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ABSTRACT

Since early 2020, the SARS-CoV-2 pandemic has upended daily life throughout
the world. The virus has claimed 3.7 million lives, and over 174 million cases
have been confirmed worldwide. Computational tools like agent-based models
can help obtain a better understanding of how a pathogen like SARS-CoV-2
spreads and help both the public and decision-makers return more quickly to
normality.

This Master Thesis presents a modelling framework for simulating Covid-19
spread in Norway, written in Python. The model is agent-based and implements
a complex, scalable municipality network. The network structure is based on em-
pirical data from Statistics Norway, and commuter data between municipalities
is implemented.

Two regions in Norway were simulated. A smaller-scale Trøndelag region,
and a complete national model with all municipalities in Norway. It was found
that the average reproduction number varied significantly based on model input
and population demographics. The most significant factors determining the
reproduction number in a municipality was population size, population density,
and the fraction of outgoing commuters.

Several model parameters are tunable and can be changed easily to facilitate
different forms of analysis. Changes in the different parameters were simulated
to evaluate the effect of disease characteristics, population demographics and
network structure.

This project lays a foundation for more realistic and large-scale Covid-19
simulations of Norway, as well as a flexible agent-based model for different
diseases and regions.
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SAMMENDRAG

Helt siden starten av 2020 har SARS-CoV-2 snudd opp ned på hverdagen i hele
verden. Viruset har tatt 3,7 millioner liv, og over 174 millioner har fått påvist
smitte globalt. Datamodellering i form av agent-baserte modeller kan hjelpe oss
å bedre forstå hvordan patogener som SARS-CoV-2 spres, og hjelpe befolkningen
og beslutningstakere i å returnere til normalitet.

Denne masteroppgaven presenterer et modelleringsrammeverk for å simulere
Covid-19-spredning i Norge, skrevet i Python. Modellen er agent-basert og
implementerer et komplekst, skalerbart kommune-nettverk. Nettverksstrukturen
er basert på empirisk data fra Statistisk Sentralbyrå, og pendlerdata mellom
kommuner er implementert.

To regioner i Norge har blitt simulert. En mindre skala Trøndelag-region, og
en komplett nasjonal modell med alle kommuner i Norge. Resultatene viser at det
gjennomsnittlige reproduksjonstallet varierer markant basert på modell-verdier
oppgitt av brukeren, i tillegg til demografisk befolkningsdata. De viktigste
faktorene som avgjør reproduksjonstallet i en kommune var befolkningsstørrelse,
befolkningstetthet og andel utgående pendlere.

Flere modell-parametere er regulerbare, og kan lett bli endret for å fasilitere
ulike former for analyse. Endringer i ulike parametere var simulert for å evaluere
effekten av sykdomstrekk, befolknings-demografi og nettverk-struktur.

Dette prosjektet legger et grunnlag for mer realistiske og stor-skala Covid-
19-simuleringer i Norge, i tillegg til en fleksibel agent-baserte modell for ulike
sykdommer og regioner.
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PREFACE

“Hint, hint, no one has quoted me in their thesis yet.”

– Eivind Almaas
Professor, NTNU

The last year can be summarised in one word: Covid-19. It is responsible for
daily media coverage, countless conversations, and making sure everyone and
their grandma knows what a “reproduction number” means. When everything
closed down last year, I got the opportunity to take an even deeper dive into this
topic and write my specialisation project and master thesis on Covid-19 for the
Systems Biology group on NTNU. This not only gave me the chance to explore
some of my now favourite topics, but also the ability to brag about my extensive
knowledge of Covid-19 simulations at every dinner party for the rest of my life.

This thesis concludes my Master’s degree in Chemical Engineering and
Biotechnology at the Norwegian University of Science and Technology. It has
been 5–6 delightful years brim-full of exciting courses, interesting people and the
beautiful student city of Trondheim.

I would first and foremost like to thank my supervisor Eivind Almaas, for
guidance and advice on Covid-19 and writing, and the opportunity to be a part
of this amazing research group. My sincere gratitude to André Voigt, my co-
supervisor and advisor throughout these last six months, for interesting and
educational weekly meetings filled with funny derailments, professional and not.

To the reader: Beware! There is an extensive amount of figures in this thesis!
But it could have been much, much worse. After stumbling upon a piece of
advice from the great Claus O. Wilke, I learned that you should have a maximum
of three to six figures per story when writing. I have tried my best to uphold this
advice.

Ever since my Introduction to Information Technology course back in 2015,
I have had a curiosity for programming and data visualisations, which have
finally crystallised into what you are about to read.1 It has been a joy to learn
Python for simulations and take a deep dive back into R for the accompanying
visualisations.

There are two particular student organisations I would like to extend my
gratitude to after all these years in Trondheim. Revolve NTNU pushed my limits
further than ever before, and my concept of work capacity got redefined again
and again. Building a racecar while being a student has been highly educational,

1or dare I say experience?
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and I am forever grateful for all the competent and intelligent students I got to
know in Revolve.

The second is the chemistry union at Gløshaugen, Høiskolens Chemikerforen-
ing. I have never been bored for a single day in Trondheim, and I cannot count
how many cups of coffee, beers, exciting discussions or hilarious parties I have
attended with other chemistry students. Thank you!

Finally, a big thanks to my friends and family for always being supportive,
especially the last few months. Last but not least, my partner Martine for her
support. It has been many evenings with my nose deep in the computer “just
checking out” something new. Thank you for being there for me.

HELGE BERGO

TRONDHEIM, JUNE 14TH , 2021

“NTNU: YOUR FIVE WORST YEARS, OR YOUR SIX BEST”

– inspired by KTH proverb
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CHAPTER 1
INTRODUCTION

The Covid-19 pandemic has been ongoing for close to one and a half years, and
the consequences have been devastating. As of June 2021, 174 million cases have
been reported worldwide, and over 3.7 million have died[1]. The societal costs
have been disastrous, with significant impacts on the economy, public health,
and the daily lives of billions of people[2, 3, 4]. While vaccinations are well
underway in many countries, significant restrictions on daily life continue. Mask
use, travel restrictions and social distancing are still commonplace. Knowledge
and insight into virus characteristics and disease dynamics have never been
more needed. Creating models to understand how pathogens like SARS-CoV-2
spread throughout cities, countries, and the entire world is of major importance
in assessing the current situation and the possible paths going forward.

Throughout history, the human race has always been susceptible to different
pathogens, including virus and bacteria. Infectious diseases have been with us for
a long time, and several of them reach epidemic or pandemic potential.[5] Despite
decades of interventions and surveillance, the seasonal influenza virus cause
epidemics throughout the world every single year, as the evolution of viruses
continue[7].The seasonal influenza causes an estimated 610 000 life-years lost
and 10 billion dollars in the United States alone[6]. In Norway, it is estimated that
influenza kill nearly 1000 people yearly[9]. WHO has long warned about coming
pandemics[10], and the fear is that the next pandemic may surpass previous
pandemics like the “Spanish Flu” which had a death toll of over 15 million[11], or
the “Black Death” which killed 75-200 million people[12]. A more recent example
is Influenza A, caused by an H1N1 virus, similarly to the “Spanish Flu”. In 2009,
the so-called “Swine Flu” quickly spread from Mexico and the United States to
hundreds of countries. It is not clear how many were infected by the virus, but
some estimates give the order of several tens of millions of cases[13].

The understanding of pathogens continues to increase for every research
paper made, but there is still more to learn. Extensive knowledge of how a virus

1



CHAPTER 1. INTRODUCTION

like SARS-CoV-2 spreads in a modern and interconnected world remains a sig-
nificant challenge. Substantial amounts of information is needed to realistically
model disease spread. Simple models help to give insight into the processes
of a pandemic[14, 15], but to stop the next pandemic, more advanced tools are
needed. Information on everything from how individuals behave in their daily
activities, to larger patterns like travelling within and between cities, countries
and continents might be critical to understand the full picture. Fields like psy-
chology, economy and politics need to be incorporated to create the most realistic
models of pandemics possible. There is still a gap between “hard” mathematical
models and “softer” psychological models[16, 17]. An example of this behaviour
is how individuals in a population could spread disease through daily activities
like travelling, commuting to work, or meeting a neighbour in their local store.
Investigating such behaviour might lead to insights helpful in getting the current
pandemic under control, as well as future pandemics.

This project aims to create a national agent-based model of SARS-CoV-2
spread in Norway by extending the modelling framework created at NTNU
in the spring of 2020, to investigate the effect of commuter travelling and pop-
ulation demographics on the disease spread of Covid-19.

This aim is divided into three objectives: The first objective is to explore
previously gathered empirical data from Statistics Norway to lay the foundation
for a national agent-based model. The second objective is to extend the existing
agent-based model into a national scale model by implementing commuter data
between municipalities. The third and final objective is to investigate the effect
of different parameter values on the modelling framework, to test the model
stochasticity and influence of parameters and population demographics on the
reproduction number of Covid-19.

2



CHAPTER 2
THEORY

This chapter describes relevant theory used throughout the project. It is divided
into two main parts: The first part presents epidemic modelling and describes
three main model categories: compartmental models, network models and agent-
based models. The second part describes the statistical theory, going through
important descriptive statistics and the probability distributions used throughout
this project.

Parts of the following chapter are based on material presented in my project re-
port “Agent-Based Modelling of SARS-CoV-2 Spread in a Public Transport System”[18].
An overview of the relevant sections can be found in Appendix A.1.

2.1 Epidemic Modelling

Epidemic modelling describes how infectious diseases spread throughout a
population, using mathematical and computational tools[19]. This section is
reused from [18], with minor changes.

The use of mathematical models in epidemiology is not a new invention, and
they have been in use long before the invention of computers. Daniel Bernoulli
investigated the effect of vaccination of smallpox virus using mathematical mod-
els already in 1766[19]. Lowell Reed and Wade Hampton Frost developed a
mathematical model of disease spread in the 1920s, later to be known as the
Reed-Frost model[20]. In 1927, Kermack and McKendrick laid much of the
groundwork of modern mathematical epidemiological models in “A Contribution
to the Mathematical Theory of Epidemics”[21].

During the last few decades, an increase in computing power have made the
use of more complex network models and agent-based models more viable. In
complex network models, every single individual in a given area is simulated
from the bottom up. Epidemic models can be categorised into three main direc-

3



CHAPTER 2. THEORY

tions: Compartmental models, network models, and agent-based models, and
the rest of this chapter will go through the three categories[14]. For an illustration
of the categorisation of the different model types, see Figure 2.1.1.

Figure 2.1.1: Epidemic models, categorised after complexity and computing power.
One way to categorise epidemic models, where the three different types are arranged after
complexity and computing power demand. Adapted from [14].

2.1.1 Compartmental Models

Compartmental models are simplified epidemic models with a focus on the
macroscopic processes of an infectious disease. They can give important insight
into theoretical aspects of an epidemic, such as epidemic threshold and size,
without needing much computing power or high fidelity data.[14]

Most compartmental models categorise a population into different compart-
ments, based on the Reed-Frost model, typically a variant of the SIR model[19,
22]. Here, the population is divided into three different states based on the health
status of the individuals modelled[23]. All individuals are either susceptible (S),
infected (I), or recovered1 (R) from a given disease. They can move from one
state to the next but only be in one state at a time. An illustration of the process is
shown in Figure 2.1.2. Here individuals move from the susceptible to the infected
state following the rate of infection parameter β, and from infected to recovered
after a certain time with rate parameter γ.

Compartmental models using SIR dynamics are often based on differential
equations with parameters β and γ controlling the flow of individuals from one
state to the other for each time step, see Equations (2.1.1) to (2.1.3)[22].

1Or dead, which is practically the same from the perspective of disease transmission.
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2.1 EPIDEMIC MODELLING

Figure 2.1.2: Illustration of the three epidemiological states in the SIR model.. The
arrows indicate possible transitions, with β as the rate of infection, and γ determining the
recovery rate.

dS

dt
= −βIS

N
, S(0) = S0 ≥ 0, (2.1.1)

dI

dt
=
βIS

N
− γI, I(0) = I0 ≥ 0, (2.1.2)

dR

dt
= γI, R(0) = R0 ≥ 0 (2.1.3)

Here S(t), I(t) and R(t) will be the number of individuals in the different
states at each time step t, for a population with size N . The transmission coef-
ficient β describes the transmission rate between two individuals, and γ is the
parameter deciding the length of disease, with 1/γ being the average infectious
period. One assumption used in SIR models is the homogeneous mixing hypothesis,
where it is assumed that the entire population is mixed, and everyone can, in
theory, get the disease from an infected individual at any time.

These differential equations have analytical solutions and are therefore easily
calculated. A SIR model with parameters β = 0.5 and γ = 0.1 is simulated and
plotted in Figure 2.1.3.

Figure 2.1.3: Example of a SIR model with β = 0.5 and γ = 0.1.
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CHAPTER 2. THEORY

While the SIR model makes several simplifying assumptions about a disease,
it can still give much insight into the processes driving disease spread in a
population. Examples include the epidemic threshold, doubling time, peak
infection rate, maximum theoretical infection rate, and the fraction of a population
vaccinated to combat a particular disease. In practice, however, more complex
variants of the SIR model are often used. The SIS model describes diseases where
infected individuals do not acquire immunity after a successful recovery, and the
SEIR model gives the possibility of having an exposed period where individuals
are infected but not sick[22].

For the coronavirus SARS-CoV-2, while research is still ongoing, evidence sug-
gests a high amount of infected individuals carry the disease while asymptomatic,
so models incorporate two different exposed states. An example of this is the
meta-population model from the Norwegian Institute of Public Health (NIPH),
using a variant of the SEIR model as shown in Figure 2.1.4[24]. In this model,
after a patient is exposed (E1), they have a chance pa to become asymptomatic
(IA). These infected may spread the disease further, but display very mild or no
symptoms. Asymptomatic carriers is one of the reasons Covid-19 has spread so
quickly, and this dynamic is therefore critical to include in models.

Figure 2.1.4: SEIR type model describing SARS-CoV-2, where exposed individuals have
the probability pa to become infectious and asymptomatic (IA). Inspired by [24].

Reproduction number

Another key insight coming from the compartmental models is the basic repro-
duction number R0. This number estimates how many individuals, on average,
are infected by each infected person. In short, how many individuals does the
average infected spread the disease to? For a compartmental model with SIR dy-
namics as described in Equations (2.1.1) to (2.1.3), the basic reproduction number
is given by

R0 =
β

γ
. (2.1.4)
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2.1 EPIDEMIC MODELLING

However, the basic reproduction is a theoretical value and often difficult if
not impossible to estimate for a given disease. It is therefore usually given as a
range, for example as 12-18 for measles[25] and 0.9-2.1 for seasonal influenza[26].
SARS-CoV-2 is estimated to have an R0 somewhere between 3.3-5.7, without
any restrictions[27]. In addition, the basic reproduction number often assumes
no immunity in the population and no restrictions on movement and disease
spread. This leads to the effective reproduction number Re in practice, which is
calculated for a given time period in a given population. Re helps measure the
effectiveness of different countermeasures to contain a given disease but is often
overused or simplified, especially in the media[28].

To summarise, compartmental models focus on the disease transmission on
a macroscopic level on a population and usually include several simplifying
assumptions, like the homogeneous mixing hypothesis. They are theoretical but
are easy to understand and require low computing power. Mathematical models
provide key insight into the processes driving a viral disease and should not be
disregarded, even though they cannot describe populations in detail.[14]

2.1.2 Network Models

The next category of models used in epidemic modelling is network models.
These can be considered an intermediate step between simple compartmental
models and more detailed agent-based models.[14] Instead of mathematical
equations, populations are described as networks with individuals represented
by nodes and contacts between individuals represented by the links. When using
networks to represent epidemic systems, network theory can be used to calculate
infectivity as a function of node degree. The connectivity of nodes can give
valuable information about the epidemic properties.[29]

One of the main limitations of compartmental models is the assumption of
homogeneous mixing. The possibility that everyone can meet and infect ev-
eryone else in a given population is rarely realistic, and this is where network
models come into play. By representing populations through networks, a much
more realistic view of contact networks can be given. More importantly, network
models can capture heterogeneity during a disease outbreak. Where compart-
mental models are based on averages and a few parameters determining the
properties of every individual, a network model can instead model differences
in human behaviour through parameters like node connectivity and position in
the network. Network models also incorporate the impact of network topology
on the epidemic spread, incorporating properties like small-world and scale-free
networks.[14, 29]

An illustration of disease spread on a fictional network is shown in Fig-
ure 2.1.5, to visualise how a possible disease might spread on a simple contact
network as time goes by. Here it can be seen that new nodes can only be infected
through links from other infected nodes, and transmission across the network
cannot happen randomly.

Network models have seen more and more use in the past few years, and the
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CHAPTER 2. THEORY

Figure 2.1.5: Illustration of a disease spreading on a simple, fictional network. Nodes
coloured red are infected and may spread the disease to the grey, susceptible nodes.

applications in the field of epidemiology are many. Examples include simulat-
ing disease outbreaks in realistic urban networks[30], vaccination strategies in
weighted networks[31], and cost-effective outbreak detection[32]. The types of
networks used in the models can be described in many ways, from simple static
networks to adaptive temporal networks that use feedback loops during the
simulation, changing both links and weights throughout a simulated pandemic.

The advantages of network models compared to compartmental models are
therefore many. They can capture heterogeneous contact patterns between indi-
viduals, as well as differences in population structure and topography. However,
they are unable to capture the full complexity of factors interacting in a real-life
pandemic situation and are lacking in representing daily human activities. Exam-
ples include daily commuting, differences in mobility and age, and consequences
of interventions during a pandemic. For these levels of details to be possible,
we turn to agent-based models, which can be seen as a further extension of the
network models.

2.1.3 Agent-Based Models

Agent-based models (ABMs), also often called individual-based models, are
complex, bottom-up simulation models that can give a more detailed description
of real-life systems. By designing systems from the bottom-up with detailed
descriptions of agents in a population, both the heterogeneous and stochastic
nature of epidemics can be captured much better than in compartmental and
network models. A higher granularity in the data gives rise to interactions
between individuals on the micro-scale, leading to the emergence of macro
behaviour in the entire system. Agent-based models have seen a large increase
in popularity over the last few decades, partly thanks to the availability of more
powerful computers and large data sets with demographic and environmental
data.[14, 17]

8



2.1 EPIDEMIC MODELLING

Agents in the model can, in principle, be anything. In the last few years, ap-
plications for ABMs have been found in fields ranging from economics, ecology,
social science and, of course, epidemic modelling[17, 33]. Examples include ru-
mour spreading on Twitter[34] and simulating the entire public transport system
of Zurich[35]. In epidemic modelling, the agents usually represent humans, but
there are examples where parts of the environment might act as agents as well[36].
Agents are initialised with different properties like age, gender, occupation and
geographic location. They move around in a simulated environment for each
simulation step, meeting other agents and interacting with them. An example
might be a simulation of a small city, where inhabitants move around in patterns
resembling daily commuting, going to the store and visiting family. For each
time step, it is logged whom they meet and where. If a set number of individuals
are infected at the start of the simulation, and every agent they encounter might
be infected by a probability p, realistic disease spread in a community might be
simulated.

A central aspect of ABMs is the element of stochastic processes[14]. Daily
contact patterns and infection chance between individuals are often simulated as
random stochastic variables drawn from a probability distribution. This means
that each simulation run will produce different results, and conclusions are
usually drawn after averaging several runs. This average gives more realistic
results, as random processes often drive real-life human encounters, but comes
at the cost of increased computing time, as simulations need to be run dozens
or hundreds of times. This stochasticity also means that minor differences in
input variables, for instance, the amount of initially infected agents, might lead
to a significant difference in output, often termed as the butterfly effect[37].
An example of this effect in real life happened in South Korea, where the now
infamous “Patient 31” spread Covid-19 to several clusters, leading to thousands
of new cases[38].

As agent-based models have increased in complexity and scope during the
last decade, a focus on the challenges of the modelling framework has led to
a deeper understanding of the mechanics driving both pandemics and ABMs.
Interdependent behaviour leads to agents responding to their environment in
the short run, but in the long run, environments respond to the accumulation
of agents choices or behaviour[39]. For complex ABMs with both a spatial and
temporal dimension, the chosen granularity and level of detail might have con-
siderable implications for the conclusions drawn. Evidence suggests decreasing
spatial resolution leads to an increase in the speed and intensity of the epidemic
while decreasing temporal resolution does the opposite[40]. In addition, there
are issues with turning qualitative information from empirical research studies
into quantitative data in an ABM[41]. This is especially important in epidemi-
ological models, where the “human factor” often plays a significant role in the
outcome of a pandemic. An example is the effect of differences in the degree
of compliance to government policy during a pandemic. It has been estimated
that this uncertainty might be lower than the built-in stochastic uncertainty in
the models themselves[42], but this does not necessarily make it any easier to
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incorporate these softer parameters into the models.
While agent-based models are complex and computationally demanding,

they provide valuable information informing policymakers, giving a more de-
tailed representation of reality than simpler network models and compartmental
models. As data availability and computational power will continue to increase
in the future, there is no reason to believe that ABMs will decrease in popularity
and use[14].

2.2 Statistics

Since most agent-based models are driven by random processes and are stochas-
tic, the use of statistics is vital for analysing and describing the results of the
models after several runs. This section will go through the most important
statistical measures and distributions used throughout this project. The the-
ory presented is based on Walpole’s “Probability & Statistics for Engineers and
Scientists”[43]. This section is obtained from [18], with modifications.

2.2.1 Descriptive Statistics

Descriptive statistics is the process of summarising and describing data sets using
different measures and statistics. These commonly fall into measures of centrality
and measures of variability.

The first and possibly most used measure of centrality is the sample mean of a
population, which describes the average of n observations, see Equation (2.2.1).

x̄ =

n∑
i=1

xi
n

(2.2.1)

The sample mean sees widespread use, but for observations with substantial
deviations from the mean, it is affected by extreme outliers. Typical examples are
heavy-tailed distributions where one large measurement might skew the mean
by a lot. Another centrality measure often used is, therefore, the median, which
describes the middle value of a sorted dataset or the average of the two middle
values for an even-numbered data set. An advantage of the median is that it
is not affected by a few outliers if the rest of the data set is relatively normally
distributed. Another important measure of centrality is the mode, which is the
value found most frequently in a given data set.

For the description of measures of variability, the most commonly used for
observational data is the sample standard deviation, which is a measurement of the
variation or dispersion of a data set, see Equation (2.2.2).

s =
√
s2 =

√√√√ n∑
i=1

(xi − x̄)2

n− 1
(2.2.2)
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Other measures of variability include the range of a set of values, where the
difference between the maximum and minimum value is calculated, and the
kurtosis and skewness of a distribution. These last two are often practical when
dealing with non-normally distributed data, to compare a given heavy-tailed
distribution to a normal one.

2.2.2 Probability Distributions

Another important tool when analysing and working with data sampled from
experiments and observational studies is probability distributions. These can
be thought of as the mathematical functions providing a sample space value,
given a certain probability for different values. Probability distributions can be
categorised into discrete and continuous distributions.

Binomial Distribution

Many experiments and complex real-life processes can be simplified into a binary
yes-no response. Is a person infected with a disease or not? Is the output of this
function higher than a given threshold? Is a product working or not? For these
experiments or measurements, with several independent, random trials with a
binary response, discrete probability distributions come into play. An example
is the binomial distribution, which models the number of successes in a sample
of size n, given a probability p. An example from epidemiological simulating is
drawing k neighbours an infected individual transmits a disease to, given the
probability of transmission p. A single binomial is called a Bernoulli trial, and
the probability of getting x successes after n independent Bernoulli trials can be
calculated by the binomial probability function, see Equation (2.2.3).

b(x;n, p) =

(
n

x

)
pxqn−x, x = 0, 1, 2, ..., n (2.2.3)

An example of three different binomial distributions, with different values
for p and n is shown in Figure 2.2.1.
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Figure 2.2.1: Binomial distributions with different parameters.

Poisson Distribution

Another practical discrete probability distribution is the Poisson distribution,
used for expressing the probability of a given number of events in a given numeric
interval. For example, how often a new customer appears in a queuing system
or the length of phone calls. A surprisingly high number of everyday processes
can be approximated well with a Poisson distribution[23]. It is also easy to work
with mathematically and uses only a single fixed parameter λ, equal to both the
mean and variance. The probability mass function is shown in Equation (2.2.4).

p(x;λ) =
λxe−λ

x!
, x = 0, 1, 2, ..., n (2.2.4)

Three different Poisson distributions are plotted in Figure 2.2.2, with different
λ values, and therefore different means and variances.

Figure 2.2.2: Poisson distributions with different parameters.
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Normal Distribution

While discrete probability distributions are practical and useful for several pur-
poses, many processes are not discrete but produce values on a continuous range
instead. The normal distribution, or Gaussian, is the most used probability distri-
bution and is well known for its recognisable bell-curved shape. The probability
function is shown in Equation (2.2.5).

n(x;µ, σ) =
1√
2πσ

e−
1

2σ2 (x−µ)2 , x ∈ (−∞,∞) (2.2.5)

The normal distribution has several important properties. Only two param-
eters describe it, the mean value µ and variance σ. The mean value is also the
median and mode, and the distribution is symmetric around the mean. In ad-
dition, for the standard normal distribution, where µ = 0 and σ = 1, the sum of
the area under the curve equals 1. A normal distribution well approximates
many physical processes as the number of samples increases. A plot of three
different normal distributions with different mean values and variances is shown
in Figure 2.2.3.

Figure 2.2.3: Normal distribution with different values of µ and σ. The dashed lines show
µ.
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CHAPTER 3
METHOD

The following chapter describes the methodology and work done in this project.
The main bulk of the work consisted of incorporating the municipality network
into the already existing agent-based model by implementing data from Statistics
Norway (SSB) and running simulations on different input and parameter values.

The chapter is structured into four main parts, starting with the software
used in the project. Following is a description of the agent-based model, in-
cluding network structure, the epidemiologic dynamics driving the disease and
intervention measures. The third part describes how the population data was
used to integrate the municipality network in the model. Part four describes the
modelling framework, how the algorithm works, as well as code structure and
default model parameters and output.

3.1 Software

The software used in the project is Python for the model code and R for the data
analysis and visualisations. Data were processed in digital labs at HUNT Cloud,
Norwegian University of Science and Technology, Trondheim, Norway.

3.1.1 Python

The agent-based model and most supporting functions and scripts are all written
in Python[44]. Python is a popular open-source programming language available
for most operating systems.

Python is a high-level programming language, meaning it is easy to write
expressive and readable code. While it is not one of the fastest languages available,
its usability and clear syntax make it an excellent choice for projects and models
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like this one. The original model was written in Python, and this was continued
for this project.

Most of the model is written in the Python Standard Library, with some
extra modules used. A table showing the installed modules and their respective
versions is presented in Appendix B.1.

Python can be downloaded from www.python.org.

3.1.2 R

For most of the data analysis and visualisations, R was used in RStudio. R is an
open-source language used for statistical computing and graphics, and RStudio
is an integrated development environment for R.

For the analysis of the data from the agent-based model, the libraries from
tidyverse were used. These offer a common, underlying design philosophy
designed for data science and makes working with large datasets simple and
intuitive. For the visualisations, ggplot2, part of the tidyverse, was used.

These tools, in combination, make for an effective and clean working envi-
ronment, perfect for exploring and visualising the different types of output data
from the model.

A table showing the installed libraries and their respective versions is pre-
sented in Appendix B.2.

R can be downloaded from www.r-project.org, and RStudio from www.
rstudio.com.

3.2 The Agent-Based Model

The agent-based model used in this project is an extension of the NTNU Covid-19
model developed by Voigt et al. in the spring of 2020. The model framework
is described in [45]. In addition, more documentation about the model and
the NTNU Covid-19 Modelling Taskforce can be found here: www.ntnu.edu/
biotechnology/ntnu-covid-19.

As most of the underlying logic and structure of the model builds on the
NTNU Covid-19 model, this section will describe the mechanisms of the compu-
tational modelling network. Most of it is therefore based on [45].

3.2.1 Network structure

The model is an agent-based (also known as an individual-based) complex net-
work model, consisting of different network structures to simulate demographic
data and realistic human behaviour on a municipality level. The model has
nine different layers consisting of a varying number of cliques. The nodes (or
agents) are created from population demographics and placed into one or several
groups in different layers. The groups are designed as k-cliques, where all clique
members are in contact with each other and can meet and interact daily. The
exception to this is the generic contact layer, more on this later.
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Nodes

Each node in the simulation has the following attributes: age, domicile, layer
memberships, disease state, and activity. The activity represents the maximum
number of daily contacts. Young persons below age 20 and elderly over 80
years follow a normal distribution with parameters µ and σ. The remaining
population follows a combination of the normal distribution and a power-law
distribution with parameter γ to capture a more significant heterogeneity in the
contact patterns.

The formula is shown in Equation (3.2.1), where act1 represents young and
old people, and act2 the remaining population. The actual parameters used are
presented in Table 3.2.2.

f(x;µ, σ, γ) =

{
1√
2πσ

e−
1

2σ2 (x−µ)2 , for act1
1√
2πσ

e−
1

2σ2 (x−µ)2 + xγ , for act2
(3.2.1)

The activity is set at the start of the simulation by a random draw for each
node. Every simulation day, the daily number of contacts is drawn from a
uniform distribution ranging from 1 to the maximum number of daily contacts,
CD. The activity also has a maximum hard limit of 100, so any values above this
are set to 100.

Figure 3.2.1: Distribution of the activity types. A million values drawn for each activity
type. The vertical lines mark the median values which is 9 for act1 and 11 for act2. The
right plot shows the number of each value in logarithmic scale.

A million values drawn from each distribution is shown in Figure 3.2.1. As
can be seen, the two different functions produce relatively similar distributions,
but the second type can create much higher activity values. On the right-hand
side, a log-log-plot shows the number of times large values are drawn. For a
million values drawn, there will be several with very high values. There are 165
individuals with an activity over 90 in this plot and 638 with an activity over 50.
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These individuals have the potential to be what is often termed “super-spreaders”
in the media.1

Layers

All nodes are present in the household layer and generic contact network, and
one other layer. For example, a person of age 32 might be present in a household
clique representing its family, one work clique together with its colleagues, and
the generic contact network, representing the daily contact pattern.

The assignment of individuals to the layers are described below:

1. Household: The household layers consists of separate households with
size and age distributions from municipality data.

2. Day-care: The number of day-care facilities is based on demographic data.
For households with multiple children of day-care age, these children are
placed in the same day-care.

3. Schools: The school layers are separated into three different layers: pri-
mary, secondary and high school. The size of each school is based on
demographic data. Class structure is not included. For households with
multiple school-age children, these are placed in the same schools for pri-
mary and secondary schools, while high-school students are randomly
assigned.

4. Nursing homes: Both numbers of nursing homes and population sizes are
based on demographic data.

5. Work: The number of companies and the number of workers are based on
demographic data. This layer represents spread between co-workers, so for
professions with extensive exposure to the general public, customer contact
is represented in the generic contact layer.

6. Hospital: Sick persons are removed from their household or nursing home,
as well as their work or school layer. The hospital layer also incorporates
the possibility to be placed in an intensive care unit (ICU), but this is not
modelled as a separate layer.

7. Generic contact network: This layer represents the daily contact patterns
of a person and uses the activity and daily contact number as described
previously.

All the layers except the generic contact network and hospital layer can be
seen as static networks created during the model initialisation. However, nodes
are inactive or not present in a layer depending on their disease or quarantine

1The literature often distinguish between “super-spreaders” and “super-spreader events”, which
is two quite different things.
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status. Suppose an infected person manifests symptoms or is confirmed Covid-
19 positive, or an asymptomatic person tests positive. In that case, they self-
quarantine from activities in all layers except their domicile (household or nursing
home). Infected individuals have a set chance of becoming sick enough to be
moved to the hospital layer based on age-related risk. They are either moved
back to their standard layers when cured or removed from the simulation when
dead.

All individuals are present in the generic contact network, which is a random
time-dependent scale-free network meant to capture the heterogeneity in daily
contact patterns. This network is generated daily for the entire municipality,
and the number of contacts for each person varies each day. The generic contact
network represents chance encounters between individuals, like meeting random
residents in your city or municipality in the store or during commuting to work.

For individuals with professions like teachers or health care workers, their
workplace is in a school or nursing home, meaning that they do not belong to a
regular work-layer but are present in a clique in one of the other layers.

Figure 3.2.2 shows an illustration of the layers in the agent-based model, with
an example of a family in the left plot and an illustration of a small social network
in the right plot.

(a) Layer structure example (b) Contact network example

Figure 3.2.2: Illustration of the layer structure in the ABM. (a) Possible layer affiliations
for an example family of 3 persons. Named circles show available layers that a person
can be member of. All household members are also part of the generic contact layer. (b)
Example of a contact network between individuals caused by shared group membership
in different layers: household (blue), primary school (red), day care (orange), workplace
(green) and generic (purple). Adapted from [46].

The different layers have different infection probabilities to simulate different
behaviour in different settings, meaning that the probability of infection when an
infected meets another person depends on which layer the contact happens. The
infection probability is higher in the household layer than in the work layer. It is
assumed that family members have more contact and spend more time together
in a smaller area than someone does in their workplace. All clique members in
each layer have the same constant probability of infecting other members of the
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clique, except for children which have a reduced infectiousness to 30%, and a
lower presymptomatic infection rate. Infection probability for each layer is listed
in Table 3.2.1.

Table 3.2.1: Infection chances for the different layers in the model. All percentages
are used in a Bernoulli function for each possible contact between a susceptible and an
infected individual. All values are fitted to Norwegian clinical data.

Layer type Infectiousness

Household 30%
Nursing Home 20%
Generic Contact Network 0.75%
Day Care 0.015%
Work 0.015%
High School 0.015%
Secondary School 0.015%
Primary School 0.005%

3.2.2 Epidemiologic Dynamics

The dynamics of the disease spread on the layers and cliques follow an SEIR-type
dynamic, as described in more detail in Section 2.1.1. All individuals in the model
have a given state, ranging from healthy to dead or recovered. The complete list
of states is the following: Susceptible (S), Exposed (E), Infected asymptomatic
(Ia), Infected pre-symptomatic (Ip), Infected symptomatic (Is), Hospitalised (H),
Intensive Care Unit (ICU), Recovered (R), or Dead (D). Figure 3.2.3 shows the
different states and their possible transitions and parameters.

Figure 3.2.3: SEIR disease dynamics used in the model. The different state changes are
shown. Note that the vaccinated state is illustrated, but is not included in the model itself.
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After a susceptible person is infected in the contact network, the individual’s
disease course follows the SEIR dynamics, based on empirical data for Covid-19.
The waiting times between each state is determined from a stochastic process
based on the model parameters. These are shown in Table 3.2.2. The probabil-
ity for different transition states vary based on age groups and are shown in
Table 3.2.3.

Table 3.2.2: Parameters used for the Covid-19 disease dynamics. Symbols corresponds
to Figure 3.2.3. Source HSØ indicates data from South-Eastern Norway Regional Health
Authority (Helse Sør-Øst), and comes from email correspondence in March-April 2020.
*Adjusted for reduced incubation time.

Parameter Symbol Value Unit Function Source

Probability of infection β - - Network
effect

-

Incubation time λE 1 Days Fixed NHPI [24]*

Pre-symptomatic duration λIpS 5 Days Poisson NHPI [24]

Symptomatic time before
recovery

λIsR 5 Days Poisson HSØ

Asymptomatic time before
recovery

λIaR 8 Days Poisson NHPI [24]*

Symptomatic time before
hospitalisation

λIsH 6 Days Poisson HSØ

Symptomatic time in nurs-
ing home before death

λND 10 Days Poisson HSØ

Hospital time, before re-
covery (no ICU)

λHR 8 Days Poisson HSØ

Hospital time, before ICU λHI 4 Days Poisson HSØ

ICU time, before recovery λIR 12 Days Poisson HSØ

ICU time, before death λID 12 Days Poisson HSØ

Exposed developing symp-
toms

PI 50 % Bernoulli NHPI [24]

Hospitalised needing ICU PHI 30 % Bernoulli NHPI [24]

Not developing immunity PRS 0 % Bernoulli NHPI [24]

Mean, daily contacts µ 10 - Gaussian Model fit

Variance, daily contacts σ 3 - Gaussian Model fit

Exponent, daily contacts γ −0.5 - Power
law

Model fit
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Table 3.2.3: Age stratified parameters. PIsH represents the chance of a symptomatic
becoming hospitalised. PHD is the chance of a symptomatic patient dying in the hospi-
tal, and PND is the chance of symptomatic dying outside hospital. All parameters use
Bernoulli functions. Source: Verity et. al [47].
*Nursing home residents only, adjusted to Norwegian hospital death rates.

Age group PIsH PHD PND

0− 9 years 0% 1.61e-3% 0%
10− 19 years 0.048% 6.95e-3% 0%
20− 29 years 1.04% 3.09e-2% 0%
30− 39 years 3.43% 8.44e-2% 0%
40− 49 years 4.25% 0.161% 0%
50− 59 years 8.16% 0.595% 0%
60− 69 years 11.8% 1.93% 0%
70− 79 years 16.6% 4.28% 26*%
80+ years 18.4% 7.80% 42*%

During a simulation, each infected individual keeps track of its current and
next state. In addition, the date of the last and subsequent state of change is
tracked. These four data points are what the model checks for each day and
updates infected individuals accordingly. When the day of the following state
change occurs, the new state is determined from a stochastic draw, with the
duration determined according to a Poisson-distributed random variable, λ, plus
1, to avoid the possibility of two state changes in one day.

To illustrate, a person in state Ip will develop symptoms (state Is) with a
chance PI , and the duration of the coming state (Is to R) will be determined by a
Poisson draw of p(λIsR + 1).

3.2.3 Reproduction number

There are several different ways to calculate the reproduction number in an ABM.
For this model, the daily average reproduction number is calculated by first
counting through the secondary infections of all recovered individuals. Second,
the daily R-number is calculated by taking the average number of secondary
infections caused each day.

This method makes for some stochasticity in the determined value of R be-
tween consecutive days. There is a significant increase in the first few days and an
artificial drop in calculated R numbers for the last few days since individuals have
to be recovered to count in the average reproduction number, biasing individuals
with shorter illnesses. After a simulation, the average reproduction number is
calculated after filtering out the first and last simulation days to counteract this
bias. For a more detailed discussion on this topic, more information is found in
the original paper and supporting material [46].

Another consequence worth mentioning is that the average daily reproduc-
tion number for the municipality model is calculated both for the entire region
and separately for each municipality. The reproduction number for a given
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municipality will include the number of secondary infections each inhabitant
cause, regardless of in which municipality they are caused. This may create a
delayed increase in the reproduction number for smaller municipalities infected
by commuters from other municipalities.

In addition, many small municipalities will have several days or even entire
simulations with zero secondary infections, on average. In the calculations, these
are counted as nans, or not-a-number, instead of 0. Otherwise, the average
number would be much lower for that municipality. This definition means
that the average reproduction number for a municipality represents the average
number of secondary infections when there are, in fact, secondary infections.

3.2.4 Intervention measures

One of the main goals of creating an agent-based model instead of a simpler
compartmental model is to simulate different intervention measures. Examples
include school closure, social distancing, testing and vaccinations.

Lock-down

The first intervention strategy is the lock-down of one or more layers in the model.
Lock-down is implemented differently depending on layer type:

1. Day care: The layer is completely disabled.

2. Schools: Secondary and high schools are disabled completely. Primary
schools can separately shut down for grades 1.-4. and grades 5.-7., which
means that the younger kids can go to school while the older stay at home,
for example.

3. Work: A fraction of cliques in the work layer is closed, representing work-
places where working from home is possible.

4. Generic contact: A shut-down in the contact layer is implemented by
decreasing the infection probability in the layer, simulating fewer contacts
and increased social distancing.

5. Household and nursing homes: These layers are never disabled.

Testing and Quarantine

The model implements a testing regime to find and quarantine individuals with
Covid-19 that do not display symptoms. Testing is done by returning a positive
test if the individual is asymptomatic or pre-symptomatic. One of the goals of
the original model was to investigate different testing strategies and how these
affect the reproduction number.

When an individual test positive, they are put into quarantine. Quarantine
is modelled by disabling the workplace, school and generic contact layers for
this individual. The same happens for individuals who self-quarantine after
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they display symptoms of Covid-19. In practice, quarantined nodes are only
present in their domicile (household or nursing home) or hospital if they turn
sick enough.

Testing and quarantine strategies have not been a focus during this project.
However, the functionality is implemented in the model.

3.3 Implementing a Municipality Network

The previous section described the underlying logic of the agent-based model and
how the nodes and layers make up the complex network structure. In addition,
base parameters and possible intervention measures were described.

This section will go through the methodology behind the national agent-
based model, which has been the main focus of this thesis. Whereas the original
model worked for a single municipality, it was primarily used for simulating Oslo
or Trondheim and had no commuting or travel incorporated. This project has
focused on implementing national data into the model to simulate the entirety of
Norway simultaneously.

The first part describes how the model was turned into an object-oriented
program. The second part goes into detail on how the population data of Nor-
way was implemented and used in the commuter algorithm. Finally, a brief
description of the municipality network is given.

3.3.1 Making the Model Object-Oriented

The original model was written in base Python, using a list- and dictionary-based
approach to simulate the nodes and layers. A municipality consisted of all nodes
present, with a dictionary-structure representing the nine different layers, with
references to nodes in the different cliques in each layer. While this is made for
effective simulations, a more intuitive and object-oriented approach is a worthy
trade-off, as code is read many more times than written[48].

Therefore, in the process of understanding the code base, the code was turned
into an object-oriented model, using classes and a hierarchical approach to rep-
resent the different object types. The nodes were turned into objects instead of
dictionaries, and the layer structure was made into a hierarchy of classes.

Each layer is a class object that contains a list of cliques. Each clique is a class
containing the nodes present, in addition to specific clique methods, like pooled
testing and quarantine functions. This structure makes working with a relatively
large object structure more straightforward, like looping and iterating through
the object hierarchy is simpler and more intuitive.

A schematic of the class structure is shown in Figure 3.3.1, and a simple
explanation is given in Table 3.3.1.

There are several advantages of object-oriented programming. Some strengths
include hiding implementation details in lower-level classes, so more time can be
spent ensuring the overall model structure and logic are functioning as intended
and moving similar methods and classes to separate files and folders. This
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Figure 3.3.1: Illustration of the object hierarchy.

implementation has reduced debugging time and made new features easy to
implement and test.

Table 3.3.1: An overview of the different class types in the model.

Class Description

Person Represents individuals. Contains attributes like id-number,
age, disease state. Implements state change and testing func-
tions.

Commuter Subclass of the Person class, with commuter information like
home and destination municipality.

Clique A class containing persons. Implements pooled test and
quarantine functions.

Layer A container class containing different cliques.
Municipality A container class containing all the layers and nodes for each

municipality.

3.3.2 Population Data

High-resolution demographic data is essential to get realistic and representative
agents when implementing population data. When creating the original model,
a script to download data from Statistics Norway (SSB) was made to create the
national data for the network structure. The actual datasets used are described in
Appendix B.3.

The national data is divided into the different municipalities in Norway, each
municipality represented by two text files. One contains the id and age for each
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individual, and the other the social network used to create the layers. These two
pieces of information create all the agents and put them into the correct cliques
and layers. An example is shown in Table 3.3.2.

Table 3.3.2: Example of the two types of individual data tables. The left table simply
contains all individuals in a municipality with id and age. The right table includes all
cliques in a municipality, with reference to each clique’s individuals, with varying size
and age distributions.

Id Age

1 65
2 24
3 11
4 56
5 7
... ...

Clique type Node ids

Household 1, 13, 14, 23
Household 2, 4, 5
Workplace 4, 17, 22, 143, 178, 201, 202, 203
PrimarySchool 3, 28, 29, 30, 67, 68, 69
NursingHome 6, 71, 72, 73, 88, 155, 156, 157
... ...

Note that the dataset represents demographic data but not an entirely correct
recreation of actual population data. For example, the data for Trondheim will
include the correct number of schools and workplaces. However, the actual
individuals going to each different clique or household will be based on random
draws from the age and household distributions. The original article discusses
this aspect in more detail[49].

For this model, the creation of nodes from the same dataset will be determin-
istic, and node 1 will always be present in the same household and workplace. If
one were to create the municipal data from SSB data again, however, this would
change. For this thesis, the age of nodes and the network structure are unchanged
between runs. However, parameters like activity and random contacts change
for every simulation2.

3.3.3 Commuter Algorithm

To simulate spread between municipalities, information about commuters is
critical. Commuters work or go to school in a different municipality than their
household and regularly travel between two municipalities. These individuals
are represented with a node id in the municipality data that points to a different
municipality. This means that one or more nodes are references to nodes in other
municipalities for a given workplace.

For example, a workplace in Trondheim might have a commuter coming from
Oppdal, and their node id would be oppdal76, meaning this node is node 76 in
Oppdal, not node 76 in Trondheim.

The following considerations were taken into account when linking these
nodes and cliques together: Commuter nodes have a home municipality, where
they are present in their household, and a commute municipality, where they are

2And simulated disease states and deaths, naturally.
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present in their workplace or school. In addition, commuter nodes are present in
the generic contact layer of both municipalities, but with an activity of only 50% in
each layer. These considerations are meaningful while still being computationally
efficient.

During the initialisation of the municipalities in a simulation, a temporary
commuter layer is created. All cliques with incoming commuters get a commuter
node reference placed in a dummy clique in the commuter layer. After the
municipalities are initiated, the incoming commuters are linked to their respective
references in their home, and the dummy variables are deleted. This means
that the workplace in Trondheim not only has a reference to a node in Oppdal
but includes the actual node so that the node is present both in Oppdal and
Trondheim.

However, for smaller simulations, for example, when simulating only a region
or county, not all commuter node references will have an initiated home munic-
ipality. In this case, the node is still created but has a missingHome attribute
and has a small, daily chance of infection in its home municipality, based on a
given prevalence level. This implementation gives a realistic representation of
workplaces with many commuters while limiting the simulation scope.

The number of commuters between municipalities and regions will be de-
scribed in more detail in the subsequent sections.

3.3.4 Municipality Network

After population data is initiated and the commuters are placed in the right home
and work municipalities, the municipality network is created. In practice, this is
a list of municipalities, where each municipality is a class object containing a list
of inhabitant nodes and the network layer structure.

The network is scalable, and by changing the list of municipalities, the region
to be simulated changes. This list can be a single municipality like Trondheim,
a region like Trøndelag county, or the entirety of Norway. For testing purposes,
the municipalities in the county of Trøndelag have been used, for the most part,
to be able to simulate a relatively large region with several municipalities and
commuting, without too long computation times.

Intermittent Travelling

Intermittent travelling is not incorporated in the model. The same is true for
leisure travel or holidays. This will be discussed in more detail in later chapters.
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3.4 Modelling Framework

The model itself consists of several Python files that together make up the simula-
tion framework. These were designed to reuse the code as much as possible and
minimise code duplication by using object-oriented approaches and inheritance.
In addition, several R scripts were used for the data analysis and visualisations.

This section will go through the modelling framework, starting with an
overview of the main simulation algorithm. A description of the code structure
will follow, with a sequence diagram of the pseudocode and file structure. After
this, simulation protocol and model output will be described, explaining default
parameter values and some example visualisations of the results.

All code used in the project, as well as raw data, is available in the following
GitHub repository: https://github.com/helgebergo/master-thesis.

3.4.1 Algorithm

A flowchart of the main algorithm is shown in Figure 3.4.1, giving an overview
of the four main simulation steps:

Figure 3.4.1: A flowchart illustrating the simulation algorithm.

These steps are performed for every simulation, and the results vary based on
user and default input. By changing the municipality list in the initialisation step,
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the size of the simulation is changed, for example. A list of the default parameter
values is explained later in Section 3.4.3.

3.4.2 Code Structure

The code is structured into several different files with different functions during
the simulations. The main model file is nationalModel.py, which initialises
the model and calls on the other functions as needed. For the simulations pre-
sented later in this chapter, run.py is the script that controls all parameter input
and parallel simulations. Table 3.4.1 gives a summary of the main files and their
functions during simulations.

Table 3.4.1: Overview of the different files in the model framework.

Filename Description

run Script file for running all simulations and saving output
files.

nationalModel Main functions, including setup and run functions.

model Updated version of the original model code, adapted to
work with municipalities and the object oriented approach.

nationalModel-
Functions

Supporting functions to create the municipality network
for a given region.

modelFunctions Supporting functions for the original model, including
counting, test pool creations, test rules and strategy.

parameters Disease dynamics, virus parameters and important model
parameters for the simulations.

classes Includes the person class, in addition to the cliques, layers
and municipality classes.

modelUtilities Utilities including saving, printing and profiling functions.

The hierarchy of different function calls is not trivial, and a simplified illustra-
tion of the sequence diagram is shown in Figure 3.4.2.

This diagram shows an example simulation started from run.py, which
orchestrates the entire simulation. The parameters are initialised after the type of
simulation, based on the default values defined in Section 3.4.3. After this, the
municipality network is created, and the model loops through every municipality
every day, simulating disease spread in the different layers and cliques. After
the simulations, the different result files, including the disease states and daily
reproduction numbers, are saved to larger summary files.

There are two main ways to run the simulations. One is to initialise the model,
run it until a given number of nodes are infected, and then simulate for a set
number of days. This way is useful for recreating real-life scenarios, for instance,
last year in Norway, when the country closed down at around 100 confirmed
cases.
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Figure 3.4.2: Simplified sequence diagram of the code. The run script orchestrates the
simulations by first calling nationalModel and nationalModelFunctions to create
the municipalities with nodes and layers. This is then used in the fullRun-function, which
loops through every municipality for every day, and simulates disease spread in both
cliques and generic contact layer. Finally, the results are summarised in text files for
further analysis and visualisations.

The second way is to run the entire model for a given number of days without
any threshold values defined. This method makes for more straightforward simu-
lations that may be more comparable between runs but display less stochasticity
in the initial values. It is also more challenging to simulate containment measures
or strategies implemented after a given condition.

The second version is used in this project, though both versions are incorpo-
rated in the model.

3.4.3 Model Parameters

When doing simulations, the model is fed a set of user input, combined with the
default values to create the parameters used in each simulation. The main param-
eters used in the simulations are shown in Table 3.4.2, with a short description of
what each parameter does, together with the default value.

3.4.4 Model Output

The model output consists of two different types of text summaries, and these
are further analysed in R to produce the visualisations.
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Table 3.4.2: Main model parameters varied throughout the simulations. Short descrip-
tion and default values given.

Parameter Description Default

Days Number of simulation days 60

Seed Which municipalities should get initialised with in-
fected

All

Region Which region or list of municipalities to simulate Trøndelag

Prevalence Initial fraction of infected in each seed municipality 0.005

Mutation
infectivity

Increase in base virus infectivity 0.0

Commuter
fraction

Fraction of commuters simulated 1.0

Testing If a test regime should be active or not None

Strategy The degree of general containment strategies imple-
mented, like social distancing, hand washing, fewer
contacts. Implemented as a factor that influences the
base infection parameter.

0.25

Summary Files

The summary files are a log of the number of individual in each disease state and
the average reproduction number, both saved for every municipality, for every
day. Table 3.4.3 shows an example of these two tables.

Table 3.4.3: Example model output. The left table summarises all states’ counts for every
day, and the right table shows the calculated daily reproduction number. Note that the
values displayed are arbitrary and only meant to illustrate the two different output types
and trends.

Day S E Ia Ip Is R H ICU D

... ... ... ... ... ... ... ... ... ...
55 188 39 56 25 33 42 3 0 0
56 186 40 61 27 37 50 4 1 0
57 184 44 67 27 41 60 4 2 0
58 181 47 73 29 45 70 5 2 1
... ... ... ... ... ... ... ... ... ...

Day R

... ...
55 1.66
56 1.63
57 1.59
58 1.57
... ...

The tables are merged into larger tables containing additional info about
simulation parameters, like the municipality, region, commuter fractions and
differences in seeding municipality, mutations or containment strategies.
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Visualisations

The combined data tables have been analysed in R, and several graphical repre-
sentations have been created. To illustrate a typical simulation, five replications
with the default parameters have been run, and two plots have been made.
The first is a line chart with the different number of individuals in each state
throughout the simulation, in Figure 3.4.3.

Figure 3.4.3: Daily state counts after 5 runs in Trøndelag. Total number of individuals
in the entire region, for four of the disease states. The three different infected states have
been aggregated into one.

Four of the states have been included, the number of infected, exposed,
hospitalised and dead. The numbers show the total number of individuals in
each state in the Trøndelag region.

The second plot, Figure 3.4.4, shows the average reproduction number in the
region after the five replications.

Figure 3.4.4: Daily reproduction number after 5 runs in Trøndelag. Average values for
all infected in the entire region.

32



CHAPTER 4
RESULTS AND ANALYSIS

The previous chapter introduced the agent-based model logic and the modelling
framework.

This chapter is structured into three parts. The first section explores the
datasets used throughout the project, consisting of Trøndelag and Norway re-
gional data. The second part goes through the simulation results of Trøndelag,
where different parameter values have been explored. The third and final part
will describe the results from a complete Norway simulation, with an analy-
sis of crucial demographic parameters influencing the Covid-19 disease spread.
Figure 4.0.1 gives an overview of the three parts of the chapter.

Figure 4.0.1: Overview of the three sections of the chapter.

4.1 Data Exploration

This section will go through essential aspects of the data sets used in the project
and lay the groundwork for the simulation results to come later. The data
sets were created a year ago by someone else, and it is crucial to explore the
population and commuter data. There are two versions of the dataset that is used
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throughout this thesis. The first consists of 27 municipalities in Trøndelag county,
and the second is all counties in Norway, with over 300 municipalities simulated.
The following subsections will first go through the Trøndelag data and then the
complete Norway data set to give some insight before the results in Section 4.2.

It should be noted that the original municipality data for Norway was assem-
bled only months after a significant municipality amalgamation, where several of
the smallest municipalities in Norway were merged with others, moved to differ-
ent counties, or changed names[50]. This means that several of the municipalities
are non-functional in the model, either because of name changes or changes in
the underlying data sets from Statistics Norway. A more thorough discussion on
this topic is found in Section 5.2.2.

4.1.1 Trøndelag Region Data

Trøndelag county is a large region in the middle of Norway, with a population
size of around 400 000. The central city and municipality is Trondheim, with 190
000 inhabitants. It is relatively representative of a “normal” Norwegian county,
with a large, central city and several smaller cities and municipalities nearby.
Trøndelag has a few municipalities with a population of 15-20 000 and several
smaller ones. There is extensive commuting within the region, especially to
and from Trondheim. Stjørdal has an airport, and trains and main roads are
connecting Trøndelag to nearby counties, facilitating commuting to other large
cities in the country.

There is a significant spread in population size between the municipalities, as
illustrated in Figure 4.1.1.

Figure 4.1.1: Population sizes of municipalities in Trøndelag. Ordered by size. The
dashed line shows the median municipality in population size, which is Frøya. The
vertical axis is in logarithmic scale, and the size of points follow population size.

The figure shows that Trondheim dwarfs the other municipalities in size and
that there are several tiny municipalities with only a few thousand inhabitants.
The median municipality is Frøya, with a population of 5000. The smallest
municipality is Røyrvik, with only 500 inhabitants. In addition to these two, there
are four more municipalities highlighted, and these will be used throughout the
project. They have a wide range of population sizes, in addition to differences
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in area and population density, the fraction of commuters, and mean age. An
overview is shown in Figure 4.1.2. The actual numbers can be found in table
form in Appendix C.1.1.

Figure 4.1.2: Overview of the six highlighted municipalities in Trøndelag.

As can be seen, there are some key differences other than the apparent popu-
lation size. The commuter fraction is quite different between the municipalities,
with Stjørdal and Røyrvik having a significant fraction of their population com-
muting to other municipalities. In contrast, Trondheim and Stjørdal have a large
number of workers coming into the municipality. The age distribution is quite
similar, but the smaller municipalities have an older population, on average. In
addition, population density is very varied, with Trondheim knocking the other
municipalities out of the ballpark.

Commuters in Trøndelag

Trøndelag has extensive commuting within the region, and several of the munici-
palities are typical commuter cities, where a substantial fraction of the population
commutes daily to other cities for work. To investigate the differences between
municipalities, Figure 4.1.3 was created. Here the fraction of incoming com-
muters by population size is plotted against the outgoing commuters. This figure
shows the differences between the municipalities and the significant variance in
the region.

Typical commuter municipalities are Skaun, Malvik and Melhus, while Trond-
heim and Namsos have a much larger fraction coming into the city than travelling
out. The plot shows the fraction of commuters, not the actual amount, so re-
member that for larger municipalities like Stjørdal and Trondheim, there will be
several thousand people travelling to and from work every single day.

However, while this gives insight into individual municipalities, even more,
interesting is looking at how the different areas of the region are connected.
Figure 4.1.4 shows the actual amount of commuters on the left-hand side and the
correlation between the municipalities on the right-hand side.
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Figure 4.1.3: Commuter fractions for all municipalities in Trøndelag. Trend line shown
as dotted line.

(a) Number of commuters. (b) Commuter correlation.

Figure 4.1.4: Commuters and correlation between municipalities in Trøndelag. Sorted
by descending population size.

This figure shows several points of interest. First of all, the majority of
commuters travel to and from the largest municipalities. Second, the plot is
very symmetric. Trondheim has several outgoing commuters to nearly every
municipality and vice versa. The correlation plot on the right side shows some
clustering, especially between the largest municipalities.

Throughout this project, the Trøndelag data will be used extensively, as this is
a large region with a large population, but still small enough that simulations
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are efficient and manageable.1 However, some of the later simulations will
incorporate the entire country so that the next section will describe some key
features of the Norwegian country data.

4.1.2 Norway Data

The Norway data set consists of 5 million individuals, separated into 11 counties
and 365 municipalities. The spread in population sizes is vast, as well as differ-
ences in population density and commuters. As can be seen in Figure 4.1.5, the
differences in fractions of incoming and outgoing commuters are significant. This
pattern is not unlike the distribution in Trøndelag, actually, and seems to point to
the fractality of city sizes and counties. Oslo has few outgoing commuters, and a
considerable fraction is coming in, especially when considering the population
size of Oslo. The age distributions are pretty similar, but there is a slight trend
for lower mean age in the largest counties.

Figure 4.1.5: Overview of demographic distributions of counties in Norway. The upper
three panels show the mean of each county, the lower three show the sums.

Figure 4.1.6 shows the spread of population sizes for all municipalities in
Norway. As can be seen, the spread is large. Most of the municipalities in Norway
fall somewhere between 1000 and 20 000 inhabitants, but there are quite a few
in the 50 000 to 200 000 range, and some tiny ones with only a few hundred
inhabitants.

Commuters in Norway

As the population distribution is varied, it is unsurprising that the number of
commuters between municipalities and regions displays significant variations.
Heatmaps of the number of commuters within and between counties are shown
in Figure 4.1.7. A similar plot with commuters between all municipalities can be
found in Appendix C.1.2.

1And the fact that this thesis is written in Trondheim by an NTNU student, after all.
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Figure 4.1.6: Distribution of population sizes in Norway. Horizontal axis in logarithmic
scale. Counties sorted by decreasing total population size.

(a) Number of commuters. (b) Commuter correlation.

Figure 4.1.7: Commuters and correlation between counties in Norway. The counties are
sorted by decreasing population size.

What is most interesting in these two plots is perhaps the large degree of
commuters travelling within counties or neighbouring counties. The diagonal
in the left plot is by far the brightest, meaning that most commuters travel to
other municipalities but in the same county. This trend is not surprising, as most
commuters travel to nearby areas or cities instead of across the country, but its
extent is worth noting. The number of commuters varies a lot, and the largest
counties have tens of thousands of commuters travelling daily.
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4.2 Regional Model

The following section will go through the simulation results from the Trøndelag
region. First is a discussion of the average reproduction number for the different
municipalities with the default parameter values. Following is a walk-through
of the different parameters tested. An overview of the subsections in this part is
illustrated in Figure 4.2.1.

Figure 4.2.1: Overview of the subsections, with a short description of what was
changed for each parameter.

The two visualisations types described in Section 3.4.4 will be used extensively
throughout this section, but with a twist. A limit of the previous plots is that
they only show the overall trend in the Trøndelag region. One of the main
points of this project has been to simulate entire regions and look at differences
between municipalities. The same plot as Figure 3.4.4 is recreated, but this time
the reproduction number for every municipality is shown in a different facet of
the plot. The plots are sorted after decreasing population size with Trondheim
in the upper left. This sorting will be consistent throughout this chapter. In
addition, the same six municipalities of interest as described in Section 4.1.1 are
highlighted using the same colour scheme to facilitate easy comparisons between
runs and parameter values throughout the section.

There are several interesting things to point out in this figure. The stochasticity
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Figure 4.2.2: Daily reproduction number for 5 runs in Trøndelag, split to show each
municipality. The municipalities are sorted by decreasing population size.

is significant, especially for the smallest municipalities. There are considerable
differences both between and within municipalities. By comparing the two
smallest municipalities, Røyrvik and Leka, with Trondheim and Stjørdal, the
differences in fluctuations are pretty clear.

The overall trend is a high reproduction number in the first days, which
gradually decreases throughout the simulation for most of the municipalities.
The trend is most evident in the largest municipalities and more challenging to
pin down in the smaller ones, like Røyrvik, for instance.

When it comes to the disease states, Figure 3.4.3 is also recreated with a split
for each municipality, shown in Figure 4.2.3. The differences in numbers between
municipalities differ on several orders of magnitude, but the trends are very
similar. It can once again be seen that the stochasticity increases for the smaller
municipalities and the differences in the number of infected are huge. Trondheim
has close to 20 000 infected on day 50. In contrast, Frøya has around 300, and
Røyrvik only has 20-30, meaning that 10% of the population in Trondheim is
infected, compared to roughly 6% in Frøya and Røyrvik. The increased number of
initial cases may cause a much larger number of infected in Trondheim. However,
the most probable reason is that a larger city means a more extensive social
network, with more infected interacting with susceptible individuals, increasing
the risk of super spreader events and disease in large cliques.
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Figure 4.2.3: Daily states for 5 runs in Trøndelag. Note the limits on the y axis is different
for each municipality, meaning that the numbers are not directly comparable, but shows
the overall trends.

Mean Reproduction Number

The previous figures showed the aggregates of only five different runs. However,
more runs are needed to compare different municipalities and investigate the
degree of fluctuations in the model. Figure 4.2.5 shows the mean and standard
deviation after 100 runs with default values.

Figure 4.2.4: Density ridge plot of mean reproduction number for Trøndelag. Mean
values after 100 runs. The municipalities are sorted after decreasing population size.
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Figure 4.2.5: Mean daily reproduction numbers in Trøndelag. Values calculated after
100 runs. Standard deviation represented by the grey ribbons.

The plot shows significant differences between municipalities in the standard
deviation, but the mean reproduction numbers do not vary much. Most munici-
palities start with an R-number of slightly below 2 and end up at around 1 after
60 days of running time. The variance increases steadily as population size de-
creases, with some notable exceptions, like Osen. A possible reason for this might
be how the average reproduction number is calculated for each municipality. As
described in Section 3.2.3, a simulation with no secondary infections in a given
municipality is defined as not-a-number instead of zero.

The aggregated mean reproduction number for each municipality is shown in
Figure 4.2.4, a density ridge plot showing the average of 100 runs after filtering
out the first and last 15 days.

The density ridge plot has some advantages compared to a regular box plot,
as it is easier to see the overall trends in reproduction numbers. The larger
municipalities, like Trondheim and Stjørdal, display thinner density curves,
meaning they have less variation between runs. On the other hand, the smallest
municipalities show a much larger dispersion of values and range from 1 to 2 in
R-number.

Another aspect of this type of visualisation is that the average of every run
is displayed. Trondheim seems to have an average R-number of around 1.4 for
every single run. In contrast, look at Røyrvik, the bottom-most curve. Here it
seems like the majority of runs in Røyrvik has an average reproduction number
of either 1.0, 1.25 or 1.4. Between these, the whole spectrum is included. It can
be concluded that the average reproduction number in a small municipality like
Røyrvik is hard to pin down, even after 100 replicated simulations with similar
starting conditions.
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Finally, the average number of infected for each municipality is shown in
Figure 4.2.6. The numbers look very similar to the results shown previously
(Figure 4.2.3), with increasing variance for decreasing population size. It may
be difficult to interpret from this plot, but the number of hospitalised and dead
is small, so is the variance in these states. For this reason, these numbers are
often used as an indicator for curve and model fitting since they display less
stochasticity than infection numbers.

Figure 4.2.6: Mean daily state counts in Trøndelag. Values calculated after 100 runs.
Standard deviation represented by the coloured ribbons.

4.2.1 Effect of Population Size

The previous results indicate that population size might be an essential factor
in determining each municipality’s reproduction number. To look closer at this,
Figure 4.2.7 shows reproduction number as a function of population size, with a
smoothed average displayed on top. The six same municipalities as before are
highlighted.

Trondheim is by far the largest municipality and has the highest R-number,
of around 1.4. Frøya and Oppdal, two similarly sized municipalities, have a
slightly lower average, and Røyrvik has one of the lowest of close to 1.0. Nearly
all municipalities have an average R-number of above 1, the median value is 1.25,
and the average is 1.22.

The smoothed average might indicate an increasing linear trend, meaning a
higher mean reproduction number as a function of population size. However,
note the large grey area representing the variation, as well as the logarithmic
horizontal axis. To investigate further, linear regression and ANOVA were per-
formed on population size against the reproduction number. The resulting R2
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Figure 4.2.7: Mean reproduction number against population size in Trøndelag. The
mean is calculated for each municipality after 100 runs. The smoothed mean is a linear
regression of the values, but seems curved due to the logarithmic horizontal axis.

was 0.109, with a p-value of 0.1. This value means that the effect of population
size on the average reproduction number for the municipalities in Trøndelag
is not statistically significant, even though it may seem like it at first glance.
However, this regression was done with only 27 municipalities, so it is difficult
to get a significant result with so few values. This regression test will be repeated
later for the larger national data set.

4.2.2 Effect of Commuting

One of the objects of this project has been implementing commuters between
municipalities. The effect of these commuters has to be investigated. How much
does the degree of commuting influence the infections in the region? Will a
significant change in commuters affect some municipalities, or only the largest or
smallest?

The degree of commuters present in the model was changed by varying the
number of commuters for each municipality. The parameter is controlled by
varying the commuter parameter between 0 and 1, where 1 is 100% of commuters
present, while 0 is absolutely no commuters present in any municipalities.

Figure 4.2.8 shows the average reproduction number for each municipality
after 100 simulations with five different commuter degree values.

First, looking only at the overall trends, there are few differences between
different degrees, especially for the largest municipalities. One would first
assume that commuters would impact the results by a more significant factor,
but remember that even the largest municipalities only have a few thousand
commuters, only a fraction of their total population size.

The highlighted municipalities are shown more clearly in Figure 4.2.9.
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Figure 4.2.8: Average daily reproduction number as a function of commuter fraction.
Daily mean for each municipality after 100 simulations of each infectivity value.

Figure 4.2.9: R-number as a function of commuter fraction. Mean for each municipality
after 100 runs. The size of points is proportional to population size, and the six highlighted
municipalities are coloured to be comparable across runs. There is added a slight amount
of jitter in the horizontal direction, to better separate points.

Here the different commuter degrees are easier to separate, and it is even
more apparent that there are at best minor differences between the simulations.
Following the highlighted municipalities throughout the different parameter
values, there are not any noteworthy differences. It might seem that the vari-
ance increases slightly as a function of more commuters, where mainly Røyrvik
displays some decrease in the R-number.

The actual commuters removed from each run is drawn at random. However,
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as there have been 100 repeated simulations for each parameter, this should not
influence the outcome by a significant factor. All in all, it seems clear that the
degree of commuters has no significant impact on the reproduction number in
the Trøndelag region.

For completeness, the daily number of infected for each commuter degree
can be found in Appendix C.2.1.

4.2.3 Effect of Mutations

During the last few months of the pandemic, a topic that has received increasing
attention is the effect of new mutations. These new variants of the virus might
have different abilities and infection probabilities. While this has not been a large
part of this work, a simple mutation parameter was included in the model.

Mutations are modelled by increasing the base infection parameter of the
virus by a factor of between 1 and 2. Mutation infectivity of 1 means the default
probability, while 2 is a doubling of the base infection risk for every single
encounter between infected and susceptible individuals.

First of all, a similar plot as the commuter degree was created, shown in
Figure 4.2.10.

Figure 4.2.10: R-number as a function of mutation infectivity. Mean for each munici-
pality after 100 runs. The size of points is proportional to population size, and the six
highlighted municipalities are coloured to be comparable across runs. There is added a
slight amount of jitter in the horizontal direction, to better separate points.

At a glance, this looks surprisingly similar to the corresponding plot of com-
muter degree. The rightmost plot in the previous figure corresponds to the
leftmost plot in this figure. However, there are some key differences. There is
a decreased variance and slightly lower reproduction number as the mutation
infectivity increases. Comparing, for instance, Namsos and Røyrvik, they seem
to follow opposite paths through the different parameters. Namsos has a slight
decrease in reproduction number as mutation infectivity increases, while Røyrvik
displays a slight increase.
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Figure 4.2.11: Average daily reproduction number as a function of mutation infectivity.
Daily mean for each municipality after 100 simulations of each infectivity value.

It can be challenging to understand the course of the disease in the different
municipalities by this aggregated figure of the mean values. Going back to
looking at the evolution of daily R-numbers, this can be remedied, and the reason
is more evident. Figure 4.2.11 shows the average daily reproduction number for
each municipality and shows a fascinating pattern.

Here, while the total average reproduction number is not that different, the
daily average starts high for the highest mutation infectivity but quickly falls
after about 20 days. This fall is probably because the initial infected spread the
virus to a very high number of people in their first few days, which in turn will
lead to several cliques becoming saturated with infected individuals, leading to
fewer new cases after a few weeks. If everyone is already sick or immune from
a previous infection, the available amount of new susceptible falls quickly, and
herd immunity is achieved fast.

The overall number of infected can be seen in Figure 4.2.12, where a doubling
in mutation infectivity leads to somewhere between 3 and 4 times as many
infected for most municipalities.
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Figure 4.2.12: Average daily number of infected as a function of mutation infectivity.
Daily mean for each municipality after 100 simulations of each infectivity value.

4.2.4 Effect of Seed Municipality

Few real-world pandemics start with a large number of infected spread evenly
throughout a given geographical region. Instead, a much more realistic course of
events is that a handful of infected individuals in a small area catch the disease
from somewhere else, and it gradually spreads through the social network in
a region. This timeline was accurate for several European countries during the
winter of 2020, where an outbreak of SARS-CoV-2 started in Italy and was spread
unknowingly by tourists when they travelled home to their own countries.

Different seeding conditions were simulated by initialising a single munici-
pality with 100 infected on day one to see how the virus diffused throughout the
region. The previously highlighted municipalities were chosen as the seeding
municipality, and the mean reproduction number was calculated for the entire
region afterwards. The results are shown in Figure 4.2.13.

The mean reproduction number is around 1.4 for both Trondheim and the
default parameter values. A group of infected in the largest city in the region
will have a higher chance of infecting the rest of the region than a much smaller
city. Interestingly, Stjørdal gives a slightly higher average reproduction number
than the default value. The reason for this might be found when looking back at
Figure 4.1.2, where Stjørdal has the highest fraction of outgoing commuters in
Trøndelag, in addition to a relatively large population size and density.

The differences are significant between the three seeds mentioned in the
previous paragraph and the remaining four municipalities. Worth noting is
that Røyrvik is not present because of lack of data, which is the cause of two
different things. First, the mean reproduction number is only calculated for
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Figure 4.2.13: Density ridge plot of mean reproduction number for Trøndelag for dif-
ferent seed municipalities. The data points show only the average for the entire region,
not individual municipalities.

simulations where the infected individuals spread the disease to others. Second,
days without new infections are defined as not a number instead of zero. These
two factors explain why, on average, infected in Røyrvik do not spread the disease
further after the first 15 days. Based on the SSB data, Røyrvik has no incoming
commuters. This lack of infected in the plot demonstrates that the commuters in
the model work as intended, at least for the cases where a municipality have no
incoming commuters.

Namsos, Frøya and Oppdal are pretty similar, but the mean reproduction
number is slightly lower for the last two. The variation is significant when the
infection starts in one of these municipalities. Figure 4.2.14 shows the daily
R-numbers for the different seeds.

The variance is significant, and it can be challenging to interpret the plot.
The main takeaway of this is that an infection in the smaller municipalities,
namely Namsos, Oppdal and Frøya, on average do not spread the virus to
all other municipalities. The reproduction number is often low when they do,
indicating that few infected are moving between the different areas. An infection
in Trondheim and Stjørdal usually spread to the other municipalities, but there
are substantial variances here.

The default model works by initialising each municipality with a percentage
of infected individuals, which means that Trondheim sees many more infected
individuals than Leka and Røyrvik. For these simulations, a set number of 100
infected was infected for all seeds, to be comparable between runs. However,
this implies that these results are not directly comparable to the other parameters
inspected in this chapter.

Appendix C.2.2 includes the daily number of infected for each seed munici-
pality.
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Figure 4.2.14: Average daily reproduction number for different seeding municipalities.
Calculated for each municipality after 100 simulations of each different seed.

4.2.5 Effect of Initial Outbreak Size

A starting prevalence of 0.5% (the default value) means around 900 infected
in Trondheim, but only 2-3 in Røyrvik. Similar patterns have been observed
during the pandemic in Norway. Small municipalities have little disease spread
until suddenly 1 or 2 inhabitants get infected from another area and spread
the disease to their home place, starting local outbursts. It is vital to see how
the initial outbreak size effects the reproduction number and variance between
municipalities. Four different prevalence values were simulated, and the results
are shown in Figure 4.2.15.

The results show significant variance in the average R-number for some
municipalities, but not for all. In Trondheim, for example, the difference between
a starting prevalence of 0.05 and 0.005 is slight, but the R-number quickly fall for
values below this. The stochasticity increases significantly with the lowest two
prevalence values , which makes sense as a random draw of 0.0005 would mean
only a handful infected in a small municipality.

When comparing the number of infected individuals as a function of starting
prevalence, on the other hand, the story is different. Figure 4.2.16 shows the
average number of infected, and the results vary by a considerable factor. A
starting prevalence of 0.05 gives a massive number of infections early, while
a prevalence of 0.005 gives a much smoother and slower rising curve. For a
simulation of 60 days, this seems to work out well, as there are also enough
infected in the smaller municipalities. The overall trends for each municipality
are surprisingly similar for the different prevalence values, indicating the impact
of initial values for the simulations once more.
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Figure 4.2.15: Average daily reproduction number for different starting prevalences.
Calculated for each municipality after 100 simulations of each different prevalence value.

Figure 4.2.16: Average daily number of infected as a function of starting prevalence.
Daily mean for each municipality after 100 simulations of each prevalence value.
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4.2.6 Effect of Containment Measures

The initial model was created to emulate Norway in the spring of 2020, with a ris-
ing number of Covid-19 infections and strict containment measures to combat the
disease. The base infection parameter was set based on values from the literature
and adjusted according to observed numbers of infected in the country in the first
few months of the pandemic. The containment measures were implemented by a
strategy factor between 0 and 1 to simulate the degree of general containment
measures like increased hand-washing, social distancing, fewer daily contacts
and working remotely. In the model, this means a reduction in the basic infection
number for the generic contact layer.

For the original model, this value was usually in the range of 0.1 to 0.2, which
gave sufficient curve fitting to actual hospitalisation data. The default strategy
factor has been set to 0.25 in this project to have a sufficient number of infected in
municipalities of all sizes. Figure 4.2.17 shows the results for the five different
strategy levels.

Figure 4.2.17: Average daily reproduction number for different containment strategies.
Calculated for each municipality after 100 simulations of each different prevalence value.

As can be seen, a lower number gives a slightly lower reproduction number,
and the decrease is relatively steady for a slight decrease in the input values. A
strategy value of 0.25 versus 0.2 seems to give a slight difference in reproduction
number the first few days, but not in the long run. This difference might be
because the number of infections happening in the generic contact layer is large
the first few days, but later it is more impacted by the spread in workplaces and
households, for instance.

However, when looking at the number of infected for the different values,
the story is different. Figure 4.2.18 shows a massive increase in the number of
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Figure 4.2.18: Average daily number of infected as a function of containment measures.
Daily mean for each municipality after 100 simulations of each prevalence value.

infected for even slight changes in the strategy parameter. A decrease from 0.25
to 0.2 gives a 50% reduction in the number of infected for many municipalities.
A small change in the effective reproduction number from 1.3 to 1.2, for instance,
will give an exponential decrease in the new number of infected. Compare the
two upper curves of Stjørdal, where the decrease in the reproduction number is
nearly negligible, but the number of infected on day 40 decreases from around
1000 to under 500. A further halving in the strategy value gives close to no
infected after day 30. The same trend can be seen for most of the municipalities.

In other words, the infection chance in the generic contact layer influences
the number of infected in the model significantly.

4.2.7 Fractional Experiment

The final simulation was a simple fractional experimental setup, where the
variables were set to either high or low, and 100 repetitions were done to explore
the differences between variables. Table 4.2.1 shows the values used for the
different variables.

Table 4.2.1: Values used in the fractional simulation setup.

Variable High Low
Strategy 0.10 0.25
Commuters 0 1
Mutation infectivity 1 2
Prevalence 0.0005 0.005
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A linear regression model was created, and the results are shown in Table 4.2.2.
It can be seen that all the coefficients are significant except the commuter degree.
This trend is in line with the previous results. The differences between the
estimates show that the strategy and mutation parameter has a greater influence
on the reproduction number than the prevalence factor. An analysis of variance
was also done, with results indicating the same trend, shown in Table 4.2.3.

Table 4.2.2: Coefficient estimates for the linear regression model. The model was cre-
ated from the average value in Trøndelag after 100 runs. All values are scaled and centred.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Coefficients Estimate Std. Error t value p-value Signif.

(Intercept) 1.793 0.005 356.757 0.000 ***
Commuters 0.009 0.005 1.871 0.061 .
Mutations 0.381 0.005 75.819 0.000 ***
Strategy 0.490 0.005 97.396 0.000 ***
Prevalence -0.035 0.005 -6.971 0.000 ***

Table 4.2.3: ANOVA results of Trøndelag. The model was created from the average value
in Trøndelag after 100 runs. All values are scaled and centred.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Variable Df Sum Sq Mean Sq F value p-value Signif.

Commuters 1 0.142 0.142 3.502 0.061 .
Mutations 1 232.433 232.433 5748.504 0.000 ***
Strategy 1 383.551 383.551 9485.947 0.000 ***
Prevalence 1 1.965 1.965 48.596 0.000 ***

Residuals 1595 64.492 0.040 - -
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4.3 National Model

The previous section looked at the different parameters in the model and their
effect on simulations on the Trøndelag region. However, the model was designed
to be scalable based on a list of input municipalities, and one goal has been to
simulate the entire country of Norway. The following section will go through
some of the main results from these simulations.

All the parameters from the previous section are assumed to have similar
impacts on the national model simulations. The default setup will be used for
the national results unless otherwise noted.

The first result is shown in Figure 4.3.1, showing the daily reproduction
number for each county, with each line representing a municipality. This figure
gives an impression of the different number of municipalities in each county and
the overall trends. They are very similar to what has been presented previously.
Like the one large bump in Nordland, some outliers can be noted, but all in all,
nothing much surprising.

Figure 4.3.1: Average daily reproduction number for each county in Norway. Calcu-
lated for each municipality after 40 runs. The lower right plot shows the overall trend for
the entirety of Norway.

The number of infected for the same simulations are shown in Figure 4.3.2.
Here it shows significant variations between and within counties, but this comes
as no big surprise, as the population size varies tremendously between munici-
palities.

Taking a closer look at the distributions of the eleven counties, Figure 4.3.3
shows the average reproduction number for all the municipalities in Norway.
The counties are again sorted after decreasing population size, and the average
reproduction number for the default parameter values seems to be between
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Figure 4.3.2: Average daily number of infected for each county in Norway. Calculated
for each municipality after 40 runs.

around 1.3, quite similar to the Trøndelag simulations. While it may seem to
be a trend that variation increases as a function of county size, this may be a
side-effect of larger counties having more municipalities and of more varying
sizes. There are quite a few municipalities with an average R-number of below
1.0 and a few with very high numbers of over 1.5.

Figure 4.3.3: Distribution of mean reproduction number for all counties in Norway.
Calculated after 40 simulations.
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4.3.1 Effect of Population Demographics

The variance in the reproduction number for different counties and municipalities
is large, but how significant is it? Which demographic parameters influence the
reproduction number the most? While most of the analysis done on the Trøndelag
data could be repeated for the Norway simulations, the following section will
take a closer look at the overall trends for different population demographics
instead. Figure 4.3.4 shows the average reproduction number as a function of
population size, population density and mean age.

Figure 4.3.4: Reproduction number as a function of different population demograph-
ics. All municipalities in Norway, average after 40 runs.

The leftmost plot shows the effect of population size on the average repro-
duction number. There seems to be a correlation between population size and
reproduction number, with an increasing size means a slightly higher R-number.
However, there is some variance in the trend, shown by the grey area. In ad-
dition, while the trend line is increasing steadily, there is a large spread in the
municipalities in the middle of the plot, where most of the municipalities are
placed by population size. To conclude, there seems to be some correlation for the
smallest and largest municipalities in Norway, but the effect on medium-sized
municipalities is not apparent.

The middle plot shows the population density, which is another factor that
might influence the average reproduction number. A dense population would
mean more people in a smaller area, which could, in theory, increase the disease
spread. However, there is no significant trend showing on the plot, and it
seems population density does not explain the variance in R-numbers between
municipalities.

The rightmost plot shows the distribution of mean ages for all municipalities.
As with the population density plot, there is no significant correlation between
the two, and the effect seems to be negligible.

Note that these plots only display linear trends of the data. There could be
higher-order effects or interactions between several variables, but this has not
been investigated further.
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4.3.2 Effect of Commuters

Finally, the effect of commuter degree was explored in Figure 4.3.5. This plot
shows the fraction of incoming commuters on the left-hand side and outgoing
commuters on the right side.

Figure 4.3.5: Reproduction number as a function of commuter fraction. All municipali-
ties in Norway, average after 40 runs.

It is not simple to draw conclusions from the left plot, as most municipalities
have a fraction of between 0.0 and 0.2 incoming commuters, with a few having
much larger fractions. There seems to be a slight linear trend. However, the
deviation is larger than the decrease in the trend line.

For the outgoing commuters, on the other hand, the linear trend is more
apparent. There is a significant decrease in reproduction numbers as the fraction
of outgoing commuters increase. At first, this trend might seem strange since
more commuters would logically imply more infections, even though the effect
of commuters has not been significant previously. However, the fraction of
commuters is only one part of the picture.

Figure 4.3.6 shows the actual number of commuters instead of the fraction.
Here it seems like a slight increase for the incoming commuters on the left plot
and a similar trend on the right plot. Therefore, a possible explanation for the last
plot is that municipalities with a high fraction of outgoing commuters might also
often be small municipalities, which typically exhibit slightly lower reproduction
numbers.
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Figure 4.3.6: Reproduction number as a function of number of commuters. All munici-
palities in Norway, average after 40 runs.

4.3.3 Statistical Analysis

A linear regression model was created to test the effect of all demographic vari-
ables simultaneously. The resulting R2 was 0.026, with a p-value of zero. The
regression coefficients are shown in Table 4.3.1, and the results after ANOVA is
shown in Table 4.3.2.

Table 4.3.1: Coefficient estimates in the linear regression model. The model was created
from the average value for each municipality after 40 runs on the national model. All
values are scaled and centred.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Coefficient Estimate Std. Error t value p-value Signif.

(Intercept) 1.227 0.004 338.109 0.000 ***
Population 0.018 0.015 1.216 0.224
Population density -0.013 0.008 -1.627 0.104
Age -0.019 0.004 -4.218 0.000
Commuters in -0.044 0.016 -2.700 0.007 **
Commuters out 0.059 0.010 5.758 0.000 ***
Commuter fraction in 0.006 0.005 1.285 0.199
Commuter fraction out -0.076 0.005 -16.448 0.000 ***

The regression model shows a significant p-value for both the number and
fraction of outgoing commuters. There is a relatively significant p-value of 0.007
for the number of incoming commuters (assuming a significance level of 0.95).

An ANOVA was performed to test the variance between the groups further. It
turns out the variables explaining the variance in the data set best was the popu-
lation size and density, with the outgoing commuter fraction being significant as
well. Mean age in a municipality is not significant, and the number of commuters
is not significant.
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Comparing the two tables, several points are worth noting. While population
size and density are significant, they do not contribute to the estimate as much as
the commuter fraction. It is also interesting that the outgoing commuter fraction
is significant, but not the number of outgoing commuters. This fact might point
to a non-linear relationship between the two.

Table 4.3.2: ANOVA results of Norway demographic data. The model was created from
the average value for each municipality after 40 runs on the national model. All values
are scaled and centred.
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Variable Df Sum Sq. Mean Sq F value p-value Signif.

Population 1 6.5 6.5 43.57 0.000 ***
Population density 1 2.4 2.4 16.0 0.000 ***
Age 1 0.0 0.0 0.23 0.629
Commuters in 1 0.7 0.7 4.98 0.026 *
Commuters out 1 0.0 0.0 0.03 0.867
Commuter fraction in 1 0.4 0.4 2.75 0.097 .
Commuter fraction out 1 40.1 40.1 270.531 0.000 ***

Residuals 11252 1667.6 0.148 - -

ANOVA rests on the assumption of a linear relationship in the data, which
might not be valid for all variables presented here, like the number of commuters
and the population size. Still, the statistical analysis done hopefully helps explain
some of the variance in the reproduction numbers of the simulations, even though
some of the assumptions in the underlying analysis might be uncertain.

Figure 4.3.7: The relationship between outgoing commuter fraction and numbers. The
line indicates the smoothed linear trend. Logarithmic horisontal axis.

To further investigate the relationship between outgoing commuter fraction
and number, Figure 4.3.7 was created. The plot shows a fascinating pattern
where the linear smoothed average seems to divide the results into two. The
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municipalities with many outgoing commuters but a low commuter fraction
have R-numbers much higher than for the opposite case. With one notable
exception, all the highest R-numbers are on the lower side of the curve. The same
visualisation was done for the incoming commuters, but a similar trend was not
visible. The plot can be found in Appendix C.3.1.

Similar higher-order interactions may exist in the results, but this has not
been investigated further due to a lack of time.
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CHAPTER 5
DISCUSSION

“All models are wrong, but some are useful” - George Box[51]

As George Box now famously said in 1976, models have always been approx-
imations of reality. They try to describe a system as best as possible but have
shortcomings, either in their assumptions, complexity or understanding of the
underlying system.

So is the case with the modelling framework presented throughout this thesis.
The model tries to simulate the spread of SARS-CoV-2 in a social network of
Norway. It includes several assumptions and simplifications to make simulations
feasible and efficient while having the ability to implement containment measures
and different strategies. This chapter will discuss some of the most critical
assumptions, as well as list possible further work.

First of all, the disease parameters. While the SARS-CoV-2 pandemic has
lasted for close to 1.5 years now, extensive research is still ongoing. Several key
aspects of the virus and disease are still under debate, like the effect of airborne
transmission[52], the degree of asymptomatic patients[53, 54], and why some
people experience severe complications or so-called “Long-COVID”[55, 56].

Virus transmission parameters used in the model has not been a focus during
this project. Except for the simplified mutation infectivity, which aims to simulate
a linear increase in transmission chance, the viral parameters have been kept from
the original model values. Time could be spent comparing emerging research
throughout the world to get the most up-to-date characteristics of the virus, but
this has not been prioritised.

Second, the population and social network in the model has been based on
the already existing data set, which includes several simplifying assumptions.
The databases from Statistics Norway are assumed to be regularly updated
and sufficiently accurate, but the social network is only a representation of the
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population in Norway. In addition to the issues discussed in Section 5.2.2, the
activity of each individual is a parameter influencing model output significantly.
This is drawn from two different distributions, one for children and the elderly,
and one for the rest of the population, a divide that might be too simplified.
An example can be seen in Norway, where young people in their twenties have
been overrepresented in the disease statistics for several months. This parameter
has been held constant in the model and therefore does not consider a more
heterogeneous age distribution, day of the week, public holidays, or geographic
differences.

Another simplification worth noting is that the model, first and foremost,
has been used to predict differences in the reproduction number for different
containment strategies. While statistics like the daily number of contacts, the
number of individuals in each disease state and in which layers infections happen
can be extracted from the model, this has not been a focus. This simplification
might overlook the complicated dynamics happening on a micro-scale in different
municipalities, layers and cliques, and only focus on the macro-scale results. The
overall results should hopefully still be valid, but insight into important epidemic
characteristics might be missed.

In summary, these three simplifications and limitations might influence some
conclusions drawn from this model. However, all models are only representations
of a system. It is assumed that the modelling framework can still give valuable
insight into the dynamics of a regional or national epidemic of SARS-CoV-2.

5.1 Key Assumptions

In addition to the overall simplifications described above, there are some key
assumptions included in the model. This section will discuss the most important
ones.

Simplified contact patterns: The generic contact layer is intended to sim-
ulate what might be called “random contacts”, or infections from an un-
known source in a disease setting. This layer simplifies many types of
possible disease transmission, like going to the store, bumping into some-
one on public transport, or meeting an old acquaintance on your way home.
These examples will have very different possibilities of disease transmis-
sion, which is not explicitly modelled. As we have learned during the
pandemic, there is a significant difference in infection based on where peo-
ple interact and for how long. Factors like ventilation and indoor area, for
example, might influence the risk of disease spread tremendously[57].
In addition, the heterogeneity of social interactions might be too simplified.
There is no explicit simulation of different types of social contact outside
cliques, for example. Let us say a group of friends from different cliques
meet one afternoon weekly and interact for a couple of hours. This form of
contact, which might be described as somewhere in-between daily clique
contacts and the generic contact layer, is not possible.
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No travel except commuting: The model includes commuters travelling
between two municipalities, but no other form of travel within the country.
At the start of the pandemic, this assumption was relatively realistic. Later,
as Norway opened up more, in combination with vacations and holidays,
not so much. However, as commuters in the model have not significantly
impacted the average reproduction number, it is assumed this is negligible
for most simulation cases tested in this project.
In addition, it is assumed that there are no imported cases of Covid-19 from
abroad.

No geographical dimension in the model: The lack of a geographical com-
ponent in the model means that in a given municipality, every single inhab-
itant has the potential to meet anyone else each day. This assumption might
be realistic for smaller municipalities but not for large cities like Oslo, with
several hundred thousand inhabitants. In addition, no within-municipality
geographical information is explicitly included, like population density or
area size. A consequence of this is that contact between two individuals is
the only way the virus can spread. There have been reports of Covid-19
transmission without direct human-to-human interaction, and the impact
of disease spread on surfaces should not be neglected[58].

Simplified containment measures: The containment measures implemented
in the model mainly consist of two types. The first is reducing the basic
reproduction number in the generic contact layer, meant to simulate in-
creased handwashing, social distancing and a reduced number of contacts.
The second is the partial or complete close-down of different layers. This
can be a fraction of workplaces closing down or schools closed for given age
groups, for example. However, real-life containment measures have been
complex, differentiated and varying throughout the entire pandemic. How
do we turn the different rules into quantitative and tunable parameters in
the agent-based model? This is no easy task, and there is no correct answer.

Compliance to containment measures: The model assumes that all indi-
viduals follow the rules and measures in place. If a strategy implements
reductions of commuting closes down workplaces, all agents in the model
comply. Looking at the situation the last year in Norway, one area of in-
terest is the differences in rules and containment measures in different
municipalities, combined with the compliance. The variances have been
considerable and could be interesting to simulate.

No testing: The original model also included different testing measures.
Testing is implemented in the national model but has not been turned on
for the simulations in this project. In a real-life scenario, extensive testing
would be a pivotal factor to combat the pandemic. It would presumably
reduce the average reproduction number significantly, as a vast number
of infected are tested and put into quarantine before spreading the virus
further.
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5.2 Challenges

There have been several small and large challenges throughout the project. Two
of the more impactful ones have been the run time of the simulations and issues
with the population data sets.

5.2.1 Run Time

The goal of the model is to simulate entire regions or even the country across
dozens of parallel simulations with different parameter values. This makes
hundreds of different simulations on a population of several hundred thousands
or even millions of individuals. It comes as no surprise then that the model’s run
time is a significant factor influencing the ability to do simulations.

During the first part of the project, shortly after the model was made object-
oriented, the model was profiled extensively to investigate possible bottlenecks
in the code or underlying logic. Initially, the model looped through every single
individual for every single simulation day, which quickly turns into million of
calculations even for small regions or municipalities. Two particular points of
interest were discovered.

Clique Infections

The first is how infections in each clique were simulated. Previously, this was
done by counting the number of infected in a clique and then calculating the
infection risk for the remaining nodes. However, most cliques do not have any
infected on a typical day during a simulation with default parameters. The
solution was to give each clique an attribute that kept count of the number of
infected. If this was zero, the entire clique calculations were skipped for that day.
This simple check reduced the number of daily clique simulations by several
orders of magnitude and sped up the overall simulation times tremendously.

Generic Contact Layer

The second point of interest was the contacts in the generic contact layer. Instead
of calculating the number of contacts for every infected individual present in
the layer, an average prevalence was calculated for the entire layer, and newly
infected nodes determined by a random draw against this value as a function
of the node’s activity. This simplification reduces the number of calculations
made for every simulation day, which can be especially useful for more extensive
simulations.

5.2.2 Population Data Issues

As mentioned briefly in Section 4.1, there were some challenges with the un-
derlying datasets the social network is created from. Several municipalities are
non-functional or have some unusual features. It is assumed most of these issues
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arise from unforeseen problems with the network generating script created a year
ago, in combination with the municipality amalgamation. The non-functional
municipalities were simply removed from the model, but another issue with the
data becomes clear when plotting actual population sizes against the population
in the model. This issue is illustrated in Figure 5.2.1, where the worst offenders
are labelled.

Figure 5.2.1: Actual population size against model population size. Municipalities that
are over 50% larger or smaller than they should be are labelled by name.

As can be seen, there are a dozen municipalities with significantly larger
population size in the model compared to actual population sizes. These were
removed from the network, as several large artificial municipalities could have
unforeseen consequences. The most probable explanation is naming conflicts,
as several of the troublesome municipalities have short names that are subsets
of some of the largest municipalities in Norway, for instance, Ål (Ålesund),
Sande (Sandefjord) and Vang (Stavanger). However, this naming conflict does
not explain the smaller municipalities, but the possible reasons could be sev-
eral. Merged or split municipalities, non-functional data queries from Statistics
Norway, or

Table 5.2.1: Actual population size against model population size. The “Actual” row is
data from January 2020. “Unaltered” are the numbers with all functional municipalities,
and “Corrected” are the numbers with the removed municipalities mentioned above.

Model population Actual population Municipalities

Actual - 5 367 580 356
Unaltered 4 972 444 4 517 136 308
Corrected 4 344 374 4 427 237 294

Table 5.2.1 summarises the population size and number of municipalities in
the model before and after correction. After corrections, the model includes 86%
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of the population of Norway and 82% of the municipalities. Sixty-two munici-
palities are removed, either due to data issues or too large or small populations.
For this project’s scope, this was decided to be acceptable but is a clear area of
improvement for further work.

5.3 Further Work

There are several possibilities for further extending the model. Many of the
points mentioned in Section 5.1 are obvious candidates for improvements, like
simulating testing and intermittent travelling within the country, and differences
in compliance to containment measures.

One interesting simulation protocol to look closer at would be a more realistic
representation of the pandemic in Norway this last year. Elements to investigate
could be an initial number of infected in Oslo and Viken, and gradual closure of
different municipalities throughout the pandemic. Factors like different contain-
ment strategies in different counties and municipalities as a function of infected
in a given geographical region could be implemented, in addition to prioritised
test capacity and vaccinations.

In addition to the aspects as mentioned above, some other areas of improve-
ment include, but are not limited to:

Geographical dimension: The model includes a temporal dimension, but
an explicitly modelled spatial dimension would increase the realism. A
geographical dimension would also add the possibility of different types
of disease transmission, not only from human-to-human interactions, but
include surface transmission, for instance.

Network analysis: Further analysis of the network dynamics of the na-
tional model has not been a priority, but the possibilities are many. How
do infected individuals spread the disease throughout a clique, a layer
and a region? How many commuters are infected, and how much do they
influence spread in their home municipalities. How does the virus diffuse
through a region after a single area is infected?
A simple edge network was created from the agents in the model, but this
has not been analysed thoroughly and could yield valuable insight into the
model and disease dynamics.
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SARS-CoV-2 has ravaged the world for close to one and a half years. The pan-
demic has turned life upside down for a majority of the population. While
vaccinations have come far in many countries, several years might remain until
everything is back to normal. Creating models to get a deeper insight into infec-
tious diseases like Covid-19 is critical, both to understand the current situation
and future pandemics from undiscovered pathogens.

In this project, the agent-based Covid-19 model created at NTNU in the spring
of 2020 has been extended to simulate the entire country of Norway based on
actual population demographics and properties of SARS-CoV-2. Commuter
travelling and a municipality network has been implemented in the Python code.
The main parameters can be tuned by user input, and the model framework has
been tested with different parameter values. The Trøndelag region has been used
as a case study to investigate different model aspects like commuters, mutations,
initial conditions, containment measures, and demographic data.

It was found that the average reproduction number varied significantly based
on model input and the demographic properties of the simulated municipalities.
The most important factors determining the average reproduction number in
a municipality were found to be population size, population density, and the
fraction of outgoing commuters. The number of commuters in a municipality
was not a statistically significant factor, and changes in the amount of commuters
present did not affect the simulation results in Trøndelag considerably.

The agent-based model is a robust and theoretical simulation framework for
investigating SARS-CoV-2 spread in Norway, but it has not been tested against
current developments in the pandemic. Disease dynamics are complex and influ-
enced by stochastic processes, and the results presented here are not generalisable
to other diseases or countries with different population demographics.

Further work should explore different simulation situations in Norway, with
more realistic parameter values and initial conditions, in addition to heterogeneity
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in containment strategies between municipalities and counties. Implementing
an explicit geographical dimension in the model is a possible long-term goal for
future research.

The results presented in this project lay the groundwork for a flexible and
large-scale agent-based model that can be utilised to simulate different diseases
in diverse regions. Furthermore, they can also give insight into the ongoing
pandemic and the spread of future human pathogens.
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APPENDIX A
THEORY SUPPLEMENTARY

A.1 Theory Presented in the Project Report

Several of the sections presented in Chapter 2 (the theory) of this thesis is obtained
from or based on material presented in the project report “Agent-Based Modelling
of SARS-CoV-2 Spread in a Public Transport System”[18]. An overview is listed
below:

Section 2.1: The material covering epidemic modelling is obtained from
[18], with some textual alterations and updated figures.

Section 2.1.1: The theory about compartmental models is obtained from
[18].

Section 2.1.2: The material related to network models is obtained from [18].

Section 2.1.3: The theory covering agent-based models is obtained from
[18].

Section 2.2: The section on statistics is obtained from [18], with some
alterations and sections removed, as well as updated figures.
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APPENDIX B
METHOD SUPPLEMENTARY

B.1 Python Modules

The project was written in Python version 3.9.5, but should work fine for every-
thing above Python 3.8. The modules used in the project are shown in Table B.1.1.

Table B.1.1: Python modules used in the project. The first modules are included in the
Python Standard Library, which is why they have no version number.

Module Description Version

os Operating system interfaces -
pickle Object serialisation -
random Pseudo-random numbers -
time Time-related functions -
sys System-specific parameters and functions -
re Regular expression operations -

numpy Scientific computing 1.20.3
pandas Data analysis 1.2.1
scipy Statistics 1.6.0
matplotlib Visualisations 3.3.3
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B.2 R Libraries

The project was written in R version 4.1.0. The libraries used in the project are
shown in Table B.2.1.

Table B.2.1: R libraries used in the project. The first 8 are included in the tidyverse
collection.

Library Description Version

ggplot2 A declarative plotting library based on “The Grammar
of Graphics”.

3.3.3

dplyr A tool for working with data frames. 1.0.6
tidyr Tools for creating tidy data. 1.1.3
stringr String manipulations. 1.4.0
readr Read rectangular data like csv and txt files. 1.4.0
tibble Provides the tibble data frame. 3.1.2
forcats Helpers for reordering and modifying factor levels. 0.5.1
purrr Functional programming toolkit for R. 0.3.4

scales Graphical scales functions for ggplot2. 1.1.1
ggrepel Text and label geoms for ggplot2. 0.9.1
ggridges Ridgeline plots for ggplot2. 0.5.3
janitor Cleaning and formatting data frames and tables. 2.1.0
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B.3 Population Data

To generate the network in the model, high-resolution demographic data for each
municipality in Norway was used. This comes from Statistics Norway (SSB),
and all data tables can be found by accession number from www.ssb.no/en.
In addition, school information was downloaded from the Norwegian National
School Registry, where the API can be found on https://data-nsr.udir.no.
Table B.3.1 shows the different data tables used.

Table B.3.1: Demographic data tables from Statistics Norway used to generate the so-
cial network.

Accession
number

Data table text description

3321 Employed persons (aged 15-74) per 4th quarter, by mu-
nicipality of work, municipality of residence, contents
and year

4469 Residents in dwellings for nursing and care purposes, by
age (M) 2002 - 2019

6070 Private households, by type of household (M) 2005 - 2019
6079 Private households and persons in private households,

by size of household (per cent) (M) (UD) 2005 - 2019
6206 Children 0-17 years, by number of siblings and the child’s

age 2001 - 2019
6445 Employed persons, by place of residence, sex and age

(per cent). 4th quarter (M) 2005 - 2019
8947 Pupils, apprentices, students and participants in up-

per secondary education, by sex, age and type of
school/institution 2006 - 2019

9169 Children in kindergartens, by age, hours of attendance
per week and ownership (M) 1999 - 2019

9220 Kindergartens, by ownership (M) 1987 - 2019
9929 Nursing and care institutions and beds, by ownership

(C) 2009 - 2018
10308 Establishments, by the enterprises sector and number of

employees (M) 2012 - 2020
11933 Care institutions - rooms, by region, contents and year
12562 Selected key figures kindergartens, by region, contents

and year
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APPENDIX C
RESULTS SUPPLEMENTARY

C.1 Data Exploration Supplementary

Supplementary figures and results from the Section 4.1 is shown on the following
pages.

C.1.1 Highlighted Municipalities in Trøndelag

The demographic statistics for the highlighted municipalities described in Sec-
tion 4.1.1 are shown in Table C.1.1.

Table C.1.1: Demographic information about the six highlighted municipalities in
Trøndelag. Sorted by decreasing population size. The commuter columns are fractions of
the population size.

Municipality Population Area Population
Density

Commuters
in

Commuters
Out

Mean
age

Trondheim 190464 342 556.5 0.15 0.05 38
Stjørdal 23625 938 25.1 0.20 0.18 39
Namsos 13051 2132 6.1 0.12 0.07 41
Oppdal 6973 2274 3.0 0.07 0.08 42
Frøya 4937 241 20.5 0.09 0.03 39
Røyrvik 469 1584 0.3 0.00 0.12 42
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C.1.2 Commuters in Norway

In Section 4.1.2, Figure 4.1.7 showed heatmaps of the commuters travelling
between and within counties. Figure C.1.1 shows the same underlying data, but
for every municipality in Norway, sorted by population size of the counties.

(a) Number of commuters. (b) Commuter correlation.

Figure C.1.1: Heatmaps of commuters in all municipalities in Norway. The municipali-
ties are sorted by largest population size, within each county.

86



C.2 REGIONAL MODEL SUPPLEMENTARY

C.2 Regional Model Supplementary

Supplementary figures and results from the Section 4.2 follows.

C.2.1 Effect of Commuters

Figure C.2.1 shows the average daily number of infected for different commuter
degrees, supplementary to Section 4.2.2.

Figure C.2.1: Average daily number of infected as a function of commuter degree. Daily
mean for each municipality after 100 simulations of each commuter fraction.
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C.2.2 Effect of Seed Municipality

Figure C.2.2 shows the average daily number of infected for different seeds,
supplementary to Section 4.2.4.

Figure C.2.2: Average daily number of infected as a function of seed municipality.
Daily mean for each municipality after 100 simulations of each commuter fraction.
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C.3 National Model Supplementary

Supplementary figures and results from the Section 4.3 follows.

C.3.1 Statistical Analysis

Figure 4.3.7 showed the relationship between outgoing commuters and commuter
fraction. A similar plot is created in Figure C.3.1, with incoming commuters
instead.

Figure C.3.1: The relationship between incoming commuter fraction and numbers. The
line indicates the smoothed linear trend. Logarithmic horizontal axis.

89



APPENDIX C. RESULTS SUPPLEMENTARY

90



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f B
io

te
ch

no
lo

gy
 a

nd
 F

oo
d 

Sc
ie

nc
e

H
elge Bergo

M
aster's thesis

Helge Bergo

Agent-Based Modelling of SARS-CoV-2
Spread in a National Municipality
Network

Master’s thesis in Industrial Chemistry and Biotechnology
Supervisor: Eivind Almaas
Co-supervisor: André Voigt

June 2021

M
as

te
r’s

 th
es

is


	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Theory
	Epidemic Modelling
	Compartmental Models
	Network Models
	Agent-Based Models

	Statistics
	Descriptive Statistics
	Probability Distributions


	Method
	Software
	Python
	R

	The Agent-Based Model
	Network structure
	Epidemiologic Dynamics
	Reproduction number
	Intervention measures

	Implementing a Municipality Network
	Making the Model Object-Oriented
	Population Data
	Commuter Algorithm
	Municipality Network

	Modelling Framework
	Algorithm
	Code Structure
	Model Parameters
	Model Output


	Results and Analysis
	Data Exploration
	Trøndelag Region Data
	Norway Data

	Regional Model
	Effect of Population Size
	Effect of Commuting
	Effect of Mutations
	Effect of Seed Municipality
	Effect of Initial Outbreak Size
	Effect of Containment Measures
	Fractional Experiment

	National Model
	Effect of Population Demographics
	Effect of Commuters
	Statistical Analysis


	Discussion
	Key Assumptions
	Challenges
	Run Time
	Population Data Issues

	Further Work

	Conclusion and Outlook
	Bibliography
	Appendix
	Theory Supplementary
	Theory Presented in the Project Report

	Method Supplementary
	Python Modules
	R Libraries
	Population Data

	Results Supplementary
	Data Exploration Supplementary
	Highlighted Municipalities in Trøndelag
	Commuters in Norway

	Regional Model Supplementary
	Effect of Commuters
	Effect of Seed Municipality

	National Model Supplementary
	Statistical Analysis



