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Abstract

Cancer is a leading cause of death in the developed world, and lung cancer is the most lethal.

Clinical experts rely on advanced medical imaging techniques and visual inspection to detect

lung tumors. Prognosis is highly dependent on the stage of cancer, and mortality can be re-

duced by early detection. Recent development in machine learning techniques shows promise for

automating time-consuming tasks that are currently performed manually by trained experts.

Lack of annotated data is one of the primary constraints in developing automatic methods for

medical image segmentation tasks. Public datasets often contain different degree of annotations,

if any. In an attempt to address some of these problems, we have investigated the potential of

training deep neural networks that can learn from a larger set of less accurately annotated data,

to improve performance on lung tumor segmentation. We implemented a framework, based on

the recently emerging Teacher-Student design, to utilize bounding box annotated datasets to

facilitated lung tumor segmentation learning.

Our research shows that using a sufficiently large, less accurately annotated dataset, the Teacher-

Student framework can improve segmentation and detection performance. We also demonstrate

that our produced teacher may be used as a semi-automatic method to facilitate the labeling of

medical images.

Our best model, trained from only 48 human-annotated images and 991 teacher-annotated

images (given bounding box supervision), reached a Dice Coefficient Score of 0.7156 on the

MSD dataset, tested on nine images, which is on the state-of-the-art level. Another model

trained under the same conditions, reached a perfect tumor-level F1 Score of 1.0 on the MSD

dataset.

Keywords Lung Cancer, Deep Learning, Medical Image Segmentation, Mixed Supervision,

Teacher-Student Framework



Sammendrag

Kreft er en av de fremste døds̊araskende i den utviklede verden, og den mest dødelige typen er

lungekreft. Kliniske eksperter er avhengig av avanserte medisinske bildebehandlingsteknikker og

visuell analyse for å oppdage kreftsvulster. Hvor lenge kreften har utviklet seg p̊avirker i stor grad

prognosen, og dødeligheten kan reduseres ved tidlig p̊avisning. Utvikling innen maskinlæring-

steknikker den siste tiden har åpnet for optimisme knyttet til å kunne automatisere tidkrevende

oppgaver som i dag utføres manuelt av trente eksperter.

Begrenset tilgang til annotert data er en av de største utfordringene knyttet utviklingen av au-

tomatiserte metoder for medisinsk bildesegmentering. Offentlig tilgjengelige datasett inneholder

ofte ulike typer annoteringer. I et forsøk p̊a å løse noen av disse problemene, har vi undersøkt

potensialet i å trene dype nevrale nettverk som kan lære av et større datasett, med mindre

nøyaktig annoterte data, for å forbedre ytelsen p̊a lungesvulstsegmentering. Vi implementerte

et rammeverk basert p̊a et nytt konsept kalt Teacher-Student Design for å utnytte datasett

annotert med avgrensningsbokser for å lære lungesvulstsegmentering.

Vår forskning viser at ved bruk av et tilstrekkelig stort, mindre nøyaktig annotert datasett, kan

Teacher-Student-rammeverket forbedre segmenterings- og deteksjonsytelsen til helautomatiske

metoder. Vi demonstrerer ogs̊a at v̊ar implementasjon av the teacher kan brukes som en halv-

automatisk metode for å bist̊a i prosessen med å annotere medisinske bilder.

Vår beste modell, trent p̊a kun 48 bilder annotert av eksperter, og 991 bilder annotert av the

teacher, oppn̊adde en Dice Coefficient Score p̊a 0.7156 p̊a MSD-datasettet, testet p̊a ni bilder.

En annen modell trent p̊a samme måte oppn̊adde en perfekt tumorniv̊adeteksjon målt i F1 p̊a

1.0 p̊a det samme datasettet.
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CHAPTER 1

INTRODUCTION

1.1 Motivation & Project Description

Cancer is one of the most common causes of death in developed countries. In the US, approxi-

mately 30% of the patients with cancer are diagnosed with lung cancer [1]. It is crucial to detect

cancer at an early stage, especially while it is still only located within the lungs. The prognosis is

drastically worse when cancer spreads. Early detection of cancer relies on multiple factors, one of

which is precise medical imaging and the capacity to perform and interpret medical scans. Most

of the tasks associated with creating and processing computer-generated images are performed

automatically by computers, though experts still perform some of these tasks. Tasks like config-

uring presets and selecting imaging protocols are still performed by experts. Radiologists today

spend quite some time performing segmentation and analysis of the aforementioned medical

images. With the recent improvements in the field of deep learning, some of these tasks seems

within reach for automation. If tasks like segmentation of medical images could be automated,

this would free valuable time from the experts’ schedule, and even improve the quality of medical

diagnostication.

As briefly mentioned, the field of artificial intelligence, and especially deep learning, has emerged

rapidly in recent years. The development of hardware and more accessible data in digital form,

is some of the reasons behind this rapid development. It is not a novel idea to automate tasks

in the medical sector, as doctors have been relying on computers and algorithms for the last

50 years. However, many tasks have been too difficult to automate with traditional computer

science. One of the fields where deep learning has proved to outperform all traditional algorithms

is the field of computer vision. Humans are excellent at quickly glance at an image and gather

tons of information from this image. Traditionally, computers have never mastered this until

recent years. Now, especially after the development of deep convolutional networks, computer

vision seems to be ready to tackle image tasks of medical nature.

One of the inconveniences of deep learning is the demand for available data to train the algo-

rithms. Medical data that can be used is limited, its complicated relationship with privacy is

among the reasons. On top of that, segmentation annotations are arguably the most expensive

type of annotation to create. Availability of annotated data is often sparse and lung tumor data

is no exception.
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This thesis investigates the possibility of combining multiple types of annotations to further

increase the state-of-the-art performance of automatic end-to-end lung tumor segmentation. To

make use of these mixed-supervision datasets, we develop a method based on the recently emerg-

ing Teacher-Student design. Our method makes use of multiple datasets, some of which contain

segmentation annotations, other bounding box annotations. Annotating data with bounding

boxes is a much easier job than to annotate with masks. Being able to utilize bounding box

datasets to learn segmentation is therefore benificial.

1.2 Thesis Goal

The goal of this thesis is to investigate the use of the Teacher-Student design for lung tumor

segmentation on CT images. We also want to explore how well semi-supervised methods can

perform lung tumor segmentation given CT image and weaker forms of supervision, as they are

less expensive to create and can aid experts, and facilitate dataset annotation.

1.3 Research Method & Research Questions

To research whether the Teacher-Student design can improve the performance of fully automatic

methods on lung tumor segmentation three datasets with different supervision, were acquired.

Two of which was annotated with masks, the last with bounding boxes. We call the mask anno-

tated data strongly labeled, and the bounding box annotated data weakly labeled. We designed

three research questions as a foundation to discuss our results and to conclude the project. The

first research questions is related to the semi-automatic method, and how its performance can

be improved by giving it additional information. The two other research questions are designed

to enlighten the effect of the Teacher-Student design both in general, and when the strongly

labeled dataset is limited.

Research Questions

All research questions are related to the task of segmenting lung tumors given CT-scans.

RQ1: How does semi-automatic methods, that utilizes either pre-calculated bounding

boxes or the center of the tumor as additional input, compare to a fully automatic method

that only uses the image as input?

RQ2: By expanding the dataset using a Teacher-Student Framework, could the perfor-

mance of a fully automatic model be increased compared to a model trained purely on

strongly annotated data?

RQ3: When shifting the balance of the dataset towards less strongly annotated data

and more weakly annotated data, does this cause the Teacher-Student approach to

yield higher performance than the standard fully-supervised approach that only uses the

strongly annotated data?

To answer these three research questions, we designed three separate experiments. These three

experiments are presented in their respective sections in chapter 4. To address the research

questions, observations across the three experiments are discussed.

2



1.4 Contributions

The primary contribution of this project is the research on the effect of the Teacher-Student

Framework used on lung tumor segmentation from CT images. To the best of our knowledge,

there exists no published research on the usage of a Teacher-Student Framework on the task of

lung tumor segmentation on CT images. We released an open source repository with pre-trained

models for anyone to use. We discussed the usage of a semi-automatic method that can aid the

experts performing segmentations or even make the process of generating large datasets easier

by introducing a teacher.

Contributions

• Researched usage of a Teacher-Student Framework to perform automatic lung

tumor segmentation on CT images

• Released an open source repository for automatic lung tumor segmentation, given

a CT image, with pre-trained models

• Explored the usage of a semi-supervised method that can aid experts in day-to-day

work, or facilitate creation of segmentation annotated datasets in a cheaper way

than the current process involving manual segmentation performed by experts

• We intend to publish an article based on the findings in this project in collaboration

with NTNU and SINTEF.

1.5 Thesis Outline

Chapter 2 Background & Related Work contains descriptions of the relevant medical do-

main and the fundamental theory required to understand the implementation of the method of

this project. Brief summaries of published papers related to lung tumor segmentation and the

Teacher-Student Framework is covered.

Chapter 3 Methodology describes, in-depth, the method of the project. This chapter con-

tains information about the datasets used, hardware settings, and a detailed implementation

description. Everything necessary to reproduce the results stated in this thesis is available in this

chapter.

Chapter 4 Results contains all the results from the experiments performed.

Chapter 5 Discussion contains our reflections regarding the results achieved and discussions of

observations of the dataset and our method.

Chapter 6 Conclusion & Further Work concludes this project by answering the research ques-

tions and concluding on the overall goal of the project. This chapter also contains some of our

thoughts of how to improve performance further and how to investigate the potential of the

Teacher-Student Framework further.

Appendix A contains a brief description of MONAI, a framework used frequently in our code.

Appendix B contains an overview of the way we worked during this project. It contains a

timeline that illustrates when we conducted the different parts of the thesis and exemplifies

some situations where we struggled with challenges or made interesting observations.

Appendix C contains a brief summary of an open source repository we published on Github.

The repository is a plug-and-play method for automatic lung tumor segmentation given CT input

with pre-trained weights.
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CHAPTER 2

BACKGROUND & RELATED WORK

2.1 Medical Background

2.1.1 Lung Anatomy & Physiology

The lungs supply the cells in the human body with oxygen. They are placed behind the ribs and

usually weigh between 800 and 1100 grams on an adult human being[2]. On average, a healthy

person repeats the breathing cycle 12-16 times per minute. During one inhalation, approximately

500ml of air is inhaled. This air is transferred through the bronchial tree until it reaches small

pouches called the alveoli. Figure 2.1 shows how the bronchial tree is structured in a tree-like

fashion. In the alveoli, the oxygen is separated from the air and absorbed into the blood vessels.

When oxygen is being absorbed, the alveoli dispose of carbon dioxide, which the lungs, in turn,

get rid of during exhalation. The process of absorbing oxygen from the air and disposing of

carbon dioxide from the blood is called gas exchange. When the oxygen is absorbed into the

lungs’ blood vessels, it is then transported through the lung artery to the heart. The oxygen

is then transported to the rest of the body through the circulatory system. Carbon dioxide is

transported from the whole body to the heart, and then through the lung veins into the alveoli

to be disposed of through exhalation.
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Figure 2.1: Illustration of the Bronchial Tree.

2.1.2 Lung Cancer

Lung cancer is the type of cancer that causes the most deaths in many developed countries, like

Norway and the USA [3, 4]. As of 2019, the five-year survival rate for patients diagnosed with

lung cancer in Norway is as low as 29 percent for women and 23 percent for men. Late detection

is one of the crucial reasons why the prognosis is usually bad. Early detection is vital to improve

lung cancer prognostication. Patients that discover cancer at an early stage have higher survival

rates [5, 6].

Lung cancer is defined as cancer that originates in the lungs [7]. Cancer starts when cells mutate

and grow uncontrollably until a tumor forms. When the tumor grows further, it might destroy

healthy tissue, resulting in organs failing to function correctly. Particularly in the lungs, the

tumor might block parts of the bronchial tree, leaving parts of the lung unable to function,

effectively crippling the patient’s respiratory system. Tumors that grow uncontrollably are called

malignant tumors. Parts of the tumor might shed off and be transported to other parts of the

body. The breakout cells might continue to grow new cancerous cells, effectively forming a new

tumor, called metastases, in another organ.

With modern medical imaging technologies, it is possible to detect tumors visually. Section 2.1.3

will cover some of these methods in more depth. Figure 2.2 show a Computed Tomography (CT)

scan of a patient with a lung tumor. As can be seen in the figure, the tumor is visible because

it is denser than the rest of the lung and therefore casts a brighter shadow in the CT scan.
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Figure 2.2: CT Scan of a Patient with a Tumor in the Top Right Lung. The image shows
three planes extracted from the CT scan in three orthogonal planes. The CT is part of the
MSD Lung. dataset [8]. The image is extracted using the ITK-Snap software [9]

Tumors are not the only anomalies in the lung that casts shadows like figure 2.2 show. Infections

can create scar tissue inside the lungs that form nodules. It can be challenging to distinguish be-

tween cancerous nodules (malignant nodules), called tumors, and noncancerous nodules (benign

nodules) from image inspection. Diagnosis of cancerous nodules is often made by performing a

second scan later in time to observe a change in size or form. The concept of tumor doubling

time is often used to diagnose. Cancerous nodules grow uncontrollably while noncancerous often

do not. Sometimes noncancerous nodules can grow quicker than a cancerous nodule can. This

can also help experts uncover that the relevant nodule was, in fact, not cancerous. It is also

possible to perform a needle biopsy. A needle is used to extract a small part of the nodule to be

later analyzed in the lab. Some medical imaging usually aids this procedure to guide the needle.

Needle biopsy is an invasive procedure. If possible, it would be beneficial to diagnose without the

need to perform such an invasive procedure. Ideally, it would be possible to perform diagnosis

from medical images such as CT images, perhaps with the help of artificial intelligence.

2.1.3 Medical Imaging

Medical imaging is the art of creating visually interpretable images of the inside of the human

body. The ability to visually inspect tissue and organs inside the body has been an advantage for

medical experts during diagnostics and surgery planning. There exist various imaging techniques,

each relying on different physical phenomena. Ultrasound, X-Ray, Magnetic Resonance Imaging

(MRI), Positron Emission Tomography (PET), and CT are among the most commonly used.

X-Ray

X-ray imaging was the state-of-the-art tool to inspect bone structures and tissues inside the

patients visually for a long time. X-ray images are created by generating an X-ray beam and

aiming it at the part of the body of interest. On the opposite side of the body part being

imaged, an absorbing mechanism can absorb the X-rays. Since different tissues inside the body
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have different abilities to block X-ray beams, the absorbing module will detect different intensities

of X-rays behind each respective part of the body. Bones, for instance, have a higher ability to

block the rays than softer tissues like fat or muscle tissue, and therefore the bones will appear as

a shadow on the other side of the body part. The result is a 2D image that shows the different

tissues with different intensities. After some experience, it is possible to recognize different

tissues based on the images and even irregular artifacts like fractures or even tumors, popularly

used in mammography for detecting breast cancer [10].

Computed Tomography (CT)

Although X-ray imaging is useful for certain tasks, it lacks the precision and granularity for many

applications. In 1971, the first CT scan was conducted [11]. CT scans use the same concept as

X-ray imaging. X-ray beams are aimed at the body part of interest, and depending on what kind

of tissue the beams hit, a certain amount of the beam will be blocked. Unlike traditional X-ray

imaging, the X-ray source is not stationary but is rotated around the body part that is being

scanned. The receiving module is also rotated around the body, always to be the opposite of

the X-ray source. A computer algorithm is used to analyze the beams received by the absorbing

module. After a full rotation, a single slice of CT-scan is created. Like a regular 2D image is

made up of pixels, 3D images generated from CT scans are made up of voxels. A single slice

looks much like a traditional X-ray scan, though a lot sharper and more detailed. By creating

many of these slices by slowly moving the whole machine vertically along the patient’s length,

it is possible to stitch together a 3D image based on all the 2D slices.

Modern CT scans do not usually perform this stop-and-go method for creating 3D scans, however.

They perform a helical CT scan. Instead of doing a complete rotation around the patient around

the same slice, the CT machine moves along the patient’s length while rotating in a spiraling

way. One advantage of this is that it is possible to scan larger parts of the body in a shorter

amount of time which is of interest in, for instance, lung scans because one can scan the whole

lung within one breath. CT machines might have different configurations concerning speed or

slice spacing, for example. To be able to reconstruct CT images from different machines and

keep the spatial properties within the real world intact, a measure of voxel spacing needs to be

stored with the CT scan. The voxel spacing holds information about how far apart each voxel

is in the real world. There might be different voxel spacings in each axis. Software that can

view CT scans or even construct 3D models from CT scans utilize the voxel spacing value to

accurately recreate the CT scan captured by the CT scanner.

As mentioned, different tissues have different abilities to block X-ray beams. The intensity that is

captured by the absorbing module is quantified. Different tissues have different values associated

with them. The common unit to define these values in is the Hounsfield Unit (HU) [12].

Equation (2.1) shows how the Hounsfield Unit is calculated for an arbitrary tissue with an

attenuation coefficient µx.

HU = 1000× µx − µH2O

µH2O
(2.1)

Since water is the prominent substance in the human body, the Hounsfield Unit used water as

reference; in other words, a Hounsfield Unit of zero means that the particular part of the CT

scan contains water. Tissues that are denser than water will have a positive Hounsfield Unit

score. For CT images, HU values is often set to range between -1024 and 1024.
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2.2 Artificial Intelligence Background

There exists no clear definition of what Artificial Intelligence (AI) is, and the interpretations

are many. AI can be seen as the field that is concerned with algorithms that make intelligent

decisions, often in interaction with their environment. The public interest in AI and the media

coverage has exploded in recent years, making it one of the hottest topics in computer science

for the time being [13]. Given the lack of a clear definition of what AI is, it should come as

no surprise that the field is divided into many subfields with different ideologies and concerns

in mind. Given the aforementioned broad definition, one can accept that intelligent, adaptive,

hand-crafted algorithms will fit into the definition of AI. The sub-field within AI that has emerged

lately is the field of machine learning and especially deep learning.

2.2.1 Machine Learning

While hand-crafted algorithms may be part of the AI branch, machine learning is about writing

algorithms where the machine learns to solve the task by experience. Traditionally, a program-

mer would write the rules of an algorithm and let the computer perform the calculations. The

programmer would need to learn the rules of the domain before defining the algorithm. How-

ever, in machine learning, the idea is that the algorithm should learn the rules itself. In some

applications, even humans are not able to precisely define the rules, but machine learning algo-

rithms might be able to find the underlying, complicated patterns. There are many fields within

machine learning, but supervised learning is of particular interest for the remainder of this thesis.

Supervised & Unsupervised Learning

In certain machine learning tasks, the correct output is known beforehand. In other tasks,

the correct output is not certain. For instance, when classifying (classification is discussed in

section 2.2.2) images of cats and dogs, humans can label the expected output associated with

each image in advance. On the other hand, if an algorithm is learning to play chess, it is

hard to accurately tell how good a given chess move is at any given time. Only the image is

necessary to solve an image classification task. However, for solving the chess move problem,

knowledge about previous states and potential future moves is required to find the best move.

The chess move problem might have multiple solutions, and it is hard to rank them in advance

quantitatively.

For tasks where the expected output is known in advance, it is possible to use a supervised

learning procedure. When the correct output is not known in advance, the problem is within the

field of unsupervised learning. Supervised learning requires what is called labeled data, which

is data where the correct output is attached to it, often called ground truth. An example of

an unsupervised learning method is clustering which can be applied to data without any ground

truth. The clustering algorithm can find similarities or relationships between the elements in the

dataset and cluster them accordingly.

Variants of supervised and unsupervised learning also exist. Semi-supervised learning is about

combining both partly labeled and unlabeled data. Often labeled datasets are limited in size, as

annotating data is tedious and might require an expert in the field. Hence, unlabelled data are

often larger and easier to acquire. Supervised learning can be divided into several sub categories.

One of these categories is mixed supervised learning, which aims to utilize data with different

forms of annotations. Mixed supervision is of particular interest in this thesis.

Figure 2.3 shows where deep supervised learning fits within the field of AI. Deep learning refers to
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the idea of using artificial neural networks as part of the solution. Neural networks are explained

in more detail in section 2.2.3

Figure 2.3: The Field of Artificial Intelligence

2.2.2 Computer Vision Tasks

Classification

Classification is the task of correctly assigning an element to a predefined class. Deep learning

approaches have proved suitable for many classification tasks in recent years, even outperforming

humans [14, 15]. Typically a classification algorithm will take some features associated with the

element as input. These features can be predefined parameters or even images, sounds, or time

series plots. The remainder of this chapter will focus on image analysis. Image classification

commonly revolves around taking an image as input and classifying the content of the given

image into predefined classes. For instance, one task might be to feed a 256 × 256 RGB

image of a dog to an algorithm, and make it predict which dog breed was present in a given

image. Image classification has its limits. For instance, image classification algorithms will not

differentiate between multiple dogs in the same image. If the same algorithm tries to classify

an image which contains multiple dog breeds, the algorithm is forced to output a single class,

which neglects at least one or more dogs in the image.

Object Detection

While image classification is about correctly assigning an image to a class, in object detec-

tion/recognition the goal is to classify and locate the object(s) of interest in an image. Using

object detection, one is therefore able to solve the aforementioned task where multiple dog

breeds were present in an image. Modern object detection algorithms can locate tens of objects

within the same image and classify them into tens or 100s of different classes. Object detections

are indicated by placing bounding boxes around the detected objects. Figure 2.4 shows how the

output of an algorithm that detects cars and persons might look.
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Figure 2.4: Output of an Object Detection Task

Object detection models are evaluated and trained according to how well they place their bound-

ing boxes relative to the ground truth bounding boxes. Different evaluation metrics are used to

quantitatively measure how different models perform compared to one another. This is further

described in section 2.2.5.

Segmentation

Locating and classifying objects with bounding boxes is sufficient for many applications, however

there are applications where a bounding box is not accurate enough. Some applications need to

detect all pixels that belong to an object or class. When pixels are being assigned to the relevant

classes, it is sometimes referred to as making a mask or a segmentation.

Image segmentation can be further divided into the two types: semantic segmentation and in-

stance segmentation. Semantic segmentation aims to assign pixels to certain classes, dependent

on whether a class is present. For instance, given an image containing multiple cars and people.

The algorithm would assign the same value to all pixels containing cars, and a different value to

pixels containing people. However, it does not distinguish between different cars or different per-

sons. Instance segmentation, on the other hand, differentiates between objects within the same

class, it produces a set of individual masks for every detection and classify these simultaneously.

Figure 2.5 shows the difference between object detection and the two segmentation types.
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Figure 2.5: Object Detection and two Types of Segmentation

All of the aforementioned tasks have their own applications and domains where they fit in.

Instance segmentation is interesting but is unfortunately quite expensive, especially for 3D ap-

plications. In this project, like many other medical applications, the semantic segmentation type

is the most relevant.

2.2.3 Artificial Neural Networks

The understanding of the human brain heavily inspires artificial neural networks. It takes input

from senses, past experiences, and other factors, runs them through biological neural networks,

and concludes based on the output of these networks. The basic building block of biological

neural networks is the biological neuron, the brain cell. The basic building block of artificial

neural networks is the artificial neuron, which is an artificial version of the biological neuron.

The artificial neuron

The simplest neural network is made up of only one neuron. This is commonly referred to as a

perceptron. The perceptron takes the weighted sum of the inputs x and bias, resulting in the

output z. The perceptron requires as many weights as it has inputs. In practice, this is done

by taking the dot product between the transposed weights and the inputs, then adding the bias

to this dot product. The bias is a value that allows the neuron to shift its output value up or

down. This is useful when the data is not centered around zero. The mathematical expression

is shown in equation (2.2).

z = ωTx+ b =
∑
i

wixi + b (2.2)

One of the biggest limitations of the perceptron, is that it can not classify datasets that are not

linearly separable. A linearly separable dataset means that one could separate the classes of the

dataset by using a linear function, such as a line in 2D or a plane in 3D.

Activation functions

As the operation of the perceptron is a linear operation, it is possible to use an activation function

to introduce non-linearity. In general, an activation function takes input z, which is the weighted

sum of the perceptrons input and bias, and then returns another value f(z); the output value of

the perceptron. The expression is shown in equation (2.3).
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a = f(z) (2.3)

There are several different activation functions, each with different advantages and disadvan-

tages. Two of the most common activation functions are the rectified linear unit, often called

ReLU, and the sigmoid function. These are examples of activation functions that take linear

inputs and produce non-linear outputs. Their respective expressions are shown in equation (2.4)

and equation (2.5).

ReLU(z) = max(0, z) (2.4)

Sigmoid(z) = σ(z) =
1

1 + e−z
=

ez

ez + 1
(2.5)

A network of neurons

The perceptron is able to solve simple problems, however it struggles with complex problems, thus

it offers limited practical utility. However, if one were to combine several of these perceptrons

into layers, add activation functions to these layers, then combine these layers into networks,

then the resulting network would be able to solve problems that are fairly complex and not

linearly separable. These kind of networks are often called Feed Forward Fully Connected Neural

Networks (FF-FCNN).

The forward pass

The network produces an output by forwarding the input through all layers. The output of

the first layer, a1, is calculated by taking the dot product between the input matrix x and the

transposed weight matrix ω1, and then adding the bias matrix b1, to this sum. Then the chosen

activation function is applied to each of the elements resulting in the output matrix of the first

layer. The expression is shown in equation (2.6), where x is the input to the network, f1(z) is

the activation function applied in the first layer, and b1 is the bias of the first layer.

a1 = f1(z1) = f1((ω1)Tx+ b1) (2.6)

The output of the first layer is then used as input for the second layer, the output of the second

layer is used as input to the third layer and so on. This is done until the output of the last layer

is produced. The generalized expression of layer n is shown in equation (2.7), where a0 = x.

an = fn(zn) = fn((ωn)Tan−1 + bn) (2.7)

Loss functions

The loss is sometimes referred to as the cost. The loss of a network is an estimate of how well

the network, or model, fits the ground truth of the data [16]. The loss of a network is calculated

by a loss function.

There exists many loss functions for neural networks. Depending on the problem domain, differ-

ent loss functions should be used [16]. Two of the most common are the Mean Squared Error

(MSE) and Cross Entropy (CE). The expression for MSE is shown in equation (2.8), where Yi is
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the ground truth and Ŷi is the value produced by the network. The expression for CE is shown

in equation (2.9), where p(x) is the ground truth for the class x and q(x) is the predicted value

for the class x, by the network.

LMSE =
1

n

n∑
i=1

(Yi − Ŷi)2 (2.8)

LCE = −
∑
x∈X

p(x) log q(x) (2.9)

MSE is typically used for regression tasks. It calculates the distance between the ground truth

and the prediction and squares it, so the negative and positive errors do not cancel each other

out. CE is often used for classification tasks. It can handle both continuous and discrete ground

truths. equation (2.9) shows the discrete CE function.

Backpropagation

When an artificial neural network is initialised, all its weights are set to be a pseudo-random

value [17]. The initial weights are often distributed according to a mathematical distribution,

for instance, normal distribution or Xavier initialization [18]. At first, the output of the artificial

neural network will be highly random, as the weights have not been adjusted much. As the

weights are being adjusted, the network’s output should, in time, approximate the ground truth

of the data.

How much the respective weights should change is determined by the gradient of the network.

The gradient of a network is a measure of each of the weights’ contribution to the total loss.

This is determined by calculating the partial derivative of the loss with regard to the weights.

As the error of a network is transferred from the first layer through the last layer, the error in

layer n+1 could be used to calculate the error in layer n. Because of this, one could say the

error backpropagates through the network [19]. The first step is to find the value δN , which

expression is shown in equation (2.10).

δN =
∂C

∂aN
fN ′(zN ) (2.10)

δN denotes the delta of the last layer N. The delta of each respective layer n is denoted δn and

can be calculated by equation (2.11).

δn = ((ωn+1)T δn+1)fn′(zn) (2.11)

Each delta is used to determine the contribution of the weights and biases of the respective layers’

contribution to the total loss. The contribution of weight ωn
jk, which is the weight between the

neuron k in layer n-1 and neuron j in layer n, to the loss, is given by equation (2.12). The

contribution of the biases can also be calculated by equation (2.13). When the contributions of

every weight and bias to the total loss are calculated, they can be adjusted accordingly.

∂C

∂wn
kj

= an−1k δnj (2.12)
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∂C

∂bnj
= δnj (2.13)

Gradient descent

The weights’ contributions to the loss are used to adjust the weights, so the loss of the network

is lower the next time it receives the same or similar inputs. One way of doing this is to use

the gradient descent method. It is an optimization method which attempts to minimize the

loss of the network by changing its weights in iterations. As the loss of the network decreases,

the adjustment of the weights becomes smaller. The delta rule is an example of a method

that uses gradient descent. It requires the output of the previous layer an−1, a learning rate

α, and the delta calculated during backpropagation δn. The weights are adjusted according to

equation (2.14).

ωn
new = ωn

old − αδnan−1 (2.14)

There are some pitfalls when using the delta rule to update the weights. If the learning rate is

too small, it will take a lot of time before seeing any improvement in the network. If the learning

rate is too high, the weights are adjusted too much, and the network might not improve.

Another problem with using gradient descent is that the solution might get stuck in a local

minima. Although there exists an optimal solution, a global minima, the model may fail to

escape the valley it is in, as it costs too much to escape. This is an example of a greedy

optimization. This problem is illustrated in figure 2.6.

Figure 2.6: Illustration of Local vs Global Minima. In this example, model A may get
stuck in the local minima, while model B will reach the global minima. The only difference
between the two is the initial weights (starting point).

Optimizers

One way to escape a local minima is to use momentum, denoted ρ, which pushes optimization

out of areas where the gradients are low. This is also useful for boosting convergence in low-

gradient areas such as saddle points. Using momentum, one allows optimization to explore more

valleys and thus has a higher probability of finding the optimal solution.
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In practice, there are different optimizer that are used to avoid these local minimas and achieve

faster convergence towards the global minima. Some optimizers do not use momentum, for

example Stochastic Gradient Descent (SGD) [20]. SGD is often quite slow [21], and thus

other optimizer that uses some form of momentum, such as ADAptive Momentum Estimation

(ADAM) [22], is often used.

Overfitting

Since training data is of limited size, the network’s training could, in theory, continue until the

total loss is zero, given that the model is sufficiently complex. However, the produced model may

generalize poorly when evaluated on unseen data [23]. That is because the network might have

learned features that are only relevant for the training dataset, or even memorized the training

set. This problem is known as the overfitting problem.

One way of solving the overfitting problem is to divide the training set into two parts: a training

set and a validation set. The validation set is used to determine when the model starts overfitting.

This is done by calculating the loss of the validation set periodically during training. This loss

is then compared to the previously calculated validation losses. If the new loss is lower than the

previous ones, then the training continues. If the most recent loss is higher than the previous, this

can be interpreted as the start of overfitting, and weight adjustments should stop. In practice,

the model is not stopped until several validation steps have shown higher loss than the validation

loss at a given point. This method is known as early stopping. Figure 2.7 illustrates when to

apply early stopping.

Figure 2.7: Illustration of When to Apply Early Stopping.

Another way of avoiding the overfitting problem is to use regularization. Regularization can be

used in addition to having a training set and a validation set with early stopping. The basic idea

of regularization is to simplify the model, thus making the model less likely to overfit the training

data. Two common regularization techniques are L1 regularization and L2 regularization. L1

regularization works by pushing the weights of the network towards zero by a constant factor,

λ, also called the regularization parameter [24]. The process of pushing the weights toward zero

can be thought of as an effort to reduce the number of features in a network and thus make the

network focus more on the essential features. L2 regularization works similarly. The difference

is that while L1 regularization reduces the network’s weights toward zero by a constant factor λ,

L2 regularization reduces the network’s weights towards zero based on the value of the weight
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multiplied by a constant factor, λ. The effect of L2 regularization is much the same as the

effect of L1 regularization, and the difference is that L1 pushed weights towards zero to get rid

of worthless features while L2 strives to keep weights small in general.

A third option to avoid overfitting is dropout. Dropout is based on the idea of randomly

dropping specific nodes in the network, setting their output to zero[25]. This way, new routes in

the network are created to solve the task, rather than reinforcing the existing paths. This makes

it harder for the network to memorize the training data and thus reduce overfitting.

2.2.4 Convolutional Neural Networks

Although traditional neural networks are great at certain tasks, they also have their limits. When

working with images, one may use the pixels as input to a neural network. However, when high-

resolution images, such as 4k images, are used, the size of the fully connected layers increase

rapidly. Attempts to encode the image and guide the neural network in image analysis, were

therefore commonly performed. This was done using algorithms that extracted a selection of

predefined or hand-crafted features from images. This reduced the complexity of the network,

but required a lot of effort designing suitable feature extractors.

Although this strategy yields transparent and interpretable results, it is often challenging for

humans to find the most suitable features for a specific task. The main idea behind Convolutional

Neural Networks (CNNs) is to automatically learn the feature filters relevant to solve the task.

All of the operations described in this section can be performed on images or arrays of any

dimension. All examples are for 2D images, but any hyperdimensional array can be convolved,

transposed, or pooled.

The convolution operation

The key operation in a CNN is the convolutional operation performed by the feature filters.

A convolutional layer takes an image with resolution W × H and depth N as input. In each

convolutional layer, several different kernels are convoluted over the input image. The kernel

can have arbitrary width and height but has the same depth as the input image. Each kernel is

matrix multiplied over the image in a sliding window fashion according to the specified stride.

Figure 2.8 illustrates how a filter is applied to an input image in a sliding window fashion. During

training, the filters evolve to learn different patterns associated with the different classes. Hence

the machine learns the features rather than programmers handcrafting them.
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Figure 2.8: Illustration of a 2D Convolution. Input image is of size 4 × 4 with a single
channel. The filter has a kernel size of 3 × 3. The operation is carried out with stride of
one which means that the kernel is moved with one step for each convolutional operation.
There is no padding, therefor the filter applied 4 operations to the image resulting in a 2×2
output image.

The pooling operation

Another regular operation performed in CNNs is pooling. These are non-learnable filters that

aim to reduce the image size and at the same time keeping some essential information. There

are different types of pooling. Max-pooling and average-pooling are among the most common.

A max-pooling operation is simply an action that selects the maximum value within the pooling

filter. The max-pooling operation is visualized in figure 2.9. Average-pooling, as the name

suggests, computes the average of the values within it as output. The result of an example

average-pooling can be seen in figure 2.10.

Figure 2.9: Max Pooling Example
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Figure 2.10: Average Pooling Example

The transpose convolution operation

As pooling operations scale images or features maps down, it makes sense to have operations

that can scale images up. There are several applications where this is useful, and it’s not

limited to tasks of enhancing image resolution. Traditionally up-scaling has been done with

algorithms such as nearest neighbor interpolation or bilinear interpolation and similar algorithms.

However, it makes sense to train the up-scaling filters the same way one trains the convolutional

filters. Transposed convolutional filters are trainable filters that scale images up. Like the other

convolutional operations, matrix multiplication is at the heart of the transposed convolution.

Figure 2.11 shows how the transposed convolution is performed conceptually. In practice, the

operation is performed with efficient matrix multiplication.

Figure 2.11: Transposed Convolution Example. The figure shows conceptually how a trans-
posed convolutional kernel can scale an image from a resolution of 2× 2 to 3× 3.

2.2.5 Evaluation Metrics

To be able to compare the performance of different algorithms and architectures to each other

and human performance, quantitative metrics are necessary. Several metrics are commonly used,

and each metric emphasizes different aspects of performance. For instance, in some applications,

it is more important that the algorithms detect all positives, while in others, it is more important

that the false positives are reduced.

Positives and Negatives

Many common metrics use the notion of positives and negatives in the calculation. One can

divide all classifications performed by an algorithm into four categories. True positives are the

occurrences where the algorithm correctly predicted that an element belongs to the class. True

negatives are the occurrences where the algorithm correctly predicted that an element did not

belong to the class. When the algorithm predicts that an element belongs to the class and it does

not, it is a false positive. Likewise, when the algorithm predicts that an element does not belong
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to the class, but it does, this is a false negative. Figure 2.12 illustrates the concepts of positives

and negatives. The positives and negatives are usually abbreviated as stated in table 2.1.

Figure 2.12: Negatives and Positives. The figure shows all elements within a domain where
roughly half of the elements is part of the class and the others are not. Elements within the
circle are the elements that an algorithm has predicted is part of the class.

Table 2.1: Overview of Positives and Negatives Abbreviations

Term Abbreviation Description
True Positive TP Elements that are correctly classi-

fied to be part of the given class.
True Negative TN Elements that are correctly classi-

fied to not be part of the given class.
False Positive FP Elements that are predicted to be

part of given class, but is not.
False Negative FN Elements that are not predicted to

be part of given class, but is.

Precision and Recall

As mentioned previously, different applications will emphasize different aspects concerning per-

formance measures. Two of the most fundamental metrics used when dealing with classification,

detection or even segmentation, are precision and recall.

The precision metric measures how likely it is that an element, such as a voxel, that the algorithm

predicted was in the class is actually in the class. In other words, how many of the elements

that the algorithm predicted were in the class is actually in the class. Equation (2.15) shows

how precision is calculated.

Recall measures how many of the elements belonging to the class the algorithm is capable of

predicting.

19



Precision =
TP

TP + FP
(2.15)

Recall =
TP

TP + FN
(2.16)

It is beneficial to have a high score of both precision and recall, but to a certain degree, one has to

choose which is more important. It is common to plot a precision-recall graph showing how one

metric’s score influences the other. For instance, if one lowers the threshold for how confident

an algorithm should be before an element is considered part of the class, this will likely increase

the recall score but lower the precision score. This is exactly what the precision-recall graph

in figure 2.13 shows, and depending on the application, one has to choose the best trade-off

between the two.

Figure 2.13: Illustration of a Precision-Recall Graph. The illustration show how the preci-
sion and recall is affected when adjusting the confidence threshold of an algorithm.

Intersection over Union

Especially in object detection, the Intersection over Union (IoU) metric is commonly used. Since

object detection is about correctly placing a bounding box around an object and predict the

class, the notion of intersections and unions is a good fit. A high score of IoU means that

the predicted bounding boxes closely resemble the ground truth bounding boxes and that the

algorithm accurately classifies the objects. IoU is calculated by taking all elements that are

present in both the prediction and ground truth divided by all elements present in either prediction

or ground truth. Equation (2.17) shows the calculation, where P is the predicted bounding box,

and T is the ground truth bounding box. Equation (2.18) shows the calculation based on

positives and negatives. If the algorithm is too greedy and predicts too many elements to be

part of the class, then the union will be bigger, and the IoU score will suffer. Likewise, if the

algorithm is too discriminating, then the intersection will be smaller, and the IoU score will

suffer.
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IoU =
|P ∩ T |
|P ∪ T |

(2.17)

IoU =
TP

TP + FP + FN
(2.18)

Dice Similarity Coefficient

While object detection deals with bounding boxes, object segmentation is more detailed. IoU

could be used as a metric for segmentation tasks as well, but a more commonly used metric is

the Dice Similarity Coefficient (DSC). DSC is rewarding true positives more than what the IoU

metric does. Though DSC weights true positives more than IoU, they are positively correlated.

An algorithm that scores better than another according to IoU will also do this according to

DSC, unlike the precision vs. recall metrics, for instance. The set notation for calculating the

DSC is shown in equation (2.19). DSC can be calculated as a function of negatives and positives

as shown in equation (2.20).

DSC =
2 · |P ∩ T |
|P |+ |T |

(2.19)

DSC =
2 · TP

2 · TP + FP + FN
(2.20)

2.3 Advanced Techniques

In the previous sections, the basics of neural networks and how they work were presented. To

achieve good results on advanced medical segmenting tasks, additional features on top of these

basic theories are necessary. This section aims to describe concepts and methods that can be

considered a bit more advanced and used in implementing this project.

2.3.1 Mixed Supervision

As previously mentioned, the labels needed during the training of segmentation tasks are expen-

sive to make. This applies to all types of segmentation tasks. However, this effect is possibly

more substantial for medical segmentation tasks. Only trained experts can label them accurately.

In addition, strict privacy rules often apply to medical data.

The principal idea behind a mixed supervision strategy is to use data with different types of

annotations. In deep learning, more data often leads to better models. By utilizing datasets

with different types of annotations, one is not restricted to the data with the annotations that

fit the exact output type the model will produce.

Often one type of annotation is more fine granular than another. The more detailed annotation

type is called strongly labeled, and the less detailed annotation type is called weakly labeled.

For instance, there might exist two datasets where dogs are annotated in images. One of the

datasets might have segmentation annotations, while the other has bounding box annotations.

In this example, the dataset with segmentation annotations would be the strongly labeled data,

and the bounding box dataset would be the weakly labeled data.

There are multiple ways to take advantage of datasets with multiple annotation types. The

one method relevant for this thesis is to use the weakly annotated data to make more strong
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pseudo-labels. A model is trained to create strong labels from the weak, then the expanded

dataset is used to train a new model. This concept is called a Teacher-Student design.

2.3.2 Teacher-Student Framework

When the main task is to produce output that corresponds to strongly annotated data, it is

tempting to produce strong pseudo labels from weakly annotated data. In the Teacher-Student

Framework, a teacher is trained using the strongly annotated data to infer strong labels on the

weakly labeled data. The clever part is that the teacher can cheat by using the annotations of

the weakly labeled data as an additional input when it performs inference.

For instance, if two datasets are available, one with segmentations and one with bounding boxes,

it is trivial to calculate the bounding boxes from the segmentations. A bounding box is simply the

closest fitting rectangle around the segmentation mask. A teacher can then take the bounding

box as input in addition to the image and learn to create segmentation outputs. Since the teacher

has the additional information from the bounding boxes, the idea is that the task of creating a

good mask is more effortless than if the teacher was only given the image. The complexity of

the task has been reduced. The teacher can then learn from the strongly annotated dataset how

to create masks given image and bounding boxes as input. When the teacher has learned to

utilize this extra information, it can hopefully create decent masks on the weakly labeled dataset

by taking the bounding boxes as additional input.

By using the teacher to infer masks on the bounding box annotated dataset, the available

segmentation annotated data has been increased. This expanded dataset can then be used to

train a fully automatic model. The idea is that even though the strong pseudo-labels are probably

not as good as human-labeled data, the effect of a larger dataset makes the model trained on it

better. The model that is trained on the strongly labeled dataset, and the expanded dataset, is

called the student.

2.3.3 LeakyReLU & PReLU Activation

Leaky ReLU is an activation function closely related to ReLU. Leaky ReLU outputs the input

value directly if the value is greater than zero, like ordinary ReLU. Unlike ordinary ReLU, it

allows for values less than zero, but they are multiplied with a predefined value to dampen

the amplitude. Equation (2.21) shows the Leaky ReLU function. The equation takes an input

parameter x and has a predefined slope constant s. s is usually a small number, below 1.0.

LeakyReLU(x) =

x, x ≥ 0

s · x, x < 0
(2.21)

A second related activation function is named PReLU, short for Parametric Rectified Linear Unit.

This function behaves exactly like Leaky ReLU, but the key difference is that the slope value

that is a constant, predefined value in Leaky ReLU, is a learnable parameter in PReLU.

2.3.4 Dice Loss

Loss functions are an essential part of neural network frameworks. MSE and Cross-Entropy Loss

that were discussed previously has proved to have poor performance when it comes to tasks

where there is great class imbalance. Class imbalance means that some classes in a dataset
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are over-represented or under-represented. This problem often arises in medical tasks where the

input can be vast, but only a tiny fraction of it is relevant to the task. For instance, if a model

takes CT images of the body as input and produces a mask of the liver as output, then the

number of voxels that are part of the liver class is tiny compared to all the voxels that are not.

In this case, it is possible that the network would quickly learn that it would receive a low loss

from concluding that no voxels are part of the desired object class no matter the input.

Multiple strategies have been tried to combat the class imbalance problem, including the de-

velopment of specialized loss functions. Dice loss is among the most popular loss functions

commonly used in medical computer vision tasks. Dice loss is based on DSC. DSC can out-

put values between 0.0 (bad prediction) and 1.0 (perfect prediction). Therefore it makes sense

to subtract this sum from 1.0 to form a loss function. This way, when the model is trying

to optimize the loss function towards zero, it is, in fact, optimizing DSC towards 1.0. DSC

equation shown in equation (2.20) is based on a binary GT mask and a binary output. It is

possible to generalize the method to accept continuous values for both the mask and the output

of the network. Equation (2.22) shows this generalized dice loss equation. In the equation, P

is the prediction matrix, T is the ground truth matrix, and the multiplication between them is

element-wise multiplication. The absolute symbols around each matrix respectively denote the

sum of all elements within the matrix.

LDL ≈ 1−DSC ≈ 1− 2 · (P · T ) + ε

|P |+ |T |+ ε
(2.22)

An epsilon is added to both the denominator and numerator. This is done to avoid zero division.

The derivable dice loss shown in equation (2.22) is sometimes called soft dice loss because of

this smoothing. Since the only way the model can move away from a 1.0 loss is to hit true

positives, it is forced to find the class elements, even though the dataset is highly imbalanced.

The intersection is valued two times the amount of the sum in the denominator; in other words,

dice loss punishes false negatives harder than false positives, which is often desirable in the field

of medical AI.

2.3.5 Batching & Accumulating Gradients

Quite often, it is not possible to hold the entire dataset in memory during training. Hence, divid-

ing the dataset into batches is often performed. Luckily, this also works as a natural regularizer,

as the network is only able to see a subset of the data for each update, and therefore can not

overfit as easily. Using larger batches has the benefit of improved stability and convergence,

as the network is able to base its updates on a larger set of samples. Much research has been

done to determine the importance of batch sizes and estimate the best batch sizes for different

tasks. Some work concludes that small batch sizes offer more stability, while others conclude

the opposite [26], but in general a batch size between 2-32 is often suitable. Most research

concludes that some batching is advantageous.

The improvement in training speed comes from the fact that one can run a whole batch through

the network at the same time, given that the GPU has enough VRAM to keep the whole batch

in memory. For instance, if a network accepts inputs with a dimension of 10×10, then one could

batch 100 of these inputs into a matrix of dimension 100× 10× 10. The network would, in this

case, produce 100 outputs, for instance resulting in a 100× 1 output vector if the hypothetical

network was a binary classifier. Less frequently calculating loss and updating weights also speeds

up the training since it is only done once per batch.
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VRAM capacity is a constraint that can limit the ability to use larger batch sizes. If the GPU

does not have the capacity to hold a batch within memory, it is still possible to achieve the

effect of stability through accumulating gradients. As the name implies, this technique does

not adjust the weights before a batch of gradients has been accumulated. While most of the

speed advantage of batching is lost, the stability of the weight adjustments is still utilized with

this technique. One can send a single input through the network at a time, then aggregate the

gradients, and finally, when a batch of gradients has been accumulated, the model’s weights are

adjusted. Doing so, it is possible to use an infinite batch size, as one simply iteratively sum the

scaled gradients for each mini-batch, and thus avoid storing these in memory.

2.3.6 Batch Normalization & Instance Normalization

Normalization in AI is the process of standardizing the input/output of a layer in a neural network

[27]. One form of normalization is the process of subtracting the mean, µ, and dividing by the

standard deviation, σ, like equation (2.23) describes [28]. This ensure that the values of x̂ is

centered around zero, with a standard deviation of one.

x̂ =
x− µ
σ

(2.23)

In batch normalization, each element is normalized with respect to the elements in the whole

batch. One form of batch normalization is the standardization shown in equation (2.23), where

the mean and standard deviation is calculated from the whole batch. Instance normalization

on the other hand, normalizes the element with respect to the values within that element. For

instance, if an image is to be instance normalized, the pixel values within that image is used to

normalize the image, rather than all the pixel values in the entire batch.

2.3.7 U-Net

U-Net is a commonly used architecture based on the idea to use fully convolutional layers and

to have an encoder block, followed by a decoder block, with a connection between them, often

called a bridge [29]. There is no strict border between the encoder and the decoder block;

however, the encoder in a normal U-Net is where the number of filters are increased and the

resolution of the image is decreased. In the decoder block, the number of filters is decreased,

while the resolution is increased, back to the resolution of the original image. An example of a

3D U-Net can be seen in figure 2.14.

Between the encoder and the decoder block, there are several connections, often called skip

connections. The primary purpose of these connections is to preserve the spatial information of

the image. The bottom part of the network is often referred to as the bridge. This is where the

image resolution is at its lowest, and the number of filters is at its highest. The encoder encodes

the spatial information into a dense feature space that is interpreted by the filters. This dense

feature space is then decoded back to the spatial dimensions in the decoder.
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Figure 2.14: U-Net, an Encoder-Decoder Architecture. Example of a 3D U-Net architecture
with depth of four. This example shows how an image with resolution 128 × 128 × 128
is incrementally scaled down through the encoder and then scaled up again through the
decoder.

U-Net is often used as a backbone for other architectures. It is possible to extend the architecture

with branches or various forms of skip connections to be better suited for the specific task. It

can be used as a backbone for tasks ranging from classification to detection or segmentation.

2.4 Related Work

2.4.1 Lung Tumor Segmentation

Ray proposed a 2D fully convolutional neural network for semi-automatic segmentation of lung

tumors in 2016 [30]. The method assumed predefined bounding boxes of 100 × 100 pixels in

each slice, with goal to reduce annotation workload for clinicians. The architecture achieved a

DSC of 0.83 on an in-house dataset consisting of CT scans of 107 patients.

Isensee et al. [31] proposed a two-step method for semantic segmentation of medical volumetric

data in 2018. The design involved two separate 3D U-Net models that both performed semantic

segmentation. In the first step, a downsampled version of the full volume was used as input,

scaled down to fit into GPU memory. The predicted segmentation was then used along with the

image as input to the second model. The second model is applied on full resolution in a sliding

window fashion across the volume using a 3D patch. They achieved a DSC of 0.69 on the MSD

dataset, and also came second on the 2020 BraTS challenge for glioma segmentation [32, 33, 34].

Kamal et al. proposed the novel architecture Recurrent 3D-DenseUNet in 2018 that achieved

an average DSC of 0.7228 on the NSCLC-Radiomics dataset [35]. They used the popular 3D

U-Net as the backbone of the architecture, modified to contain convolutional LSTM-blocks in

the bridge for interslice context. The CT-images were scaled from 512×512 to 256×256 in the

axial plane. Each input to their network consisted of eight slices, resulting in a 256 × 256 × 8

input tensor. To solve the problem of class imbalance in 3D patches, they proposed to neglect

non-tumor patches during training.

Carvalho et al. achieved a DSC of 0.709 on the MSD dataset [36]. They proposed a two-step

25



method in 2019. First, the tumor is located by a 2.5D object detection algorithm. Then the

region proposed by the detector is segmented by a 2D U-Net model. The detector and the

segmentation model were trained individually.

Pang et al. achieved an average DSC of 0.7767 on the NSCLC-Radiomics dataset in 2019 [37].

They leveraged the strength of the encoder-decoder pattern in 3D U-Net as part of their segmen-

tation pipeline. To overcome the issue of class imbalance, they proposed a weighting mechanism

in the loss function that adaptively adjusted the loss function according to how imbalanced a

given batch was (tumor vs. non-tumor elements). The loss function was based on the popular

CE loss function. The same batch-weighted CE has been used when segmenting other structures

as well, as Bouget et al. showed [38].

Hansen et al. implemented a supervoxel algorithm to segment lung tumors in PET/MRI images

in 2020 [39]. The method utilized traditional machine learning techniques, such as clustering.

Multiple individual voxels are clustered into supervoxels, and supervoxels can be clustered across

multiple patients. They achieve a DSC of 0.47 on a non-public dataset containing 18 PET/MRI

scans.

2.4.2 Mixed-Supervision & Teacher-Student Framework

Mlynarski et al. trained a convolutional neural network, based on the U-Net architecture, jointly

on image segmentation labels and image class labels in a multi-task learning fashion to segment

brain tumors in 2019 [40]. Their proposed architecture includes an additional branch in the U-Net

architecture that performs image-level classification. Image class labels are less expensive than

costly segmentation labels. They demonstrated the performance on the BatTS 2018 challenge

dataset, proving that their model that utilized mixed-supervision labeling outperformed the fully

supervised model [32, 33, 34].

Sun et al. used a Teacher-Student Framework to utilize multiple datasets with different types

of annotations to perform liver tumor segmentation in 2020 [41]. They divided their data into

two subsets: a strong subset and a weak subset. The strong subset contained detailed semantic

annotations, while the weak subset contained bounding boxes. By creating bounding boxes

from the strong labels, they trained a teacher network that used the bounding boxes as input in

addition to the image. The goal of the teacher-network was to create accurate segmentations.

A second model, called the student, was then trained using the strong dataset and the pseudo

annotated dataset created by the teacher-network of the weak dataset. They demonstrated the

performance of the network on the LiTS-challenge dataset, outperforming the current SOTA

results [42].

Xie et al. demonstrated the use of self-training in a Teacher-Student design for image classi-

fication in 2020 [43]. They called the method NoisyStudent because they introduce noise to

the input using dropout and various data augmentation during training of the student. They

trained the teacher on annotated data and then applied it to generate pseudo-annotations on the

unlabeled data to train the student. When the student was trained, it was used as the teacher

for a new student. This was done in an iterative process, generating increasingly better teachers

and students. They demonstrated the performance on the ImageNet 2012 ILSVRC dataset,

which contains more than 1000 different classes [44]. They used images from the JFT dataset

containing over 300 million unlabeled images. They reported a significantly better top-1 result

than the current SOTA results on the 2D ImageNet classification task.

Gadgil et al. demonstrated the use of expert annotations and AI generated labels in a semi-
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supervised fashion to perform medical semantic segmentation of chest X-ray images in 2021 [45].

The task was to segment parts of the X-ray into ten categories of pathologies. They used 200

expert labeled images and over 220000 image-level labels generated by algorithms to train their

model. They showed that by combining the expert labels with the vast generated dataset, the

mean IoU was improved by over 13 percent compared with a fully supervised method.
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CHAPTER 3

METHODOLOGY

Our method is described in detail throughout this chapter, but it can be summarized in six steps.

Each step is indicated with its corresponding number in figure 3.1.

1. Format the Datasets

Format all images in the datasets to the NIfTI format and place them in a streamlined

folder structure. Create weak labels from the strong ones; in our case, make bounding

boxes from segmentations. This step is described in section 3.1.

2. Data Preprocessing

Preprocess the data for training. In this project, we used two different preprocessing

pipelines; one specifically for the teacher model, and one for the student model. Both

pipelines are described in detail in section 3.2.

3. Train a Teacher Annotator

Train a model that can utilize weak labels to generate segmentations from a dataset of

bounding boxes. Section 3.3 presents the teacher, its architecture, and how it was trained.

4. Expand the Dataset

Use the teacher from step three to expand the strong dataset by creating segmentations

on the dataset containing bounding boxes. This part is presented in section 3.4.

5. Train a Student Model

Utilize the expanded dataset to train a fully automatic student model that can perform

end-to-end lung tumor segmentation from CT-image input. The student architecture and

training procedure are documented in section 3.5

6. Perform Inference

The final model has been trained, and the pipeline for fully automatic lung tumor segmen-

tation from CT-images is now ready for use. Appendix C presents our publicly available

GitHub repository1, containing source code, trained models, and a simple way to deploy

the pipeline on new data.

Section 3.6 presents an experiment conducted to answer research question three. All the steps

in the overall method are performed in this experiment. Hence, to fully understand its process,

1https://github.com/VemundFredriksen/LungTumorMask
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it is advised to read the preceding sections first. Section 3.7 briefly presents the post-processing

method that can be used on the output of the models. For training the models used in this

project, we had access to multiple powerful machines. All available hardware is documented in

section 3.8

Figure 3.1: Method Overview

3.1 Datasets & Data Formatting

This section covers essential information about the three datasets used in the project

and a brief comparison between them. It also covers step one in the overall method;

formatting the datasets to a streamlined structure and creating weak labels from

strong labels.

The available datasets for mixed-supervision tasks are often stored in various formats. To stream-

line the training process, all datasets were formatted to fit a predefined structure. All images

and segmentation labels were stored as NIfTI files, as NIfTI files are easy to handle, and stores

image information and spatial information, such as orientiation and voxel spacing, in a single file.

Each stored image was compressed using the gzip algorithm2. Gzip is a lossless compression

algorithm, of which all data loaders in this project accept natively. In addition to file types,

folder structures vary between datasets. The datasets were stored in a common folder structure.

All input images, segmentations, and bounding boxes were stored with the same name in their

respective directories /Images, /Labels, and /Boxes.

2https://www.gzip.org/
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MSD Lung Dataset

The Medical Segmentation Decathlon (MSD) dataset was released as part of a crowd-sourced

online challenge [8]. The goal of the challenge was to facilitate the development of semantic

segmentation algorithms. The dataset contains ten subsets, each with annotations of different

organs. In this thesis, subset six, Task06 Lung, was used. This subset contains 63 CT scans

with annotated lung tumors. The tumors were annotated by one experienced radiologist using

the software OsiriX [46]. Both input images and annotations were stored in the NIfTI format.

NSCLC-Radiomics Dataset

NSCLC-Radiomics is an open dataset containing 422 CT-scans of patients diagnosed with non-

small cell lung cancer [47, 48]. It is acquired through The Cancer Imaging Archive (TCIA) [49].

All images were stored in the DICOM format. Each image in the dataset contains annotations of

multiple organs, including lungs, spine, and the primary lung tumor of the patient. Annotations

were created manually by a radiation oncologist and stored as DICOM-RTSTRUCT files. The

RSTRUCT-files contain extracted surfaces of the tumor annotations, stored as a polygonal mesh,

including sets of vertices and a set of triangular faces.

Lung-PET-CT-Dx Dataset

A Large-Scale CT and PET/CT Dataset for Lung Cancer Diagnosis (Lung-PET-CT-Dx) is a

collection of 1295 PET, CT, and fused PET/CT scans, distributed over 355 unique patients

[50]. All patients were diagnosed with one of the four lung cancer types: Adenocarcinoma,

Small Cell Carcinoma, Large Cell Carcinoma, or Squamous Cell Carcinoma. The dataset also

contains annotations that mark the location of the tumors as a bounding box in each axial slice of

the volume. The annotations were performed by five experienced radiologists. Each annotation

was performed by one of the radiologists and verified by the four others. The annotations were

stored as separate XML files, and the images were stored as DICOM series.

Dataset Comparison

All three datasets contain annotations indicating the location of lung tumor in CT images.

NSCLC-Radiomics and MSD-Lung contain semantic annotations, and LungDx contains bounding

boxes in the axial planes. The three datasets differ in size. MSD-Lung includes 63 annotated

tumors, NSCLC-Radiomics contains 422 annotated tumors, and LungDx comprises of a total

of 1295 CT, PET and/or fused PET/CT scans. After the formatting and preprocessing of the

LungDx dataset, the remaining images from this dataset were reduced to 650 images, as only

CT images were considered.

The tumors vary in size and shape across the three datasets. Table 3.1 shows the average tumor

size and standard deviation of each dataset, respectively. The sizes were computed from the

segmentation annotations. The LungDx dataset did not contain segmentation annotations, and

the volumes were therefore computed from the segmentations produced by the teacher. The

diameter was estimated by computing the average minor and major axis length of the respective

tumors, using the python library scikit-image [51].
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Table 3.1: Tumor Sizes in the Datasets

Dataset Average Tumor Volume Average Tumor Diameter*
MSD-Lung (21.98± 51.66) cm3 (37.63± 20.08)mm
NSCLC-Radiomics (75.37± 96.30) cm3 (63.63± 29.62)mm
LungDx (63.67± 86.26) cm3 (48.66± 19.85)mm

Figure 3.2: Tumor Volume Histogram

Formatting MSD Lung

All images and masks in the MSD dataset were already stored as NIfTI files. The images and

labels were already stored in the correct folder structure. To train the teacher, segmentation

boxes (segboxes) were created from the original segmentation masks. The segmentation boxes

were stored as NIfTI files that inherited the orientation and voxel spacing from the original NIfTI

file. A segbox is simply the closest fitting rectangle around the mask, in a axial slice. Listing 3.1

shows how a two-dimensional segbox is created from a two-dimensional segmentation. Each

segbox is created in the axial plane. Figure 3.3 shows how the segboxes differ from the original

annotations.
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Listing 3.1: Segmentation to Segbox

# l a y e r i s a two−d i m e n s i o n a l p i x e l −a r r a y

y = np . any ( l a y e r , a x i s = 1)

x = np . any ( l a y e r , a x i s = 0)

y min , y max = np . argmax ( y ) + 1 , l en ( y ) − np . argmax ( np . f l i p u d ( y ) )

x min , x max = np . argmax ( x ) + 1 , l en ( x ) − np . argmax ( np . f l i p u d ( x ) )

l a y e r [ y min − 1 : y max , x min − 1 : x max ] = 1

Figure 3.3: Visualization of Segmentations and Segboxes. The top row shows the ground
truth annotations, whereas the bottom row shows the generated segboxes. As every segbox
is created in the axial plane, the segboxes will always be rectangular in this plane.

Formatting NSCLC-Radiomics

All images were converted from DICOM series to NIfTI images. Voxel intensities, voxel spacing,

and orientation were copied from the DICOM files into the NIfTI files. The segmentation annota-

tions were stored in the RTSTRUCT format. This format essentially forms polygons surrounding

the tumor in 3D, that can be rendered by an appropriate ITK-software like 3D Slicer [?, 52]. This

format is not easily manageable for neural networks. To utilize the annotations, we converted

the DICOM-RTSTRUT files into NIfTI files, to produce annotations in the same format as the

MSD annotations. This was performed using a third-party python package that generates a voxel

array and computes which voxels would fall inside the 3D object formed by the polygons [53].

All voxels that would fall inside the 3D tumor object, are considered to be part of the tumor.

This process forms a mask similar to the segmentation masks available in the MSD dataset.

Segboxes were then created from the segmentation annotations. This was performed similarly

as for MSD. The resulting dataset contained 421 images, as formatting failed for one image.

32



The images were stored in /Images, segboxes stored in /Boxes, and segmentation annotations

stored in /Labels.

Formatting LungDx

This dataset contained PET and CT scans with bounding boxes annotating the location of the

tumors. A selection of the images in the dataset are PET/CT-Fused, which means that the

PET scan has been merged with the CT scan. During formatting of this dataset, all PET and

PET/CT-fused scans were discarded, as our model only targeted CT scans.

Segboxes were created from the bounding boxes where the min and max values were predefined

in the annotations, like described in listing 3.1. The annotations were originally stored as XML

files, and the generated segboxes were stored as NIfTI files, like MSD. All the images were

originally stored as DICOM-series, and these were therefore converted to NIfTI-files.

Originally, the folder structure consisted of one folder per patient, with one subfolder for each

examination registered for the given patient. For each examination there was also one subfolder

for each scan, conducted during that particular examination. The input image was placed under

the folder named /Images and renamed to match the predefined naming convention. A patient

named A01 that had three separate examinations, with two scans during each examination,

would then result in six separate NIfTI files named {A01 scan1.nii, ..., A01 scan6.nii}. The

corresponding segboxes were given the same name, stored in another folder named /Boxes.

The original dataset contained multiple images, which only comprised of a few slices, whereas

other images consisted of multiple scans stacked on top of each other. We discarded images

where only a fraction of the lung was visible, or if the image consisted of either multiple stacked

scans or full-body scans. This was done by calculating the real-world length of each image, by

multiplying the voxel spacing in the Z-axis with the number of slices in the image, and then filter

out images shorter than 16 cm and longer than 60 cm. This interval was selected by inspecting

the dataset. No CT image contained lungs that measured more than 60 cm or less than 16 cm

in the Z-axis.

3.2 Data Preprocessing

This section corresponds to step two in the overall method, where two different

preprocessing pipelines are described. One for preprocessing the images fed to the

teacher, named Teacher-Pipeline. The other for preprocessing the images fed to

the students, named Student Pipeline.

3.2.1 Teacher-Pipeline: Tumor Cropped Images

Cropping around the Tumor

Given the existing hardware constraints regarding GPU memory, it was not possible to feed the

entire CT scan to teacher network used in this project. During the development of the teacher

network, it became clear that downsampling the images significantly degraded performance in

terms of DSC. As the tumors can be small, it is compelling to keep as much of the details

available to the network as possible. There are two obvious ways of dealing with the resolution

issue. One is to downsample the image to a size that fits into the GPU memory. The other is

to crop around the tumor. The latter strategy often yields false positives when the algorithm
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is applied to new data, but since the teacher network always has the segboxes available, we

assumed it would learn to discard tumor-like objects outside the segbox. Based on experiments,

it was decided to use the cropping technique when training the teacher.

As briefly mentioned in section 2.1.3, the CT scans have different voxel spacings. This means

that two tumors that are both 25×25×25 voxels on two individual images, might have different

dimensions in the real world. When the teacher model was trained and applied, it was a desire

that all images appeared as they were in the real world to the network. This was achieved by

interpolating the images by trilinear interpolation. They were interpolated such that that each

image had a voxel spacing of (0.7× 0.7× 0.7) mm3. This means that it was 0.7 mm distance

to all orthogonal neighboring voxels between the center of each voxel. The voxel spacing was

chosen by inspecting the dataset and observing that the images with the smallest voxel spacing

were around 0.7 mm. The finer details of high-resolution images were preserved by choosing a

low voxel spacing, whereas images with higher voxel spacing were simply scaled up with no loss

of detail.

After the images were interpolated to the correct voxel spacing, they were cropped around the

tumor. The center of each tumor was calculated using the segboxes and finding the center of the

segbox in each axis. This was done by finding the minimum and maximum value of the segbox

in each axis and then finding the center. It was not the center of mass that was calculated,

but rather a suitable center for cropping the image. The image was then cropped around this

center, such that it measured 128 voxels in each dimension, resulting in a 128×128×128 image.

Figure 3.4 shows the whole procedure.

Figure 3.4: Voxel Normalize, Crop and Center Procedure. Conceptual illustration of how
a CT image with arbitrary voxel spacings and dimensions are first normalized with respect
to voxel spacing, then cropped around the tumor. The resulting 3D image is a 128× 128×
128 voxel image with voxel spacing 0.7mm in all dimensions. The figure might give the
impression that the image is cropped through the center of the tumor in the axial plane,
this is not the case. The figure is cropped this way to show the tumor and illustrate the
procedure.

When the formatted images were fed to the network, the full resolution of the tumor was available

to the network, and because of the assisting supervision of the bounding boxes, the hypothesis

is that false positives should be reduced.

In addition to cropping the tumor, other transforms were applied before the image was fed to

the teacher. All voxels that had an intensity value lower than −1024 were changed to the

value −1024. In theory, −1024 should be the lowest value, indicating the presence of air in

that particular area. This step was performed to remove voxels that might have been artificially

added during scanning. We also applied an upper threshold for the voxel values. We set this

upper limit to 1000, such that any voxel value with an intensity higher than 1000 was set to

1000. It is common to perform thresholding like this to filter artifacts that are not relevant to
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finding tumors. These artifacts might be noise from the scan, metal structures from medical

equipment, or metal structures in the body as a result of previous operations on the patient.

After the image was adjusted, according to upper and lower intensity thresholds, it was intensity

standardized. It was standardized with the Z-score Normalization method. Each voxel had its

intensity value subtracted by the mean intensity in the image, before the resulting value was

divided by the standard deviation of voxel intensities in the image.

Relocate and Paste Tumor Mask

When the network is fed the cropped image, it also produces an output that correlates to the

cropped input. If this output should be used as a GT for the original image, it must be placed

in the correct location of an image with the same voxel spacing and dimensions as the original

image.

During the crop and center procedure, three parameters were stored along with each cropped

image. The first parameter was the dimensions of the original image before it is voxel spacing

normalized. The second was the dimensions of the image after it is voxel spacing normalized.

The last parameter was the center of the cropped image, relative to the voxel spacing normalized

image. With these three parameters, it was possible to create an image with the exact same

resolution as the original image, and locate where the center of the cropped image aligns with

the center of the cropped region in the original image.

The procedure is the reverse of the crop and center procedure. First, an empty image with a

resolution equal to the voxel normalized original image was created. Then, the center in this

image, where the cropped output should be aligned, was calculated. The cropped output was

then pasted into this location in the voxel normalized full resolution image. Remember that the

cropped output was already voxel normalized from the crop and center procedure, and thus the

voxel spacing of the cropped output and the full resolution placeholder image were the same.

Finally, the complete image was interpolated back into the original resolution using trilinear

interpolation; the same interpolation that was performed when voxel spacing normalizing was

performed in the crop and center procedure. This resulted in the cropped output from the

network being placed in the correct location in the full resolution image. Hence, the output

could be used as GT for the original image.

3.2.2 Student Pipeline: Separate Lung Cropped Images

The cropping around the tumor, is an appealing strategy for a semi-automatic method, where

the tumor’s location is known in advance. For a fully automatic method, however, the tumor

location is unknown beforehand. Therefore, it is not possible to crop around it. In addition to this

fundamental problem, there is another concept that needs to be considered. When inspecting

a CT scan, it is hard to separate tumors from other tissues with similar voxel intensities, like

bronchial branches, unless global information is taken into consideration. Therefore, if a fully

automatic model were trained on cropped images, and applied in a sliding window fashion across

the whole image, it would likely run into problems regarding false positives. The model depends

on global information, the context around the tumor, to recognize that it is, in fact, a tumor and

not part of a healthy tissue. With these two problems in mind, the conclusion is that cropping

high-resolution images around the tumor is practically impossible.

The issue with high memory footprint when feeding the whole image remains. Even though

cropping around the tumor is not a possibility, cropping the lungs is a viable strategy. Given
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that it is possible to accurately locate the borders of the lungs and crop around them, the image

size can be drastically reduced by removing air around the patient and even parts of the body

that is not within the volume where the lungs are located. It is also possible to take this a step

further. Finding a tumor in the left lung is arguably not dependent on information in the right

lung. Given this assumption, an image can be cropped around each lung, respectively, resulting

in two images that can be processed individually and almost reducing the image size by 50%.

Computing the border of the lungs is not a straightforward task, however. Luckily it is a

task that can be said to be solved by other developers, at least within the precision required

for our purpose. To locate the lung locations, a third-party GitHub repository developed by

Hofmanninger et al. [54] was used. Their inference pipeline is open source and comes with

pre-trained models available for anyone to use3.

The overall procedure is similar to the one used when cropping around the tumor. The fun-

damental difference is that the lung mask generated using Hofmanninger et al.’s algorithm is

used to crop the image, rather than the center of the segboxes. The procedure is illustrated in

figure 3.5.

Figure 3.5: The Crop-Around-Lungs Procedure

The process starts by generating a lung mask for each lung given the original CT image (see

figure 3.5). The produced masks were then used to find the minimum and maximum intensity

values in each axis, to determine a 3D box that tightly encapsulates each lung. These boxes were

then used to create a new image, resulting from cropping around each lung, given the extreme

values generated from the lung mask. At this point, the original image had been cropped around

the lungs and split into two individual images, each containing one of the lungs.

The images were then voxel normalized. Segmentation masks and segboxes were naturally

cropped and normalized the same way as the image, such that they were aligned. The final step

was to pad the image such that our models could accept it. In the tumor cropping procedure in

the Teacher-Pipeline, the final resolution was hardcoded to 128× 128× 128 voxels. Different

patients may have different lung sizes, resulting in different image resolutions after performing

voxel spacing. If the resulting images were interpolated into a fixed resolution, this would

effectively eliminate the voxel normalization, and then the models would not receive the lungs

as they appear in the real world. However, the images cannot have an arbitrary resolution,

because the models perform convolutions and poolings requiring the input to be divisible by a

certain number. It was decided to pad all the images such that they were divisible by 16 in every

dimension, which is equivalent to saying that our models can perform up to four poolings, where

3https://github.com/JoHof/lungmask
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the resolution is halved each time. The padding was performed by simply adding voxels in each

axis until the image was divisible by 16. The voxels added were padded with a zero constant

around the original edge. This was done using the python package numpy.

The same intensity transforms, as applied to the teacher data, were applied to the lung-cropped

images. The intensity thresholding was performed before the padding, such that the padded

values were set to zero after the intensity normalization was performed.

3.3 The Teacher - A Semi-automatic Annotator

The teacher’s task is to produce accurate semantic segmentation annotations from

the dataset that has bounding box annotations. These segmentations will, in turn,

be used to train the students. The teacher helps expand the available data used to

train the students. It is able to create accurate annotations by utilizing the extra

input from the bounding box dataset. The tumor location is information that a fully automatic

model would not have access to. Due to this additional information, the teacher is able to

achieve accuracies that no state-of-the-art, fully automatic model can achieve. One can say that

the teacher cheats to help the students later on. This section corresponds to step three in the

overall method shown in figure 3.1. The teacher is also interesting as a semi-automatic method.

It takes less effort to annotate the tumor with bounding boxes than with masks, potentially

saving time.

3.3.1 Architecture

The teacher architecture is based on a residual U-Net variant, developed by Kerfoot et al. [55].

MONAI offers the basic building blocks of this architecture. Slight adjustments concerning

depth and the number of input filters were made to fit our needs. The architecture expects a

two channeled input; the normalized CT image and the segboxes that indicate the location of

the tumor. Figure 3.6 show an overview of the architecture. Unlike the original U-Net, it per-

forms downsampling by using convolutional layers with a stride, rather than pooling operations.

Apart from the final part of the network, PReLU is used as the activation function after every

convolutional layer. In the final part of the network, the sigmoid activation is used. The number

of filters in each layer was decided through experiments and by using the standard method of

doubling the number of filters in each layer.

Although this network can accept inputs of any size divisible by eight in all dimensions, it is

designed with a resolution of 128 × 128 × 128 in mind. The network is designed to work with

data that has been preprocessed by the Teacher-Pipeline. The model contains 9.54M trainable

parameters. It requires approximately ∼ 1.64 GB VRAM during inference, on an image with

resolution of 128× 128× 128 voxels.
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Figure 3.6: Teacher Architectural Design

3.3.2 Training the Teacher

Data & Preprocessing

The teacher was trained on two datasets: the MSD dataset and the Radiomics dataset. Table 3.2

shows how the datasets were split into training and validation. The dataset is not ordered in

any particular way. The images selected for each split were selected at random. The dataset

splits were balanced with respect to tumor volume. Some images occurred multiple times within

one epoch to balance the train and validation sets. The three sets were non-overlapping. The

datasets were balanced such that that the network would learn to recognize a wide range of

tumor sizes. All images used during the training of the teacher were preprocessed through the

Teacher-Pipeline.

Table 3.2: Dataset Splits during training of the Teacher. Numbers in parentheses indicates
how many unique images there is in each set. Numbers outside parentheses shows the image
count after balancing.

Dataset Train Set Validation Set Test Set
MSD 61 (45) 9 (9) 9 (9)
Radiomics 445 (296) 62 (62) 63 (63)
Total 506 (341) 71 (71) 72 (72)

Peripheral Configurations

Dice loss was chosen as the loss function for computing the gradients during training. The

PyTorch framework MONAI contains an implementation of dice loss, which is compatible with

the tensors in PyTorch. Dice loss was chosen because of its ability to withstand highly imbalanced

data, which is common in medical tasks.

To adjust the weights of the network, the ADAM optimizer was selected. We used ADAM as it is

robust and because experimenting with optimizers is outside the scope of this thesis. The learning

rate was selected by trial and error. We ended up using a learning rate of α = 1× 10−4. The

batch size was set to one because it was a desire to be able to use the same training loop for

both the teacher and the students. Since the students can handle images with varying resolution

it was not possible to batch the images. Since the batch size was set to one, we did not get the
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speed advantage of feeding multiple images to the network simultaneously. However, to ensure

more stable progress during training, we implemented an accumulating gradients system. The

accumulating batch size was set to eight.

Training Phase

The model was trained on Idun, a powerful machine whose hardware is documented in section 3.8.

During this particular training, approximately ∼ 2.17 GB VRAM was used. During training, the

model was validated on the validation set after every epoch. During the validation, the dice

loss was calculated in addition to DSC. Before DSC was calculated, a threshold was applied

to the output so that the output was a binary mask with zero and one value. The threshold

value was set to 0.5, such that outputs above this threshold were interpreted as predicted tumor

voxels. The dice loss was calculated on the model’s raw output; before thresholding is applied

to the intensity values. After every validation, the current model was compared to the previously

best performing model, which means the model with the lowest validation loss. The best model

was always stored on disk as model best.pth, whereas the last model was always stored as

model last.pth.

After every weight adjustment, the training and validation loss were logged to a file. This enabled

monitoring of the progress during training. If we observed that the validation loss was reaching

a level where it did not improve after 20 epochs, the training was stopped.

3.4 Expanding the Dataset - Applying the Teacher

After the teacher model was trained, it was ready to expand the strongly anno-

tated dataset given weak labels. This section corresponds to step four in the overall

method. The Lung-Dx dataset had been formatted through the Teacher-Pipeline.

This formatted dataset contained CT images with corresponding segboxes. In ad-

dition, the images and segboxes had been cropped around the tumor as explained in section 3.2.

The teacher was then applied to perform inference on the images. The images and the segboxes,

were fed as input to the model. The model produced a 3D segmentation with resolution 128×
128×128. Normally, it would be applied a threshold to the network’s output, forcing the output

to be either one or zero, forming a 3D mask of the tumor. However, it was desired to keep the

soft output of the network as the GT for the students. The idea behind this is to embed the

uncertainty of the teacher into the annotations. If the teacher has a lower confidence in whether

a voxel was part of the tumor or not, this uncertainty should be reflected when training the

students as well. If the teacher is used as a standalone semi-automatic method, the network’s

output should be thresholded to one or zero. The original images in the dataset have resolution

512 × 512 × Z, and the output of the network has a resolution 128 × 128 × 128. The output

was rearranged to fit into the original resolution, with the segmentation placed at the correct

location.

Initially, we had 484 segmentation annotated lung tumors available through the MSD and Ra-

diomics datasets. By applying the teacher model to the formatted Lung-Dx dataset, the available

data was expanded with an additional 628 images, resulting in a total amount of 1112 images.

Even though only 484 of them are labeled by human experts, the idea is that the 628 others are

labeled good enough that the increased training data will be more important than the lack of

precision.
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In the Lung-Dx dataset, there are several images belonging to each patient in the study. It is

reasonable to believe that the tumor has changed slightly between each examination, given that

the tumors in the dataset are malignant. Therefore all images were kept in the dataset, meaning

some tumors are present more than once. Images were stratified at patient-level for the Test,

Train, or Validation set. No patient was present in two or more categories to ensure that the

results are valid.

3.5 The Student - A fully Automatic Method

The student is the fully automatic model that takes single channeled CT images as

input, and produces a single channeled output masking the eventual lung tumor.

Implementing and training of the student, corresponds to step five in the overall

method shown in figure 3.1.

The student was trained on both the human-made segmentation labels and the soft labels

generated by the teacher. As opposed to the teacher, the student only receives one channeled

input, which is the image. The images the student receive were cropped around the lungs,

preprocessed by the Student Pipeline.

The idea is that the student will achieve better performance, than a comparable U-Net trained

solely on human-labeled data. The hypothesis is that since the student has more available

data, because of the soft labeled data annotated by the teacher, the performance will increase

compared to a model trained only on the available expert-annotated data.

3.5.1 Architecture

There are two different architectures implemented for the student in this project. One is called

Single-Channel Student (SC Student) and is identical to the MONAI implemented U-Net with

one input channel and one output channel. The other is called Dual-Channel Student (DC

Student) and is different from the standard MONAI U-Net.

Both these students and the teacher share the same building blocks like activation functions,

normalization layers, and convolutional layers. When comparing the teacher architecture in

figure 3.6 and the architecture of the two students in figure 3.7 and figure 3.8, these similarities

can be observed. One of the differences is that the teacher architecture has four layers with three

down-samplings of the resolution, whereas both student architectures have five layers with four

down-samplings of resolution. From experiments we observed that four layers were sufficient for

the teacher to process 128 × 128 × 128 images. The students are designed to process larger

images. Through experiments we discovered that adding a layer was beneficial for the student

models.

The difference between the students are related to the input and output channels of the networks.

Since the students does not get any bounding boxes to help locate the tumors, both student

architectures only have a single input channel. However, the two student architectures differ in

the decoder part of the network, as can be seen in the figures. The SC Student has one output

channel, as the teacher had, whereas the DC Student has two output channels. One of the

channels of the DC Student is predicting the tumor segmentation, whereas the other is predicting

the segbox of the tumor. The DC Student architecture contains two separate decoder branches,

as can be seen in the figure 3.8. The first branch learns to decode the tumor segmentation,

whereas the second branch decodes the tumor segbox. The idea behind this separation is that
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the second branch can facilitate tumor detection and location learning, because both branches

share the same encoder. During training, GT masks were used to backpropagate the first branch,

whereas segbox annotations were used to backpropagate the second. However, both types of

labels were used for backpropagating the encoder part of the network. The branch creating

segboxes can focus more on finding the tumors’ whereabouts, and during this process, the

encoder is trained to encode the relevant properties better as well. The first branch will focus on

making a segmentation as good as possible, which is the primary task that shares many features

with the auxiliary task, meaning it can benefit from an encoder that can encode the relevant

features. When the DC Student performs inference, only the output from the segmentation

branch is relevant.

Figure 3.7: SC Student Architectural Design

Figure 3.8: DC Student Architectural Design

The implementation of DC Student is inspired by the student architecture found in the paper

published by Sun et al. [41]. However, there are some differences between our implementation

and theirs. The biggest difference being that our DC Student architecture has two completely

separate decoders, whereas Sun et al. proposed an architecture where most of the decoder is
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shared between the segmentation task and bounding box task. Their architecture shares more

similarities with the original U-Net network, where they use pooling operation, whereas our

networks uses convolutional layers with stride for downsampling.

3.5.2 Training the Student

Data & Preprocessing

The teacher was trained on two of the available datasets, and the students was trained on all

three datasets. Table 3.3 shows the dataset split. The datasets were balanced with regards to

tumor volume. Before the images were passed to the students, they were preprocessed through

the Student Pipeline. The images in the MSD and Radiomics datasets had expert-labeled

annotations used as ground truth during the student’s training. The soft labels generated by

the teacher were used as ground truth labels for the images in the LungDx dataset.

The test images selected for the student were the same images selected for the teacher’s test set,

but preprocessed through the Student Pipeline. The validation images were not the same as

the corresponding validation images used during the training of the teacher. They were randomly

sampled and balanced with regards to tumor volume. They were sampled the same way as the

teacher’s train set was sampled. Because of the additional LungDx images, the sample resulted

in a different training set than what was used to train the teacher.

Table 3.3: Dataset Splits during training of the Student. Numbers in parentheses indicates
how many unique images there is in each set. Numbers outside parentheses shows the image
count after balancing.

Dataset Train Set Validation Set Test Set
MSD 61 (45) 9 (9) 9 (9)
Radiomics 445 (296) 62 (62) 63 (63)
LungDx 760 (513) 115 (115) 0 (0)
Total 1266 (854) 186 (186) 72 (72)

Peripheral Configurations

The MONAI dice loss implementation was chosen as the loss function. The ADAM optimizer

was selected as the optimizer for the students. A learning rate of α = 3× 10−4 was initially

used for the students. This learning rate is higher than the learning rate used by the teacher.

When the validation DSC stopped increasing, the learning rate was lowered to α = 1× 10−4.

Training Phase

The training of the student used more VRAM than the training of the teacher, up to ∼ 22.54

GB VRAM. However, this is dependent on the size of the images in the dataset and which of

the student architecture used, where the DC Student was the most memory intensive.

The training of the students shares many of the characteristics as to how the teacher was trained.

A threshold value of 0.5 was used when calculating DSC. After each validation, the current model

was compared with the previous best model with respect to DSC; if the current was better, it

was stored on disk as the currently best. The model was seen fully trained when the validation

DSC converged after already lowering the learning rate once. The student models were trained

on the Bohaga machine, which is specified in section 3.8.
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3.6 Training on Sparse Data

To investigate research question three, we constructed an experiment where we artificially de-

creased the size of strongly labeled data. Initially, we had 484 strongly annotated images and an

additional 628 weakly annotated images. To check how the Teacher-Student Framework per-

forms in extreme cases, we artificially shrunk the strongly labeled dataset to 48 images. These

48 images were picked semi-random from the MSD and Radiomics datasets. They were picked

semi-random in the sense that they were picked randomly but balanced according to tumor vol-

ume. We picked six images from each bucket seen in figure 3.2, this way, the training data is

balanced with respect to tumor size. The 72 images used for testing the teacher and the stu-

dents mentioned previously were kept in the test set during this experiment too. The remaining

992 images were treated like weakly annotated images, that is, images where only the CT and

segbox images are present. From the 48 images, one image from each bucket was appointed to

the validation set; the remaining 40 were placed in the training set.

The overall method shown in figure 3.1 was used during this experiment. First, a teacher was

trained, then it was used to expand the dataset by performing inference on the weakly annotated

data, and finally, students were trained on the expanded dataset.

Training the Teacher

The teacher was trained on the 40 strongly labeled data. Table 3.4 shows how the dataset was

distributed between train, validation, and test sets. It was trained the same way as other teacher

that used all the available strongly labeled data. The results of training the teacher on sparse

data are available in section 4.3.

Table 3.4: Dataset Splits during training of Teacher on Sparse Data. Originally refers to
the data used to train the teacher in section 3.3.2. Numbers in parentheses indicates how
many unique images there is in each set. Numbers outside parentheses shows the image
count after balancing.

Train Set Validation Set Test Set
Originally 506 (341) 71 (71) 72 (72)
Sparse (this) 40 (40) 8 (8) 72 (72)

Expanding the Dataset

When the teacher was fully trained, we used it to expand the dataset. The teacher performed

inference on all the remaining 992 images as if they were weakly labeled. The inferred annotations

were formatted to fit the original image resolution, and ready to be used during the training of

the students.

Training the Student

The students were trained on lung-cropped images generated by the Student Pipeline. The

students were trained on all the images generated from the teacher and the strongly annotated

images. It was trained using the same configurations as the students previously described. The

dataset splits used during the student’s training are shown in table 3.5.
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Table 3.5: Dataset Splits during training of Student on Sparse Data. Numbers in parentheses
indicates how many unique images there is in each set. Numbers outside parentheses shows
the image count after balancing.

Train Set Validation Set Test Set
Strong Labels 40 (40) 8 (8) 72 (72)
Teacher Soft Labels 1002 (812) 180 (180) 0 (0)
Total 1042 (852) 188 (188) 72 (72)

The architecture of the teacher and the students, and the way they were trained, are the same as

in the previous sections. The principle in this experiment is to shift the balance between strongly

and weakly labeled images to answer research question three. The results from this experiment

is available in section 4.3.

3.7 Post-Processing

A simple post-processing method was implemented to process the output of the models. MONAI

offers a function that removes all but the largest connected component in a 3D array. The post-

processing method was used to remove noise in the models’ output. It is only used during

the testing of the models. The models are evaluated both before and after post-processing.

Figure 3.9 shows an example of how the output is post-processed.

Figure 3.9: The Post-Processing Method. The image shows the output of a network before
and after the post-processing is applied.

3.8 Hardware & Software

The development was performed on conventional desktop machines. Debugging, data format-

ting, and training were performed on powerful computers. We had access to three different

machines during this thesis. Most of the training was conducted on either Idun or Bohaga.

Idun is a state-of-the-art computer cluster maintained by NTNU’s High Performance Computing
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Group [56]. The cluster is equipped with multiple nodes with different hardware. In this project,

nodes with a Nvidia Tesla V100 GPU with 32 GB VRAM were used. Even though 768 GB RAM

is available, only the necessary memory is allocated during the reservation of the node. The

allocation was performed manually using a job batching system.

Bohaga is a conventional computer running the Linux Mint operating system, equipped with

two powerful GPUs. NTNU AI Lab allowed us to use one of their machines for debugging and

data formatting purposes4. This machine is named Malvik and is also equipped with powerful

hardware. A summary of the specifications of all three machines can be seen in table 3.6.

Table 3.6: Hardware Specifications

Machine Device Details

Idun
GPU Nvidia Tesla V100, 32GB
CPU Intel Xeon Gold 6148, 20 core 2.4GHz
RAM 768GB

Bohaga
GPU Nvidia RTX 8000, 48GB
CPU Intel Core i9 10940X, 14 core 3.3GHz
RAM 128GB

Malvik
GPU Nvidia Tesla V100, 32GB
CPU Intel Xeon Gold 6132, 14 core 2.6GHz
RAM 768GB

The project was implemented using Python 3.9.1. The most central libraries used is specified

in table 3.7. The complete list of python requirements is available in the Github repository5.

To inspect the data and to qualitatively evaluate the results we used ITK-Snap [9], a software

capable of viewing medical images and render the masks in 3D.

Table 3.7: The most Important Python Libraries used

Library Version
Torch 1.7.0

Numpy 1.17.2
MONAI 0.4.0

Hofmanninger et al.’s Lungmask6 0.2.9

3.9 Model Evaluation

Evaluation Metrics

The models were evaluated using five different metrics; DSC, DSC-TP, F1 Score, and Precision

and Recall. DSC-TP is simply the DSC calculated only on the objects regarded as true positives.

If a model perfectly segments a tumor, but also segments an other part of the CT, then the

DSC would take a hit, but the DSC-TP would still be 1.0. This is an effective measure of how

well the model performs segmentation when it first detects the tumor. F1 Score is a metric

that balances precision and recall, which are already discussed in the background chapter. The

F1 Score metric is calculated from positives and negatives as shown in equation (3.1). In some

4https://www.ntnu.edu/ailab
5https://github.com/VemundFredriksen/lungtumormask
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literature, the metrics are presented in the range 0.0 to 1.0, like the equations suggests. We

present the metrics in the range 0.0 to 100.0, effectively removing the insignificant, leading zero.

F1 =
2TP

2TP + (FP + FN)
(3.1)

We evaluated DSC and DSC-TP on voxel level and Precision, Recall and F1 Score on patient-

level. A recall of 100.0 does not mean that our model found every single voxel, but that it found

every single tumor in every single patient. A mask is regarded as a true positive if the mask

overlaps the ground truth by more than 25%. Before positives and negatives were calculated,

small masks were discarded. Small grains of singular voxels would have had a big impact on the

FP count and will never be the tumor. We discarded all predictions smaller than 100 mm3.

When the teacher is evaluated, only voxel-level metrics are considered. Because the tumor is

already located, tumor-level metrics are not interesting to measure for these models.

Test Data

The models were evaluated on the same test set, regardless of experiment. The test set comprised

of 72 images in total; 9 images from the MSD dataset and 63 from the Radiomics dataset. It

was balanced with respect to tumor size.

When evaluating the models, they were evaluated and discussed on each dataset isolated. The

Radiomics dataset is ∼ 7 times larger than the MSD dataset. Therefore, the combined result of

both dataset would be biased towards the Radiomics dataset.
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CHAPTER 4

RESULTS

This chapter is divided into three parts. These parts can be regarded as three separate ex-

periments conducted to evaluate the models, and to answer the research questions. In each

experiment, the relevant quantitative metrics are presented in addition to sample images that

are relevant to qualitatively evaluate the models.

In section 4.1, the baseline model is called U-Net, which is a U-Net model trained on cropped

images, but only recieved the CT image as input. Teacher is the model that recieves both

the CT image and segboxes as input. In section 4.2 and section 4.3, the model named U-Net

is a baseline U-Net model, which is only trained on strongly annotated data from MSD and

Radiomics. The SC Student and the DC Student are previously covered.

4.1 The Teacher as a Semi-Automatic Method

As can be seen in table 4.1, the U-Net model achieves a DSC of 74.78, whereas the teacher

achieved a DSC of 84.91 on the MSD testset. The difference between the two models were

more evident on the Radiomics dataset, where the U-Net achieved a DSC of 59.57, wheras the

teacher achieved 86.65. Post-processing improved the DSC for both models on both datasets.

Table 4.1: Teacher Results. The best performing model with respect to mean DSC is
highlighted in bold. The model is evaluate without and with post-processing (w/post)

Dataset Model DSC

MSD

U-Net 74.78± 11.83
U-Net w/post 75.54± 11.54
Teacher 84.91± 06.09
Teacher w/post 84.92± 06.08

Radiomics

U-Net 59.57± 23.90
U-Net w/post 61.70± 26.03
Teacher 86.65± 08.77
Teacher w/post 87.17± 05.56

Both

U-Net 61.48± 23.29
U-Net w/post 63.43± 25.11
Teacher 86.44± 08.50
Teacher w/post 86.89± 05.42
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Figure 4.1 shows examples from the test set. All figures show predictions before post-processing.

The results on some of the images, denoted MSD 27, Radiomics 89, and Radiomics 223 in the

figure, are somewhat representative for the teacher, but there are cases where the teacher

struggles, such as MSD 42 and Radiomics 200. MSD 27 is image number 27 in the MSD

dataset, the other samples in the figures are named accordingly.

Figure 4.1: Teacher Result Samples in the Axial Plane. The top row shows the image,
followed by the segbox and the label. The baseline model output and teacher output are
shown in the last two rows.

4.2 The Student as a Fully Automatic Method

The essence of the results of this experiment is that the three models perform on a similar level

in terms of the metrics used to evaluate them. All three models consistently performed better

on the MSD dataset, than the Radiomics dataset.

In more detail, it can be observed from the table that the U-Net model performed best on the

MSD dataset and achieved a DSC of 67.31. All models performed poorer in terms of DSC on the

Radiomics dataset. The SC Student was the best student network and achieved a DSC of 52.92

on the Radiomics dataset. Post-processing degraded the DSC for all models on both datasets.

The U-Net achieved the highest DSC-TP on the MSD dataset, with a DSC-TP of 73.12. For all

models, on both datasets, post-processing had negligible effect on DSC-TP. The largest effect
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was observed from the best performing model on the Radiomics dataset, the SC Student, with

an improved DSC-TP of 69.97 from 69.39. The model that achieved the highest DSC also

achieved the highest DSC-TP.

For the object detection metrics: F1 Score, recall, and precision, the performance was better

overall on the MSD dataset. The U-Net and SC Student achieved the highest F1 Score of

88.89 after post-processing on the MSD dataset. Post-processing did not affect recall on the

MSD dataset, but improved precision. A similar trend was observed on the Radiomics dataset.

Post-processing improved F1 and precision for the best performing models. The best model

was the SC Student which achieved an F1 of 72.79, whereas the U-Net achieved a lower F1 of

72.06. However, the U-Net achived the highest recall of 83.82 before post-processing, whereas

the SC Student had the best precision of 73.53 after post-processing. Overall, no benefit of

post-processing in terms of recall was observed, whereas both precision and F1 Score always

benefited from post-processing.

Table 4.2: Student Results. For each respective metric, the best performing models are highlighted in bold.

Dataset Model DSC DSC-TP F1 Score Recall Precision

MSD

U-Net 67.31± 21.17 73.12± 15.16 81.48± 31.86 88.89± 31.43 77.78±34.25
U-Net w/post 64.99± 27.06 73.12± 15.16 88.89± 31.43 88.89± 31.43 88.89± 31.43
SC Student 64.27± 16.05 71.32± 8.06 81.48± 31.86 88.89± 31.43 77.78±34.25
SC Student w/post 63.40± 23.67 71.32± 8.06 88.89± 31.43 88.89± 31.43 88.89± 31.43
DC Student 55.37± 29.03 70.49± 8.82 74.07± 40.91 77.78± 41.57 72.22±41.57
DC Student w/post 54.83± 30.32 70.49± 8.82 77.78± 41.57 77.78± 41.57 77.78±41.57

Radiomics

U-Net 51.06± 28.22 68.81± 18.27 63.56± 36.36 83.82± 36.82 56.68±38.65
U-Net w/post 50.07± 32.74 67.73± 18.35 72.06± 44.87 72.06± 44.87 72.06±44.87
SC Student 52.92± 31.13 69.39± 19.21 64.18± 37.37 79.90± 39.66 58.76±39.28
SC Student w/post 51.76± 34.39 69.97± 18.7 72.79± 44.09 72.55± 44.26 73.53± 44.12
DC Student 52.25± 30.18 68.69± 19.47 68.43± 38.71 79.17± 39.75 64.95±40.81
DC Student w/post 50.88± 33.94 69.39± 20.00 69.85± 45.49 69.61± 45.64 70.59±45.56

Both

U-Net 52.96± 27.98 69.34± 17.97 65.66± 36.32 84.41± 36.27 59.14±38.76
U-Net w/post 51.82± 32.49 68.49± 18.03 74.03± 43.85 74.03± 43.85 74.03±43.85
SC Student 54.25± 29.99 69.63± 18.19 66.20± 37.19 80.95± 38.90 60.98±39.21
SC Student w/post 53.12± 33.52 70.16± 17.63 74.67± 43.11 74.46± 43.28 75.32± 43.11
DC Student 52.61± 30.06 68.90± 18.59 69.09± 39.02 79.00± 39.97 65.80±40.97
DC Student w/post 51.34± 33.56 69.53± 18.95 70.78± 45.12 70.56± 45.26 71.43±45.17

Figure 4.2 shows a selection of cases from the test set, with corresponding labels and output

from the three models. The images were slices from the axial plane, except MSD 42 which was

extracted from the sagittal plane. Figure 4.3 shows the 3D rendered output of the corresponding

images shown in figure 4.2. The 3D rendered output reveals false positives that cannot be seen

in a single axial slice.

In some of the images all three models produced similar images, such as MSD 27, MSD 78

and Radiomics 154. In image MSD 42 the U-Net and SC Student produced similar images and

the DC Student produce a different image. Sometimes, the students produced similar results

whereas the U-Net produced a different mask, seen in Radiomics 332 and Radiomics 422.
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Figure 4.2: Student Result Sample. Example cases are shown column-wise. The input
image is seen in the top row, followed by the segbox, GT and the three model outputs. The
images were cropped around the tumour for illustrative reasons.
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Figure 4.3: 3D Render of Student Result Sample. A 3D render of the corresponding samples
shown in figure 4.2. For each image, the camera position and zoom are stationary between
the outputs, such that they can be easily compared.

4.3 Sparsely Trained Models

Sparse Teacher Results

The takeaway of the results related to the sparsely trained teacher it performed on a similar level

as the teacher in the first experiment, whereas the sparsely trained baseline U-Net performed

worse when the baseline trained on all available data. The difference between the two sparsely

trained models are larger than the difference between the two semi-automatic models previously

presented.

Table 4.3 shows the results of the sparsely trained teacher. The baseline U-Net achieved a DSC

of 48.52 on the MSD dataset and 43.84 on the Radiomics dataset. The teacher outperformed

the baseline on both dataset with a DSC of 81.65 and 84.69 on the MSD and the Radiomics

datasets, respectively.
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Table 4.3: Sparsely Trained Teacher Results. The best performing model with respect to
mean DSC is highlighted in bold.

Dataset Model DSC

MSD

Sparse U-Net 48.52± 31.18
Sparse U-Net w/post 43.51± 35.41
Sparse Teacher 81.65± 07.40
Sparse Teacher w/post 81.65± 07.40

Radiomics

Sparse U-Net 43.83± 25.65
Sparse U-Net w/post 44.56± 27.54
Sparse Teacher 84.69± 06.59
Sparse Teacher w/post 84.60± 06.68

Both

Sparse U-Net 44.42± 26.45
Sparse U-Net w/post 44.43± 28.65
Sparse Teacher 84.31± 06.77
Sparse Teacher w/post 84.23± 06.84

Figure 4.4 shows a sample of the outputs produced by the U-Net and the teacher, respectively.

The sparsely trained teacher has similarities with the teacher from the first experiment. The

U-Net performs poor compared to the Teacher. One example of this poor performance can be

observed in MSD 27. Here the U-Net has missed part of the tumor, whereas the teachers mask

closely resembles the label. In Radiomics 89, the U-Net model completely ignores the tumor,

whereas the teacher detected it.
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Figure 4.4: Sparse Teacher Result Sample in the Axial Plane.

Sparse Student Results

The essence of of the result of this experiment is that the sparsely trained students performed

better than the sparsely trained U-Net model. The difference between the sparsely trained models

are greater than the difference between the previously discussed students.

Table 4.4 shows the results of the student models trained on the sparse data. The U-Net model

that is trained on the 40 human-annotated images achieved the lowest DSC on both dataset.

All models performed similarly in terms of DSC-TP. Both recall and precision were poorer for

the U-Net compared with the students. The SC Student achieves a perfect F1 Score of 100.0

on the MSD dataset, whereas the DC Student achieved 88.89. The U-Net performed poorer

with an F1 Score of 09.10 before post-processing. A similar trend on the Radiomics dataset was

observed. However, the DC Student was the best performing student in terms of DSC and F1

Score on the Radiomics dataset, whereas on the MSD dataset the SC Student performed best.

53



Table 4.4: Sparsely Trained Student Results. For each respective metric, the best performing model is
highlighted in bold.

Dataset Model DSC DSC-TP F1 Score Recall Precision

MSD

U-Net 26.45± 26.56 75.24± 15.90 09.10± 13.26 33.33± 47.14 05.31±07.80
U-Net w/post 28.27± 35.55 75.24± 15.90 33.33± 47.14 33.33± 47.14 33.33±47.14
SC Student 64.74± 11.82 71.56± 10.40 61.85± 16.49 100.0± 0.00 47.22±20.79
SC Student w/post 71.56± 10.40 71.56± 10.40 100.0± 0.0 100.0± 0.0 100.0± 0.0
DC Student 71.00± 16.01 76.67± 07.08 85.18± 31.86 88.89± 31.43 83.33±33.33
DC Student w/post 68.15± 25.00 76.67± 07.08 88.89± 31.43 88.89± 31.43 88.89±31.43

Radiomics

U-Net 28.23± 28.05 55.39± 22.80 32.13± 36.99 51.47± 49.24 26.99±35.68
U-Net w/post 27.48± 30.85 53.94± 23.25 48.04± 49.63 47.79± 49.58 48.53±49.98
SC Student 51.06± 30.75 68.56± 20.69 62.65± 36.73 79.41± 39.51 56.67±38.79
SC Student w/post 50.05± 34.64 68.13± 21.46 71.57± 44.74 71.32± 44.82 72.06±44.87
DC Student 53.89± 29.75 67.44± 21.70 66.96± 35.57 84.56± 35.62 60.44±38.24
DC Student w/post 54.88± 32.22 67.22± 21.75 80.39± 39.29 80.15± 39.43 80.88± 39.32

Both

U-Net 28.02± 27.89 56.91± 22.96 29.44± 35.82 49.35± 49.34 24.45±34.35
U-Net w/post 27.58± 31.44 55.71± 23.48 46.32± 49.57 46.10± 49.52 46.75±49.89
SC Student 52.66± 29.51 68.98± 19.60 62.55± 34.98 81.82± 37.72 55.56±37.26
SC Student w/post 52.56± 33.47 68.66± 20.19 74.89± 43.03 74.67± 43.11 75.32±43.11
DC Student 55.89± 29.01 68.56± 20.71 69.09± 35.64 85.06± 35.18 63.12±38.41
DC Student w/post 56.43± 31.75 68.42± 20.72 81.38± 38.55 81.17± 38.68 81.82± 38.57

Figure 4.5 shows a sample of the output from the various models in the axial plane, except MSD

42 which is a slice in the sagittal plane. In MSD 27 and Radiomics 422, the U-Net partially

masks the tumor. However, they are more restrictive than the students’ masks. In the remaining

images, the masks produced by the U-Net is either empty, not masking the tumors or masking

small portions of the tumors, whereas the SC Student and the DC Student have similar masks.

Figure 4.6 shows the same images where the output is 3D rendered. It can be observed that

the U-Net produces large false positives for several of the images. Although false positives can

occur for the students, this effect is seen more seldom and the false positive tumors are usually

smaller.
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Figure 4.5: Sparse Student Result Sample
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Figure 4.6: 3D Render of Sparse Student Result Sample
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CHAPTER 5

DISCUSSION

In this thesis, we have explored the potential of a Teacher-Student Framework to improve the

performance of automatic lung tumor segmentation models on CT images. We have conducted

three separate experiments to address the research questions presented in the introduction. We

found that introducing a Teacher-Student Framework did not have an effect when the imbalance

between strongly and weakly labeled data was small, but that the effect was evident when the

imbalance was greater.

5.1 Domain & Dataset Discussion

5.1.1 Inter-Observer Annotator Variability

The ground truth is provided by the human experts to evaluate the models in this thesis. This

introduces a potential bias, as evaluation becomes dependent on the annotator. Annotating lung

tumors is challenging and is prone to high variability between annotators. This type of variance

is known as inter-observer annotator variability. As a result of this, it is infeasible to achieve

perfect DSC on the data used.

There are multiple studies that have investigated this problem; for instance in annotations of

prostate tumors from MR images [57] and annotations of brain tumors on CT and CT/PET-fused

images [58]. Both studies conclude that there are significant difference between the segmentation

annotations performed by different experts.

Figure 5.1 shows the annotations of two different tumors performed by two different experts.

The top row can be said to have had a more liberal annotation, whereas the bottom row has

a more conservative annotation. From these annotations, it is reasonable to assume that there

would be some disagreement on how to delineate the tumor, especially as the tumor grows into

tissue with similar intensities.
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Figure 5.1: Illustration of Segmentation Variability Between Experts. The top row shows a
tumor from the Radiomics dataset, whereas the bottom row shows a tumor from the MSD
dataset. A curvature has been drawn surrounding the tumor annotations for illustrative
reasons.

When evaluating our model, this effect must be taken into consideration. It is therefore not

realistic to reach a DSC of 100.0. If a model managed to achieve this, it would imply that

the model has learned to replicate the annotator, as the annotator is the gold standard. Even

if a model is found to perform slightly poorer, it does not necessarily mean that the model is

objectively worse, as the real ground truth is not available. Nonetheless, the annotations should

serve as a good indication on lung tumor segmentation performance.

5.1.2 Artifacts in Dataset

The quality of the datasets is mostly sound. However, by randomly extracting samples from the

dataset for inspection, some flaws were observed. As can be seen in figure 5.2, in the instance

named Erroneous orientation, one of the masks were stored with the wrong orientation. By

comparing the image and label in the sagittal view, it seems that the label has been flipped

around the axial plane.

The instance named Illogical Delineation, in the same figure, shows an example of a segmentation

that we doubt is correct. It is possible that the annotators had additional information when the

segmentation was performed, but it seems unlikely that the tumor has grown part of the bone

structure, as can be seen in the figure. With that being said, it is not for us to override the

experts’ annotations, but it is interesting to note these kinds of artifacts.
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Figure 5.2: Examples of Artifcats in the Datasets

The part in the figure that is labeled Unfinished Segmentation shows what seems to be a half-

performed segmentation. This scan is part of the Radiomics dataset. At least for the untrained

eye, it is hard to see why some parts of the tissue are labeled as tumor, whereas other parts

are not. It is however possible that the annotators had additional information available, like

PET-scans or similar. In general, we experienced that the annotations in the MSD dataset was

sound and consistent, and of much higher quality than the Radiomics dataset.

Although the vast majority of the images in the datasets are correctly labeled, there exist some

images with artifacts, like the ones shown in figure 5.2. However, to make evaluation comparable

to published papers, we chose to keep the dataset as is, as discarding potentially false or anomaly

cases would make the comparison biased.

5.1.3 Limitations of CT

Although CT images are mostly sufficiently informative to locate the tumor, there are scenarios

where the lack of information makes it challenging to separate the tumor tissue and the sur-

rounding tissue. It is therefore possible that some scenarios require supplementary information,

that CT is unable to capture. PET, MRI, or similar imaging techniques might be necessary to

accurately delineate the tumor. Figure 5.3 shows an example from the LungDx dataset where
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it is feasable to locate the tumor, but challenging to accurately predict the tumor perimeter

without taking the PET image into account.

Figure 5.3: Example of the Limitations of CT. The red curvature is added to show where the
delineation fits in the CT image. The white glow on the right image is the tumor glowing
up in the PET scan.

5.1.4 Data Preprocessing

The Teacher pipeline was used to preprocess the data before feeding it to the teacher. Here

a 128 × 128 × 128 image was cropped around the tumor from images with voxel spacing of

(0.7 × 0.7 × 0.7) mm3. In a few cases, we observed that the tumors were so large that they

did not fit inside this 128× 128× 128 image. It is possible that it would be benificial to either

crop a larger image or alternatively use a larger voxel spacing to fit the largest tumors within

this cube.

The Student Pipeline, which was used to preprocess the images fed to the student, did also

crop images as part of the process. There are mainly two concerns regarding the cropping around

the lungs. First, we observed on occasion, that the tumor was located between the two lungs,

effectively being present in both lungs. When the image was preprocessed through the student

pipeline, this tumor would often be split into two and treated independently thereafter. Second,

if a tumor grows outside of the lungs, it is possible that the tumor was clipped, and thus part of

the tumor was lost. This is due to the way we cropped the lungs around a lung mask.

Regarding the first challenge, we experimented with an alternative but similar cropping technique

that cropped the image around both lungs and treated both simultaneously. We observed poorer

performance when using this preprocessing technique. However, this strategy may be viable if

other parts of the pipeline or the model are changed. The second challenge can be partially

solved by creating a buffer during cropping. Instead of tightly cropping the lungs, it could be

possible to add a fixed amount of voxels in all dimensions to mitigate the challenge of tumors

being cropped. This can, in turn, lead to issues with VRAM capacity and possibly that the

images become too vast for our models to handle. However, we did not prioritize investigating

this cropping technique further.

Common for both preprocessing pipelines are the thresholding and normalization of voxel intensity

values. It is possible that by being more conservative with the interval used to threshold, the
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model would have fewer irrelevant values to regard. Values that were outside the range [-1024,

1000] were filtered. Normalizing the intensity values with another normalization algorithm could

also affect the network’s performance, but we believe it could only play a minor role.

5.1.5 Output Post-Processing

The post-processing method is simple as it removes all but the largest component. Although

this can reduce the number of FPs drastically, it comes with a risk. One scenario where this

method can never reach optimal solutions is when the patient has more than one tumor. At

least one TP will be removed in the post-processing step. The post-processing method can also

remove TPs when it is only one tumor in the image as well. If the output produces two or more

components where the largest component is not the TP, the TP will be removed. On average,

we observed that this post-processing method seemed to improve precision but slightly degrade

recall.

Nonetheless, this post-processing method can help to better understand the models by comparing

the performance before and after post-processing. To increase the performance of the method

further, development of another post-processing pipeline should be investigated.

5.2 RQ1: Teacher as a Semi-Automatic Method

Research Question One

RQ1: How does semi-automatic methods, that utilizes either pre-calculated bounding

boxes or the center of the tumor as additional input, compare to a fully automatic method

that only uses the image as input?

This section is concerned with discussing research question one, and the results seen in sec-

tion 4.1. The research question is interesting from a clinical perspective as a semi-automatic

method can aid experts during tumor delineation to save time. Two types of semi-automatic

methods were tested. The first being where the expert selects the center of the tumor and the

image is cropped around the center. This method is referred to as U-Net in table 4.1. The

second method is dependent on bounding boxes created by an expert that indicate the tumor’s

location in the axial plane in every slice. This method is referred to as Teacher in table 4.1.

Performing a delineation of the tumor takes longer than drawing bounding boxes in the axial

plane. To select the center of the tumor takes even shorter than drawing the bounding boxes.

As our results show, the saved time comes with a cost of less accurate delineations.

5.2.1 Discussing the Results

As seen in table 4.1, the teacher model outperformed the baseline U-Net on both datasets with

respect to mean DSC. On average, It performed 12.98% better on the MSD dataset and 43.54%

better on the Radiomics dataset, in terms of DSC. As there are fewer images in the MSD dataset

than the Radiomics dataset, the teacher model performed 38.78% better on average on both

datasets. The standard deviation of the teacher’s output was lower than the U-Net’s. Over

the entire dataset, the teacher had a standard deviation of 8.50 before post-processing and 5.42

after post-processing. After post-processing, this was about 1
5 of the standard deviation of the

post-processed U-Net output, which saw a higher standard deviation after post-processing. This

indicates that the teacher model was more stable than the U-Net model in its predictions.
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By qualitatively evaluating the results, it is possible to understand why the two models perform

so differently. In figure 4.1, the outputs of the two models along with the corresponding images

and ground truths are shown. The figure shows the output before post-processing. In the

figure, the second column shows a slice of the image called Radiomics 89. As can be observed,

the U-Net model has segmented the wrong part of the lung, whereas the teacher model has

confidently found the correct candidate tumor. There are quite a few images where the U-Net

model completely misses the tumor, but it is not a single instance where this happens to the

teacher. We argue that the teacher has learned that it is always a tumor within the bounding

boxes. The U-Net model cannot lean on the bounding box and is therefore prone to false

positives and false negatives. To make matters worse for the U-Net model, when it correctly

identifies the tumor but unfortunately also segments a false positive, the true positive might

be removed during post-processing if the false positive tumor is larger than the true positive

one. This explains why the standard deviation is higher for the U-Net after post-processing

than before. This effect is not seen for the teacher. When the post-processing is applied to the

teacher output, this likely removes small artifacts that fall within the given bounding box but

are not connected to the tumor. As table 4.1 shows, this has a positive effect on both the mean

DSC and the standard deviation.

As discussed, the additional information of the bounding boxes seems to positively affect the

performance. However, we observed images where the bounding boxes seem to mislead the

teacher as well. In figure 4.1 there are two examples where it seems that the teacher almost

blindly trusts the bounding box, likely because it was unable to find a logical delineation inside

the bounding box. In the image named MSD 42, it seems the U-Net model does a better job

segmenting the tumor than the teacher. The teacher’s output closely resembles the segbox seen

in the same figure. The image named Radiomics 200 shows a similar effect. In the MSD 42

image, it is air which is the prominent substance within the segbox. In Radiomics 200, however, it

is body tissue. It seems that the teacher trusts the bounding boxes regardless of the surrounding

tissue whenever it is unable to find the tumor within the box.

The U-Net model performed better than the SOTA method reported in the publication by

Carvalho et al. [36] on the MSD dataset. However, on the Radiomics dataset, it performed

poorer than the reported DSC in the study by Pang et al. [37] The teacher performed well

across both datasets. To the best of our knowledge, no published, fully-automatic method

achieved a DSC close to our teacher, indicating that using the pre-calculated bounding boxes is

advantageous.

Possible Sources of Error

• Test set selection

Due to limited data, the test set cannot be arbitrary large. It was sampled randomly,

but it is plausible that by selecting another test set, the results would differ, resulting in

potential selection bias. Especially for the MSD test set, each image contributes to 1
9 of

the average performance.

• No Controlled Baseline

We did not train a fully automatic method ourselves. In the discussion we relied on

published papers to compare our semi-automatic models with. Thus, the comparison might

be done on the wrong premises, for example differences in the preprocessing pipeline, test

set, or other factors, resulting in potential misclassification bias.
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5.2.2 Usability

Given the presented results and from inspecting the output on the test set, we argue that a

semi-automatic method like the teacher can be useful primarily for two tasks.

• Faciliate Dataset Creation

By using the teacher to annotate datasets, which is currently only annotated with bounding

boxes, the available data appropriate for segmentation task learning can be expanded. In

addition, this lowers the bar for annotating new datasets. If a slight lack of precision can

be tolerated, the teacher can then be used to lower the expense of creating segmentation

annotated datasets.

• Aid Experts in Clinical Use

As the masks produced by the teacher is sound, it is possible that the teacher can be used

to aid experts performing segmentation. The expert might quickly create the bounding

box annotation, then let the teacher perform an initial segmentation based on this. The

expert can then inspect the result to verify its quality or enhance the segmentation. The

method could be integrated as a plugin into an existing software to ease the process.

5.3 RQ2: Student as a Fully Automatic Method

Research Question Two

RQ2: By expanding the dataset using a Teacher-Student Framework, could the perfor-

mance of a fully automatic model be increased compared to a model trained purely on

strongly annotated data?

This section discusses the results from section 4.2 in relation with research question two. A

fully automatic method was trained on both expert-labeled data from the MSD and Radiomics

dataset and teacher-annotated data from the LungDx dataset.

Research question two is essential because if models that utilize both expert-labeled and teacher-

labeled data perform better than models trained solely on expert-labeled data, it opens up the

possibility to utilize larger datasets that have previously been regarded as too weakly annotated

by introducing a teacher. Furthermore, the Teacher-Student Framework does not dictate the

architecture or pipelines that can utilize this effect. Instead, it simply states that introduc-

ing a teacher that can generate decent pseudo-labels given extra information can boost the

performance of the primary task model.

5.3.1 Discussing the Results

As can be seen in table 4.2, the Single-Channeled Student performed best on the Radiomics

dataset and the baseline U-Net performed best on the MSD dataset. The table reveals that the

Single-Channeled Student performed best when evaluated on both datasets. Still, as accounted

for in section 3.1, the Radiomics dataset is larger than the MSD dataset, making it an unfair

comparison when evaluated on both datasets overall. Interestingly, it seems that the proposed

Double-Channeled Student did not gain any performance from the additional decoder branch in

this experiment.

We argue that tumor volume in the datasets can explain why the U-Net model performed

better on MSD and the two other models performed better on Radiomics. The tumor volume
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distribution is similar between the Radiomics and the LungDx datasets. The MSD dataset, on

the other hand, contains smaller tumors on average. This means that when the two students

learned from the teacher-annotated LungDx dataset, they were exposed to more large tumors,

which did not necessarily affect performance on the MSD dataset in a positive way, but had a

positive impact on performance measured evaluated on the Radiomics dataset. Figure 5.4 shows

the average DSC for each model, divided into eight buckets of tumor volume. The U-Net model

performed best on the two buckets that contained the smallest tumors, whereas it performed

worst on the remaining bucket sizes, except the last bucket. This suggests that the two students

perform better than the U-Net model on larger tumors, which supports our initial hypothesis.

To summarize, the teacher-annotated LungDx dataset contains tumors that are similar in size to

those found in the Radiomics dataset, but less similar in size as those found in the MSD dataset.

Our theory is that this caused the two students to perform better on the Radiomics test set, and

the U-Net model trained on only MSD and Radiomics performed better on the MSD test set.

Figure 5.4: Students DSC Related to Tumor Volume on the Test Set. The average DSC is
calculated within each bucket.

Our measurements suggests that the balancing of the dataset in terms of tumor volume did

not work as well as desired. However, we argue that it is harder to detect and mask smaller

tumors. Without performing a second experiment it is hard to quantify how successful the effort

to balance the dataset were. These results suggests that our models struggles more with smaller

tumors on average.

The standard deviation of the DSC produced by the models in this experiment, are in many

cases ∼ 30. We argue that this is because there are multiple outliers that have a DSC close to

zero. Figure 5.5 shows a boxplot of the DSC evaluated on the whole test dataset. The median
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DSC of the U-Net was 58.4, whereas the SC Student and DC Student achieved a median DSC

of 66.1 and 61.1, respectively.

Figure 5.5: A Boxplot of the DSC for the Models in Experiment Two. The median score is
indicated by the yellow line, the box indicates the middle 50%.

By qualitatively inspecting the images, we observed that the U-Net was a bit more conservative

in its delineations than the two student models. In figure 4.2 three examples of this can be seen.

The images MSD 27, MSD 78, and Radiomics 422 shows some examples that the two student

models seem to create masks that bleed out of the tumor to a certain degree. On the other

hand, the U-Net model seems a bit more restrictive and tends to mask a smaller portion of the

tumor. This observation is supported by the data seen in table 5.1. The U-Net model creates

smaller masks than the students on average.

We measured the TP volume, such that FPs would not affect the calculated volumes. From

this table, it can be observed that the U-Net produces the smallest TP tumors on average,

whereas the SC Student produces the biggest TP on average. This support what we saw in the

images. We suspect this effect might come from the fact that the two models trained on the

teacher-annotated data see more often liberal annotations than the baseline model. As discussed

in section 5.2.1, when the teacher struggles to see the perimeter of the tumor, it tends to trust

the bounding boxes, which in turn may lead to very liberal annotations. This behavior may have

lead to the two students learning to create liberal segmentation annotations to a higher degree

than the baseline U-Net only trained on supervised data.
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Table 5.1: TP Tumor Sizes in Experiment Two

Model Tumor Size TP
U-Net 57.04

SC Student 62.26
DC Student 59.96

The three different models performed differently in terms of the different metrics as covered. We

have highlighted the potential cause of these behaviours. On average, the difference between

the baseline model and the two student models were smaller than we anticipated. The students

performed better at larger tumor on average, whereas the baseline performed better on smaller

tumors. Based on this, the answer to research question two is indecisive. We hypothesis that the

imbalance between the strongly and weakly labeled data was not great enough in our dataset.

The imbalance seen in all of the publications addressed in section 2.4, except Sun et al. [41],

were far greater than ours.

Possible Sources of Error

• Test Set Selection

The same source of error as covered in the previous experiment.

• Hyperparameter Sensitivity

We discovered that our student models were sensitive to changes in hyperparameters. It

is possible that by using different configurations, other results can be achieved.

5.4 RQ3: Sparsely Trained Models

Research Question Three

RQ3: When shifting the balance of the dataset towards less strongly annotated data

and more weakly annotated data, does this cause the Teacher-Student approach to

yield higher performance than the standard fully-supervised approach that only uses the

strongly annotated data?

This section is concerned with discussing the results from section 4.3 in relation to research

question three. This research question is particularly interesting if one has a small dataset of

strongly labeled data, or the resources to create one, and a large weakly labeled dataset at

disposal.

The size of the strongly labeled dataset was artificially scaled down to contain only 48 images.

Of these 48 images, 40 were appointed to the train set and the remaining 8 to the validation

set. This imbalance bear closer resemblance to some of the balances seen in the papers in the

related work section than the imbalance seen in the previous experiment. The results of this

experiment are discussed in relation to the previous experiments.

5.4.1 Discussing the Results

The results from section 4.3 are divided into two parts; the sparsely trained teacher, and the

sparsely trained students. The sparsely trained models were evaluated on the same test set as
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the non-sparsely trained models in the preceding experiments. This was done to be able to

evaluate the effect of the greater imbalance.

The Sparsely Trained Teacher

Table 4.3 shows the results of the sparsely trained teacher evaluated on the same test set as

the non-sparsely trained teacher. The results from the non-sparsely trained teacher are shown

in table 4.1. As expected, the teacher trained on more data achieved a better performance

than the sparsely trained teacher. This was expected as more data generally give better results,

assuming equal quality between the two sets. However, the difference between the two teachers

were smaller than we anticipated. The non-sparsely teacher was trained on a dataset more than

ten times larger than the sparsely trained teacher, but only achieved 4.0% higher DSC on the

MSD dataset and 2.9% higher on the Radiomics dataset. Interestingly, the difference between

the baseline U-Net and the teacher model was higher for the sparsely trained models than the

models trained on all available data. The sparsely trained teacher performed 68.3% better on

the MSD dataset than the sparsely trained U-Net before post-processing, and 93.2% better on

the Radiomics dataset. This suggests that the performance of the sparsely trained teacher is

even more dependent on the bounding boxes than the non-sparse teacher. The explanation to

why the teacher performed better than the baseline are previously discussed.

The Sparsely Trained Students

The non-sparsely trained students performed similar to each other, and to the baseline U-Net.

The sparsely trained students, on the other hand, achieved very different results compared to

each other, and to the sparsely trained U-Net model, as can be observed in table 4.4.

On the MSD datset, the best performing model in terms of DSC was the SC Student after

post-processing, which performed 153.1% better than the U-Net model. The DC Student

performed similar to the SC Student. A similar observation was done on the Radiomics dataset,

although the DC Student achieved a better DSC than the SC Student on this dataset. Both

the students performed over 80% better than the baseline model on the Radiomics dataset.

The standard deviation was similar among the three models when evaluated on both datasets.

However, the boxplot shown in figure 5.6 suggests that there are different reasons for this high

standard deviation. Outliers of DSCs close to zero caused the high standard deviation of the

students, whereas the standard deviation of the baseline model was affected by the few good

masks it was able to produce.
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Figure 5.6: A Boxplot of the DSC for the Models in Experiment Three. The median score
is indicated by the yellow line, the box indicates the middle 50%.

When the U-Net is evaluated on the MSD dataset with the DSC-TP metric, it seems to perform

well. It had a higher DSC-TP score than the SC Student. By evaluating this in context with the

low recall of the U-Net, it might indicate that it only finds the tumors that are easy to mask,

whereas the two students also mask the complex tumors, which can negatively affect DSC-TP.

Evaluated on the Radiomics dataset, it can be observed that the U-Net achieved a higher recall.

Consequently, it achieved a much lower DSC-TP compared to the students. This observation

supports the hypothesis that the high DSC-TP score on the MSD dataset is a consequence of

the model only detecting the easy tumors, which is indicated by the low recall achieved.

As can be seen, the students have a significantly higher F1 Score than the U-Net. The two

students, however, performed similar in terms of F1 score. Although the SC Student achieved

a perfect F1 score of 100.0, the DC Student performed better on the Radiomics dataset. We

expected the additional segbox branch in the DC Student to yield higher recall, but we cannot

draw this conclusion from our experiments.

Our sparsely trained SC Student achieved a higher DSC, 71.56, than the SOTA results reported

by Carvalho et al., 70.9, on the MSD dataset. However, the result achieved in this project is

not in line with the official rules of the competition associated with the dataset. First of all,

the images used in our test set were not the same as the official test set. This is because the

official test set did not include annotations, making it impossible for us to evaluate our models

on that particular dataset without attending the competition. Second, the competitors of the

MSD challenge had to make a model that performed segmentation on all of the ten categories.

Our models have only learned to segment pulmonary tumors. Whether it is allowed to utilize

additional datasets to train the models is unclear to us, but this part of our project may be in
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the gray area regarding the challenge’s rules as well.

The previous experiment did not result in a clear difference between the students and the baseline

U-Net model in terms of performance. However, this experiment resulted in considerable differ-

ence between the two students and the baseline U-Net model. The sparsely trained SC Student

achieved a higher score than the best performing non-sparsely trained model, even achieving a

DSC higher than the current reported SOTA. Although the comparison with the performance

reported by Carvalho et al. is not completely fair, it is interesting that a model trained on such

a limited amount of strongly labeled data can achieve a result close to the SOTA performance.

Possible Sources of Error

• Test Set Selection

A different test set could impact the performance of the models. Given that the test set is

similar between our experiments, similar conclusions could be drawn. However, a different

test set could impact the conclusions related to other published work, as the performance

could be impacted.

• Teacher Train Set Selection

As the teacher train set is of such a limited size, it is very important that these images

represent the whole dataset. If these images are not representative of the whole dataset,

then the teacher might not generate good pseudo-soft labels. The teacher’s annotation, in

turn, influences the students ability to learn. Thus resulting in, potentially, poor performing

students.

• Hyperparameter Sensitivity

As previously covered, our student models seems sensitive to changes in the hyperparam-

eters.
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5.5 Retrospective Evaluation

This section is concerned with evaluating aspects of the way we carried out the project. Overall,

we are satisfied with the progression and the results we got, but we are also left with the

impression that there are certain things that could have been done differently.

Positive Aspects

• Efficient Implementation of Working Pipeline

We decided early on to create a working pipeline. This enabled us to quickly start

development, and even create some initial experiments related to the teacher.

• Using MONAI

In retrospective, we identify the decision to use MONAI as one of the best decisions

we made. MONAI allowed us to rapidly develop and test different preprocessing

pipelines and architectures.

• Modular Pipeline

From the beginning we decided to keep the pipeline modular such that we could ex-

periment with multiple different architectures, datasets, and preprocessing pipelines

efficiently.

• Standardized Test Set Across all Experiments

Choosing a test set that was identical for all experiments enabled us to draw

conclusion based on observations across different experiments. This was especially

important to accurately conclude on research question three.

• Contributing to the Open-Source Community

We are happy that we could publish one of our models for other researches to use.

Constructive Aspects

• Poor Productivity during Model Training

During training of our models we experienced low productivity. We tried to spend

this time by documenting our project, but in hindsight we acknowledge that we

could have utilized these periods to better plan for upcoming phases. However, as

the results of the current model training often dictated the next phase, we felt it

was challenging to plan ahead.

• Poor Internal Organization of Experiments

As the project developed, a vast number of experiments were conducted. Initially,

we had a structure for all the experiment configurations. However, with the number

of experiments rapidly growing, we experienced that our system became cluttered.

A better folder structure could have helped solve the problem, for example orga-

nizing the experiments by week.
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Unfortunate Events

• High Traffic on Computing Resources

There were periods characterized with low progress because of queue on the com-

puting resources. At one point, the machine Idun was under maintenance leading

to long compute queues in the following weeks.

• Virtual Machine got Deleted

At one point one of our virtual machines were deleted from a shared computer.

This virtual machine contained large amounts of processed data, which set us back

a few days. Some of the data was recovered from backups.
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CHAPTER 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

In this thesis, the effect of using a Teacher-Student Framework to perform segmentation of lung

tumors in CT images were explored. To explore this, three research questions were formed.

The first research question was related to how semi-automatic methods could utilize additional

information to make accurate segmentations of tumors.

Research Question One

RQ1: How does semi-automatic methods, that utilizes either pre-calculated bounding

boxes or the center of the tumor as additional input, compare to a fully automatic method

that only uses the image as input?

A: A semi-automatic method can achieve significantly higher performance by utilizing

predefined bounding boxes during lung tumor segmentation than both a semi-automatic

method utilizing the tumor center, and a fully-automatic method. Our results can not

conclude whether a semi-automatic method that utilize the tumor center will perform

better than a fully-automatic method in general.

Research question two was concerned with whether introducing a teacher to expand the available

dataset could improve a fully-automatic method. We used a teacher to expand our strongly

labeled dataset and compared students trained on this expanded dataset, to a baseline model

trained only on human-annotated segmentations.

Research Question Two

RQ2: By expanding the dataset using a Teacher-Student Framework, could the perfor-

mance of a fully automatic model be increased compared to a model trained purely on

strongly annotated data?

A: Given that the imbalance of the strongly vs. weakly annotated data is great enough,

our results indicate that allowing a teacher to create pseudo-labels can help fully auto-

matic models achieve an increased performance compared with models trained solely on

limited expert-labeled data. However, we did not find evidence that the Teacher-Student

Framework helped increase the performance when the dataset was increased from ∼ 500

images to ∼ 1000 images. To quantify exactly when this framework is beneficial, more

research is needed.
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The third and final research question was related to exploring whether the Teacher-Student

Framework had a stronger effect if the imbalance of strongly and weakly labeled data was

increased. We artificially shrunk our strongly labeled dataset and trained a new teacher and

students to research this effect.

Research Question Three

RQ3: When shifting the balance of the dataset towards less strongly annotated data

and more weakly annotated data, does this cause the Teacher-Student approach to

yield higher performance than the standard fully-supervised approach that only uses the

strongly annotated data?

A: Our results shows that when the strongly labeled data is of very limited size and the

weakly labeled data is vast, the effect of a Teacher-Student Framework as proposed is

increased significantly compared with scenarios where the two datasets are more equal

in size.

The goal of this thesis was to investigate the effect of a Teacher-Student Framework on lung

tumor segmentation of CT images. We conclude that this strategy is beneficial if the imbalance

between strongly and weakly annotated data is great. To quantify the imbalance needed for this

framework to be beneficial, more research must be conducted.

6.2 Future Work

Our goal was to investigate the effect of Teacher-Student framework, we did not focus on

maximizing the DSC. However, during our work with the project we thought of some ideas

which we think might push the performance a bit further.

6.2.1 Further Teacher-Student Research

Further Increase Weakly Labeled Dataset Size

It would be interesting to research if the performance of the automatic methods could be con-

siderably increased by introducing more weakly annotated data. If a large dataset could be

acquired, it would be trivial to continue the training performed in this project to research the

impact of a large, weakly annotated dataset.

Multi-Teacher - Single Student

The results presented in this thesis uncovers that the the sparsely trained students performed

considerably better than expected, even compared to the non-sparsely trained students. This

observation led to the idea of using multiple teachers trained on different subsets of the strongly

labeled data. The different teachers can then create pseudo-labels on the weakly labeled data. All

teachers create pseudo-labels on all the weakly labeled data. This would result in slight variances

between the ground truth created by each teacher because they are all trained on a different

subset. This might lead to a more generalized student, a form of natural data augmentation.

Finding more data can be challenging. It is possible that this approach can further improve the

generalization of the students without the need of expanding the dataset further.
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DC Student without Teacher

To further investigate the impact of introducing a teacher to a mixed supervision framework, we

suggest training a third model to compare with the results presented in this thesis. By training a

DC Student on both the strongly and weakly supervised data, but without having a teacher label

the weakly labeled data, it can help understand the importance of the teacher. Since the weakly

labeled data have bounding boxes and the DC Student can produce bounding box output and be

backpropagated based on them, the teacher is not necessary to utilize both the strongly labeled

data and the weak labels. However, if this proposed DC Student performs worse than the one

presented in this thesis, this might suggest yet again that introducing a teacher is beneficial to

get the most out of the weakly labeled dataset.

6.2.2 Improving the Methods

Improved Post-Processing Method

The risks of the proposed post-processing method are previously discussed. Other post-processing

pipelines can be used with the overall method proposed in this thesis. For instance, instead of

removing all but the largest object, removing all objects smaller than a predefined value makes

sense. This way, the risk of removing TPs can be lowered compared with the current post-

processing method, but the noise in the output is still reduced, effectively lowering the FPs.

Different Window-level in Preprocessing

In our preprocessing pipelines, HU-intensities below -1024 and above 1000 was filtered. Exper-

imenting with different thresholds to remove negligible intensities of the image can potentially

reduce the complexity of the task for the models.
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and Georg Langs. Automatic lung segmentation in routine imaging is primarily a data

diversity problem, not a methodology problem. European Radiology Experimental, 4:50, 08

2020.

[55] Eric Kerfoot, James Clough, Ilkay Oksuz, Jack Lee, Andrew P. King, and Julia A. Schnabel.

Left-Ventricle Quantification Using Residual U-Net. In Statistical Atlases and Computa-

tional Models of the Heart. Atrial Segmentation and LV Quantification Challenges, pages

371–380, Cham, 2019. Springer International Publishing.
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APPENDIX A

MONAI - MEDICAL OPEN NETWORK FOR AI

MONAI is an open source framework for deep learning in the medical domain1. It is based on

the popular machine learning framework PyTorch. There are many operations that are common

between medical imaging tasks. MONAI aims to standardize the workflow when dealing with

machine learning in the medical domain. They do this by offering a package of methods ranging

from metric-calculations to end-to-end engines for training and validating models. As most

classes in MONAI are inherited directly from torch classes, it is easy to make modifications to

these pipelines with torch methods whenever needed. This way, developers may choose to use

MONAI for some parts of their code, while they maintain full control over other parts of their

pipeline by implementing it from scratch in torch. MONAI is available as a python package

and can be installed by pip. Alternatively the entire code base is openly available on MONAI’s

github2.

In this project, MONAI was mainly used for networks and data-processing tasks, such as loading

of images, preprocessing and post-processing. Preprocessing and data augmentation are a huge

part of deep learning. MONAI offers many preprocessing and data augmentation techniques

that are relevant to medical imaging. Most of the methods utilized from the MONAI framework

are listed in table A.1

1https://monai.io/
2https://github.com/Project-MONAI/MONAI
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Table A.1: List of Monai Methods used in this Thesis
Method Description

LoadImage Loads the image from the specified file. This
method supports a wide range of medical image
file formats, including NIfTI that was used in this
project.

ThresholdIntensity Is used to filter out intensity values outside a spec-
ified range. Useful when dealing with CT-scans
where we know that all relevant tissue has a in-
tensity value lower than 1024 and can therefore
filter out every abnormality above this intensity.

NormalizeIntensity Normalizes the image with respect to intensity.
Necessary because of different settings on CT ma-
chines.

AddChannel Adds a channel to the ’tensor’. Similar to Un-
squeeze(0) in PyTorch.

Resize Resizes the image to some specified dimensions.
Supports multiple modes, including nearest neigh-
bour and trilinear interpolation.

RandFlip Flips the image in a specified axis with a specified
probability.

RandRotate Rotates the image in a specified plane with a spec-
ified probability

Spacing Interpolates the image to a specified voxel spacing
SpatialCrop Crops a 3D volume from image around a specified

center with a specified height, width, and depth
DivisiblePad Pads the image in every dimension such that it is

divisible by a specified integer
KeepLargestConnectedComponent Removes all but the largest connected component

ToTensor Converts the image to a torch tensor
ToNumpy Converts the image array into a numpy array

MONAI enabled us to easily test multiple types of data augmentation and to streamline our

pipeline efficiently. With MONAI’s Compose() method it is possible to specify a list of methods

that should be performed on the data every time an image is requested from a dataset. Listing A.1

shows how to configure a pipeline that loads an image, thresholds its intensities, normalizes the

image with respect to intensity, scales the image to desired dimensions, and spatially augments

the image with a probability of 0.5. Loading an image from disk before performing all the

specified transforms with only one line is then possible.
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Listing A.1: Monai Compose Transforms

t r a n s f o r m s = Compose (

[

LoadImage ( ) ,

T h r e s h o l d I n t e n s i t y ( t h r e s h o l d =1024 , c v a l =1024) ,

N o r m a l i z e I n t e n s i t y ( nonzero=True , c h a n n e l w i s e=True ) ,

AddChannel ( ) ,

R e s i z e ( s p a t i a l s i z e =(128 , 128 , 128) ,

R an dF l ip ( prob =0.5 , s p a t i a l a x i s =0) ,

RandRotate90 ( prob =0.5 , s p a t i a l a x e s =(0 , 1 ) ) ,

ToTensor ( )

]

)

image = t r a n s f o r m s ( ’C :\ d a t a s e t \my image . n i f t i ’ )
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APPENDIX B

THESIS WORK OVERVIEW

Naturally, we invested quite a lot of time and energy into our thesis. We continuously discussed

which tasks should be completed at different intervals to stay on schedule. We had bi-weekly

meetings with our supervisors from NTNU and SINTEF. Experts from St. Olavs hospital were

occationally present in the meetings, mainly during the planning phases. We mapped the current

progress during these meetings, discussed our results continuously, and decided on what would

be the intelligent next move. Figure B.1 summarizes a timeline of our work throughout the

project. Though the tasks are assigned along the timeline, no task is usually completed linearly

like the timeline signals. Most of the phases placed along the timeline were conducted iteratively

throughout the project.

Both of us were involved in all the parts of the project. Over time it naturally evolved into

different primary responsibilities. For instance, it was natural that one person had control over

the data processing, as it was superfluous that both learned all the frameworks and structures

of the medical images in depth. Generally speaking, both of us were involved in all parts of the

project from the start until the end.

We want to emphasize that every bit of the code is written entirely by ourselves. We used

powerful libraries like PyTorch, MONAI, Numpy, and the open source lung mask repository

published by Hofmanninger et al [54]. Regarding the thesis, every single chapter is written

entirely by us, and all illustrations are drawn by hand by us to preserve a consistent styling

throughout the thesis.
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Figure B.1: Project Timeline. The timeline shows roughly when different phases was con-
ducted during the project. Code development is highlighted in blue, thesis documentation
is highlighted in green and miscellaneous tasks is highlighted in red.

As figure B.1 shows, a preceding project was conducted before the official project start. This

project was performed the semester before. The project’s goal was to familiarize ourselves with

techniques and concepts relevant for our master thesis. During this project, we implemented

and trained two different U-Net-inspired networks that segmented lungs and lung lobes from

CT-scans. We learned how segmentation tasks were solved and gained in-depth experience with

the PyTorch framework. All code was written from scratch during this project, more or less only

using PyTorch and Numpy as third-party libraries. This project gave us great insight into the

medical imaging field and 3D semantic segmentation solutions.

During the first phase of this project, an excessive research and planning job was done. We

had several meetings with the supervisors and discussed different concepts and strategies worth

investigating. It was a strong desire from SINTEF that we looked into the Teacher-Student

approach, because of recent publications with promising results. Experts at St. Olavs hospital

were interested in effective algorithms to detect and segment lung tumors. During our research

phase, it became clear that no publications existed that investigated the use of a Teacher-Student

framework for improving the performance of lung tumor segmentation models. We found publicly

available datasets with both segmentation annotations and bounding box annotations. The sum

of these discussions and discoveries led us to pursue the investigation of how mixed supervision

with a teacher-student framework could affect the performance of simple convolutional networks.

At an early stage, right after the initial planning and research phase, it was decided that it would

probably be wise to get a basic training pipeline running. This way, we could iteratively debug

step-by-step, and it would be more manageable to monitor the progress. The first working train-

ing pipeline ready to read NIfTI-images and perform training was running within days. This part

contains implementing all the steps in the training loop, configuring loss functions, optimizers,

hyperparameters, and implementing standard U-Net using the fundamental building blocks of
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PyTorch. While all image processing was coded from scratch using numpy in the preceding

project, we used MONAI for data processing tasks during this project. It offers standardized

methods for loading, transforming, and augmenting medical images. This framework enabled us

to test multiple processing pipelines quickly and helped us develop the pipeline rapidly.

As the figure illustrates, documentation of our method was pretty much done continuously

throughout the project. Our preceding project report heavily inspires the background theory

chapter. The two projects share the same fundamental concepts and technologies like neural

networks and the medical domain. As for the documentation of our method, it was continuously

written and updated according to how our implementation changed.

During the implementation of our models, quite a lot of time went into debugging and running

multiple training sessions to figure out the correct configurations. The figure shows that during

particularly one period, most of the time went into debugging and waiting for compute time.

During this phase, there was much traffic on the machines we had available at that time.

This held us back quite a lot because we were unable to perform training of our networks.

Fortunately, we were given access to a third computer. We did also reach a point where our

models suddenly performed worse than what they did previously. Because the new machine had

more VRAM available, we decided to exploit this by having images with a higher resolution. To

our surprise, it seems that this had the counter-intuitive consequence that our models could not

learn effectively on these vast images. We scaled the images down to the old voxel spacing and

got our expected results back. During a project like this, there are several encounters like this

that one never sees coming that halts the progress for days.

During the last weeks before the deadline, the results from the different models were documented

and discussed, and the thesis was controlled and corrected. Finally, a plug-and-play solution for

performing lung tumor segmentation was published openly on GitHub. This repository was

inspired by Hofmanninger et al’s lungmask GitHub repository [54]. His solution enabled us to,

in a plug-and-play fashion, utilize his models in our solution. Our idea was to give back to the

community the same way he did. Even though our models are not ready for clinical use, they

might be helpful in a future thesis or research project.
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APPENDIX C

PUBLISHED MODEL

This appendix contains a description of our published Github repository that con-

tains a plug-and-play deployment of our pipeline. Performing end-to-end inference

corresponds to step six in the overall method. During our experiments we evaluated

multiple models. The model that performed best with respect to DSC was one of

the models trained on the sparse dataset. Our repository contains the pre-trained weights from

the best performing model.

The repository is open source and available at our Github1. It is intended for research purposes,

and not for clinical use. It was designed to be easy to set up with a simple pip install, and to

perform tumor masking, a single line in the command line interface starts the process. The model

weights are automatically downloaded the first time the program is run. It is only downloaded

once, thereafter stored locally.

Python, MONAI, and Hofmanninger et al’s lungmask [54] must be installed in advance. By

using pip, the repository can be installed as a python package.

# I n s t a l l u s i n g p i p

p i p i n s t a l l g i t+h t t p s : / / g i t h u b . com/ VemundFredr iksen /LungTumorMask

Once the package is installed, it can be used to detect and segment lung tumors from CT images.

Below is an example of how to use the command line interface to initiate segmentation.

# Format

lungtumormask i n p u t output

# Example

lungtumormask p a t i e n t 0 1 . n i i . gz mask 01 . n i i . gz

The output is stored where specified. The mask has the same resolution as the input image,

orientation, and voxel spacing is inherited from the input image. Using an appropriate medical

imaging software, the mask can be overlayed the CT image to be inspected.

1https://github.com/VemundFredriksen/LungTumorMask
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