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Abstract

This thesis explores use-cases in data mining of the newly emerged spatiotemporal
textual data type from social media. We define a new kind of pattern in this data
that we call a Periodic Topic Trajectory Pattern (PTTP). The pattern describes a textual
topic that occurs periodically in the same geographical trajectory. As this is a previ-
ously undefined pattern, preliminary research is conducted to develop algorithms to
identify PTTPs in geotagged social media data. We present similar works that mine
lower-dimensional patterns and investigate how we can expand these works to find
PTTPs accurately and efficiently. Finally, we implement the expanded algorithms
and compare their results and runtimes.

Our findings indicate that spatiotemporal periodic pattern mining extended with a
state-of-the-art topic model is the best approach in finding PTTPs, as it scales well
and returns accurate results. On the other hand, direct topic modeling approaches
are concluded to be problematic as they are challenging to implement efficiently and
scales poorly.

We are the first to define a Periodic Topic Trajectory Pattern and explore how to find
such patterns. The geographical aspect is challenging to work with, resulting in the
approach that handles the locations specifically performing better. We recommend
further research in this direction and incorporating word embeddings for more ac-
curate text analysis.





Sammendrag

Denne oppgaven utforsker anvendelser innenfor datagruvedrift av en ny type data,
rom-temporal tekstdata, generert fra sosiale medier. Vi definerer et nytt mønster fra
slik data som vi kaller periodisk emnebanemønster, på engelsk Periodic Topic Trajec-
tory Pattern (PTTP). Mønsteret beskriver et tekstlig tema som gjentar seg periodisk
med samme geografiske bevegelse. Da dette er et hittil udefinert mønster, forsker vi
innledende på temaet for å utvikle algoritmer for å identifisere PTTP-er i geotagget
data fra sosiale medier. Vi presenterer liknende arbeider av lavere dimensjoner og
undersøker om og hvordan vi kan utvide disse til å finne PTTP-er presist og effek-
tivt. Til slutt implementerer vi disse algoritmene og sammenlikner dem basert på
resultater og kjøretider.

Våre funn indikerer at rom-temporal periodisk mønsterutvinning utvidet med en
toppmoderne temautvinningsalgoritme er den beste tilnærmingen for å finne PTTP-
er, da den skalerer godt og gir nøyaktige resultater. Derimot, å utvide temautvin-
ningsalgoritmer viser seg å være problematisk, da slike modeller er utfordrende å
implementere effektivt, og skalerer dårlig.

Vi er de første som definerer et periodisk emnebanemønster og utforsker hvordan
vi finner slike mønstre. Det geografiske aspektet er utfordrende å jobbe med, noe
som resulterer i at tilnærmingen som håndterer dette spesifikt yter best resultater.
Vi anbefaler videre forskning i denne retningen og å innlemme word embeddings
for mer nøyaktig tekstanalyse.
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Chapter 1

Introduction

In this chapter, we introduce the thesis topic and stake out the remaining course.
This is done by first outlining the motivation and main idea behind this thesis be-
fore defining three research questions that set the scope. Further, we present our
contributions to data mining research. Lastly, we summarize the structure of the rest
of the chapters, organized by the research questions.

1.1 Motivation

Mobile devices have become a natural part of our everyday lives and follow us
where ever we go. They track our movements and web interactions, resulting in
massive amounts of multidimensional data. With a continuous expansion in move-
ment tracking and mobile web usage, we see a new type of data submerging: spa-
tiotemporal textual data. This high-dimensional, partly unstructured data introduces
new possibilities and challenges in data mining.

A typical example is geotagged tweets from Twitter1. A tweet consists of maximum
1402 characters of text and a timestamp. Additionally, it includes the possibility of
tagging the location of the user with a longitude and latitude value, or a specific
name of a location. Unlike standard geographical data, the GPS data is not the main
element in spatiotemporal textual data but a supplement to a short unstructured
text. An example of a tweet is

@UserName: Italy should be the one hosting FIFAAAA world cup next
year. Quality football combined with pizza and wine = <3. #world-
cup #fifa #italy2022ftw

11:48AM, May 25, 2021 — Oslo, Norway

With such a data source, we have access to unlimited data as new tweets are gener-
ated faster than we can collect at all times across the globe. These data points allow
tracking of how information spreads through interactions, also known as informa-
tion diffusion. Patterns in spatiotemporal textual data reveal the general population’s
geographical movement of opinions, events, and developments, some of which we
might not be aware of.

1https://twitter.com.
2Expanded to 280 in 2017.

https://twitter.com
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Tweets

01.01.15 03:56 (-95.7129, 37.0902)
"I love #chocolate"

01.01.15 03:58 (-72.7295, -65.8627)
"Feelin feverish and tired #ugh"

01.01.15 03:59 (-129.1014, 25.6301)
"BRING ON THE BEATS!!!"

. . .
31.12.20 23:59 (92.9163, -30.9461)

"HAPPY NEW YEARS!!!"
31.12.20 23:59 (64.7009, 37.3645)

"Yey #new #years coming up"
31.12.20 23:59 (-119.5736, 37.0005)

"10, 9, 8, 7, 6, 5, 4, 3, 2, 1 !!!"

(A) Input.

Patterns

STTP 1: Period: 7 days
Starts on day: 5
Topic: chocolate, candy, chips
Movement: (Australia, day 5),

(India, day 6), (US, day 7)
. . .

STTP 8: Period: 365 days
Starts on day: 273
Topic: fever, tired, cough
Movement: (Chile day 273),

(US, day 289), (Spain, day 301),
(Russia, day 344)

(B) Output.

FIGURE 1.1: Input and output of a Periodic Topic Trajectory Pattern
mining algorithm.

1.2 Periodic Information Diffusion

When it comes to human- or animal-generated data, an interesting phenomenon
is periodic patterns. Humans (and animals) tend to move and live in periodically
recurring patterns. Examples are yearly music festivals and award shows, sports
seasons, presidential elections, and the weekly periodic behaviors of the weekend
and the weekdays. Numerous algorithms identify thematic patterns [1–4]. However,
no known algorithm explores the geographical movement, or trajectory, per cycle.
Such information can be thought of as periodic information diffusion.

A simple example is the yearly flu season. We can say from personal experience that
tweeting about flu symptoms will periodically appear every year in the fall. How-
ever, if we discover that, e.g., the periodic reporting on flu symptoms most com-
monly arises in South America before moving to North America and then Europe
and Asia, we could not only get a deeper understanding of the origin and spread of
the seasonal flu, but we could also detect anomalies and faster identify abnormal flu
patterns that might indicate a new disease.

Periodic information diffusion is inherent in spatiotemporal textual data. We wish
to find an effective method to transform an input Twitter dataset to a set of pat-
terns describing the periodic information diffusion of the dataset, so-called Periodic
Topic Trajectory Patterns. Figure 1.1 shows an example input and output of such a
method. The transformation requires handling large datasets and possibly numer-
ous patterns to discover, meaning a possible algorithm must be scalable. It is not
obvious how to develop such an algorithm to be both efficient and accurate, which
is what we wish to discover.

1.3 Research Questions

We define three research questions that define the scope of this thesis. They will
guide us in our work, and we will answer the questions in the conclusion of this
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paper. They are ordered to work incrementally towards developing possibly multi-
ple pattern mining algorithms while keeping in mind their different strengths and
weaknesses. The research questions are:

RQ1: How can a Periodic Topic Trajectory Pattern be formally defined?

RQ2: What algorithms exist that partly solve the problem? Can we expand them,
so they fully solve the problem?

RQ3: If yes, what is the performance?

We point out in the relevant chapters when a research question is being answered.

1.4 Contributions

The contributions of this thesis are two-fold. Firstly, we introduce Periodic Topic Tra-
jectory Patterns (PTTP). This is a new type of previously unexplored pattern, so part
of this thesis defines what a PTTP entails.

Secondly, PTTP mining is a concatenation of textual categorization and periodic pat-
tern analysis both geographically and thematically. These research areas define the
starting points for three possible approaches in developing a PTTP algorithm. We
find that the current best approach is to expand geographical periodic pattern min-
ing with text analysis.

1.5 Structure

The rest of the thesis is organized as follows. We formally define the thesis problem
of finding Periodic Topic Trajectory Patterns in Chapter 2, answering RQ1. Next,
Chapter 3 presents related work to this thesis to get a sense of where to start look-
ing for algorithms that partly solve the problem. Furthermore, we present details
on the most relevant algorithms discussed that solve parts of our problem in Chap-
ter 4. These algorithms are expanded in Chapter 5, so they fully solve our prob-
lem. Consequently, the chapter provides an answer to RQ2. Chapter 6 presents the
methodology used during the implementation and evaluation of these algorithms.
The experimental results are presented and discussed in Chapter 7, answering RQ3
as we evaluate the performance of each algorithm. We conclude our thesis in Chap-
ter 8 with a summary of what we discovered regarding the three research questions
and some additional input for future work.
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Chapter 2

Problem Definition

In this chapter, we define the problem of mining Periodic Topic Trajectory Patterns
(PTTPs), and we present the notation used in the rest of this thesis. The PTTP Prob-
lem is defined incrementally. First, a document and a document collection or dataset
are described formally. Next, we then define a topic and definitions related to topic
modeling and periodic topics. Furthermore, the geographic elements of a PTTP are
defined before we combine them all to define a PTTP and state the thesis problem.
The chapter is finalized with a summary.

In addition to these definitions, Table 2.1 summarizes some of the most frequent
variables of the thesis and their meanings. To standardize the notation across this
thesis, note that some of the definitions and variables defined here are different from
the notations used by the papers we present in Chapter 4. From this point, we use
the definitions and variables defined in this chapter, and all variables discussed in
Chapter 4 are converted to use our notation for consistency.

2.1 Data Definitions

We first define what constitutes a document. Further, we define a dataset containing
such documents and describe how we cluster documents within a dataset.

Definition 2.1.1 (Document). Let d = (Wd, locd, timed) be a document where Wd
consists of words from the vocabulary V, locd is the tagged location of the document
so that loc = (locd.x, locd.y) are respectively the longitude and latitude values of the
document, and timed is the timestamp of the document.

Definition

T A set of equally spaced timestamps, T = {t1, ..., t|T |}.
D The document collection.
n The number of documents in D.
V The vocabulary of D.
Nd The number of words in a document d.
Wd Words in document d, Wd = {w1, ..., wNd} where wi ∈ V.
K The total number of topics.
Z The topic set Z = {z1, ..., zK}.
θi The topic distribution for document di ∈ D, i ∈ 1, 2, ..., n.

ϕzk The word distribution for topic k ∈ 1, 2, ..., K.

TABLE 2.1: Definitions.
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W1
loc1
time1

W2
loc2
time2

W3
loc3
time3

. . .

d1d2d3

D1 D2 D3 . . .

t1 t2 t3

D1,1 D1,2 D1,3 . . .

r1 r2 r3

a:0.5
b:0.1
c:0.4

a:0.1
b:0.8
c:0.1

a:0.5
b:0.3
c:0.2

. . .θD1,1 θD1,2 θD1,2

FIGURE 2.1: Data visualization of an input flow categorized and ana-
lyzed per time period ti and geographical region rj.

Definition 2.1.2 (Dataset). Define D to be the dataset of all documents, i.e. D =
{d1, ..., dn} for n > 0. The documents in D are sorted by their timestamp. For a
document di ∈ D, we simplify the notation so that di = (Wi, loci, timei).

Definition 2.1.3 (Timeline). Define a set of equally spaced timestamps T = {t1, . . . , t|T |},
so that ti+1− ti = A for all ti, ti+1 ∈ T and some constant A > 0. We say a document
d occurs in time ti ∈ T if timed ∈ [ti, ti+1〉. The time granularity A is set so there is at
least one document in D per timestamp in T .

Definition 2.1.4 (Region). A region is a defined geographical area. It can be defined
by a set of coordinates, a location name like a city or country, or a set of city or
country names. A document d is said to belong to a region r if locd is within the
region, i.e. if locd ∈ r. We define the set of all regions as R = {r1, ..., r|R|}.

Definition 2.1.5 (Regional Clustered Dataset). We define a regional clustered dataset,
Dj,k, as the set of all documents in D that occur in time tj ∈ T with location within
region rk ∈ R.

Figure 2.1 illustrates the creation of a regional clustered dataset. The unprocessed
dataset, D, is a set of single documents consisting of a set of words, a location, and
a timestamp. We divide the timestamps into a discrete timeline and cluster the doc-
uments based on their timestamp. This results in those documents within the same
timestamp slot being clustered together. The next transformation again subdivides
each document set per timestamp by regions. Finally, each Dj,k only contains docu-
ments with timestamp time ∈ [tj, tj+1〉 and location loc ∈ rk. From the dataset, we
can extract topics, and from each regional clustered dataset, we can extract a topic
distribution, as displayed in Figure 2.1. We next define these concepts.

2.2 Subdefinitions

The following definitions are concepts related to the final problem, so-called sub-
definitions. We define these concepts separately for clarity before combining them
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when we state the thesis problem.

Definition 2.2.1 (Topic). A topic z is defined as a semantically coherent theme, de-
scribed by a word distribution ϕz = {p(w|z)}w∈V where ∑w∈V p(w|z) = 1. The
distribution denotes the probability of each word in the vocabulary V to describe
the topic. A set of topics Z = {z1, ..., zK} has a corresponding set of word distribu-
tions Φ = {ϕ1, ..., ϕK} for some number of topics K.

Definition 2.2.2 (Topic Distribution). Given a document d ∈ D, we define a topic
distribution θd = {p(z|d)}z∈Z where ∑z∈Z p(z|d) = 1. It defines the distribution of
all topics z ∈ Z in d. The probability for a specific topic z in a document d is given
by θd(z), and the topic is said to be present in the document if θd(z) > ε for some
threshold ε > 0.

Definition 2.2.3 (Periodic Pattern). A periodic pattern is a pattern repeating in reg-
ular intervals of T in a sequence S = {s0, s1, . . . , s|T |}. More specifically, if sτ = sτ+iT
for 0 ≤ τ < T and i = 1, 2, . . . , b|T |/Tc, we say we have a periodic pattern
Pper = 〈T, τ〉, where T is the period and τ the offset within T.

Definition 2.2.4 (Periodic Topic Pattern). Given a document set D, a periodic topic
pattern Ptop is a periodic pattern of topic presences. We define Ptop = 〈T, τ, ϕ〉where
T denotes the period, τ ∈ T the offset and ϕ the word distribution representing the
theme of the pattern.

Definition 2.2.5 (Trajectory). A trajectory describes a geographical movement, and
is defined as a sequence of ordered locations, represented as points of longitude and
latitude values or regions, as defined by Definition 2.1.4. We get Tra = {l1, l2, . . . }
where li = (li.x, li.y) or li ∈ R.

Definition 2.2.6 (Spatiotemporal Trajectory). A spatiotemporal trajectory is a trajec-
tory with corresponding timestamps per location. The timestamps can be implicit,
i.e. location li happens in time ti ∈ T , or explicit so that Tra = {(l1, time1), ..., (ln, timen)}.

2.3 Main Definitions

We have now defined all the concepts we need to define the Periodic Topic Trajectory
Pattern and the problem of finding such patterns. These definitions answer RQ1 (see
Chapter 1).

Definition 2.3.1 (Periodic Topic Trajectory Pattern). We define the Periodic Topic Tra-
jectory Pattern (PTTP), PPTTP, as a periodic topic pattern that is also periodic in its
geographic movement. We write PPTTP = 〈T, τ, ϕ, δ〉, where

• T denotes the period of the pattern,

• τ ∈ T is the initial offset from the beginning of the timeline to the first occur-
rence of the pattern,

• ϕ is the word distribution describing the periodic topic,

• δ = {(l1, τ1), ..., (lr, τr)} for r < T and τ ∈ T is the explicit spatiotemporal tra-
jectory describing the geographical topic movement per cycle. The timestamp
offsets τi < T symbolize the relative timestamps within T when the topic is
present in each respective li.
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FIGURE 2.2: A global periodic topic trajectory pattern for some topic
A with period T, beginning at time τ. The regions are defined by a

simple grid structure.

We will also refer to this pattern as a periodic topic behavior, as a spatiotemporal tra-
jectory can also be viewed as the behavior of the topic when it repeats itself. A set of
PTTPs describes the periodic information diffusion of the dataset.

Definition 2.3.2 (The Periodic Topic Trajectory Pattern Problem). Given a dataset D,
find all Periodic Topic Trajectory Patterns, as defined in Definition 2.3.1.

Example

Figure 2.2 illustrates a periodic topic trajectory pattern. The pattern illustrates the
topic "New Years", with a period T = 8760h (365 days) and initial offset τ = 0 from
the first timestamp of the document collection, in this case, Jan 1, 00:00 AM 2015.
The map is divided into regions R = {r1, r2, ..., r10} in a grid-based manner for
illustrative purposes. We see that the topic starts in Australia (r10) at τ1 = 0h, i.e.,
the first hour of the new year. The topic moves to Asia (r7) after one hour. We then
get a jump in time to the third hour of the new year, where the topic has moved to
Europe and Northern Africa (r5). Note that the jump in time does not mean that the
movement stays in region r7 in this second hour but that the topic is not particularly
present in any of the regions. We get another jump in time as the topic moves to
South America (r4) at τ4 = 6h and North America (r3) at τ5 = 7h. Using the notation
from Definition 2.3.1, the pattern is represented as

PPTTP = 〈T : 8760h,
τ : 0h,
ϕ : {happy : 0.171, new : 0.167, year : 0.144, years : 0.142, fireworks : 0.120, . . . },
δ : {(r10, 0h), (r7, 1h), (r5, 3h), (r4, 6h), (r3, 7h)}〉

and the time granularity is one hour, i.e. A = 1h.

Note that the initial offset τ and the first relative offset of the movement, τ1, are often
the same. However, if the pattern only occurs in a subset of the timeline, the initial
offset can be larger. In any case, we have τ mod T = τ1.
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2.4 Summary

This chapter answered RQ1 when it formally defined Periodic Topic Trajectory Pat-
terns and the PTTP Problem. Additionally, general notations used in the subsequent
chapters were presented, and additional terms were defined. These terms are es-
sential to understand as we continue to the following chapters, which provide a
literature review of related works, serving as a basis for solving the newly defined
PTTP Problem.
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Chapter 3

Related Work

After gaining a thorough understanding of the thesis problem, we delve into related
works. This is an initial exploration in finding relevant algorithms that partly solve
our problem. First, Section 3.1 presents periodic pattern mining. We then explore
extensions of periodic pattern mining in Sections 3.2 and 3.3, discussing periodic
trajectory pattern mining and periodic topic pattern mining, respectively. Finally,
we look into geographic topic discovery in Section 3.4. Figure 3.1 illustrates how
these works are relevant to our work. To our knowledge, there is no prior work on
discovering Periodic Topic Trajectory Patterns (PTTPs).

3.1 Periodic Pattern Mining

Periodic data mining was first introduced in a periodicity search by Loether and
McTavish in 1993, where they employed statistical methods like Discrete Fourier
Transform (DFT) to find cyclic behaviors in time series [5]. The next significant de-
velopment was introduced by Han et al., who mined segment-wise periodic patterns,
i.e., patterns where only some of the points in the period repeat [6]. Using a fixed-
length user-defined period, they utilized the Apriori principle [7] to mine periodic
patterns. Shortly after, they presented an improved method, where they defined
the max-subpattern hit set property, materialized in a max-subpattern tree [8]. Yang
et al. [9–11] defined an information gain metric, later expanded into a generalized
information gain (GIG), that penalizes gaps between patterns, resulting in consecu-
tive repeats of the periodic pattern being considered more significant than scattered
patterns.

Periodic PM (3.1)Geographic PM Topic Mining

Geographic Topic Discovery (3.4)Periodic Trajectory PM (3.2) Periodic Topic PM (3.3)

Trajectory PM

Periodic Topic Trajectory PM

FIGURE 3.1: Related works and how they are connected. Each level
adds a dimension, and PM = Pattern Mining.
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FIGURE 3.2: Illustration of two trajectories consisting of five points
with corresponding timestamps.

Ma and Hellerstein [12] criticized the DFT method introduced by Loether and Mc-
Tavish for not handling noisy data and for having a considerable computational
complexity with regards to the number of time units. In agreement with Ma and
Hellerstein, Berberidis et al. [13] instead used the autocorrelation function to detect
periods and then verified/rejected these periodic tendencies by looking for circular
patterns in the data using the max-subpattern tree algorithm by Han et al. [8]. They
applied the autocorrelation function to a defined binary vector per event. A binary
vector for an event is a vector where value i is set to 1 if the event happens in time
ti ∈ T and 0 otherwise. They later expanded the algorithm to handle approximate
periods, where they captured "shifted" occurrences by changing the values around
the 1’s in the binary vector into numbers between 0 and 1, signifying the possibility
of a shifted event [14]. Finally, Vlachos et al. [15] found a way to compensate for the
problems DFT has with noise by combining periodograms with the autocorrelation
function to estimate the most dominant periods in their AUTOPERIOD algorithm.

3.2 Periodic Trajectory Pattern Mining

The works mentioned above all focus on time-series data or symbol periodicity, i.e.,
each data point is assigned a distinct symbol. We now turn our attention to periodic
pattern mining on spatiotemporal trajectories. Recall, a spatiotemporal trajectory is
a sequence of locations with a timestamp, denoting a movement in the geographical
space. Cao et al. [16] argued that locations should not be treated as discrete categor-
ical values as it is likely that coordinates representing the same location will differ
slightly due to measuring errors and minor deviations in movement. An example
is provided in Figure 3.2, illustrating how two trajectories with the same movement
might differ. As a solution, the authors clustered the location coordinates into dense
regions and then proposed two distinct methods to find periodic trajectory patterns.
The first method identifies patterns directly from the clusters. The second trans-
forms the spatiotemporal datapoints into symbols representing the region to which
they belong, enabling the use of an existing categorical periodic pattern mining algo-
rithm [16]. Further, Bar-David et al. [17] analyzed the movement of African buffalo,
looking for circular movement patterns. They discovered the periods automatically
by transforming location coordinates onto the complex plane and then directly ap-
plying DFT to detect periods.

However, as previously mentioned, directly applying DFT is sensitive to noise. There-
fore, Li et al. [18] proposed an algorithm, Periodica, that detects the period automat-
ically from noisy data using the previously mentioned noise-resistant AUTOPERIOD
algorithm per region and subsequently mines periodic patterns. The geographical
coordinates of a moving object are clustered into dense regions, and each such re-
gion is, similar to the algorithm by Berberidis et al. [13], related to a binary vector
of presence/non-presence in the given region. Next, the binary vector is applied to
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the AUTOPERIOD algorithm. Once the periods are detected, a hierarchical clustering
method is applied to group segments together to form periodic behaviors [18]. The
algorithm handles noisy and complicated data well. However, it is not designed for
sparse and inconsistently sampled data.

3.3 Periodic Topic Pattern Mining

Thematic periodic pattern mining concerns itself with finding periodic patterns in
document collections. The interest in textual pattern mining started in finding pe-
riodic queries in search logs to improve prediction rates. In 2004, Vlachos et al. [1]
proposed to convert each query into a time series representing the query demand
per day. By applying DFT and then calculating the periodogram, a threshold on the
power spectrum was utilized to detect dominant periods in the "signal" [1]. Preot, iuc-
Pietro et al. [2] proposed using Gaussian Process models of regression to discover
cycles in Twitter hashtags, represented by their frequency in a time series. Gaussian
Processes is a probabilistic machine learning framework where defined kernels rep-
resent similarities between points, and by defining a periodic kernel, we can identify
periodic patterns in the time series [2].

These methods do, however, not extract the topics of the query texts, which adds
another dimension to the problem. Recall, a topic is a word distribution where high
probabilities indicate the term is representative of the topic. Yin et al. [3] developed
the mixture model Latent Periodic Topic Analysis (LPTA), which mines periodic la-
tent topics [3]. The model is a variant of latent topic modeling, where a document is
considered probabilistically generated by a model of several latent, or hidden, top-
ics, and the goal is to find this model. The difference between LPTA and traditional
latent topic models such as Latent Dirichlet Allocation (LDA) [19] is the additional
step of not only identifying the topics but also the temporal periodic time distribu-
tion of each topic.

A significant downside of LPTA is that it requires the user to input the total num-
ber of periodic topics and the period lengths. Wang et al. [4] addressed this issue
and proposed a different system, Torpedo. This model defines a time-dependent la-
tent topic model in the same way as LPTA [3]. However, Torpedo models the time
distribution per topic directly without any assumptions of periodicity or burstiness.
An additional analysis step is applied to the inferred time distribution by inputting
it to the AUTOPERIOD algorithm [15] to extract periodic information. The authors of
Torpedo compared their model to LPTA, with the conclusion that Torpedo performs
better for datasets with a higher degree of deviations, in addition to its ability to
automatically configure the period information.

3.4 Geographic Topic Discovery

In (non-periodic) geographic topic discovery, the goal is to identify geographical
hotspots for a set of topics. Figure 3.3 illustrates an example of a geographic topic
analysis, where four different regions are presented with their inferred topic dis-
tributions. This can be at a given timestamp or overall. One such algorithm was
proposed by Mei et al. [20], who presented a probabilistic approach to finding spa-
tiotemporal theme patterns in weblog data. They incorporated location and time
into a latent topic model to perform Probabilistic Spatiotemporal Theme Analysis
(PSTA). A word in this model is dependent on the document’s topic distribution
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FIGURE 3.3: A geographic topic distribution of three topics a,b and c
in four locations.

and the joint location and time topic distribution. The model outputs (1) common
themes, (2) theme life cycles for each location, and (3) theme snapshots for each pe-
riod [20]. This information can describe how each theme evolves geographically. In
visualizing the theme life cycles and theme snapshots, it is in theory possible to ex-
tract periodic topic trajectory patterns directly, which is the goal of this thesis. This
would, however, be manual work, and we aim for automatic extraction.

In general, geographic topic mining research tends to result in LDA-based mixture
models with different approaches to incorporate spatial (and temporal) dimensions.
For example, Wang et al. [21] integrated geographic information into an LDA-like
model they called Location Aware Topic Model (LATM). This model connects topics
to geographic multinomial distributions, indicating correlations between topics and
geographic locations. However, it does not manage the temporal aspect as the PSTA
model does. The authors claim their model solves some of the problems of overfit-
ting and labeling new words in which the PSTA model suffers from [21]. Further,
Sizov [22] proposed a model similar to LATM, where the location is drawn from two
Gaussian distributions for the longitude and latitude values instead of one multino-
mial distribution that models a set of regions like in LATM. Yin et al. [23] proposed
the model Latent Geographical Topic Analysis (LGTA) based on the assumption that
the topics are generated from region distributions only, as opposed to document dis-
tributions in standard LDA. Guo and Gong [24] presented a model for spatiotempo-
ral event discovery from social media data, where they demonstrated how to auto-
matically determine the number of topics and regions instead of providing them as
user input. Utilizing a Dirichlet Process, they used the Chinese Restaurant Franchise
scenario (CRF) [25] to delegate each incoming topic/region to an existing topic/re-
gion or a new topic/region in a "rich get richer" approach [24].

3.5 Summary

This chapter presented related work to this thesis. As there is no prior research on
PTTP mining, we focused on works closely associated with the thesis problem. The
research areas presented were periodic pattern mining, periodic trajectory pattern
mining, periodic topic pattern mining, and geographic topic analysis. In the next
chapter, we present in further detail some of the works just presented to expand into
a PTTP mining algorithm.
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Chapter 4

Background

In this chapter, we select the most promising algorithms discussed in the previous
chapter to find building blocks to a solution of the Periodic Topic Trajectory Pattern
(PTTP) Problem of Definition 2.3.2. We start with periodic pattern mining in time
series in Section 4.1. Next, Section 4.2 presents spatiotemporal periodic pattern min-
ing. Further, we explore topic modeling in Section 4.3 and some extensions of topic
modeling in Sections 4.4 and 4.5. We conclude the chapter with a summary. The al-
gorithms provided in this chapter serve as a basis when we develop models to solve
the PTTP Problem in Chapter 5.

4.1 Periodic Pattern Mining in Time Series

A time series is a series of data points ordered by their occurrence in time. It often
represents a signal, and so we use these two terms interchangeably. As discussed
in Chapter 3, there have been multiple attempts to use signal processing and sta-
tistical methods to extract periodicities in time series data. Unfortunately, most of
these methods are noise-sensitive. The AUTOPERIOD algorithm by Vlachos et al. [15]
uses the strengths of two different functions to alleviate the weaknesses of the same
functions, making it resilient to noise. In this section, we present the details of this
approach.

4.1.1 Periodograms and Autocorrelation

The algorithm utilizes the periodogram and autocorrelation functions. A periodogram
of a time series estimates the power spectral density of the signal per frequency. The
frequency is the inverse of the period, and so a high expected signal power indicates
a dominant period. However, a periodogram will provide a window of possible pe-
riods, and this window can become considerable for long sequences and periods,
making it difficult to establish the exact period. The autocorrelation function cal-
culates the correlation of the signal with a delayed copy of itself. It is much more
fine-grained than periodograms and can detect specific periods. However, it returns
many false alarms and gives less importance to low amplitude events of high fre-
quency than high amplitude events of lower frequency [15].

With these shortcomings in mind, AUTOPERIOD combines the periodogram and au-
tocorrelation functions in a two-tier approach. In general, the algorithm uses the
periodogram to extract period candidates and then verifies/rejects the candidates
based on the autocorrelation function. Vlachos et al. include an illustration of the
process in their paper [15]. We simplify and redraw this diagram in Figure 4.1. If the
candidate periods lie on a hill in the autocorrelation function, we find the hill’s peak
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FIGURE 4.1: Diagram of the AUTOPERIOD method, redrawn from Vla-
chos et al. [15].

and return this as a discovered period of the pattern. If a candidate period lies in a
valley, we discard it as a false alarm.

4.1.2 Mathematical Process

We present the mathematical process of AUTOPERIOD following the path illustrated
in Figure 4.1. For a non-complex input sequence to AUTOPERIOD, the following steps
are made:

1. Transform the sequence into a sequence of complex numbers, S = s1s2...sn −→
X1, X2, ..., Xn = X using Discrete Fourier Transform (DFT):

X( fk/N) =
1√
N

N−1

∑
n=0

bn+1e−
j2πkn

N , k = 0, 1, ..., N − 1

where k/N denotes the frequency of X( fk/N). By first converting the signal to
its Fourier transform, we represent the original signal as a "linear combination
of the complex sinusoids" [15].

2. Calculate the periodogram of the signal. The periodogram is defined as the
squared length of each Fourier coefficient, i.e.,

P( fk/N) = ‖X( fk/N)‖2, k = 0, 1, ..., dN − 1
2
e

3. We set a threshold to extract the important frequencies of the periodogram.
The threshold is set by permuting S randomly so the permuted sequence S′

does not exhibit periodic behavior. The maximum power of the permuted se-
quence will consequently not indicate a period in the sequence, and is set as
the threshold. For a better confidence level, we perform this step 100 times and
set the power threshold to the 99th largest value.

4. The frequencies with a high enough power spectrum according to the thresh-
old correspond to a range of periods, i.e., X( fk/N) corresponds to periods
[N

k ... N
k−1 〉. We use the autocorrelation function to extract the exact period. For

different delays of the signal, τ, the autocorrelation function is defined as

R(τ) =
n

∑
i=1

sτsi+τ
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This function will exhibit peaks for a periodic delay. Therefore, for each fre-
quency X( fk/N) with possible periods in the range [l, r〉 = [N

k , N
k−1 〉, we calcu-

late the autocorrelation series {R(l), R(l + 1), . . . , R(r− 1)}.

5. We fit each calculated autocorrelation series with a quadratic function. If the
function is convex, we discard the frequency. If the function is concave, there
will be a peak at t∗ = arg maxl≤t<r R(t) which is returned as a detected period.

The method returns a set of periods discovered in the signal but does not provide
information on where the pattern occurs in the time series (its initial offset). Still,
it successfully detects the correct periods of a signal and has, in consequence, been
used by other algorithms for period detection, like the algorithm discussed in the
following section.

4.2 Spatiotemporal Periodic Pattern Mining

We briefly summarize spatiotemporal periodic pattern mining. As discussed in
Chapter 3, the difference between spatiotemporal and categorical data is that spa-
tiotemporal data is collected using instruments with error rates in the real world.
Hence, different values in the real world can stem from the equivalent location and
time, but minor deviations in the measuring devices result in slightly different val-
ues. For this reason, we cannot simply convert spatiotemporal data to categorical
or time-series data and then find patterns using, e.g., max-subpattern trees [8] or
the AUTOPERIOD algorithm [16]. A spatiotemporal periodic pattern mining algorithm
must include a method to handle these fuzzy datapoints.

Many papers discussing these types of patterns [16, 17] focus on periodic patterns
of a single location and not periodic trajectory movements. However, Periodica by
Li et al. [18] includes an additional step to combine the discovered patterns into a
periodic behavior. Periodica is a two-stage algorithm to mine periodic behaviors in
spatiotemporal trajectory data. Stage one detects reference spots from which periods
are extracted if there are any. Stage two subsequently mines the periodic behaviors
using the periods from stage one. For the rest of this section, we will present the
Periodica algorithm in detail.

4.2.1 Problem Definition

We have an initial dataset as the one defined by Definition 2.1.2, but without the
textual element due to the nature of the algorithm. Additionally, the data has to be
evenly sampled. If it is not, interpolation is used to obtain a constant time gap be-
tween each data point. The new interpolated sequence is denoted LOC = {loc1loc2...locn},
where loci = (loci.x, loci.y) is the interpolated location at timestamp ti ∈ T . A pe-
riod T is defined as a regular time interval in the movement. The algorithm clusters
the coordinates into reference spots, each defined as a dense area frequently visited.
We define the set of reference spots as O = {o1, o2, ..., od} for d reference spots. The
reference spot set is the same as the region set R of Definition 2.1.4, clustered on
density areas. We let o0 denote all areas outside the reference spots.

With these definitions, we can define a periodic behavior 〈T, P〉. In such a behav-
ior, T is the period and P is a categorical distribution matrix, where Pij(1 ≤ i ≤
d, 1 ≤ j ≤ T) denotes the probability that the object is at reference spot oi at relative
timestamp Tj. The problem is defined as:
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Definition 4.2.1 (Periodic Behavior Mining). Given a length-n movement sequence
LOC, mine all periodic behaviors {〈T, P〉} [18].

The pseudo-code for Periodica, originally presented by Li et al. [18], is displayed
in Algorithm 1. Lines 1-4 handle stage one in detecting periods and lines 5-8 mine
patterns per period in the second stage. In the following, each stage is further ex-
plained.

Algorithm 1: Periodica (originally published by Li et al. [18]).
Input: Sequence LOC = {loc1, loc2, ..., locn}.
Result: A set of periodic behaviors.
/* Stage 1: Detect periods. */

1 Find reference spots O = {o1, o2, ..., od}.
2 for each oi ∈ O do
3 Detect periods in oi and store the periods in Pi.
4 Pset ← Pset ∪ Pi.

/* Stage 2: Mine periodic behaviors. */
5 for each T ∈ Pset do
6 OT = {oi|T ∈ Pi}.
7 Construct the symbolized sequence S using OT.
8 Mine periodic behaviors in S.

9 return

4.2.2 Stage 1: Period Detection

The first stage of the algorithm is period detection. This step includes two substeps:
(1) Finding the reference spots and (2) detecting periods per reference spot. The
general logic behind this is that by viewing the data from each reference spot, it is
easier to extract the periods as we simplify the data to single locations instead of
looking at all of them simultaneously.

Finding Reference Spots

Before we can extract periods we need to identify the reference spots. A reference
spot is defined as a dense area, and so they are detected by calculating the density
across the map. Periodica divides the map into a regular w × h grid of a desired
resolution, and use a known kernel method, a bivariate normal density kernel [26],
to estimate the density of each cell. For each grid cell c of a map of C points, the
density is estimated as

f (c) =
1

Cγ2

C

∑
i=1

1
2π

e
− |c−loci |

2

2γ2

where |c− loci| is the distance between cell c and the location loci and γ is a smooth-
ing parameter determined by σx and σy, the standard deviations of the whole se-
quence in its x and y-coordinates, respectively. We get

γ =
1
2
(σ2

x + σ2
y )

1
2 C−

1
6 . (4.1)

The densities of each cell define contour lines by joining subsequent cells of the same
density so that any point within the reference spot has a higher or equal density than
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the boundary. To extract high densities, we need to define what constitutes a high
density. A natural choice is to choose the top-p% density values. The authors of
Periodica set p to be 15% [18].

Detect Periods in Each Reference Spot

For each reference spot, a binary sequence B is defined so that B = b1b2, ...bn where
bi = 1 if the object is within the given reference spot at time ti ∈ T and 0 otherwise.
We then apply the AUTOPERIOD algorithm on the binary sequences to detect periods
and store these per reference spot. We have now identified the periodic locations
with their respective periods.

4.2.3 Stage 2: Mining Periodic Behaviors

Next, we are interested in movements between reference spots. Accordingly, the sec-
ond step combines reference spots with the same periods and separates the timeline
into behaviors containing these reference spots.

Combining the Reference Spots

We combine all reference spots with the same period T so that OT = {oa, ob, . . . } are
all the reference spots in O with period T. We have this information as each period is
detected from each reference spot. The trajectory of locations, LOC = loc1loc2...locn
is transformed to a symbolized trajectory of regions S = s1s2...sn, so oi −→ si = j if
loci is within region oj. We let o0 signify all regions not in OT.

Separating the Behaviors

We divide the input sequence movement into segments, as there might be multiple
movement patterns for the same period. An example is a part-time worker who
periodically moves from his/her home to the workplace every Monday at 9:00 AM
for nine months. However, the person changes its movement to periodically move
to the beach every Wednesday at 1:00 PM during the summer months. The period is
the same (7 days), but there are two different patterns associated with this period.

The algorithm for categorizing the segments is presented in Algorithm 2. The tra-
jectory of regions is divided into segments of size T, so we get b n

T c segments. I j

denotes the j-th segment and Tk, (1 ≤ k ≤ T), is the relative timestamp within a
segment. Lastly, I j

k = i means the object is within region oi in the j-th segment at
relative timestamp Tk.

The categorical distribution matrix, P, defines the periodic movement of a behavior.
Mathematically, P = [p1, ..., pT] where pk = [p(xk = 0), ..., p(xk = d)]T and xk is
a categorical random variable indicating a selection of a reference spot at relative
timestamp Tk. From this, we get that p(xk = i) signifies the probability that the
object is in reference spot oi at relative timestamp Tk, and ∑d

i=1 p(xk = i) = 1. In
summary, P is a d× T matrix where pik indicates the probability of the object being
in reference spot oi in relative timestamp Tk for i = 1, 2, ..., d, k = 1, 2, ..., T. This
matrix can represent a periodic movement with some period T.
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Algorithm 2: Mining Periodic Behaviors (originally published by Li et al. [18]).
Input: Sequence S, period T, number of clusters X.
Result: K periodic behaviors.

1 Segment S into m = S.length/T segments.
2 Initialize x = m clusters C1, ..., Ck, each consisting of one segment.
3 Compute the pairwise distances among the clusters, dij = dist(H(Ci), H(Cj)).
4 while x > X do
5 Select dst such that s, t = arg mini,j dij.
6 Merge clusters Cs and Ct to a new cluster Cnew.
7 Calculate the distances between Cnew and the remaining clusters.
8 x = x− 1.

9 return {H(Ci), 1 ≤ i ≤ X}.

To find p(xk = i), suppose the segments I = Ia, Ib, . . . all follow the same periodic
behavior. We model the probability that I is generated by P as

P(I|P) = ∑
I j∈I

T

∑
k=1

p(xk = I j
k).

The best generative model can be found through Maximum Likelihood Estimation
(MLE) by finding the optimal solution to the log-likelihood. According to Li et
al. [18], the well known solution to this problem gives

p(xk = i) =
∑I j∈I 1I j

k=1

|I| , (4.2)

where 1A is 1 if A is true and 0 otherwise. In simple terms, p(xk = 1) is defined as
the relative frequency of reference spot oi in timestamp tk over all the segments in I .

The obvious problem here is to find I for each behavior, i.e., divide all the segments
into distinct clusters where each cluster represents one periodic behavior. Identi-
fying these behaviors is the main purpose of Algorithm 2. The notation H(Ci) in
the algorithm represents the periodic pattern of the segments Ii in cluster Ci, i.e.
H(Ci) = 〈T, P〉.

Additionally, the function dist returns the distance between two patterns. Li et
al. [18] use the Kullback-Leibler divergence between the two clusters’ distribution
matrices, P and Q, as a distance measure. The Kullback-Leibler divergence is de-
fined as

KL(P‖Q) =
T

∑
k=1

d

∑
i=0

p(xk = i) log
p(xk = i)
q(xk = i)

where p(xk = i) and q(xk = i) are smoothed with some background variable u and
smoothing parameter λ to avoid infinite values, i.e.

p(xk = i) = (1− λ)p(xk = i) + λu (4.3)

and likewise for q(xk = i). The reader is referred to Li et al. [18] for why this distance
metric is chosen. For two periodic behaviors, H1 = 〈T, P〉 and H2 = 〈T, Q〉, the
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distance between them is defined as

dist(H1, H2) = KL(P‖Q).

The general idea of Algorithm 2 is to create one cluster per segment, and then com-
bine interactively the two clusters that are most similar until we have our desired
number of clusters, X. When two clusters are merged, the new cluster accumulates
all the segments in the original clusters, Cnew = Cs ∪Ct, the period is identical for all
three clusters and the distribution matrix of the new behavior H(Cnew) = 〈T, Pnew〉
is calculated as

Pnew =
|Cs|

|Cs|+ |Ct|
Ps +

|Ct|
|Cs|+ |Ct|

Pt, (4.4)

where |C| is the number of segments in cluster C.

Finally, to avoid having to guess the number of clusters, and thereby the number
of periodic patterns, Li et al. [18] define a representation error to detect when to stop
combining clusters. The representation error for behavior H(C) = 〈T, P〉 is defined
as

E(C) =
∑I j∈C ∑T

i=1 1I j
i 6=0

(1− p(xi = I j
i ))

∑I j∈C ∑T
i=1 1I j

i 6=0

(4.5)

and the overall representation error Ex for x clusters is

Ex =
1
x

x

∑
i=1

E(Ci). (4.6)

If the overall representation error exhibits a dramatic increase, the newly merged
cluster contains two different behaviors. Therefore, by monitoring the representa-
tion error, we can stop merging clusters at the appropriate time.

The algorithm returns a set of periodic behaviors H1, H2, . . . along with the segments
belonging to each behavior. Experiments conducted by the authors of Periodica
present successful experiments with detailed patterns in noisy and complicated data
[18].

4.3 Topic Modeling

We now turn our attention to text categorization. It is not straightforward to extract
meaningful topics from a text. A human can easily categorize most terms into over-
lapping categories because we know what each word means and how each word
relates to other words. This is, however, not easy for a computer. A computer sees
terms in their position and frequency but does not know their meanings. Different
methods have been proposed to extract topics from text, most notably latent topic
models.

These models have in common that they assume each document is probabilistically
generated by some topic distribution over documents and, for each topic, a word
distribution. The method assumes each word in a document is generated by select-
ing a topic based on the document’s topic distribution and then selecting a word
based on the chosen topic’s word distribution. The goal of latent topic modeling is
to find the topic distribution and the word distributions of each topic. This section
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FIGURE 4.2: Graphical representations of the simplest forms of topic
modeling.

presents the unigram model and Probabilistic Latent Semantic Analysis (pLSA). Fur-
ther, we briefly touch upon Latent Dirichlet Allocation (LDA), an extension of pLSA
and one of the most used latent topic models today.

4.3.1 Unigram Models

In probabilistic topic modeling, each document is viewed as an unordered bag of
words (BoW). The unigram model assumes some overall distribution of these words
and generates a document by selecting words based on this distribution. Each doc-
ument probability is thereby a combined probability of its words. The probability of
each document d consisting of Nd words is calculated as

p(Wd) =
Nd

∏
i=1

p(wi),

where Wd represents the document as a BoW, and each word wi ∈ Wd has a proba-
bility p(wi) of occurring in the document collection.

The unigram model does not consider topics in the documents. A simple expansion
of the unigram model is the mixture of unigram models. In this case, each topic has a
word distribution instead of there being one global word distribution. Therefore, to
generate a document, a topic is first selected for the document, and then each word
in the document is generated from this topic’s word distribution. The probability of
each document is now modeled as

p(Wd) = ∑
z

p(z)
Nd

∏
i=1

p(wi|z)

where z represents a topic and p(z) the probability of this topic.

The graphical models of the unigram model and the mixture of unigram models can
be found in Figure 4.2. The unigram model draws Nd words from a global word
distribution ϕ for each of the n documents. The variable z is introduced for the
mixture model, representing a topic selected per document in D. This topic decides
which word distribution ϕ to use to generate the Nd words per document d. For K
topics, we have K word distributions. The global topic distribution is defined by θ.

4.3.2 Probabilistic Latent Semantic Analysis

By selecting a topic per word generated instead of a per-document, Probabilistic
Latent Semantic Analysis (pLSA) [27] extends the mixture of unigrams model. The
process results in each document having a unique topic distribution. This is more
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FIGURE 4.3: Graphical representation of the pLSA model.

consistent with real-world data, where a document can mostly discuss, e.g., soccer
but also politics, economy, and discrimination. pLSA estimates the probability of
each co-occurrence of a document and a word as

p(w, d) = p(d)∑
z

p(z|d)p(w|z)

where p(d) is the probability of the document, p(z|d) the probability of topic z in
document d and p(w|z) is the probability of the word given the selected topic.

Figure 4.3 illustrates the generative process of pLSA, where the topic is drawn given
the document, and the word is drawn from the topic distribution like before. pLSA
is a probabilistic version of Latent Semantic Analysis (LSA) [28]. LSA can be il-
lustrated by constructing a document-term matrix, and the goal is to decompose it
into a document-topic matrix and a topic-term matrix. LSA uses singular vector de-
composition (SVD) to achieve this, while pLSA uses a probabilistic approach. Even
though the two approaches use different methods, the goal is ultimately the same:
decomposing the matrix and extracting the topics.

Inferring the Unknown Variables

To obtain any information from the pLSA model, we need to solve it, i.e., infer the
unknown variables p(w|z) and p(z|d). To do this, we use the Expectation Maximi-
sation (EM) algorithm on the likelihood function. The likelihood function measures
how well the model fits the data for different values of the unknown parameters,
and the EM algorithm is designed to maximize this likelihood. It contains two main
steps: (1) initialize the hidden variables randomly or according to some prior knowl-
edge about the variable, and (2) iterate the E(xpectation)-step and M(aximization)-
step until the likelihood function converges. The E-step calculates the expected like-
lihood of the complete data (the Q-function) for the current parameters. The M-step
re-estimates the parameters by maximizing the Q-function.

In pLSA, the E-step is defined as computing the posterior probabilities for the la-
tent, or hidden, variable, p(z|d, w), an introduced variable indicating that word w in
document d is generated from topic z. It is calculated as

p(z|d, w) =
p(z)p(d|z)p(w|z)

∑z′∈Z p(z′)p(d|z′)p(q|z′) .

The three values used in this calculation are the three unknown variables that the
algorithm is trying to find. These are updated in the M-step as

p(w|z) = ∑
d∈D

n(w, d)p(z|d, w),
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(A) α = 0.1. (B) α = 1.0. (C) α = 10.0.

FIGURE 4.4: Dirichlet distributions contour plots for different values
of α.

p(d|z) = ∑
w∈W

n(w, d)p(z|d, w),

and
p(z) = ∑

d∈D
∑

w∈W
n(w, d)p(z|d, w),

where n(w, d) is the word count of w in document d. The variables are updated
in the E-step and M-step until convergence. The final inferred word distributions
per topic is p(w|z) and the final topic distributions per document is extracted using
Bayes’ rule so that p(z|d) = (d|z)p(z)/p(d).

There are a few issues with pLSA. Firstly, there are no parameters to model p(d), so
new documents are hard to analyze. Secondly, pLSA is prone to overfitting as the
number of parameters grows linearly with the number of documents. Additionally,
using the EM algorithm, we find the local maximum, i.e., there might be a higher
peak. A straightforward method in solving this problem is to apply the algorithm
multiple times with different initialization values and then choosing the values that
give the highest maximum value in all the runs. In any case, pLSA is not regularly
used in topic modeling, in part because of the aforementioned limitations.

4.3.3 Latent Dirichlet Allocation

The shortcomings of pLSA inspired Blei et al. to develop Latent Dirichlet Alloca-
tion (LDA) [19]. They noted that the pLSA model is dependent on the BoW model.
Thus the order of the documents is negligible. The authors refer to a theorem of ex-
changeability by de Finetti [29] that "any collection of exchangeable random variables
has a representation as a mixture distribution — in general an infinite mixture" [19].
This results in the possibility of capturing the documents’ intra-document statistical
structure by using a mixture distribution and not just a mixture model.

LDA is similar to pLSA initially in that it assumes each document is generated by
some topic and word distributions. However, LDA introduces Dirichlet priors on
the topic distributions. A Dirichlet distribution is a distribution of distributions.
Thus, drawing from the distribution results in a distribution. LDA uses such a dis-
tribution to generate the word and topic distributions.

A Dirichlet distribution is parameterized by a vector α of positive real numbers. It
provides distributions of some K number of options, where the value of α decides
the concentration of the distributions. If all the values of α are the same, we have a
symmetric Dirichlet distribution which is parametrized by a single scalar α, which
we assume in the rest of this chapter. Figure 4.4 shows the distribution for different
values of α with K = 3. We see that for α = 1, the distribution is uniform. For α > 1,
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the distribution drawn will tend to cluster in the middle, while α < 1 provides sparse
distributions that cluster in the corners. LDA uses two distributions parameterized
by α and β, respectively, to generate topic distributions per document with high
probabilities of a few topics and to generate word distributions per topic with high
probabilities of some words. Consequently, we set α < 1 and β < 1 to get sparse
distributions that cluster in the corners, like in Figure 4.4a.

Generative Process

The generative process of LDA for a document collection D consisting of n docu-
ments of length Nd consists of the following steps.

1. Choose θi ∼ Dir(α) for i ∈ 1, 2, ..., n as topic distributions per document.

2. Choose ϕk ∼ Dir(β) for k ∈ 1, 2, ..., K as word distributions per topic.

3. For each document d, and for each word position n̂ = 1, 2, . . . , Nd:

(a) Choose a topic zn̂,d ∼ Multinomial(θd).

(b) Choose a word wn̂,d ∼ Multinomial(ϕzn̂,d).

The geographical representation of the generative process is illustrated in Figure
4.5. The goal of LDA is the same as for pLSA, i.e., to find the word distributions per
topic and topic distributions per word. Typical solutions are an approximation of
the posterior distribution by Monte Carlo simulation [19], and Gibbs Sampling [30].
We leave out the mathematical details as they are out of scope for this thesis. Due
to LDA’s ability to classify new documents and avoid overfitting, the model is the
preferred topic model as of today.

In recent years, LDA has been further improved by combining it with word embed-
dings [31], which replaces the BoW representation of text. Word embeddings reduce
the dimensionality of the texts and allow topic modeling across languages. We do
not explore word embeddings in combination with LDA in this thesis, but we revisit
the concept in our discussion of future works in Chapter 8.

Wzθα ϕ β
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K

FIGURE 4.5: Graphical representation of the LDA model.

4.4 Latent Periodic Topic Analysis

In topic modeling, the mixture model is defined to model some specific dimensions
of the input. This does not only need to be topics like in pLSA and LDA. For exam-
ple, Yin et al. [3] developed Latent Periodic Topic Analysis (LPTA) to find thematic
periodic and bursty patterns in a document collection of timestamped text docu-
ments. The model incorporates periodic and bursty time elements into a probabilis-
tic topic modeling scheme by appending a mean timestamp and standard deviation
to each topic. In this section, we present this algorithm as it models periodic topics
in a unique approach.



26 Chapter 4. Background

Similar to topic modeling, LPTA assumes the document collection input to the al-
gorithm is generated by a latent topic model that needs to be discovered. However,
each word in the document is additionally assigned a timestamp, drawn from a dis-
tribution dependent on the topic type. The type of each topic is predefined, meaning
the user initializes the algorithm with the number of periodic and bursty topics and
the period of the periodic topics. Thereafter, LPTA tries to fit a model with the de-
fined number of periodic and bursty topics to the dataset.

4.4.1 Generative Process

Using the same notation as in previous sections, where ϕz is the word distribution
for topic z, and θd is the topic distribution for document d, we detail the steps taken
to generate a document collection in the LPTA algorithm.

For each document d, and for each word w to generate in document d:

1. Choose a topic z ∼ Multinomial(θd).

2. Sample a timestamp depending on the type of z:

(a) Background topic: t ∼ U(tstart, tend), where tstart and tend are the start time
and end time respectively of the document collection.

(b) Bursty topic: t ∼ N(µz, σ2
z ).

(c) Periodic topic: t ∼ N(µz + kT, σ2
z ), where k is sampled from a uniform

distribution and T is the periodic interval.

3. Choose a word w ∼ Multinomial(ϕz).

Note that steps 1 and 3 are the same as steps 3a and 3b in the generative process
of LDA in the previous section. Additionally, LPTA includes a timestamp sampling
step where the timestamp is sampled according to the type of the selected topic. If
the topic is a background topic, the timestamp is modeled as a uniform distribution,
i.e.,

p(t|z) = 1
tend − tstart

. (4.7)

For a bursty topic, LPTA models the timestamp as a Gaussian distribution as the
distribution should contain a single peak, i.e.,

p(t|z) = 1√
2πσz

exp
(
− (t− µz)2

σ2
z

)
. (4.8)

Lastly, for a periodic topic, the topic’s time distribution should have multiple peaks.
We therefore model a periodic topic as a mixture of Gaussian distributions, i.e.,

p(t|z) = ∑
k

p(t|z, k)p(k), (4.9)

where p(k) is uniform in terms of k and

p(t|z, k) =
1√

2πσz
exp

(
− (t− µz − kT)2

σ2
z

)
. (4.10)



4.4. Latent Periodic Topic Analysis 27

The value of k indicates the periodic interval in which t belongs. Say we divide the
timeline into intervals of T. For interval k = 1, 2, ..., dn/Te, the value of Equation 4.10
is set to 0 if t does not belong to interval k. For a document d with time td that belong
to interval Id, Equation 4.9 becomes

p(td|z) = p(td|z, Id)p(Id). (4.11)

The generative process defines how the model would have generated the document
collection. However, given the document collection, we wish to find the model.

4.4.2 Inferring the Unknown Variables

As described for pLSA, a latent topic model can be solved by maximizing the like-
lihood function, alternatively the log-likelihood, using the EM algorithm. For the
unknown parameters Ψ = {ϕ, θ, µ, σ}, we have the log-likelihood function

L(Ψ; D) = log p(D|Ψ) = log ∏
d∈D

p(Wd, td|Ψ), (4.12)

where
log p(Wd, td|Ψ) = ∑

d
∑
w

n(w, d) log ∑
z

p(td|z)p(w|z)p(z|d), (4.13)

and n(w, d) is the word count of w in document d.

The Q-function is calculated in the E-step, which calculates the expected log-likelihood
of Ψ(t) being the true Ψ, i.e., a measure of how well the model with parameters Ψ fits
the data D. We get

Q(Ψ|Ψ(t)) = ED|Ψ(t) log L(Ψ; D) (4.14)

in iteration t of the EM algorithm. Next, the M-step maximizes the expected value
so that

Ψ(t+1) = arg max
Ψ

Q(Ψ|Ψ(t)). (4.15)

Just as for pLSA, we approximate the Q-function by defining a latent variable p(z|d, w),
defined as the probability that word w in document d was generated by topic z. The
latent variable is used to approximate the unknown variables of Equation 4.13. Fi-
nally, we iteratively update the latent and unknown variables in the E-step and M-
step, respectively, to find the local maximum. Note that we do not need to explicitly
calculate the values of Equations 4.14 and 4.15, but simply the variables necessary to
calculate them.

E-step

In the E-step of the EM algorithm, we update the latent variable according the time
distribution of the topic, the word distribution of the topic and the topic distribution
of the document. We get

p(z|d, w) =
p(td|z)p(w|z)p(z|d)

∑z′ p(td|z′)p(w|z′)p(z′|d) .

The latent variable is then used in the M-step to update the unknown variables.
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M-step

The variables to update in the M-step are the word distributions p(w|z), the topic
distributions p(z|d) and the time distributions per topic p(td|z). We update them
using the following equations:

p(w|z) = ∑d n(w, d)p(z|d, w)

∑d ∑′w n(d, w′)p(z|d, w′)
,

p(z|d) = ∑w n(w, d)p(z|d, w)

∑w ∑′z n(w, d)p(z′|d, w)
.

p(td|z) is defined by Equations 4.7, 4.8 and 4.11 depending on the topic type. These
are again dependent on µ and σ, which are also updated at this point. If z is a
background topic, no changes are made as the timestamps for background topics
are not dependent on µ and σ. For bursty topics, µz and σz are updated as

µz =
∑d ∑w n(w, d)p(z|d, w)td

∑d ∑w n(w, d)p(z|d, w)
,

σz =

√
∑d ∑w n(w, d)p(z|d, w)(td − µz)2

∑d ∑w n(w, d)p(z|d, w)
.

If the topic is periodic, recall the timeline is partitioned into intervals of length T,
and Id is the corresponding interval of document d to be used in Equation 4.11. µz
and σz are updated as

µz =
∑d ∑w n(w, d)p(z|d, w)(td − IdT)

∑d ∑w n(w, d)p(z|d, w)
, (4.16)

σz =

√
∑d ∑w n(w, d)p(z|d, w)(td − µz − IdT)2

∑d ∑w n(w, d)p(z|d, w)
, (4.17)

where subtracting the interval number T times from the timestamp results in the
relative timestamp Ti within the periodic movement of the document. The EM steps
are repeated until convergence, after which we can interpret the results.

Inferred Results

After convergence, we have inferred word distributions per topic ϕz = {p(w|z)}w∈V
and topic distributions per document θz = {p(z|d)}z∈Z. Additionally, LPTA pro-
vides a mean timestamp µz and standard deviation σz per topic. Note that each
topic is linked to only one pattern. If a topic occurs in multiple patterns, it needs to
be modeled multiple times with different periods.

One of the main drawbacks of LPTA is that the user must specify the number of
bursty topics and the number of periodic topics as parameters to the algorithm and
the period of each periodic topic. These parameters are in most cases not known,
and the wrong number of topics or the wrong period might lead to poor results. The
authors of LPTA mention that it is possible to utilize Schwarz’s Bayesian informa-
tion criterion (BIC) to set the periods (and the number of topics) [3]. A BIC value
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measures the log-likelihood of the model and the model complexity. We use the cri-
terion by training the model with different parameters and selecting the model with
the lowest BIC value.

4.5 Spatiotemporal Theme Pattern Mining

A different variant of the latent topic model considers the spatiotemporal aspect.
As far as we know, there is no published research on periodic spatiotemporal topic
discovery. However, multiple research papers consider the spatial [21–23], periodic
temporal [3, 4] or the spatiotemporal [20, 32] aspect of a topic model.

This section describes the Probabilistic Spatiotemporal Theme Analysis (PSTA) method
proposed by Mei et al. [20], which incorporates the spatiotemporal dimension into
a topic model. We focus on this method despite its relatively old age (2006) as it
includes both the spatial and temporal dimensions, and it does not contain any ad-
ditional dimensions out of scope for this thesis. In a pLSA inspired algorithm, Mei
et al. mine themes from geotagged and timestamped documents and describe these
themes’ temporal and spatial patterns.

4.5.1 Definitions

The document collection D for PSTA is that of Definition 2.1.2. Next, each location
and timestamp value per document is categorized into discrete values, so we get
D̃ = {(W1, t̃1, l̃1), ..., (Wn, t̃n, l̃n)} where t̃i ∈ T and l̃i ∈ L. The location set is defined
as a region set R of Definition 2.1.4 clustered on names. Like previously, ϕz is the
word distribution for topic z, and θd is the topic distribution for document d.

Moreover, we define the theme life cycle of a topic in a location as a conditional
probability distribution of a timestamp given a topic and location, i.e., {p(t|z, l)}t∈T.
The overall life cycle of a topic is defined as {p(t|z)}t∈T if no location is specified.
To model spatial patterns, the theme snapshot is defined as a conditional probability
distribution of a theme and location for a given timestamp, i.e., {p(z, l|t)}z∈Z,l∈L.

To be able to perform spatiotemporal theme analysis, the authors define three goals
of PSTA:

• Discover the global themes of the documents with their word distributions,
Φ = {ϕ1, ..., ϕk}.

• For each theme and location pair, compute the life cycle p(t|z, l) for all t ∈
T. The life cycle will provide information on how relevant a theme is in its
location over time.

• For each time period, compute the theme snapshot p(z, l|t) for all z ∈ Z and
l ∈ L. The theme snapshot will provide information on what topics are most
relevant per location in a given timestamp.

A standard latent topic model accomplishes the first goal. By adding spatiotemporal
traits to this model, the authors also achieve the second and third goals. The PSTA
model is detailed next.
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4.5.2 Generative Process

The general idea of PSTA is similar to pLSA and differs only in the additional spa-
tiotemporal aspect. Further, a standard step in pLSA not previously mentioned is to
define a background topic with word distribution ϕB. This topic is separate from the
"thematical" topics and is designed to attract common terms with low informational
value. PSTA similarly defines a background topic with an occurrence rate of λB.
Consequently, each word in a document is generated either from the background
topic or a thematical topic. Moreover, the thematical topics are generated either
from a topic distribution per document, θd = p(z|d), or from a topic distribution per
timestamp and location pair, θl,t = p(z|l, t). The proportion of each element is de-
fined by (1− λTL) and λTL, respectively. We can now define the generative process
for a document collection D.

For each document d with a location l and timestamp t, and for each word w to
generate in document d:

1. Choose the background model with probability λB or the theme model with
probability 1− λB.

2. Choose a topic z based on the model.

• If the background model is chosen, choose the background topic z = B.

• If the theme model is chosen, select a topic distribution θ as the topic
distribution of the location and timestamp, θt,l , with probability λTL, or
the topic distribution of the document, θd, with probability 1− λTL.

Then sample a topic z ∼ θ.

3. Sample a word w ∼ ϕz.

This is the assumed generative process, and the task for PSTA is to fit this model
optimally with the input dataset. Similar to the previous topic models discussed,
this is done by defining a mixture model and using the EM algorithm to estimate the
unknown variables.

4.5.3 Inferring the Unknown Variables

PSTA is solved in the same manner as the previously mentioned topic models. We
define a mixture model based on the generative process, and infer the unknown
variables using the EM algorithm. The mixture model is defined as

p(w : d, t, l) = λB p(w|zB) + (1− λB) ∑
z∈Z

p(w, z|d, t, l),

where p(w, z|d, t, l) is the probability of the word and topic given the theme model.
We decompose it using Bayes’ rule to

p(w, z|d, t, l) =p(w|z)p(z|d, t, l)
=p(w|z)((1− λTL)p(z|d) + λTL p(z|t, l)).
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The mixture model is applied to a log-likelihood function, so that

log p(D) = ∑
d∈D

∑
w∈V

n(w, d) log p(w : d, t, l)

= ∑
d∈D

∑
w∈V

n(w, d) log[λB p(w|zB)

+ (1− λB) ∑
z∈Z

(p(w|z)((1− λTL)p(z|d) + λTL p(z|t, l)))].

Recall that n(w, d) is the word count of w in document d. The λ values can be fixed
empirically, and the background topic is set to the relative frequency of each word
for simplicity. We get

ϕB = p(w|zB) =
∑d∈D n(w, d)

∑w∈V ∑d∈D n(w, d)
.

The ultimate goal is to find the unknown parameters of the mixture model, p(w|z),
p(z|d) and p(z|t, l), using the EM algorithm. To do so, PSTA utilizes two hidden
variables. First, p(z|d, w) is the probability that word w in document d was gener-
ated from topic z. Second, p(z, t, l|d, w) is the probability that word w in document
d was generated from topic z and that topic z was chosen according to the topic dis-
tribution for the location and time of the document, and not the topic distribution
of the document. These are calculated in the E-step and used subsequently in the
M-step to iteratively estimate the unknown values until convergence. Due to the
complexity of the equations, we first comment on the meaning of each equation be-
fore displaying it.

E-step

The probability that a word w in a document d was generated by a given topic z
is defined by the probability of selecting the thematic model (1− λB) and the word
probability (p(w|z)), as well as the probabilities of the topic being selected either by
the document’s topic distribution ((1− λTL)p(z|d)) or by the timestamp and loca-
tion’s topic distributions (λTL p(z|td, ld)). Combined, we get

p(z|d, w) =
(1− λB)p(w|z)[(1− λTL)p(z|d) + λTL p(z|td, ld)]

λB p(w|zB) + (1− λB)∑z′∈Z p(w|z′)[(1− λTL)p(z′|d) + λTL p(z′|td, ld)]
.

The probability that a word w in a document d was generated by a given topic z that
was generated from the timestamp td and location’s ld topic distribution is simply
the probability of the topic being selected given the timestamp and location of the
document (λTL) multiplied with the probability of selecting that topic (p(z|td, ld)).
We get

p(z, t, l|d, w) =
λTL p(z|td, ld)

(1− λTL)p(z|d) + λTL p(z|td, ld))
.

It is initially surprising that the word is not present in the equation, resulting in an
equal probability for all the words in the document. This remark is not mentioned
in the original paper on PSTA. Most likely, it arises from the fact that if we were
to include the probability of the word, we would also have to normalize with this
probability to make the distribution sum to one. Inevitably, the word probabilities
cancel out, and we are left with the equation as displayed above.
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M-step

The unknown topic distribution per document d is calculated as the probability of
the topic generating the words of the document (n(w, d)p(z|d, w)) and the probabil-
ity that the topic is not selected based on the timestamp and location (1− p(z, td, ld|d, w)).
The equation is

p(z|d) = ∑w∈V n(w, d)p(z|d, w)(1− p(z, td, ld|d, w))

∑z′∈Z ∑w∈V n(w, d)p(z′|d, w)(1− p(z′, td, ld|d, w))
,

where the word count factor reduces the sum from all the words in the vocabulary
to all the words in the document.

Next, the topic distribution per timestamp td and location ld is calculated as a nor-
malized sum over all the documents with the relevant timestamp and location, the
probability that the topic generated the words of each document (n(w, d)p(z|d, w))
and that the topic was generated based on the location and timestamp (p(z, td, ld|d, w)).
This is calculated as

p(z|t, l) =
∑d∈D:td=t,ld=l ∑w∈V n(w, d)p(z|d, w)p(z, t, l|d, w)

∑z′∈Z ∑d∈D:td=t,ld=l ∑w∈V n(w, d)p(z′|d, w)p(z′, t, l|d, w)
.

Lastly, the word distribution is simply the probability that the words of a document
is generated by the given topic, i.e.,

p(w|z) = ∑d∈D n(w, d)p(z|d, w)

∑w′∈V ∑d∈D c(w′, d)p(z|d, w′)
.

The latent and unknown variables are updated accordingly until convergence, re-
sulting in a successful inference of the unknown variables of the mixture model.

4.5.4 Spatiotemporal Analysis

The estimated parameters can be used to find the theme life cycles and theme snap-
shots of the discovered topics. For a theme and location, the theme life cycle is given
by

p(t|z, l) =
p(z|t, l)p(t, l)

∑t′∈T p(z|t′, l)p(t′, l)
, (4.18)

where p(t, l) = n(t,l)
n() is the word count of all documents within location l and times-

tamp t divided by the word count for all documents. The theme snapshot is given
by

p(z, l|t) = p(z|t, l)p(t, l)
∑l′∈L ∑z′∈Z p(z′|t, l′)p(t, l′)

. (4.19)

We can use this information in multiple applications of analysis. Mei et al. provide
some examples of use cases [20]. For the PTTP Problem of Definition 2.3.2, we can
use the spatiotemporal information in further analysis. The theme life cycles can be
used in a periodic pattern algorithm for time series, resulting in periodic patterns
per location and theme. Looking at the theme snapshots for consecutive timestamps
around the period discovered it should reveal if the themes "move" geographically.
Chapter 5 explores the possibilities in PSTA and other previously mentioned algo-
rithms.
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4.6 Summary

In this chapter, we presented algorithms for periodic pattern mining, spatiotempo-
ral periodic analysis, periodic topic mining, and spatiotemporal topic mining. The
described algorithms were AUTOPERIOD, Periodica, LPTA, and PSTA, respectively.
Next, these algorithms will serve as a basis for expanded algorithms that solve the
defined PTTP Problem.
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Chapter 5

Mining Periodic Topic Trajectory
Patterns

This chapter presents possible methods to solve the Periodic Topic Trajectory Pat-
tern (PTTP) Problem of Definition 2.3.2. The methods presented in this chapter are
extensions of the algorithms described in detail in Chapter 4. With the proposed
algorithms below, we answer RQ2. The chapter starts with a PSTA-based algorithm
in Section 5.1. Next, an LPTA-based algorithm is presented in Section 5.2 and a
Periodica-based algorithm in Section 5.3. We finalize the chapter with a summary.

5.1 PSTA with Additional Analysis

As mentioned in Section 4.5, Probabilistic Spatiotemporal Topic Analysis (PSTA) al-
ready provides the tools to perform periodic topic trajectory analysis by periodically
analyzing the theme life cycles defined by Equation 4.18. The setup is similar to that
of Torpedo by Wang et al. [4], in that we first model the data and then periodically
analyze the model using AUTOPERIOD. We call PSTA with additional trajectory anal-
ysis for PSTA+.

5.1.1 Model

The algorithm is executed by first running the PSTA algorithm in its entirety, result-
ing in theme life cycles for all locations and themes. The theme life cycle is a time
series, representing the probability that the given location and theme co-occur for
each timestamp. By utilizing a periodic pattern algorithm, e.g., the one described
in Section 4.1, we can extract periodicities per location and theme. We combine the
discovered patterns with the same period for different locations and sort them by
their relative offsets. As a result, we get a trajectory of periodic theme patterns. The
pseudocode for the method is presented in Algorithm 3.

We briefly comment on line 6 in Algorithm 3. As AUTOPERIOD does not return the
relative offset of the periodic patterns discovered, we find these manually. The first
peak of the theme life cycle for a given topic and location that fits the discovered
period T is set as the offset τl,z of the specific location and topic pair. Further, the
relative timestamp offset is set as τl,z mod T. We discard any pattern with no iden-
tified offset and those patterns where the first periodic peak occurs after 1/3 of the
timeline. Although, if we are interested in subpatterns of the timeline, we keep all
patterns regardless of offset. The lowest offset value of the locations within the pat-
tern is set as the initial offset, τ, when we store the pattern in line 11.
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Algorithm 3: PSTA+.
Input: Dataset D = {d1, d2, ..., dn}.
Result: A set of PTTPs.

1 Mine theme life cycles using the PSTA algorithm, see Algorithm 3.
2 for each z ∈ Z do
3 for each l ∈ L do
4 cycle = {p(t|z, l)}t∈T .
5 Mine periodic patterns in cycle using AUTOPERIOD.
6 Find offsets from the peaks of the theme life cycles.
7 Store pattern 〈T, τ, ϕz, l〉 in PT.

8 for each discovered period T do
9 Sort the patterns in PT by τ.

10 Define the trajectory δ = {(P.l, P.τ)}P∈PT .
11 Store the periodic pattern 〈T, τ0, ϕz, δ〉 in PPTTP.

12 return PPTTP.

5.1.2 Complexity Analysis

The time complexity of PSTA is O(Knu + K|L||T ||V|) per iteration of the EM algo-
rithm [20]. Recall that K is the number of topics and n the number of documents.
Further, u represents the average number of unique words in a document, capped
at 70 words for Twitter data consisting of 140 characters. Lastly, |T |, |L|, and |V| are
the number of timestamps, locations, and unique terms in the dataset, respectively.
Moreover, the time complexities of the additional analysis steps are

• O(K|L||T |) for defining the theme life cycle.

• O(K|L||T | log |T |) for the AUTOPERIOD implementation using DFT.

• O( p̃K|L||T |) for finding the offsets of each location and topic combination,
where p̃ is the average number of periods discovered per location and topic.

• O(T̃K|L|2) for sorting the location trajectory, where T̃ is the average number
of discovered periods. In most cases, the number of locations in the pattern
trajectory should be significantly less than |L|, reducing the quadratic factor to
linear.

Combined, the analysis phase has a time complexity of O(K|L|(|T |+ |T | log |T |+
p̃|T |+ T̃|L|)) = O(K|L||T | log |T |+KT̃|L|2). Because of the number of iterations of
the EM algorithm is unknown, we define the variable iter as the number of iterations,
and conclude that the time complexity of PSTA+ is O(iter ∗ Knu + iter ∗ K|L||T ||V|+
K|L||T | log |T |+ KT̃|L|2) = O(iter ∗ Knu + iter ∗ K|L||T ||V|).

The space complexity of the algorithm is O(Knu + Kn + K|V| + Kn + K|T ||L| +
|T |) = O(Knu + K|V|+ K|T ||L|). The six initial addends of the expression are the
space requirements for respectively the two latent variables, p(z|d, w) and p(z, t, l|d, w),
the three unknown variables, p(w|z), p(z|d) and p(z|t, l) and lastly the theme life cy-
cle, p(t|z, l).

To speed up the algorithm, it is also possible to store statistics about the dataset to be
used in the EM algorithm. This will increase the space requirements and decrease the
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runtime. Consequently, both the system specifications and user preferences should
be considered when deciding this.

5.2 LPTA with Geographical Information

Section 4.4 describes the Latent Periodic Topic Analysis (LPTA) algorithm. It incor-
porates periodic time into a topic model to find recurring topics in a set of times-
tamped documents. Given this model, it should be possible to define a mixture
model that extends LPTA with a geographical dimension so that it can find periodic
geographical topics. The time component needs to be connected to the location, so
the time, location, and topic are joint periodic. We call such a model GeoLPTA.

5.2.1 Model

Given the LPTA model, we introduce a model that infers the time given the latent
topic and the known location of the document. The mixture model becomes

p(w, t|Ψ) = ∑
z∈Z

p(z|d)p(w|z)p(t|z, ld)

for the same unknown variables Ψ = {ϕ, θ, µ, σ} representing word distributions
per topic, topic distributions per document and mean and standard deviations for
bursty and periodic topics, respectively. As bursty topics are out of scope for this
thesis, we remove the ability to discover bursty topics in GeoLPTA so the runtime
will compare better to the other proposed models.

The timestamp is extended from LPTA to be dependent on location in addition to
the topic, propagating to the µ and σ values, so they represent the collections of
the means and standard deviations of timestamps for periodic topics per location.
More specifically, µz,ld and σx,ld are respectively the mean and standard deviation of
timestamps for topic z at location ld.

The mixture model can be solved identically as the original LPTA algorithm, detailed
in Section 4.4, with the extension that the means and standard deviations are defined
per location. The change is implemented by iterating over all documents within the
current location instead of all documents when calculating the means and standard
deviations in Equations 4.16 and 4.17, i.e. ∑d∈D is replaced with ∑d∈Dl

where Dl is
the collection of all di ∈ D where loci ∈ l. This propagates to the time distributions
of Equations 4.7 and 4.9. We present the resulting equations for the EM algorithm in
GeoLPTA and bold the changes from LPTA.

E-step

p(z|d, w) =
p(td|z, ld)p(w|z)p(z|d)

∑z′ p(td|z′, ld)p(w|z′)p(z′|d) .

M-step

p(w|z) = ∑d n(d, w)p(z|d, w)

∑d ∑′w n(d, w′)p(z|d, w′)
,

p(z|d) = ∑w n(d, w)p(z|d, w)

∑w ∑′z n(d, w)p(z′|d, w)
.
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For the time distributions, we first update µ and σ for the periodic topics:

µz,l =
∑∑∑d∈Dl ∑w n(d, w)p(z|d, w)(td − IdT)

∑∑∑d∈Dl ∑w n(d, w)p(z|d, w)
,

σz,l =

√
∑∑∑d∈Dl ∑w n(d, w)p(z|d, w)(td −µz,l − IdT)2

∑∑∑d∈Dl ∑w n(d, w)p(z|d, w)
.

Then we update p(t|z, l) with the new means and standard deviations:

Periodic:

p(t|z, l) = p(t|z, l, k)p(k) =
1√

2πσz,l
exp

(
− (t−µz,l − kT)2

σ2
z,l

)
∗ p(k).

Background (fixed):

p(t|z, l) =
1

tend − tstart
.

At convergence, we have an inferred time distribution for periodic topics per loca-
tion. However, we are interested in how each periodic topic moves geographically.
A simple approach would be to sort the locations by their mean value for each topic
and create a trajectory of the sorted locations. However, this assumes the pattern is
apparent in all locations, which is unlikely.

A filtering step is necessary to filter out those locations that show no signs of period-
icity. If the standard deviation converges to 0, we get an undefined distribution, i.e.
limσz,l−→0 p(t|z, l) = ∞. When this happens, we can flag the location as non-periodic.
Further, the means and standard deviations will, in some cases, divide by 0 if the la-
tent variable is 0 for all the words in the document. If this happens, we also flag the
location as non-periodic.

The full algorithm for GeoLPTA is presented in Algorithm 4.

Algorithm 4: GeoLPTA.
Input: Periods {T1, T2...}, Dataset D = {d1, d2, ..., dn}.
Result: A set of PTTPs.

1 Perform EM algorithm on latent and unknown variables until convergence.
2 for each z in Z do
3 Define movement δz.
4 for each l in L do
5 if not Flagged(z,l) then
6 Add l to δz.

7 Sort δz by µz,l .
8 Store the periodic pattern 〈T, τ0, ϕz, δz〉 in PPTTP.

9 return PPTTP.
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5.2.2 Complexity Analysis

The time complexity of LPTA is O(iter ∗ K|W|), where iter is like in PSTA+ the num-
ber of iterations of the EM algorithm, and |W| is defined as the count of all the words
in all the documents [3]. The equation can be rewritten as O(iter ∗ Knu) for compa-
rability, where K is the number of topics, n is the number of documents, and u is the
average number of words per document. The additional analysis step in GeoLPTA
has a time complexity of O(K|L|). As n ≥ |L| and u > 1, the overall time complexity
becomes O(iter ∗ Knu).

The space complexity is dominated by the storage of the distributions in the EM
algorithm. For the latent variable, the space complexity is O(Knu). The unknown
variables have space complexities O(K|V|) for the topics, O(Kn) for the topic distri-
bution per document, and O(K|L||T |+ 2(K− 1)|L|) for the topic and location time
distributions. Recall that the topic and location time distribution also includes mean
and standard deviation values for all periodic topic and location pairs. The overall
space complexity for GeoLPTA is O(Knu + K|V|+ K|L||T |) for |T | > 2.

Lastly, just like PSTA+, it is possible to store additional statistics in exchange for a
decreased runtime.

5.3 Periodica with Topics

The spatiotemporal periodic pattern mining algorithm Periodica, presented in Sec-
tion 4.2, mines periodic behaviors in geographical trajectory data. We extend this
model by adding a topic analysis step and subsequently perform each step of Periodica
per discovered topic. We call the extended model TopicPeriodica.

5.3.1 Model

By expanding the Periodica algorithm with a topic model, each reference spot is
analyzed per topic. In this manner, we can mine recurring geographic trajectory
topics. The pseudocode for the algorithm is presented in Algorithm 5. In the follow-
ing paragraphs, we discuss how the algorithm differs from Periodica.

The expanded model follows the general logic of Periodica, with some minor ad-
ditions or alterations. After finding the reference spots in the first stage of the algo-
rithm, the documents are segmented into regional clustered datasets (see Definition
2.1.5) according to their timestamp and reference spot. They are subsequently an-
alyzed using a topic model, e.g., LDA. In this topic model, each Dj,k is treated as
a single document. Consequently, we get a topic distribution per reference spot
and timestamp combination. Next, for each reference spot discovered from the ge-
ographical data and for each topic discovered in the topic model, we replace the
binarization method with a method that handles the topic distribution values in-
stead of just the presence or non-presence of a moving object. The value in position i
in the new vector indicates the probability of the current topic in the given reference
spot for timestamps ti ∈ T . The presence of a topic is set to 0 if the probability is
less than some threshold value ε. The vectors are input to the AUTOPERIOD algorithm
described in Section 4.1 to detect cycles.

Given the information about periods for each reference spot and topic combination,
we wish to create a movement trajectory. Again, we introduce some slight changes
to the original algorithm. Firstly, we need to iterate for each period detected and each
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Algorithm 5: TopicPeriodica.
Input: Dataset D = {d1, d2, ..., dn}.
Result: A set of PTTPs.
/* Stage 1: Detect periods. */

1 Find reference spots O = {o1, o2, ..., od}.
2 Find topics Z and topic distributions θDk,j for all tk ∈ T and oj ∈ O.
3 for each oi ∈ O do
4 for each zj ∈ Z do
5 Detect periods in oi for topic zj and store the periods in Pi,j.
6 Pset ← Pset ∪ Pi,j.

/* Stage 2: Mine periodic behaviors. */
7 for each zj ∈ Z do
8 for each T ∈ Pset do
9 OT = {oi|T ∈ Pi,j}.

10 Construct the symbolized sequence S = {s1, ..., sn} using OT where sk is a
list of all oi ∈ OT where θDk,i(zj) > ε.

11 Mine periodic behaviors in S, see Algorithm 2. Store them in PPTTP.

12 return PPTTP.

topic from the topic model. Further, we map our data per period and subject to store
all the reference spots where the topic probability is above some threshold for every
timestamp.

This change breaks the notion that the sum over all topics per timestamp in the dis-
tribution matrix should be equal to one, as the initial value is the relative frequency
as defined by Equation 4.2. Logically, it does not sum to one as we no longer have
a physical object that can only be at one place at a time. However, for each merge
of clusters, we update the distribution matrix according to Equation 4.4, which nor-
malizes each value according to the number of segments in each cluster. The nor-
malization results in the distribution summing to one even though the probability
might be higher as a topic can be present in multiple locations simultaneously. We
keep this in mind as we read the results.

Next, the reference spots per topic are used to mine periodic behaviors. We mine be-
haviors per topic per period across reference spots using the same logic as Periodica.
However, a small change is implemented in the clustering of the segments to reduce
the number of false patterns. While Periodica clusters any segment together, we
require that the clustered segments must be adjacent. Logically, if a pattern with pe-
riod T only reoccurs every second segment, the real period is, in fact, 2T. If it occurs
randomly in the segments, it is not periodic at all.

5.3.2 Complexity Analysis

The time complexity of TopicPeriodica is the sum of the time complexities of the
distinct steps of the algorithm. The time complexity of the detection of reference
spots is O(whn), where w and h are respectively the width and height of the space
grid, and n is the number of documents. The time complexity of LDA depends on the
implementation and hyperparameters. For a small number of topics, as we have, it is
shown to be in polynomial time [33]. We define O(LDAt) as the time complexity of
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LDA. Further, the AUTOPERIOD algorithm has a time complexity of O(Kd|T | log |T |).
Recall that K is the number of topics, d is the number of reference spots, and |T | is
the number of discrete timestamps. Further, we calculate the symbolized sequence
for each topic and period in that topic and then mine periodic behaviors. This step
gives a time complexity of O(Kpd̄|T |), where p is the average number of periods dis-
covered per location and topic combination and d̄ is the average number of detected
reference spots per period.

The algorithm for mining periodic behaviors from the symbolized sequence is O(mdT+
m(m log m + 2dT)) = O(m2 log m + 2mdT), where m is the number of iterations
which in the worst-case scenario it is the number of initial segments and T is the
period. The first addend of the sum is the time complexity of the initial calcula-
tion of the distance between the different behaviors. The second is the calculations
per iteration, which includes the fetching of the minimum pair to merge and the
computation of the newly merged clusters. This calculation differs slightly from
the original clustering algorithm’s time complexity, as we have included a restric-
tion that the merging clusters need to be adjacent. Overall, the time complexity of
TopicPeriodica is O(whn + LDAt + Kd|T | log |T | + Kpd̄|T | + m2 log m + 2mdT).
Note that whn and possibly LDAt will dominate the runtimes, unless for sparse
datasets where n ' |T |.

The space complexity when calculating the reference spots is O(wh). LDA is again
dependent on the implementation, and we define the space complexity as O(LDAs).
AUTOPERIOD has a space complexity of O(|T |), and the symbolized sequence of O(p|T |).
Lastly, the space complexity for mining periodic behaviors is O(mpdT|T |). The to-
tal space complexity is O(wh + LDAs + |T |+ p|T |+ mpdT|T |) = O(wh + LDAs +
mpdT|T |).

5.4 Summary

In this chapter, three models were presented to solve the defined PTTP Problem. We
consider RQ2 consequently answered. The models introduced are PSTA+, GeoLPTA
and TopicPeriodica. To evaluate each algorithm, they were implemented and ex-
ecuted with different datasets. The methodology of these experiments is presented
next.
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Chapter 6

Evaluation Methodology

The proposed models of Chapter 5 are evaluated and analyzed by reviewing the re-
turned patterns and by comparing their runtimes. This chapter provides details on
how we conduct the thesis experiments by implementing and executing each algo-
rithm. We start by presenting the experiment’s datasets in Section 6.1, before moving
on to how we preprocess these datasets in Section 6.2. Further, we present the per-
formance evaluation strategy in Section 6.3. The actual implementation details are
presented in Section 6.4 before we provide details on the environment in which the
algorithms are executed and timed in Section 6.5. Lastly, we discuss how we esti-
mate and select the variable parameters of each algorithm in Section 6.6. We briefly
summarize the chapter in Section 6.7.

6.1 Datasets

We utilize three datasets consisting of geotagged tweets. The first dataset is synthet-
ically generated to test the algorithms’ ability to mine the correct periodic patterns.
The second and third datasets are larger real datasets selected to test the scalability
of each algorithm. We next present the three datasets.

6.1.1 Synthetic Dataset

The synthetic dataset is designed to contain two specified patterns that the algo-
rithms should be able to find. From a preprocessed Twitter dataset of 4000 tweets
from 247 different locations, we insert two periodic patterns, summarized in Table
6.1. An illustration of the same patterns is presented in Figure 6.1. The same tweet
defines each topic and is inserted in periodic positions in the dataset. Topic 1 is a
topic on Italian food, and Topic 2 is a topic about football. Respectively, the two
tweets that define each topic are

Italian food: "Parmesan is the best Italian food ingredient. My food life consists of
Italian parmesan, tomatoes, beef, and parmesan. Lets eat all the food!"

Football: "Football is my life. Kick a ball in the goal; the goal is to win, win,
win!! Sports! Football is a sports :) Lets kick"

Additionally, we set new timestamps for all the tweets to create an evenly sampled
dataset, with eight tweets per day for 500 days. The result is 4000 tweets from Jan-
uary 1, 2018, 12:00 AM till May 15, 2019, 9:00 PM. Every seven days from day 0, two
of the eight tweets of that day is the Italian food-tweet, and every 15 days starting at
day 4, two of the eight tweets of that day is the football-tweet. The rest of the tweets
are random tweets from the original dataset.
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ID Topic
Period
(days)

Offset
(days)

Location Trajectory
(offset: location)

1 Italian food 7 0 0: Puerto Carreno, Vichada, CO
1: Neustadt, Hamburg, DE

2 Football 15 4

4: Cabanbanan,
Calabarzon, PH

6: Olavarria, Buenos Aires, AR
7: Las Pinas, Calabarzon, PH
11: Scarborough, Ontario, CA

TABLE 6.1: Summary of inserted patterns in the synthetic dataset.

Italian food
Football

0
t0 = τ = 0

1
t1 = τ + 1 = 1

0,2
t0 = τ = 4

t2 = τ + 3 = 7

1
t1 = τ + 2 = 6

3
t3 = τ + 7 = 11

FIGURE 6.1: Illustration of the trajectory of the inserted periodic pat-
terns in the synthetic dataset.

We check for inherent patterns in the dataset by applying each algorithm to the
dataset without the inserted patterns and checking the results. If patterns are out-
put, we check if they are consistently output, indicating that the pattern is actual.
We find one such pattern when applying the TopicPeriodica algorithm to the pre-
inserted dataset. The pattern is about employment and job careers, has a period of
19 days, and moves around in Europe. Likewise, the same pattern occurs in GeoLPTA
for numerous different periods. This pattern will likely reoccur when we execute
TopicPeriodica on the post-inserted dataset, and possibly the other algorithms as
well.

6.1.2 Real Datasets

The second and third datasets consist of significantly more tweets than the synthetic
dataset. They are both original datasets from the Twitter API, and we make sure
they contain at least one tweet per day and are limited to the US. We set the location
granularity at the state level, resulting in 50 different locations (one for each state
in the US). The second dataset contains tweets from October 3, 2015, until April 11,
2016, and the third from May 11, 2016, until June 1, 2016. While the second dataset
contains about 85 000 tweets over 161 days, the third dataset consists of 22 million
tweets over just 22 days.

We use the second dataset to test the initial scalability of the algorithms and the
third for further research on the initially scalable algorithms. We extract subsets to
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Subset
proportion

Size
(MiB)

#Tweets #Locations
#Timestamps

(days)
#Words

0.01 0.082 852 38 2 2672
0.1 0.82 8525 49 12 12 389
0.2 1.64 17 051 50 20 18 875
0.5 4.1 42 628 50 46 31 290
0.7 5.74 59 679 50 61 37 465
1.0 8.2 85 257 50 192 45 448

TABLE 6.2: Subsets of the second dataset.

Subset
proportion

Size
(GiB)

#Tweets #Locations
#Timestamps

(hours)
#Words

0.01 0.022 220 881 50 6 76 475
0.1 0.22 2 208 813 50 49 344 781
0.2 0.44 4 417 627 50 100 558 807
0.5 1.1 11 044 069 51 246 1 020 043
0.7 1.54 15 461 696 51 344 1 259 534
1.0 2.2 22 088 138 51 498 1 559 893

TABLE 6.3: Subsets of the third dataset.

measure how the algorithms scale with the input size. The characteristics of the
second dataset and its subsets are summarized in Table 6.2, and the third dataset
is summarized in Table 6.3. In all the experiments using subsets of the second and
third datasets, we set the number of topics to two (K = 2).

6.2 Preprocessing

We preprocess each dataset in a Python program utilizing the Pandas1 library for
fast data processing. As Twitter data contains few terms in a colloquial language,
often with abbreviations and spelling errors, we must take numerous steps to im-
prove the text quality of the tweets [34]. The topic models utilized in our algorithms
are language-dependent. As Twitter data includes an inferred language component,
it is easy to extract all the inferred English tweets. Further, we utilize the tweet-
preprocessor2 library to clean the text of URLs, mentions, emojis, smileys and num-
bers. We keep the hashtags as they often emphasize the theme of the tweet. Further,
the gensim3 library is utilized to remove stopwords.

Next, we lowercase the text and clear excessive white space. The colloquial language
of Twitter data results in multiple tweets containing words with the same letter re-
peated numerous times, e.g., spelling "good" as "goooooood". This example results
in two separate words in the vocabulary. We implement a simple find-and-replace
approach of removing excessive letters, which overall results in a highly improved
and reduced vocabulary. Further, a reliable statistical categorization relies on a cer-
tain amount of data for each term. Therefore, terms only mentioned once combined

1https://pandas.pydata.org/
2https://github.com/s/preprocessor
3https://radimrehurek.com/gensim/

https://pandas.pydata.org/
https://github.com/s/preprocessor
https://radimrehurek.com/gensim/
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Original Processed
Italy should be the one
hosting FIFAAAA world
cup next year. Qual-
ity football combined
with pizza and wine
= <3. #worldcup #fifa
#italy2022ftw

Preprocess

italy hosting fifa world
cup year quality foot-
ball combined pizza wine
worldcup fifa italyftw

11:48AM, May 25, 2021,
11:48AM, May 25, 2021, (10.757933, 59.911491),
(10.757933, 59.911491) Oslo, Oslo, Norway

FIGURE 6.2: Transformation of a tweet before and after preprocess-
ing.

in all the documents are removed, which more than halves the vocabulary. Lastly,
we eliminate all words with less than three characters and all tweets with less than
three words. Other preprocessing techniques like stemming and lemmatization are
not applied as this actually decrease sentiment classification accuracy for Twitter
data [34].

In addition to text preprocessing, supplementary geographical information is valu-
able for the topic modeling-based methods that rely on categorizing the locations.
Therefore, we employ the reverse-geocoder4 library to extract name, administrative
region, and country-code for each longitude and latitude value in the dataset. An
example illustrating the preprocessing is presented in Figure 6.2.

6.3 Performance Measures

The qualitative performance is measured by analyzing the returned patterns of each
algorithm. As initial values affect the results, the algorithm is executed ten times,
and a representative result is selected to be presented. If there are great differences
between the executions, this will be commented on.

The quantitative performance is measured by the runtime for different dataset sizes,
defined by Tables 6.2 and 6.3, and for 2− 10 topics. When we vary the number of
topics, we use the full second dataset. Additionally, we note the maximum space
usage per algorithm for the largest dataset proportions.

Each algorithm’s runtime is measured as the wall clock time from the algorithm’s ini-
tialization to its completion. It excludes the reading of the input data and the writing
of the results to file. We divide the runtime into three distinct phases: the initializa-
tion, the execution, and the additional analysis. The initialization phase calculates
possible statistics and metadata to speed up the execution phase. The principal part
of the algorithm is the execution phase, and the analysis phase contains additional
analysis after EM convergence for the topic modeling-based algorithms. Note that
TopicPeriodica does not have an initialization nor analysis phase, which will result
in a negligible runtime for these phases.

We execute each algorithm 11 times per unique input. We note that the first run
always has a higher runtime than the subsequent ten iterations. This is likely due

4https://github.com/thampiman/reverse-geocoder

https://github.com/thampiman/reverse-geocoder
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to cache operations and Just-In-Time (JIT)5 compilation in Java. Consequently, we
exclude the runtime of the first execution to mitigate any external factors. Moreover,
we reset the algorithm after each iteration. We measure the runtime in nanoseconds
from the algorithm’s initialization to the analysis function returns. After 11 itera-
tions, we average the last ten iterations and return an average runtime. We present
an overview of the evaluation process in Algorithm 6.

Algorithm 6: Benchmarking.
Input: Input pathname p, number of topics K.
Result: The average runtime of the algorithm.

1 for i ∈ {1, . . . , 11} do
2 Load dataset.
3 t1← wall clock time.
4 Initialize(p).
5 t2← wall clock time.
6 Execute(K).
7 t3← wall clock time.
8 Analyze().
9 t4← wall clock time.

10 if i 6= 1 then
11 I ← I ∪ {t2− t1}.
12 E← E ∪ {t3− t2}.
13 A← A ∪ {t4− t3}.
14 Write patterns to file.
15 Log peak memory usage.

16 Reset().

17 return Avg(I), Avg(E), Avg(A).

6.4 Implementation

The implementation of the preprocessing and the algorithms are publicly available6

as of the date of publication of this thesis. All algorithms and helper functions are
serially implemented in Java7, except for the text preprocessing (see Section 6.2).
We chose Java as the main programming language as it makes the algorithms’ time
consumption more transparent. To model topics in TopicPeriodica, we used an
LDA implementation by MALLET (MAchine Learning for LanguagE Toolkit)8. The
AUTOPERIOD algorithm by Vlachos et al. [1] used in TopicPeriodica and PSTA+ was
implemented as well, utilizing the ezFFTW9 library for the DFT calculations. The
library is a Java wrapper for the C-implemented FFTW (Fastest Fourier Transform in
the West)10. Lastly, to decrease the runtimes of the algorithms, we stored additional
information about the dataset in the initialization phase of the topic modeling-based
algorithms.

5https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
6https://github.com/liseph/masterproject
7https://www.java.com/en/
8http://mallet.cs.umass.edu/
9https://github.com/hageldave/ezFFTW

10http://fftw.org/

https://www.ibm.com/docs/en/sdk-java-technology/8?topic=reference-jit-compiler
https://github.com/liseph/masterproject
https://www.java.com/en/
http://mallet.cs.umass.edu/
https://github.com/hageldave/ezFFTW
http://fftw.org/
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6.5 Environment

Runtime measurements were done on a P2P-based database system for data-intensive
applications called DASCOSA [35]11 . It is a system with 40 Intel Xeon Silver 3210 pro-
cessors and four memory disks of 3.7TB. Each processor has ten cores with 20 threads
each and a total cache size of 13.75 MB. The operating system running beneath is
Ubuntu 18.04.5 LTS.

6.6 Parameter Estimation

For the three proposed models, several user-input parameters need to be set by the
user or program. This section discusses how we set these parameters in our exper-
iments and how each parameter influences the results. Finally, we discuss the time
and location granularity, which is common for all three algorithms.

6.6.1 PSTA+

All the algorithms need to set the number of topics. Additionally, PSTA+ uses dis-
crimination values to extract the background topic and decide the importance of the
time and location when selecting a topic. Further, as the algorithm applies the EM
algorithm, both the initial values and the limit as to what constitutes convergence
will significantly affect the runtime and the result of the algorithm. We discuss how
to set these values.

Number of topics: The number of topics impacts both the runtime and the memory
usage. Empirically, the higher the number of topics, the probability of finding
false topics and patterns increases. For this reason, we recommend setting a
small number of topics initially and increasing it if the resulting topics discov-
ered seem to be merged topics. If nothing else is specified, we use K = 2.

λB and λTL: λB decides how discriminative the extracted themes will be, and λTL
decides how vital the temporal and geographical information is when selecting
a topic for each word in the generative process. They are set by Mei et al. em-
pirically to respectively between 0.9 and 0.95, and between 0.5 and 0.7 [20]. We
find that the results do not vary significantly for different values within these
intervals, and so we set λB to 0.9 and λTL to 0.5.

Initial values of distributions: We find that the initial values of the distributions
contribute significantly to whether the algorithm finds the correct topics. We
set the initial values of the topics to a uniform distribution, removing any ini-
tial bias of the resulting topics. The rest of the latent and unknown variables
are set to random distributions. We recommend running the algorithm multi-
ple times with a different seed to alleviate the skewness of the initial values for
the most accurate results.

Convergence limit: In the EM algorithm, we calculate the difference between the
old value and the new value for each iteration and check whether this differ-
ence is less than the convergence limit. We find empirically that a value lower
than 0.01 does not change the outcome, while a higher value stops the algo-
rithm too soon in some cases. For this reason, we set the convergence limit to
0.01.

11https://research.idi.ntnu.no/dascosa/

https://research.idi.ntnu.no/dascosa/
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6.6.2 GeoLPTA

In addition to the number of topics, we also set the periods to discover. Further,
similarly to PSTA+, we need to set initial values of the distribution and a convergence
limit. We also include a standard deviation minimum value, which is necessary to
avoid illegal divisions on zero. These values are discussed and set in the following.

Number of topics: The number of topics is also the number of patterns for GeoLPTA,
affecting the results and runtime. We find that for a high number of topics, the
algorithm performs poorly and is not able to detect correct topics. Therefore,
we keep the number of topics low and increase it if necessary. If nothing else
is specified, we use K = 2.

Periods: In addition to the number of topics, GeoLPTA requires the user to input
the actual periods. As discussed in Section 4.4, the authors of LPTA suggest
utilizing Schwarz’s Bayesian information criterion (BIC) to set the periods (and
the number of topics). We do not utilize this method, but it is possible for
more accurate results. In our experiments, we set the periods based on domain
knowledge of the dataset.

Initial values of distributions: Also for GeoLPTA, we find that the initial values of
the distributions contribute significantly to whether the algorithm finds the
correct patterns or not. Setting each variable to a random distribution as the
initial value provides accurate results in about 50% of the runs and partly in-
correct results in the other half. We discover that setting each variable to a
uniform distribution provides the correct patterns every time, with slightly
less accurate mean values. Therefore, if one wishes high accuracy, we rec-
ommend executing the algorithm multiple times with random initial distribu-
tions. However, for faster results, a uniform distribution suffices, which we
use in our experiments.

Convergence limit: The convergence limit is used in the same way as for PSTA+. We
set it to the same value as in PSTA+, i.e., 0.01.

Standard deviation minimum value: If the standard deviation goes to 0, the time
distribution goes to infinity due to zero divisions. For this reason, we define
a threshold so that if the standard deviation is lower than this threshold, we
manually set the time distribution to a uniform distribution. Empirically we
find that a threshold of 0.01 is sufficient.

6.6.3 TopicPeriodica

Again we first set the number of topics. Additionally, we need to set the LDA hyper-
parameters. Further, to reduce the number of false patterns, the algorithm includes
a topic presence threshold, so all values below this threshold are set to 0. We also set
the smoothing parameter λ. Lastly, the algorithm needs to know when to stop merg-
ing clusters, decided by a representation error threshold set manually. The following
list discusses and sets the aforementioned variables.

Number of topics: TopicPeriodica uses LDA to extract topics from the document
collection, and there is no obvious answer to how many topics we should set.
Empirically, the runtime is not greatly affected by the number of topics, and
we find that a value of around ten topics provides accurate results. For the
most accurate results, there are multiple research papers on determining the
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best number of topics for an LDA topic model [36–38], but this is outside the
scope of this thesis.

α and β: LDA needs α and β values for the Dirichlet distributions. The values
should be between zero and one to ensure sparse distributions. We set them to
0.1.

Number of LDA iterations: The number of LDA iterations affects the accuracy and
runtime of the algorithm. From the documentation of MALLET, the value
should be between 1000 and 2000 iterations12. We set the value to 1500 as
we find that a higher value does not change the outcome, while a lower value
gives less accurate topics.

Topic presence: We need to decide how large a topic probability needs to be to
count as present. The threshold should depend on domain knowledge about
the dataset or the user’s preferences to how sensitive the algorithm should be.
We set the threshold empirically for our datasets to 0.4.

Smoothing parameter λ: This variable is used when we smooth the categorical ran-
dom variable probability in the Kullback-Leibler divergence of Equation 4.3.
The value should be small, and we find that it is not critical what the exact
value is. We set it to 0.1.

Representation error limit: If the representation error makes a sudden jump, we
stop merging clusters in the final phase of the algorithm. To find an appropri-
ate limit, we track how the representation error changes and find that a value
of 0.2 is representative of a significant "jump".

6.6.4 Deciding Time and Location Granularity

All algorithms require a discrete timeline, a location set, or both. We accordingly
need to set the granularity for these two sets. For locations, different options are
by city, country, or coordinate grids. The choice depends on what kind of patterns
we are looking for and how the dataset is sampled. We divide the locations into
administrative regions for both the synthetic and the real datasets. TopicPeriodica
includes a clustering of the data points in the algorithm and subsequently does not
use the predefined location set.

To model periodic behaviors, it is useful to have evenly sampled data. Tweets are
not evenly sampled and can vary in their frequency. To fit Twitter data with periodic
pattern algorithms, we define a set of equally spaced timestamps T of Definition
2.1.3. The time granularity decides the distance, A, between each timestamp in T .
Obvious choices for A are one hour, 24 hours, one week, and one month. A fine
granularity will result in analyzing the data in full detail and possibly discovering
more patterns. In contrast, a coarse granularity will result in fewer operations on the
datasets, but some patterns might be missed.

The time granularity can be set empirically or based on domain knowledge. More-
over, the algorithms expect at least one tweet per timestamp, so we need to set a low
granularity for sparse datasets for the algorithms to function. For a considerable
data collection, space and runtime restrictions might also impact the choice of time
granularity. A possible solution is to choose a low granularity, e.g., one week, and
then rerun the algorithm with a higher granularity with a reduced dataset based on

12http://mallet.cs.umass.edu/topics-devel.php

http://mallet.cs.umass.edu/topics-devel.php
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the discovered patterns. In general, we use A = 24h, i.e., we cluster the documents
by date if nothing else is specified. Due to the short time span of the third dataset,
we set the time granularity for this dataset to 1 hour, i.e., A = 1h. We reserve au-
tomatic timeline and location clustering based on the properties of each dataset for
future work.

6.7 Summary

This chapter presented the methodology used in the experiments of the thesis. We
summarized the three datasets used in the experiments and the preprocessing ap-
plied to these datasets. Further, we explained how we measured the performance of
each algorithm. We summarized language implementation details and the environ-
ment in which the algorithms were executed. Lastly, we informed on what we set as
hyperparameters and how they possibly affect each algorithm.
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Chapter 7

Experimental Results and
Evaluations

This chapter presents and evaluates the experimental results. We divide the evalu-
ation into two sections. First, Section 7.1 presents the qualitative results, consisting
of an analysis of how accurate each algorithm is in finding Periodic Topic Trajectory
Patterns (PTTP). Second, we present runtime measurements of the algorithms and
evaluate their quantitative performance in Section 7.2. Finally, an overall evaluation
of the experimental results is conducted in Section 7.3. Combined, these results pro-
vide the performance of each algorithm, answering RQ3. We conclude the chapter
with a summary.

7.1 Qualitative Results and Evaluations

We first qualitatively evaluate how each of the algorithms achieves the goal of min-
ing PTTPs in a Twitter dataset. Moreover, the algorithms should not discover any
false patterns. We do this by presenting the returned PTTPs for the three algorithms
PSTA+, GeoLPTA and TopicPeriodica using the synthetic dataset, and a summary of
the patterns discovered using the second dataset. Additionally, each result includes
a discussion on what it says about the performance of the relevant algorithm. Lastly,
we qualitatively compare the three algorithms.

7.1.1 Patterns Discovered by PSTA+

We execute two instances of PSTA+. The first instance has the number of topics set
to 2 (K = 2), and the second has the number of topics set to 5 (K = 5). In this way,
we test how the algorithm performs for the correct number of topics and too many
topics. Additionally, we analyze whether the algorithm returns non-existent PTTPs.

For relevance, we only display the correctly identified patterns in Table 7.1 for K = 2.
We omit the results of the second execution (K = 5) as the relevant patterns are
identical to those of Table 7.1, with slightly higher probability values in the relevant
terms. In addition to the patterns presented, the algorithm returns 15 incorrect pat-
terns for K = 2 and 18 incorrect patterns for K = 5. These PTTPs are categorized
as false patterns, as they are not consistently output when inputting the synthetic
dataset to the three algorithms without the inserted patterns. The complete results
of the algorithm are displayed in Appendix A.1. In general, the large number of
returned patterns indicates that PSTA+ returns too many patterns in most runs.
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Topic
(term: probability)

Period
(days)

Initial
offset
(days)

Movement
(offset: location)

food: 0.1108,
parmesan: 0.1104,
italian: 0.0738,
eat: 0.0370,
ingredient: 0.0368,
beef: 0.0368,
tomatoes: 0.0365,
best: 0.0330,
orange: 0.0010,
accounting: 0.0010

7.0 0.0
0.0: Vichada, CO,
1.0: Hamburg, DE

win: 0.1045,
football: 0.0699,
sports: 0.0699,
goal: 0.0691,
kick: 0.0691,
ball: 0.0349,
driver: 0.0030,
transportation: 0.0025,
truck: 0.0022,
place: 0.0019

3.0 4.0 1.0: Calabarzon, PH

15.0 4.0
4.0: Calabarzon, PH,
6.0: Buenos Aires, AR,
11.0: Ontario, CA

TABLE 7.1: A subset of the returned PTTPs of PSTA+ for K = 2.
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From the results of Table 7.2, we conclude that the algorithm successfully finds the
two inserted topics. The topics themselves are displayed as their top ten terms, and
we see that relevant terms dominate these. Moreover, each pattern has the correct
period and almost complete movement. We say almost complete because of the two
patterns identified for the football topic in Table 7.1. Recall that the inserted football
pattern occurs in the Philippines at two different offsets. With the offset for the first
occurrence being four days and the second being seven days, we get a gap of three
days. As three divides 15, this three-day gap will periodically occur, resulting in
the algorithm identifying it as a separate pattern. Thus, the pattern is not wrong in
itself but rather a result of an erroneous division of the movement trajectory. The
identical offset and topic should indicate a correlation between the two patterns, but
an inattentive user might interpret the results as unrelated.

The non-displayed patterns are mostly PTTPs with large initial offsets. Keep in mind
that we can extract the relevant results as we know what the correct patterns are. In
most cases, this is unknown, and all the returned PTTPs seem equally correct. We
note that the large initial offsets seem to be an indication of incorrect patterns. How-
ever, a correct pattern can also have a large initial offset, so this is not a reliable
confidence measure. Another possible verification method is to run the algorithm
multiple times with a different number of topics to see which patterns reoccur. Re-
curring patterns indicate a higher relevance and presence in the dataset.

Note: As a consequence of the initial values of each distribution being set to a ran-
dom distribution, the results are slightly different for each run. In about half of the
runs, the algorithm is not able to distinguish the two inserted topics. Consequently,
we get one topic with a mixture of food- and football-related terms and the other
topic(s) as non-related to the inserted topics. In these cases, PSTA+ is still able to find
the same trajectories as those displayed in Table 7.1 for the one relevant topic. Again
we stress the necessity of running the algorithm multiple times to verify the results.

7.1.2 Patterns Discovered by GeoLPTA

We next analyze two cases for GeoLPTA where the period input parameters are set to:
(1) K = 2 with periods seven and 15 days and (2) K = 3 with periods four, seven, and
25 days. Ergo, we test whether the algorithm can find the patterns for correct input
and whether it is possible to separate between correct and incorrect PTTPs in the
output. The results of the two different input parameters are summarized in Tables
7.2 and 7.3. We first comment on the topics. Later, we discuss the movements per
topic, which are not shown fully due to their non-relevance. The complete results
are presented in Appendix A.2.

From the first execution, the results indicate that the algorithm successfully can iden-
tify the correct topics for a precise input and a partly correct input. Moreover, the
topic terms are more accurate than those identified for PSTA+, even with slightly
lower probabilities. Next, we analyze the second execution and the algorithm’s abil-
ity to differentiate between correctly and incorrectly returned patterns. Of the three
periods, the seven-day topic is correct, and the four-day topic is probably incorrect.
The 25-day topic resembles the employment topic with a period of 19 days returned
by TopicPeriodica before we inserted the patterns. In conclusion, we have one cor-
rect, one partly correct, and one incorrect topic in the output. Regrettably, as the
algorithm assumes the input parameters are correct, it provides no information to
indicate these conclusions.
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Topic 1
T = 7.0
δ = . . .

Topic 2
T = 15.0
δ = . . . (2.47, 1.50): Calabarzon, PH . . .

food: 0.0880,
parmesan: 0.0877,
italian: 0.0584,
best: 0.0307,
life: 0.0297,
eat: 0.0295,
tomatoes: 0.0293,
lets: 0.0293,
ingredient: 0.0292,
consists: 0.0292

win: 0.0908,
football: 0.0611,
goal: 0.0607,
sports: 0.0604,
kick: 0.0604,
life: 0.0324,
lets: 0.0306,
ball: 0.0303,
job: 0.0088,
hiring: 0.0075

TABLE 7.2: Returned PTTPs of GeoLPTA for periods seven and 15.0
days.

Topic 1
T = 4.0
δ = . . .

Topic 2
T = 7.0
δ = . . .

Topic 3
T = 25.0
δ = . . .

win: 0.0291,
football: 0.0195,
sports: 0.0191,
kick: 0.0189,
goal: 0.0185,
job: 0.0142,
life: 0.0118,
hiring: 0.0113,
lets: 0.0095,
ball: 0.0094

food: 0.1016,
parmesan: 0.1012,
italian: 0.0675,
life: 0.0375,
lets: 0.0369,
best: 0.0353,
eat: 0.0340,
tomatoes: 0.0337,
consists: 0.0337,
ingredient: 0.0337

job: 0.0176,
hiring: 0.0160,
careerarc: 0.0085,
win: 0.0072,
like: 0.0067,
day: 0.0060,
latest: 0.0060,
great: 0.0056,
amp: 0.0055,
football: 0.0053

TABLE 7.3: Returned PTTPs of GeoLPTA for periods four, seven, and
25.0 days.
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Next, we discuss the pattern movements. A significant problem with the GeoLPTA
patterns looks to be the location trajectory. Since the algorithm assumes that the
topic is periodic in all locations when it calculates means and standard deviation
values, all the time distributions are output as periodic. For this reason, an added
filtering step is implemented, which reduces the trajectory from 247 locations to 17
locations for the seven-day pattern and 42 locations for the 15-day pattern. These
numbers indicate that the filtering logic was not as effective as intended. Worse yet,
the resulting trajectories lack almost all the correct locations, and in the case where a
correct location is returned, the offset is wrong. This wrong offset is connected to yet
another limitation of the algorithm, namely that each location only has one mean
value. Inevitably, the two occurrences of the football topic in the Philippines are
merged into one, resulting in a reduced movement and skewed offset. In summary,
the offset calculations are limiting, and the filtering step removes too few and the
wrong locations.

The failure of the filtering step is connected to a discovered side effect of the non-
periodicity detection when the standard deviation is 0. If the periodic pattern repeats
itself every period at the exact same offset, we have a perfect pattern, and the stan-
dard deviation will statistically be 0. Consequently, it is impossible to tell whether
the standard deviation is 0 due to non-periodicity or perfect periodicity. All the pat-
terns are perfectly periodic in the synthetic dataset, resulting in all the correct loca-
tions being filtered out. The one exception is the location that occurs multiple times
in the movement and is thereby not perfectly periodic when treated as only having
one occurrence. Although such patterns are unlikely to take place in real data, it is a
fundamental problem that if a pattern is too periodic, the algorithm discards it.

To conclude, the algorithm lacks a confidence measure, or an information gain met-
ric [10] to better separate the periodic and non-periodic locations in the analysis
phase and to provide some indication of how well the patterns fit the data. A natu-
ral starting point is to utilize the Q-function of the EM algorithm better. We leave this
for future work. All in all, the patterns discovered using GeoLPTA are not successful
PTTPs as the algorithm is not able to identify the cyclic movements of the patterns.

7.1.3 Patterns Discovered by TopicPeriodica

We next present and discuss the PTTPs returned by TopicPeriodica. We first present
the reference spots and the topics discovered by the LDA model. Finally, the patterns
are presented and analyzed.

Reference Spots and Topics

The reference spots are extracted from a calculated density map illustrated in Figure
7.1. Reference spot IDs mark each detected contour line, and there is an approximate
overlay of a world map for reference. The map shows that the algorithm identifies
five main areas: North America, South America, Europe, South Asia, and South-
east Asia. Table 7.4 lists the specific countries assigned to each reference spot. We
note that the location granularity of TopicPeriodica is coarse compared to the ad-
ministrative regions utilized in PSTA+ and GeoLPTA, which will result in less detailed
movements.

Next, the identified periodic topics are presented in Table 7.5, displayed with their
top ten words and relevance score. We define the headers based on the terms of
each topic. As the topic modeling utilized is a pure LDA model, it is not surprising
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1

2

3

4
5

FIGURE 7.1: Density map identifying five reference spots.

Ref. spot 1
(N. America)

Ref. spot 2
(S. America)

Ref. spot 3
(Europe)

Ref. spot 4
(S. Asia)

Ref. spot 5
(SE. Asia)

CA, CO, DO, US AR

AT, BE, CH, CZ,
DE, DK, ES, FR,
GB, GR, IE, IT,

MA, NL, NO, PL,
PT, RO, SE, SI,

SK, TN

BD, IN, PK BN, HK, PH, TW

TABLE 7.4: Reference spots and their corresponding identified coun-
try codes.

that the topics from this model are the most accurate of the three models. The topics
"Italian food" and "football" are the two periodic topics we are looking for.

Additionally, two more topics are returned as periodic. The periodic employment
topic is inherent in the synthetic dataset, while the happy topic is most likely incor-
rectly returned. We note that the terms of this topic are relatively generic (e.g., love,
happy, good, like) and have a low relevance score, so there is a probability that the
user would discard the pattern based on its lack of content.

Complete Patterns

We are now ready to present the returned PTTPs. Table 7.6 summarizes the different
periods and movements found by the algorithm per topic. The reference spots are
represented by their given main area in Table 7.4 for readability. We exclude the
movement trajectory of the two additional patterns discussed above as they are not
relevant for the discussion.

First, we note that the Italian food topic is returned with the correct seven-day period
and the correct movement and offsets. Additionally, TopicPeriodica identifies two
patterns with periods of two days and three days for the same topic. However, their
movement trajectory probabilities tell us that the topic is actually not moving in
periods but has a constant presence of 13− 15% in reference spot 1 in all timestamps.
Therefore, we can discard these patterns and consider if such patterns should be
discarded as part of the algorithm.
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Italian food Football Employment Happy

food: 877.0 win: 810 job: 371.0 like: 141.0
parmesan: 864.0 sports: 539.0 hiring: 332.0 good: 99.0
italian: 576.0 goal: 537 careerarc: 180.0 love: 93.0
lets: 297.0 kick: 537.0 latest: 125.0 people: 82.0
eat: 294.0 football: 536.0 work: 116.0 today: 81.0
best: 294.0 life: 273.0 click: 115.0 know: 73.0
tomatoes: 289.0 ball: 271.0 opening: 81.0 happy: 73.0
life: 289.0 lets: 265.0 apply: 79.0 think: 72.0
beef: 289.0 pts: 3.0 jobs: 74.0 time: 72.0
consists: 288.0 gettin: 2.0 want:72.0 amp: 67.0

TABLE 7.5: Periodic topics discovered by TopicPeriodica.

Further, the football pattern returned has the correct period of 15 days and the cor-
rect location trajectory and offsets. Again, the algorithm returns two additional pat-
terns with the same topic, this time with a period of three days and seven days. The
PTTP with a seven-day period is, similar to the incorrect periods for Italian food,
constant for all timestamps in the same reference spot, and is hence discarded. The
period of three days, however, does not display such constant presence. Still, we dis-
card it for the following reason: The correct period of 15 days has two occurrences
in Southeast Asia (reference spot 5) with offsets 4 and 7. We illustrate the pattern as
a sequence of 15 values,

∗ ∗ ∗ ∗ X ∗ ∗X ∗ ∗ ∗ ∗ ∗ ∗∗,

where X in position i means an occurrence of the topic in the fifth reference spot at
relative timestamp Ti and ∗ means no such occurrence. If we divide this into five
segments of three days, i.e.,

∗ ∗ ∗ ∗ X ∗ ∗X ∗ ∗ ∗ ∗ ∗ ∗∗,

two of the segments (the second and third) has an X at offset 1. Two out of five seg-
ments are 40%, and, thus, we get a periodic pattern with a period of three days and
an initial offset of one day with a 40% frequency. This is the same logic that made
PSTA+ return a similar three-day pattern. In this case, however, the same movement
is also included in the 15-day PTTP and can be discarded without losing any infor-
mation.

To summarize, TopicPeriodica perfectly identifies the correct period and complete
location trajectory for each topic. Hence, the algorithm is the only one of the three
proposed models that fully capture the inserted PTTPs. Although, the coarse loca-
tion granularity limits the level of detail of the returned patterns. Like the two other
algorithms, it returns some incorrect patterns as well. However, these patterns in-
clude information that makes it possible for either the recipient or the program to
discard them.

7.1.4 Patterns in the Second Dataset

We lastly present a summary of how each algorithm performed on the second dataset.
As we have no prior knowledge of the PTTPs in this dataset, we can only compare
the algorithms in how they differ in their results. Ideally, they would all return the
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Topic
Period
(days)

Movement
(offset: ref. spot (frequency))

Italian food
2.0

0: Europe (0.14),
1: Europe (0.14)

3.0
0: North America (0.15),
1: North America (0.15),
2: North America (0.13)

7.0
0: North America (0.99),
1: Europe (1.00)

Football

3.0 1: Southeast Asia (0.40)

7.0

0: South America (0.07),
1: South America (0.07),
2: South America (0.07),
3: South America (0.07),
4: South America (0.06),
5: South America (0.06),
6: South America (0.07)

15.0

4: Southeast Asia (1.00),
6: South America (1.00),
7: Southeast Asia (1.00),
11: North America (0.94)

Employment 17.0 -

Happy 102.0 -

TABLE 7.6: Returned PTTPs from TopicPeriodica.
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#Tweets Algorithm Non-empty results (%)
Avg. #PTTPs
when results

852
PSTA+ 0.0 -
GeoLPTA 100.0 2
TopicPeriodica 0.0 -

8525
PSTA+ 60.0 1.7
GeoLPTA 100.0 2
TopicPeriodica 0.0 -

17 051
PSTA+ 90.0 1.8
GeoLPTA 100.0 2
TopicPeriodica 0.0 -

42 628
PSTA+ 90.0 1.8
GeoLPTA 100.0 2
TopicPeriodica 0.0 -

59 679
PSTA+ 100.0 2.3
GeoLPTA 100.0 2
TopicPeriodica 0.0 -

85 257
PSTA+ 100.0 8.5
GeoLPTA 100.0 2
TopicPeriodica 100.0 2.3

TABLE 7.7: Results for different dataset sizes. Each algorithm is exe-
cuted ten times.

same results, but they do not. Table 7.7 summarizes the percentage of times the
algorithms returned non-empty results out of the ten iterations per subset. Addi-
tionally, when they did return non-empty results, we present how many patterns
they returned on average.

The first thing to note is that TopicPeriodica does not return any results unless
for the whole dataset. There are two possible reasons for this. The first is that
the algorithm cannot find PTTPs as successfully as the two other algorithms when
the dataset is small or has shorter timelines. One probable explanation for this is
the coarse location granularity of the algorithm, which results in large aggregated
datasets that hide detailed information. The second explanation is that there are no
reliable patterns to discover due to the short time span. If this is true, the returned
PTTPs of the two other algorithms are wrong.

This leads to a second observation: For the smallest datasets, both PSTA+ and GeoLPTA
return periodic patterns in at least some of the iterations. Recall in Table 6.2 that the
number of timestamps for the two smallest datasets are two and 12 days, i.e., not
much data to determine periodic patterns reliably. We also note that the patterns
returned are not the same for the different dataset sizes. Of course, GeoLPTA models
the data on the assumption that the input parameters are correct. Consequently, the
algorithm always returns a fixed number of patterns. This further emphasizes the
necessity of a confidence measure in GeoLPTA to evaluate the patterns. In contrast,
PSTA+ does not have this "excuse". However, we find that the returned patterns of
PSTA+ for the three smallest datasets have periods of two and three days, which is
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PSTA+ GeoLPTA TopicPeriodica

Correct topics Yes Yes Yes
Correct periods Yes Yes Yes
Correct trajectories Mostly No Yes
Needs multiple runs Yes Yes No
Includes non-existent PTTPs Yes Yes Yes
Possible to discard incorrect PTTPs No No Yes

TABLE 7.8: A summary of the qualitative evaluation of the three pro-
posed models.

logical given the short time span of the datasets. On the other hand, the topics are
not particularly distinct.

The results in Table 7.7 indicate that TopicPeriodica probably misses some of the
smaller patterns, while PSTA+ includes too many patterns. This is further verified by
the average number of patterns returned for the largest subset, where PSTA+ returns
on average 8.5 patterns while TopicPeriodica returns 2.3.

We omit the statistical summary of the results when varying the number of topics
due to scalability issues for PSTA+ which is discussed in Section 7.2. Further, GeoLPTA
will always return the number of topics (and hence patterns) it is input. We are left
with TopicPeriodica, which we briefly summarize. The algorithm returns some-
what the same patterns regardless of the number of topics. In all cases, a maximum
of four patterns is returned. This indicates that the algorithm is resilient to noise and
identifies the correct periodic topics even among numerous non-periodic topics.

7.1.5 Qualitative Comparison

The three algorithms all have different approaches in finding the same result, and so
naturally, there are some differences in how well they perform. Firstly, all three al-
gorithms correctly identify the periodic topics and periods. TopicPeriodica returns
the most accurate topic terms, followed by GeoLPTA and then PSTA+.

Further, while GeoLPTA returns a fixed number of patterns, PSTA+ returns the most
patterns and consequently the most wrong patterns. Moreover, PSTA+ is greatly af-
fected by the initial values of the distributions and needs multiple runs to extract the
correct patterns and filter out incorrect ones. In contrast, TopicPeriodica returns
a small number of patterns per topic, with only a few wrong patterns, and only
needs one execution. We lastly note that from both PSTA+ and TopicPeriodica, we
wrongly get a three-day periodic pattern for the football topic that was inherent in
the 15-day periodic pattern. As a consequence, we learned to be aware of periodic
patterns within the same topic, as they are probably correlated.

Finally, both PSTA+ and TopicPeriodica correctly identifies the location trajecto-
ries per pattern. However, while the movements reported by TopicPeriodica in-
clude probability values per trajectory point, PSTA+ has no such information. It is
thus not able to distinguish between probable true and false patterns. Furthermore,
TopicPeriodica is more restrictive in how it identifies PTTPs than PSTA+, resulting
in an overall low probability of false patterns. Lastly, GeoLPTA fails in identifying cor-
rect pattern movements, resulting in the algorithm not being able to solve the PTTP
Problem of Definition 2.3.2.
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(A) Using the second dataset. (B) Using the third dataset.

FIGURE 7.2: Runtimes for different dataset sizes.

A color-coded summary of the three algorithms’ qualitative evaluation is presented
in Table 7.8. The summary illustrates that TopicPeriodica is the most accurate of
the three algorithms, and GeoLPTA the least.

7.2 Quantitative Results and Evaluations

In the quantitative evaluation, we use the second and third datasets to time each
algorithm for different values of dataset sizes and numbers of topics. Each result
is presented with a short discussion, which is utilized in a revised time complexity
analysis. Lastly, we compare the algorithms regarding their calculated and actual
space usage.

7.2.1 Effects of Varying the Dataset Size

The average runtime per algorithm when varying the dataset size of the input is
presented in Figures 7.2a and 7.2b. They show runtimes for the second and third
dataset, respectively.

The initial scalability is tested using the second dataset. Overall, there are great dif-
ferences in runtimes in Figure 7.2a. While TopicPeriodica uses at most 70s to com-
plete, PSTA+ runs for 1400s before completion for the largest portion of the dataset.
GeoLPTA is somewhere in between the two with a maximum runtime of about 600s.
These vast differences are due to a close to quadratic increase in runtime for PSTA+
and a linear increase for GeoLPTA. TopicPeriodica has a relatively constant runtime
for dataset sizes up until 60k tweets, where we experience a slight increase.

Next, we analyze the runtimes displayed in Figure 7.2b, recorded using the larger
third dataset. Due to its high runtimes, we excluded PSTA+ from these experiments.
While TopicPeriodica was close to unaffected by the dataset size for the second
dataset, Figure 7.2b shows a clear linear correlation between the dataset size and
the runtime of the algorithm. This indicates that the algorithm has a dominating
step with a close to constant runtime, but for large enough datasets, the dataset-
dependent operations become more time-consuming than this constant runtime. We
discuss what this constant runtime is in the revised time complexity analysis in Sec-
tion 7.2.3. On the other hand, GeoLPTA performs similarly on the third dataset as it
did on the second, showing a linear correlation. However, this is steeper than the
one for TopicPeriodica, resulting in such high runtimes the experiment had to be
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FIGURE 7.3: Number of iterations before convergence when varying
the dataset size.

cut after 4 million tweets. The first iteration using 11 million tweets ran for over 72h
before it was terminated.

Further, we present the average number of iterations of the EM algorithm on the sec-
ond dataset for PSTA+ and GeoLPTA in Figure 7.3. For PSTA+, there is an almost linear
correlation between the number of documents and the number of iterations. This ex-
plains the quadratic increase in runtime in Figure 7.2a. We mathematically explain
this in the final revised time complexity analysis. Consequently, the algorithm is
not scalable and, in that sense, useless for larger datasets. On the other hand, there
seems to be no such correlation for GeoLPTA, and the runtimes correlate linearly with
the increase in dataset size and number of iterations. We see that a dip in the number
of iterations results in a more gradual, yet still increasing, slope in the runtime.

Lastly, we look at the logarithmic runtimes of the experiments using the second
dataset to see what parts consume the most time. Similar views for the third dataset
are omitted as they bring no new information. Figure 7.4 illustrate the same runtimes
as in Figure 7.2a in logarithmic scale. For TopicPeriodica, we see more clearly the
slight increase in runtime previously mentioned for the full dataset. The increase is
likely connected to the jump in the number of timestamps, from 61 to 191 as listed
in Table 6.2. We discuss this further in Section 7.2.3. For the other two algorithms,
the graphs show that the initialization runtime grows with the dataset size. Yet, the
main part of the algorithms is not surprisingly the execution phase, while the anal-
ysis phase is close to trivial. Although, we see that for smaller datasets, the analysis
phase is non-negligible for PSTA+. As the dataset size grows, however, the execution
phase dominates the runtime.

To conclude, when increasing the number of documents in the input, TopicPeriodica
is negligibly affected for medium-sized datasets and linearly affected for large datasets.
Regardless, it is quantitatively superior. GeoLPTA displays a steep linear growth in
runtime, while PSTA+ displays a quadratic increase in runtime with the data input
size.
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(A) PSTA+. (B) GeoLPTA.

(C) TopicPeriodica.

FIGURE 7.4: Logarithmic view of the runtimes for different dataset
sizes.

7.2.2 Effects of Varying the Number of Topics

The average runtimes per algorithm when varying the number of topics, K, using
the second dataset are presented in Figure 7.5. Further, the number of iterations
until convergence for PSTA+ and GeoLPTA are illustrated in Figure 7.6.

First, we analyze the runtimes of GeoLPTA and TopicPeriodica displayed in Figure
7.5a. We see that TopicPeriodica has a low runtime and is negligibly affected by
the number of topics. On the other hand, the graph shows a close to quadratic rise
in the runtime of GeoLPTA. This is due to a linear correlation between the number of
iterations and the number of topics, as displayed in Figure 7.6a.

The experiments with PSTA+ were cut at K = 4 due to excessive runtimes. To perform
a meaningful analysis of PSTA+ when it comes to the number of topics, we executed
the algorithm again with 10% the dataset. These are the runtimes presented in Figure
7.5b. Again we experience a quadratic correlation, this time between the number of
topics and the runtime, due to the linear correlation evident in Figure 7.6b between
the number of iterations and the number of topics. We conclude that PSTA+ is not
scalable for an increasing number of topics.

Lastly, we display the runtimes of PSTA+ and GeoLPTA in logarithmic form in Figure
7.7 to get a view of how the different parts of the algorithms are affected by the
number of topics. We omit such a view for TopicPeriodica because, as we know,
the algorithm only consists of one phase. The runtimes for PSTA+ are from the small
dataset execution of 8525 tweets, so the graphs are not directly comparable. PSTA+
has a stable initialization phase for all the variations of K, while the analysis phase
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(A) Using the second dataset. (B) Using 10% of the second dataset.

FIGURE 7.5: Runtimes when varying the dataset size.

(A) Using the second dataset. (B) Using 10% of the second dataset.

FIGURE 7.6: Number of iterations before convergence when varying
the number of topics.
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(A) PSTA+ using a dataset of 8525 tweets. (B) GeoLPTA.

FIGURE 7.7: Logarithmic view of the runtimes for different values of
K.

consumes a more considerable part of the total runtime for higher values of K. This
is expected as the analysis phase loops through each topic to find patterns. GeoLPTA
has a relatively stable initialization phase regardless of the number of topics and a
negligible analysis phase. The negligible analysis phase is due to the low complexity
of the loop of topics in GeoLPTA as opposed to in PSTA+. In general, just as for the
experiments with different data sizes, the dominating phase of both algorithms is
the execution phase.

Overall, when increasing the number of assumed topics in the dataset, TopicPeriodica
is hardly affected. In contrast, both GeoLPTA and PSTA+ display poor scalabilities with
close to quadratic correlations between runtime and the number of topics. Thus, we
conclude that TopicPeriodica is the superior algorithm within the experiments dis-
cussed in this section.

7.2.3 Revised Time Complexity Analysis

With the experiments revealing qualities of the unknown variables of the time com-
plexities, we revise these for each algorithm and update them if possible. Recall from
Chapter 5, the time complexities of the algorithms are

PSTA+: O(iter1 ∗ Knu + iter1 ∗ K|L||T ||V|)

GeoLPTA: O(iter2 ∗ Knu)

TopicPeriodica: O(whn + LDAt + Kd|T | log |T |+ Kpd̄|T |+ m2 log m + 2mdT)

The linear correlation discovered between the number of documents and the number
of iterations for PSTA+ indicates that iter1 = C0n for some constant C0 > 0. Moreover,
the linear correlation between the number of iterations and the number of topics
enables a further decomposition so that iter1 = C1Kn for some constant C1 > 0. This
indicates the time complexity of PSTA+ is in fact

O(iter1 ∗ Knu + iter1 ∗ K|T ||L||V|)
=O(C1K2n2u + C1nK2|T ||L||V|),

resulting in a quadratic runtime both when it comes to the dataset size and the num-
ber of topics. Given that K � n1, K2 is negligible in the expression. However, with

1K is a lot less than n.
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more documents comes more possible topics, and so a larger dataset will lead to a
greater than quadratic rise in runtime. We are left with a poorly scalable algorithm
that is only applicable for small datasets with few patterns.

GeoLPTA was affirmed to be linearly correlated with the number of documents and
not quadratically like PSTA+. However, the linear correlation between the number
of iterations and the number of topics means we rewrite the number of iterations
to iter2 = C2K for a constant C2 > 0. This propagates to the time complexity, and
we get O(iter ∗ Knu) = O(C2K2nu). As we can see, this is quadratic regarding the
number of topics, but again, as K � n, this is not a big concern.

The runtimes of TopicPeriodica are not noticeably affected by the dataset size ini-
tially but rather by the number of timestamps. However, for larger datasets, they
linearly follow the dataset size. The most likely explanation of this is the unknown
impact of the LDA algorithm from the time complexity listed above. Recall that we
pass d ∗ |T | "documents"2 to the LDA algorithm, which is somewhat scaled with
the number of documents and the number of iterations [33]. Consequently, we get
O(LDAt) = O(iter3d|T | ∗ LDAt1), where iter3 is the number of iterations (set to
1500 in our experiments), and LDAt1 is an unknown value. Consequently, while
n is small, the runtime of TopicPeriodica is close to constant with a slight depen-
dence on |T | and d. When O(LDAt) < O(whn), the algorithm instead scales lin-
early with the number of documents. Conclusively, the revised time complexity of
TopicPeriodica is O(whn + iter3d|T |LDAt1).

7.2.4 Memory Usage

Lastly, we analyze the space usage of the algorithms, as this can be equally important
when we are dealing with large datasets. First, we look at the space complexities
before shortly commenting on the space used during the experiments.

Recall from Chapter 5 that the space requirements for the three algorithms are

PSTA+: O(Knu + K|V|+ K|T ||L|)

GeoLPTA: O(Knu + K|V|+ K|T ||L|)

TopicPeriodica: O(wh + LDAs + mpdT|T |)

First note that the space complexities for PSTA+ and GeoLPTA are the same. Next, the
space complexity of TopicPeriodica contains the unknown value LDAs. As LDA
is a latent topic model, we can assume that the memory usage does not greatly dif-
fer from the memory usage of the latent topic model-based algorithms PSTA+ and
GeoLPTA without the spatiotemporal factors, i.e. O(LDAs) ≤ O(Knu + K|V|). Fur-
ther, there is no reason to divide the geographic space into very small grid cells,
so wh ≤ n. Lastly, often in the experiments, the number of iterations was the initial
number of segments, so we get m = d|T |/Te, and both p (the average number of pe-
riods per location and topic) and d (the number of reference spots) are insignificant
compared to |T |2. We get

O(|T |/T ∗ pdT|T |)
=O(|T |2 pd)

=O(|T |2).
2One combined document per reference spot and timestamp combination.



7.3. Overall Performance 69

Space usage
(MiB)

Usage of reserved
memory (%)

PSTA+ 2678 46.34
GeoLPTA 2627 45.79
TopicPeriodica 407 16.60

TABLE 7.9: Space usage of the three algorithms on the full second
dataset.

We see that if K|L| < |T | and O(LDAs) = O(Knu+ K|V|), TopicPeriodica requires
slightly more memory than the two topic modeling-based algorithms. In any case,
the space usage of the three algorithms will be relatively low compared to the CPU
usage.

The memory usage observed during the experiments indicates that O(LDAs) �
O(Knu + K|V|). For the full second dataset, the approximate maximum memory
usage is presented in Table 7.9, with TopicPeriodica utilizing only a fraction of the
memory utilized by PSTA+ and GeoLPTA. We note that the memory usage of PSTA+
and GeoLPTA is higher than the expected memory usage from the space complexi-
ties. The reason for this is that due to high runtimes, the algorithms were imple-
mented with additional statistical analysis in the initialization step to avoid having
to recalculate these at each iteration. We stored information per document, time and
location, and word in the vocabulary. Consequently, the memory usage more than
doubled.

At the same time, the memory usage of all the algorithms is low compared to the
CPU usage and is consequently a non-issue. The only exception might be for GeoLPTA
on the third dataset, where we had to terminate the algorithm at 11 million tweets
due to unexpected high runtimes. This might be partly due to memory overflow,
but the memory utilization was not monitored for this dataset, so further research is
necessary to conclude this issue.

To conclude, TopicPeriodica utilizes significantly less memory than the other algo-
rithms. However, none of the algorithms utilize unrealistically much space and are
in that sense all passable when it comes to space usage.

7.3 Overall Performance

The comparisons within the three different metrics clearly show that TopicPeriodica
is the superior algorithm. It returns the most accurate results, is substantially faster,
and scales better for larger datasets and a varying number of topics. Compared to
the other proposed models, a downside is that the discovered locations span large
areas, resulting in less detailed patterns. However, it is worth noting that this is due
to the algorithm being independent on a predefined set of locations, as it automati-
cally defines critical regions based on the input data.

Due to GeoLPTA’s inability to identify location trajectories per topic, it is irrelevant
that it executes noticeably faster and scales better than PSTA+. If it were possible to
define a metric to measure the actual periodicity of the locations and not the mod-
eled periodicity, the approach would be interesting for further research. In contrast,
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the high runtimes of PSTA+ make the fact that the algorithm returns correct results
irrelevant, as it does not scale and is not applicable on larger datasets.

Why TopicPeriodica is so much faster than the two other algorithms is probably
partly because it uses a standard LDA implementation. While PSTA+ and GeoLPTA
implements the topic modeling from scratch, TopicPeriodica uses an existing model
which is standardized and implemented efficiently. The log view of the runtimes of
PSTA+ and GeoLPTA showed that the EM algorithm (execution phase) dominated the
total runtime. Optimizations applied to this phase would likely decrease the run-
time gap between the algorithms.

Nonetheless, TopicPeriodica is superior in both the qualitative and quantitative
evaluation and is the only one of the three proposed algorithms at this point that is
applicable to real-world data. Moreover, the algorithm is a starting point for opti-
mizations and other approaches that can further enhance performance. We discuss
some of these in Section 8.2.

7.4 Summary

This chapter answered RQ3 as it presented the experimental results of executing the
three proposed algorithms; PSTA+, GeoLPTA and TopicPeriodica. Each algorithm re-
turned a qualitative result (PTTPs) and a quantitative result (runtimes). Combined,
the results constitute the performance of each algorithm. We evaluated each algo-
rithm in itself and compared it to the other algorithms. TopicPeriodica was con-
cluded to have the best performance of the three algorithms.
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Chapter 8

Conclusions and Future Work

As mobile phones are increasingly a part of our everyday attire, the amount of spa-
tiotemporal textual data grows exponentially. Such rich data consists of timestamps,
GPS coordinates, and texts, and it contains concealed information about the gen-
eral public. In this thesis, we aimed to develop algorithms that can extract some of
this information. More specifically, we wished to extract periodic information diffu-
sion from Twitter data by mining Periodic Topic Trajectory Patterns (PTTP). Analyz-
ing how information spreads geographically in periodic intervals can predict future
patterns and detect anomalies as they happen. Twitter data is rich in content as it
contains opinions, experiences, and historical events, making it a perfect input data
source for a PTTP algorithm.

We began our work by defining the problem formally before performing a literature
review on relevant research areas. We found three main approaches that seemed
possible to use as a basis when developing more complex algorithms. The informa-
tion gained in this step was used to define three algorithms that mine Periodic Topic
Trajectory Patterns. These algorithms were implemented and tested using three dif-
ferent datasets. Finally, the experiments were used to evaluate each algorithm.

8.1 Conclusions

We introduced this thesis by presenting three research questions that would guide
our approach throughout the thesis. In this section, we discuss and answer these
questions based on our research and experiments.

RQ1 How can a Periodic Topic Trajectory Pattern be formally defined?

We are the first to our knowledge to define the Periodic Topic Trajectory Pattern.
The pattern is concisely defined in Definition 2.3.1 and illustrated with an example
in Figure 2.2. The definition relies on the numerous definitions of Chapter 2.

RQ2 What algorithms exist that partly solve the problem? Can we expand them, so they
fully solve the problem?

Three algorithms were presented that represent three different approaches in solv-
ing the PTTP problem. The first approach adds a periodicity detection step to a
geographic probabilistic topic modeling algorithm. We implement this by expand-
ing the algorithm PSTA [20] with an additional periodic analysis step, resulting in
the algorithm PSTA+. The second approach applies a geographical dimension to pe-
riodic probabilistic topic modeling. The resulting model is based on the algorithm
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LPTA [3], which we called GeoLPTA. Lastly, the third approach adds a topic model-
ing step to a periodic trajectory pattern mining algorithm, in our case, the algorithm
Periodica [18]. This resulted in a modified algorithm TopicPeriodica.

The difference between the two topic modeling-based algorithms PSTA+ and GeoLPTA
is the order of modeling. PSTA+ models the data without any assumptions of period-
icity and checks for periodic patterns later, while GeoLPTA directly models the pat-
terns periodically. Both TopicPeriodica and PSTA+ fully solve the problem, while
GeoLPTA is only able to solve the problem partially.

There are, of course, more approaches to developing an algorithm to solve the de-
fined problem. We discuss some of these in Section 8.2.

RQ3 If yes, what is the performance?

GeoLPTA has a satisfying runtime and scales relatively well but is not able to fully
identify PTTP patterns due to its inability to define the trajectory movements of the
patterns. This is due to the assumption that all locations are periodic, and so they
are modeled accordingly. Consequently, the performance of GeoLPTA is poor. On the
other hand, PSTA+ correctly identifies PTTPs, but does not scale and is consequently
useless in a data mining context. Further, the algorithm includes multiple PTTPs
in its results that were incorrect, without any information to indicate the confidence
of each pattern. Also this algorithm is concluded to have a poor performance. The
remaining algorithm, TopicPeriodica, is the only one of the three approaches that
display a satisfactory performance. We found this algorithm to give precise and
correct patterns with an acceptable runtime that is not highly affected by neither
the dataset size nor the number of topics for medium-sized datasets and that scales
linearly with the dataset size for large datasets. In those cases where the algorithm
returned incorrect patterns, these patterns also included data that made it possible
to discard them.

Overall, the topic modeling approaches displayed poor performance. The periodic
geographical approach was best in terms of the pattern quality and the efficiency
and scalability of the algorithm.

8.2 Future Work

This thesis initially defines and explores the PTTP problem, leaving multiple opti-
mizations and approaches unexplored. Firstly, Torpedo by Wang et al. [4] is a close
relative to LPTA, PSTA+ and LDA. A natural development of the algorithms pre-
sented in this chapter is, therefore, to extend Torpedo with a geographical dimension
and compare it to PSTA+ regarding qualitative results and runtime. Other promising
topic modeling algorithms include LATM [21], and LGTA [23], which only lack the
temporal component.

Another area of interest is how the text is interpreted. In this thesis, we have fo-
cused on probabilistic topic modeling. However, for short documents like Twitter
data, most tweets only contain one topic. Consequently, the algorithms spend un-
necessary resources looking for multiple topics in each tweet. We could instead use
word embeddings (e.g. word2vec [31], BERT [39]) to cluster documents based on
their similarity, or combine LDA and word embeddings [40].

Next, we recommend exploring alternative approaches to model a PTTP algorithm
different from the three presented in this thesis. While TopicPeriodica is based on
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periodic spatiotemporal pattern mining, we could go further back and look at trajec-
tory pattern mining [16, 41] or even sequential pattern mining [42–44]. As this algo-
rithm was the most successful of the three approaches of this thesis, further research
on this area is a logical next step. We also encourage alternative implementations
of TopicPeriodica, like detecting reference spots from time-dependent densities or
other measures that also capture infrequent periodical areas [18].

Lastly, automating the algorithms to find the number of topics, location and time
granularities, and other hyperparameters based on the input data would increase the
algorithms’ accuracy and possibly eliminate the need to run them multiple times. We
could, e.g., use the Chinese Restaurant Franchise scenario like Guo and Gong [24] or
Schwarz’s Bayesian information criterion as previously discussed. We would also
consider utilizing Gaussian Process models for more accurate periodicity detection
[2]. Such changes should be considered incorporated into the existing algorithms or
any new PTTP algorithms.
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Appendix A

Complete Outputs

This appendix presents the complete outputs of the PSTA+ and GeoLPTA executions.
We omit the details from the main paper as they are not relevant to the thesis research
questions.

A.1 PSTA+

We present the returned patterns of PSTA+ for two and five patterns in Tables A.1
and A.3. The topics of Table A.3 are presented in Table A.2 due to space restric-
tions. These results include patterns that are incorrect and in some cases they can be
discarded.

Several patterns have large initial offsets as the tables display, which indicate the
patterns are not present throughout the timeline. If we wanted to mine full periodic
patterns, we could include a filtering step that removed all patterns with an initial
offset less than the period. However, in many cases, the user is interested in the sub-
patterns. Consequently, we leave the algorithm as it is and give the user the decision
to filter out patterns based on domain knowledge or user criteria after output.

A.2 GeoLPTA

We present the full output when executing GeoLPTA with two periodic patterns of
seven and 15 days in Table A.4, and four, seven and 25 days in Table A.5. These
tables include the full location trajectories returned per pattern, which were incorrect
compared to the inserted patterns the algorithm was supposed to find. Parts of the
movement for the 25-day pattern in Table A.5 are hidden due to space limitations.
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Topic
(term: probability)

Period
(days)

Initial
Offset
(days)

Movement
(offset: location)

food: 0.1108,
parmesan: 0.1104,
italian: 0.0738,
eat: 0.0370,
ingredient: 0.0368,
beef: 0.0368,
tomatoes: 0.0365,
best: 0.0330,
orange: 0.0010,
accounting: 0.0010

3 12 0: Hamburg, DE

7 0
0: Vichada, CO
1: Hamburg, DE

79 120 41: Metro Manila, PH

85 114 29: Metro Manila, PH

91 138 47: New Jersey, US

93 101 8: Metro Manila, PH

102 80 80: Arizona, US

win: 0.1045,
football: 0.0699,
sports: 0.0699,
goal: 0.0691,
kick: 0.0691,
ball: 0.0349,
driver: 0.0030,
transportation: 0.0025,
truck: 0.0022,
place: 0.0019

3 4 1: Calabarzon, PH

4 56 0: Ontario, CA

5 46 1: Buenos Aires, AR

7 36
1: Buenos Aires, AR
4: Ontario, CA

8 127 7: Central Visayas, PH

12 63 3.0: Madeira, PT

15 4
4: Calabarzon, PH
6: Buenos Aires, AR
11: Ontario, CA

27 15 15: England, GB

79 119 40: Metro Manila, PH

128 4 4: Central Visayas, PH

204 76 76: Georgia, US

TABLE A.1: The complete results of the PSTA+ algorithm for K = 2.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

parmesan: 0.1830,
food: 0.1790,
italian: 0.1217,
beef: 0.0612,
ingredient: 0.0610,
tomatoes: 0.0607,
eat: 0.0589,
best: 0.0527,
amu: 0.0012,
tall: 0.0008

win: 0.1929,
kick: 0.1303,
goal: 0.1298,
sports: 0.1280,
football: 0.1266,
ball: 0.0640,
thoughts: 0.0011,
coach: 0.0010,
lil: 0.0010,
saint: 0.0009

wanna: 0.0127,
driver: 0.0126,
class: 0.0096,
transpor-
tation: 0.0086,
truck: 0.0080,
taking: 0.0078,
owner: 0.0062,
operator: 0.0056,
racist: 0.0039,
weiner: 0.0038

disrespect: 0.0060,
chicago: 0.0050,
manu-
facturing: 0.0049,
sister: 0.0046,
senior: 0.0044,
feel: 0.0043,
point: 0.0039,
old: 0.0039,
miss: 0.0037,
sept: 0.0034

korea: 0.0066,
god: 0.0058,
years: 0.0054,
wow: 0.0049,
north: 0.0045,
photo: 0.0045,
game: 0.0044,
told: 0.0044,
health-
care: 0.0042,
trump: 0.0040

TABLE A.2: Topics identified in PSTA+ for K = 5 represented by their
top ten terms with corresponding probabilities.
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Topic ID
Period
(days)

Initial
Offset
(days)

Movement
(offset: location)

1
7 0

0: Vichada, CO
1: Hamburg, DE

147 120 120: NCT, IN

2

2 51
0: Ontario, CA,
1: Buenos Aires, AR

3 4 1: Calabarzon, PH

5 61 1: Buenos Aires, AR

8 53 5: Buenos Aires, AR

10 91 1: Ontario, CA

15 4
4: Calabarzon, PH
6: Buenos Aires, AR
11: Ontario, CA

129 7 4: Central Visayas, PH

3
80 52 52: Pennsylvania, US

129 6 6: Central Visayas, PH

207 149 149: California, US

4

60 23 23: Ontario, CA

122 108 108: NCT, IN

145 123 123: NCT, IN

199 151 151: Dhaka, BD

204 134 134: Punjab, PK

5 7 128 2: Central Visayas, PH

TABLE A.3: The complete results of the PSTA+ algorithm for five top-
ics.
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Topic
(term: prob)

Period
(days)

Movement
((mean, std. deviation): location)

food: 0.0880,
parmesan: 0.0877,
italian: 0.0584,
best: 0.0307,
life: 0.0297,
eat: 0.0295,
tomatoes: 0.0293,
lets: 0.0293,
ingredient: 0.0292,
consists: 0.0292

7.0 (1.27, 0.44): Western Cape, ZA,
(1.35, 0.48): Kentucky, US,
(1.46, 0.50): Iowa, US,
(1.47, 0.50): South Australia, AU,
(1.55, 0.50): Qabis, TN,
(1.91, 0.29): Maryland, US,
(2.22, 0.41): Ohio, US,
(2.37, 0.48): Rio de Janeiro, BR,
(2.44, 0.50): Illinois, US,
(2.46, 0.50): Karnataka, IN,
(2.46, 0.50): Ontario, CA,
(2.49, 0.50): Madeira, PT,
(2.51, 0.50): England, GB,
(2.56, 0.50): Pennsylvania, US,
(3.51, 0.50): Oklahoma, US,
(3.90, 0.29): Arizona, US,
(3.92, 0.27): California, US

win: 0.0908,
football: 0.0611,
goal: 0.0607,
sports: 0.0604,
kick: 0.0604,
life: 0.0324,
lets: 0.0306,
ball: 0.0303,
job: 0.0088,
hiring: 0.0075

15.0 (0.28, 0.45): Alexandria, EG,
(1.52, 0.50): Skane, SE,
(1.67, 0.47): Berlin, DE,
(2.47, 1.50): Calabarzon, PH,
(2.53, 0.50): Newfoundland and Labrador, CA,
(3.33, 0.94): Colorado, US,
(3.41, 0.49): Lombardy, IT,
(3.50, 0.50): Western Cape, ZA,
(3.64, 0.48): Ash Shariqah, AE,
(3.65, 0.48): New Hampshire, US,
(4.31, 0.68): Pennsylvania, US,
(4.37, 0.48): Tamil Nadu, IN,
(4.69, 0.46): Arizona, US,
(5.43, 0.70): New York, US,
(5.44, 0.50): Victoria, AU,
(5.48, 0.50): Virginia, US,
(5.65, 0.48): Munster, IE,
(6.29, 0.45): Arkansas, US,
(6.52, 0.50): Karnataka, IN,
(6.54, 0.50): Central Visayas, PH,
(6.59, 0.49): Wales, GB,
(6.67, 0.47): Texas, US,
(7.00, 0.87): Oregon, US,
(7.17, 0.75): England, GB,
(7.29, 0.79): Metro Manila, PH,
(7.37, 0.48): Massachusetts, US,
(7.43, 0.54): Picardie, FR,
(7.47, 0.50): Madeira, PT,
(7.47, 0.50): Nassarawa, NG,
(7.97, 0.74): New South Wales, AU,
(8.44, 0.50): NCT, IN,
(8.49, 0.50): Scotland, GB,
(8.50, 0.50): Bangkok, TH,
(8.65, 0.48): California, US,
(8.68, 0.47): Georgia, US,
(9.36, 0.48): Queensland, AU,
(9.76, 0.43): Nevada, US,
(10.00, 1.00): Punjab, PK,
(10.43, 0.50): Northern Ireland, GB,
(10.55, 0.50): Florida, US,
(11.58, 0.49): Central Greece, GR,
(12.57, 0.49): Nordland, NO,
(13.64, 0.48): Punjab, IN

TABLE A.4: Returned PTTPs of GeoLPTA for periods seven and 15.0
days.
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Topic
(term: prob)

Period
(days)

Movement
((mean, std. deviation): location)

win: 0.0291,
football: 0.0195,
sports: 0.0191,
kick: 0.0189,
goal: 0.0185,
job: 0.0142,
life: 0.0118,
hiring: 0.0113,
lets: 0.0095,
ball: 0.0094

4.0 (0.34, 0.48): Gauteng, ZA,
(0.46, 0.50): Maine, US,
(1.15, 0.36): Dhaka, BD,
(1.30, 0.48): Scotland, GB,
(1.48, 0.50): Georgia, US,
(1.55, 0.50): Karnataka, IN,
(1.55, 0.50): Metro Manila, PH,
(1.62, 0.49): Newfoundland and Labrador, CA,
(2.96, 0.20): Lagos, NG

food: 0.1016,
parmesan: 0.1012,
italian: 0.0675,
life: 0.0375,
lets: 0.0369,
best: 0.0353,
eat: 0.0340,
tomatoes: 0.0337,
consists: 0.0337,
ingredient: 0.0337

7.0 (1.41, 0.49): Kentucky, US,
(1.48, 0.76): Minnesota, US,
(1.62, 0.49): Western Cape, ZA,
(2.05, 0.21): Scotland, GB,
(2.20, 0.40): Ohio, US,
(2.36, 0.48): Telangana, IN,
(2.48, 0.50): England, GB,
(2.56, 0.50): Maharashtra, IN,
(2.95, 0.21): New York, US,
(3.06, 0.23): California, US,
(4.50, 0.50): Oregon, US

job: 0.0176,
hiring: 0.0160,
careerarc: 0.0085,
win: 0.0072,
like: 0.0067,
day: 0.0060,
latest: 0.0060,
great: 0.0056,
amp: 0.0055,
football: 0.0053

25.0 (0.92, 1.00): Lower Saxony, DE,
(1.45, 0.50): Vysocina, CZ,
(1.67, 0.47): Berlin, DE,
(2.12, 1.47): Western Australia, AU,
(2.40, 0.49): Bangkok, TH,
(3.56, 0.50): Central Luzon, PH,
(3.71, 0.45): Alsace, FR,
(4.09, 1.06): Illinois, US,
(4.41, 0.90): Telangana, IN,
(4.44, 0.50): Coimbra, PT,
(5.37, 1.23): Madeira, PT,
(5.86, 0.99): Colorado, US,
(6.01, 0.85): Tennessee, US,
(6.33, 0.47): Kuala Lumpur, MY,
(6.52, 1.30): Massachusetts, US,
(7.26, 1.11): Virginia, US,
(7.32, 0.70): Metro Manila, PH,
. . .
(15.66, 0.48): Nevada, US,
(16.00, 0.86): Newfoundland and Labrador, CA,
(16.08, 0.93): Dhaka, BD,
(16.21, 0.98): Qabis, TN,
(16.48, 0.50): Texas, US,
(16.93, 0.69): Florida, US,
(17.11, 0.99): Rio de Janeiro, BR,
(17.32, 0.46): Davao, PH,
(17.62, 0.49): Odisha, IN,
(18.65, 0.48): North Carolina, US,
(19.86, 1.66): Maryland, US,
(20.05, 0.74): Stara Zagora, BG,
(20.74, 0.94): Nassarawa, NG,
(20.95, 0.76): Oregon, US,
(21.52, 0.50): Skane, SE,
(22.57, 0.49): Nordland, NO,
(23.65, 0.48): New Hampshire, US

TABLE A.5: Returned PTTPs of GeoLPTA for periods four, seven, and
25.0 days.
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