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Abstract

In recent years, autonomous vehicles have been subject to increased research and develop-
ment. Due to recent advances in deep learning, the end-to-end approach has become a vi-
able and cost-effective solution to creating autonomous driving systems. In the end-to-end
approach, the complete task of autonomous driving is learned by a single comprehensive
neural network. These networks can be trained by imitation learning or reinforcement
learning methods.

Learning by Cheating (LBC) is an imitation learning approach which has proved to be
effective for training neural networks for autonomous driving. This approach trains a
network that uses RGB images as input and outputs a trajectory for the vehicle to follow.
It uses the CARLA simulator to train and evaluate networks. This simulator provides a
flexible and safe environment for quickly developing autonomous driving systems.

The models in end-to-end approaches will usually learn to perceive the scenery by pro-
cessing RGB images. It is also possible to equip the models with explicit intermediate
representations. Research shows that by using methods from computer vision, such as
semantic segmentation and depth estimation, models can generalize better and increase
task performance.

This thesis examines if using explicit intermediate representations can improve the per-
formance of networks trained with the LBC approach. In the first experiment, the results
show that LBC is reproducible in the latest version of CARLA (0.9.11). In the second
experiment, it is shown that the performance and generalization of the networks increase
significantly when using perfect explicit intermediate representations, which are supplied
by the simulator. The results from the third experiment show that the networks also gen-
eralize better when using intermediate representations generated by trained perception
models.

It is also investigated if the performance of the networks can be improved by using an
additional reinforcement learning stage. An attempt was made to improve the networks
further with proximal policy optimization, but this was found to be difficult.

i



Sammendrag

I de siste årene har forskningen og utviklingen av autonome kjøretøy økt. Takket være
gjennombrudd innen dyp læring, s̊a har ende-til-ende-tilnærmingen blitt en realistisk og
kostnadseffektiv løsning for å skape selvkjørende kjøretøy. I ende-til-ende-tilnærmingen
blir hele kjøreoppgaven lært av ett enkelt nevralt nettverk. Disse nevrale nettverkene kan
bli trent ved enten imitasjonslæring eller forsterknings-læring.

Learning by Cheating (LBC) er en imitasjonslærings-metode som har vist seg å være
effektiv for å trene nevrale nettverk for selvkjørende kjøretøy. Denne metoden trener et
nettverk som tar inn RGB-bilder og gir ut en sti som kjøretøyet skal følge. CARLA-
simulatoren blir brukt til å trene og evaluere nettverk. Denne simulatoren gir et fleksibelt
og trygt miljø for å kunne utvikle selvkjørende-kjøretøy-modeller raskt.

Modellene i en ende-til-ende-tilnærming vil vanligvis lære å oppfatte omgivelsene ved å
prosessere RGB-bilder. Det er ogs̊a mulig å gi modellene eksplisitte mellomrepresen-
tasjoner. Forskning viser at ved å bruke metoder fra datasyn, som for eksempel semantisk
segmentering og dybdeestimering, s̊a kan modellene generalisere bedre og øke ytelsen.

Denne masteroppgaven undersøker om man kan øke ytelsen av nettverk ved å bruke ek-
splisitte mellomrepresentasjoner i LBC-metoden. Det første eksperimentet viser at LBC
kan gjenskapes i den nyeste versjonen av CARLA (0.9.11). Det andre eksperimentet viser
at ytelsen og generaliseringen av nettverk økes betraktelig ved å bruke perfekte eksplisitte
mellomrepresentasjoner. Disse representasjonene er gitt direkte av simulatoren. Det tredje
eksperimentet viser at nettverk ogs̊a generaliserer bedre n̊ar de f̊ar mellomrepresentasjoner
som er generert av trente oppfatnings-modeller.

Det blir ogs̊a undersøkt om man kan øke nettverks-ytelsen ved å legge til en fase med
forsterknings-læring. Et forsøk ble gjort p̊a å forbedre nettverkene videre med Proximal
Policy Optimalization, men dette viste seg å være utfordrende.
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Chapter 1

Introduction

This chapter is divided into four sections. Section 1.1 gives a brief summary of the back-
ground and motivation behind this thesis. Section 1.2 describes the research goal and the
research questions of our thesis. Section 1.3 presents the contributions of our work, and
Section 1.4 outlines the structure of the thesis.

1.1 Background and Motivation

A recent study on road traffic accidents by the U.N. shows that traffic-related fatalities
rank as the eighth leading cause of death in the world [1]. The World Health Organization
states that the total number of such fatalities reach approximately 1.35 million people
every year [2]. Furthermore, approximately 94% of traffic accidents in the U.S. are caused
by human errors [3].

With these statistics in mind, fully autonomous vehicles (AVs) could lead to substantial
benefits for human life. AVs could also lead to more efficient traffic flow, productivity
gains due to less time spent driving, and less emissions of green house gases [4]. In the
U.S., widespread deployment of AVs is estimated to save hundreds of billions of dollars by
2050 [3].

In recent years, AVs have been subject to increased research and development [4]. This
is reflected by the vast number of research articles that is published every year. It is also
reflected by the efforts of corporations like Tesla, Uber and Google. However, autonomous
driving in complex and unpredictable environments remains a difficult challenge.

There are predominately two main approaches for developing AVs; the modular approach
and the end-to-end approach. The modular approach splits the task of driving into a
pipeline of modules. Each module performs a separate task, e.g., localization, prediction
or planning. Dividing the autonomous driving problem into separate modules makes the
system more interpretable. However, developing such a pipeline is costly, and often results
in over-engineered solutions. Meanwhile, the end-to-end approach treats the complete task
of driving as a single machine learning task, learnable by artificial neural networks (ANNs).

The rise of the end-to-end approach has been enabled by the the recent breakthroughs
of deep learning. This have allowed for the use of deep neural networks to solve complex
tasks, which include object detection, speech recognition and natural language processing.
ANNs have also achieved super-human performance in game environments such as Atari
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[5] and Dota 2 [6]. In board games such as chess, shugi and go, the AlphaZero system
has been capable of defeating world champions [7]. These successes have led to optimism
regarding the development and deployment of neural networks in other domains, such as
autonomous driving.

Tampuu et al. [8] believe that the end-to-end approach will be of higher interest to the
automotive industry than the modular approach. An important reason for this is that the
end-to-end approach is more affordable. A single RGB camera is the primary requirement
for deploying a developed end-to-end system in the real world. Many other sensors, such
as LiDAR [9], raise the costs of the system significantly. This motivates the pursuit of a
camera only, end-to-end based solution for autonomous driving.

Simulators such as CARLA [10] have proven to be incredibly beneficial for developing
end-to-end systems. These simulators let researchers quickly organize and conduct ex-
periments, without any safety concerns. Research conducted in CARLA often evaluate
systems on the challenging NoCrash benchmark [11]. This benchmark consists of tasks in
urban environments with varying difficulty.

Neural networks in end-to-end approaches are usually trained to output actuator com-
mands based on RGB images captured by a monocular camera. These neural networks
can be trained with imitation learning (IL). This is a supervised learning method, where
the networks learn on demonstrations performed by an expert. Another method that has
garnered more attention recently is reinforcement learning (RL). This approach trains the
network to maximize a reward signal by experimenting with different actions in the envi-
ronment. RL allows the network to learn how to recover from mistakes, which can make
the network more robust to diverse traffic scenarios.

Both IL and RL approaches have shown promising results. However, networks trained with
IL often fail to generalize to new environments. This is often due to lack of variety and
inherent bias in the demonstrations [11]. RL methods are usually not data efficient, and
will often require more computation than IL methods. They are also challenging to apply
in real environments. In general, end-to-end solutions suffer from a lack of interpretability.
Understanding erroneous behavior is therefore difficult.

End-to-end systems can also use intermediate representations, such as semantic segmen-
tation and depth images. Zhou et al. [12] investigated how using explicit intermediate
representations from computer vision affects the performance of end-to-end systems. Their
results showed that these representations help networks learn faster, generalize better, and
achieve higher task performance. They deem semantic segmentation and depth images the
most useful representations. These representations can also make the system more inter-
pretable [13]. In this thesis, such representations are also referred to as computer vision
images. Neural networks that generate such representations are referred to as perception
models.

In this thesis, we investigate and build on the work by Chen et al. [14], who introduced the
Learning By Cheating (LBC) approach for training AVs. Their research was conducted
with CARLA, and was evaluated with the NoCrash benchmark. LBC separates the prob-
lem of learning to drive into two distinct tasks; learning to act, and learning to see. First,
a privileged network is trained to drive on semantically segmented bird’s-eye view (BEV)
images. These BEV images contain high-level information about the state of the world,
such as pedestrians, vehicles and traffic lights. This information allows the privileged net-
work to focus on the task of learning to act. Next, a sensorimotor network that receives
RGB images as input is trained by IL, where the privileged network acts as the expert.
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The sensorimotor network can query the privileged network on what the optimal action is
in any situation. This allows the sensorimotor network to focus on the task of learning to
see. This two-staged approach proved to be very effective, with the sensorimotor network
achieving state-of-the-art (SOTA) results on the NoCrash benchmark.

We were interested in LBC because it had proven to be an incredibly effective, camera-only-
based approach. Additionally, it was an interesting and unique solution to the autonomous
driving problem. The code for LBC was also available as an open-source repository, which
included an implementation of the NoCrash benchmark. This code gave us a good starting
point from where we could continue with our research.

CARLA has undergone significant updates after the release of the LBC paper. At the time
of writing this thesis, the most recent version of CARLA is version 0.9.11. The authors of
LBC used CARLA 0.9.6. Therefore, we attempt to reproduce the results of LBC in the
newest version. This allows us to inspect how the LBC approach performs in an updated
simulated environment, which has more realistic physics and graphics. Inspired by recent
research, we then try to improve the performance of the sensorimotor network in two
different ways; with methods from computer vision and RL.

We investigate what happens when the sensorimotor network is given access to explicit
representations from computer vision, particularly semantic segmentation and depth im-
ages. This is motivated by the results of Zhou et al. [12]. We hypothesize that by providing
additional representations from computer vision, the sensorimotor network will generalize
better and achieve higher task performance. We investigate this by using ground truth
computer vision images provided directly from the simulator.

Furthermore, we train and evaluate different neural networks that perform semantic seg-
mentation and depth estimation. The output of these networks, together with the corre-
sponding RGB image, is then used as input to train a new sensorimotor network.

In the RL experiment, we attempt to train the sensorimotor network further without su-
pervision of the privileged network. Additionally, combining LBC with RL was something
that the LBC authors stated could be a potential direction for future work. We use the
proximal policy optimization algorithm and a pretrained sensorimotor network. The RL
stage will hopefully allow the sensorimotor network to learn from the new situations it
might put itself in. By starting with a good initial policy, the agent will have skipped
the computationally expensive early stages of training [15]. Using RL is also inline with
several other recent works, which have opted for methods that do not utilize experts with
access to high-level information [16, 17].

1.2 Research Goal and Research Questions

In this thesis, we investigate LBC [14], a state-of-the-art IL-based approach for training
neural networks for autonomous driving in CARLA. We want to expand on LBC, and
improve the performance of networks trained with this approach. In this context, per-
formance refers to the ability to drive efficiently and safely in urban environments. We
formulate our research goal as follows:

Research Goal: Improve the performance of neural networks trained with the LBC
approach.

To achieve the research goal, we pose the following research questions (RQs):
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• RQ1: Can the results of LBC be reproduced in the newest version of CARLA?

• RQ2: Can the performance of the sensorimotor network be improved by providing
it with perfect semantic segmentation and depth images directly from the simulator?

• RQ3: Can the performance of the sensorimotor network be improved by provid-
ing it with intermediate representations produced by networks trained for semantic
segmentation and monocular depth estimation?

• RQ4: Can the sensorimotor network be improved with the use of an additional RL
stage?

Four experiments have been conducted to answer each of these RQs.

1.3 Contributions

To the best of our knowledge, reproducing LBC in CARLA 0.9.11 has not been conducted
in any published works. However, the concurrent work by Chen et al. [18], reproduced
LBC in CARLA version 0.9.10. We are not aware of any other works which have extended
LBC with explicit intermediate representations. Furthermore, we have not discovered any
other works that have trained the sensorimotor network from LBC with an additional RL
stage.

The results of the reproduction experiment indicate that the LBC approach can be re-
produced in the newest version of CARLA. However, this requires extensive tuning of the
PID controller parameters.

When the sensorimotor network is provided with additional ground truth semantic seg-
mentation and depth images, the performance increases and generalizes better. The results
show that the sensorimotor network drives more efficiently and safely, without requiring
any tuning of controller parameters.

Furthermore, when the sensorimotor networks is provided with intermediate representa-
tions predicted by neural networks, the performance increased in test conditions. The
performance was weaker in training conditions compared to the reproduced network. No
tuning of PID controller parameters was required, and it had fewer traffic light violations
compared to the reproduced network. The utilization of these intermediate representa-
tions also helped the system become more interpretable, which is beneficial for real world
deployment.

In the RL experiment, the sensorimotor network was never able to improve. The perfor-
mance degraded in all cases. This might be due to inefficient exploration, an unbalanced
reward signal, or too many tunable network parameters.

1.4 Thesis Structure

This thesis is structured into six chapters:

• Chapter 1 - Introduction: Describes the background and motivation for the the-
sis, and explains where this work is situated in the field of end-to-end AV research.
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The research goal, research questions, and contributions of this thesis are also pre-
sented in this chapter.

• Chapter 2 - Background and Related Work: Gives a theoretical foundation
for the thesis. This includes machine learning basics, deep learning, computer vision,
approaches to developing AVs, relevant technology, and related work.

• Chapter 3 - Methodology: This chapter explains the methodology of our work.
It presents the technology we have used for our research. It also explains how we
updated the LBC code for CARLA 0.9.11 and fixed various issues. Furthermore,
this chapter describes the experimental setup and plan for the experiments. We
reproduce the LBC approach in the first experiment. In the second experiment,
we give the sensorimotor network ground truth depth and semantic segmentation
images directly from the simulator. In the third experiment, we train and evaluate
different networks for monocular depth estimation and semantic segmentation. The
output of these networks is then used as input to train a sensorimotor network. In
the fourth experiment, we expand LBC with an additional RL stage.

• Chapter 4 - Results: Presents the results from each of the four experiments.

• Chapter 5 - Discussion: Evaluates and discusses the results from the experi-
ments. The RQs are also addressed. The chapter ends with a reflection over the
shortcomings of the research.

• Chapter 6 - Conclusion and Further Work: Concludes the thesis, describes
the significant findings, and presents ideas for further work.
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Chapter 2

Background and Related Work

This chapter covers the theoretical foundations for this thesis. Section 2.1 and Section
2.2 introduces the machine learning foundations and deep learning techniques which are
the basis for end-to-end autonomous vehicles. In Section 2.3 the tasks of semantic seg-
mentation and monocular depth estimation are introduced. The approaches of organizing
and creating autonomous vehicle systems are discussed in section 2.4. Various tools and
technology used in the thesis are introduced in Section 2.5. Section 2.6 discusses research
papers that are relevant to this thesis.

2.1 Machine Learning

In the field of AI, an agent is a general term meant to symbolize anything that perceives
and exists in an environment [19]. Machine Learning is a sub-field of AI, where the main
goal is to make a machine, i.e. an agent, learn by the use of data and experience. Machine
learning systems can be divided into different categories based on how they perform the
learning procedure. This section will briefly explore three categories of learning, namely
supervised, imitation and reinforcement learning.

Before delving into these topics, some preliminary terminology must be explained:

• Training data: Training data is the information and experience that any machine
learning system requires for learning. This data consists of a number of different
instances or examples, and is denoted by D. The shape, form and origin of the data
will vary depending on the type of learning being performed.

• Offline and online learning: In offline learning, the machine learning system is
learning on a static dataset D which is collected prior to training. In online learning,
the system can collect new data as training progresses, and instances can also be
discarded.

• Policies: For some learning systems, the goal is to learn a strategy that specify the
most optimal action available in any given situation. This strategy is also known as
a policy, and is denoted by π. A policy is essentially a function which maps states of
the environment to actions. States and actions are denoted by s and a, respectively.
The policy can be deterministic, which means that π will always output the same
action a for any arbitrary state s, i.e., a = π(s). It can also be stochastic, which
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means that the action is sampled from the policy, i.e., a ∼ π(·|s). Furthermore, the
sampled action will not always be the optimal action. On the other hand, an expert
policy always chooses the optimal action, and is denoted by π∗.

Depending on whether the action and environment spaces are discrete or contin-
uous, π can be implemented with numerous representations. For instance, π can
be implemented as a tabular representation, a decision tree, or an artificial neural
network.

2.1.1 Supervised Learning

In supervised learning, the training data consists of a number of different examples:

(x1, y1), (x2, y2), ...(xn, yn),

where each xi is an input, and yi is the corresponding desired output. That is, for all xi,
there exists an unknown function f∗, such that f∗(xi) = yi. This function is often referred
to as the target function. The goal of supervised learning is to learn an approximation f
of the target function f∗ [19].

2.1.2 Imitation Learning

The goal of imitation learning (IL) is to learn a mapping between observations and actions,
by learning from the demonstrations performed by an expert [20]. More specifically, the
learner wants to learn a policy π that maps observations ot to actions at.

Behavior Cloning
When this problem is formulated as a supervised learning problem, it is called behavior
cloning [4]. In behavior cloning, the training data D consists of demonstrations collected
by an expert, and comes in the form of several observation-action pairs:

(o1, a1), (o2, a2), ...(on, an),

where ot is the observation at time t, and at is the corresponding desired action performed
at time t.

DAgger
Dataset aggregation (DAgger) [21] is an online IL algorithm that uses an expert policy
π∗ to train a new deterministic policy π̂. First, it uses the expert policy to collect a
dataset of trajectories D1. A trajectory is a sequence of observations and actions, i.e
o0, a0, o1, a1, ..., oT , aT , and is denoted by τ .

Next, the trajectories in D1 is used to learn a policy π̂1. For the next iteration, π̂1 is
used to collect a new set of trajectories D2. The new trajectories are aggregated with the
previously collected dataset, i.e., D2 ← D1 ∪ D2. Then, a new policy π̂2 is trained on
those trajectories. The algorithm repeats this step for n iterations. For every iteration,
the current policy π̂i is trained on an aggregate of all datasets (i.e. Di ← D1∪D2∪...∪Di),
and is the policy that best imitates π∗ on the aggregated dataset.

It also allowed to continue using the expert policy to collect data beyond the initial it-
eration. This is done by using the expert only a fraction of the time. This is desirable
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because the trained policies for the first few iterations might perform much worse than
the expert, which in turn might result in a dataset containing irrelevant instances. The
policy for iteration i is now defined as πi = βiπ

∗ + (1− βi)π̂i. By setting β1 = 1, there is
also no need to provide an initial policy π̂1. The pseudocode for DAgger can be seen in
Algorithm 1.

A major disadvantage of DAgger is the computational resources required for maintaining
the growing size of the dataset D. Another downside is that the algorithm requires an
expert policy, which might not be available.

Algorithm 1 DAgger - With slight modifications from the original paper [21]

1: Initialize D ← ∅
2: Initialize π̂1
3: for i = 1 to N do
4: Set πi = βiπ

∗ + (1− βi)π̂i.
5: Sample trajectories using πi.
6: Collect dataset Di = (o, π∗(o)) by visiting states using πi.
7: Aggregate datasets: D ← D ∪Di

8: Train the next policy πi+1 on D.
9: end for

10: return policy πi with the highest validation score.

2.1.3 Reinforcement Learning

Generally speaking, the goal of reinforcement learning (RL) is to learn a policy that max-
imizes a reward signal over time. The rewards are scalar values which are received when
an agent applies actions to an environment. In Section 2.2.7, deep reinforcement learning
(DRL) will be explored. DRL implements RL methods using deep neural networks.

Sutton and Barto [22], and Achiam [23] give comprehensive descriptions of RL.

Markov Decision Process
RL can be formulated as a sequential decision making problem known as a markov decision
process (MDP). A MDP is an idealized, flexible, and abstract mathematical formulation
of the RL-problem, with several useful theoretical properties. MDPs are defined by a set
of states S, a set of actions A, a reward function R and a transition probability function
p. The reward function outputs a scalar value rt, based on state st, action at, and the
next state st+1 for time step t. That is rt = R(st, at, st+1).

The transition probability function p outputs the probability of transitioning to the next
state st+1 = s′ conditioned on applying action at = a in the current state st = s. It is
defined as follows:

p(s′|s, a)
.
= Pr{st+1 = s′|st = s, at = a}

This function exhibits the markov property, which means that the probability of transi-
tioning to the next state is only dependent on the directly preceding state and action.

A MDP functions as follows: at time step t, the agent applies action at based on the
current state st. With probability p(st+1|st, at), the environment transitions from state
st to st+1 when applying action at. When the agent explores the world, it generates a
trajectory τ , which is a sequence of states and actions. The first state s0, is sampled from
the start state-distribution ρ0 [23].
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Reward Functions
The agent tries to maximize the reward signal defined by the reward function R. This
function was previously defined as rt = R(st+1, st, at). The reward function can also be
defined over a trajectory τ . Following the notation of Achiam [23], we denote the rewards
received from a trajectory as R(τ):

R(τ) =
T∑
t=0

rt

This sum is calculated over a finite horizon, as it adds a fixed number of terms together.
The sum can also be discounted with a parameter γ over an infinite horizon. This definition
values rewards closer in time more than distant rewards. The γ parameter also guarantees
that the sum of rewards will converge. The discounted cumulative sum of rewards is
defined as follows:

R(τ) =

∞∑
t=0

γtrt

Sometimes we want the cumulative reward from a specific time step t′. Achiam [23] calls
this a reward-to-go. The discounted reward-to-go for time-step t is defined as:

R̂t =

T∑
t′=t

γtR(st′) (2.1)

Designing a good reward function is a crucial part of implementing a RL training pro-
cedure. As Sutton and Barto [22] explains, the reward function should be designed to
focus on what we want the agent to achieve, and not on how we want the agent to achieve
it. The reward function should also take into account the density of the rewards. If the
rewards are too sparse, it can lead the agent to wander the environment aimlessly without
learning anything useful. This problem occur when the reward signal produces approxi-
mately zero-valued rewards too often. This can lead the agent to wander the environment
aimlessly without learning anything useful. Another challenge with reward-function de-
sign is the credit assignment problem. This is the problem of assigning credit or blame to
actions for rewards that are received much later in time.

The Central Optimization Problem of RL
When the policy is stochastic, each action is sampled from the policy which is conditioned
on the current state st. That is, at ∼ π(·|st). The probability of a trajectory τ with
T -steps, conditioned on the policy π then becomes:

p(τ |π) = ρ0(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st)

The RL agent seeks to maximize the rewards over the trajectory τ , i.e. R(τ). The expected
return of τ then becomes:

J(π) =

∫
τ
p(τ |π)R(τ) = E

τ∼π
[R(τ)] (2.2)

This means that the central optimization problem of RL is finding an optimal policy π∗

that satisfies π∗ = argmax
π

J(π).

Value Functions
Two essential functions in regards to RL is the value function V π(s), and the action-value
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function Qπ(s, a). In simple terms, these functions give a measure of how good it is to be
in a state. The value function V π(s) gives the expected discounted return when starting
in state s, and following policy π forever after:

V π(s) = E
τ∼π

[R(τ)|s0 = s] = E
τ∼π

[ ∞∑
t=0

γtrt|s0 = s

]

The action-value function Qπ(s, a) gives the expected discounted return after applying
action a in state s, and following policy π forever after:

Qπ(s, a) = E
τ∼π

[R(τ)|s0 = s, a0 = a] = E
τ∼π

[ ∞∑
t=0

γtrt|s0 = s, a0 = a

]

Qπ(st, at) can also be defined in terms of V π(st+1):

Qπ(st, at) = E [rt + γV π(st+1)]

Value functions mitigate the effect of the credit assignment problem, as they give a measure
of the value of an action before the rewards arrive [24]. They are utilized to some capacity
in almost all RL algorithms. Another closely related function to V π(st) and Qπ(st, at),
is the advantage function Aπ(st, at). This function measures the relative advantage of
applying action at in state st, in comparison to the default action chosen by the policy π
[24]. It is defined as follows:

Aπ(st, at) = Qπ(st, at)− V π(st) (2.3)

2.2 Deep Learning

Like other machine learning approaches, the main purpose of deep learning is to learn an
approximation f of an unknown function f∗ by fitting a set of training data D. In deep
learning, f is a type of function known as an artificial neural network (ANN) 1, that is
defined by set of tunable parameters θ.

This section will describe the preliminary theory required for understanding the procedure
of creating, training and validating ANNs. It will begin by introducing perceptrons and
feedforward neural networks. It will also describe activation functions, loss functions,
gradient descent, in addition to regularization and optimization techniques. Some topics
from deep reinforcement learning will also be presented, particularly the main principles
of policy gradient optimization, and the TRPO and PPO algorithms.

Goodfellow et al. [25] and Nielsen [26] give comprehensive descriptions of deep learning.

2.2.1 Perceptron and Feedforward Neural Networks

The perceptron is a simple mathematical model that takes a weighted input
∑n

i=1 xiwi
plus a bias term b, and produces a single binary output. Here, xi is an input, and wi
is the corresponding weight. The output of the perceptron is defined with the following
equation:

1In this thesis, ANNs are also simply referred to as neural networks.
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y =

{
0
∑n

i=1 xiwi + b ≤ 0

1 otherwise

The perceptron is the first example of an artificial neuron, as its design is inspired by
biological neurons found in the brain. Quite famously, the perceptron has a major limita-
tion, as they are unable to learn non-linearly separable functions. By creating a composite
function consisting of multiple layers of perceptrons, the result is a multilayer perceptron
(MLP). However, this function is still only a linear function of its input [25].

To introduce non-linear approximation capabilities into MLPs, perceptrons must use non-
linear activation functions. These types of perceptrons, with any arbitrary non-linear
activation function, are often called neurons or units. Feedforward neural networks are
composed of several layers of neurons. Figure 2.1 shows a visual example of this type of
network.

When an input xi is propagated through the network, all neurons in each layer are activated
or fired in parallel, propagating their activations to the next layer. Using the same notation
from the work of Nielsen [26], the activation of an arbitrary neuron j in layer l is defined
with the following equation:

alj = g(
∑
k

al−1k wljk + blj).

Here, g is an activation function, blj is the bias, and wljk denotes the weight from neuron
k in layer l − 1, to neuron j in layer l.

Feedforward neural networks are mathematically defined as composite functions: f(x) =
fn(fn−1(...f2(f1(x)))), where x is an input vector, and f i is the ith layer in the network.
The first layer is called the input layer, the last layer is called the output layer, and
any layer in-between are called hidden layers. Each layer perform matrix multiplication
between a matrix of weights W and a vector of inputs x. Next, a bias term b is added and
the activation function gi is applied. The output of layer i is then f i(x) = gi(xW + b).
Information only flows in the direction from the input layer to the output layer in these
networks, hence the name feedforward.

When the term architecture is used in the context of neural networks, it is generally
referring to the number of layers in the network, the amount of units in each layer, and
how these layers are connected to each other. The term deep learning is derived from
the fact that the network typically consists of many layers. When there are connections
between every single neuron in all layers in the entire network, it is known as a fully
connected network.

2.2.2 Activation Functions

Selecting the appropriate activation functions is a condition for the universal approxima-
tion theorem to apply. This theorem states that a neural network can approximate any
continuous target function f∗ on a closed and bounded subset of Rn, if two criteria are
met. Firstly, at least one hidden layer must have a sufficient amount of neurons. And
secondly, that same layer must use an activation function that saturates for very positive
or negative values, i.e. a ”squashing” function” [25]. The activation functions also affect
the training speed and convergence rate of the network.
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Figure 2.1: An example of a fully connected feedforward neural network with two hidden
layers, and a single neuron in the output layer. The bias connections are not visualized.
Image taken from the work of Nielsen [26].

Following the notation of Nielsen [26], we denote the weighted input plus bias as z, that
is z =

∑n
i=1 xiwi + b. Here is a list of common activation functions:

Sigmoid
The sigmoid function outputs values in the range [0, 1]. It is denoted by σ:

σ(z) =
1

1 + e(−z)

Hyperbolic Tangent
The hyperbolic tangent function outputs values in the range [-1, 1]. It is denoted by tanh:

tanh(z) = 2σ(2z)− 1,

where σ is the sigmoid function.

Softmax
Softmax is a commonly used activation function for classification tasks. For each element
zi in a vector z, it performs the following activation denoted by S:

S(zi) =
ezi∑
j e

(zj)

This will map every element zi to the range [0, 1]. S(zi) then represents the probability
that instance z belongs to class i, and

∑
i S(zi) = 1.

Rectified Linear Unit
The rectified linear unit (ReLU) function outputs z if z is higher than zero. Otherwise,
its activation is equal to zero.

ReLU(z) = max(0, z)

ReLU is not a ”squashing” function, but the universal approximation theorem have been
proven to apply for ReLU as well [25].
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2.2.3 Cost Functions

Cost functions give an estimate for the degree of error the network makes for every training
instance that propagates through the network. Cost functions are often called loss func-
tions, and we use both terms interchangeably in this thesis. The choice of cost function is
an important design decision, as the gradient of the cost function is used to optimize the
network. In the following list of cost functions, the predicted output is denoted by ŷ, the
target as y, and the number of instances in the training data as n:

Mean Squared Error (MSE)

MSE(ŷ) =
1

n

n∑
i=1

(ŷi − yi)2,

Root Mean Squared Error (RMSE)
This function outputs the root of the MSE.

RMSE(ŷ) =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2,

Cross Entropy
This cost function is suitable if the network is performing classification or logistic regres-
sion. Cross entropy is denoted by H:

H(ŷ) = −
n∑
i=1

yi log ŷi

2.2.4 Backpropagation and Gradient Descent

In order to update the weights of the network, the gradient of the cost function with
regards to every single adjustable parameter in the network must be calculated. The
gradient is the partial derivative of the cost function ∂L

∂wi
, and indicates how much a slight

adjustment of wi will change the output of the cost function. Optimization algorithms use
the gradients to update the parameters of the network [25].

To calculate the gradients, an efficient technique known as the backpropagation algorithm
is applied. It consists of two stages. First, a subset of the training data is propagated
through the network, producing predictions at the output-layer. These predictions are
then applied to the cost function. This stage is known as the forward pass. The second
stage is the backward pass, and involves applying the chain rule from calculus to compute
the gradient of the cost function. It starts by computing the error gradient at the output
layer, and works its way backwards to the input-layer by propagating the error gradient
backwards. That is, it computes ∀j ∂L∂wj , and ∀j ∂L∂bj , where L is the cost function, and wj

and bj is a weight and bias in the network, respectively [26].

The subset of training examples that passes through the network is called a mini-batch.
However, in this thesis it is referred to as a batch. After the batch has passed through the
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network, and all gradients have been calculated, the weights and biases are updated with
a gradient descent step as follows:

∀jwj −→ wj −
η

m

m∑ ∂L

∂wj
,

∀jbj −→ bj −
η

m

m∑ ∂L

∂bj

Here η is a hyperparameter called the learning rate, and m is the number of instances in
the batch. The overall goal of gradient descent is to iteratively minimize the error of the
cost function, by adjusting the parameters gradually. The learning rate η decides the step
size the algorithm should take in the direction of the gradient. However, if the learning
rate is too large, the optimization algorithm may oscillate instead of descending into a
minimum.

Training a network involves sampling a single batch from the training data, passing the
batch through the network, applying the loss function, calculating the gradient, then
updating all parameters. Next, a new batch is sampled, and the same procedure is per-
formed over again. When the entire training set has passed through the network, a single
epoch of training has finished. Training continues until the average loss of each epoch has
converged.

2.2.5 Training Neural Networks: Problems and Solutions

This section describes some of the common problems that might occur during training of
neural networks, and how they can be mitigated. Batch normalization layers, the Adam
optimizer, data augmentation, and dropout is also described in this section.

Common Problems
Overfitting is a typical problem where the network is able to make precise predictions
for instances in the training data, but makes weak predictions for instances beyond the
training data. That is, it has poor generalization capabilites. The effect of overfitting can
be diminished by introducing more diverse training data, or by designing networks with
less parameters [19]. We can create more diverse training data with data augmentation,
which means that instances in the training data are augmented by random transforma-
tions. Another solution to reduce the effect of overfitting is to remove errors and outliers in
the data, or to utilize regularization techniques such as dropout, or l1 and l2 regularization
[27].

Covariate shift (or distribution shift) [28, 8] is a problem which can occur when the distri-
bution of features is different between seen and unseen data. Covariate shift is especially
relevant in regards to behavior cloning (explained in Section 2.1.2). Networks trained by
behavior cloning tend to perform well for states that are present in the training data, but
generalizes poorly for new states. A potential solution for covariate shift is using an online
algorithm such as DAgger (Algorithm 1).

The vanishing/exploding gradients problem occurs when the error gradient values are
either very small or very large. The problem is often caused by using saturating activation
functions, where the derivative gets close to zero for extreme values. This means that the
gradient update results in an insignificant change. This makes training extremely slow, as
networks get stuck in local minima.
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Training, Validation and Test Sets

In order to detect poor generalization capabilities, it is common practice to split the train-
ing data into a training, validation and test sets. The training set is used for training
the network, while the test set is used for evaluation after training has completed. The
predictions on the test set give an estimate of the overall performance of the network. The
validation set is used after every epoch to detect if the network is overfitting the training
set. If the loss on the validation set increases while the training loss decreases, it might
be an indication of overfitting.

Batch Normalization
A batch normalization layer [29] normalizes inputs for the succeeding layer. They do
this by calculating the mean µ and standard deviation σ. Let X be a batch of inputs
propagating through a neural network. Then the normalized batch X̃ is computed as
follows:

X̃ =
X− µ
σ

.

Batch normalization allows for using higher learning rates, saturating activation functions,
and leads the network to be less sensitive to weight initialization. It also acts as a form
of regularization, reduces the effect of vanishing/exploding gradients, and makes training
faster. The exact reason why batch normalization is so effective is poorly understood,
but research indicates it smoothes the optimization landscape [30]. The major negative
aspect is the extra computational burden, which increases runtime when making predic-
tions. However, this is balanced by the tendency of batch normalization layers to make
models converge faster with less epochs needed [27].

Adam Optimizer
Adaptive moment estimation (Adam) [31] is an adaptive learning rate optimization algo-
rithm. In contrast to regular gradient descent algorithms (e.g. SGD), where the network
can be stuck in local minima for several epochs due to small gradient updates, Adam up-
dates the parameters by using momentum optimization. Momentum optimization takes
the history of previous gradients into consideration before applying the update. Adam
calculates two different moment estimates to either accelerate or decelerate learning [27].

For every single batch containing m instances at time step t, Adam calculates s with
decay rate ρ1 and r with decay rate ρ2. s and r are the first and second-order moment
estimates, respectively. The decay rates are hyper-parameters set by the user2. These
moment estimates are then rescaled for bias, denoted by ŝ and r̂. Adam performs the
following operations:

g←− 1

m

∑
j

∂L

∂wj

s←− ρ1s + (1− ρ1)g
r←− ρ2r + (1− ρ2)g � g

ŝ←− s

1− ρt1
r̂←− r

1− ρt2

∆θ = −η ŝ√
r̂ + δ

.

2The PyTorch implementation of Adam sets ρ1 to 0.9 and ρ2 to 0.999 by default.
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Here, g denotes the gradients computed for the current batch, η is the learning rate, δ is
a small value used to avoid numerical instabilities, and θ is a set of parameters in a neural
network. Finally, the weights are updated with: θ ←− θ + ∆θ.

Dropout
Dropout is a regularization technique where the output of neurons are set to zero with
probability p during training. This technique is motivated by the main principle of en-
semble learning. Generally, ensemble learning is about training an ensemble of different
models, then averaging the predictions from all models when making a prediction. A
random set of neurons are dropped for every batch, and the remaining connections make
up a new model. This means that after training has finished, the final model will be the
average, i.e. the ensemble, of all models that were generated by dropout during training
[27].

2.2.6 Convolutional Neural Network

A convolutional neural network (CNN) employ a special type of layer known as a convo-
lutional layer. Convolutional layers use an operation designed for processing data with
a grid-like topology, e.g. image data. It can be defined for any n-dimensional array of
inputs. The definition for the two-dimensional case is presented here, where I is the input
and K is a two-dimensional kernel (or filter) of weights:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n)

This equation defines an operation where a kernel K of size m x n slides over the input,
extracting features along the way. The end result is a two-dimensional output S, which is
called a feature map. S(i, j) is the neuron positioned at row i and column j in feature map
S. After this weighted sum is calculated, an activation function is applied for all values in
S before being sent to the next layer.

The size of S depends on the sizes of K and I, and whether or not strided convolutions
are used, or if the input has been padded with zeros. A strided convolution will skip some
specified number of rows and columns as the filter slides over the input. For instance,
one columns will be skipped when the horizontal stride equals 2. Padding is an operation
where rows and columns filled with zeros are inserted around the input. Padding is used
for getting the desirable output resolution, and to ensure that all values in the input are
used during convolution.

A convolutional layer can use several kernels, each with its own set of weights. Every
kernel produces a separate feature map, which means that the next layer will receive a
stack of n feature maps. To perform convolution over data with n-channels, the kernel
must have n-channels as well. A n-dimensional kernel is trying to capture both spatial
and cross-channel features simultaneously.

Pooling
CNNs can employ a pooling layer after the activation function. Pooling operations work
by applying an operation over a rectangular subset of a feature map. Max pooling returns
the maximum value of a rectangular subset. Average pooling returns the average value
of a rectangular subset. Global average pooling returns the average value of the entire
feature map. Pooling operations are used to reduce the amount of parameters, storage
requirements and computational costs, while retaining most of the information. They also
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help the network to be invariant to small translations. This means that small changes in
the input will not always effect the output of the pooling operations.

Motivation
According to Goodfellow et al. [25] there are primarily three ideas which motivate the
design of CNNs:

• Sparse weights: Neurons in convolutional layers does not have connections to
every singly unit in the preceding layer, but only to a n-dimensional rectangular
subset. This is in sharp contrast to fully connected feedforward networks, where
every neuron is connected to every unit in the preceding layer. This means that
fewer parameters need to be stored, and optimization takes less time.

• Parameter sharing: In fully connected networks, each layer’s weight matrix W
is only used once during the forward pass. For a convolutional layer, the weights of
each kernel are used several times to compute the value for each neuron in a feature
map. More precisely, neurons located in the same feature map share the same set of
parameters in order to compute their own value. Sharing parameters significantly
reduces the storage requirements.

• Equivariance: The convolutional operation is equivariant to translation. This
concept can be explained with an example; let us say a CNN is used for detecting
traffic signs in images. No matter where the signs are located in the image, the
convolutional operation will be able to find useful features that are relevant for this
specific task. Since neurons in a feature map share the same kernel, changing the
location of a traffic sign in the image will also change the location of the activation
in the feature map.

CNNs have been used to great success for image-processing tasks3, and have become a fun-
damental building block in several network architectures related to computer vision. There
also exists other variants of the convolutional operation, namely transposed convolution,
depthwise separable convolution, and atrous convolution.

Transposed Convolution
CNNs typically decrease the height and width of feature maps the further the input prop-
agates through the network. This is in contrast to transposed convolutional layers, which
perform an upsampling operation. This operation is equivalent to adding rows and columns
filled with zeros to the input, then applying a regular convolutional operation [27]. The
result of this operation is a feature map with a larger height and width than the input.

Depthwise Separable Convolution
When the input to a convolutional layer is an n-dimensional array, the kernel will perform
spatial and cross-channel feature extraction simultaneously. Meanwhile, a depthwise sep-
arable convolutional layer perform spatial and cross channel feature extraction separately.
For instance, if the input is n-dimensional, the depthwise separable operation applies n
separate spatial filters to each channel. This results in a stack of n-feature maps. Then,
the depthwise operation is applied, which is a regular convolutional operation using a
1x1-kernel with n-channels. Separating the convolutional operation decrease memory and
computational requirements, as well as reducing the number of parameters in the network.
Depthwise separable convolutional layers have shown to perform at least as well as stan-
dard convolutional layers. However, they should generally not be used if the input has a

3CNNs have also proven to be effective for other tasks, such as voice recognition and natural language
processing [27]
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small of number of channels, e.g. the first layer in a network processing images with RGB
channels [27].

Atrous Convolution
Atrous convolution (or dilated convolution) uses a special filter defined by the atrous rate
parameter (denoted by r). Consider the example of a two-dimensional input I and a 3x3
kernel. The atrous operation with rate r, will add r − 1 zero valued weights between any
pairs of consecutive weight values in K. If the rate equals 2, K will dilate to the size
of 5 x 5. As can be seen in Figure 2.2, the atrous rate decides the field of view of the
kernel. When r equals 1, the atrous operation is equivalent to the standard convolutional
operation.

Atrous convolution allows for using a kernel with a larger field of view without losing
resolution of the input, while not increasing computational costs and storage requirements
[32]. These type of layers play an important role in some network architectures that
perform semantic segmentation [33, 34], which will be explained later in Section 2.3.2.

Figure 2.2: Examples of dilated kernels used in atrous convolutional layers. The blue
background is a two-dimensional feature map. Orange squares represent non-zero weight
values. The ”holes” between orange squares represent zero-valued weights. When r = 1
the kernel is a standard convolutional kernel. Image taken from the DeepLabv3 paper
[34].

2.2.7 Deep Reinforcement Learning

This section builds on Section 2.1.3, and will explore some selected topics from the field of
deep reinforcement learning (DRL). This section will mainly explore policy optimization
methods, such as TRPO [35] and PPO [36], and introduce GAE [24].

In DRL, the policies and value functions are represented mathematically as differentiable
functions. These functions are implemented as neural networks with parameters θ. For
instance, πθ denotes the policy defined by θ. Furthermore, Q̂πφ(st, at) and V̂ π

φ (st) denotes
approximations of the action-value function and value function with parameters φ, respec-
tively. Actor-critic algorithms either use Q̂πφ(s, a) or V̂ π

φ (s) for learning πθ. The actor is

πθ, which explores and applies actions to an environment, while critic is either Q̂πφ(s, a) or

V̂ π
φ (s). The critic evaluate the behavior of the actor by giving estimates of the expected

return.

DRL algorithms can roughly be split into two categories; Q-learning and policy optimiza-
tion methods. Q-learning methods learn an approximation of the action-value function
Q̂πφ(st, at). Meanwhile, policy optimization methods directly optimize the policy πθ by gra-
dient ascent with the policy gradient ∇θJ(πθ). Some examples of policy optimization algo-
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rithms are trust region policy optimization (TRPO) [35] and proximal policy optimization
(PPO) [36]. Additionally, the deep deterministic policy gradient (DDPG) [37] algorithm
can be regarded as a mixture of Q-learning and policy optimization. DDPG is an actor-
critic algorithm, where πθ is optimized with gradient ascent by finding∇θQ̂πθφ (st, πθ(at|st)).

In general, DRL algorithms are known to be difficult to apply successfully. They are
sensitive to hyperparameters, and training is often unstable [27]. Additionally, training
deep networks with DRL often requires more data to be trained sufficiently [16].

A stochastic policy with a continuous action space is usually represented as a multivariate
Gaussian distribution with a diagonal covariance matrix. If the action a is k-dimensional,
the log-likelihood of is calculated as follows [23]:

log πθ(a|s) = −1

2

[
k∑
i=1

(
(ai − µi)2

σ2i
+ 2 log σi

)
+ k log 2π

]
, (2.4)

where πθ is a multivariate Gaussian distribution with a diagonal covariance matrix.

Policy Optimization
Policy optimization methods use V̂ π

φ (st) in some capacity to find suitable gradient up-
dates. This section will follow the notation of Achiam [23]. As previously described in
Section 2.1.3, the RL agent seeks to maximize the expected return J(πθ) = E

τ∼πθ
[R(τ)].

Policy optimization methods use the policy gradient ∇θJ(πθ) to update the parameters
by gradient ascent. That is:

θk+1 = θk + η∇θkJ(πθk) (2.5)

In this equation θk refers to the k-th iteration of the parameters θ, and η is the learning
rate. It can be shown that:

∇θkJ(πθk) = ∇θk E
τ∼π

[R(τ)] = E
τ∼π

[
T∑
t=0

∇θk log πθk(at, st)R(τ)

]
(2.6)

Furthermore, it can also be shown that E
at∼πθ(·|st)

[∇θ log πθ(at|st)] = 0. This means we can

write Equation 2.6 in a more general form as:

∇θkJ(πθk) = E
τ∼π

[
T∑
t=0

∇θk log πθk(at|st)Φt

]
(2.7)

where Φt is any function that is only dependent on the current state st
4.

A common choice for Φt is an estimate of the advantage function At, which is denoted by
Ât. To compute Ât, the approximation V̂φk(st) is used. V̂φk is usually updated with MSE

using discounted rewards-to-go R̂ as target values. That is, the parameters φ is optimized
by:

φk+1 = argmin
φk

E
st,R̂t∼πθk

[
(V̂φk(st)− R̂t)2

]
(2.8)

Policy optimization algorithms calculate an estimate ĝ ≈ ∇θJ(π) of Equation 2.7 by
collecting a set of trajectories D. If Φt = Ât, the estimate of the gradient ĝ is computed

4This is allowed because Φt can be treated as a constant, and E[cX] = cE[X], where c is a constant and
X is a random variable.
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as follows:

ĝ =
∑
τ∈D

T∑
t=0

∇θ log πθ(at, st)Ât

The parameters are then updated with

θk+1 = θk + ηĝ (2.9)

Equation 2.9 is regarded as the standard policy gradient update. This update can be very
unstable, as it can lead to huge updates to the policy [36]. The TRPO [35] algorithm
counteracts this by constraining a ”surrogate” objective function by the Kullbäck-Leibler
divergence (KL-divergence), between the new policy πθk+1

and old policy πθk . A simplified
explanation of the KL-divergence is that it measures the distance between two probability
distributions. If the difference is to large, it can lead to unstable policy updates. Therefore,
TRPO only updates θ if the KL-divergence is below some given threshold δ, which ensures
stable policy updates:

θk+1 = argmax
θ

E
at,st∼π

[
rt(θ)A

πθold
t (a, s)

]
subject to KL(πθ|πθold) < δ,

where rt(θ) =
πθ(at|st)
πθold(at|st)

The motivation behind the expression rt(θ)A
πθold
t (a, s) is that actions with positive ad-

vantages will be chosen with a higher probability (and vice versa for negative advantages)
during the next iteration of the policy. TRPO is known to be a stable algorithm, able
to learn policies with good performance for several tasks [23]. However, TRPO is com-
plicated and hard to implement, as it requires a complex second-order estimate of the
KL-divergence in order to apply the update [36].

Proximal Policy Optimization
Proximal policy optimization (PPO) [36] is an actor-critic policy optimization algorithm
that is known to be stable, easy to implement, and allows for parameter sharing between
policy and value-function. PPO has been shown to achieve similar performance as TRPO.
It is also as data efficient [23, 36]. PPO uses a clipped objective function LCLIP:

θk+1 = argmax
θ

E
st,at∼πθk

[LCLIP(st, at, θ)], (2.10)

where LCLIP is defined as:

LCLIP(st, at, θ) = min(rt(θ)A
πθk
t (at, st), g(ε, A

πθk
t (at, st))),

and g is defined as

g(ε, A) =

{
(1 + ε)A if A ≥ 0

(1− ε)A if A < 0

Here, ε is a small value called the clip ratio. To understand this objective, recall that when
advantages are positive, rt(θ) must be increased by raising the probability of πθ(at|st).
Similarly, when advantages are negative, rt(θ) must be decreased by lowering the prob-
ability of πθ(at|st). The LCLIP objective ensures that the ratio rt(θ) is kept within the
interval [1− ε, 1 + ε] when the objective improves. If the objective does not improve, the
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Figure 2.3: LCLIP function for a single timestep t. The horizontal axis is the ratio rt
between new and old polices, while the vertical axis is LCLIP. Left graph displays LCLIP

when At is positive, right graph displays LCLIP when At is negative. Image taken from
original PPO paper [36].

min function creates a pessimistic lower bound, which ensures that these values are in-
cluded in the range of LCLIP. Figure 2.3 visualizes how the function behaves for a single
timestep.

PPO is ran for a number of episodes. Each episode starts by collecting a set of trajectories
D using N parallel actors. We will also refer to trajectories as rollouts. Then, rewards-to-
go R̂ and advantage estimates Â are computed. Â is found by utilizing the value-function
estimate V̂φ(st). The parameters of the policy and value function are optimized by finding
the gradients of LPPO, which is defined as the following weighted sum:

LPPO = −
∑
τ∈D

T∑
t=0

LCLIP(st, at, θk) + c1
∑
τ∈D

T∑
t=0

(V̂φk(st)− R̂t)2 + c2S (2.11)

The first term is an estimate of Equation 2.10, and the second term is an estimate of
Equation 2.8. If the actor and critic do not share parameters, the c1 coefficient should be
set to 1. Also notice the negative sign (−) in front of the first term. This sign will result
in parameters being updated with gradient ascent when applying this objective function
in a gradient descent optimizer such as Adam [31].

During the course of training, the policy will hopefully learn what causes positive rewards
by experimenting with applying different actions. As training progresses, the randomness
of the stochastic policy decreases. The pseudocode for PPO is shown in Algorithm 2. This
pseudocode is based on the work of Achiam [23] and Schulman et al. [36].

Generalized Advantage Estimation
Previously we mentioned that a common choice for Φt in Equation 2.2.7 is the advantage
function Aπ(st, at) = Qπ(st, at) − V π(st). The motivation behind this choice is that the
true function Aπt leads to the lowest possible variance. When Φt = At the policy gradient
estimate will point in the direction of increased probability for actions that result in higher
rewards on average when Aπt > 0. However, Aπt is unknown and must be estimated [24].

Following the notation from the work of Schulman et al. [24], we define δV̂t as an estimate
of the true and unknown advantage of action at:

δV̂t = rt + γV̂ π(st+1)− V̂ π(st)
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Algorithm 2 PPO with clipped objective function.

1: Initialize D ← ∅
2: Initialize policy parameters θ0
3: Initialize policy parameters θold ← θ0
4: Initialize value function parameters φ0
5: for k = 1 to n do
6: Collect a set of trajectories D with πθold using N parallel actors
7: Compute advantage estimates Â using the current value function V̂φk
8: Compute rewards-to-go R̂
9: Compute gradients ∇θkLPPO and ∇φkLPPO

10: Update θk+1 and φk+1 with a gradient descent algorithm
11: Set θold ← θk+1

12: end for

If V̂ π equals the true value-function V π, then δV
π

t is an unbiased estimator5 for the true
advantage function Aπt . This is because:

E
[
δV

π

t

]
= E [rt + γV π(st+1)− V π(st)] = E [Qπ(st, at)− V π(st)] = Aπ(st, at)

In practice, the approximation V̂ π does not equal V π, which means that δV̂t is a biased

estimator. Schulman et al. propose Â
(k)
t , which is defined as the following discounted sum:

Â
(k)
t =

k−1∑
l=0

γlδV̂
π

t+l

Finally, the generalized advantage estimate (GAE) for action at is defined as the following
exponentially weighted sum:

Â
GAE(γ,λ)
t = (1− λ)(Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + ...) =

∞∑
l=0

(γλ)lδV̂
π

t+l

GAE has two parameters, γ and λ, that contribute to a bias-variance trade-off. γ is the
discounting term, which introduces bias to the estimate no matter how accurate V̂ π is.
When V̂ π is inaccurate, the λ parameter will contribute with some bias. Schulman et al.
report that they find empirically that λ should be set to a lower value than γ for good
results.

2.3 Computer Vision

This section will describe some selected topics related to the field of computer vision. It
will briefly explain transfer learning, and provide general insight into the fields of semantic
segmentation and monocular depth estimation. Several network architectures are also
presented, including U-Net [38], MobileNet [39], ResNet [40], among others.

2.3.1 Transfer Learning

Consider the task of training a network to detect traffic signs in images. If trained success-
fully, the parameters of the first layers will be adjusted to detect low-level features, such

5An estimator θ̂ of the true and unknown parameter θ is unbiased when E[θ̂] = θ.
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Figure 2.4: Example of a semantically segmented image. This image is from the Cityscapes
[43] dataset for semantic segmentation. The colors used in this image are known as the
Cityscapes color palette.

as lines or edges. The next layers will be adjusted to detect mid-level features from the
low-level features, such as rectangles or circles. For each subsequent layer, the parameters
will be adjusted to detect features on a higher-level than the preceding layer. Eventually,
the output layer will be adjusted to detect traffic-signs.

Instead of randomly initializing the weighs of the network, it is possible to reuse the
parameters of an already trained network. For instance, if the reused weights of the first
few layers are already trained to detect low-level features, this can speed up training.
Reusing weights is an example of transfer learning [27]. Transfer learning is not only
restricted to the field of computer vision.

The backbone is an important component of several architectures that process images. It
is a neural network which extracts features from images. It is common practice to reuse
backbones that have been trained on large datasets, e.g. the ImageNet [41] or COCO [42]
datasets. In this case, the backbone is said to be pretrained on the dataset.

2.3.2 Semantic Segmentation

Semantic segmentation is the task of classifying every pixel in an image to one of n classes.
A semantically segmented image can be visualized by assigning each class a specific color,
which is showcased in Figure 2.4. As can be seen in the image, each color corresponds to
a different class, such as vehicle, sidewalk, vegetation etc. All pixels not belonging to any
particular class gets classified as unlabeled, and is assigned the black color when visualized.

When performing semantic segmentation, the last layer of the network must output as
many feature maps as the number of semantic classes. For instance, consider an image I
that can be segmented into four semantic classes. The last layer of the network must then
output four feature maps, i.e. [S1, S2, S3, S4]. The value positioned at column i and row j
in Sk, i.e. S(i, j)k, is the probability of pixel (i, j) belonging to class k. This means that
the following two requirements hold:

∀i,j,k S(i, j)k ∈ [0, 1],∑
k=1

S(i, j)k = 1.
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In order for the output to satisfy the latter requirement, a suitable activation function for
the final layer would be Softmax2D. This function takes an n-dimensional array as input,
and applies the Softmax function over the channel dimension. Since semantic segmentation
is a classification task, cross-entropy would be a good choice for computing costs. Finally,
the classification of an arbitrary pixel (i, j) is decided by

argmaxk ∈ [S(i, j)1, S(i, j)2, S(i, j)3, S(i, j)4]

where k is the index referring to feature map Sk.

Two commonly used datasets for semantic segmentation are Cityscapes [43] and Mapillary
[44]. Both Cityscapes and Mapillary contain images of urban driving environments.

Evaluation Metrics
Multiple evaluation metrics for semantic segmentation are based on the intersection over
union (IoU) values. These are calculated as follows: for class k, let Ŝk be a prediction
from a neural network and Sk be the corresponding ground truth. Both Ŝk and Sk are
two-dimensional boolean masks with values indicating the presence of class k. The IoU
for class k is measured as the intersection of correctly classified pixels between Ŝk and Sk,
divided by the area of union between them. IoU for class k is computed as follows:

IoUk =
Ŝk ∩ Sk
Ŝk ∪ Sk

=
TP

TP + FP + FN
,

where TP, FP, and FN are the number of true positives, false positives, and false negatives,
respectively. More precisely, TP is the number of pixels correctly classified as class k. FP is
the number of pixels incorrectly classified as class k. FN is the number of pixels belonging
to class k, but classified as something else. After IoUk for each class k has been found, the
mean intersection over union (mIoU) is calculated as 1

k

∑
k IoUk. The mIoU is a common

evaluation metric for semantic segmentation.

When calculating mIoU, every class IoU is of equal importance when calculating the mean.
A network can be good at predicting the most frequently occurring classes, but bad at the
rarely occurring classes. The network will be heavily punished for this on the mIoU score.
There exists another variant of this metric, the frequency weighted IoU, that mitigates
this effect. Frequency weighted IoU will scale all class IoUs according to how prevalent
the class is in the image. Let P be the total number of pixels in an image. Let pk be
the number of pixels of class k in the ground truth image. For an image with n classes,
frequency weighted IoU is then calculated as follows:

Frequency weighted IoU =
1

n

n∑
k=1

pk
P
IoUk

2.3.3 Monocular Depth Estimation

Monocular depth estimation is the task of estimating distances to objects in an RGB
image captured by a monocular camera. Neural networks performing depth estimation
produce two-dimensional outputs known as depth maps. A depth map contains distance
estimates to objects for every single pixel in the image.

There is a wide variety of approaches for training depth estimation networks [45]. Some
networks are trained in a self-supervised fashion using image pairs captured by a stereo
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camera. On the other hand, supervised methods generally rely on absolute depth images.
These are single image depth estimates. Absolute depth is easily provided in a simulated
environment.

Loss functions
There are several loss functions used for depth estimation. Some loss functions are designed
for stereo images. Other loss functions are based on absolute depth targets.

Alhashim and Wonka [46] introduced a novel loss function for absolute depth. Let ŷ be
the depth prediction from a neural network, and y be the corresponding ground truth.
Then, the loss function is defined as sum of the following three terms:

Ldepth(y, ŷ) =
1

n

n∑
p

|yp − ŷp|

Lgrad(y, ŷ) =
1

n

n∑
p

|gx(yp, ŷp)|+ |gy(yp, ŷp)|

LSSIM (y, ŷ) =
1− SSIM(y, ŷ)

2

Ldepth is the pixel point-wise difference between ŷ and y. Lgrad is the L1 difference between
the image gradients6 of ŷ and y. LSSIM calculates the structural similiary (SSIM) between
ŷ and y. SSIM is a metric used to compute overall similarity of two images. SSIM has
the ability to catch similarity in groups of pixels that are spatially close, not just in a
pixel-by-pixel fashion. The final loss function L is then defined as a sum of the three
preceding terms, where Ldepth is weighted by a value λ which is set to 0.1:

L(y, ŷ) = λLdepth(y, ŷ) + Lgrad(y, ŷ) + LSSIM (y, ŷ) (2.12)

Evaluation Metrics
Accuracy within threshold7 is an evaluation metric that is commonly used in research
articles for monocular depth estimation [47, 45, 46]. This metric measures the percentage
of pixels with a depth estimate below some specific threshold σ. That is, it calculates the
percentage of pixels that satisfy the following requirement:

δp = max(
yp
ŷp
,
ŷp
yp

) < σ (2.13)

Here, ŷp is a depth estimate and yp is the ground truth for a particular pixel p. The
accuracy within threshold metric is usually computed for several values of σ. Common
values for σ are 1.25, 1.252 and 1.253.

RMSE can also be used for comparison of depth images. The formula can be found in
Section 2.2.3.

2.3.4 Architectures

This section will describe a selection of network architectures that is used in the field of
computer vision.

6Image gradients are a measure of change of intensity in an image, and are mathematically defined as
2D vectors.

7This metric is also known simply as threshold [45], or threshold accuracy [46].
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Figure 2.5: Visualization of a FCN. Each number denotes the number of feature maps
produced by that layer. Notice how the network does not have a fully connected output
layer. Instead, it uses a convolutional output layer with a 1x1 kernel mapping to the
number of semantic classes. Image taken from the original FCN paper [48].

2.3.4.1 Fully Convolutional Networks

In 2014 Long et al. [48] introduced fully convolutional networks (FCN), which are designed
for semantic segmentation. As the name entails, all layers in the network are convolutional
layers. This also includes the output layer, which uses a 1x1 kernel to map to the desired
number of semantic classes. This was in contrast to the standard design at the time,
where the output layer usually was implemented as a fully connected layer. Using a fully
connected output layer will only work for a fixed input size, as these layers expect a certain
number of neurons in the preceding layer. Meanwhile, a convolutional layer can process
images of any size. This means that FCNs can perform semantic segmentation for any
arbitrary input size.

2.3.4.2 Residual Networks

Kaiming He et al. [40] introduced a network architecture known as a resiudal network
(ResNet), which have since become ubiquitous within the field of computer vision. These
networks consists of several residual blocks (RBs). Each RB perform residual learning by
using a shortcut connection between layers. An example of a RB is shown in Figure 2.6.
In the figure, x is an input tensor which is propagated through two convolutional layers.
Batch normalization and ReLU is applied after every convolutional operation. The RBs
approximate a residual function defined as F (x) = H(x) − x, where x is the input and
H(x) is the output from the convolutional layers.

The motivation behind this design is that the task of approximating the function H(x)−x
is easier than approximating H(x). The reason for this is that the original target function
H(x) is often close to the the identity function, i.e. H(x) ≈ x.

There are several variants of ResNet, each consisting of a different amount of RBs. For
instance, ResNet-18 consists of 18 RBs, and ResNet-34 consists of 34 RBs, etc. The
ResNet architecture allowed for efficient training of very deep networks, which marked an
important milestone in deep learning. The networks reached state of the art results on
multiple computer vision tasks.
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Figure 2.6: Example of a skip connection utilized in ResNets, as presented in the original
paper [40].

2.3.4.3 U-Net

Ronneberger et al. [38] introduced a neural network architecture called U-Net, designed for
performing biomedical segmentation tasks. U-Net is a fully convolutional network, with
an encoder-decoder structure. The encoder is called the contracting path, and consists
of four repeated blocks. Each block is a convolutional layer followed by ReLU and max
pooling. For each subsequent block in the encoder, the resolution is reduced by a factor
of two, while the number of feature maps is doubled.

The decoder also consists of four repeated blocks, and is known as the expanding path. For
every block in the decoder, feature maps are sampled to a higher resolution by bilinear
interpolation. The feature maps are then concatenated along the channel dimension with
feature maps from the corresponding level in the encoder. This is followed by two convo-
lutional layers with ReLU activation. Every block in the decoder increases the resolution,
but reduces the number of feature maps. The final layer uses a 1x1 kernel that maps to
the desired number of classes. A figure of the network is showcased in Figure 2.7. The
name is derived from the shape of the architecture that looks like a ”U” when visualized.

2.3.4.4 MobileNet

Howard et al. [39] introduced a family of efficient convolutional networks, known as Mo-
bileNet. The name is derived from the intended use case of the network, which is for mobile
and embedded vision applications. The paper introduced several variants of the architec-
ture. Each variant is scaled uniformly with a different width multiplier (i.e. changing the
number of feature maps for each layer), and a different resolution multiplier. The standard
MobileNet-architecture is computationally inexpensive and has few parameters. This is
because it uses depthwise separable convolutional layers. However, the first and penul-
timate layers are standard convolutional layers, while the final layer is a fully connected
layer.
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Figure 2.7: The architecture of U-Net. Notice the contracting path on the left side. The
gray lines represents feature maps that are copied and cropped from the encoder to the
corresponding level in the decoder. Image taken from the original U-Net paper [38].

2.3.4.5 DeepLab

Chen et al. [33] introduced DeepLab, which is an architecture designed for semantic seg-
mentation. The authors of DeepLab addressed several issues with semantic segmentation.
One issue is that the reduction of resolution caused by striding and pooling in deep CNNs
severely impacts the performance of the networks. This is because semantic segmentation
is regarded as a dense prediction task. This means that it requires a high level of detail
for good performance. Another difficulty is classifying objects belonging to the same class,
but at different scales. For instance, an image of an urban traffic environment might con-
tain several vehicles. Depending on the relative distance to the camera, the size of the
vehicles will appear different in the image. Different scales can make it challenging for the
network to realize that these objects all belong to the same class.

DeepLab uses a ResNet-like backbone. To solve the problem of feature maps losing their
resolution, they switch some of the downsampling operations with atrous convolution in
the backbone. As previously described in Section 2.2.6, atrous convolution allows for
denser feature extraction and a larger field of view, without adding extra parameters to
the network.

To solve the problem of classifying objects at different scales that belong to the same
class, they introduced atrous spatial pyramid pooling (ASPP). An ASPP operation uses
four atrous convolutions with different atrous rates in parallel on the same feature map.
Feature maps from each of the four atrous convolutions are then concatenated together
along the channel dimension. A visualization of this operation can be seen in Figure 2.8.
The authors of DeepLab would later go on to design two other versions of the DeepLab
architecture. The newest version is known as DeepLabv3 [34].
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Figure 2.8: Example of an ASPP operation. This ASPP uses four atrous convolutions
with rates of 6, 12, 18, and 24. All atrous operations are computed in parallel on the same
feature map to capture information at multiple scales. The higher the atrous rate, the
higher the scale at which features are extracted from the feature map. Image taken from
original DeepLab paper [33].

2.3.4.6 MiDaS

Ranftl et al. [47] introduced a ResNet-based network called MiDaS. This network was
trained on a diverse set of monocular depth estimation datasets covering several months
of GPU time. These datasets were captured by stereo cameras, light sensors and laser
scanners. Additionally, they also extracted a dataset from 3D Hollywood movies. The
motivation behind training on this mixture of datasets is to make the network robust to
variety of different scenarios. They proposed a novel loss function that is invariant to the
conflicting representations of depth between the datasets. They evaluated the performance
of MiDaS with an approach called zero-shot cross dataset-transfer. This method evaluates
the network on an entirely new dataset that was not present during training. They report
SOTA performance on several datasets.

2.4 Approaches to autonomous driving

The designs of autonomous driving systems can be divided into two classes: modular
approaches and end-to-end approaches. In modular approaches the task of autonomous
driving is broken down into sub-tasks, which are then solved independently by dedicated
modules. In end-to-end approaches the whole task is solved by a single monolithic neural
network. This neural network will take raw sensor data as input and output vehicle con-
trols. Figure 2.9 shows the conceptual difference between the two approaches. Descriptive
overviews of both these approaches are given by Yurtsever et al. [3] and Tampuu et al.
[8].

2.4.1 Modular approach

According to the recently published work of Janai et al. [28], the modular approach is
the most commonly used autonomous driving approach in the industry. In a modular
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(a)

(b)

Figure 2.9: A visual comparison of autonomous driving approaches as presented by Janai
et al. [28]. (a) Modular approach. (b) End-to-end approach.

approach the autonomous driving system is organized as a pipeline of modules. Each
of these modules have the responsibility to solve some part of the complex autonomous
driving problem. This has the advantage of allowing each module to be hand-crafted
and to exploit high-level knowledge in its domain. There is no standardization for which
modules a pipeline should include, and the complexity of each module can vary greatly. As
in the example from Janai et al. [28], which can be seen in Figure 2.9a, examples of such
modules can be low-level perception, scene parsing, path planning and vehicle control. In
this example, the low-level perception and scene parsing modules might be implemented
by neural networks, while the path planning and vehicle control can be implemented as
classical search algorithms and control models.

This approach has a major advantage in terms of explainability. It is possible to trace down
which module is responsible for a certain decision in the case of an error. The modules can
also be rigorously tested individually before being incorporated into the larger system.

There are also some disadvantages to the modular approach. As the pipeline and modules
are hand-crafted and specialized, they may fail to generalize to unusual conditions and
unforeseen situations. While it is possible to make individual rules for all edge cases, doing
so requires a high amount of information, and is often hard in practice.

2.4.2 End-to-end approach

While the modular approaches will divide autonomous driving into tasks like perception,
planning and control, an end-to-end approach will take on the combined task and solve it
with a single neural network. The end-to-end approach has historically seen little use in
comparison to its counterpart [28]. But with the recent breakthroughs and advances in the
field of deep learning, this approach has recently been subject to much research. Neural
networks have shown to have superhuman performance in many domains, and there is a
belief that this eventually might be the case for autonomous driving as well.

Neural networks are capable of leveraging large amount of data. In the context of driving
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such large amounts of data is easily available, as cameras and other sensors can be mounted
on a vehicle. By recording the actions of the drivers, this data can be used to perform
imitation learning, which is described in Section 2.1.2. However, these agents can only
learn from situations that the experts have found themselves in, not from situations that
arises from the agents actions. This is problematic, because the agents will not always
be able to do expert-like decisions, and as a result will sometimes find itself in unforeseen
situations.

The end-to-end systems can also be trained by RL, this process is described in Section 2.1.3
and Section 2.2.7. With this approach, the agents will be able to learn from the unusual
situations that it might put itself in. The drawback is that the training process is substan-
tially slower and a stable training algorithm can also be hard to implement. RL is easier
in a simulated setting, because there are no consequences of exploration. Simulation time
can also be sped up compared to real time, which allows for shorter training times. It is
also possible to use RL as a fine-tuning stage after IL. This is done by reusing the weights
trained in the IL stage in a RL algorithm. This can significantly reduce the long training
times that is associated with RL [8].

RL reward functions for AVs are often designed to make the agent behave efficiently and
safely [4]. This can be done by giving the agent negative rewards for collisions, driving
on the sidewalk, running red lights, and not being near the center of the lane, and giving
positive rewards for efficient driving. Efficient driving can be rewarded by giving the agent
rewards that are proportional to the current speed of the vehicle [8]. It can be difficult to
balance the reward function in terms of how big the magnitude of the rewards should be
in different scenarios [4].

End-to-end learning is often defined as directly mapping raw sensor input e.g. RGB images
into vehicle controls. But in some works, the architectures are split into modules in an
end-to-end setting, for example perception and driving modules [49, 50, 11]. There might
be some confusion of where this crosses the line of the modular approaches. We find
that different works use different definitions. In our thesis we regard systems that are
exclusively composed of neural networks as end-to-end.

Input Modalities
The type of input modality used in an end-to-end network can vary. RGB images are
naturally often used as input. Additionally, the network may also get information about
state of the vehicle, such as the current speed. The network may also receive a navigational
command that indicates the direction to drive in an intersection [51].

Intermediate representations from computer vision tasks such as semantic segmentation
and depth images can also be used. If training is conducted in an simulator such as
CARLA or Grand Theft Auto V (GTAV), these representations can be retrieved with
perfect quality [10, 12]. Another way of acquiring these representations is to use models
which are specifically created to perform these tasks. After the representations have been
acquired, they must be combined in some way. This can be accomplished by simply
concatenating the computer vision representations together with the corresponding RGB
image. The resulting stack of images can then be used as input to a neural network that
outputs the action that control the vehicle. This approach, where multiple types of inputs
are fused together before propagating the data through the neural network, is known as
early fusion [8].

Output Modalities
Most end-to-end networks output steering angle and speed [8]. It is also possible to
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output a trajectory of waypoints [4] which the vehicle should follow. These waypoints can
be transformed into low-level control commands by a PID controller, which is explained
in Section 2.5.3. Tampuu et al. [8] explain several advantages by using waypoints as an
output modality. Outputting waypoints forces the network to plan ahead. They are also
easy to interpret and analyze. Figure 2.10 shows an example of what the waypoints might
look like.

(a) (b)

Figure 2.10: Visualization of how waypoints can be used as an output modality. The
waypoints are shown as red dots. (a) Contracted waypoints, indicating full stop. (b)
Arcing waypoints, indicating the path through a turn.

2.5 Technology

This section introduces some of the technology used in this thesis. It presents CARLA [10],
which is a simulator used for autonomous driving research. Machine learning frameworks
and the functioning of a PID controller are also discussed.

2.5.1 CARLA

Dosovitskiy et al. [10] introduced CARLA (Car Learning to Act), which is a freely available
open-source simulator for autonomous driving research. This simulator have become a
prevalent tool used by researchers developing end-to-end AVs since its introduction in 2016.
This is clearly reflected by the amount of research papers that have utilized CARLA8.

In the early days of the end-to-end approach for AVs, researchers such as Pomerlau [54]
and Lecun et al. [55] had to use real-life vehicles in order to evaluate the performance
of their networks. Now, with simulators such as CARLA available, developing end-to-
end AVs has become much more accessible. Simulators remove many difficulties related
to using real-life vehicles. In a simulator, training and testing AVs in a controlled and
customizable environment can safely be accomplished.

CARLA is built as a layer on top of Unreal Engine 4, and uses a client-server architecture.
The client sends commands to the server through an API. The commands give a high level
of control over the simulated environment. It is possible to spawn and control vehicles,
pedestrians, and sensors. Environmental properties like the weather and illumination are
also fully controllable. There are several sensors available in CARLA, including RGB
cameras, LiDAR, and semantic segmentation sensors. The job of the server is to run the
simulation, render graphics, and process commands from the client. The server responds
to the client by sending back the simulation state.

8Some examples include [51, 15, 11, 14, 17, 16, 52, 53], among others.
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CARLA has numerous assets available for use. This includes vehicles, buildings, pedestri-
ans, vegetation, urban layouts, highways, and other miscellaneous assets. The simulator
has several pre-built towns available for use. Two commonly used towns for research are
Town01 and Town02, which consists of 2.9 and 1.4 kilometers of drivable road, respec-
tively. The towns use different assets but have the same visual style. This naturally sets
up Town02 as a test environment for models trained in Town01. Figure 2.11 displays two
images showing the visual style of Town01 and Town02.

(a) (b)

Figure 2.11: Images showing the similarity in style between Town01 and Town02 in
CARLA. (a) Town01. (b) Town02.

The CARLA Benchmark
Dosovitskiy et al. [10] also proposed a benchmark for evaluating AV-systems in CARLA.
This benchmark is known as the original CARLA benchmark (OCB). In this benchmark,
Town01 is used for training. Town01 and Town02 is used for evaluation. Four weather
conditions are seen during training, and two additional weathers are used during eval-
uation. The benchmark consists of several goal-directed episodes, where the agent has
to navigate through a path. Some episodes are set in a dynamic environment, where
pedestrians and other vehicles are spawned. An episode is considered successful if the
agent reaches the end-position within a given time-limit. Episodes are not terminated if
collisions or traffic-light infractions occur.

The NoCrash Benchmark
Three years after the release of CARLA, Codevilla et al. [11] proposed a new benchmark
called NoCrash. The NoCrash benchmark was designed for evaluating AVs in complex
and dynamic urban driving scenarios. NoCrash is significantly more demanding than
OCB, as it requires the agent to adapt to dynamic traffic situations involving a higher
number of pedestrians and vehicles. The evaluation procedure of NoCrash consists of three
increasingly difficult tasks. These tasks are:

• Empty : No pedestrians or actors are spawned.

• Regular : A moderate amount of pedestrians and vehicles are spawned.

• Dense: A high number of pedestrians and vehicles are spawned.

Town01 is used for training, while both Town01 and Town02 are used for evaluation. Four
different weather conditions are seen during training, which are the same weathers as for
OCB. During evaluation, two additional weather conditions are used. For every combi-
nation of task, town and weather, the agent has to complete 25 goal-directed episodes,
which are defined by a start and end position. Similarly to OCB, the agent is given
high-level navigational commands from a navigational planner that guides it through the
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path. These navigational commands are called HLCs. The episode is terminated when a
collision occurs or if the time limit is reached.

We refer to the different weather conditions by their name in the CARLA API. The four
training weathers are ClearNoon, WetNoon, HardRainNoon, and ClearSunset. The test
weathers are WetSunset and SoftRainSunset. All six weathers are visualized in Figure 2.12.

(a) ClearNoon (b) WetNoon

(c) HardRainNoon (d) ClearSunset

(e) WetSunset (f) SoftRainSunset

Figure 2.12: The weathers used in the NoCrash benchmark. (a) through (d) are training
weathers. (e) and (f) are test weathers.

2.5.2 Machine Learning Frameworks

The two dominant machine learning frameworks used in the industry and by researchers
are PyTorch [56] and TensorFlow [57]. They are used for designing, training and validating
deep neural networks. Both frameworks have become integral parts of the ecosystem of
open-source Python libraries used by data scientists. PyTorch is developed by the AI
Research Lab at Facebook, while TensorFlow is developed by Google Brain. Both libraries
are primarily used with Python. TensorFlow comes bundled with its own implementation
of a high-level API known as Keras [58].

PyTorch and TensorFlow are easy to use and have well-written documentation. They
support eager execution, which results in easier debugging. Additionally, both frame-
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works have support for accelerating training with the use of graphical processing units
(GPUs). On Nvidia GPUs, this is done with the Compute Unified Device Architecure
library (CUDA), and with the CUDA Deep Neural Network library (cuDNN). CUDA en-
ables developers to perform parallel computations on GPUs, while cuDNN includes several
optimized neural network operations for use on GPUs.

PyTorch includes a computer vision library called Torchvision. This library includes
datasets, image transformations, and implementations of network architectures. PyTorch
has a large ecosystem of open-source libraries. One such library is the Segmentation-
Models-PyTorch [59], which include several network architectures for semantic segmenta-
tion and other computer vision tasks.

2.5.3 PID Controller

A PID controller is a control loop feedback mechanism which is used to control and
regulate variables in various control systems. It can be used to keep a control system
variable constant over time. PID stands for Proportional, Integral, and Derivative, which
are the names of the three terms that the PID controller uses to calculate a correction in
the control loop.

The full mathematical motivation behind a PID controller is beyond the scope of this
work. In principle, the system has a desired target value called the setpoint (SP ), and the
current system value called the process variable (PV ). The latter is measured by sensors
in the environment. The task of the controller is to keep PV as close to SP as possible at
every time step. For each time step, the controller calculates the error e(t) between SP
and PV . This error is the basis for the proportional, integral and derivative terms.

The proportional term is equal to the error P (t) = e(t). This term will have its value
directly proportional to how large the error is in that time step. The integral term is
I(t) =

∫ t
0 e(τ)dτ . This term will have a larger value if the error is present over time, and

it is also proportional to the magnitude of the errors. The derivative term is D(t) = de(t)
dt .

This term is proportional to the slope of the error over time, e(t).

These three terms are then multiplied by some coefficients Kp, Ki, Kd and summed
together to make up the control output, u(t) = KpP (t) +KiI(t) +KdD(t). The extended
mathematical formula for control output is then:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt

The control output directly controls system action, i.e., how much throttle to apply or
how much a valve should be opened.

The coefficients Kp, Ki and Kd that scale the error terms need to be set suitably to
configure the PID controller to work as intended. Finding a set of coefficients that give
desired control is a task known as tuning the controller. PID controller tuning is a difficult
problem [60], and many sophisticated strategies have been developed to do this efficiently.
Manual tuning may also be an option, depending on the task requirements.

An example that illustrates the functioning of a PID controller is the cruise control system
of a car. Here the driver will reach his desired speed before clicking a button to enable
cruise control, which sets the target speed SP . The car has sensors that measure the
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current speed PV . If the car goes up a slight hill, the measured speed PV will go down.
Based on the calculated error e(t) between current speed and target speed, the PID con-
troller will calculate a higher u(t). The system will then apply a little more throttle. If
the throttle increase was not enough, the integral error term will increase for the next
time step. The controller will then apply more throttle. This process continues with each
time step until the car reaches its target speed, which it will if the controller is tuned
appropriately.

2.6 Related Work

This section details the history of relevant research papers that have made essential con-
tributions to the topics of this thesis.

Many of the papers build and follow up on each other naturally, and we try to describe
the main aspects and the novel contributions of each paper.

2.6.1 ALVINN: Autonomous Land Vehicle In a Neural Network (1989)

The work of Pomerlau [54] is the first example of a neural network trained for controlling a
vehicle. Pomerlau used a network called ALVINN, which is a fully connected feed-forward
network, consisting of three layers. The final layer consists of 46 neurons, where all but one
neuron predict the steering angle. The final neuron, called the road intensity feedback unit,
is recurrently connected to the first layer. A figure of ALVINN can be seen in Figure 2.13.
The network was trained for 40 epochs on a dataset consisting of 1200 examples. Each
example consisted of an image from a camera mounted at the front of the vehicle, depth
information from a laser rangefinder, along with the desired steering angle of the vehicle.

After training, Pomerlau state that the vehicle was able to output desirable steering angles
for approximately 90% of all test examples. These test examples were generated by using a
simulated road generator. ALVINN was also deployed and evaluated on a real life vehicle.
The network was able to drive sufficiently well along a 400 meter long road with a speed
of 0.5 meters per second.

2.6.2 Off-Road Obstacle Avoidance through End-to-End Learning - DAVE
(2005)

Sixteen years after ALVINN [54], LeCun et al. [55] made huge advances in the field of
end-to-end learning for AVs. They used a six-layer CNN that was trained on dataset
with 80 thousand training examples. This is in sharp contrast to ALVINN, which used
a three-layer fully connected network that was trained on a much smaller dataset. This
network controlled a small vehicle nicknamed DAVE (DARPA Autonomous Vehicle). This
network was specifically trained for off-road obstacle avoidance. Each example consisted
of an image captured by a camera mounted at the front of the car, along with the desired
steering wheel angle. To make the network robust to various environmental conditions,
the training data was collected manually in a variety of different lightning and weather
conditions. LeCun et al. state that the vehicle was able to output suitable steering wheel
angles.
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Figure 2.13: The architecture of ALVINN, as presented in the original paper [54]. It
consists of three fully connected layers, with a single recurrently connected neuron from
the output layer to the input layer.

2.6.3 End-to-End Learning for Self-Driving Cars - DAVE-2 (2016)

Building on the DAVE architecture [55], Bojarski et al. [61] proposed DAVE-2. This
system uses a neural network which starts with an image normalization layer, then five
convolutional layers, and then a three-layer feedforward network which outputs predictions
of the steering wheel angle. Figure 2.14 shows the architecture of the network. The network
was trained on 72 hours of video, which was collected by several data-collecting cars. Each
car had three cameras mounted at the front of the vehicle, with each camera pointing in
different directions. They collected data in various weather and lighting conditions. They
also wanted the vehicle to learn how to navigate if the car drifted off the road. In order
to learn this, the training data included examples where the vehicle had drifted from the
center of the road, and subsequently corrected itself. Data augmentation was also applied
by randomly shifting and rotating the images.

The network was evaluated in simulated and real environments, where it performed lane
and road following. The network was able to detect important patterns in the images,
such as the outline of the road, and disregard irrelevant information in the image as noise.
Bojarski et al. conclude by stating that they have empirically demonstrated that it is
possible for neural networks to learn the tasks of lane and road following.

2.6.4 End-to-End Driving via Conditional Imitation Learning (2017)

Codevilla et al. [51] made huge contributions in the field of end-to-end learning for AVs
with the introduction of a novel IL procedure called conditional imitation learning (CIL).
Previous AV approaches [54, 55, 61] had the goal of learning to follow roads and lanes.
In addition to this, CIL tries to disambiguate the correct course of action in situations
where there are multiple actions to choose from. For example, consider a vehicle entering
an intersection. Deciding whether to go left, right or straight forward is not something
that can be extracted from the environment, but relies on the internal state, i.e., intended
destination of the agent.
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Figure 2.14: The architecture of DAVE-2. It starts with an image normalization layer,
then five convolutional layers, and ends with a three-layer feedforward network.

In order to accomplish this, each training instance includes an additional piece of infor-
mation called a high level command (HLC). A HLC indicate the navigational direction,
and is represented as an one-hot encoded vector. The training set is then represented as
D = {ot, ct,at}Ni=1, where ot is the observation of the environment, ct is the HLC, and
at is the desired action.

Codevilla et al. investigate two different network architectures which are visualized in
Figure 2.15. Both networks include an image module and a measurements module, im-
plemented as a convolutional and feedforward network, respectively. The image module
processes images, while the measurements module processes longitudinal and lateral in-
formation. The difference between the two types of networks is how they process the
HLC.

(a)
(b)

Figure 2.15: The two CIL networks as presented in the original CIL paper [51]. (a): The
command input network. (b): The branched network.

Figure 2.15a shows the command input network. This network processes HLCs in a sep-
arate feed forward network called the command module. The output of the command
module is then concatenated with the outputs of the image and measurements modules,
before being propagated through a three-layer network that outputs the action at.
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Figure 2.15b shows the branched network. This network uses the HLC as a switch between
different branches, where each branch is a neural network. The motivation behind the
branched network is that each branch has to learn its own sub-policy. That is, one branch
specializes in turning left, another in turning right and so forth.

They trained and evaluated both networks in simulation using CARLA, and in real life
using a small toy truck. In both environments, an expert manually collected two sepa-
rate datasets containing two hours of driving video. After training, the networks were
evaluated by having the vehicle navigate through a set of predefined paths. The perfor-
mance was measured by the average time between infractions, and travel time from start
to destination.

Additionally, they applied data augmentation during training to improve generalization.
This augmentation consists of a random subset of transformations, where the magnitude
of each transformation is randomly sampled from a normal distribution. These transfor-
mations include Gaussian blur, Gaussian noise, randomly dropping pixels in the image,
along with changing different visual qualities, such as hue, contrast and brightness.

The results shows that the branched network perform significantly better than the com-
mand input variant. Codevilla et al. found that that data augmentation was crucial
for generalization. The networks trained with data augmentation performed dramatically
better than networks trained without data augmentation.

2.6.5 CIRL: Controllable Imitative Reinforcement Learning for Vision-
based Self-driving (2018)

Liang et al. [15] wanted to solve some of the problems that had been encountered in
past end-to-end AV research. They describe several limitations with these approaches
[54, 55, 61, 51]. This includes the large amount of data required to sufficiently train the
networks, and their weak generalization capabilities.

Motivated by these problems, they introduce a two-staged procedure called controllable
imitative reinforcement learning (CIRL). First, the network is trained with an IL stage.
The second stage involves a RL phase, where the trained weights from the IL stage is
loaded into the actor in the DDPG algorithm. The motivation behind this two-stage
process, is that the actor can reuse the pretrained weights from the IL stage. With the
pretrained weights, the network is already capable of outputting reasonable actions. This
removes much of the time-consuming exploration of the state space that usually happens
at the beginning of RL training. Due to the exploration during the RL stage, the network
can improve beyond the policy learned from IL.

The actor and critic networks use HLCs to switch between different branches, similarly to
the branched network from the work of Codevilla et al. [51]. A visualization of the overall
process is depicted in Figure 2.16. The actor and critic networks are almost identical.
Both include a convolutional backbone that process images, and a three-layer feedforward
network which processes speed information. The difference is that the critic includes an
additional three-layer feed-forward network that processes actions chosen by the actor.

They evaluated the actor network on the original CARLA benchmark, and achieved state
of the art results. With pretrained weights, the RL stage trained for 300000 simulations.
This is in sharp contrast with the RL approach from Dosovitskiy [10], which required over
10 million simulation steps.

39



Figure 2.16: The two stages of training with CIRL [15]. The image on the left depicts the
initial IL stage. The image on the right depicts the RL stage, where the trained weights
from the IL stage is loaded into the actor-network.

2.6.6 Exploring the Limitations of Behavior Cloning for Autonomous
Driving (2019)

Codevilla et al. [11] investigated the key limitations of behavior cloning for AVs, and
introduced a new benchmark called NoCrash for the CARLA simulator. The NoCrash
benchmark is described in more detail in Section 2.5.1. They also introduce a new archi-
tecture called CILRS. This model was trained and evaluated on the original CARLA and
NoCrash benchmarks.

Limitations
Bias, high variance and causal confusion are identified as as three important problems
for behavior cloning. The causal confusion problem happens when the model fails to
understand correlations between environment state and certain actions. An example is
when a vehicle reducing its speed to stop at a red light. Instead of learning that red lights
should result in stopping, the model learns the false correlation that driving slowly should
result in stopping. This particular example is a type of causal confusion problem known
as the the inertia problem.

CILRS
Building on the architecture of CIL [51], Codevilla et al. introduce a new architecture
that uses a ResNet-34 backbone to process images. In addition to the branch that outputs
actions, they add a speed prediction branch. The speed branch outputs predictions of the
current speed. The output of the ResNet34 backbone is propagated through the speed and
action branches. This forces the perception module to extract speed-related features in
the images. The results show that using a deeper network and a speed prediction branch
improved performance. The resulting architecture is called CILRS (CIL with ResNet and
Speed prediction), and is visualized in Figure 2.17.

The model was trained on a dataset containing more than 400 hours of driving video. It
achieved state of the art results on both the original CARLA and NoCrash benchmarks.
They also evaluate the performance for models trained on different amounts of data. The
results show that more training data give worse results, i.e., the model trained with the
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Figure 2.17: The CILRS architecture [11]. It uses ResNet-34 backbone and a speed
prediction regularizer.

least amount of data achieves the highest task performance. They suspect that this is
caused by the inherent bias and lack of diversity in the data.

2.6.7 Does Computer Vision Matter for Action? (2019)

Zhou et al. [12] investigated the effect of computer vision on agents acting in complex 3D
environments. They conducted their research using the video games Doom and GTAV.

In GTAV, they trained and evaluated different agents for the task of urban driving. All
agents used three-layer convolutional networks. The type of input modality was different
for each agent. One agent was only trained on RGB images, while other agents were
trained on a stack of RGB images and ground truth computer vision representations.
Some were trained on a stack of RGB images and representations produced by an U-Net
with multiple decoders. Each decoder performed a different computer vision task. The
type of computer vision representations they investigated were semantic segmentation,
instance segmentation, optical flow, depth, and albedo9.

The agents were evaluated by driving through multiple paths, defined by a start and target
position. HLCs were not used for navigation. When the agent reached an intersection,
it could always reach the target destination by turning to the right. An episode was
considered successful if the agent could reach the target position without colliding with
any object.

Their results clearly showed that computer vision matter for action. Agents trained with
explicit representations from computer vision generalized better to unseen environments,
learned faster, and achieved higher task performance. This performance boost applies
when the representations are ground truth computer vision, or when they are predicted
by neural networks. Semantic segmentation and depth estimation was deemed the most
essential representations. Additionally, their results showed that networks trained with
explicit intermediate representations require less training data to achieve the same perfor-
mance as an RGB-only agent.

9Albedo is the intrinsic surface color of different materials in the scene [12].
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2.6.8 Learning by Cheating (2019)

Chen et al. [14] split the task of learning to drive into two separate tasks; learning to
see, and learning to act. They call their approach Learning by Cheating (LBC). Using
CARLA, they collect a dataset D in Town01. The dataset consists of RGB images,
velocities, HLCs, and semantically segmented bird’s-eye view (BEV) images. The BEV
images include information about traffic light state, lanes, and other actors surrounding
the vehicle.

A privileged network is trained using the BEV images. Since the privileged agent has direct
access to most of the relevant environment information (i.e. it ”cheats”), it can focus on
the task of learning to act. The BEV images are augmented by random perturbations and
rotations during training. An example of a BEV image and an augmented BEV image
can be seen in Figure 2.18. The privileged network is trained to output five waypoints in
world coordinates (i.e. (x, y, z)), which are denoted by ŵ. These waypoints indicate the
future trajectory of the vehicle.

(a) (b)

Figure 2.18: Examples of semantically segmented BEV images, as presented in the original
paper [14]. These images are used to train the privileged agent. Each BEV image has
seven classes: road, lane markings, vehicles, pedestrians, and each traffic light state. The
red square is the agent, and the purple dots are the predicted waypoints. The agent,
waypoints, and the unlabeled class are not included in the BEV images that the privileged
agent uses, but they are visualized in these images. (a) The original BEV image. (b) An
augmented BEV image.

Given a set of waypoints {ŵ1, ...ŵ5}, two different PID controllers are used to output
throttle and steering. A longitudinal PID controller produces a throttle value which
minimizes the error between the target velocity v, and the average velocity v∗ required
for passing through all waypoints. That is, it minimizes v − v∗, where v∗ is defined as:

v∗ =
1

N

N∑
i=1

||ŵi − ŵi−1||
δt

,

and δt is the temporal spacing between waypoints. The velocity value v is set to zero if
v < ε, where ε is set to 2.0kmh by default. A lateral PID controller outputs a steering
angle s∗. Using least squares fitting, a circular arc is fitted on the waypoints. A single
point p = {px, py} is then chosen on the arc, and is used to calculate the steering angle by
s∗ = arctan(

py
px

).
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The next stage involves training a sensorimotor network. This network is trained with
RGB images to output five waypoints in camera coordinates (i.e. (x, y)), which are de-
noted by w̃. To train the sensorimotor network, each waypoint in camera coordinates
w̃ = {w̃x, w̃y} is transformed to world coordinates ŵ = {ŵx, ŵy, ŵz} with a linear trans-
formation Tp. All waypoints are projected to the ground plane, i.e., ŵz = 0. Given the
height of the camera above ground py, the field of view (fov) of the camera, and the co-
ordinates of the center of the RGB image {cx, cy}, the linear transformation Tp is given
by:

ŵx =
w̃x − cx
cy − w̃y

py

ŵy =
cx

tan( fov2 )(cy − w̃y)
py

Training the sensorimotor network involves three different phases. Here, f∗ denotes the
privileged network, and fθ denotes the sensorimotor network parameterised by θ.

• Phase 0: Initially, the sensorimotor network tends to output waypoints that are
close to the center of the image, i.e. {w̃x ≈ cx, w̃y ≈ cy}. This causes the denomi-
nators in the transformations to get very small, which in turn leads to non-sensical
waypoint values. This can cause exploding gradients. To counteract this, the output
of the privileged agent is transformed to camera coordinates. The sensorimotor net-
work is optimized using the L1 distance between its own output and the transformed
privileged waypoints. This phase is regarded as a warmup phase, and only lasts for
two epochs.

• Phase 1: The sensorimotor network is trained by behavior cloning using D. Given
an RGB image I, a BEV image M , a velocity v, and a HLC c for any arbitrary state,
the parameters of the sensorimotor network θ is optimized with the following cost
function:

minimize
θ

E[||Tp(fθ(I, v, c))− f∗(M, v, c)||1] (2.14)

• Phase 2: The sensorimotor is trained with a DAgger-like algorithm [21], where the
privileged network acts as the expert policy π∗. For each timestep of the rollout, the
sensorimotor and privileged networks take turns controlling the vehicle. The proba-
bility of the sensorimotor network controlling the vehicle is decided with probability
p = 1

2 + 1
2(1−0.95i), where i is the number of the current episode. After each rollout,

the sensorimotor network is trained using Equation 2.14 on the aggregated dataset.
At any point during a rollout, the sensorimotor network can query the expert on
what the current optimal action is. This means that the sensorimotor agent can
focus on the task of learning to see.

The privileged and sensorimotor networks use a ResNet-18 and a ImageNet pretrained-
ResNet-34 backbone, respectively. The output of the backbone is propagated through a
series of transposed convolutional layers. The current velocity v is used to produce 128
feature maps filled with the value of v, which are later concatenated with the output of
the transposed convolutional layers along the channel dimension. The HLC acts a switch
between different branches, similarly to CIL [51]. Each branch consists of batch normal-
ization, convolutional, and spatial softmax layers. All branches are always optimized for
each data point, even if the branch is not corresponding to the current HLC. They call this
white-box supervision. They report white-box supervision as being extremely effective.
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An important point is that the sensorimotor agent only has access to RGB images, and not
to any privileged information. It achieved state-of-the-art results on the original CARLA
and NoCrash benchmarks, achieving 100% success rate for the first time on the CARLA
benchmark. It also outperformed CILRS [11] on the NoCrash benchmark.

Chen et al. conclude by stating that a potential direction for future work would be to
combine the LBC approach with reinforcement learning.

2.6.9 Other Recent Work (2020 - 2021)

This section includes other works that have come out either concurrently or after LBC
[14]. These works also evaluate their approaches on the CARLA and NoCrash benchmarks.
This will give an overview of some of the most recent results in this field. It also includes
a brief section about the response to the LBC approach.

End-to-End Model-Free Reinforcement Learning for Urban Driving using Im-
plicit Affordances (2020)

Toromanoff et al. [16] introduced a novel RL procedure. They trained a convolutional net-
work with an encoder-decoder architecture. This network was trained to predict semantic
segmentation images and the current traffic light state. The encoder is a ResNet-18 back-
bone. During the RL training procedure, they freeze the ResNet-18 encoder. The output
of the encoder is then flattened, and propagated through the rest of the network. They
call the information from the encoder implicit affordances. This gives the name of the
model, IA. IA gets similar results as LBC on the CARLA benchmark. On NoCrash they
get slightly lower success rates on training weather conditions, and approximately half the
success rates with test weather conditions, compared to LBC. However, IA was trained
on multiple CARLA towns and weathers. The test environments of the benchmarks have
therefore been seen during training.

Learning Situational Driving (2020)

Ohn-Bar et al. [52] proposed a novel approach for learning urban driving policies called
learning situational driving (LSD). The goal of the learner is to optimize a policy which
is decomposed into a mixture model of probabilistic expert policies (MoE), in addition to
an image-based context embedding. Each expert policy in the MoE are implemented as
neural networks, and are trained by behavior cloning. The context embedding is updated
through supervised learning, and is implemented as a variational autoencoder. The final
stage of learning involves RL, where the parameters of the MoE are kept frozen. LSD+
and LSD refers to the models trained with and without RL refinement, respectively. LSD+
achieved state of the art results on the CARLA 0.8.4 NoCrash benchmark.

Affordance-based Reinforcement Learning for Urban Driving (2021)

Agarwal et al. [17] built on the work of IA [16] by training three different models that
use affordances. Affordances are small pieces of information about the environment [53].
Both explicit and implicit affordances are used. Explicit affordances are pieces of infor-
mation that comes directly from the simulator, such as traffic light information, distance
and speed to the vehicle ahead, and distance to the goal destination. Implicit affordances
come from a convolutional autoencoder, which is trained on semantically segmented BEV
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images. This approach is denoted as ABRL (affordance-based reinforcement learning)10.
They proposed three models:

• ABRL-A: only uses explicit affordances.

• ABRL-A+I: uses a combination of explicit and implicit affordances.

• ABRL-I: only uses implicit affordances.

All models are trained with PPO. They propose a novel reward function defined as follows:

R = Rs +Rd + I(i)Ri (2.15)

whereRs = αv,Rd = −βd,Ri = −φv − δ, and

I(i) =

{
1 If a traffic light violation or collision occur

0 Otherwise

Here, v is the current velocity, and d is the lateral deviation from the optimal trajectory to
the center of the vehicle. α, β, φ, and δ are hyperparameters set by the user. Rs rewards
the agent for driving efficiently. Rd penalizes the agent for drifting too far away from the
center of the lane. Ri penalizes collisions and traffic light violations. This penalty is scaled
with the magnitude of the velocity v. This reward function is dense, which means that it
outputs rewards constantly.

The three proposed models are evaluated on the CARLA and NoCrash benchmarks in
CARLA 0.9.6. ABRL-A achieves highest task performance, although all three variants
get significantly better results compared to other approaches, i.e., CIL [51], CILRS [11]
and LBC [14] on both benchmarks. However, the comparison is not fair. The affordances
used give a significant advantage, as they utilize high-level information from the simulator.

Response to LBC

The authors of LSD [52] state that LBC [14] should be seen as an ”upper limit on per-
formance”, since it uses highly privileged information during training that would not be
available in real life. This is in sharp contrast to LSD, which has no access to such informa-
tion. Carton et al. [62] share a similar sentiment about the use of privileged information,
and instead favors algorithms that only use visual input during training. Furthermore,
Zhao et al. [63] also criticizes the semantically segmented BEV images for being expensive
and requiring access to ground truth information that would only be available in simu-
lated environments. Agarwal et al. [17] questions the generalization capability of the LBC
approach to new environments. Tampuu et al. [8] describes how the LBC approach, with
its online training phase, mitigates the negative effect of the distribution shift problem.
However, they also state that performing a similar training procedure in real life could
potentially be very difficult. However, the authors of LBC state that the approach could
be deployable in real life and refers to methods from sim-to-real-transfer.

Learning to Drive From a World on Rails (2021)

On May 3rd 2021, three of the four LBC authors, Chen, Koltun and Krähenbühl released
their next work on autonomous vehicles [18]. In this work they first train a world model
which can simulate the actions of an agent without executing them. This forward world
model is learned from a dataset of driving trajectories. The trajectories also include

10As far as we know, there is no established acronym for this work in the literature.
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information about the environment. They then estimate an action-value function using the
forward model, dynamic programming and Bellman equations. The action-value function
is then used to supervise training of a visuomotor driving policy. By using the action-value
function, the agent is able to predict the outcomes of all possible actions before taking
them. The agent only uses RGB images and current speed as input when driving.

The world-on-rails assumption is an assumption that the actions of the agent does not
influence the environment, only its own state. This significantly simplifies the state space
for the model, as the world is now only moving passively based on the pre-recorded tra-
jectories. This makes using the Bellman equations to learn a forward model feasible.

This approach achieves the highest score on the CARLA leaderboard11, while using 40
times less training data than the second ranking model. The method also achieves new
state of the art results on the NoCrash benchmark. The approach also generalizes to other
tasks. This is shown by achieving good results on the ProcGen benchmark, while being
more sample-efficient than competing methods.

We will refer to this model as Rails. The authors also publish LBC results on the NoCrash
benchmark in CARLA version 0.9.10. These results differ from the original results, which
are from CARLA version 0.9.6.

11https://leaderboard.carla.org/leaderboard/
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Chapter 3

Methodology

This chapter describes the methodology of our work.

In Section 3.1 we describe the choice of simulator, machine learning framework, and hard-
ware. In Section 3.2 we describe the task of converting the LBC code to the most recent
version of the CARLA simulator. This section also explains how some other important
issues were fixed. Section 3.3 through 3.6 describe the four experiments that have been
conducted for this thesis.

In Experiment 1, we tried to reproduce the LBC approach in the CARLA 0.9.11 simula-
tor. In Experiment 2, the sensorimotor network was trained with ground truth computer
vision images. In Experiment 3, we trained and evaluated perception models. We then
trained a sensorimotor network with explicit intermediate representations given by the
trained perception models. In Experiment 4, we trained the sensorimotor network with
an additional RL stage.

3.1 Environment and Technology

Choice of simulator
We wanted to conduct research in a simulator since it allowed us to freely and safely
experiment with different approaches. As described in Section 2.5.1, the CARLA simulator
[10] is widely used by researchers. We believe that CARLA will continue to see widespread
use in the future. The existing LBC code already supported CARLA. Implementing
similar functionalities in a different simulator would have required a lot of time and effort.
Therefore, the natural choice was to continue using CARLA. This thesis then belongs to
the growing field of research that use the CARLA simulator for training and evaluating
end-to-end AVs.

Choice of Machine Learning Framework
Since the implementation of LBC used PyTorch, we chose to continue using this framework.
The use of PyTorch is also in line with the research community who often use PyTorch over
TensorFlow [64]. Another benefit with PyTorch is the inclusion of the Torchvision library,
as well as the available open-source Segmentation Models [59] library. These libraries have
implementations of many different architectures, which is helpful as it makes implementing,
training and evaluating neural networks a quick and efficient process.

Hardware
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We had several computational resources available. Due to COVID-19, we could not phys-
ically access school areas at NTNU. Instead we received access to a virtual desktop with a
Linux operating system, that had 8GB or 12GB VRAM available. We also had access to
the IDUN cluster [65], which is a compute platform organized by the High Performance
Computing Group at NTNU. Due to limited rendering capabilities on this platform, we
did not use it. Additionally, we had two Windows PCs available. One PC was equipped
with a RTX3070 with 8GB VRAM, and the other with a GTX1060 with 6GB VRAM.

Most of the computation was done on the RTX3070 and GTX1060 machines, as they were
the fastest and were always available. The virtual desktop was used for data collection,
because the data saving library created unnecessarily large files on Windows. The priv-
ileged network was also trained on the virtual desktop. Every phase of all sensorimotor
networks were done on the RTX3070 machine. Perception data collection was done on
the RTX3070. The training and evaluation of the perception models was spread across
the RTX3070, the GTX1060 and the virtual desktop. All benchmarking was done on the
RTX3070 and GTX1060.

3.2 Converting and updating to CARLA 0.9.11

We built on the work by Chen et al. [14] who proposed LBC. They utilized a modified
version of CARLA 0.9.6, which was the newest CARLA version at the time of their
research. Pedestrian logic was severely lacking in CARLA 0.9.6. Because of this, Chen
et al. included multiple modifications to the pedestrian system, including crosswalk logic,
teleportation of stuck pedestrians and car avoidance. The code behind their research,
along with their custom version of CARLA 0.9.6, was published and is available for use
under a MIT license1.

Instead of using the customized implementation of CARLA by Chen et al., we instead
opted for CARLA 0.9.11. This is the most recent version at the time of writing this thesis.
The reason we decided to use version 0.9.11 over 0.9.6 is because we wanted to use the
latest technology available. As new research tend to use the newest available technology as
well, we hope that our results will be easier to compare with concurrent and later works.
Using the newest version also let us investigate how the LBC approach fared in a more
realistic simulated environment.

CARLA version 0.9.11 has many significant changes from the version used by Chen et
al. The 0.9.11 version is more realistic in terms of graphics and physics, and includes a
more diverse set of vehicle and pedestrian models. Although the complete list of changes
is vast and the effects are complex, some changes have more clear effects on the simulated
environment. Some of the changes with direct effects are listed in Table 3.1. All version
changelogs can be found at CARLA’s official blog2.

Aside from changes of the simulator itself, some other problems arose in the conversion
process. Our code base was forked from the official LBC repository.

Updating the NoCrash benchmark

We found that we needed to update the NoCrash benchmark routes. These routes are
defined in terms of pairs of spawn points. Each town has a fixed number of spawn points

1https://github.com/dotchen/LearningByCheating/
2https://carla.org/posts/
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Version Change Description

0.9.7 New pedestrian navigation
module

Pedestrians are now functioning properly.
This change covers the features that Chen
et al. implemented in their custom 0.9.6 ver-
sion.

0.9.7 New illumination system
(SSAO, HDRi)

The overall lighting and shadows are now
more realistic.

0.9.7 Camera lens distortion Camera-based sensors feature realistic ef-
fects, such as lens distortion.

0.9.7 to
0.9.11

Traffic manager Multiple improvements to the traffic man-
ager, which affects behavior of vehicles.
There are now configurable parameters for
the probability of running red lights or ig-
noring pedestrians.

0.9.8 Weather update Weather effects and particles are now more
realistic. They are also fully configurable.
This also affects color temperature and in-
tensity of the scene lighting.

0.9.10 Eye adoption for RGB
cameras

Image exposure values are now adjusted ac-
cording to scene luminance.

0.9.10 New sky atmosphere Lighting is more realistic.

0.9.10 Enhanced vehicle physics Changes to vehicle physics, such as suspen-
sion and center of mass. This specifically af-
fects how the vehicles turn.

0.9.8,
0.9.10

Pedestrian gallery exten-
sion

Updated existing models and added new
pedestrian models. Features new animations.

0.9.11 New vehicle models New vehicle models, which gives more diverse
visuals in the scene.

Table 3.1: Overview over a selection of changes following CARLA version 0.9.6 up to ver-
sion 0.9.11. This table does not include every change which may affect model performance
between versions. These changes all have immediate effects on the simulator environment,
and the effects are given in the descriptions. Most changes are found in the CARLA
update blog posts.

which all have their own ID. These IDs correspond to their index in the list of all spawn
points for the given town. We first attempted to run the original CARLA benchmark for
testing purposes. This caused the program to crash when running Town01 routes with
spawn points 255 and 256. This was because we ran routes intended for CARLA 0.9.6 in
CARLA 0.9.11.

By inspection of the list of spawn points, we realized that two spawn points have been
removed from Town01, although we did not know which. This meant that every route in
the benchmark setup for Town01 could be wrong. If left uncorrected, the benchmark would
run completely different routes than intended. We were not able to find any information
regarding this change, so we had to resort to manually updating the routes.

We figured out a strategy to correct the benchmark routes for CARLA 0.9.11. The paper
that introduced the NoCrash benchmark [11] includes an image with an overview over
start and finish points of all routes in the benchmark. However, these images are made for
CARLA version 0.8.4. We call this the 0.8.4 map. The LBC framework includes routes
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for both CARLA version 0.8.4 and 0.9.6. These indexes are different, but they represent
the same routes in the simulator. This means that we had a mapping from spawn points
in 0.8.4 to those in 0.9.6. We also used an example script that comes with CARLA,
no rendering mode.py. This script has the functionality to draw a complete map of the
town, and we extended it to draw each spawn point together with its index. We call this
the 0.9.11 map. The two maps are shown in Figure 3.1.

(a) (b)

(c)

Figure 3.1: Images showing the setup we used for updating the NoCrash routes for CARLA
version 0.9.11. (a) The overview over start and stop points of each route in the NoCrash
benchmark, created for CARLA 0.8.4. Taken from the NoCrash paper by Codevilla et
al. [11]. (b) The dynamic map created from the modified no rendering mode.py script,
showing spawn point indexes for CARLA 0.9.11. (c) A zoomed in image from the dynamic
map.

Using these resources we could now correct the routes. For each route, we looked at the
spawn points in the 0.8.4 map and found the corresponding spawn points in the 0.9.11
map. To speed up the conversion, we utilized the fact that the 0.9.11 indexes are always
0, 1 or 2 numbers below their 0.9.6 counterparts. As we evaluated more routes, we could
logically induce in which range the two removed spawn points were lying in. For example,
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we found a rule that i0.9.11 = i0.9.6−2 for i0.9.6 ≥ 104. We also found that no spawn points
were removed under index 61, which means that i0.9.11 = i0.9.6 for i0.9.6 ≤ 61. This sped
up the conversion considerably. This was a tedious process, and great focus was required
to not make any mistakes.

Fixing an issue with Random Number Generation and multiprocessing in Py-
Torch

In mid-April, Tanel Pärnamaa released a blog post3 which addresses an issue when using
PyTorch with NumPy. In a PyTorch training loop, there is a DataLoader object which
fetches data from a Dataset subclass object. It then feeds data batches to the GPU for
computation. A Dataset subclass implements a method which returns a single sample, the

getitem () method. This method also typically performs pre-processing tasks like data
augmentation. The DataLoader object has a num workers parameter, which specifies
how many subprocesses should be used to load data. These subprocesses are referred
to as workers in PyTorch. Each of these workers can work in parallel on the CPU. This
parallelization speeds up training if the data preprocessing is the bottleneck in the training
pipeline, which is often the case.

The data augmentation in the Dataset fetch method usually has some randomness, which
is commonly implemented with the NumPy random number generator (RNG). When a
worker is created, it will copy the parent process state. This means that by default, each
worker will have identical copies of the RNG. And this is the cause of the issue, as the
RNG of each worker will have the same state. They will therefore produce the exact same
sequence of numbers. If the data augmentation relies on the RNG, each batch from each
worker will have the same augmentations. This is a problem, because the point of data
augmentation is to create variance in the data.

This issue can be fixed by specifically seeding the RNG of each worker. This is done by
supplying a seeding function as the worker init fn argument when creating the DataLoader
object. Although this issue is commonly related to the NumPy RNG, it also exists for
other RNGs. This issue is not considered a real bug. But it is definitely a lesser known
feature, and is easily overseen. Pärnamaa made an analysis of this problem, and the blog
post states that 95% of PyTorch repositories on GitHub which use custom Dataset objects,
NumPy RNG and num workers > 1 have this problem. We were not aware of this issue
before we read the blog post.

When setting num workers > 1 in LBC, the ramifications of this issue are possibly even
worse. LBC implements three subclasses of the Dataset class, one for the privileged
network, one for phase 0 and phase 1 of the sensorimotor network, and one for phase
2. These are named BirdviewDataset, ImageDataset and ReplayBuffer respectively. The
BirdviewDataset and the ImageDataset are covered in a wrapper class before being given to
their respective DataLoader. This wrapper class is also a Dataset subclass, and implements
the getitem () method. In this method, the wrapper class uses the NumPy RNG to
pick samples. This leads to each worker picking the exact same samples for every round
of batches. The first batches of each worker will be identical, the second batches will be
identical and so forth. This issue is demonstrated in Figure 3.2.

The unmodified LBC repository does not have this problem for phase 0 and phase 1, as
num workers is set to 0. For these phases, we initially set the num workers to a higher
number, as we found that it sped up the training considerably. However, phase 2 of the

3https://tanelp.github.io/posts/a-bug-that-plagues-thousands-of-open-source-ml-

projects/
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Figure 3.2: A visualization of the batch augmentation issue which commonly arises when
using multiprocessing with PyTorch and NumPy. In this case, there are two workers.
The first worker produces batch 1 and 3, while the second worker produces batch 2 and
4. Because the RNG states of the workers are identical, they both produce the same
augmentations. The image is taken from the blog post of Tanel Pärnamaa and showcases
the issue in an official PyTorch example.

official LBC implementation also uses num workers = 4, which means that the official
results probably were affected by this issue as well.

When we found out about this issue we had to retrain every model we had trained so far.
This issue did not reveal itself easily. Seeding each worker also fixed image augmentations
and other random elements in each of the three Dataset subclasses.

We also fixed another issue related to multiprocessing on Windows. In theBirdviewDataset
and ImageDataset classes, the reading streams to the data files on disk were kept open
for the entire lifetime of the object. When using multiple workers, the program was trying
to open multiple reading streams for each data file. This was allowed on Linux, but not
on Windows. The error was fixed by having each worker open and close the connection
every time data was loaded. While this had a performance cost, it was still faster than
using a single worker.

Modifying the Replay Buffer for DAgger

As described in Section 2.1.2, a major disadvantage with DAgger is the computational
resources required for maintaining the growing size of the dataset D. In the LBC im-
plementation of DAgger, D is implemented as a replay buffer that is stored entirely in
memory. The replay buffer is extended with 4 000 new instances for every subsequent
rollout, which means that it eventually grows to several GBs in size. Since the replay
buffer is extended every episode, the time required for a single epoch increases as DAgger
progresses.

Storing the entire replay buffer in memory makes DAgger extremely slow on our hardware.
This is because every worker that fetches batches of data must create its own copy of the
replay buffer for every single epoch. The system memory is exceeded, and disk caches
must be used. When we added ground truth depth and semantic segmentation images to
the replay buffer in Experiment 2, it grew to an even larger size.
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Another problem we experienced was frequent server timeouts. When this happened, we
had to restart the entire DAgger procedure, and subsequently lose all data in the replay
buffer. The authors of LBC ran their DAgger script on more powerful hardware, and
might not have experienced these issues to the same extent as us.

To make the DAgger implementation more compatible with our hardware, we modify
the the replay buffer so that it writes and reads data from disk instead of keeping it in
memory. The PC that ran the DAgger procedure is equipped with SSD storage, which
made the modified replay buffer a viable option for training. The modified replay buffer
significantly decreased the time required for DAgger, while also allowing for stopping and
resuming training.

3.3 Experiment 1: LBC Reproduction

This section describes our approach for reproducing LBC. For all stages of training we
tried to follow the LBC paper [14] and the README documentation as closely as possible.
We refer to the original hyperparameter choices as the default settings.

3.3.1 Data Collection

To collect data we used the data collection script written by the authors of LBC. However,
we modified the script so that it captures additional semantic segmentation and depth
images. These images were not relevant for this experiment, but will be utilized and
discussed further in Experiment 2, which is described in Section 3.4.

Data collection was performed in Town01, and was conducted over the course of several
episodes. For each episode, a random path was sampled from the original CARLA bench-
mark. A Ford Mustang was used as the data collection vehicle, and 250 pedestrians and
100 vehicles were spawned into the environment. The weather condition was randomly
selected out of the four training weathers from the NoCrash benchmark. As the vehicle
moved through the path, it captured RGB images, HLCs, velocities, and BEV images. It
also stored the necessary information needed for calculating the waypoints, which were
used as target values for training the privileged network. The RGB images and BEV im-
ages were captured with 160x364 and 320x320 resolutions, respectively. The RGB camera
was mounted at the front of the car, and positioned 1.4 meters above ground. The camera
field-of-view was set to 90 degrees.

Over the course of 117 episodes, 177 428 training frames and 41 424 validation frames
were collected. This matches the numbers in the original paper, where they use 174 000
training frames and 39 000 validation frames. We refer to the collected data as the driving
dataset. This dataset was used for training the privileged network. It was also used for
training the sensorimotor networks during the zeroth and first phases in Experiments 1,
2, and 3. Table 3.2 shows the distribution of HLCs for the training and validation sets.

3.3.2 Training the Privileged Network

The privileged network was trained by supervised learning with the default settings. The
BEV images were used as input, and the calculated waypoints were used as targets. The
network used a ResNet-18 backbone, and was trained with the Adam optimizer with
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HLC Training Validation

Left 4 158 (2.34 %) 967 (2.33 %)
Right 2 637 (1.49 %) 408 (0.98%)

Straight 7 572 (4.27 %) 1 886 (4.54%)
Follow 163 061 (91.90 %) 38 263 (92.15%)

Total 177 428 41 524

Table 3.2: Distribution of HLCs in the driving dataset for training and validation sets.

a learning rate of 0.0001 and a batch size of 128. The BEV images were augmented
as described in Section 2.6.8. The README documentation of LBC states that a well
trained privileged network should expect a validation loss less than 0.005. We used this
as a guiding principle, and trained with the goal of attaining this validation loss. We also
attempted to train the network on a dataset with a balanced HLC distribution.

The best network was used as the privileged network in all experiments.

3.3.3 Data Augmentation

The LBC repository includes a data augmentation script which is described here. The
script is written by Codevilla et al. for the COiLTRAiNE framework4, and uses the
imgaug [66] library to sequentially apply different augmentations to RGB images.

The possible augmentations include Gaussian blur, Gaussian noise, dropping pixels, chang-
ing brightness, and changing grayness. The augmentations are applied in random order.
The probability of applying an augmentation depend on an initial number N . Multiple or
none of the augmentations might be applied to a single image. The degree of how much
the augmentation should alter the image is also decided by N . The variable N is increased
by 1 for each image that is fetched. This ensures that images are augmented differently
every time an image is fetched.

There are also several augmentation settings. These settings influence the probability and
degree of each augmentation. Sorted from least to most extreme form of augmentation, the
settings are: soft, soft harder, medium, medium harder, high, and super hard. Examples
of super hard data augmentations are shown in Figure 3.3. Gaussian noise is not shown
in this figure, because the effect is hard to spot with the eye.

3.3.4 Training the Sensorimotor Network

The training of the sensorimotor network involved three different phases of training, which
is described more thoroughly in Section 2.6.8. For all phases of training we tried to adhere
to the default settings as closely as possible. Adam with a learning rate of 0.0001 was
used as the optimizer, and super hard data augmentation was used in phase 1 and 2. The
only setting we changed was the batch size, which was done due to inferior hardware.

In phase 2, the LBC implementation of DAgger was used to train the sensorimotor net-

4The COiLTRAiNE framework can be found here https://github.com/felipecode/coiltraine. We
assume that this augmentation script was used by Codevilla et al. for the CIL [51] paper. This is because
the list of augmentations mentioned in the CIL paper correspond with augmentation script, and because
Felipe Codevilla was involved with both CIL and COiLTRAiNE.
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(a) Original RGB image (b) Change of brightness

(c) Change of contrast (d) Dropping pixels

(e) Dropping rectangles of pixels (f) Gaussian blur

(g) Change in grayness (h) Combined augmentations

Figure 3.3: Examples of image augmentations used during training with the super hard
augmentation setting. From the top left: (a) original RGB image, (b) brightness change,
(c) contrast change, (d) random percent of pixels dropped, (e) random subset of rectangles
dropped, (f) Gaussian blur, (h) some randomly selected combined augmentations.
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work. Whenever we refer to DAgger from this point on, we are referring to the LBC
implementation. Their implementation differs slightly from the original DAgger pseu-
docode. For instance, π̂ is trained for five epochs after every rollout. It also uses a special
sampling mechanism, which performs a weighted choice of instances after the first epoch.
The weights are based on the loss in the preceding epoch.

A summary of each phase follows:

• Phase 0: The sensorimotor network was trained to stabilize waypoint prediction
for two epochs. A ResNet-34 backbone pretrained on ImageNet was used as the
backbone. The batch size was set to 60, which differs from the default setting of 96.

• Phase 1: Using the weights from phase 0 as a starting point, behavior cloning was
performed for 65 epochs using the privileged network as the expert.

• Phase 2: The phase 1 checkpoint was used as the inital policy π1 in the DAgger
algorithm. The privileged network was used as the expert policy π∗. The sensori-
motor network was trained with DAgger for 11 episodes. Each episode consisted of
a rollout and training stage. Each rollout took place in Town01, and added 4 000
new instances to a replay buffer. After each rollout, the network was trained for five
epochs on all instances in the replay buffer, using super hard data augmentation.
The sensorimotor and privileged agents took turns at controlling the vehicle.

We ran CARLA and the phase 2 script on the RTX3070 GPU. Due to limited VRAM,
we had to significantly reduce the batch size from the default settings. We set the
batch size to 29, while the default setting is 128. We restrict phase 2 to a total
of 11 DAgger iterations, which is in accordance with the configuration file of their
published sensorimotor network. Due to long computation times, we followed this
restriction for the rest of the experiments.

After phase 2 finished, some adjustments to the PID controller parameters were made.
After training, the agent may make too hard turns, which leads to cutting corners. The
agent can also make too soft turns, which can make it leave its lane or go off the road. By
tuning the PID controller, we can give the agent smoother and more fitting turns. As each
HLC has its own set of PID values, we could specifically adjust for the HLC it struggled
with. For the Lane follow HLC, which features both left and right turns, we tried to find
a balance so that it can handle the difficult left turns as well as the difficult right turns.
Finding the right balance was difficult. An example that illustrates this is that tightening
the left turns could lead to corner cutting for the right turns.

We call this sensorimotor network LBC-R (LBC-Reproduction). The network was evalu-
ated on the NoCrash benchmark. The benchmark was ran three times with three different
RNG seeds. The statistical mean and standard deviation of each task result was estimated.
The original CARLA benchmark was dropped due to time constraints.

The privileged agent was also benchmarked for a single RNG seed. This benchmark gave
an indication of the upper limit of the performance of the sensorimotor network.
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3.4 Experiment 2: LBC with Ground Truth Computer Vi-
sion

This section describes our approach for extending the sensorimotor network to use ground
truth depth and semantic segmentation images. This experiment is motivated by the
results of Zhou et al. [12], who explored the effects of utilizing extra intermediate repre-
sentations as input to agents acting in complex 3D environments.

3.4.1 Data Collection

As mentioned in Section 3.3, the data collection procedure was modified to include ad-
ditional ground truth computer vision images, in the form of semantic segmentation and
depth images. These images were captured by semantic segmentation and depth sensors.
These sensors have the same viewpoint, field-of-view, height above ground, and image
resolution as the RGB sensor.

The semantic segmentation sensor in CARLA 0.9.11 has 22 different classes. The semantic
segmentation images are stored on disk as RGB images, where the red channel is encoded
with an integer indicating which class the pixel belongs to. The depth sensor captures
images in an RGB format, which are then converted by a logarithmic depth converter.
This gives pixel depth values with millimeter precision. The depth images are stored as
grayscale images, with values ranging from 0 to 255. Low values indicate objects closer to
the camera, while higher values indicate objects farther away.

3.4.2 Training the Sensorimotor Network with Extra Input Modalities

The sensorimotor network is trained on a stack of inputs consisting of RGB images, se-
mantic segmentation images, and depth images. Instead of using all the available semantic
classes in CARLA, we choose eight classes that we deem important for autonomous nav-
igation. Everything else is classified as unlabeled, which means there are nine semantic
classes in total. The semantic classes which we used are presented in Table 3.3.

We had previously observed that the RGB agents could both ignore red lights and fail to
continue driving when the lights turned green. To potentially reduce this problem, the
semantic segmentation images included the traffic lights class. This allowed us to study
the effect of computer vision representations on traffic light violations.

The depth images were normalized from the range [0, 255] to [0, 1], while the RGB images
were normalized using the ImageNet mean and standard deviation values. RGB images
were also augmented with the super hard data augmentation setting. RGB, semantic
segmentation, and depth images were then concatenated together along the channel di-
mension. This resulted in a stack of images, consisting of 13 channels5. A visualization
of this input stack is shown in Figure 3.4. We used the same network architecture as
described in Section 2.6.8, but increased the number of input channels to 13 to make it
compatible with the new input type. The ResNet-34 backbone is not pretrained on Im-
ageNet. We argue that the task of learning to drive from RGB images is different than
learning to drive from RGB, semantic segmentation and depth images.

53 RGB channels + 9 semantic channels + 1 depth channel = 13 channels
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Class Name Color Description

Sidewalk Pink All parts of the ground that are
meant for pedestrians and cyclists.

Road Purple All sections of the ground plane des-
ignated for vehicles.

Roadline Green Road markings on the surface of the
road.

Pedestrian Red All humans. Mostly walking kids or
adults. Can also be riding motorcy-
cles or bicycles.

Vehicle Blue All motorized vehicles and bicycles.

Pole Grey Vertical poles. Includes poles for
traffic signs and traffic lights, but
not the actual signs or lights them-
selves.

Traffic Light Orange This class is for the traffic light
boxes. Does not show the current
light state.

Ground Dark Purple All horizontal ground areas not clas-
sified as sidewalk or road.

Unlabeled Black All pixels not belonging to any of
the other classes.

Table 3.3: An overview over the classes that were used for semantic segmentation. The
color and a short description of each class is provided. The colors follow the Cityscapes
color palette.
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We modified the live video view of the agent to show the complete input stack. This gave
better visualizations, easier debugging, and better interpretability of the model.

Figure 3.4: An example of the input stack which the sensorimotor network is trained on.
From top to bottom: RGB, semantic segmentation, and depth.

To train the sensorimotor network, we used the privileged network as the expert policy.
This network was trained in the previous experiment (Section 3.3.2). As for Experiment
1, we used the default settings when possible, but altered the batch size when necessary.
See Section 2.6.8 and Section 3.3.4 for a more thorough description of the sensorimotor
training phases. A summary of each phase follows:

• Phase 0: The sensorimotor network was trained to stabilize waypoint prediction
for two epochs using batch size 60.

• Phase 1: The sensorimotor network was trained by behaviour cloning for 65 epochs.

• Phase 2: The DAgger algorithm was ran for 11 episodes, using the privileged
network as the expert policy. The batch size was set to 29.

Before benchmarking we changed the braking threshold ε value, which was set to 1.5kmh .
We used the default PID parameters. We call this sensorimotor network LBC-GTCV
(LBC-Ground Truth Computer Vision). The network was evaluated on the NoCrash
benchmark with three different RNG seeds. We estimated the statistical mean and stan-
dard deviation of each task result.
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3.5 Experiment 3: LBC with Trained Perception Models

This section describes our approach to extending the original LBC architecture with
trained perception models. In the previous experiment the model was given ground truth
computer vision images as input. These images are of perfect quality, and using them
can be advantageous compared to only using RGB, and it would not be possible in the
real world. To create a more realistic setting we trained and integrated perception models
which take RGB images as input and produce semantic segmentation and depth estimation
images. This output was then used as input for the sensorimotor network. The combined
model then had the same input modality as the original LBC approach. We wanted to
explore how much improvement, if any, could be made on the original LBC approach when
using these intermediate representations.

This experiment was done in two parts. In the first part we trained, evaluated and
compared different perception models. In the second part we integrated the selected
models into the LBC architecture. The combined network was then trained and evaluated
on the NoCrash benchmark.

The goal of this experiment was not to create perfect perception models. Because of time
constraints, we wanted to create models that would give satisfactory results for our study
on autonomous vehicles.

3.5.1 Perception Model Training, Evaluation and Selection

To create intermediate representations for the sensorimotor network we considered multiple
types of architectures. We tried to fine-tune models, train models from scratch, and use
unmodified pretrained state of the art models. An evaluation scheme was set up to compare
the different architectures. We then chose the most fitting models.

Data Collection
To fine-tune and train models from scratch, we needed perception data. The perception
models were only trained on images from the training settings. This was done to ensure
fair comparison with the original LBC approach. This means that the perception models
have not seen images from the test settings.

We collected a training dataset of 46 500 frames from Town01 with the training weather
types6. For model evaluation we collected two test sets. Both test sets were collected from
the unseen environment of Town02. The first set, Test1, consisted of 500 frames from each
training weather type, which totaled to 2 000 frames. The second set, Test2 consisted of
500 frames from each test weather type7, which totaled to 1 500 frames.

The perception datasets were collected with a dedicated data collection procedure. We set
up an environment with a moderate amount of cars and pedestrians. A set of sensors was
mounted on each vehicle. This set consisted of RGB, semantic segmentation and depth
cameras. To avoid having the sensors getting placed inside the body of some of the cars,
we placed the sensors at 3 meters height. This was different than the height used by the
original LBC approach, which was 1.4 meters. All cars roamed around the environment

6ClearNoon, ClearSunset, HardRainNoon and WetNoon which are the training weathers for both the
original CARLA benchmark and the NoCrash benchmark.

7WetCloudyNoon from the original CARLA benchmark, WetSunset from the NoCrash benchmark and
SoftRainSunset which both benchmarks have in common.
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with the standard CARLA autopilot. To ensure variety in images, each camera saved an
image every 30 seconds in simulation time. The camera yaw degree was sampled from a
normal distribution with a 0 degree mean and a 45 degree standard deviation. This gave
some more variation in the datasets. Each training weather type had the same number of
images.

Model Selection
Because of time constraints we could only train and evaluate a limited number of models.
We therefore tried to select a varied set of architectures to find a good fit for our pur-
pose. We looked for pretrained state-of-the-art architectures at paperswithcode.com8. For
semantic segmentation, we looked at the best ranking models on the Cityscapes val bench-
mark. This is a benchmark with images from various urban traffic situations. Specifically,
we looked at the highest ranking model HRNet-OCR [67] which is available on the authors
GitHub page9.

For monocular depth estimation we looked at three pretrained architectures: MiDaS [47],
AdaBins [68] and Monodepth2 [69]. We found AdaBins via paperswithcode.com where it
had the highest score on the KITTI Eigen split benchmark. Monodepth2 was used by
Wigum et al. [49] who also tried to solve a similar task. We found MiDaS via internet
searching and a machine learning internet forum. This architecture had good results on
multiple benchmarks, but it was not listed on paperswithcode.com. We suspect that was
because the full training code was not available, so there was no open-source implemen-
tation that could reproduce their results, which the website requires. The models are
available on their respective GitHub repositories10.

When selecting these pretrained models we also considered how they would fit into our
pipeline. While some models were available for standalone prediction, it may have been
hard to integrate them into a live driving pipeline. MiDaS is available as a Torchvision
module, which would be easy to integrate. Meanwhile, Monodepth2, AdaBins, and HRNet-
OCR were hard to integrate into the pipeline. They also gave poor results during initial
testing, and were consequently dropped from further evaluation.

For semantic segmentation, we also selected a number of architectures from the Torchvi-
sion module which is shipped with PyTorch. This module provided a simple interface
to load of models. The torchvision models can optionally use weights pretrained on a
subset of COCO train 2017. The available models and their scores evaluated on COCO
val 2017 can be seen in Table 3.4. Based on these scores, we selected FCN ResNet101,
DeepLabv3 ResNet50, DeepLabv3 ResNet101 and DeepLabv3 MobileNetV3-Large for fur-
ther fine-tuning and evaluation. We also evaluated a U-Net architecture with a ResNet-34
backbone pretrained on ImageNet11.

For monocular depth estimation, we struggled to fine-tune the pretrained state of the
art models. Some architectures required data on specific formats, some were trained
with stereo images which were not easily available, and some gave unsatisfying results.
Our main advantage was that we had large amounts of training data with perfect targets
available from the simulator. We investigated if we could train a ResNet to learn this task.
We realized that it would make sense to add a decoder network following the ResNet, to

8This is a website with comparisons and rankings of open-source implementations of machine learning
models. The website has rankings on a on a wide variety of machine learning tasks and benchmarks.

9https://github.com/NVIDIA/semantic-segmentation
10MiDaS : https://github.com/intel-isl/MiDaS, AdaBins: https://github.com/shariqfarooq123/

AdaBins, Monodepth2 : https://github.com/nianticlabs/monodepth2
11https://github.com/qubvel/segmentation_models.pytorch
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Network Mean IoU Global pixelwise accuracy

FCN ResNet50 60.5 91.4
FCN ResNet101 63.7 91.9

DeepLabv3 ResNet50 66.4 92.4
DeepLabv3 ResNet101 67.4 92.4

DeepLabv3 MobileNetV3-Large 60.3 91.2
LR-ASPP MobileNetV3-Large 57.9 91.2

Table 3.4: Scores on the COCO val 2017 dataset by models available from the semantic
segmentation subpackage of torchvision. This table is reproduced from https://pytorch.

org/vision/stable/models.html.

create better looking outputs.

U-Net was also considered for depth estimation, which is an encoder-decoder architecture.
Even though the U-Net architecture was created for the semantic segmentation task, we
gave it a single output channel and used it for monocular depth estimation. Zhou et
al. [12] used a U-Net to create depth estimation images as well. However, they used it
in a multi-task learning situation where they had multiple decoders attached to a single
encoder. Two U-Net implementations were evaluated, one with the original encoder12

and one which used a ResNet-34 pretrained on ImageNet. The latter used the same
implementation as the one we used for semantic segmentation, but with a single output
channel.

Model Training
We wrote two PyTorch training scripts: one for semantic segmentation models and one for
depth estimation models. As all models were available as PyTorch modules, the training
scripts were easily configured to train the different models.

All models were trained with an Adam optimizer with learning rate η = 0.001, momentum
β1 = 0.9 and β2 = 0.999. The models were trained on different hardware with some
difference in available VRAM. We therefore used different batch sizes for different models.
All models were trained until convergence. Data augmentation was applied using the
LBC data augmentation script, which is described in Section 3.3. Semantic segmentation
models were trained with the medium harder setting, while depth estimation models were
trained with the medium setting. We found that these were the hardest augmentations
we could apply which did not lead to unacceptable decrease in output quality.

For semantic segmentation we used a cross entropy loss function. This loss function also
allowed for using weighted loss to incentivize the network to better learn certain classes.
For depth estimation we used the loss function designed by Alhashim and Wonka [46],
described in Section 2.3.3.

During training we discovered that the U-Net models created very good-looking output,
but that it completely failed to learn the traffic light class. As in Experiment 2, we
wanted to study traffic light violations. We therefore trained two additional U-Net models,
where we weighted the traffic light class losses 2.5 and 5 times higher than other classes,
respectively.

Model Evaluation
To compare the models we set up an evaluation procedure with multiple metrics. We

12https://github.com/milesial/Pytorch-UNet/tree/master/unet
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compared the semantic segmentation models using the Mean IoU and Weighted IoU met-
rics. For depth estimation we used the accuracy within threshold and RMSE metrics. For
accuracy within threshold we used the commonly used threshold values of 1.25, 1.252 and
1.253. Evaluation metrics for semantic segmentation and depth estimation are further
described in Section 2.3.2 and Section 2.3.3, respectively.

To get an idea if the models were fast enough to be deployed in an autonomous system,
we also measured the prediction speeds of the models. Prediction speeds were measured
by calculating the average time of 500 single predictions. A single prediction time was
found by saving the system time before input was given to the model and after the output
was returned, and then calculating the difference. Because the speed of the model can
be unstable on the first predictions, we made 600 total predictions and cut the first 100
prediction times. This is not the most accurate way of measuring speed, as other tasks on
the system might uncontrollably interrupt the CPU and use system resources. But in this
case the procedure was sufficient as we only needed rough estimates of prediction speeds.

As we began benchmarking the sensorimotor network, we discovered that the semantic
segmentation predictions were of lower quality than expected. This negatively affected the
performance of the sensorimotor network. We suspected that the quality drop was caused
by a difference in the images seen during training, and images seen during inference. As
mentioned earlier, for the original RGB sensor height of 1.4 meters, there was a bug where
the camera was placed inside the body of some of the data collecting cars. To solve this,
we moved the camera to a height of 3 meters during data collection.

We attempted to improve the prediction quality by retraining the semantic segmentation
model with a newly collected dataset. In this dataset, we kept the camera height at 1.4
meters, but only mounted sensors on cars that were not susceptible to the camera bug.

3.5.2 Training of the Sensorimotor Network with Trained Perception
Models

A summary of each phase follows:

• Phase 0: The sensorimotor network was trained to stabilize waypoint predictions
for two epochs using batch size 45.

• Phase 1: The sensorimotor network was trained by behaviour cloning for 33 epochs.

• Phase 2: The DAgger algorithm was ran for 11 episodes, using the privileged
network as the expert policy. The batch size was set to 29.

As in Experiment 2, we modified the live video view of the agent to include the inter-
mediate representations. This gave better visualizations, easier debugging and better
interpretability of the models.

The default PID parameters were used during benchmarking. However, the brake thresh-
old value ε was set to 1.5kmh . We call this sensorimotor network LBC-TCV (LBC-Trained
Computer Vision), and evaluate it on the NoCrash benchmark. The statistical mean and
standard deviation of each task result was estimated.

The complete PyTorch architecture of LBC-TCV can be found in Appendix B.
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3.6 Experiment 4: LBC with Reinforcement Learning

In this experiment, the sensorimotor network was trained with an additional RL stage.
The main motivation for this experiment was to attempt to improve the performance of
the sensorimotor network without supervision of the privileged network.

Training without the privileged network is desirable for numerous reasons. For instance,
the privileged network may be biased on the dataset it was trained with. Training the
privileged network also requires a dataset consisting of hundreds of thousands of instances
that must be collected with a slow data collection procedure. As discussed in Section 2.6.9,
several authors of other recent end-to-end approaches criticized LBC for its use of privi-
leged information.

PPO was used for this experiment because it is known to be stable, easy to implement,
and with desirable convergence properties [23]. Inspired by CIRL [15], a pretrained sen-
sorimotor network was used. The hope by using a pretrained sensorimotor network would
give the initial policy with a reasonable starting policy, that is capable of driving well. The
critic used semantically segmented BEV images to predict the expected return of rewards.
This information is easier to interpret than an RGB image.

This experiment built on the other experiments and the existing LBC framework. There-
fore the actor used the same architecture as the sensorimotor network. It also meant that
waypoints were used as the output modality. We could not find any other published work
on RL which have used waypoints as the output modality.

3.6.1 PPO Implementation

The PPO implementation was written by modifying the phase 2 script. This implemen-
tation followed the pseudocode described in Algorithm 2. The phase 2 script already
included a rollout phase where instances were collected using a policy πθk , and stored in
a replay buffer. This is similar to the trajectory collection in PPO. Furthermore, the next
part of the phase 2 script trains the next iteration of the policy πθk+1

on the instances in
the replay buffer. This is similar to the training phase of PPO. The PPO implementation
was also inspired by the minimal PPO implementation of Barhate [70].

3.6.2 Actor and Critic Networks

The actor network had the same architecture as the sensorimotor network. It was ini-
tialized with the pretrained weights from phase 1 in Experiment 1. By using the phase 1
weights, the policy had more room for improvement compared to using phase 2 weights.
This made it easier to see if the network had improved.

During the RL stage, the sensorimotor network would not be limited to only learning from
expert demonstrations. It would be able to experiment with different actions and learn
from the new situations it encountered during exploration.

The critic used a similar architecture to the privileged network. However, the branches
were designed to evaluate states, instead of outputting waypoints. Each branch had the
following layers: batch normalization, convolution, max pooling, ReLU, batch normaliza-
tion, convolution, max pooling, and ReLu again. The output of these layers was then
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Figure 3.5: Example of a BEV image used as input to the critic in PPO. Image generated
by the LBC code. The green rectangle is the vehicle of the sensorimotor network. Small
red dots are pedestrians. Big red circles are red traffic lights. Green circles are green
traffic lights. Blue squares are vehicles. The gray is the road. The yellow lines are the
road lines.

flattened, before being propagated through two feedforward layers with batch normaliza-
tion and ReLU activation. The final layer had linear activation so that it could evaluate
states to any possible value.

The vehicle of the sensorimotor network was also added as a class to the semantically
segmented BEV images. This meant that the BEV image consisted of eight classes in
total. The extra class was added to ensure that the critic could perceive the current
position of the the actor on the road. An example of this type of BEV image can be seen
in Figure 3.5.

3.6.3 Reward Function

The reward function from ABRL [17] was used. This function was defined in Equation 2.15,
and was used because it is dense and simple. It also followed the principle by Sutton and
Barto [22] on how reward functions should be designed. The rewards should not tell the
agent how it should achieve the task, rather, the rewards should tell the agent what it
should achieve. The agent should drive efficiently, safely, and close to the center of the
lane. This was also the motivation behind the design of the ABRL reward function.

The reward function of ABRL [17] has four hyperparameters α, β, φ, and δ that have to
be set by the user. The hyperparameters were set to the values used in the ABRL paper,
which were:

α = 1, β = 1, φ = 250, and δ = 250.

This meant that the final reward function was defined as:

R = v − d+ I(i)(−250v − 250)

where v is the current velocity of the agent, and d is the lateral deviation from the optimal
trajectory. I(i) equals 1 if a collision or traffic light infraction occurs, and 0 otherwise.

3.6.4 Training

The actor network πθk was initialized with the weights from phase 1 in Experiment 1,
while the critic network V̂φk(st) was randomly initialized.
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For every episode, a dataset of trajectories D was collected in Town01 with the current
actor policy πθk . Each episode consisted of 20 rollouts, where each rollout collected a
maximum of 1000 instances. Each instance consisted of a RGB image, speed, HLC, and
BEV image. Each rollout involved the agent driving through a random route from the
NoCrash benchmark in Town01. The high-level navigational planner provided the agent
with HLCs to guide the it from start to end position. The weather condition was uniformly
sampled as one of the four NoCrash training weather conditions. A rollout was aborted
if a collision happened or if the lateral deviation from the optimal trajectory was larger
than 5 meters. Following Agarwal et al. [17], the amount of pedestrians was uniformly
chosen as a number between 100 and 250. Likewise, the amount of vehicles was chosen
uniformly between 60 and 120.

Following the Spinning Up implementation of PPO [23], GAE was used to compute advan-
tage estimates Ât. For GAE, γ was set to 0.97, and λ was set to 0.94. The c1 coefficient
was set to 1, and the entropy coefficient c2 to 0.001. The parameters of the policy θk and
φk was updated with LPPO function, as defined in Equation 2.11. Two separate Adam
optimizers for the parameters of the actor and critic were used. The Adam optimizer for
the actor had learning rate set to 0.0001, while the learning rate for the critic’s optimizer
was set to 0.00001.

The actor policy was represented as a multivariate Gaussian policy, with a diagonal co-
variance matrix. Since there are five waypoints [w̃1, w̃2, w̃3, w̃4, w̃5], each defined by an x
and y position, ten numbers had to be sampled for each timestep during rollouts. This
meant that the multivariate Gaussian distribution was defined by a mean vector of ten
numbers, and a 10x10 diagonal covariance matrix. The output of the actor policy was
regarded as the mean µ. Following Carton et al. [62] and the implementation of Barhate
[70], the standard deviation σ of the policy was linearly decreased as training progressed.

As already mentioned, previous works have not used waypoints as the output modality
in RL for AVs. Therefore, several methods of sampling waypoints have been proposed.
For each method we ran PPO with different hyperparameters. These hyperparameters are
explained below.

Method 1:

All waypoints were sampled with the same σ value.

The initial σ value was set to 0.008 and linearly decreased by 0.0001 every 5000 time steps.
The actor and critic was updated for two epochs in each episode. The clip ratio ε was set
to 0.1.

Method 2:

Each waypoint had a different σ value. Waypoint w̃5 was sampled with the largest σ,
waypoint w̃4 was sampled with a lower σ, and so forth. For example if σ = 1, the five
waypoints [w̃1, w̃2, w̃3, w̃4, w̃5] would have the following σ values [0, 0.25, 0.5, 0.75, 1].

The initial σ value for w̃5 was set to 0.15, and every 5000 time steps it was linearly
decreased by 0.001. The actor and critic was updated for two epochs in each episode. The
clip ratio ε was set to 0.1.
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Chapter 4

Results

This chapter describes the experimental results of this thesis. In Section 4.1, an overview
over the NoCrash benchmark results for all trained models is given. This overview includes
comparisons to other state-of-the-art approaches. Section 4.2 presents the results from
Experiment 1 where LBC was reproduced in the updated CARLA 0.9.11 environment.
Section 4.3 presents the results from Experiment 2 where LBC architecture was extended
to use semantic segmentation and depth estimation images given directly by the simulator.
Section 4.4 presents the results from Experiment 3, where LBC was extended to use
semantic segmentation and depth estimation images, but provided by trained perception
models instead of the simulator. Section 4.5 presents the results from Experiment 4, where
LBC was extended with a RL phase.

The models trained in this thesis are denoted by LBC-R, LBC-GTCV and LBC-TCV.
These are the models from Experiment 1, 2, and 3, respectively. A video showing example
demonstrations for these models is available at the following link: https://youtu.be/

OdWVNI-DxRQ.
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4.1 Comparison of Key Models on the NoCrash Benchmark

This section presents Table 4.1, which compares the results of many models on the NoCrash
benchmark. The table includes the results of various state-of-the-art approaches, the LBC
results from the original authors, and the results from the experiments of this thesis. The
key takeaways from this table are discussed in the following sections.

Training Town Test Town
Training Weather Test Weather Training Weather Test Weather

Model Version Emp. Reg. Den. Emp. Reg. Den. Emp. Reg. Den. Emp. Reg. Den.

LSD+ [52] 0.8.4 - - - - - - 94 68 30 96 65 32
IA [16] 0.9.10 85 85 63 - - - 77 66 33 - - -

Rails [18] 0.9.10 98 100 96 90 90 84 94 89 74 78 82 66

LBC [14] 0.9.6 97 93 71 87 87 63 100 94 51 70 62 39
LBC†[18] 0.9.10 89 87 75 60 60 54 86 79 53 36 36 12

LBC-R 0.9.11 96 94 69 89 91 68 86 82 42 71 69 30
LBC-GTCV 0.9.11 98 99 85 97 96 89 100 96 60 100 96 59
LBC-TCV 0.9.11 85 92 76 70 81 79 99 96 52 75 71 38

Table 4.1: A comparison of various architectures on the NoCrash benchmark, presented
with mean success rates on each task. The version column indicates which CARLA version
was used, and is included because there can be significant differences between versions.
Emp., Reg., and Den. refers to the empty, regular, and dense tasks, respectively.
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4.2 Experiment 1: LBC Reproduction

The results of LBC-R on the NoCrash benchmark with comparisons to other approaches
is given in Table 4.1. More detailed results of LBC-R can be seen in Table 4.2. Table 4.3
shows the benchmark results with respect to weather types.

Table 4.1 shows that LBC-R performed similarly to LBC in the training town, but slightly
worse in the test town. However, it performed significantly better than LBC†, which was
benchmarked in CARLA 0.9.10. Table 4.2 shows that the traffic light violation rates were
significantly higher for Town02 than for Town01. Table 4.3 shows that it performed worse
in the the ClearSunset and WetSunset weathers.

LBC-R failed in many different scenarios, and some examples are mentioned here. Some-
times it turned too hard, which led to collisions. In other situations it did not turn hard
enough, which led to driving out of the road. It sometimes ran red lights, which led to
collisions with other vehicles. It could also fail to continue driving after stopping at a red
light, causing a timeout failure.

In the dense and regular environments, there were some failures which were not caused
by the agent. In some cases, other vehicles ran red lights and crashed into the agent. In
other routes, the traffic was so dense that the agent could not reach the goal within the
time limit, even if it did not make any mistakes.

A common failure pattern of LBC-R was that the agent was reluctant to drive into shadows.
This was especially evident for the ClearSunset weather, where there are many shadows
with high contrast to the sunset lighting. This led to the failure of many routes. An
example of this behavior is shown in Figure 4.1. In this situation, the agent was supposed
to make a hard right turn to get into the right lane.

When training the privileged network, the final epoch loss was 0.008. This is of interest
because the authors of LBC explicitly state that a well trained privileged agent should
get a loss lower than 0.005. The benchmark results of the privileged agent are supplied in
Appendix A.

The privileged network showed erroneous behavior in some situations involving intersec-
tions and yellow traffic lights. In these situations, the agent first legally passed the traffic
light and entered the intersection. If the traffic light turned yellow after the agent had
passed it, the network would output waypoints that were too stretched out. The speed of
the agent would then continually increase. Eventually the agent would crash or timeout,
and fail the benchmark route. For the empty environment in Town01, every route fail was
caused by this issue.
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Task Town Weather Success Collision Timeout Lights ran

Empty 95.7 ± 1.2 2.7 ± 1.5 1.7 ± 0.6 9.2 ± 0.3
Regular train train 93.7 ± 4.2 5.0 ± 3.6 1.3 ± 0.6 8.6 ± 1.0
Dense 69.0 ± 4.4 28.7 ± 5.5 2.7 ± 1.2 16.2 ± 1.6

Empty 89.3 ± 2.3 3.3 ± 1.2 8.0 ± 3.5 7.6 ± 1.5
Regular train test 90.7 ± 3.1 2.7 ± 1.2 6.7 ± 2.3 7.4 ± 1.1
Dense 68.0 ± 12.2 32.0 ± 13.9 0.7 ± 1.2 12.2 ± 2.0

Empty 86.0 ± 1.7 5.7 ± 0.6 8.3 ± 1.2 24.6 ± 0.6
Regular test train 81.7 ± 2.1 10.0 ± 3.0 8.3 ± 2.1 26.7 ± 0.8
Dense 41.7 ± 5.9 36.7 ± 3.1 21.7 ± 7.5 27.4 ± 2.0

Empty 71.3 ± 1.2 7.3 ± 1.2 21.3 ± 1.2 24.0 ± 1.8
Regular test test 68.7 ± 4.2 12.7 ± 1.2 18.7 ± 3.1 25.4 ± 3.2
Dense 30.0 ± 4.0 44.7 ± 5.0 25.3 ± 1.2 28.0 ± 2.3

Table 4.2: Results of LBC-R on the NoCrash benchmark. Shows the success rates, collision
rates and timeout rates of each benchmark task. Collision and timeout rates constitute the
total failure rate. The traffic light violation rate is also shown. All rates are presented as
the estimated statistical means and standard deviations, calculated over three benchmark
runs with different RNG seeds.

Weather Success Collision Timeout Lights ran

ClearNoon 86.7 ± 1.2 8.2 ± 1.4 5.3 ± 1.8 18.3 ± 1.9
WetNoon 84.0 ± 3.1 12.2 ± 4.4 3.8 ± 3.2 16.3 ± 0.8

HardRainNoon 79.3 ± 4.2 16.4 ± 3.4 4.2 ± 0.8 17.2 ± 1.5
ClearSunset 61.8 ± 2.5 22.2 ± 2.5 16.0 ± 4.4 20.7 ± 1.4

WetSunset 61.8 ± 2.1 19.1 ± 1.4 19.1 ± 2.7 16.5 ± 1.6
SoftRainSunset 77.6 ± 3.9 15.1 ± 5.0 7.8 ± 1.4 16.5 ± 1.1

Table 4.3: A modified view of the results of LBC-R on the NoCrash benchmark. Shows the
success rates, collision rates and timeout rates for each weather type. Collision and timeout
rates constitute the total failure rate. The traffic light violation rate is also shown. All
rates are presented as the estimated statistical means and standard deviations, calculated
over three benchmark runs with different RNG seeds. Weathers ClearNoon, WetNoon,
HardRainNoon and ClearSunset were seen in training data, while weathers WetSunset
and SoftRainSunset are unseen.
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Figure 4.1: A bird’s-eye view of a situation where the LBC-R agent is reluctant to drive
into a shadow. The intended route is marked with blue and the actual route is marked
with red.

4.3 Experiment 2: LBC with Ground Truth Computer Vi-
sion

The results of LBC-GTCV on the NoCrash benchmark with comparisons to other ap-
proaches is given in Table 4.1. More detailed results of LBC-GTCV can be seen in Ta-
ble 4.4. Table 4.5 shows the benchmark results with respect to weather types.

Table 4.1 shows that LBC-GTCV outperformed the state-of-the-art approach, Rails, on
multiple tasks on the NoCrash benchmark. The improvements were the highest for the
test weathers. The table also shows that LBC-GTCV outperformed LBC-R on every
task. Table 4.4 shows that LBC-GTCV had a significantly lower traffic light violation rate
compared to LBC-R. This difference was higher in Town02 than in Town01. Table 4.5
shows that the agent performed similarly well in all weathers.

Several failures occurred when the agent tried to cross an intersection while the traffic
light was green, but subsequently got hit by another vehicle that drove when the traffic
light was red. There were also several instances when the agent did not behave according
to the received HLC. For example, the agent was given a left HLC, but did not turn left.
Instead it continued to drive straight, which caused the left HLC to be active until the
time limit was reached or a collision occurred.

On the empty task it achieved a perfect score in Town02, for both training and test weather
conditions. It did not fail on routes that were partially covered by shadows. For instance, it
succeeded in situations like the one presented in Figure 4.1. In Town01 on the empty task,
it nearly achieved a perfect score. For the ClearSunset and WetSunset weather conditions,
there was a particular intersection in Town01 where the agent regularly failed. When the
agent received a right HLC from the navigational planner, the agent abruptly stopped.
The agent stayed there indefinitely until the time limit was reached. This scenario is
shown in Figure 4.2.
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During the dense tasks, several failures occurred due to collisions with other vehicles.
Furthermore, the number of timeouts for the dense task was higher than for the empty
and regular tasks as well. Timeouts sometimes occurred because the agent did not reach
the goal position in time. There were also some examples of the agent getting stuck
in traffic scenarios involving multiple pedestrians and vehicles. For instance, there was
a particular spot in Town02 where the agent often stopped completely. This spot was
located in a turn curving to the right. It managed to follow the road when there were
no vehicles in the oncoming lane, otherwise it would stop. This scenario is shown in
Figure 4.3.

Task Town Weather Success Collision Timeout Lights ran

Empty 98± 1.0 0.0± 0.0 2.0± 1.0 4.6± 0.4
Regular train train 98.7± 0.6 0.7± 0.6 0.7± 0.6 3.5± 0.8
Dense 85.3± 3.8 12.3± 4.2 2.3± 0.6 12.5± 1.4

Empty 97.3± 1.2 0.0± 0.0 2.7± 1.2 5.1± 1.1
Regular train test 96.0± 0.0 2.0± 0.0 2.0± 0.0 5.1± 1.6
Dense 89.3± 1.2 8.7± 1.2 2.0± 0.0 14.2± 2.3

Empty 100.0± 0.0 0.0± 0.0 0.0± 0.0 7.0± 0.7
Regular test train 96.3± 1.5 2.7± 0.6 1.0± 1.0 9.2± 1.8
Dense 59.7± 3.8 16.7± 1.5 23.7±, 4.5 16.0± 1.0

Empty 100.0± 0.0 0.0± 0.0 0.0± 0.0 6.7± 0.9
Regular test test 96.0± 0.0 2.7± 1.2 1.3± 1.2 11.3± 1.6
Dense 58.7± 3.1 19.3± 7.6 22.0± 8.0 18.5± 4.0

Table 4.4: Results of LBC-GTCV on the NoCrash benchmark. Shows the success rates,
collision rates and timeout rates of each benchmark task. Collision and timeout rates
constitute the total failure rate. The traffic light violation rate is also shown. All rates
are presented as the estimated statistical means and standard deviations, calculated over
three benchmark runs with different RNG seeds.

Weather Success Collision Timeout Lights ran

ClearNoon 89 ± 1.0 4.2 ± 1.5 6.0 ±2.0 8.3 ± 0.7
WetNoon 91.6 ± 2.1 4.2 ± 1.4 4.2 ± 1.0 7.6 ± 1.4

HardRainNoon 88.9 ± 1.0 7.3 ± 1.8 3.8 ± 1.0 8.3 ± 1.0
ClearSunset 88.4 ± 4.4 5.8 ± 4.3 5.8 ± 2.8 9.9 ± 0.5

WetSunset 90.2 ± 3.4 6.0 ± 2.3 3.8 ± 2.0 11.7 ± 1.9
SoftRainSunset 88.9 ± 2.3 4.9 ± 2.5 6.2 ± 0.8 8.1 ± 0.8

Table 4.5: A modified view of the results of LBC-GTCV on the NoCrash benchmark.
Shows the success rates, collision rates and timeout rates for each weather type. Collision
and timeout rates constitute the total failure rate. The traffic light violation rate is also
shown. All rates are presented as the estimated statistical means and standard deviations,
calculated over three benchmark runs with different RNG seeds. Weathers ClearNoon,
WetNoon, HardRainNoon and ClearSunset were seen in training data, while weathers
WetSunset and SoftRainSunset are unseen.
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Figure 4.2: LBC-GTCV regularly stopped completely when it received a right HLC in
this intersection during the empty task of the NoCrash benchmark in Town01.

(a) Overview

(b) Model view

Figure 4.3: A spot where LBC-GTCV could get stuck in Town02 during the dense task of
the NoCrash benchmark. This occured when there were vehicles on the opposite side of
the road. The agent usually waited until all vehicles had passed before continuing along
the route. This could result in a timeout failure.
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4.4 Experiment 3: LBC with Trained Perception Models

This experiment consists of two parts. First, the results of the perception model evaluation
is given. This section is divided into semantic segmentation results and monocular depth
estimation results. Then follows the benchmark results of the combined sensorimotor
network.

4.4.1 Perception Model Evaluation and Selection

The tables in this section are divided on the Test1 and Test2 datasets, which are described
in Section 3.5.

Semantic Segmentation

The evaluation of the semantic segmentation models on the Test1 set is shown in Table 4.6.
The results of the evaluation on the Test2 set is shown in Table 4.7. These tables show
that the U-Net models have the highest scores on both the Mean IoU and Weighted IoU
metrics. It can also be seen that the weighted U-Net models learned the traffic light class
to a sufficient degree, while the unweighted U-Net did not.

The model speed comparison is shown in Table 4.8. This table shows that only the
Deeplabv3 w/ MobileNet model were faster than the U-Net models on prediction speed.

The U-Net w/ResNet50 tl-5 model was therefore selected to perform semantic segmenta-
tion for the sensorimotor network. This model was chosen over the U-Net w/ResNet50
tl-2.5 model because it had higher scores on the Mean IoU metric.

Model Mean IoU Weighted IoU Traffic Light IoU

FCN w/ ResNet101 0.5468 0.9277 0.5732
DeepLabv3 w/ ResNet50 0.5526 0.9296 0.5511
DeepLabv3 w/ ResNet101 0.5497 0.9314 0.5373
DeepLabv3 w/ MobileNet 0.4561 0.9066 0.4562

U-Net w/ ResNet50 0.6072 0.9421 0.0
U-Net w/ ResNet50 tl-2.5 0.5963 0.9404 0.6003
U-Net w/ ResNet50 tl-5 0.6359 0.9420 0.5575

Table 4.6: Evaluation results of the semantic segmentation models on the Test1 set. Test1
consists of images from Town02 with training weathers. All models are fine tuned or
trained on Town01 images with training weathers. The FCN and DeepLabv3 models are
pretrained on COCO train 2017, while the U-Net backbones are pretrained on ImageNet.
For the U-Net models, tl-2.5 and tl-5 signifies that the traffic loss weight has been weighted
2.5 or 5 times higher, respectively.
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Model Mean IoU Weighted IoU Traffic Light IoU

FCN w/ ResNet101 0.5340 0.9221 0.5674
DeepLabv3 w/ ResNet50 0.5368 0.9224 0.5529
DeepLabv3 w/ ResNet101 0.5330 0.9237 0.5387
DeepLabv3 w/ MobileNet 0.4419 0.9003 0.4580

U-Net w/ ResNet50 0.5842 0.9320 0.0
U-Net w/ ResNet50 tl-2.5 0.5769 0.9305 0.5734
U-Net w/ ResNet50 tl-5 0.6141 0.9323 0.5255

Table 4.7: Evaluation results of the semantic segmentation models on the Test2 set. Test2
consists of images from Town02 with test weathers. All models are fine tuned or trained on
Town01 images with training weathers. The FCN and DeepLabv3 models are pretrained
on COCO train 2017, while the U-Net backbones are pretrained on ImageNet. For the
U-Net models, tl-2.5 and tl-5 signifies that the traffic loss weight has been weighted 2.5
or 5 times higher, respectively.

Model Time per prediction [s] FPS [Hz]

FCN w/ ResNet101 0.0485 21
DeepLabv3 w/ ResNet50 0.0400 25
DeepLabv3 w/ ResNet101 0.0617 16
DeepLabv3 w/ MobileNet 0.0106 94

U-Net w/ ResNet50 0.0132 76

Table 4.8: Results of the speed evaluation of the semantic segmentation models. Frames
per second is denoted by FPS.

Monocular Depth Estimation

The evaluation of the depth estimation models on the Test1 set is shown in Table 4.9.
The results of the evaluation on the Test2 set is shown in Table 4.10. The tables show
that the U-Net models significantly outperformed the MiDaS models on all metrics. The
difference between the two U-Net models on these metrics was insignificant.

The model speed comparison is shown in Table 4.11. This table shows that the U-Net
w/ ResNet34 model was approximately twice as fast as the vanilla U-Net model. The
U-Net w/ ResNet34 model was therefore selected to perform depth estimation for the
sensorimotor network.

Model σ1 σ2 σ3 RMSE

MiDaS-small 0.2160 0.3394 0.5426 0.3030
MiDaS-large 0.2083 0.3432 0.5777 0.2822

U-Net 0.9115 0.9687 0.9846 0.0536
U-Net w/ ResNet34 0.9101 0.9689 0.9850 0.0559

Table 4.9: Evaluation results of the monocular depth estimation models on the Test1
set. Test1 consists of images from Town02 with training weathers. The accuracy within
threshold metric is calculated with σ1 = 1.251, σ2 = 1.252 and σ3 = 1.253.
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Model σ1 σ2 σ3 RMSE

MiDaS-small 0.2090 0.3179 0.5156 0.3097
MiDaS-large 0.2039 0.3216 0.5440 0.2942

U-Net 0.9077 0.9671 0.9835 0.0583
U-Net w/ ResNet34 0.9046 0.9665 0.9835 0.0610

Table 4.10: Evaluation results of the monocular depth estimation models on the Test2 set.
Test2 consists of images from Town02 with test weathers. The accuracy within threshold
metric is calculated with σ1 = 1.251, σ2 = 1.252 and σ3 = 1.253.

Model Time per prediction [s] FPS [Hz]

MiDaS-small 0.0108 93
MiDaS-large 0.0487 21

U-Net 0.0206 49
U-Net w/ ResNet34 0.0093 108

Table 4.11: Results of the speed evaluation of the depth estimation models. Frames per
second is denoted by FPS.

4.4.2 Results of LBC-TCV

The results of LBC-TCV on the NoCrash benchmark with comparisons to other approaches
is given in Table 4.1. More detailed results of LBC-TCV can be seen in Table 4.12.
Table 4.13 shows the benchmark results with respect to weather types.

LBC-TCV beat the state-of-the-art approach, Rails, on the empty and regular tasks in
the Town02 with training weathers. It generally performed worse than LBC-R in Town01,
with exception of the dense tasks. However, it performed better than LBC-R in Town02.
It also performed worse than LBC-GTCV on every task. LBC-TCV had fewer traffic light
violations than LBC-R. The rates were slightly lower for Town01, and significantly lower
for Town02. It had much worse results in the test weather WetSunset compared to the
other weather conditions.

The agent failed in a variety of scenarios, many of which were similar to LBC-R and
LBC-GTCV. Like the other agents, LBC-TCV sometimes failed to continue driving after
having stopped at a red traffic light. This happened even though the traffic light box was
clearly identified in the semantic segmentation images.

Another issue was that it tried to drive around the car ahead. This could lead to danger-
ous behavior where it almost entered the oncoming lane. This behavior happened more
frequently when it drove behind a small car, e.g., the BMW Isetta.

The semantic segmentation and depth estimation models would sometimes find objects
which were not present. For example, they could perceive non-existing vehicles or humans
on the road. This issue occurred more often in the wet environments. The models struggled
with puddles, which have a reflective and unique surface. This could cause the agent to
pause and wait indefinitely for the objects to move. This is also reflected by the success
and timeout rates of the WetSunset weather in Table 4.13. Two examples of such incidents
can be seen in Figure 4.4.
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Task Town Weather Success Collision Timeout Lights ran

Empty 85.0 ± 3.0 0.0 ± 0.0 15.0 ± 3.0 4.9 ± 0.2
Regular train train 92.0 ± 2.6 3.3 ± 1.5 4.7 ± 1.5 6.9 ± 1.7
Dense 75.7 ± 0.6 18.0 ± 5.0 6.3 ± 4.5 15.5 ± 0.6

Empty 70.0 ± 2.0 0.0 ± 0.0 30.0 ± 2.0 5.7 ± 1.9
Regular train test 81.3 ± 2.3 0.7 ± 1.2 18.0 ± 2.0 7.6 ± 0.4
Dense 79.3 ± 4.2 10.7 ± 4.2 10.0 ± 0.0 18.2 ± 3.0

Empty 99.3 ± 0.6 0.7 ± 0.6 0.0 ± 0.0 12.7 ± 1.0
Regular test train 95.7 ± 0.6 3.3 ± 0.6 1.0 ± 1.0 16.0 ± 2.2
Dense 52.3 ± 4.0 23.7 ± 2.1 24.0 ± 2.6 17.6 ± 3.1

Empty 74.7 ± 1.2 0.0 ± 0.0 25.3 ± 1.2 16.6 ± 1.6
Regular test test 71.3 ± 3.1 4.7 ± 1.2 24.0 ± 2.0 12.9 ± 1.6
Dense 38.0 ± 3.5 18.0 ± 3.5 44.0 ± 3.5 19.3 ± 2.2

Table 4.12: Results of LBC-TCV on the NoCrash benchmark. Shows the success rates,
collision rates and timeout rates of each benchmark task. Collision and timeout rates
constitute the total failure rate. The traffic light violation rate is also shown. All rates
are presented as the estimated statistical means and standard deviations, calculated over
three benchmark runs with different RNG seeds.

Weather Success Collision Timeout Lights ran

ClearNoon 83.1 ± 2.7 8.2 ± 1.9 8.7 ± 1.2 12.0 ± 1.0
WetNoon 79.8 ± 1.7 8.2 ± 2.0 12.0 ± 1.8 12.0 ± 2.8

HardRainNoon 88.9 ± 1.7 7.1 ± 0.8 4.0 ± 1.2 10.9 ± 1.1
ClearSunset 81.6 ± 1.9 9.1 ± 0.4 9.3 ± 1.8 13.2 ± 1.4

WetSunset 55.3 ± 2.4 5.1 ± 0.8 39.6 ± 2.3 14.5 ± 0.9
SoftRainSunset 82.9 ± 1.7 6.2 ± 1.7 10.9 ± 0.4 11.8 ± 1.5

Table 4.13: A modified view of the results of LBC-TCV on the NoCrash benchmark.
Shows the success rates, collision rates and timeout rates for each weather type. Collision
and timeout rates constitute the total failure rate. The traffic light violation rate is also
shown. All rates are presented as the estimated statistical means and standard deviations,
calculated over three benchmark runs with different RNG seeds. Weathers ClearNoon,
WetNoon, HardRainNoon and ClearSunset were seen in training data, while weathers
WetSunset and SoftRainSunset are unseen.
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(a) (b)

Figure 4.4: Example of how the semantic segmentation and depth models of LBC-TCV
could perceive non-existing objects in the puddles of wet environments. This caused the
agent to wait indefinitely. (a) LBC-TCV perceives parts of the puddle as a vehicle. (b)
LBC-TCV perceives both the vehicle and human class in the puddle.

4.5 Experiment 4: LBC with Reinforcement Learning

None of the agents trained in the RL experiment managed to improve from the initial
pretrained weights. The performance degraded in all cases.

The results from a single run of PPO is shown here. This run consisted of 250 000 time
steps. During this run, all waypoints were sampled individually with the same standard
deviation value. This run consisted of 32 episodes before it was terminated. Each episode
consisted of 20 rollouts. After enough episodes, the agent would slow down and end up
stopping in all rollouts.

Figure 4.5a shows the average accumulated sum of rewards for each episode. Figure 4.5a
shows the accumulated sum of rewards for each rollout. These graphs shows that the
rewards increased over time. Figure 4.6 shows the loss of the critic for each epoch of
training. The graph shows that the loss decreases as training progresses.
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(a)

(b)

Figure 4.5: Return of rewards for a single run of PPO. In both graphs the darker line is
smoothed. (a) Graph showing the average accumulated sum of rewards from each episode.
Each episode consisted of 20 rollouts. (b) Graph showing the accumulated sum of rewards
for every single rollout.

Figure 4.6: The average loss of the critic as training progressed. The darker line is
smoothed.
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Chapter 5

Discussion

This chapter discusses the results and the findings of the experiments. The experiments are
discussed sequentially. In Section 5.5, some of the shortcomings in the work are discussed.

5.1 Experiment 1: LBC Reproduction

The privileged network never achieved validation loss below 0.005. A well-trained priv-
ileged network should be expected to go below this loss, according to the LBC GitHub
README. This might have been caused by simulator differences. It might also have been
caused by the issue the privileged agent had with the yellow traffic lights after entering
an intersection. If there were situations like this in the dataset, and the network failed to
learn the correct behavior, the network would get a higher loss.

The benchmarking of the privileged agent indicated that it was well-behaving in general.
With the exception of the empty routes, the reproduced privileged agent got slightly better
results than the privileged agent in the original LBC approach. We therefore believe
that the privileged network did not negatively affect the training of LBC-R, LBC-GTCV,
and LBC-TCV. The privileged network was used to train all sensorimotor networks in
Experiment 1, 2 and 3.

The LBC-R results on the NoCrash benchmark was better than what LBC† achieved,
which was trained in CARLA version 0.9.10. This implies that some deviation in the
reproduction approach from the original approach made a difference. This could be caused
by two changes. The first change is the correction of the PyTorch and NumPy random
number generation, which had caused identical batches and batch augmentations during
training. The second change is the PID controller tuning, whether a better set of PID
parameters was found.

The fact that the PID controller parameters have an effect on model performance is a
downside with the LBC approach. Finding a set of PID parameters that work well can
cover up the fact that the model did not learn to output waypoints well enough. The
manual search for good PID parameters was time-consuming. PID tuning also deviates
from the main idea of end-to-end learning, where the model itself learns how to handle
every aspect of the task. It is difficult to tell if there exists a set of PID parameters which
give better performance of the model. It could be beneficial to implement an automatic
PID tuner.

80



Many routes in the NoCrash benchmark failed because of unfortunate environment cir-
cumstances. Because of too high traffic, the agent could fail to reach the goal position
in time, even with flawless driving. It is unfortunate that routes are failed purely due to
unlucky spawn positions of the other vehicles. Another aspect is the unpredictability of
other vehicles. They can ignore traffic lights, which leads to complex situations to handle
for the agent. However, this can allow a good agent to prove itself. To make the ran-
domness have less influence over the results, the benchmark needs to be run several times,
which is time-consuming.

LBC-R performed similarly to the original LBC, with the exception of slightly worse
performance in Town02 with training weathers. These numbers are not from the same
CARLA versions however. Compared to LBC†, which was benchmarked in CARLA ver-
sion 0.9.10, LBC-R had higher performance. It can therefore safely be said that LBC can
be reproduced in the newest version of CARLA, which answers the first research question.

5.2 Experiment 2: LBC with Ground Truth Computer Vi-
sion

The results show that LBC-GTCV performed much better than LBC-R on the NoCrash
benchmark. This clearly shows that the performance of LBC can be improved by pro-
viding it with ground truth semantic segmentation and depth images, which answers the
second research question. This result proves that the intermediate representations can help
improve performance in the LBC approach, which was the foundation for Experiment 3.

The model beat the state-of-the-art results on multiple tasks. These improvements were
the highest on the test weathers. This is logical, because the agent had learned to drive
using the semantic segmentation and depth images. Because these images were perfect in
all conditions, the weather obfuscation on the RGB images had very little effect. Conse-
quently, the agent did not experience the shadow problem that LBC-R experienced.

Because the agent gets the semantic segmentation and depth images directly from the
simulator, it does not compare fairly to other approaches. However, achieving such high
performance confirms that LBC is a very capable learning procedure. It also confirmed
the results of the paper by Zhou et al. [12].

The agent had much fewer traffic light violations compared to LBC-R, especially in the test
town. The traffic light state is not included in the semantic segmentation image, but the
traffic light box is. This showed that the agent had learned to look at the corresponding
location in the RGB image in these situations, and that including the traffic light class
was a successful measure.

The PID controller parameters for this agent did not have to be tuned. As discussed in
Section 5.1, this might mean that the model had learned its task better.

5.3 Experiment 3: LBC with Trained Perception Models

LBC-TCV performed better than LBC-R on all tasks in the test town, and on the dense
tasks in the training town. However, it performed worse than LBC-R on the empty and
regular tasks in the training town. This confirms that it is possible to improve LBC by
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using semantic segmentation and depth estimation images from trained perception models,
which is the answer to the third research question.

The perception models had never seen the test environment during training, but LBC-
TCV still performed better than LBC-R in the test environment. It can therefore be said
that the model generalized better. This finding is in line with the research by Zhou et al.
[12]. LBC-TCV had a lower traffic light violation rate compared to LBC-R in almost all
tasks, especially in the test town. This also confirms that LBC-TCV generalizes better. It
also confirms that having a traffic light box class was a successful measure, as was found
in Experiment 2.

It also beat the state-of-the-art results on the empty and regular tasks in the test town
with training weathers. Because the model was only trained in the training environment,
these results can be regarded as fair and legitimate. However, the model backbones were
pretrained on real life datasets, but this is the case for many of the state-of-the-art models
as well.

A valid critique of the approach would be that the perception models were trained on
perfect images supplied by the simulator. This would not be possible in real life. But with
high quality datasets available, such as Mapillary [44] and Cityscapes [43], training well-
performing perception models for real environments is possible as well [50]. And similar
depth image datasets can be created using cars with stereo cameras. This approach is
therefore just as relevant for the physical world as the original LBC approach is. The
sensorimotor networks are not required to be run in a simulator.

As in Experiment 2, no PID tuning was performed for this model. As for LBC-R and
LBC-GTCV, there is a possibility that finding a better set of PID parameters could have
improved the the results of some benchmark tasks. However, it did not seem necessary
during initial testing. LBC-R required extensive PID tuning, while LBC-GTCV and LBC-
TCV did not require any tuning. This might mean that agents equipped with intermediate
representations are better at mimicking the privileged agent.

The performance of LBC-GTCV can be seen as a upper limit of how good LBC-TCV
can become. It is likely that LBC-TCV could have performed better if the quality of the
intermediate representations were better. To get better perception models, we could have
trained the models on more varied datasets or found even better architectures. Unfortu-
nately, the state-of-the-art architectures were found to be hard to use for custom datasets.
We also trained the perception models with the medium augmentation setting. It could
have been beneficial to train with harder augmentations.

After training the first iteration of LBC-TCV, it was found that the intermediate rep-
resentations were of low quality. This agent performed poorly, and it was decided that
the perception models had to be retrained. The second iteration had better results. In
contrast to LBC-GTCV, the semantic segmentation images were not perfect, so the agent
could not solely rely on the intermediate representations. We believe that the agent relies
on the RGB images if the quality of the perception models are too low. Therefore a driving
network pretrained on ImageNet was also used for the second iteration. This could also
have affected the performance.

The visualizations of the intermediate representations gave better interpretability. For
some of the failures of the agent, the intermediate representations perceived objects which
were not present, and the agent handled accordingly as if the objects were present. By
looking at the live view, it was clear why the agent had acted the way it did. Figure 4.4a
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shows an example of this situation.

5.4 Experiment 4: LBC with Reinforcement Learning

In Section 3.6.4 two methods for sampling waypoints were proposed. The first method used
the same standard deviation for all waypoints. In the second method, every subsequent
waypoint was sampled with a higher standard deviation than the preceding waypoint.

The waypoints are used to create a circular arc that indicate the trajectory of the vehicle.
When all waypoints are sampled individually, they do not necessarily form a curve. This
resulted in chaotic exploration. The graphs shown in Figure 4.5a and Figure 4.5b shows
a run of PPO with this method of sampling. As can been seen in these graphs, the
agent managed to increase the rewards over time. This is because it learned that the
most optimal action was to output waypoints that resulted in zero velocity. After enough
episodes, the agent would eventually stop driving during all rollouts. The agent would
never continue driving, because the sampling technique would not sample actions that
allowed the agent to increase its velocity. This means that this form of waypoint sampling
is chaotic, inefficient, and results in a degradation of the performance of the actor.

The second method of sampling waypoints gave more natural trajectories during explo-
ration. However, this sampling technique caused the PPO objective function to often be
close to zero. In the PPO implementation, the log-likelihood of πθ(at|st) is required to
compute the following ratio:

rt(θ) =
πθ(at|st)
πθold(at|st)

However, the denominator in the log-likelihood function (Equation 2.4) gets small with
this sampling method, which results in the ratio rt(θ) being close to zero. Therefore, this
sampling technique was not satisfactory either.

In Section 2.4 several advantages of using waypoints as an output modality were described.
Waypoints have been used as the output modality in IL, but not in RL approaches. The
difficulties that we experienced with waypoint sampling puts into question whether this
form of output modality is suitable for RL algorithms that use stochastic policies. There
may exist a more inventive way of sampling waypoints that results in better exploration
of the environment.

Figure 4.6 shows a graph of the loss of the critic. Recall that the critic evalutes states based
on semantically segmented BEV images. Since the loss decreases as training progresses,
it might indicate that the critic managed to learn an approximation of the value func-
tion. However, as the actor policy changes during training, this will result in a different
distribution of trajectories being collected in the next episode. Therefore, observing the
loss of the critic does not necessarily indicate that it has learned a good approximation.
The fact that the actor learned to stop driving, might indicate that the critic managed
to output sensible state values. But, it is impossible to draw any concrete conclusions on
this matter.

The reward signal was probably too unbalanced, which made it difficult for the critic to
approximate the value function. Additionally, the BEV images should have contained
information about static objects, such as poles and benches. This is because the actor
could collide into static objects, but the critic would not be able to see these objects
in the BEV image. Compared to other approaches [16, 52], the actor has significantly
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more tunable parameters. This might make learning more difficult. It was also believed
that using pretrained weights would put the actor policy at a reasonable starting point.
Because of the difficulties with sampling waypoints, it did not matter that the initial
policy was better than a randomly initialized policy. Furthermore, the PPO training
should have continued for many more timesteps. The combination of all these factors
probably contributed to the poor results.

We were not able to improve the performance of the sensorimotor network with an ad-
ditional RL stage, which answers the fourth research question. However, we can not
conclude that this is not possible. Perhaps with more computational resources, more
hyperparameter tuning, or a different RL algorithm, the sensorimotor network could be
further improved.

5.5 Shortcomings of the Thesis

This section reflects over the shortcomings of our research.

Problems Reproducing LBC
During the initial planning phase of the project, the first experiment was estimated to be
the easiest and quickest to conduct. This is because it would consist of running scripts
that had already been written by the authors of LBC. Updating the LBC code for CARLA
0.9.11 and fixing other issues required more work than anticipated.

These updates are described in Section 3.2. It included correcting the spawn points for
the NoCrash benchmark in CARLA 0.9.11, fixing the random number generator issue that
caused duplicate batch augmentations, fixing the multiprocessing issue preventing training
on the Windows PCs, and modifying the replay buffer for DAgger.

Almost every time a new error was encountered, some part of the pipeline had to be
redone. For instance, the first time the driving dataset was collected, the spawn points
for CARLA 0.9.6 was used. Using the incorrect spawn points might have resulted in a
dataset with an undesirable distribution of instances. To ensure that the reproduction of
LBC went as intended, the data collection procedure had to be redone. Every time data
collection was performed, it took at least four days of continuous computation to complete.
With every fixed error, the three phases of training the sensorimotor network had to be
conducted again. With the original replay buffer, phase 2 required approximately seven
real days to complete. Every time a sensorimotor network had finished training, it always
performed worse than expected in testing. It was difficult to understand if this was due
to simulator differences, an overlooked error, or if the PID parameters had to be tuned
further.

Experiment 1 ended up taking much longer than anticipated, and occupied most of the
available computational resources for a significant amount of time. While the compu-
tational resources were occupied, we prepared for the next experiments as well as we
could. After modifying the replay buffer for DAgger, this reduced phase 2 to under 14
hours. With all errors corrected, Experiment 2 and 3 went relatively straightforward in
comparison.

Trained Perception Problems
The first time perception data was collected, the sensors were mounted 3 meters above
ground on all vehicles in the simulation. This was in contrast to the camera placement of
the LBC approach, which was 1.4 meters above ground. When the camera was placed at
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this lower height, the camera would sometimes be placed inside the body of the vehicles.
It was therefore decided to place the camera 3 meters above ground. This allowed for
spawning sensors on all vehicles, which sped up the data collection process.

It was hypothesized that the height difference would not cause any major negative effects.
When the perception models were trained with this dataset, it ended up being detrimental
for the performance of the sensorimotor network. This meant that new perception data
had to be collected. For next iteration of data collection, vehicles were specifically chosen
to ensure that sensors could be safely mounted at 1.4 meters. To ensure that the data was
varied, sensor data was retrieved every 40 seconds. The data collection procedure now
took much longer to complete, but it ensured varied data with the correct height position.

RL Experiment
Due to the time delays for Experiment 1, 2 and 3, the RL experiment was postponed
significantly. This reduced the time for experimenting with different network architectures,
and hyperparameter tuning. Tuning hyperparameters in RL is a long and integral part of
the process. These delays also left us with less time to figure out an efficient technique for
sampling waypoints.

Functionality for running several actor threads in parallel was not implemented. This
was because it was considered to be a difficult and time-consuming task. Implementing
this functionality would have sped up the training process. However, it would require
significantly better hardware.
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Chapter 6

Conclusion and Future Work

This chapter is divided into two sections. Section 6.1 summarizes the experiments that
have been conducted in this thesis, and presents the significant findings. Section 6.2
discusses ideas for further work.

6.1 Conclusion

The research goal of this thesis was to improve the performance of neural networks trained
with the Learning by Cheating (LBC) [14] approach. Through four experiments, this goal
was achieved. By using semantic segmentation and depth images, the performance of the
neural networks improved.

In the first experiment, the LBC approach was reproduced in the newest version of
CARLA, namely version 0.9.11. Through a more recent paper [18], the authors of LBC
benchmarked LBC in CARLA 0.9.10, which is similar to CARLA 0.9.11. The same pa-
per states that the newer CARLA versions are harder environments than CARLA 0.9.6.
The reproduction in this thesis significantly outperformed the 0.9.10 reproduction, and
matched the results from version 0.9.6.

In the second experiment, the agent was provided with perfect semantic segmentation
and depth images, directly from the simulator. The results clearly show that when the
agent was trained with these representations, it generalized better to new environments
and achieved higher task performance. This confirms the results by Zhou et al [12]. The
agent also had lower collision and traffic light violation rates than the RGB agent.

In the third experiment, perception models that perform semantic segmentation and
monocular depth estimation were trained and evaluated. An agent was trained with the
intermediate representations created by these perception models. This agent performed
better in the test environments than the reproduced agent, but slightly worse in the train-
ing environments. It beat the state-of-the-art approach on the empty and regular tasks
in the test town with training weathers in the NoCrash [11] benchmark. However, it per-
formed worse on every task compared to the agent trained with perfect representations.
The intermediate representations made the model more interpretable.

In the final experiment, it was attempted to further improve agent performance by using
reinforcement learning. However, due to time constraints and difficulties regarding the
output modality, the experiment was unsuccessful.

86



6.2 Future Work

The results of this work were promising, but it is likely that they can be improved even
further. The performance of LBC-GTCV was significantly better than LBC-TCV, which
leads us to believe that there is more to gain by using intermediate representations. Higher
quality semantic segmentation and depth estimation images could be attainable by explor-
ing other perception model architectures and improving the training datasets.

There is also the possibility of using additional intermediate representations, such as opti-
cal flow and albedo. These were explored in the work of Zhou et al. [12], but were found
to be of less importance than semantic segmentation and depth images.

There are many improvements to be made on the reinforcement learning phase in Exper-
iment 4. We are not aware of other works using RL with waypoints, and we failed to
get promising results ourselves. A natural first step is therefore to establish if RL with
waypoints is possible, either mathematically or experimentally. Then follows the search
for working hyperparameters. As training is slow, it would be advantageous to implement
more than one actor during PPO rollouts. Using better hardware would also be beneficial.

If the RL phase looks promising, it should use the best weights from LBC phase 2 as the
initial policy. It might also be worth exploring whether the RL phase can improve agents
with perception models.

The agents could also be submitted to the CARLA Autonomous Driving Leaderboard1,
which is a newer benchmark than the NoCrash benchmark. This benchmark was made to
ensure that the evaluations are fair and reproducible. The website contains an updated
table over submitted models, and contains information over evaluation metrics, which
sensors were used, and other details about each submitted model.

As with most research regarding autonomous vehicles, it would be interesting to evaluate
the model in real-life situations. The sensorimotor network is not tied to simulation,
and should in principle function in the physical world. Due to real-life datasets such as
Mapillary [44] and Cityscapes [43], we know that it is possible to create well-performing
perception models for urban driving. Transfer of the complete model is also made possible
by sim-to-real methods [71, 72, 73].

Our code is available at https://github.com/jostl/masters-thesis.

1https://leaderboard.carla.org/
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Appendix A

Benchmark Results

Figure A.1: The benchmark results of the privileged network in a raw format.

Figure A.2: The benchmark results of the privileged network with respect to weather
types in a raw format.

Figure A.3: The benchmark results of LBC-R in a raw format.
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Figure A.4: The benchmark results of LBC-R with respect to weather types in a raw
format.

Figure A.5: The benchmark results of LBC-GTCV in a raw format.

Figure A.6: The benchmark results of LBC-GTCV with respect to weather types in a raw
format.

Figure A.7: The benchmark results of LBC-TCV in a raw format.

Figure A.8: The benchmark results of LBC-TCV with respect to weather types in a raw
format.
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Appendix B

LBC-TCV Full Model
Architecture
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FullModel( 

  (depth_model): Unet( 

    (encoder): ResNetEncoder( 

      (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) 

      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

      (relu): ReLU(inplace=True) 

      (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) 

      (layer1): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (layer2): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (downsample): Sequential( 

            (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 
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        (1): BasicBlock( 

          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (3): BasicBlock( 

          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (layer3): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (downsample): Sequential( 

            (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 
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          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (3): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (4): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (5): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (layer4): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (downsample): Sequential( 

            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 
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          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

    ) 

    (decoder): UnetDecoder( 

      (center): Identity() 

      (blocks): ModuleList( 

        (0): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(768, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (1): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 
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            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (2): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (3): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 
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          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (4): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

      ) 

    ) 

    (segmentation_head): SegmentationHead( 

      (0): Conv2d(16, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

      (1): Identity() 

      (2): Activation( 

        (activation): Sigmoid() 

      ) 

    ) 

  ) 

  (semseg_model): Unet( 

    (encoder): ResNetEncoder( 

      (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) 

      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

      (relu): ReLU(inplace=True) 

      (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) 

      (layer1): Sequential( 

        (0): Bottleneck( 

          (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) 
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          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (downsample): Sequential( 

            (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): Bottleneck( 

          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (2): Bottleneck( 

          (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

      ) 

      (layer2): Sequential( 

        (0): Bottleneck( 

          (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (downsample): Sequential( 

            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
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          ) 

        ) 

        (1): Bottleneck( 

          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (2): Bottleneck( 

          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (3): Bottleneck( 

          (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

      ) 

      (layer3): Sequential( 

        (0): Bottleneck( 

          (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (downsample): Sequential( 

            (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
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          ) 

        ) 

        (1): Bottleneck( 

          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (2): Bottleneck( 

          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (3): Bottleneck( 

          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (4): Bottleneck( 

          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (5): Bottleneck( 

          (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 
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          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

      ) 

      (layer4): Sequential( 

        (0): Bottleneck( 

          (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (downsample): Sequential( 

            (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): Bottleneck( 

          (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

        (2): Bottleneck( 

          (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False) 

          (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

        ) 

      ) 

    ) 

    (decoder): UnetDecoder( 

      (center): Identity() 
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      (blocks): ModuleList( 

        (0): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(3072, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (1): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(768, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (2): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(384, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 
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          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (3): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

        (4): DecoderBlock( 

          (conv1): Conv2dReLU( 

            (0): Conv2d(32, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

            (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention1): Attention( 

            (attention): Identity() 

          ) 

          (conv2): Conv2dReLU( 

            (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

109



            (1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

            (2): ReLU(inplace=True) 

          ) 

          (attention2): Attention( 

            (attention): Identity() 

          ) 

        ) 

      ) 

    ) 

    (segmentation_head): SegmentationHead( 

      (0): Conv2d(16, 9, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

      (1): Identity() 

      (2): Activation( 

        (activation): Softmax(dim=1) 

      ) 

    ) 

  ) 

  (normalize_rgb): NormalizeV2() 

  (image_model): ImagePolicyModelSS( 

    (conv): ResNet( 

      (conv1): Conv2d(13, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) 

      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

      (relu): ReLU(inplace=True) 

      (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) 

      (layer1): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
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          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (layer2): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (downsample): Sequential( 

            (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (3): BasicBlock( 

          (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (layer3): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 
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          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (downsample): Sequential( 

            (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (3): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (4): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (5): BasicBlock( 

          (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 
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          (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (layer4): Sequential( 

        (0): BasicBlock( 

          (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (downsample): Sequential( 

            (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) 

            (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          ) 

        ) 

        (1): BasicBlock( 

          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

        (2): BasicBlock( 

          (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

          (relu): ReLU(inplace=True) 

          (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) 

          (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        ) 

      ) 

      (avgpool): AdaptiveAvgPool2d(output_size=(1, 1)) 

      (fc): Linear(in_features=512, out_features=1000, bias=True) 

    ) 

    (rgb_transform): NormalizeV2() 

    (deconv): Sequential( 

      (0): BatchNorm2d(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

      (1): ConvTranspose2d(640, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) 

      (2): ReLU(inplace=True) 

      (3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

      (4): ConvTranspose2d(256, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) 

      (5): ReLU(inplace=True) 

      (6): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 
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      (7): ConvTranspose2d(128, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), output_padding=(1, 1)) 

      (8): ReLU(inplace=True) 

    ) 

    (location_pred): ModuleList( 

      (0): Sequential( 

        (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        (1): Conv2d(64, 5, kernel_size=(1, 1), stride=(1, 1)) 

        (2): SpatialSoftmax() 

      ) 

      (1): Sequential( 

        (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        (1): Conv2d(64, 5, kernel_size=(1, 1), stride=(1, 1)) 

        (2): SpatialSoftmax() 

      ) 

      (2): Sequential( 

        (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        (1): Conv2d(64, 5, kernel_size=(1, 1), stride=(1, 1)) 

        (2): SpatialSoftmax() 

      ) 

      (3): Sequential( 

        (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 

        (1): Conv2d(64, 5, kernel_size=(1, 1), stride=(1, 1)) 

        (2): SpatialSoftmax() 

      ) 

    ) 

  ) 

) 
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