends on the concentration of the limiting substrate in the fresh media (72). While the culture 

is in a steady-state, the growth rate is equal to the dilution rate and independent of the limiting substrate 

concentration in the fresh media. However, if the concentration of the limiting substrate in the fresh 

media is too high or too low, the culture might drop out of the steady state (72). 

2.3.2 Chromatography and mass spectrometry 

In chromatography different compounds are separated based on their retention time in a column 

(73). This technique relies on the continuous differential distribution of compounds between a stationary 

phase and a mobile phase. The stationary phase is either a solid or a liquid sprayed onto a solid surface 

and the mobile phase is a liquid (liquid chromatography) or a gas (gas chromatography). Molecules with 

a higher affinity for the stationary phase will spend more time traveling through the column and be 

detected later (73).  

Chromatography techniques can be classified based on the separation mechanism used. In ion-

exchange chromatography, compounds are retained because their charged groups are temporarily bound 

to groups with the opposite charge that are covalently bound to the solid phase (74). Positively charged 

columns retain anions and negatively charged columns retain cations. The mobile phase contains ions 

that compete with the substrate in binding the stationary phase charged group. This kind of 

chromatography is a common choice in carbohydrate quantification (75-77). 

In partition chromatography, various compounds are separated based on their differential 

distribution between two liquids: one polar and one nonpolar. The liquid that serves as the stationary 

phase is bound to the column in the form of a thin film. In reversed-phase partitioning chromatography, 

the stationary phase is nonpolar and the mobile phase is relatively polar (74). Hence, hydrophobic 

compounds will have a longer retention time than hydrophilic. This kind of chromatography has proven 

to differentiate between amino acids based on the polarity of their side chains (78). Other separation 

mechanisms used in chromatography are adsorption, affinity, and size exclusions.  

Chromatography is often coupled with mass spectrometry. In mass spectrometry, compounds 

are converted to a charged state and differentiated based on their mass/charge ratio (79). By coupling 

this technique to chromatography, the sensitivity, accuracy, and speed are increased (74, 79). 

2.3.3 Liquid-liquid phase extraction 

Liquid-liquid extraction (LLE) is a classic technique used to extract an analyte from a solution. 

LLE uses two immiscible liquid phases, typically one organic and one aqueous, where the analyte is 

more soluble in one than in the other (80). The phases are added to the sample containing the analyte, 

mixed, and then separated, e.g., by centrifugation. After phase separation, the analyte will be distributed 

between the two phases based on its relative solubility in each phase. The extraction may be repeated 

multiple times depending on the distribution equilibrium to extract the total amount of analyte (80). 

After extraction, the analyte can be further analysed. The concentration of analyte can be 

determined by various techniques. One quantification method that can be combined with LLE is 

gravimetric analysis, i.e., determination of concentration based on mass (81). One example of this is the 

Blight and Dyer method for lipid quantification (82). In this method lipids are extracted include LLE 

with chloroform followed by chloroform evaporation and weighting. Another technique that can be 

combined with LLE is spectrophotometric quantification. This is a common method for the 

quantification of DNA (83). 
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2.3.4 Spectrophotometry  

Spectrophotometry is an analytical technique that is used to quantify compounds by sending 

electromagnetic radiation through a sample and measuring the attenuation (84). In UV-Vis 

spectrophotometry, the radiation sent through the sample is either UV or visible light (85). Some 

electrons involved in molecular bonds can absorb the energy of electromagnetic radiation of a specific 

wavelength and increase their energy state. This results in an attenuation when light is sent through a 

sample. The concentration is then calculated from the attenuation according to the Beer-Lambert law: 

      A = - log
10

 [
I

I0
] = kcl ,           2-15 

where A is the absorbance, which is defined as the negative logarithm of the ratio between initial 

intensity I0 and intensity measured after the light has passed through the sample I. c is the concentration 

of the sample, l is the travel length of the light trough the sample and k is a proportionality constant (85).     

UV spectroscopy is a popular way to measure the concentration of nucleic acids (86). Since 

pyrimidine and purine bases have absorption maxima at 260 nm, the concentration of nucleic acids is 

determined based on absorbance at this wavelength. The traditional way to assess the purity of samples 

measured this way is by calculating the A260/A280 ratio, i.e., the ratio between absorbance at 260 nm and 

280 nm (87). This ratio should be around 2.00 for pure DNA and around 1.80 for pure RNA. Lower 

ratios indicate pollution, as proteins absorb at 280 nm. Another ratio that is used to assess DNA and 

RNA purity is A260/A230 (88).  

Another value measured by spectroscopy is optical density (OD) (89). While absorbance is 

defined as the attenuation due to absorption, OD is defined as attenuation due to absorption and 

scattering of light. Still, the Beer-Lambert law (Equation 2-15) holds for this kind of measurement if 

some assumptions are made (89). This spectrophotometry method is commonly used to measure cell 

concentration in a sample because there is a linear relationship between OD and concentration up to 

some threshold OD value (19). For E. coli a conversion factor of 0.396 can be used from OD to 

concentration in the linear area (89). Some common wavelengths used to measure bacterial 

concentration are 480, 540, 600, and 660 nm (19). In this work, OD is measured at 600 nm, shown as 

OD600. 
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3 Materials and Methods 

The methods described in the first two sections of this chapter (3.1 and 3.2) are also described 

by Simensen et al. (90). The E. coli culture described by Simensen et al. is the same as the sample 

referred to as E. coli U-lim in this thesis and all measurement results for this culture are the same in 

these two works.  

3.1 Culture conditions and biomass harvest 

Three cultures of E. coil strain K-12 MG 1655 were grown in 1.5 L Eppendorf NewBrunswik 

BioFlo 115 bioreactors. All cultures were grown aerobically in an M9 minimum salts media containing  

1 mM MgSO4, 18.7 mM NaCl, 22.0 mM KH2PO4, 33.7 mM Na2HPO4, 0.2 % trace mineral solution and 

various concentrations of glucose and NH4Cl, which are listed in Table 3.1. The pH was constantly kept 

at pH 7 by automatic titration of 4 M NaOH. The pH probe was calibrated in pre-mixed solutions of  

pH 4 and pH 7. The dissolved oxygen (DO) level was measured using an oxygen electrode that was 

calibrated to 0 % by flushing with nitrogen and to 100 % in the fermenter after 30 minutes of  

500 ml min-1 airflow and 500 rpm stirring at 37 °C. Exchange gases were sterile filtered with 0.2 μm 

filters. The organisms were pre-cultured overnight in shake flasks at 37 °C in an M9 medium of the 

same composition.  

One culture (E. coli U-lim) was grown in a batch setup. This culture was grown in an unlimited 

growth medium to capture the unlimited exponential growth. The batch bioreactor was inoculated with 

a pre-culture to a start OD600 of 0.059 and the sample (E. coli U-lim) was harvested during exponential 

growth at an OD600 of 6.7. Several supplementary samples were taken at different time points and the 

OD600 of these samples was measured to determine the growth rate. 

The remaining two cultures were first cultivated in batch setup and later kept at a stable OD600 

by a chemostat. Carbon limited medium was used in one of the bioreactors with continuous culture and 

nitrogen-limited media was used in the other (Table 3.1). Samples were taken from each of the 

chemostats at three growth rates: 0.1 h−1, 0.2 h−1, and 0.4 h−1. The growth rates were assumed to be equal 

to the dilution rates (72). As the dilution rates were decreased, less of the limiting nutrient (glucose or 

ammonium) was added to the media. Between every sampling, the bioreactors were kept at a constant 

dilution rate until the whole volume of the bioreactor was exchanged three times.  

Table 3.1: Glucose and NH4Cl concentrations in the media used to grow E. coli samples in three bioreactors. 

Bioreactor Sample Growth rate Glucose conc. [% w/w] NH4Cl conc. g/L 

1 

E. coli C-lim 0.4 0.4 h−1 1.40 5.0 

E. coli C-lim 0.2 0.2 h−1 0.70 5.0 

E. coli C-lim 0.1 0.1 h−1 0.35 5.0 

2 

E. coli N-lim 0.4 0.4 h−1 2.00 1.0 

E. coli N-lim 0.2 0.2 h−1 2.00 1.0 

E. coli N-lim 0.1 0.1 h−1 2.00 1.0 

3 E. coli U-lim 0.71 h−1 2.00 5.0 

To collect samples, the fermenter was drained with a 50 mL syringe. The aliquots were 

centrifuged at 4500 rpm and 4 °C for 5 minutes and washed twice in 0.9 % NaCl solution. Then they 

were washed once with MQ water. The samples were pooled until each pellet had a volume of 

approximately 7.5 mL. The pellets were frozen at −20 °C and lyophilised for three days before they 

were stored in −20 °C.  



______________________________________________________________________________________ 

15 

 

3.1.1 Exchange rate determination 

The glucose uptake rate of E. coli U-lim was calculated from the glucose concentration and 

OD600 measurements of samples taken at multiple time points. Glucose concentration was measured by 

nuclear magnetic resonance (NMR). Media samples of 2.5 mL were taken at multiple time points, 

lyophilised, and rehydrated in D2O. The samples were analysed in an NMR spectrometer to create a 1H 

spectra and glucose was quantified using the α-glucose doublet. Creatine was used as the external 

standard. For detailed protocol see Appendix A, for calculations see supplementary material S1. 

O2 and CO2 exchange rates of E. coli U-lim were determined from off-gas analyses and OD 

measurements (see supplementary material S1). OD600 measurements were converted to concentration 

by multiplying with a conversion factor of 0.396 g/L (89). The off-gas was analysed by an Eppendorf 

DASGIP GA4 gas analyser. 

3.2 Biomass composition analysis 

In each method described in this section, three parallels of each sample were made as technical 

replicates, unless stated otherwise. All methods were previously tested on the sample E. coli U-lim and 

published in (90). Due to lack of sample, DNA content was not measured for E. coli C-lim 0.2 and  

E. coli C-lim 0.1. The DNA extraction procedure was also not tested for S. salar and A. thaliana. The 

RNA extraction procedure was not tested for A. Thaliana. 

3.2.1 Protein 

To quantify proteins, ~1 mg dried biomass was suspended in 500 μL 6M HCl in a glass vial. 

The vials were sealed with caps and the samples were boiled for 24 h at 110 °C. After boiling, the 

samples were neutralized with the 500 μL 6M NaOH, and MQ water was added up to 1 ml if there were 

a visible loss of volume. The samples were filtered using a syringe with a 0.2 polyethersulphone 

membrane filter. Then the samples were and diluted to a concentration of approximately 0.02 mg 

biomass/L. 200 μL were transferred to an HPLC vail and stored at −20 °C until further analysis. 

The sample preparation protocol was modified for sample E. coli U-lim. Instead of suspending 

~1 mg in 500 μL 6M HCl, ~10 mg of dried biomass was suspended in 5 mL 6M HCl in a glass vial. 

After the boiling step, the sample was neutralised with 5 mL 6M NaOH. Also, instead of adding water 

to account for the volume lost during boiling, the volume loss was estimated by weighing the filled vials 

before and after boiling. Apart from this, the sample preparation procedure of E. coli U-lim was identical 

to that of the remaining samples. 

The samples were then analysed by reversed-phase partition HPLC with pre-column  

O-phthalaldehyde (OPA)-derivatisation. A Waters Nova-Pak C18 4 μm, column was coupled to an 

ULTIMATE.3000.WP Injector with two mobile phases: methanol and sodium acetate buffer with 

tetrahydrofuran (THF). The standard that was used was a premade standard from Sigma Aldrich diluted 

to 10 nmol/L. An RF2000-DIGITAL detector was used to detect the UV signal. The HPLC analysis was 

performed by a lab technician. 

3.2.2 Carbohydrate 

The total carbohydrate content was measured according to the protocol described in Rühmann 

et al. (91) at the TU München. In brief, the samples were hydrolysed by boiling in 4 M trifluoracetic 

acid at 121 °C for 90 minutes and then neutralised with a 3.2 % ammonia solution. Then they were 

derivatised with 1-phenyl-3-methyl-5-pyrazolone (PMP) and incubated for 100 minutes at 70 °C. The 

samples were then filtered, diluted, and analysed by HPLC with UV detection coupled with ESI-MS. 
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3.2.3 Lipid 

Lipids were extracted from the biomass by liquid-liquid extraction using a chloroform/methanol 

extraction protocol based on Folch’s method (92). ~40 mg of dried cells were weighted out in an 

Eppendorf tube and rehydrated by vortexing shortly with 0.15 mL of water. 0.5 g zirconium beads and 

0.4 mL methanol were added to the samples and then the samples were homogenised in two 20 second 

intervals at 6,500 rpm with a pause of 2 minutes where the samples were kept on ice. After 

homogenisation, 0.8 mL chloroform was added and the samples were vortexed for 20 minutes, before 

0.1 mL water was added and the sample were vortexed again for 10 minutes. The samples were then 

centrifuged for 

 4 minutes in a table centrifuge at 13,400 rpm. The organic phase was collected using a syringe with a 

needle and transferred to a weighted vial with a lid. 0.6 mL chloroform was added to the beads-cell 

solution in the Eppendorf tube and the Eppendorf tubes were vortexed for 10 minutes and centrifuged 

for 4 minutes. Again, the organic phase was collected with a syringe with a needle and transferred to the 

same glass vial. The glass vials were weighted before the chloroform was evaporated in the fume hood. 

When the chloroform had evaporated the vials were weighed again and the lipid content was calculated. 

The potential loss of the organic phase was calculated from the difference in weight before and after 

chloroform evaporation. 

All the steps described above were also performed on a blank sample, which was then subtracted 

from the other samples. Total lipid content of all samples was measured this way, but due to insufficient 

amounts of sample, no technical replicates were made for E. coli 2, E. coli 3, S. cerevisiae, S. salar, and 

A. thaliana. For the other samples, three technical replicates were used.  

3.2.4 DNA 

DNA was extracted from the lyophilised biomass by phenol/chloroform extraction as described 

by Green and Sambrook consisting(93). A lysis buffer was prepared from 9.34 ml Tris-EDTA (TE) 

buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA pH 8.0), 600 μL 10 % sodium dodecyl sulphate (SDS) and 

60 μL proteinase K (20 mg/L). ~10 mg of dried cells were suspended in 600 μL lysis buffer and 

incubated for 30 minutes at 55 °C. When the samples had cooled down to room temperature, 600 μL 

phenol/chloroform (1:1 v/v) was added and the sample was mixed by inverting the tube. The sample 

was then centrifuged in a table centrifuge at 13,400 rpm. The aqueous phase was transferred to a new 

tube using a 1 mL micropipette. The extraction process, consisting of chloroform addition, 

centrifugation, and extraction of the aqueous phase, was repeated twice. Then, 600 μL chloroform was 

added to the collected aqueous phases and the samples were centrifuged at 13,400 rpm for 5 minutes. 

The entire aqueous phase was then transferred to a new tube. The DNA was precipitated from the 

aqueous phase by addition of 40 μL 3 M sodium acetate (pH 5.5) and 1 mL ice-cold 99 % ethanol and 

incubating overnight at −20 °C. Then the samples were centrifuged for 15 minutes at 4 °C at 9,000 rpm. 

The supernatant was discarded and the pellet was washed by adding 1 mL 70 % ethanol, centrifuging 

for 2 minutes and discarding the supernatant. The pellet was then resuspended in 50 μL TE buffer, 1 μL 

RNase A was added and the suspension was incubated for 15 minutes at 37 °C. The concentration of 

dsDNA was measured by UV-visible spectroscopy against a TE-buffer blank using the Thermo 

Scientific NanoDrop One set to measure dsDNA (94). 

3.2.5 RNA 

Total cellular RNA was quantified by the protocol described by Benthin et al. (95).  To degrade 

the cell walls, the lyophilised biomass (~ 10 mg) was washed three times with 3 mL 0.7 M perchloric 

acid (HClO4). The samples were centrifuged for 10 minutes at 4000 rpm at 4 °C and the supernatant was 

discarded between washes. The samples were resuspended in 0.3 M potassium hydroxide and incubated 
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at 37 °C in a water bath for 1 h, shaking every 15 minutes to lyse the cells. Then the samples were cooled 

and 1 mL 3 M HClO4 was added. The samples were centrifuged for 10 minutes at 4000 rpm at 4 °C and 

the supernatant was decanted into a new polypropylene centrifuge tube. The pellet was washed twice 

with 4 mL 0.5 M HClO4 by resuspending and mixing, centrifuging, and decanting the supernatant into 

the polypropylene tube. Another 3 mL of 0.5 M HClO4 was added to the collected supernatants and then 

they were centrifuged again to remove any precipitates of KCLO4. The concentration of RNA was 

measured by UV-visible spectroscopy against a 0.5 HClO4 blank using the Thermo Scientific NanoDrop 

One set to measure RNA (94).   

3.2.6 Elemental analysis 

Elemental analysis by combustion was performed by a lab technician at TU München for all  

E. coli samples. The total carbon, hydrogen, nitrogen, oxygen, and sulphur content was determined in 

all E. coli cultures, S. salar and A. thaliana. 

3.3 Biomass objective functions 

BOFs were constructed as described in section 2.1.3. Essentially, the separate macromolecule 

functions were constructed based on measured or estimated monomer distributions. Then they were 

combined into one biomass function (calculations are shown in supplementary material S2). The 

maintenance energy term was obtained from iML1515, a genome-scale reconstruction of E. coli strain 

K-12 MG1655 (27). The macromolecules were assumed to make up 96.1 % of the cell dry weight and 

the remaining 3.9 % was accounted for by cofactors, vitamins, and minerals. The distribution of non-

macromolecule biomass components was implemented from the iML1515 model and scaled.  

The BOFs were evaluated by implementing them into the iML1515 model and running FBA. 

For the BOF constructed for E. coli U-lim, constraints corresponding to their growth conditions were 

applied. For the remaining BOFs, the uptake rate of the limiting nutrient was tweaked until the 

experimentally determined growth rate was reached and then the predicted exchange rates were 

evaluated based on literature (see section 4.4 for more details). The model was downloaded from BiGG 

Models (available at http://bigg.ucsd.edu/models/iML1515 March 2021) and simulated using Python 

and the pyCOBRA scientific package (96, 97).  
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4 Results and Analysis 

The workflow of this thesis can be divided into four steps as shown in Figure 4.1. During the 

cultivation step, media samples were taken to determine growth and exchange rates. The results from 

these analyses are described in section 4.1. The second step is a comprehensive biomass composition 

analysis, which is described in section 4.2. In the biomass analysis, each macromolecule group is 

quantified separately and the results are described in separate subsections (4.2.1-5). The experimentally 

determined macromolecule composition is then used in the third step – BOF construction, which is 

described in section 4.3. Finally, the BOFs are implemented into the model iML1515 and evaluated by 

FBA in section 4.4. The FBA results are compared to the experimentally determined growth and 

exchange rates. 

 

Figure 4.1: Schematic diagram showing the workflow of this thesis.  

4.1 Growth and exchange rates 

When constructing growth condition-specific BOFs, knowing the growth conditions is of 

obvious importance. Because bioreactors were used for cultivation, it was possible to monitor some of 

the culture conditions that would have been unknown for cultures grown in shake flasks. This 

information and additional information from media analysis are of great value when evaluating the 

BOFs. 

All the E. coli samples were cultured by Christian Schulz, Emil Karlsen and Vetle Simensen. 

During cultivation, media samples were taken at multiple time points to determine OD600. The E. coli 

U-lim samples were analysed with NMR to determine the glucose concentration. Further, O2 and CO2 

content in the off-gas from E. coli U-lim were determined with a gas analyser. All calculated rates in 

this subsection are based on these measurements. 

4.1.1 Growth and exchange rates of E. coli U-lim 

To determine the growth rate of E. coli U-lim, the OD600 measurements from the exponential 

phase were plotted against time. The growth rate was estimated to be 0.71 h−1 by fitting the exponential 

function to the points that were thought to be in the exponential phase (Figure 4.3). See supplementary 

material S1 for calculations. 
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Figure 4.2: Estimation of E. coli U-lim growth rate. A: OD600 measurements plotted against time [minutes]. The 

equation and R-value of the exponential regression (black line) are shown. Orange points are estimated from the 

regression line equation and used in the calculation of exchange rates. The yellow point is not considered to be in 

the exponential phase and is therefore excluded from the regression (B). B: OD600 values from the exponential 

phase plotted against time. The OD600 measurements are shown on a logarithmic scale. The equation of the 

regression (black line) and the R-value are shown. The constant in the exponent of the regression equation is the 

estimated growth rate given in [h−1]. 

The off-gas analysis showed an exponential increase in CO2 content over time, and a 

simultaneous decrease in O2 content (Figure 4.3). The respiratory quotient (RQ) at various time points 

was calculated as shown in Equation 4-1 (98): 

       RQ =  −
ΔCO2

ΔO2
 ,           4-1 

where ΔCO2 and ΔO2 are the changes in CO2 and O2 outflow, respectively, given in mmol/min. RQ is 

an indicator of the metabolic state of an organism and is commonly used to determine the carbon source 

of microorganisms. In Figure 4.4, Calculated RQ values are plotted against time. At the time when the 

E. coli U-lim biomass sample was taken (~446 minutes), the RQ was stable around 1, which is expected 

for bacteria grown aerobically with carbohydrates as the carbon source (98, 99).  

 

 

Figure 4.3: Off-gas analysis of E. coli U-lim. CO2 (orange) and O2 (blue) content in off-gas over time.   
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Figure 4.4: RQ of E. coli U-lim over time. 

The glucose, O2, and CO2 exchange rates of E. coli U-lim are shown in Table 4.1. The glucose 

uptake rate is calculated from the glucose concentration measured by NMR at various time points and 

the estimated amount of cell dry weight at those time points. An attempt was made to measure the 

acetate, formate, and ethanol concentration by NMR to determine their respective exchange rates. 

However, as these compounds are volatile, they evaporated during lyophilisation and could not be 

quantified (data not shown). Cell dry weight was calculated from OD600 values that were either directly 

measured or estimated as shown in Figure 4.2A. A conversion factor of 0.39 was used (89). The oxygen 

and carbon dioxide exchange rates were calculated from the gas analysis measurements and the 

estimated dry weight concentrations at multiple time points. For calculations, see supplementary 

material S1.  

Table 4.1: Exchange rates and of E. coli U-lim. Negative rates are uptake, positive rates are secretion. 

Compound Rate [μmol/gCDW h−1] 

Glucose −9.03 

O2 −10.09    

CO2    9.12 
 

4.1.2 Growth rates of E. coli cultures grown in chemostat 

No measurement of exchange rates was done for the remaining six E. coli cultures. The growth 

rates were determined assuming that the growth rate was equal to the dilution rate. For this assumption 

to hold, the culture must be in a steady-state (72). Each time concentration of the limiting nutrient in the 

media is decreased, there is a chance that the cell concentration might drop below steady-state levels. If 

this happens, the OD will stabilize towards a steady state over time. According to Wides and Milo (72), 

the difference in OD from the steady-state OD will decrease by a factor of e-1 for every chemostat 

turnover. Since the entire volume of the bioreactors was exchanged three times for each time the nutrient 

concentration was changed, it is reasonable to assume that the cultures were in a steady state at the time 

of biomass harvest. Furthermore, media samples were taken at multiple time points and the measured 

OD values were stable (data not shown). 

4.2 Biomass composition analysis  

In this section, the results from the second step in our workflow – the biomass composition 

analysis, will be described (Figure 4.1). The separate macromolecule quantification results will be 

presented in subsections 4.2.1–4.2.5. In subsection 4.2.6 the complete experimentally determined 

macromolecular composition and the elemental composition determined by combustion analysis are 

shown. The biomass compositions described in this section are measured in lyophilised samples that 
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have been stored at −20 °C. All samples were harvested in early March 2020, but because of the  

Covid-19 pandemic, the first biomass analyses could not be performed before September 2020. It is 

uncertain to what degree the prolonged storage has affected the samples.  

4.2.1 Protein 

In the protein assay, the detected concentrations of glutamine and asparagine were low, 

suggesting that these amino acids were deaminated during acid hydrolysis and therefore were detected 

as glutamate and aspartate, respectively (100). Furthermore, glycine and arginine shared a common top 

in the HPLC spectra (Figure 4.5), and only the sum concentration, not separate concentrations, could be 

measured. To determine the concentration of the paired amino acids separately, the sum concentration 

was multiplied by the codon ratio in the genome of E. coli strain K-12 MG1655 (GenBank accession 

number U00096.3 (101)) (see Supplementary material S2 for calculations). 

 

Figure 4.5: HPLC spectra from analysis of E. coli U-lim I. Concentrations were determined from the area under 

each peak by Siri Stavrum. The red lines mark the lower bounds of the peak area. 

The concentration of cysteine proline and tryptophan was not measured in the HPLC analysis. 

Therefore, the concentration of these amino acids was estimated by making a linear regression between 

the measured amino acid concentrations and the distribution of codons in the genome of E. coli strain 

K-12 MG1655. Since glycine and arginine, glutamine and glutamate, and asparagine and aspartate were 

measured pairwise one data point per pair was made for these amino acids. The linear regression made 

for one parallel measurement of E. coli U-lim is shown in Figure 4.6. For calculations, see 

Supplementary material S2.  

 

Figure 4.6: Linear regression between the measured amino acid concentrations of E. coli U-lim parallel I and the 

number of codons of the amino acids in the genome of E. coli strain K-12 MG1655. The equation of the regression 

line and the R2 value are shown. Amino acids that were measured pairwise are marked in yellow, estimated amino 

acids are marked in orange. See supplementary material S2 for calculations. 
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The measured amino acid distribution and total protein content of all E. coli cultures and  

S. cerevisiae, S. salar, and A. thaliana are shown in Figure 4.7. No estimations were made for  

S. cerevisiae, S. salar, and A. thaliana  ̧hence glycine and arginine are shown as one amino acid and 

cysteine, proline, and tryptophan are not included for these organisms. The exact amino concentrations 

in all E. coli cultures are shown in Appendix B. 

 

Figure 4.7: Amino acid and protein content of all E. coli cultures, S. cerevisiae, S. salar, and A. thaliana measured 

in mass % of total CDW. The total protein content that is shown is the average and standard deviation of three 

technical replicates. Directly measured amino acids are blue, pair-wise measured amino acids are yellow, and 

estimated amino acids are red. Average total protein percentages based on three technical replicates are shown 

above each column. For exact contents of separate amino acids, see Appendix B or supplementary material S2. 

A variation in total protein content was observed between different growth conditions. However, 

there is no clear pattern between the protein content and the growth rates or the limiting nutrient. The 

protein content measured in the S. cerevisiae, S. salar, and A. thaliana is much lower than in E. coli. For 

A. thaliana this was expected, as the protein content in A. thaliana leaves has been reported to be 

between 1.0 and 2.5 % (102). The protein in S. cerevisiae and S. salar, on the other hand, were strongly 

underdetermined compared to previously reported measurements. Between 58 % and 63 % protein have 

been reported in S. cerevisiae (103) and around 76 % in S. salar muscle tissue (104). One possible reason 

for the underdetermined protein content in S. salar is that the samples were not homogenised prior to 

hydrolysis. Both the S. salar sample and the A. thaliana sample were lyophilised in larger cellular 

groups, which might have made the protein fraction inaccessible in the quantification.   

An issue with the protein quantification was that the veils used during acid hydrolysis were 

leaking, which led to a loss of volume during the boiling step. The volume that was lost in E. coli U-lim 

was measured by weighting the vails before and after boiling and assuming that the same amount of 

water and HCl evaporated. One of the parallels was calculated to have a volume loss of 4.1 % while the 

other two had volume losses of 0.3 and 0.1 % (for calculations see Supplementary material S2). A 
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volume loss of 4.1 % corresponds to an overdetermination of only 0.08 %, but because the remaining 

samples were boiled in smaller volumes than E. coli U-lim, the volume loss percentage from these 

samples is assumed to be much greater. To account for visible volume loss, the samples were 

approximately filled to 1 mL again, using the 1 mL marking on the vials. However, the added water 

volume is assumed to be inaccurate, hence there would still be a considerable volume loss. A loss in 

volume during boiling will result in an over-quantification of total amino acid content. This might be 

one explanation for the high protein contents measured in E. coli C-lim 0.1 and E. coli N-lim 0.4. The 

great variation in the amount of volume that leaks out can partly explain the great standard deviations 

(shown in Figure 4.7) in some of the samples. 

In Figure 4.8 the columns representing E. coli cultures are normalised to 100%, highlighting the 

amino acid distribution. The estimated amino acids are not included in Figure 4.8 and the pairwise 

measured amino acids are shown as sums. The exact relative contents of all amino acids are shown in 

Appendix B. 

 

Figure 4.8: Amino acid distribution in all E. coli cultures. Separately measured amino acids are blue, pairwise 

measured amino acids are yellow. Cysteine, proline, and tryptophan are excluded. The shown distributions are 

based on three technical replicates. See Appendix B for exact relative distribution. 

From Figure 4.8 we can see that the amino acid distribution is stable even though the total 

protein content wary between conditions. The methionine content is very low in all samples. This is 

possibly because oxygen was not removed from the vails before acid hydrolysis. The presence of oxygen 

during acid hydrolysis may lead to methionine being oxidised to methionine sulfoxide or methionine 

sulfone. One way this might had been avoided is if the vails would have been flushed with nitrogen prior 

to hydrolysis. However, when considering the addition of steps to a procedure the trade-off between 

precision and efficiency should be assessed. 

4.2.2 Carbohydrate 

The carbohydrate analysis was done externally at the Technical University of München in 

Germany. By coupling HPLC to ESI-MS, the sugars could be distinguished not only based on retention 

time, but also on mass to charge ratio (91). Hence, a large variety of monosaccharides and disaccharides 

were quantified. The carbohydrates that were measured in the E. coli samples, excluding ribose are 

shown in Figure 4.9.  

The carbohydrate content was significantly higher in the samples grown in Nitrogen limitation, 

than in the other E. coli samples. This was expected as E. coli tend to accumulate glycogen during 
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nitrogen-limited growth (60). The carbohydrates in all samples were dominated by glycogen. Still, other 

sugars make a notable contribution to the total carbohydrate content that would not have been detected 

in a classic glycogen assay (105). Considerable amounts of rhamnose were measured in E. coli N-lim 

0.1 and some were also measured in E. coli C-lim 0.1. Rhamnose can be found in lipopolysaccharides 

(LPS) in the outer membrane of E. coli (106). The enzymes mediating the incorporation of rhamnose 

and some other sugars to LPS are highly regulated and differ not only between strains, but also growth 

conditions (62, 107, 108). Growth rate related variations may be the reason why the rhamnose content 

in five of the E. coli samples was too low to be detected. This can also be the reason why glucuronic 

acid (GlcUA) was only detected in one sample (E. coli N-lim 0.1). Glucosamine and galactose are two 

components of LPS that were detected in all samples.  

 

Figure 4.9: Measured carbohydrates in all E. coli samples. The averages and standard deviations of three technical 

replicates are shown. Concentrations are given in mass % of total CDW. The exact values are shown in Table 4.2. 

Glc = glucose, Gal = galactose, GlcUA = glucuronic acid, Rha = rhamnose, GlcN = glucosamine 

The carbohydrate analysis results from all E. coli samples are also shown in Table 4.2. The 

measured carbohydrate content of S. cerevisiae, S. salar, and A. thaliana are also included. In addition 

to the substances listed in the table, the method also accounted for concentrations of galactosamine, N-

acetylgalactosamine, cellobiose, lactose, and gentiobiose, however, these concentrations were too low 

to be measured in all samples and were therefore assumed to be zero. The ribose content was also 

measured and is shown in Table 4.2, but since all cellular ribose is assumed to be in RNA, it is not 

included as a part of the total carbohydrate content of the cells.  

No N-acetylglucosamine (GlcNAc) was detected during measurements. This is most likely a 

result of complete deacetylation during hydrolysis, which would mean that all cellular GlcNAc is 

detected as glucosamine (GlcN) (109). The GlcNAc and GlcN concentrations provided in Table 4.2 are 

estimated from the measured GlcN content and the ratio between GlcN and GlcNAc reported by 

Neidhardt et al. (35). For calculations, see Supplementary material S2. The content of N-acetylmuramic 

acid (MurNAc) was not measured in the carbohydrate assay. Peptidoglycan is composed of equal 

amounts of GlcNAc and MurNAc, so one can hypothesise that the MurNAc content might be similar to 

the content of GlcNAc (35). However, since the GlcNAc content was not measured directly, and because 

some GlcNAc may originate from LPS, I decided to not estimate MurNAc this way (62, 110). Hence, 

MurNAc is not included in the BOFs constructed in this thesis.  
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Table 4.2: Carbohydrate fingerprint and total carbohydrate composition. Concentrations are given in average mass 

% of CDW based on three technical replicates. Glc = glucose, Man = mannose, GlcUA = glucosuronic acid,  

GalUA = galacturonic acid, Rha = rhamnose, Fuc = fucose, GlcN = glucosamine, GlcNAc = N-Acetylglucosamine, 

Xyl/Ara = xylose and arabinose, Rib = ribose. Standard deviations of monomers are not included in this table due 

to lack of space, see supplementary material S2. 

Sample Glc Man Gal GlcUA GalUA Rha Fuc GlcN GlcNAc 
Xyl/ 

Ara 
Total Rib 

E. coli C-lim 0.4 1.85 0 0.37 0 0 0 0 0.23 0.41 0 2.85 ± 0.09 5.67 

E. coli C-lim 0.2 1.78 0 0.43 0 0 0 0 0.23 0.42 0 2.87 ± 0.11  3.23 

E. coli C-lim 0.1 1.95 0 0.40 0 0 0.55 0 0.26 0.46 0 3.63 ± 0.24 3.25 

E. coli N-lim 0.4 8.97 0 0.35 0 0 0 0 0.21 0.37 0 9.90 ± 0.33 5.13 

E. coli N-lim 0.2 17.5 0 0.40 0 0 0 0 0.22 0.38 0 18.5 ± 0.5 4.03 

E. coli N-lim 0.1 9.00 0 0.20 0.63 0 3.62 0 0.58 1.02 0 15.05 ± 0.50 2.10 

E. coli U-lim 2.48 0 0.40 0 0 0 0 0.21 0.37 0 3.47 ± 0.11 5.75 

S. cerevisiae 3.40 9.64 0 0 0 0 0 0.07 0.13 0 13.24 ± 1.18 0 

S. salar 0.15 0 0 0 0 0 0 0 0 0 0.15 ± 0.04 0.69 

A. thaliana 29.6 0.94 4.48 0 4.12 1.82 0.71 0 0 5.61 47.2 ± 2.1 0 
 

From the standard deviations shown in Table 4.2, we can see that the measuring method has 

high precision, both for E. coli samples and the remaining organisms. On the other hand, ribose has not 

been detected in S. cerevisiae and A. thaliana, implying that not all carbohydrates have been quantified 

in the eucaryotes.  

The carbohydrate content was expected to be low in S. salar muscle as this tissue mostly consists 

of proteins and lipids (104). The total carbohydrate content of S. cerevisiae is underdetermined 

compared to previously reported values (43.6 %) (111). Furthermore, no ribose was detected in S. 

cerevisiae and A. thaliana indicating that the carbohydrate content of these organisms is 

underdetermined. On the other hand, A. thaliana leaves have been reported to contain 22.44 % 

carbohydrates, which is significantly less than what was measured in our sample (112). However, 

carbohydrate content in A. thaliana leaves vaies greatly with growth conditions (113).  

In the carbohydrate analysis used for this thesis, carbohydrates are marked with 1-phenyl-3-

methyl-5-pyrazolone (PMP) pre-column (91). Because PMP reacts with the aldehyde group of reducing 

sugars, it will not mark ketoses (114). Hence ketoses will remain undetected in this carbohydrate assay. 

In bacteria, ketoses are mainly found in exopolysaccharides, and during planktonic growth they will not 

contribute much to total carbohydrate content (115, 116). Still, it is worth considering this when 

measuring other organisms known to produce ketoses, e.g., plants (117).  

4.2.3 Lipid 

An attempt was made to determine the lipid class distribution of sample E. coli U-lim by 

resuspending the dried lipids in dichloromethane and isopropyl alcohol (2:1 v/v) before analysing them 

using ultrahigh performance super-critical fluid chromatography with mass spectrometry (UHPSFC-

MS), as described by Bartosova et al. (118). However, the results could not be used since the lipids were 

partly hydrolysed and oxidised. Significant fatty acid oxidation and lipid hydrolysis occur during 

prolonged storage at −20 °C (119). The hydrolysis is potentially caused by enzymatic activity, as some 

bacterial lipases are active in frozen media (120). The 6 months storage at −20 °C is considered the most 

likely reason why the results from the lipid class assay could not be used.  

Since lipid class and fatty acid distributions were not measured, they were estimated from 

previously reported values. Temperature is one of the environmental factors that have the strongest 

impact on both lipid class, and fatty acid distribution (64, 121). The lipid class and fatty acid distributions 

reported by Neidhardt et al. (35) are measured in E. coli grow at the same temperature as our cultures, 

so these distributions could be used for estimation. According to Neidhardt et al., the lipids of an average 



______________________________________________________________________________________ 

26 

 

E. coli cell are 75 % phosphatidyl-ethanolamine, 18 % phosphatidylglycerol, 5 % cardiolipin, and traces 

of phosphatidylserine. The fatty acid composition is 45 % palmitic (16:0) acid, 33 % palmitoleic (16:1) 

acid, and 25% cis-vaccenic (18:1) acid (35). The content of each lipid class in the E. coli samples, 

estimated based on these values, are shown in Table 4.3: Total lipid content and percentage loss of 

organic phase of all E. coli cultures, S. cerevisiae, S. salar, and A. thaliana measured in mass % of total 

CDW and estimated lipid class content of E. coli. Red values are measurements without technical 

replicates, the remaining values are based on three technical replicates. along with the total lipid content, 

which was measured directly. The lipid content measured in S. cerevisiae, S. salar, and A. thaliana is 

also shown.  

Table 4.3: Total lipid content and percentage loss of organic phase of all E. coli cultures, S. cerevisiae, S. salar, 

and A. thaliana measured in mass % of total CDW and estimated lipid class content of E. coli. Red values are 

measurements without technical replicates, the remaining values are based on three technical replicates. The 

percentage loss is given in volumetric %. PE = phosphatidylethanolamine, PG = phosphatidylglycerol,  

CL = cardiolipin. See Supplementary material S2 for all measurements. 

Sample PE PG CL Total Loss of organic phase  

E. coli C-lim 0.4 4.5 1.1 0.3 5.91 ± 0.16 9.63 % 

E. coli C-lim 0.2 2.1 0.5 0.1 2.75  10.3 % 

E. coli C-lim 0.1 4.7 1.1 0.3 6.11 8.94 % 

E. coli N-lim 0.4 4.5 1.1 0.3 5.90 ± 0.26 14.0 % 

E. coli N-lim 0.2 4.0 1.0 0.3 5.17 ± 0.34 12.0 % 

E. coli N-lim 0.1 3.8 0.9 0.3 4.94 ± 2.80 11.6 % 

E. coli U-lim 4.1 1.0 0.3 6.32 ± 0.21 11.4 % 

S. cerevisiae - - - 1.64 16.0 % 

S. salar - - - 22.7 10.4 % 

A. thaliana - - - 2.80 40.6 % 
 

The total lipid content measured in E. coli is relatively stable between all cultures, except E. coli 

C-lim 0.2, which has significantly lower lipid content. As this measurement was done without technical 

replicates, it is hard to say if the lipid content in the culture was low or if it is an outlier measurement. 

From the standard deviations, we can see that the results have been stable between technical replicates 

for all cultures except E. coli N-lim 0.1.  

To assess the amount of organic phase that might have been lost in the extraction steps of the 

lipid quantification, the samples were weighed both before and after chloroform evaporation (see 

subsection 3.2.3). The loss percentage of the organic phase is shown in Table 4.3 (see Supplementary 

material S2 for calculations). There are two causes for loss of organic phase: inadequate extraction and 

chloroform evaporation. Because lipids are only lost in inadequate extraction, and not in chloroform 

evaporation, it would be inaccurate to scale the lipid content up by the loss percentage. Therefore, the 

directly measured values for total lipid content (marked in bold in Table 4.3) are used in the construction 

of BOFs.  

Based on the scale of the loss of organic phase it is reasonable to assume that some lipids have 

been lost in extraction in all samples. This can be a part of the explanation for why our lipid 

measurements are lower than the content reported by Neidhardt et al. (9.1 %) (35). On the other hand, 

the lipid content of S. cerevisiae, S. salar, and A. thaliana does not seem to have been underdetermined. 

Although the organic phase loss was high in the A. thaliana sample, the measured lipid content was 

higher than previously reported values (< 1.0 %) (122). The measured lipid content of both S. cerevisiae 

and S. salar concur with previously reported values (1.21 % and 21.03 %, respectively) (104, 123). It 

should be noted, however, that the lipid content in these organisms was measured without technical 

replicates. 



______________________________________________________________________________________ 

27 

 

4.2.4 DNA 

The genome of E. coli strain K-12 MG1655 has 50.8 % GC and 49.2 % AT (GenBank accession 

number U00096.3 (101)). The mass percentages of each nucleotide listed in Table 4.4 are calculated 

from this distribution and the total DNA content that was measured. For calculations, see Supplementary 

material S2. The total DNA contents of E. coli C-lim 0.2 and E. coli C-lim 0.1 were not measured 

because we did not have enough dried biomass of these samples. The DNA and nucleotide content of 

these two cultures that are shown in Table 4.4: DNA content and estimated composition given in mass 

% of CDW. are the concentrations used when constructing BOFs for these two cultures and were 

estimated as the average of all E. coli cultures.  

Table 4.4: DNA content and estimated composition given in mass % of CDW. Red values were estimated from 

the average of all the measured values for E. coli. The average A260/A280 ratio and A260/A230 ratio are included for 

evaluation of purity. The total DNA content that is shown is the average of three technical replicates that were 

measured three times each. See Supplementary material S2 for all measurements. 

Sample dAMP dCMP dGMP dTMP Total  A260/A280 A260/A230 

E. coli C-lim 0.4 1.61 1.54 1.74 1.56 6.45 ± 2.29 1.88 1.79 

E. coli C-lim 0.2 1.02 0.98 1.10 0.99 4.09 - - 

E. coli C-lim 0.1 1.02 0.98 1.10 0.99 4.09 - - 

E. coli N-lim 0.4 1.33 1.28 1.44 1.29 5.34 ± 1.28 1.89 1.68 

E. coli N-lim 0.2 1.49 1.43 1.61 1.45 5.97 ± 1.95 1.80 1.41 

E. coli N-lim 0.1 0.33 0.32 0.36 0.32 1.34 ± 0.27 1.94 1.46 

E. coli U-lim 0.33 0.32 0.36 0.32 1.33 ± 0.32 2.12 1.25 

S. cerevisiae - - - - 1.41 ± 0.45 2.14 2.18 
 

To assess the purity of the extracted DNA samples, A260/A280 and A260/A230 ratios are included 

in Table 4.4. Pure DNA has an A260/A280 ratio of ~1.8 (124). A high A260/A280 ratio can be caused by the 

presence of RNA since uracil has a higher A260/A280 ratio than thymine (125). However, the presence of 

RNA is unlikely since the samples were treated with RNase (see section 3.2.4). A more likely 

explanation for the increased A260/A280 is that the DNA was suspended in TE buffer, which is slightly 

basic. According to Willfinger et al. (126), the A260/A280 ratio can be overrepresented by up to 0.2-0.3 

points in basic solutions. High A260/A280 ratios do not necessarily mean that there is a problem with the 

sample (127). Since tryptophan and tyrosine sidechains have high absorbance at 280 nm, high A260/A280 

ratios can indicate low contamination by proteins. 

The A260/A230 ratio is another indicator of protein contamination because peptide bonds absorb 

at 230nm. Nucleic acids have an absorbance minimum at 230nm, thus low A260/A230 ratios can be an 

indication of contamination by substances with high absorbance at 230 nm (124). Out of the six samples 

we measured, five have an A260/A230 ratio < 2.0, which is considered an indication of pollution(128). 

Since protein contamination would result in low A260/A280 ratios, an alternative cause for the low 

A260/A230 ratios is phenol contamination from the phenol-chloroform extraction (see section 3.2.4)(124). 

As phenol absorbs light at 260 nm, phenol pollution can cause overdetermined concentration (129). 

DNA content in E. coli was expected to remain stable with varying growth rates (130). The 

variations we can see in Table 4.4 might be a result of inadequate extraction, overdetermination due to 

pollution, or both. One way to assess the accuracy of the DNA quantifications would be to spike the 

samples with a DNA standard (131). Another way to improve DNA measurements would be to apply a 

quantification method without any extraction step, e.g., the method suggested by Sandaa et al. (132) for 

quantification of DNA in soil. In this method, the DNA is marked with PicoGreen, a fluorescent dye 

that binds specifically to double-stranded DNA and quantified in a fluorometer. 
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4.2.5 RNA 

According to Neidhardt et al. (35), ribosomal RNA make up around 81 % of the cellular RNA 

in E. coli. Therefore, the concentration of each ribonucleotide was estimated based on the nucleobase 

distribution in ribosomal RNA, as proposed by Beck et al. (33). For this, the DNA sequences of S5, S16, 

and S23 RNA of E. coli strain K-12 (available at European Nucleotide Archive (ENA)) were used. The 

combined sequence of S5, S16, and S23 RNA consists of 25.7 % AMP, 22.4 % CMP, 31.5 % GMP, and 

20.3 % UMP. The nucleotide concentrations in Table 4.5 are estimated from this distribution and the 

total measured RNA contents. For calculation see Supplementary material S2. A260/A280 and A260/A280 

ratios were not noted during RNA quantification. 

Table 4.5: RNA content of all E. coli cultures, S. cerevisiae, and S. salar, and estimated nucleotide composition 

in E. coli. All compositions are given as mass % of CDW. The total RNA content that is shown is the average of 

three technical replicates that were measured three times each. See Supplementary material S2 for all 

measurements. 

Sample AMP CMP GMP UMP Total 

E. coli C-lim 0.4 4.58 3.72 5.86 3.38 17.5 ± 0.6 

E. coli C-lim 0.2 3.09 2.51 3.96 2.29 11.9 ± 0.8  

E. coli C-lim 0.1 3.10 2.52 3.97 2.29 11.9 ± 0.4 

E. coli N-lim 0.4 4.46 3.62 5.71 3.29 17.1 ± 0.7 

E. coli N-lim 0.2 3.65 2.96 4.67 2.69 14.0 ± 0.4 

E. coli N-lim 0.1 2.29 1.86 2.93 1.69 8.76 ± 1.14 

E. coli U-lim 4.96 4.03 6.36 3.66 19.0 ± 0.5 

S. cerevisiae - - - - 3.12 ± 0.14 

S. salar - - - - 0.45 ± 0.03 
 

From the standard deviations in Table 4.5, we can see that the precision of the measuring method 

is good. The accuracy of the method could have been assessed by spiking the samples with a standard, 

as suggested for the DNA quantification (131).  

Another way to evaluate our method is by comparison to results from other measuring methods. 

Ribose content was measured for all E. coli cultures as a part of the carbohydrate quantification 

(Subsection 3.2.2). The total ribose content can also be calculated from the total RNA content and 

nucleotide distribution. Ribose content measured as carbohydrates and as RNA is compared in Figure 

4.10.  

 
Figure 4.10: Comparison of ribose content in all E. coli cultures measured as carbohydrates and RNA.  

Blue = measured as RNA, green = measured as carbohydrates. 
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The ribose concentration measured as carbohydrates is consequently lower than the 

concentration measured as RNA. Still, there is a clear correlation between the measured concentrations 

(see Appendix C). This suggests that either the ribose content is consequently underdetermined in the 

carbohydrate assay, or the RNA content is consequently overdetermined in the RNA quantification. 

Overdetermination of RNA could potentially have been caused by protein pollution in the extracted 

samples.  

Previously reported measurements of RNA content in E. coli suggest a linear relationship 

between the RNA/protein ratio and the specific growth rate (69). Measurements on E. coli grown under 

limitation of various nutrients show that this linear relationship is applicable for both carbon and 

nitrogen-limited cultures (56). Figure 4.11 shows a plot of RNA/proteins ratios, calculated from 

measured RNA and protein content, at different growth rates. We can observe a clear linear correlation 

between RNA/protein ratio and growth rate in the samples. 

 

Figure 4.11: Measured RNA/protein ratio in E. coli at various growth rates. Carbon limited samples are 

represented by blue points, nitrogen-limited samples are green, and the grey point represents E. coli U-lim.  

The estimation method used to quantify separate ribonucleotides relies on the ribonucleotide 

distribution of rRNA. Because the nucleotide sequence and hence distribution, is constant and equal in 

all ribosomes, this is a reliable method to determine the distribution in rRNA (133). On the other hand, 

the method only accounts for 81 % of the total cellular RNA (35). A better way to determine the 

ribonucleotide distribution would be to measure it directly, for example, by digesting isolated RNA and 

then quantifying nucleosides by liquid chromatography tandem mass spectrometry, as suggested by 

Thüring et al. (134).  

The RNA content measured in S. salar is close to previously reported values (0.71 %) (135). 

Ertugay and Hamamci have reported between 0.93 % and 1.13 % RNA in S. cerevisiae (136), which is 

considerably lower than what we measured. This does not necessarily mean that the RNA is 

overdetermined in the S. cerevisiae sample, as RNA production in yeast is strongly dependent on growth 

conditions (137).  

4.2.6 Total biomass composition 

All E. coli samples were sent to the Technical University of München in Germany for elemental 

analysis by combustion. The determined concentration of carbon, hydrogen, nitrogen, oxygen, and 

sulphur in all is shown in Table 4.6. It was reported that there was some trouble with the nitrogen 

measurement in some samples resulting in low measurements of E. coli C-lim 0.1, E. coli N-lim 0.2, E. 

R² = 0.8779

0

0,1

0,2

0,3

0,4

0,5

0,6

0 0,2 0,4 0,6 0,8

R
N

A
/p

ro
te

in
 [

m
/m

]

Growth rate [h−1]



______________________________________________________________________________________ 

30 

 

coli N-lim 0.1, S. salar, and A. thaliana. Three technical replicates were made for each sample, however, 

there was some trouble with some of the parallel measurements, thus not all values given in Table 4.6 

are based on three parallel measurements. 

Table 4.6: Elemental composition of E. coli, S. salar, and A. thaliana measured by combustion analysis. The 

number of parallel measurements used to determine the average and standard deviation are shown in the right-

most column. The nitrogen measurements that were affected by trouble during the analyses are highlighted in red. 

Sample C H N S O Total # of parallels 

E. coli C-lim 0.4 
43.279 

± 0.304 

6.468 

± 0.106 

12.747 

± 0.173 

0.309 

± 0.006 

26.230 

± 1.495 

89.032 

± 2.085 
2 

E. coli C-lim 0.2 
45.496 

± 0.899 

6.734 

± 0.240 

12.862 

± 0.201 

0.358 

± 0.008 

24.273 

± 1.853 

89.724 

± 3.201 
3 

E. coli C-lim 0.1 
44.599 

± 0.299 

6.835 

± 0.012 

2.561 

± 0.614 

0.320 

± 0.017 

24.701 

± 1.888 

79.015 

± 2.830 
3 

E. coli N-lim 0.4 43.863 6.589 12.921 0.318 27.526 91.217 1 

E. coli N-lim 0.2 
41.886 

± 0.241 

6.521 

± 0.049 

1.086 

± 0.656 

0.237 

± 0.037 

28.814 

± 1.333 

78.543 

± 2.316 
2 

E. coli N-lim 0.1 
41.706 

± 0.315 

6.323 

± 0.111 

3.147 

± 1.199 

0.200 

± 0.070 

27.633 

± 1.965 

79.009 

± 3.661 
3 

E. coli U-lim 
43.978 

± 0.011 

6.708 

± 0.022 

14.094 

±0.378 

0.323 

± 0.015 

25.969 

± 0.875 

91.070 

± 1.301 
2 

S. salar 
47.159 

± 4.697 

8.012 

± 0.707 

0.000 

± 0.000 

0.089 

± 0.086 

22.474 

± 1.641 

77.733 

± 7.132 
3 

A. thaliana 
31.164 

± 0.936 

5.673 

± 0.041 

0.000 

± 0.000 

0.000 

± 0.000 

49.624 

± 1.311 

86.461 

± 2.288 
3 

 

The total macromolecular composition measured in all E. coli cultures, S. cerevisiae, S. salar, 

and A. thaliana is shown in Table 4.7. The grey numbers for DNA content are not measured, but rather 

estimated as the average of the remaining E. coli samples. These numbers are included in the results 

because they were used for the construction of BOFs. 

Table 4.7: Macromolecular compositions of all E. coli cultures, S. cerevisiae, S. salar, and A. thaliana given in 

mass % of CDW. Red numbers are measured without technical replicates. Grey values are estimated as the average 

of the DNA content measured in E. coli samples. The remaining values are based on three technical replicates. 

Sample Protein Carbohydrate Lipid DNA RNA Total 

E. coli C-lim 0.4 52.29 ± 7.65   2.58 ± 0.09 5.91 ± 0.16 6.45 ± 2.29 17.5 ± 0.6   85.0 ± 10.8 

E. coli C-lim 0.2 54.00 ± 3.91   2.87 ± 0.11 2.75 4.09 11.9 ± 0.8 75.6 ± 4.8 

E. coli C-lim 0.1   66.39 ± 18.65   3.63 ± 0.24 6.11 4.09 11.9 ± 0.4   92.1 ± 19.3 

E. coli N-lim 0.4   63.38 ± 21.95   9.90 ± 0.33 5.90 ± 0.26 5.34 ± 1.28 17.1 ± 0.7 101.6 ± 24.5 

E. coli N-lim 0.2 47.17 ± 4.76 18.5 ± 0.5 5.17 ± 0.34 5.97 ± 1.95 14.0 ± 0.4 90.8 ± 8.0 

E. coli N-lim 0.1 54.05 ± 5.44 15.05 ± 0.50 4.94 ± 2.80 1.34 ± 0.27   8.76 ± 1.14   84.1 ± 10.1 

E. coli U-lim 41.12 ± 1.67   3.47 ± 0.11 5.32 ± 0.21 1.33 ± 0.32 19.0 ± 0.5 70.3 ± 2.8 

S. cerevisiae 13.38 ± 0.67 13.24 ± 1.18 1.64 1.41 ± 0.45   3.12 ± 0.14 32.8 ± 2.4 

S. salar   5.26 ± 0.46   0.15 ± 0.04 22.7 -   0.45 ± 0.03 28.6 ± 0.5 

A. thaliana   3.27 ± 1.13 47.2 ± 2.1 2.80 -   - 53.3 ± 3.2 
 

The BOFs constructed in this thesis are defined to take in all the components (measured in 

mmol) needed to produce 1 g of dry biomass. To make this kind of BOF we need to assume that we 

have measured the entire biomass of the organisms. In this thesis this is done by scaling all 

macromolecules by the same factor so that they sum up to 96.5% of total CDW, that is 0.96 g of biomass 

(Table 4.8). The remaining 3.9 % are assumed to be various metabolites, vitamins, cofactors, and 

inorganic ions as reported by Neidhardt et al. (35).   
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Table 4.8: Macromolecular composition of E. coli. Values are given in mass % of total CDW and scaled to make 

up a total of 96.5 % of the CDW. Red numbers are based on measurements without technical replicates. Gray 

values are based on the average DNA content measured in E. coli samples. 

Sample Protein Carbohydrate Lipid DNA RNA Total 

E. coli C-lim 0.4 59.1 3.22 6.68 7.29 19.81 96.1 

E. coli C-lim 0.2 68.7 3.65 3.50 5.20 15.08 96.1 

E. coli C-lim 0.1 69.3 3.78 6.38 4.26 12.40 96.1 

E. coli N-lim 0.4 50.0 9.36 5.58 5.05 16.15 96.1 

E. coli N-lim 0.2 49.9 19.6 5.47 6.32 14.80 96.1 

E. coli N-lim 0.1 61.7 17.2 5.64 1.53 10.01 96.1 

E. coli U-lim 56.3 4.74 7.27 1.82 26.01 96.1 
 

One issue with scaling the macromolecule contents this way is that the upscaling will not be 

proportional to the relative loss in each group. For example, the proteins, that might be overdetermined 

already will be scaled by the same factor as carbohydrates, which most likely are underdetermined. 

However, as we did not know the relative loss for the macromolecules, this was considered the most 

logical way to scale the macromolecule content.  

4.3 Biomass objective functions 

After measuring the complete macromolecular composition of the E. coli samples, we could 

proceed to the third step of our workflow – construction of condition-specific BOFs (Figure 4.1). The 

macromolecule component of our BOFs was constructed based on the method used by Beck  et al. (33) 

(described in subsection 2.1.3). The macromolecule function equations and chemical formulas of E. coli 

U-lim are shown in Table 4.9. The compositions of lipids, DNA, and RNA were not directly measured, 

and the functions and chemical formulas of these macromolecules are equal for all E. coli samples. 

Protein and carbohydrate functions and chemical formulas for all E. coli samples are shown in  

Appendix D. All macromolecular functions were balanced for mass and charge to make sure that the 

mass balance constraint of stoichiometric modelling was satisfied. For calculations see Supplementary 

material S2. 

Table 4.9: Macromolecule function equations and chemical formulas of E. coli U-lim. Lipid, DNA, and RNA 

functions and formulas are the same for all the E. coli samples. 

Molecule Equation Chemical formula 

Protein   +0.023 His + 0.053 Ser + 0.069 Thr + 0.157 Ala + 0.015 Tyr + 0.009 Met 

  + 0.035 Val + 0.055 Phe + 0.041 Ile + 0.092 Leu + 0.070 Lys + 0.053 Glu 

  + 0.041 Gln + 0.050 Asn + 0.065 Asp + 0.055 Gly + 0.041 Arg + 0.013 Cys 

  + 0.045 Pro + 0.017 Trp + 2 GTP + ATP 

→ H2O + 2 GTP + 2 Pi + AMP + PPi + protein 

C4.85H7.60N1.32O1.45S0.02 

Carb.       0.734 Glc1P + 0.118 Gal1P + 0.005 GlcN1P + 0.007 GlcNAc1P + ATP 

→ ADP + PPi + carbohydrate 

C6.2H10.4N0.1O4.9 

Lipid  + 0.92 palmitic acid + 0.68 palmitoleic acid + 0.46 cis‐vaccenic acid 

  + 2.05 ATP + 1.26 G3P + 1.03 CTP + 0.79 Ser + 0.24 H2O + 0.79 H+ 

→ 2.05 AMP + 3.08 PPi + 1.03 CMP + 0.79 CO2 + Pi + 0.03 glycerol + lipid 

C39.1H76.2N0.8O8.6P1.0 

DNA       0.246 dATP + 0.254 dCTP + 0.254 dGTP + 0.246 dTTP → PP1 + DNA C9.7H11.2N3.8O6P 

RNA       0.257 ATP + 0.224 CTP + 0.315 GTP + 0.203 UTP → PPi + RNA C9.6H10.8N3.9O6.9P 

 

Instead of scaling the macromolecule coefficients to 100 %, like Beck  et al. (33), our 

coefficients were scaled to 96.1 % (Table 4.8). To account for the remaining 3.9 % of the total CDW, 

all metabolites present in the iML1515 wild type BOF, that are not directly included in the production 
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of macromolecules, were scaled to a mass of 0.039 g and incorporated in the BOFs. A list of these 

metabolites and their stoichiometric coefficients are shown in Appendix E.  

Maintenance energy was also imported from iML1515. In iML1515, the growth associated 

maintenance (GAM) and the non-growth associated maintenance (NGAM) were estimated to be  

75.55 mmol ATP/gCDW h−1and 6.86 mmol ATP/gCDW, respectively (27). As NGAM was already 

accounted for as a reaction in iML1515, only GAM was incorporated in our BOFs. When GAM was 

incorporated into our BOFs, the energy already accounted for in the polymerisation reactions was 

subtracted (Supplementary material S2). The complete BOFs for all E. coli samples can be found 

in Appendix F.   

By integrating maintenance energy and non-macromolecule components into our BOFs we 

increased their detail level from basic to advanced. According to Feist and Palsson (20), a BOF of 

advanced level should be sufficient to predict growth rates. 

4.4 Flux balance analysis 

The last step in our workflow is the evaluation of the experimentally determined BOFs  

(Figure 4.1). The BOFs were evaluated by running FBA for the E. coli strain K-12 MG1655 GEM 

iML1515 with our BOFs as objectives. As glucose was the sole carbon source during cultivation, all 

other carbon uptake fluxes were locked to 0. To evaluate the BOF of E. coli U-lim, additional restrictions 

corresponding to the exchange rates determined in subsection 4.1.1 were applied to the model. The goal 

growth rate was the growth rate estimated for E. coli U-lim (0.71 h−1). Simulations were run with the 

experimentally determined E. coli U-lim BOF and with the built-in wild-type BOF from iML1515 

(BIOMASS_Ec_iML1515_WT_75p37M) for comparison. The restrictions and goal growth rate are 

shown in Table 4.10 and the simulation results are shown in Table 4.11 

Table 4.10: Experimentally determined exchange rates used within the model and goal growth rate for evaluation 

of the E. coli U-lim BOF. 

Restricted process Restricted reaction Lower bound Upper bound Growth rate [h−1] 

Glucose uptake EX_glc__D_e −9.06 0 0.71 

Oxygen uptake EX_o2_e −10.09 0 

CO2 secretion EX_co2_e 0 9.12 

 

Table 4.11: Simulation results for the evaluation of the E. coli U-lim BOF. Exchange rates are given in 

mmol/gCDWh−1. The exchange rates of inorganic ions, water, and protons are not shown. 

Objective function 
Uptake rates Secretion rates Shadow prices Predicted  

growth rate Glc NH4 O2 Pi SO4 CO2 Acet. Form. O2 Glc CO2 

E. coli U-lim BOF 9.06 5.50 10.09 0.48 0.06 6.93 9.85 7.05 −0.034 −0.026 ~0 0.519 h−1 

E. coli WT BOF 9.06 5.68 10.09 0.73 0.12 9.12 9.63 3.88 −0.032 −0.024 0 0.487 h−1 
 

From Table 4.11 we can see that the growth rate predicted by our BOF is closer to the goal 

growth rate than what was predicted by the wild-type BOF. However, both predicted growth rates are 

notably lower than the experimentally determined growth rate (the predicted growth rates using our BOF 

and the wild-type BOF are 73.1 and 68.6 % of the measured growth rate, respectively). There are also 

big variations in secretion rates between the two BOFs. While the wild-type BOF maximise CO2 

secretion, and hence, respiration, our BOF relies more on fermentation. The relative flow of carbon in 

both BOFs is shown in Figure 4.12  
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Figure 4.12: Relative carbon flow in the simulation of E. coli U-lim BOF and the wild-type BOF from iML1515. 

From Figure 4.12 we can see that the relative carbon flow to biomass is similar for both BOFs 

(62:38 % with our BOF and 59:41 % in the wild-type BOF). The distribution between energy 

metabolism end products, more specifically between CO2 and formate, differs between both BOFs. The 

energy production is greater in the wild-type BOF since more ATP is produced per glucose molecule in 

respiration than in fermentation (48). Higher energy demand in the wild-type BOF, potentially caused 

by the big lipid fraction, can be the explanation for these results.  

There is also variation between the uptake rates when simulating both BOFs. The wild-type 

BOF has twice the sulphate uptake of the experimentally determined BOF and a notably higher uptake 

of inorganic phosphate. One possible explanation for the higher sulphate uptake in the wild-type BOF 

can be the methionine consumption, which is 0.15 mmol/g in the wild-type BOF and 0.05 mmol/g the 

experimentally determined BOF. The difference in phosphate uptake can be caused by the difference in 

phospholipid or DNA content. 

The predicted RQ values also differ between the two BOFs. While the RQ value predicted using 

the wild-type BOF (0.90) matches the experimentally measured RQ value, the RQ value predicted by 

the experimentally determined BOF is considerably lower (0.69). This is far below the expected RQ 

value (1.0) for bacteria growing aerobically on glucose and is considered an indication of fermentation 

(138). 

To further investigate the effects of glucose and oxygen uptake on the growth rate, a phenotype 

phase plane (PhPP) was made for our BOF (Figure 4.13). From the PhPP we can see that growth is 

limited by both glucose and oxygen uptakes, which is also confirmed by the shadow prices in  

Table 4.11. Our solution lies slightly beneath the line of optimality (Figure 4.13 A), which means that 

carbon is not fully oxidised and hence not fully utilised in energy production (42). This also shows that 

the experimentally determined BOF predicts fermentation in the given growth conditions 
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Figure 4.13: A: Glucose and oxygen phenotype phase plane for E. coli U-lim BOF. B: Glucose shadow prices. C: 

Oxygen shadow prices. White lines = line of optimality, White X = FBA solution applying restrictions in Table 

4.10 (A). 

The six remaining BOFs were evaluated by systematically tweaking the uptake rate of the 

limiting nutrient (ammonia or glucose) to evaluate if the goal growth rate can be achieved with 

reasonable uptake rates. The restricted reactions and goal growth rates are listed in Table 4.12 and the 

simulation results are listed in Table 4.13. All other uptakes were made non-limiting. 

Table 4.12: Restrictions and goal growth rates for the evaluation of BOFs of E. coli C-lim 0.4, 0.2, and 0.1, and 

E. coli N-lim 0.4, 0.2 and 0.1. 

Objective function Restricted process Restricted reaction Goal growth rate [h−1] 

E. coli C-lim 0.4 BOF Glucose uptake EX_glc__D_e 0.4 

E. coli C-lim 0.2 BOF Glucose uptake EX_glc__D_e 0.2 

E. coli C-lim 0.1 BOF Glucose uptake EX_glc__D_e 0.1 

E. coli N-lim 0.4 BOF Ammonium uptake EX_nh4_e 0.4 

E. coli N-lim 0.2 BOF Ammonium uptake EX_nh4_e 0.2 

E. coli N-lim 0.1 BOF Ammonium uptake EX_nh4_e 0.1 

 

 

A 

B C 
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Table 4.13: Simulation results for the evaluation of the BOFs of BOFs of E. coli C-lim 0.4, 0.2, and 0.1, and  

E. coli N-lim 0.4, 0.2, and 0.1. Exchange rates are given in mmol/gCDWh−1. Exchange rates of inorganic ions, 

water, and protons are not shown. 

Objective function 
Uptake rates Secretion rates Shadow prices  Predicted  

growth rate  Glc NH4 O2 Pi SO4 CO2 Acet. Glc NH4 

E. coli C-lim 0.4 BOF 4.58 4.41 11.0 0.42 0.04 11.2 0 −0.093 0 0.400 [h−1] 

E. coli C-lim 0.2 BOF 2.44 2.24 6.32 0.15 0.03 6.42 0 −0.093 0 0.200 [h−1] 

E. coli C-lim 0.1 BOF 1.39 1.08 3.97 0.07 0.02 4.12 0 −0.091 0 0.100 [h−1] 

E. coli N-lim 0.4 BOF 4.61 4.11 10.8 0.33 0.04 11.1 0.13 ~0 −0.097 0.400 [h−1] 

E. coli N-lim 0.2 BOF 2.42 1.81 6.27 0.16 0.02 6.40 0.05 ~0 −0.111 0.200 [h−1] 

E. coli N-lim 0.1 BOF 1.39 0.92 3.92 0.05 0.01 4.08 0.03 ~0 −0.108 0.100 [h−1] 
 

According to Schulze and Lipe (139) the growth rate, the oxygen uptake rate, and the uptake of 

the limiting nutrient are directly proportional in aerobic continuous cultures. In Figure 4.14 the predicted 

growth rate (panel A) and oxygen uptake (panel B) are plotted against the uptake of limiting nutrient. 

We can see that there is a strong linear correlation between the uptake of limiting nutrient and both 

growth rate and oxygen uptake. The relationship between the uptake of limiting nutrient and growth 

seems to be proportional, but from the intercept in Figure 4.14 B, it appears oxygen uptake is not 

proportional to the uptake of limiting nutrient. The high intersect value of the linear regressions indicates 

that the predicted oxygen uptake is higher than what is expected in continuous cultures.  

 
 

Figure 4.14: Growth (A) and oxygen uptake (B) over limiting nutrient uptake rate. Green points represent 

nitrogen-limited samples and red points represent carbon-limited samples. The equations and R values of the linear 

regressions are shown.  

The predicted oxygen uptake rates in the fast-growing cultures (E. coli C-lim 0.4 and N-lim 0.4) 

are higher than what was measured for the culture growing exponentially in unlimited media (E. coli  

U-lim). Theoretically, the oxygen uptake of this culture should only be limited by the organism itself, 

i.e., the protein’s ability to transport and utilise oxygen. Based on this, and the linear regression in  

Figure 4.14 B, it appears that the oxygen requirement is somewhat overestimated by the experimentally 

determined BOFs. This might also be the case in E. coli U-lim BOF, which predicted considerably more 

fermentation than what was suggested by the experimentally determined RQ value. It should be noted, 

however, that the growth conditions of E. coli U-lim might not have been entirely aerobic. Even in 

agitated aerobic fermenters, the DO level is not completely homogenous, and there will be areas where 

the access to oxygen is low (140).   
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Kayser et al. (141) have published a study where they measured the glucose uptake of the E. 

coli K-12 strain TG1, growing aerobically at different growth rates on a glucose-limited medium. Our 

predicted values are shown alongside their measurements in Table 4.14. Compared to the values reported 

by Kayser et al., glucose requirements were consequently overestimated in our simulations. A part of 

the difference can be a result of different strains as both the measured biomass composition and the 

GEM used in simulations are for E. coli K-12 strain MG1655. Monk et al. (27) have reported variations 

in the glucose uptake rate of different E. coli strains growing aerobically at similar growth rates. 

Furthermore, the growth conditions differ between this work and what Kayser et al. report. The culture 

studied by Kayser et al. was grown at pH 6.6 and 28 °C, while the cultures in this work were grown at 

pH 7.0 and 37 °C. More importantly, the media used by Kayser et al. contained EDTA and acetate in 

addition to glucose (141). The presence of alternative carbon sources can contribute to an increased 

growth rate as these are often utilised during glucose limitation (142). The oxygen uptake predicted by 

our experimentally determined BOF also seems to be somewhat overdetermined. 

Table 4.14: Comparison of predicted glucose and oxygen uptake to values measured on E. coli K-12 strain TG1 

(141). Growth rates are given in h
 
−1, uptake rates are given in mmol g

 
−1h

 
−1. 

BOF 
Simulation predictions Measured values  

Growth rate  Glucose uptake  O2 uptake Growth rate  Glucose uptake O2 uptake 

E. coli C-lim 0.4 0.400 4.58 11.0 0.397 4.01 8.23 

E. coli C-lim 0.2 0.200 2.44 6.32 0.203 2.08 5.49 

E. coli C-lim 0.1 0.100 1.39 3.97 0.134 1.40 3.40 
 

E. coli is capable of fast adaptation to changes in nutrient availability. Therefore, it is natural to 

expect the E. coli C-lim 0.1 BOF and E. coli N-lim 0.1 BOF to predict faster growth in carbon and 

nitrogen-limited conditions, respectively, than an “unspecialised” BOF (143). Figure 4.15 shows the 

growth rate predicted by E. coli C-lim 0.1 BOF, E. coli N-lim 0.1 BOF and the wild-type BOF from 

iML1515 at strong carbon and nitrogen limitations (uptake rate 1.0 mmol g−1 h−1). The growth rate 

predicted for strong carbon limitation is stable for all three BOFs, but under strong nitrogen limitation, 

the E. coli N-lim 0.1 BOF predicted a notably higher growth rate. This is most likely because the E. coli 

N-lim 1.0 BOF have a large proportion of carbohydrates (17.19 %).  

 

Figure 4.15: Predicted growth rates of E. coli C-lim BOF, E. coli N-lim BOF, and the wild-type BOF from 

iML1515 when restricting glucose uptake to 1.0 mmol g−1 h−1 (C-limited) and when restricting ammonia uptake to 

1.0 mmol g−1 h−1 (N-limited).   
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5 Discussion 

In this chapter I will evaluate the experimental results further. First, by comparison to the 

elemental analysis results, then by comparison to the E. coli biomass composition that has been 

previously reported by Neidhardt et al. (35) and Beck et al. (33). I will also briefly discuss our biomass 

recovery of S. cerevisiae, S. salar, and A.thaliana. Finally, I will address some general observations 

regarding the simulation results. 

One way to evaluate the macromolecule composition measured in this work is by comparison 

to the total elemental composition measured by combustion. Figure 5.1 shows the content of carbon, 

hydrogen, nitrogen, and oxygen, measured as macromolecules and by combustion, in all E. coli cultures. 

Elemental composition measured by combustion analysis is also shown in Table 4.6.   

 
Figure 5.1: Elemental contents given as mass % of CDW in all E. coli cultures. Blue columns are measured as 

macromolecules and green columns are measured by elemental analysis by combustion. 

The measured nitrogen content in E. coli C-lim 0.1, E. coli N-lim 0.2, and E. coli N-lim 0.1 are 

not considered when assessing the results as there was trouble measuring nitrogen content in these 

samples. The elemental distribution is generally more stable when measured by combustion, which is 

not surprising, as it is based on fewer measurements. Because nitrogen content could not be measured 

in some of the samples, it is hard to say if there is a difference in nitrogen content between nitrogen and 

carbon-limited growth. From the oxygen content, we can see that the nitrogen-limited samples contain 

more oxygen, though this is clearer in the macromolecule measurements than in the elemental analysis. 

The increased oxygen content is most likely a result of carbohydrate accumulation, as carbohydrates 

generally have high oxygen content.  

The sulphur contents measured as macromolecules and by combustion were too low to be 

visualised along with the other elements in Figure 5.1 and are therefore shown in Figure 5.2. The only 

sulphur-containing compound measured in macromolecule assays is methionine. In combustion 

analysis, on the other hand, all sulphur-containing cellular components are accounted for. These can be 

components such as biotin, coenzyme A and sulphate, to mention a few. Since most sulphur-containing 

components are not included in macromolecule measurements, one would expect the sulphur content 

measured by combustion to be higher. The high macromolecular sulphur contents in Figure 5.2, can 

partly be explained by overdetermined protein contents. However, the sulphur content might also be 

underdetermined in the combustion analysis. 
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Figure 5.2: Sulphur content given as mass % of CDW in all E. coli cultures. Blue columns are measured as 

macromolecules and green columns are measured by elemental analysis by combustion. 

The average elemental composition of all E. coli samples, measured as macromolecules and by 

combustion analysis, is shown in Figure 5.3. Here we can see that the average elemental distribution is 

very similar between measuring methods. The only exception is oxygen content which is higher in the 

combustion analysis. Low oxygen concentration can imply that the carbohydrates are somewhat 

underdetermined in our macromolecule quantification. This is also supported by the comparison of 

ribose measured as carbohydrates and as RNA (Figure 4.10). 
 

                              

Figure 5.3: Average elemental composition of E. coli measured as macromolecules (blue) and by combustion 

(orange). Nitrogen values from E. coli C-lim 0.1, N-lim 0.2, and N-lim 0.1 measured by combustion are excluded. 

In Table 5.1 the E. coli biomass compositions measured in this work are compared to 

measurements done by Beck et al. (33) and to the gold-standard E. coli biomass composition reported 

by Neidhardt et al. (35). Of our E. coli cultures, E. coli U-lim has the growth conditions that are closest 

to both Neidhardt et al. and Beck et al. The composition data from Neidhardt et al. are based on E. coli 

strain B grown in glucose minimal medium at 37 °C and harvested at a growth rate of 1.5 h−1. Beck et 

al. measured the biomass composition of E. coli strain K-12 MG1655 grown in a glucose minimal 

medium at 37 °C and harvested during exponential growth. The composition reported by Neidhardt is 

scaled up to 100 % and the “other” group (see Table 5.1) consists of non-carbohydrate monomers of 

lipopolysaccharides and peptidoglycan as well as vitamins, building block metabolites, and inorganic 

ions.  
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Table 5.1: Comparison of measured macromolecule and monomer composition of E. coli to the compositions 

found by Beck et al. (33) and Neidhardt et al. (35). All concentrations are given in mass % of total CDW. “-” 

means not measured, “n.d.” means not detected. Red numbers are measured without technical replicates. The 

remaining measurements listed in this work are the average of three technical replicates. Standard deviations are 

not included due to lack of space. For measurements and standard deviations see tables in the previous chapter or 

Supplementary material S2. 

Compound 

E. coli 

C-lim 

0.4 

E. coli 

C-lim 

0.2 

E. coli 

C-lim 

0.1 

E. coli 

N-lim 

0.4 

E. coli 

N-lim 

0.2 

E. coli 

N-lim 

0.1 

E. coli 

U-lim  

Beck  

et al. 

Neidhardt  

et al. 

Protein 52.3 54.0 66.4 63.4 47.2 54.0 41.1 35.2 55.0 

   Alanine 4.7 4.8 5.7 5.5 4.1 4.5 4.3 2.5 3.4 

   Arginine 2.8 3.0 3.3 3.3 2.5 2.3 2.5 2.4 4.3 

   Asparagine/Aspartate 6.9 7.1 8.5 8.2 6.2 6.5 5.0 3.5 5.2 

   Cystine 0.4 0.5 0.8 0.6 0.5 0.7 0.5 0.4 0.9 

   Glutamine/Glutamate 8.2 8.4 9.7 10.0 7.0 9.0 4.6 5.0 6.4 

   Glycine 1.4 1.4 1.6 1.6 1.2 1.1 1.2 2.3 3.3 

   Histidine 1.1 1.1 1.3 1.4 1.0 1.1 1.2 0.7 1.2 

   Isoleucine 2.6 2.9 3.5 3.4 2.5 3.1 1.8 1.7 3.1 

   Leucine 5.0 5.1 6.2 6.2 4.5 4.9 4.0 2.6 4.8 

   Lysine 3.2 2.7 3.7 3.3 2.9 3.8 3.4 2.4 4.2 

   Methionine 0.6 0.7 1.0 0.9 0.5 0.5 0.4 1.1 1.9 

   Phenylalanine 2.6 2.7 3.5 3.2 2.4 2.8 3.0 1.8 2.6 

   Proline 2.0 2.1 2.7 2.5 1.9 2.2 1.7 1.3 2.0 

   Serine 2.1 2.2 2.7 2.5 1.9 2.2 1.8 1.4 1.8 

   Threonine 2.4 2.6 3.2 3.1 2.3 2.5 2.3 1.7 2.4 

   Tryptophan 1.1 1.2 1.9 1.5 1.2 1.6 1.2 0.8 1.0 

   Tyrosine 1.9 1.9 2.8 2.3 1.9 2.0 0.9 1.4 2.1 

   Valine 3.2 3.5 4.2 4.2 3.0 3.3 1.4 2.2 4.0 

Carbohydrate 2.9 2.9 3.6 9.9 18.48 15.05 3.47 4.2 5.3 

   Glucose 1.8 1.8 2.0 9.0 17.5 9.0 2.5 4.2 2.7 

   Galactose 0.4 0.4 0.4 0.4 0.4 0.2 0.4 - - 

   Glucuronic acid n.d. n.d. n.d. n.d. n.d. 0.6 n.d. - - 

   Rhamnose n.d. n.d. 0.6 n.d. n.d. 3.6 n.d. - - 

   Glucosamine 0.6 0.6 0.7 0.6 0.6 1.6 0.6 - 0.3 

   N-acetylglucosamine n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 0.6 

   N-acetylmuramic acid - - - - - - - - 0.8 

   KDO - - - - - - - - 0.6 

   Heptose - - - - - - - - 0.5 

Lipid 5.9 2.8 6.1 5.9 5.2 4.9 5.3 6.7 9.1 

DNA 6.5 - - 5.3 6.0 1.3 1.3 1.0 3.1 

   dAMP 1.6 - - 1.3 1.5 0.3 0.3 0.2 0.8 

   dCMP 1.5 - - 1.3 1.4 0.3 0.3 0.2 0.7 

   dGMP 1.7 - - 1.3 1.4 0.3 0.3 0.3 0.8 

   dTMP 1.6 - - 1.3 1.5 0.3 0.3 0.2 0.7 

RNA 17.5 11.9 11.9 17.1 14.0 8.8 19.0 17.2 20.5 

   AMP 4.6 3.1 3.1 4.5 3.7 2.3 5.0 4.5 5.4 

   CMP 3.7 2.5 2.5 3.6 3.0 1.9 4.0 3.6 3.8 

   GMP 5.9 4.0 4.0 5.7 4.7 2.9 6.4 5.8 7.0 

   UMP 3.4 2.3 2.3 3.3 2.7 1.7 3.7 3.3 4.2 

Others - - - - - - - - 7.0 

Total 85.0 75.6 92.1 101.6 90.8 84.1 70.3 64.3 100 
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From Table 5.1 we can see that the macromolecular measurements sum up to an average of over 

100 % of the dry weight of E. coli N-lim 0.4. This overdetermination is thought to mainly be caused by 

an over-quantification of proteins. Several of the protein measurements may be overdetermined due to 

volume loss during hydrolysis (as discussed in subsection 3.2.1). Both E. coli N-lim 0.4 and E. coli C-

lim 0.1 have a great standard deviation in protein measurements and are suspected to have considerably 

overdetermined protein contents (see Table 4.7). Of all E. coli samples, the total macromolecule 

recovery was lowest in E. coli U-lim. Due to modifications of the protein quantification, the protein 

content in this culture was not significantly overdetermined, which might be the reason for the higher 

precision in this sample. Generally, the precision is high for the measurements of carbohydrates, lipids, 

and RNA, and since DNA contributes only a small portion of the total biomass, most of the uncertainty 

results from protein measurements (Table 4.7).  

Compared to the value reported by Neidhardt et al. (35) our protein contents are generally low 

(Table 5.1). The exceptions are E. coli C-lim 0.1 and E. coli N-lim 0.4 which are suspected to be 

overdetermined based on their high standard deviation (Table 4.7). The protein content measured in  

E. coli U-lim, which is the most reliable of our protein measurements, is considerably lower than 

Neidhardt et al., but still higher than what was measured by Beck et al. (33) (Table 5.1). Increasing the 

amount of biomass used for protein determination from ~1 mg to ~ 10 mg (as done for E. coli U-lim) 

would be an improvement of the method we have used. This would not only reduce the chance of 

overdetermination, but also minimise the potential loss caused by biomass sticking to the walls of the 

glass veils. By weighting the samples before and after hydrolysis one could also assess the potential 

overdetermination from volume loss.  

The relative amino acid distribution is quite stable between our E. coli cultures (see Figure 4.8 

or Appendix B). The distribution is also similar to what was reported by Neidhardt et al. (35) and Beck 

et al. (33), but there are some differences worth pointing out. The relative methionine content measured 

in our cultures is almost 3 times lower than what is previously reported. This indicates that methionine 

most likely was oxidised during the HPLC sample preparation as discussed in section 4.2.1. The content 

of glycine measured in our samples is also less than half of the previously reported glycine content. This 

is partly because we estimated glucose content from the overall content of glycine and arginine and the 

genomic codon ratio (see Supplementary material S2). However, the arginine content in our samples is 

also somewhat lower than what was found by Neidhardt et al and slightly less than what Beck et al. 

found, meaning that the total glycine and arginine content we measured is lower than previously 

reported. The relative content of alanine and glutamine/glutamate are considerably higher in all our 

samples than what was reported by Neidhardt et al. and Beck et al. Furthermore, the relative 

asparagine/aspartate is also notably higher in all our samples, except E. coli U-lim, than what Neidhardt 

et al. reports, but similar to what reported by Beck et al. As Neidhardt et al. analysed another E. coli 

strain than what we and Beck et al. did, the variation in asparagine/aspartate content can be explained 

by strain-dependent variations.   

Our carbohydrate measurements are lower than what was found by Neidhardt et al. (35) and 

Beck et al. (33) in all samples that were not grown in nitrogen limitation. As carbohydrate content is 

expected to be much higher in nitrogen-limited cultures, these samples are not comparable to Neidhardt 

et al. and Beck et al. An underdetermination of carbohydrate content has already been suggested from 

the comparison of ribose measured as carbohydrates and RNA (Figure 4.10), and from the comparison 

of total oxygen content measured as macromolecules and by combustion analysis (Figure 5.3). Based 

on this, and that our carbohydrate content is notably lower than previously reported values, we can 

conclude that the carbohydrate content is most likely somewhat underdetermined. On the other hand, 

the carbohydrate assay we used has an impressive improvement of resolution compared to carbohydrate 

assays traditionally used in biomass composition analysis (33, 105). In addition to glucose, we have 
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quantified galactose, glucuronic acid, rhamnose, and glucosamine, though glucuronic acid and rhamnose 

were not detected in all samples. In contrast, Beck et al. assumed all carbohydrates were glucose, 

completely ignoring carbohydrates found in peptidoglycan and LPS. Because N-acetyl-glucosamine was 

deacetylated during hydrolysis and detected as glucosamine, we could not quantify peptidoglycan in our 

samples (109)  (discussed in subsection 3.2.2). Other carbohydrates that were quantified by Neidhardt 

et al. and not by us are N-acetylmuramic acid, heptoses, and 3-deoxy-d-manno-2-octulosonic acid 

(KDO). All these compounds are expected to be present in E. coli, as they are essential parts of 

peptidoglycan (N-acetylmuramic acid) or common components of the core oligosaccharide in LPS 

(heptoses and KDO) (61, 62). 

The lipid content measured in our samples is lower than reported by Neidhardt et al. (35) and 

slightly lower than reported by Beck et al. (33)(Table 5.1). A part of the lipids was most likely lost due 

to inadequate extraction (Table 4.3). If the lipids content is scaled up to account for this loss (~10 % 

assuming no chloroform evaporation) the values are similar to the measurements done by Beck et al., 

but still lower than what Neidhardt et al. reported. Adding more repetitions of the extraction step to the 

method could potentially increase the lipid recovery, but not enough to reach the lipid level reported by 

Neidhardt et al. The remaining difference can be a consequence of variations between strains (144). The 

prolonged storage of the E. coli samples, due to the Covid-19 pandemic is a likely reason why lipid class 

distribution could not be measured directly. In the future, the UHPSFC-MS method described by 

Bartosova et al. (118) should be applied to quantify lipid classes. As the fatty acid distribution of E. coli 

is strain- and condition-dependent (145), this also should be measured directly. This could be done by 

FAME (fatty acid methyl ester) analysis using gas chromatography-vacuum ultraviolet spectroscopy 

(GC-VUV) (146). 

When comparing our DNA measurements to Neidhardt et al. (35), it appears that the DNA 

content has been overdetermined in some samples and underdetermined in others (Table 5.1). The 

samples were not pure and the overdetermination can be a result of contamination (Table 4.4). Under-

determination is most likely caused by inadequate extraction. Since both these sources of error are linked 

to the isolation step, one should consider changing to a method where isolation is not needed. E.g., by 

PicoGreen marking and fluorometric spectrophotometry, as suggested by Sandaa et al. (132). Our RNA 

measurements are in coherence with both Neidhardt et al. and Beck et al. (33) (Table 5.1). Because all 

our samples, except E. coli U- lim, had low growth rates, they were expected to have significantly lower 

RNA content than what Neidhardt et al. and Beck et al. measured (69). The RNA content in E. coli  

U-lim is also somewhat lower than in Neidhardt et al., but this is most likely also a result of different 

growth rates. Optimally, the nucleotide distribution of both DNA and RNA should be measured directly 

instead of estimated. A method that shows great promise for this task is the HPLC method proposed by 

Huang et al. (147). 

In addition to the macromolecules that we have measured, Neidhardt et al. (35) have reported 

the content of LPS, peptidoglycan, precursor molecules of monomers, vitamins, cofactors, and inorganic 

ions. We account for a part of the lipopolysaccharide in our carbohydrate assay, but the rest of these 

molecules are not measured in our method. Hence, we are not aiming for 100 % biomass recovery with 

our method. These molecules that remain undetected do not necessarily contribute a great part of the 

total biomass. Neidhardt et al. report that soluble metabolites and inorganic ions make up a total of  

3.9 % of the dry weight. Nevertheless, they are essential for cell function and growth and should 

therefore be considered when constructing a BOF. In the future measurement of these compounds might 

be added to the biomass composition analysis.  

The total biomass recovery in this work is considerably higher than what was reported by Beck 

et al. (33) (Table 5.1). Even when the standard deviation is subtracted (Table 4.7), all E. coli cultures 

have a greater recovery than what Beck et al. reported. High recovery percentages are important in BOF 
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determination because they leave less room for error associated with scaling the content to 1 g. As 

discussed in subsection 4.2.6, the scaling factor is not necessarily proportional to the loss of recovery of 

each macromolecule group.  

Our measurements show that the biomass composition of E. coli varies greatly with growth 

conditions (Table 5.1). This is maybe most evident from the glycogen and total carbohydrate content. 

The measured glycogen content is more than four times higher in the strongly nitrogen-limited cultures 

than in the carbon-limited cultures. Also, a considerable amount of rhamnose was detected in E. coli N-

lim 0.1 and some were found in E. coli C-lim 0.1, while the remaining cultures did not contain detectable 

levels of this sugar. Furthermore, the measured RNA content is dependent on the growth rate. There 

also appear to be some variations in the total protein and DNA content. However, the uncertainty of 

some of these measurements is high, making it hard to conclude if these are relevant biological variations 

or just variations due to measurement error.  

The measured macromolecule composition of S. cerevisiae, S. salar, and A. thaliana are shown 

in Table 5.2 alongside previously reported values. Even though we measured all macromolecule groups 

of S. cerevisiae, only 32.8 % of the biomass was recovered. The loss is mainly in proteins and 

carbohydrates, as both these macromolecule classes are assumed greatly underdetermined. In S. salar 

muscle, DNA is not expected to make up a big proportion of the total biomass, hence, the recovery of 

28.6 is considered low. The loss is assumed to mainly be caused by the underdetermination of proteins 

as the other macromolecules are in coherence with previously reported values.  

For A. thaliana 53.3 % of the dry weight content was recovered, by measuring proteins, 

carbohydrates, and lipids. DNA and RNA are not expected to contribute much to the total dry weight. 

Still, the biomass recovery is promising. It is hard to say where the biomass is “lost”, as all measured 

macromolecule groups were either higher than or at coherence with previously reported values. A part 

of the remaining biomass is accounted for by soluble metabolite pools, cofactors, vitamins, inorganic 

ions, and pigments. 

Generally, the methods for protein and carbohydrate determination would need some 

modifications to work well on eukaryotes. The addition of a homogenisation step could potentially 

increase the recovery of both proteins and carbohydrates, especially for multicellular organisms, as this 

would break down complex structures and make the proteins and carbohydrates more available for 

measurement.  

Table 5.2: Comparison of the measured macromolecular composition of S. cerevisiae, S. salar, and A. thaliana to 

previously reported values. Values are given in mass % of total CDW. “-“ means not measured or no reference. 

Red values are measured with no technical replicates. The remaining values are the average of three technical 

replicates.  

Macromolecule 
S. cerevisiae S. salar A. thaliana 

This work Reference This work Reference This work Reference 

Protein 13.38 ± 0.67 58 – 63 a  5.26 ± 0.46 ~ 76 e  3.27 ± 1.13 1 – 2.5 g 

Carbohydrate 13.24 ± 1.18 43.6 b  0.15 ± 0.04 - 47.2 ± 2.1 22.44 h 

Lipid  1.64 1.21 c  22.7 21.03 e 2.80 < 1.0 i 

DNA   1.41 ± 0.45 -  - -  - - 

RNA   3.12 ± 0.14   0.93 – 1.13 d  0.45 ± 0.03 0.71 f  - - 

Total 32.8 ± 2.4 - 28.6 ± 0.5 -  53.3 ± 3.2 - 
a Albers et al. (103) 
b Plata et al. (111) 
c Arneborg et al. (123) 

d Ertugay and Hamamci (136) 
e Bell et al. (104) 
f McKee et al. (135) 

g Li et al. (102) 
h Teng et al. (112) 
i Gigon et.al. (122) 

 

The FBA simulation using our experimentally determined BOFs demonstrate that the BOF 

affects prediction results. Our experimentally determined BOF for exponentially growing E. coli 

achieved better predictions of growth rate than the wild-type BOF from iML1515, showing that more 
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condition-specific BOFs can increase prediction accuracy (Table 4.11). The difference in predictions 

was, however, even more evident from the predicted exchange fluxes, as the predictions made by the 

wild-type BOF from the model were dominated by respiration while the experimentally determined 

BOF predicted more fermentation. Furthermore, simulations of the wild-type BOF and the BOFs 

constructed for E. coli C-lim 0.1 and E. coli N-lim 0.1 during strong nitrogen limitation accentuate how 

various BOFs affect growth rate (Figure 4.15).  

There are some indications that the BOFs we have constructed for the continuous cultures tend 

to overestimate the oxygen requirement. Comparison of predictions made by our C-limited BOFs to 

measured uptake rates of a related E. coli shows that the predicted oxygen uptake is consequently higher 

than the measured uptake (Table 4.14). Even though the strain and growth conditions do not match our 

BOF completely, this pattern should be noted. Furthermore, the high intersects of the linear regressions 

between oxygen and limiting nutrient uptake predicted by these BOFs, also suggest overestimated 

oxygen uptake (Figure 4.13 B). On the other hand, the predicted uptake rates of limiting nutrient are 

reasonable, both when considering the relationship to growth rate and compared to previously reported 

values. 

By growing the measuring some of the exchange rates of E. coli U-lim during cultivations, we have obtained a 

basis for evaluation of the prediction results. While the experimentally determined BOF for E. coli U-lim predicted 

a more accurate growth rate than the wild-type BOF from the model, the wild-type BOF make more accurate 

predictions of CO2 secretion (Table 4.11 

Table 4.11). One way to further compare the accuracies of the BOFs would be to analyse 

experimental measurements of fermentation products. By avoiding lyophilisation of media samples, the 

fermentation product secretion rates could be determined by NMR in the future. Measurement of the 

exchange rates of the continuous cultures would support further assessment of the BOFs constructed for 

these samples. This would be especially useful for the nitrogen-limited cultures, as no published material 

was found on the ammonia uptake rate of E. coli during nitrogen-limited growth. Furthermore, such 

measurements would allow us to estimate the maintenance energy requirements of our cultures in a 

similar way to what was done in the iML1515 model.  
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6 Conclusion and Outlook 

The principal aim of this thesis was to construct condition-specific BOFs for E. coli based on 

experimentally determined data. The biomass composition of seven E. coli cultures was successfully 

measured and implemented in the iML1515 model for phenotypic evaluation. Biomass recovery within 

this work was at 86 % on average. This is considerably more than what Beck et al. (33) reported  

(64.3 %) and matches the impressive 82 % achieved by Long and Antoniewicz (34) using GC/MS with 
13C labelled samples.  

The simulation results using the constructed BOFs are promising. The growth rate prediction 

accuracy was increased by 5 % using the BOF constructed for E. coli U-lim compared to E. coli wild-

type BOF from iML1515. Furthermore, the BOFs constructed for the remaining E. coli cultures also 

predicted reasonable uptake rates of limiting nutrients, both compared to experimentally measured 

values and based on theoretical relationships between growth and uptake (139, 141). This shows a 

potential for improving GEMs by constructing condition-specific BOFs. However, more detailed 

measurements of exchange rates should be done during cultivation in the future, as this would give a 

better basis for the evaluation of the simulation results. 

The pipeline of experimental methods used in this work is time efficient and has allowed us to 

measure the complete macromolecule content in E. coli. All measurements are performed on the same 

sample of E. coli avoiding any variations in the phenotypic state between the macromolecule groups. 

Furthermore, our experimental results are comparable to the gold-standard biomass composition of E. 

coli reported by Neidhardt et al. (35). Our measured carbohydrate content suggests a somewhat lower 

recovery compared to previously reported values. On the other hand, the resolution achieved using this 

method is superior to what Beck et al. (33) and Long and Antoniewicz (34) have reported. The increased 

resolution is of great value since the method measures components of peptidoglycan and LPS – two 

important contributors to bacterial biomass (35).  

Carbohydrate, lipid, and RNA quantification show high precision. For some of the E. coli 

cultures, the protein quantification had great variation between technical replicates, however, the 

modifications made to the procedure, that were tested on E. coli U-lim, showed great improvement of 

precision. The lipid, DNA, and RNA quantification methods in this work, all include extraction steps. 

Inadequate extraction is a potential cause of the underdetermination of these macromolecules. Especially 

in the case of DNA, there appears to be considerable loss during extraction. For DNA and RNA 

quantification, methods without isolation steps should be considered in the future. Another alternative 

would be to use an extraction standard in these procedures to evaluate loss during sample preparation, 

such as labelled lipids for lipid quantification (148). By using a more refined MS method for 

quantification of DNA and RNA, labelled nucleotides could be used as a standard in these 

quantifications (149). 

Implementing the lipid class and fatty acid distribution reported by Neidhardt et al. into our 

BOFs makes them less strain and growth condition-specific and should therefore be avoided in the 

future. The lipid class assay using UHPSFC-MS described by Bartosova et al. (118) can be used if 

prolonged storage of the samples is avoided. Additionally, a FAME analysis could be performed to 

determine the fatty acid distribution. By measuring the nucleotide distribution in DNA and RNA 

directly, we could assess whether it varies significantly with growth conditions or deviates much from 

values estimated from the genome. Direct measurements of monomer distribution are especially 

important if this pipeline of methods is to be applied to organisms that are not as extensively studied as 

E. coli. 

The specificity of the BOFs could be increased further by extending our pipeline to include 

methods for quantification of ions, vitamins, cofactors, and other molecules that do not fit into the five 
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macromolecule groups. Even though the contribution from these compounds to the total biomass of E. 

coli is small, other organisms may produce considerably larger amounts of these molecules. For 

example, hypersaline species of the microalgae Dunaliella can accumulate up to 14 % β-carotene (150). 

Furthermore, measuring these compounds would increase the biological relevance for environment- 

specific pathways. Another important contribution to the BOFs, that strongly affects simulation 

predictions, is the maintenance energy term (151). By measuring exchange rates during cultivation, 

specific maintenance energy could be calculated for various organisms (152). It should be considered to 

do this in the future, especially for less studied organisms than E. coli.  

The pipeline of methods used in this work has shown great potential for construction of 

condition-specific E. coli BOFs. The application range can be broadened to include more organisms by 

addition of the steps discussed above. Measurements of S. cerevisiae, S. salar, and A. thaliana biomass 

show that the methods for protein and carbohydrate quantification must be modified for construction of 

eucaryote BOFs, potentially by the addition of homogenisation steps. Furthermore, all methods in the 

pipeline should be optimised for high-throughput in the future.   
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Appendix A: NMR based quantification of glucose, lactate and 

glutamine in cell culture media 

 

Purpose: 
Quantify glucose, lactate and glutamine in cell culture media by NMR. This is interesting as 

glucose and glutamine are the main carbon and energy sources in cell culture, and a proportion of the 

glucose carbon is excreted as lactate. Samples of 2,5 mL are collected during metabolome sampling, 

and stored at -20°C. The samples are concentrated by freeze-drying, reconstitution in d2O and quantified 

from an external standard using the processing software Topspin. 

 

Materials: 

- Freeze-dryer 

- Vortex 

- Pipette and pipette tips (1000 µL) 

- NMR tubes (5 mm) 

- Analytical scale 

- 15 mL centrifuge tubes 

- Computer with TopSpin installed 

Chemicals: 

- d2O 

- Creatine  
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Wet lab protocol: 

 
Prepare samples for NMR 

1) Pre-cool freeze-dryer 

2) Collect samples from freezer: 2,5 mL of sample in 15 mL centrifuge tube 

3) Replace the lids with lids with holes 

4) Place tubes in liquid nitrogen 

5) Place tubes in pre-cooled freeze dryer. Leave until dry 

6) Add 600 µL d2O to freeze-dried sample, vortex thoroughly 

7) Transfer 500 µL of sample to labeled NMR tube, cap the tube 

8) Store the samples cold (4°C) 

Prepare external standard for NMR 
 

Creatine (131,13 g/mol) is used as an external standard to allow for quantification. Prepare a 70 

mM solution with d2O:  

 

                           0.070 mol/L × 131.13 g/mol × 0.005 L = 0.0458 g = 45.9 mg     (A-1) 

1) Weigh out 45,9 mg creatine 

2) Dissolve in 5 mL d2O in 15 mL centrifuge tube, vortex thoroughly 

3) Transfer 500 µL of standard to labeled NMR tube, cap the tube 

Record NMR spectra 

Record spectra: samples and the external standard on 400 MHz instrument.  

1) Log into Icon NMR to program recording: 

- Choose available slots (remove and delete samples that are “finished”) 

- Type name of sample 

- Choose method: “N PROF_1H” (= noesyggpr1d, 32 scans) 

- Choose solvent: d2O 

- Program run in randomized order 

2) Wipe NMR tubes with paper wipes, place in blue “spinners” using the depth meter 

3) Place samples with spinner in the slots programed in Icon NMR 

4) Icon NMR: Submit the samples 

5) When spectra is recorded, store the samples cold (4°C) 
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Dry lab protocol: 
Process NMR spectra using TopSpin. Topspin download:  

https://www.bruker.com/nc/service/support-upgrades/software-downloads/nmr/free-topspin-

processing.html  

Quantify peaks using quantification tool “ERETIC 2”. Table A.1 lists which peaks to use for 

quantification, the number of atoms/signal, molar masses and which region to integrate. 
 

TopSpin: Process parameter settings 

Must be performed for all spectra 

1) Copy raw spectra from \\felles.ansatt.ntnu.no\nt-unix\felles\nmrdata\nmr400ny 

2) Open spectra in TopSpin 

3) Command line: Write “efp”: Fourier transforms spectrum with line broadening 0,3 Hz 

4) Command line: Write “apk”: Phases spectrum. Can be performed manually if automatic 

phasing is bad (External standard: use first and second creatine peak as 0 and 1): 

- Enter “Process” menu → Enter “Adjust phase” menu → choose α-glucose peak at 

~5,2 ppm → Press “0”, adjust phase by moving cursor → Choose lactate peak at ~1,3 

ppm → Press “1”, adjust phase by moving cursor → Press “Return and save phased 

spectrum” 

5)  Command line: Write “abs n”: Corrects baseline 

TopSpin: ERETIC 2 calibration 

1) Open creatine spectrum (processed) 

2) Enter “Process” menu → Enter “Integrate” menu → Press “Define new region using cursor” 

→ Integrate signal 

3) Right click → Press “Eretic” → Press “Define as Eretic Refrence” 

- Define concentration, number of atoms, region start and end, sample volume, molar 

mass (Table A.1) 

4) Press “Return, save regions” 

TopSpin: Quantification with external standard 

1) Open processed spectra 

2) Zoom in on glucose, lactate or glutamine peak 

3) Perform manual baseline correction close to each peak of interest: 

- Enter “Process” menu → Enter “Advanced” menu → Press “Correct Baseline“ → 

Press “Manual correction mode” → Press “A” “B” and/or “C” to adjust baseline by 

moving cursor → Press “Return, save regions” 

4) Enter “Process” menu → Enter “Integrate” menu → Press “Define new region using cursor” 

→ Integrate signal 

5) Right click → Press “Eretic” →  Press “Calculate concentration” 

- Add new compound by clicking “+” 

- Define sample volume, number of atoms, region start and end, molar mass  

(Table A.1) 

6) Press “Return, save regions” 

7) Press the “Integrals” tab, record the concentration (Eretic) 

- Right click on purple header, tic “Concentration (Eretic)” to view this option 

 

Calculate original concentration 



Appendix A 

______________________________________________________________________________________ 

56 

 

1) Perform corrections according to Table A.1 

2) Correct for sample being concentrated: 2,5 mL reconstituted in 0,6 mL:                    

Original concentration = Measured concentration/(2,5/0,6) 
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Compound Molar mass 

(g/mol) 

Protons for quantification Peak for quantification (~ppm) Integrate region Atoms/signal  Corrections 

Creatine 131,1332 N-CH3 

 

3  From middle of 

signal: 0,015 

ppm to each side 

3  

Glucose 180,1559 C1

 

5, 2 

 

From middle of 

signal: 0,02 ppm 

to each side 

1 Correct for anomers: 

- α-glucose peak is integrated 

- α-glucose: 36% 

- Measured concentration = 

 [α-glucose]/36*100 

Lactate 90,0795 βCH3 

 

1,3 From middle of 

signal: 0,02 ppm 

to each side 

3  

Glutamine 146,1445 γCH2 

 

 2,4 From middle of 

two peaks of 

multiplet with 

highest ppm: 

0,01 ppm to each 

side 

2 Correct for integrating two peaks of the multiplet: 

- The two peaks with highest ppm: no overlap with 

other signals 

- Check what proportion of the multiplet the two peaks 

with highest ppm constitute  

- Measured concentration = [Two peaks 

integrated]/percentage of multiplet integrated*100 
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Appendix B: Amino acid distribution  

 

The measured amino acid concentration in all E. coli samples are shown in Table B.1. And the 

relative amino acid distribution is shown in Table B.2 
 

Table B.1: Measured amino acid concentration in all E. coli samples. The concentrations shown are averages of 

three technical replicates. Concentrations are given in mass % of total  

Amino acid 
E. coli  

C-lim 0.4 

E. coli  

C-lim 0.2 

E. coli  

C-lim 0.1 

E. coli  

N-lim 0.4 

E. coli  

N-lim 0.2 

E. coli  

N-lim 0.1 

E. coli  

U-lim 

Aspartate 3.91  ± 0.85 4.01 ± 0.46 4.84 ± 1.45 4.67 ± 1.89 3.51 ± 0.22 3.72 ± 0.50 2.86 ± 0.39 

Glutamate 4.67 ± 0.63 4.74 ± 0.57 5.52 ± 1.54 5.66 ± 1.82 3.93 ± 0.38 5.08 ± 0.44 2.59 ± 0.33 

Asparagine 2.97 ± 0.65 3.04 ± 0.35 3.68 ± 1.10 3.54 ± 1.43 2.67 ± 0.16 2.82 ± 0.38 2.17 ± 0.30 

Histidine 1.11 ± 0.20 1.09 ± 0.08 1.34 ± 0.40 1.35 ± 0.40 0.96 ± 0.08 1.09 ± 0.17 1.18 ± 0.11 

Serine 2.08 ± 0.16 2.22 ± 0.31 2.70 ± 0.88 2.55 ± 1.01 1.86 ± 0.20 2.19 ± 0.22 1.76 ± 0.26 

Glutamine 3.57 ± 0.48 3.63 ± 0.44 4.22 ± 1.18 4.33 ± 1.39 3.01 ± 0.29 3.89 ± 0.34 1.98 ± 0.25 

Glycine 1.39 ± 0.15 1.44 ± 0.16 1.60 ± 0.47 1.60 ± 0.52 1.21 ± 0.16 1.11 ± 0.23 1.21 ± 0.06 

Arginine 2.85 ± 0.31 2.95 ± 0.33 3.29 ± 0.97 3.30 ± 1.06 2.48 ± 0.33 2.28 ± 0.46 2.47 ± 0.12 

Threonine 2.38 ± 0.26 2.62 ± 0.26 3.24 ± 0.88 3.13 ± 1.20 2.26 ± 0.28 2.51 ± 0.31 2.26 ± 0.29 

Alanine 4.70 ± 1.13 4.76 ± 0.48 5.69 ± 1.70 5.45 ± 1.99 4.09 ± 0.26 4.54 ± 0.59 4.30 ± 0.93 

Tyrosine 1.87 ± 0.36 1.94 ± 0.17 2.75 ± 0.77 2.27 ± 0.86 1.91 ± 0.20 1.99 ± 0.40 0.86 ± 0.18 

Methionine 0.64 ± 1.09 0.79 ± 0.71 1.04 ± 0.86 0.92 ± 1.46 0.47 ± 0.73 0.48 ± 0.77 0.44 ± 0.50 

Valine 3.20 ± 0.24 3.53 ± 0.26 4.20 ± 1.18 4.11 ± 1.25 2.98 ± 0.43 3.33 ± 0.31 1.37 ± 1.20 

Phenylalanine 2.56 ± 0.41 2.69 ± 0.11 3.49 ± 0.94 3.18 ± 1.15 2.41 ± 0.22 2.77 ± 0.29 3.07 ± 1.31 

Isoleucine 2.64 ± 0.16 2.90 ± 0.26 3.55 ± 1.01 3.37 ± 1.05 2.48 ± 0.41 3.11 ± 0.16 1.78 ± 0.12 

Leucine 5.00 ± 0.82 5.15 ± 0.47 6.17 ± 1.74 6.12 ± 2.40 4.49 ± 0.42 4.86 ± 0.68 4.03 ± 1.46 

Lysine 3.20 ± 0.88 2.74 ± 1.21 3.70 ± 1.29 3.28 ± 0.65 2.90 ± 1.30 3.76 ± 0.97 3.44 ± 1.44 

Cysteine 0.42 ± 0.12 0.46 ± 0.12 0.82 ± 0.19 0.59 ± 0.22 0.49 ± 0.10 0.72 ± 0.03 0.52 ± 0.51 

Proline 2.03 ± 0.31 2.11 ± 0.13 2.65 ± 0.74 2.49 ± 0.87 1.86 ± 0.19 2.16 ± 0.21 1.66 ± 0.15 

Tryptophan 1.12 ± 0.25 1.19 ± 0.17 1.89 ± 0.47 1.49 ± 0.53 1.19 ± 0.19 1.62 ± 0.09 1.19 ± 0.85 

Total 52.29 ± 7.65 54.00 ± 3.91 66.40 ± 18.65 63.38 ± 21.95 47.17 ± 4.76 54.05 ± 5.44 41.12 ± 1,67 

 

Table B.2: Relative amino acid distribution in all E. coli samples given in mass % of total protein.  

Amino acid 
E. coli  

C-lim 0.4 

E. coli  

C-lim 0.2 

E. coli  

C-lim 0.1 

E. coli  

N-lim 0.4 

E. coli  

N-lim 0.2 

E. coli  

N-lim 0.1 

E. coli  

U-lim 

Aspartate 7.47 7.43 7.30 7.36 7.45 6.88 6.95 

Glutamate 8.92 8.78 8.31 8.93 8.34 9.40 6.29 

Asparagine 5.67 5.64 5.54 5.59 5.65 5.22 5.28 

Histidine 2.11 2.03 2.01 2.14 2.04 2.01 2.87 

Serine 3.97 4.10 4.07 4.02 3.94 4.06 4.27 

Glutamine 6.83 6.72 6.36 6.83 6.38 7.20 4.81 

Glycine 2.65 2.66 2.42 2.53 2.56 2.06 2.93 

Arginine 5.45 5.47 4.96 5.20 5.26 4.23 6.02 

Threonine 4.55 4.85 4.88 4.94 4.78 4.64 5.49 

Alanine 8.99 8.81 8.57 8.60 8.68 8.40 10.45 

Tyrosine 3.57 3.59 4.14 3.58 4.06 3.67 2.09 

Methionine 1.22 1.46 1.56 1.45 0.99 0.89 1.08 

Valine 6.12 6.54 6.32 6.48 6.33 6.17 3.34 

Phenylalanine 4.89 4.97 5.26 5.02 5.10 5.13 7.45 

Isoleucine 5.05 5.37 5.34 5.31 5.26 5.75 4.33 

Leucine 9.57 9.54 9.30 9.66 9.52 9.00 9.79 

Lysine 6.12 5.08 5.57 5.17 6.15 6.96 8.37 

Cysteine 0.81 0.85 1.23 0.94 1.04 1.33 1.26 

Proline 3.89 3.91 4.00 3.92 3.95 4.00 4.04 

Tryptophan 2.14 2.21 2.84 2.35 2.52 3.00 2.88 

Total 100 100 100 100 100 100 100 
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Appendix C: Ribose comparison between carbohydrates and RNA 

 

The average ribose content in all E. coli cultures, measured as carbohydrates and as RNA are 

shown in Table C.1. Figure C.1 shows a linear regression between ribose measured as carbohydrates 

and as RNA. For calculations see supplementary material S2. 
 

Table C.1: Ribose content in all E. coli cultures measured as RNA and carbohydrates. Values are the average of 

three replicates given in mass % of total CDW. 

Sample Measured as RNA Measured as carbohydrate 

E. coli C-lim 0.4 6.77 ± 0.24 5.67 ± 0.21 

E. coli C-lim 0.2 4.58 ± 0.29 3.23 ± 0.15 

E. coli C-lim 0.1 4.59 ± 0.15 3.25 ± 0.03 

E. coli N-lim 0.4 6.59 ± 0.26 5.13 ± 0.19 

E. coli N-lim 0.2 5.40 ± 0.17 4.03 ± 0.13 

E. coli N-lim 0.1 3.38 ± 0.44 2.10 ± 0.22 

E. coli U-lim 7.34 ± 0.17 5.75 ± 0.38 

 

 
Figure C.1: Linear regression between average ribose content measured as RNA and carbohydrate in all E. coli 

cultures. 
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Appendix D: Protein and carbohydrate functions and chemical formulas 
 

The general protein function is shown in Equation D-1 and the general protein chemical formula 

is shown in Equation D-2. The values of the variables a – t and u – v for each E. coli sample are shown 

in Table D.1. 
 

      a His + b Ser + c Thr + d Ala + e Tyr + f Met + g Val + h Phe + i Ile + j Leu + k Lys                       (D-1) 

   + l Glu + m Gln + n Asn + o Asp + p Gly + q Arg + r Cys + s Pro + t Trp + 2 GTP + ATP 

→  H2O + 2 GTP + 2 Pi + AMP + PPi + protein 

 

           CvHwNxOySz        (D-2) 
 

Table D.1: Stoichiometric coefficients of protein functions. 

 E. coli 

C-lim 0.4 

E. coli 

C-lim 0.2 

E. coli 

C-lim 0.1 

E. coli 

N-lim 0.4 

E. coli 

N-lim 0.2 

E. coli 

N-lim 0.1 

E. coli 

U-lim 

a 0.0698 0.0696 0.0686 0.0685 0.0704 0.0652 0.0653 

b 0.0750 0.0733 0.0700 0.0754 0.0701 0.0799 0.0526 

c 0.0535 0.0533 0.0526 0.0524 0.0539 0.0499 0.0500 

d 0.0167 0.0161 0.0163 0.0171 0.0161 0.0160 0.0226 

e 0.0497 0.0507 0.0505 0.0495 0.0490 0.0509 0.0527 

f 0.0578 0.0565 0.0540 0.0581 0.0540 0.0616 0.0406 

g 0.0506 0.0503 0.0459 0.0483 0.0486 0.0392 0.0553 

h 0.0379 0.0378 0.0344 0.0362 0.0364 0.0294 0.0415 

i 0.0580 0.0615 0.0625 0.0623 0.0608 0.0595 0.0691 

j 0.1358 0.1338 0.1306 0.1306 0.1328 0.1288 0.1574 

k 0.0261 0.0263 0.0306 0.0262 0.0299 0.0271 0.0153 

l 0.0089 0.0117 0.0119 0.0088 0.0090 0.0071 0.0092 

m 0.0673 0.0713 0.0693 0.0714 0.0690 0.0681 0.0354 

n 0.0359 0.0366 0.0389 0.0369 0.0376 0.0381 0.0548 

o 0.0488 0.0512 0.0513 0.0512 0.0502 0.0557 0.0411 

p 0.0914 0.0909 0.0893 0.0917 0.0913 0.0867 0.0924 

q 0.0523 0.0437 0.0486 0.0482 0.0511 0.0598 0.0702 

r 0.0084 0.0091 0.0131 0.0098 0.0109 0.0142 0.0132 

s 0.0433 0.0435 0.0448 0.0437 0.0441 0.0451 0.0448 

t 0.0124 0.0129 0.0167 0.0136 0.0147 0.0176 0.0167 

v 4.85 4.85 4.91 4.87 4.89 4.93 4.85 

w 7.60 7.58 7.62 7.62 7.62 7.69 7.56 

x 1.32 1.31 1.31 1.32 1.32 1.31 1.35 

y 1.45 1.45 1.43 1.45 1.44 1.453 1.38 

z 0.017 0.021 0.025 0.000 0.020 0.021 0.022 
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The general carbohydrate function is shown in Equation D-3 and the general carbohydrate 

chemical formula is shown in Equation D-4. The value of the variables A – F and V – Y for each E. coli 

sample are shown in Table D.2. 
 

     A Glc-1P + B Gal-1P + C GlcUA-1P + D Rha-1P + E GlcN-1P + F GlcNAc-1P + ATP   (D-3) 

→ ADP + PPi + carbohydrate 

 

                       CVHWNXOY       (D-4) 
 

Table D.2: Stoichiometric coefficients of carbohydrate functions. 

 E. coli 

C-lim 0.4 

E. coli 

C-lim 0.2 

E. coli 

C-lim 0.1 

E. coli 

N-lim 0.4 

E. coli 

N-lim 0.2 

E. coli 

N-lim 0.1 

E. coli 

U-lim 

A 0.670 0.643 0.543 0.913 0.950 0.591 0.734 

B 0.133 0.156 0.111 0.036 0.022 0.013 0.118 

C 0 0 0 0 0 0.038 0 

D 0 0 0.172 0 0 0.267 0 

E 0.083 0.084 0.073 0.021 0.012 0.038 0.062 

F 0.114 0.117 0.101 0.030 0.016 0.052 0.086 

V 6.23 6.23 6.20 6.06 6.03 6.11 6.17 

W 10.5 10.5 10.4 10.1 10.1 10.1 10.4 

X 0.197 0.201 0.173 0.051 0.028 0.090 0.148 

Y 4.92 4.92 4.76 4.98 4.99 4.73 4.94 
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Appendix E: Compounds implemented from iML1515 
 

All compounds that were implemented from the iML1515 wild-type BOF are shown in  

Table E.1. The stoichiometric coefficients are scaled to sum up to 0.039 g. 

 

Table E.1: Compounds implemented from iML1515 with scaled stoichiometric coefficients. Stoichiometric 

coefficients are given in [μmol/g CDW h−1]. Negative stoichiometric coefficients mean that the compounds are 

consumed in the BOF. 

Compound ID Name Stoichiometry  

10fthf_c 10-Formyltetrahydrofolate −0.0489 

2fe2s_c [2Fe-2S] iron-sulphur cluster −0.0057 

2ohph_c 2-Octaprenyl-6-hydroxyphenol −0.0489 

4fe4s_c [4Fe-4S] iron-sulphur cluster −0.0543 

amet_c S-Adenosyl-L-methionine −0.0489 

btn_c Biotin −0.0004 

ca2_c Calcium −1.0851 

cl_c Chloride −1.0851 

coa_c Coenzyme A −0.0368 

cobalt2_c Co2+ −0.0055 

cu2_c Copper −0.1477 

fad_c Flavin adenine dinucleotide oxidized −0.0489 

fe2_c Fe2+ mitochondria −1.3998 

fe3_c Iron (Fe3+) −1.6276 

k_c Potassium −40.689 

mg2_c Magnesium −1.8084 

mlthf_c 5,10-Methylenetetrahydrofolate −0.0489 

mn2_c Manganese −0.1442 

mobd_c Molybdate −0.0015 

nad_c Nicotinamide adenine dinucleotide −0.3916 

nadh_c Nicotinamide adenine dinucleotide - reduced −0.0099 

nadp_c Nicotinamide adenine dinucleotide phosphate −0.0245 

nh4_c Ammonium −2.7125 

ni2_c Nickel −0.0673 

pheme_c Protoheme C34H30FeN4O4 −0.0489 

pydx5p_c Pyridoxal 5'-phosphate −0.0489 

ribflv_c Riboflavin C17H20N4O6 −0.0489 

sheme_c Siroheme C42H36FeN4O16 −0.0489 

so4_c Sulfate −0.9041 

succoa_c Succinyl-CoA −0.0215 

thf_c 5,6,7,8-Tetrahydrofolate −0.0489 

thmpp_c Thiamine diphosphate −0.0489 

udcpdp_c Undecaprenyl diphosphate −0.0121 

zn2_c Zinc −0.0710 

2dmmql8_c 2-Demethylmenaquinol 8 −0.0489 

5mthf_c 5-Methyltetrahydrofolate −0.0489 

accoa_c Acetyl-CoA −0.0611 

chor_c Chorismate −0.0489 

enter_c Enterochelin −0.0489 

gthrd_c Reduced glutathione −0.0489 

hemeO_c Heme O C49H56FeN4O5 −0.0489 

lipopb_c Lipoate (protein bound) −0.0007 

malcoa_c Malonyl CoA C24H33N7O19P3S −0.0068 
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mococdp_c Molybdopterin cytosine dinucleotide −0.0015 

mocogdp_c Molybdopterin guanine dinucleotide −0.0015 

mql8_c Menaquinol 8 −0.0489 

nadph_c Nicotinamide adenine dinucleotide phosphate - reduced −0.0734 

ptrc_c Putrescine −7.2902 

q8h2_c Ubiquinol-8 −0.0489 

spmd_c Spermidine −1.4778 
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Appendix F: Complete biomass objective functions  

 
The stoichiometric coefficients of all compounds in the complete BOFs are listed in Table F.1.  
 

Table F.1: Stoichiometric coefficients of all compounds in BOFs for all E. coli cultures. Stoichiometry is given 

in mmol/gDWh−1. 

Compound ID 
E. coli  

C-lim 0.4 

E. coli  

C-lim 0.2 

E. coli  

C-lim 0.1 

E. coli  

N-lim 0.4 

E. coli  

N-lim 0.2 

E. coli  

N-lim 0.1 

E. coli  

U-lim 

Substrates 

h2o_c −12.72687 −12.76823 −11.14658 −9.22905 −11.31859 −10.48690 −12.72687 

asp__L_c −0.44219 −0.43749 −0.38107 −0.32404 −0.36828 −0.34140 −0.44219 

glu__L_c −0.46573 −0.44602 −0.41929 −0.32268 −0.45150 −0.27514 −0.46573 

asn__L_c −0.33859 −0.33499 −0.29179 −0.24813 −0.28200 −0.26142 −0.33859 

his__L_c −0.10225 −0.10402 −0.09512 −0.07437 −0.09059 −0.11827 −0.10225 

ser__L_c −0.36294 −0.39578 −0.33983 −0.28907 −0.35304 −0.36012 −0.36294 

gln__L_c −0.35911 −0.34391 −0.32330 −0.24881 −0.34814 −0.21215 −0.35911 

gly_c −0.32001 −0.29269 −0.26888 −0.22372 −0.22143 −0.28931 −0.32001 

arg__L_c −0.24003 −0.21953 −0.20168 −0.16780 −0.16609 −0.21699 −0.24003 

thr__L_c −0.39103 −0.39801 −0.34687 −0.28015 −0.33618 −0.36152 −0.39103 

ala__L_c −0.85054 −0.83262 −0.72646 −0.61173 −0.72780 −0.82347 −0.85054 

tyr__L_c −0.16738 −0.19529 −0.14555 −0.13766 −0.15327 −0.07994 −0.16738 

met__L_c −0.07418 −0.07565 −0.04921 −0.04166 −0.04031 −0.04789 −0.07418 

val__L_c −0.45338 −0.44163 −0.39742 −0.31785 −0.38449 −0.18492 −0.45338 

phe__L_c −0.23253 −0.24817 −0.20503 −0.17335 −0.21516 −0.28667 −0.23253 

ile__L_c −0.32547 −0.32702 −0.28508 −0.23097 −0.31494 −0.21485 −0.32547 

leu__L_c −0.57820 −0.56915 −0.51004 −0.42047 −0.48968 −0.48352 −0.57820 

lys__L_c −0.27804 −0.30970 −0.26800 −0.23510 −0.33767 −0.36700 −0.27804 

cys__L_c −0.05757 −0.08372 −0.05456 −0.05039 −0.08002 −0.06891 −0.05757 

pro__L_c −0.27653 −0.28523 −0.24329 −0.20299 −0.25463 −0.23417 −0.27653 

trp__L_c −0.08224 −0.10643 −0.07583 −0.06759 −0.09969 −0.08753 −0.08224 

atp_c −56.40009 −56.15580 −58.66535 −61.53551 −58.34995 −59.64840 −56.40009 

ctp_c −0.16849 −0.19125 −0.20802 −0.19605 −0.16173 −0.30931 −0.16849 

gtp_c −12.87736 −12.87979 −11.30136 −9.36960 −11.40693 −10.74213 −12.87736 

utp_c −0.10499 −0.08629 −0.11241 −0.10299 −0.06964 −0.18107 −0.10499 

datp_c −0.04619 −0.03789 −0.04488 −0.05621 −0.01359 −0.01615 −0.04619 

dctp_c −0.04770 −0.03913 −0.04635 −0.05804 −0.01404 −0.01668 −0.04770 

dgtp_c −0.04759 −0.03904 −0.04625 −0.05791 −0.01400 −0.01664 −0.04759 

dttp_c −0.04613 −0.03785 −0.04483 −0.05614 −0.01357 −0.01613 −0.04613 

g1p_c −0.14040 −0.12562 −0.52361 −1.14219 −0.63325 −0.21008 −0.14040 

gal1p_c −0.03412 −0.02577 −0.02044 −0.02613 −0.01407 −0.03384 −0.03412 

glcur_c * 0.00000 0.00000 0.00000 0.00000 −0.04088 0.00000 0.00000 

rml1p_c 0.00000 −0.03986 0.00000 0.00000 −0.28625 0.00000 0.00000 

gam1p_c −0.01842 −0.01682 −0.01226 −0.01411 −0.04053 −0.01777 −0.01842 

acgam1p_c −0.02549 −0.02326 −0.01697 −0.01952 −0.05607 −0.02458 −0.02549 

hdca_c −0.04698 −0.08571 −0.07495 −0.07355 −0.07576 −0.09774 −0.04698 

hdcea_c −0.03474 −0.06339 −0.05543 −0.05439 −0.05603 −0.07228 −0.03474 

ocdcea_c −0.02354 −0.04295 −0.03756 −0.03685 −0.03796 −0.04897 −0.02354 

glyc3p_c −0.06472 −0.11809 −0.10327 −0.10133 −0.10438 −0.13466 −0.06472 

Substrates implemented form iML1515 wild-type BOF 

10fthf_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

2fe2s_c −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 

2ohph_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 
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4fe4s_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

amet_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

btn_c −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 

ca2_c −0.00109 −0.00109 −0.00109 −0.00109 −0.00109 −0.00109 −0.00109 

cl_c −0.00109 −0.00109 −0.00109 −0.00109 −0.00109 −0.00109 −0.00109 

coa_c −0.00004 −0.00004 −0.00004 −0.00004 −0.00004 −0.00004 −0.00004 

cobalt2_c −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 

cu2_c −0.00015 −0.00015 −0.00015 −0.00015 −0.00015 −0.00015 −0.00015 

fad_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

fe2_c −0.00140 −0.00140 −0.00140 −0.00140 −0.00140 −0.00140 −0.00140 

fe3_c −0.00163 −0.00163 −0.00163 −0.00163 −0.00163 −0.00163 −0.00163 

k_c −0.04069 −0.04069 −0.04069 −0.04069 −0.04069 −0.04069 −0.04069 

mg2_c −0.00181 −0.00181 −0.00181 −0.00181 −0.00181 −0.00181 −0.00181 

mlthf_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

mn2_c −0.00014 −0.00014 −0.00014 −0.00014 −0.00014 −0.00014 −0.00014 

mobd_c −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 

nad_c −0.00039 −0.00039 −0.00039 −0.00039 −0.00039 −0.00039 −0.00039 

nadh_c −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 

nadp_c −0.00002 −0.00002 −0.00002 −0.00002 −0.00002 −0.00002 −0.00002 

nh4_c −0.00271 −0.00271 −0.00271 −0.00271 −0.00271 −0.00271 −0.00271 

ni2_c −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 

pheme_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

pydx5p_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

ribflv_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

sheme_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

so4_c −0.00090 −0.00090 −0.00090 −0.00090 −0.00090 −0.00090 −0.00090 

succoa_c −0.00002 −0.00002 −0.00002 −0.00002 −0.00002 −0.00002 −0.00002 

thf_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

thmpp_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

udcpdp_c −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 

zn2_c −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 

2dmmql8_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

5mthf_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

accoa_c −0.00006 −0.00006 −0.00006 −0.00006 −0.00006 −0.00006 −0.00006 

chor_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

enter_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

gthrd_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

hemeO_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

lipopb_c −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 

malcoa_c −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 −0.00001 

mococdp_c −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 

mocogdp_c −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 −0.00000 

mql8_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

nadph_c −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 −0.00007 

ptrc_c −0.00729 −0.00729 −0.00729 −0.00729 −0.00729 −0.00729 −0.00729 

q8h2_c −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 −0.00005 

spmd_c −0.00148 −0.00148 −0.00148 −0.00148 −0.00148 −0.00148 −0.00148 

Products 

glyc_c 0.00138 0.00252 0.00221 0.00216 0.00223 0.00288 0.00138 

adp_c 49.80467 49.48154 52.79160 56.63541 52.44258 53.96956 49.80467 

amp_c 6.46265 6.56513 5.73159 4.76985 5.81929 5.44986 6.46265 

cmp_c 0.05263 0.09602 0.08397 0.08239 0.08487 0.10950 0.05263 

gdp_c 12.71478 12.74616 11.12728 9.21011 11.29908 10.46173 12.71478 
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pi_c 62.31312 62.01844 63.36490 64.66250 62.69012 64.17019 62.31312 

ppi_c 7.43751 7.47067 7.12386 6.78889 7.37285 6.80147 7.43751 

co2_c 0.04053 0.07396 0.06467 0.06346 0.06537 0.08433 0.04053 

h_c 68.61788 68.29550 68.84457 69.18516 68.25479 69.29156 68.61788 

* Glucuronate-1-phosphate was added to the BOF as glucuronate because the model did not have a metabolite for 

glcU1p_c. 

 


