
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Marcus Benjamin Johansson

Skinned Animation Textures

Master’s thesis in Computer Science
Supervisor: Professor Theoharis Theoharis

June 2021

M
as

te
r’s

 th
es

is

Marcus Benjamin Johansson

Skinned Animation Textures

Master’s thesis in Computer Science
Supervisor: Professor Theoharis Theoharis
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Department of Computer Science (IDI)

Master’s Thesis

Skinned Animation Textures

Author:

Marcus Benjamin Johansson

Supervisor:

Professor Theoharis Theoharis

June, 2021

Abstract

Skeletal animations are a widely used technique to pose and animate 3D models

with the use of a virtual skeleton. This process of deforming vertices by the means

of a skeleton structure is called skinning, and is usually performed every simulation

step. Skinning can be computationally expensive when a large number of animated

characters are drawn concurrently. This thesis explores techniques which samples

animations, and encodes them into pixels on to an image. This allows the anima-

tion data to be stored on the graphics processor, potentially reducing communication

overhead. The thesis looks at two ways of encoding the animations: vertex anima-

tion textures, and bone animation textures. The vertex implementation encodes the

deformed vertices directly, skipping the real-time skinning step altogether. Bone tex-

tures still perform the skinning step, but are independent on the model complexity,

which generally means smaller textures that can be shared between models. The

first technique have been previously used by game developers to achieve higher per-

formance when rendering large amount of skinned animated characters, while bone

textures, as implemented in this thesis, is a novel approach.

The two techniques were developed and tested in an application, producing an-

imation textures from existing skeletal animations. It supported options to change

encoding methods and sampling frequencies through a simple graphical user in-

terface. The encoded animations were visualized side by side in a window to be

compared to the ground truth animation produced by traditional skinning meth-

ods. A performance rating metric was established to evaluate the relative difference

between the skinning implementations tested in this thesis. The findings concluded

that animation texture skinning is able to surpass the performance of traditional

skinning techniques by orders of magnitude, when the number of draw calls is the

performance bottleneck.

i

Preface

This thesis is the result of the work performed over the course of the spring semester

2021 at the Department of Computer and Information Science (IDI), at the Nor-

wegian University of Science and Technology (NTNU). My passion for 3D graphics,

and the knowledge gained through the preceding fall project were the basis for the

research conducted in this paper. I want to thank Professor Theoharis Theoharis

for being a valuable source of knowledge, experience, and expertise throughout the

study program.

ii

Table of Contents

Glossary ix

Acronyms x

1 Introduction 1

1.1 H1 . 2

1.2 H2 . 2

1.3 H3 . 2

1.4 Structure . 2

1.5 Demonstration Video . 2

2 Background 3

2.1 Theory . 3

2.1.1 Polygonal Models . 3

2.1.2 Transformation Matrices . 3

2.2 Scene Graphs . 4

2.3 Skeletal Animation . 4

2.3.1 Bone Hierarchy - A Self Contained Scene Graph 6

2.3.2 Quaternions . 8

2.3.3 Dual Quaternions . 8

2.4 Graphics Pipeline . 9

2.5 Instancing and Draw Calls . 10

2.6 Axis Aligned Bounding Boxes . 10

iii

2.7 Student’s T-test . 11

2.8 Related Work . 12

2.8.1 Vertex textures . 12

2.8.2 Bone textures . 13

2.8.3 Fall project . 13

3 Methods 15

3.1 Overview . 15

3.2 Hardware Specification . 15

3.3 Application Control Flow . 15

3.3.1 Skeleton data structure . 17

3.4 Sampling Animation Key-frames . 19

3.4.1 Vertex Samples . 19

3.5 Bone Samples . 21

3.5.1 Matrix Samples . 21

3.5.2 Dual Quaternion Samples . 23

3.6 Rendering . 24

3.6.1 CPU Skinning . 25

3.6.2 GPU Skinning . 25

3.6.3 Vertex Texture Skinning . 25

3.6.4 Bone Texture Skinning . 27

3.6.5 Benchmarking . 28

3.6.6 Instance Manager . 30

iv

3.7 Model Previews . 31

4 Results and Discussion 33

4.1 Results overview . 33

4.2 Box . 34

4.3 Vampire . 36

4.4 X Bot . 37

4.5 Y Bot . 38

4.6 Performance Results . 39

4.6.1 Relative Performance Breakpoints 40

4.7 Hypothesis 1 (1.1) . 40

4.7.1 Dual Quaternion VS. Matrix Skinning 40

4.8 Hypothesis 2 (1.2) . 44

4.9 Hypothesis 3 (1.3) . 47

4.10 Texture Precision . 48

4.11 Vertex Textures Versus Bone Textures 50

4.11.1 Texture Space efficiency . 50

4.12 Animation Texture Advantages and Disadvantages 51

4.13 Duplicated Vertices . 52

4.14 Ease of Implementation . 56

5 Conclusions 57

5.1 Conclusion . 57

5.2 Further Work . 58

v

5.2.1 New Encoding Schemes . 58

5.2.2 Animation Blending . 58

5.2.3 Testing Other Architectures 59

5.2.4 Animation Compression and Artifact Heuristics 59

Appendix 63

A User Interface . 63

A.1 DearImGUI . 64

A.2 Other Controls . 67

A.3 Importing Animations . 68

B Matrix Bone Texture Encoding and Decoding 69

B.1 Encoding - C/C++ . 69

B.2 Decoding - GLSL . 70

C Dual Quaternion Bone Texture Encoding and Decoding 72

C.1 Encoding - C/C++ . 72

C.2 Decoding - GLSL . 73

D Vertex Texture Encoding and Decoding 76

D.1 Encoding - C/C++ . 76

D.2 Decoding - GLSL . 77

List of Figures

1 Example of a scene graph where each node exists relative to it’s parent

node. 5

vi

2 Abstraction of the human body into Joints[4]. 6

3 Example of a bone chain. When the second bone rotates, the ancestor

bones are deformed with it, even if their individual transformation has

not changed. 7

4 ”Candy-wrapper” artifact[14] . 9

5 The graphics pipeline[7]. Programmable stages are marked in red. . . 9

6 An example of an Axis Aligned Bounding Box. 11

7 Application control flow . 16

8 The skeleton data structure is a scene graph, where every node rep-

resents a bone. This figure represents a (simplified) humanoid skeleton. 18

9 T-pose - the rest-pose of this particular character when no animation

is played. The red lines represent the bones in the virtual skeleton. . 19

10 Vertex sampling example. The deviation from the rest pose is being

sampled, not the vertex position itself. 20

11 Animation Sampling control flow. 22

12 An AABB is constructed for every bone in the skeleton. Here the left

ankle bounding volume is visualized. 23

13 Left: Matrix texture. Right: Dual quaternion texture. The result-

ing animation textures from the vampire model, playing the strut

animation. The green line is a play head visualizer, showing which

texels are currently being sampled in the animation by the shader.

Note: the alpha values are not present in this visualization. 24

14 GPU skinning pipeline - ambiguous for both matrix and dual quater-

nion implementations. 26

15 vertex skinning pipeline. 27

16 Bone texture skinning pipeline - ambiguous for both matrix and dual

quaternion implementations. 29

vii

17 View of the benchmark mode of the application. Here 1024 instances

of the X bot model is being rendered with the GPU skinning pipeline. 30

18 Box . 31

19 Vampire . 31

20 X Bot . 32

21 Y Bot . 32

22 Box - GPU Skinning Performance . 35

23 Box Performance . 35

24 Vampire Performance Results . 36

25 X Bot Performance Results . 37

26 Y Bot Performance Results . 38

27 Benefits of using an Axis Aligned Bounding Box, where the limited

precision is utilized more efficiently. 49

28 Examples of ellipsoids[1]. Tri-axial ellipsoid is at the bottom left,

where each axis have a unique magnitude. 50

29 Animation compression excerpt taken from the Unite 2016[25] pre-

sentation . 51

30 Box Performance - No vertex duplicates. 5.03 × less vertices. 53

31 Vampire Performance - No vertex duplicates. 5.73 × less vertices. . . 53

32 X Bot Performance - No vertex duplicates. 4.03 × less vertices. . . . 54

33 Y Bot Performance - No vertex duplicates. 4.01 × less vertices. . . . 54

34 Difference between spherical linear interpolation and linear interpo-

lation. 60

35 Application window . 63

viii

36 Comparison-mode view port of the application. Top Left: CPU

skinning Top Right: GPU skinning Bottom Left: Bone texture

skinning Bottom Right: . 64

37 Demonstration of the DearImGui panes used in the comparison-mode

in the application. 66

38 Benchmark-mode panel. 67

Glossary

associative (A ·B) · C = A · (B · C). 3

commutative A ·B 6= B · A. 7

iterative When a function or algorithm is applied an explicit number of times.

This feature is useful when iterating over a collection, with a known number of

items. 44

offline rendering Rendering process that is too slow for real time applications,

usually due to the complexity of the rendering algorithm (path tracing, global

illumination). 1

online rendering Rendering process that is fast enough for real time applications.

They typically produce less accurate images than offline rendering. 1

OpenGL A cross platform graphics API. 10, 15, 20, 30, 44, 47, 63

recursive When a function or algorithm is applied in it’s own definition. This

feature is useful when traversing non-cyclic graphs/trees, where each recursive

call can delve into child nodes. 4, 43, 44

shader A program that runs on the GPU. Vertex shaders run for every vertex in

the VAO, while fragment shaders run for every fragment/pixel in the frame

buffer. 1, 10, 25, 27, 56, 59

texel A pixel in a texture. 20, 56, 64

ix

texture A 2D matrix containing RGB(A) intensity values. Can be visualized as an

image. vii, 1, 12, 25, 27–29, 40

VAO Vertex Array Object; an OpenGL object storing state needed to supply vertex

data. 10, 15, 19, 25, 43, 44, 50, 52

vertex (plural; Vertices) Points in 3D space that together with triangles defines the

surface of a polygonal model.. vii, 1, 25, 27, 40, 56, 59

Acronyms

AABB Axis Aligned Bounding Box. vii, viii, 10, 11, 20, 21, 23, 27, 45, 48, 49, 56,

66

API Application Programming Interface. 1, 3, 10, 13, 15, 47

CPU Central Processing Unit. ix, 1, 12, 13, 15, 19, 25, 30, 39, 43, 51, 52, 56, 59,

63, 64, 66

FPS Frames Per Second. 28, 33, 41, 43, 46, 59, 65

GLM OpenGL Mathematics library. 15

GPU Graphics Processing Unit. vii–ix, 1, 2, 9, 10, 12, 13, 15, 25, 26, 30, 33, 39–46,

51, 52, 55, 57, 63, 64, 66

GUI Graphical User Interface. 14, 64

RAM Random Access Memory. 15

SDK Software Development Kit. 15, 17, 63

VFX Visual Effects. 1

x

1 Introduction

3D animation is a technique that involves transformation and deformation of 3D

models over time to simulate motion. It is often used in both offline rendering,

and online rendering applications like in VFX, and video games respectively. Many

popular graphics API’s support a feature called hardware instancing (See 2.5), which

allows the GPU to draw multiple clones of the same 3D model without having to

communicate with the CPU for each instance. While this can result in significant

performance gains, a problem arises if the model need to be deformed through

skeletal animations[14]. The important aspect of hardware instancing, is that the

3D models are clones, and can not be individually updated after the initial draw

command. If one were to render an instanced 3D model with skeletal animations,

every instance would synchronously be playing the exact same animation. While

hardware instanced models may not be updated from the CPU, the GPU can be

programmed through the vertex shader to modify them instead. This thesis explores

the idea of sampling skeletal animation data into textures stored on the GPU, which

decode and play the animations through the vertex shader. The thesis will look at

two main approaches for storing skeletal animation data. The first method involves

sampling the deformed vertices directly, which means the skinning procedure is

skipped altogether (Note: the thesis will still refer to this technique as vertex texture

skinning). The second method samples the skeleton transformations themselves

instead, meaning the skinning step is still required.

The thesis will evaluate an implementation with the stated animation tech-

niques and traditional methods through performance benchmarks, to determine the

advantages and disadvantages of using them. The first technique which stores ani-

mated vertex data into textures is not new, as it has been implemented in different

but similar terms before[25] [6]. The more novel technique is encoding the skeleton

structure itself, greatly reducing the texture sizes needed to animate complex 3D

models. Dual quaternions are also incorporated into the implementations, as a po-

tential substitution of transformation matrices. The thesis outlines three hypotheses

based on intuition and previous findings:

1

1.1 H1

Dual quaternion skinning will always outperform matrix skinning.

Insinuates dual quaternions are always cheaper to compute compared to matrix

transformations, in the context of skinning.

1.2 H2

Bone texture skinning will always outperform traditional GPU skinning.

Implies the new technique of storing the skeleton bone transformations into textures

to allow hardware instancing, is less expensive than traditional skinning methods.

1.3 H3

Vertex texture skinning will always outperform bone texture skinning.

1.4 Structure

The report is structured as follows:

Introduction Introduces the project

Background Covers needed background theory and technology

Methods Shows how the application was designed and built

Results &

Discussion

Contains the results and data of the techniques used and

evaluates the findings

Conclusions Provides the conclusion as a summary of the thesis find-

ings, and explores potential improvements and interesting

directions the implementation could be taken in

1.5 Demonstration Video

A demonstration video of the application, showing some of the findings presented

in this thesis can be found in this link:

https://youtu.be/7wh44bQvmtk

2

https://youtu.be/7wh44bQvmtk

2 Background

This chapter covers the technology used and background knowledge to fully appreci-

ate the techniques covered in this thesis. It includes related works and other relevant

techniques widespread in graphics today.

2.1 Theory

2.1.1 Polygonal Models

Polygonal 3D models are the main data structures used in this paper due to their

wide adoption within graphics API’s and hardware today. The models contains a

list of 3D points in space called vertices, and an index-buffer that define polygons

where each corner holds a reference/index to a vertex. A polygon data structure may

also contain additional attributes for each vertex in the model. Typical attributes

include:

• Normal vector, specifies the orientation of the vertex.

• Texture coordinates, a 2D representation of the polygons, used for texture

mapping. Normally utilized for projecting images/textures onto the polygo-

nal model.

2.1.2 Transformation Matrices

A transformation matrix is a 4x4 matrix data structure that can be used to change

coordinate systems of homogeneous 3D vectors[23]. A point or vector is homoge-

neous if it contains 4 components where the last is equal to one: v = [x, y, z] −→

vh = [x, y, z, 1]. This is done to be able to represent translation as a linear transfor-

mation.

The matrices may contain location, rotation, and scale information, and can be

composited of multiple transformations as they are associative. This is advantageous

3

as we can apply a large number of transformations to a list of vertices using only one

transformation matrix. A transformation matrix that is used to define the location,

rotation, and scale of an object in a scene is usually called a model matrix denoted

M .

2.2 Scene Graphs

A scene graph is a data structure often used in graphical applications[23]. It is a tree

structure which consists of nodes typically representing transformations, geometric

primitives, sounds, process volumes (triggers or simulations), or other scene graphs.

Each node can have any number of children, but only one parent. Each child inherits

the transformation of its parent node, such that the location, rotation, and scale is

relative to its parent node. All scene graphs have one common ancestor, usually

called the root node - often referred to as the abstract ’scene node’. The scene

node acts as the universal entry point to traverse the data structure, where we can

compute each node’s transform recursively in a depth first fashion using the parent

node’s transform. These transform components are usually modeled as 4x4 matrices,

that propagate the node transformations through matrix multiplications.

2.3 Skeletal Animation

When approaching animation of characters containing joints and bendable parts,

static models are less desirable. One of the proposed solutions were based on La-

banotation[4], which abstracts the body into joints. Each joint is described by its

location and trajectory through space. Motion could then be expressed through five

modes of description:

• Direction sign - Gives the translation of a joint.

• Revolution sign - Describes the rotation of a joint.

• Facing sign - Provides the orientation of a particular point on the surface of

the model.

4

Figure 1: Example of a scene graph where each node exists relative to it’s parent node.

5

Figure 2: Abstraction of the human body into Joints[4].

• Contact sign - Establishes which parts are in contact with each other or other

objects.

• Shape - Involves the shape of a body part by tracing paths or formations.

This was then further advanced into a skeleton data structure that defines

bones and the joints that connect them[18]. Each joint also defines an angle to

determine the bending direction. Motion could then be modeled through saving

skeleton poses into discrete time intervals called key-frames, which the computer

interpolates between to simulate smooth motion.

2.3.1 Bone Hierarchy - A Self Contained Scene Graph

The skeleton data structure is constructed like a scene graph - a sub graph within the

main scene graph. Each bone is represented as a node which contain one parent bone,

and any number of child bones. Like scene nodes, to get the global transformation

of a bone, the chain of parent transformations must be calculated, starting with the

6

Figure 3: Example of a bone chain. When the second bone rotates, the ancestor bones are deformed
with it, even if their individual transformation has not changed.

root bone:

Wk =
k∏

i=0

Mi (1)

Where W is the world/global matrix, k denotes the current bone, k−1 is the parent

bone, and M0 is the transformation of the skeleton root bone. It is important

that the order of multiplication is correct, as the transformations are generally not

commutative.

Virtual skeletons are mainly useful in the visualization stage of a 3D model.

Skinning is the act of transforming the vertices and thus deforming the model ac-

cording to the current configuration of the skeleton structure[17][11]. Bindings are

defined for each vertex and bone, containing a weight value [0, 1] specifying the in-

fluence a bone has on a given vertex. The final skinned vertex position is the sum

of the bone transformations, multiplied by their influence:

v′i =
n∑

j=1

wi,j ·Dj × vi (2)

Where v′i is the skinned vertex, vi is the initial vertex position, D is a bone defor-

mation transformation, wi,j is the bone influence on the vertex, and n is the number

of bones in the skeleton.

7

2.3.2 Quaternions

Quaternions are a 4D vector that are an extension of complex number theory, and

is defined as

q = w + (xi+ yj + zk) = (w, v) (3)

where w is the real part, and (i, j, k) = v are imaginary[10]. Unit-quaternions where

|q| = 1 can be used to hold rotational data[23]. In the same way transformation

matrices can be applied to vectors through multiplication, the same principle holds

using quaternions. The advantage of using quaternions over transformation matri-

ces is apparent mainly during animation, where linear interpolation between two

rotations can be performed without encountering gimbal-locking. Gimbal-locking

constitutes a situation where two of the rotational axes are driven in to a paral-

lel configuration, losing one degree of freedom. This issue is not apparent with

quaternions, as using quaternions to store rotations allows the interpolation to be

continuous over the rotational axis. This is done through the use of spherical linear

interpolation, which ensures the quaternions are normalized throughout the proce-

dure.

2.3.3 Dual Quaternions

While quaternions can be used for rotations, using two of them makes it possible

to hold translation information as well[15]. Dual Quaternions combine quaternions

with dual number theory and are defined as:

dq = qr + qdε (4)

where qr is the real part, and qdε is the dual part[5]. This is ideal for holding

transformation information, as they consist of only 8 components vs the 12 found in

transformation matrices (4x3, where the last row is omitted)[16]. Another benefit is

that dual quaternion skinning suffers less from the ”candy wrapper” artifact which

may appear when bones twist 180°relative to their parent, as seen in figure 4.

8

Figure 4: ”Candy-wrapper” artifact[14]

2.4 Graphics Pipeline

To fully appreciate the methods and implementations presented in this thesis, some

high level knowledge about the graphics pipeline is necessary. The pipeline consists

of multiple stages, in which data and commands travel through to compute and

produce graphics[7]. Within the GPU, there are a variety of fundamental units

operating in parallel, each with their own specific purposes. These include vertex

and index fetching, the vertex shader (transform and lighting), fragment shader,

and raster operations. The vertex shader and fragment shader are programmable,

and can drastically change how the graphics are computed. The vertex shader

stage is executed once per vertex, while the fragment shader is executed once per

fragment/pixel in the frame buffer, where the final output is stored.

Graphics Pipeline

GPU Pipeline

Main Memory

Video Memory On-Chip Cache

Geometry

Frame Buffer

Pre-Transform &
Lighting Cache

Post-Transform &
Lighting Cache

Vertex Shader

Triangle Setup

Rasterization

Fragment Shader and
Raster Operations

CPU

Texture Cache

Commands

Textures

Figure 5: The graphics pipeline[7]. Programmable stages are marked in red.

9

2.5 Instancing and Draw Calls

Instancing is a technique reusing data to draw multiple, usually identical, instances

of the same object[23]. Combined with a scene graph, multiple instances can be

placed in the scene, each bound to different nodes, thus allowing for different po-

sitions, rotations, and scales. The geometric information is simply referencing one

”original” instance, eliminating the need for duplicated data. This may potentially

save a significant amount of memory, as well as speeding up the calculation of draw-

ing the instanced nodes - that is, if the nodes are to behave exactly the same over

a particular simulation step.

Implementation wise, OpenGL supports instancing in the form of loading the

geometric data into array buffers connected to a single VAO. For each instance to

be drawn in the scene, the VAO must be referenced, and values essential to the ren-

dering process is passed to the shader and GPU through uniform variables[24]. One

example of such a variable is the computed node transformations. These variables

are called uniform due to the fact that they remain constant from one shader invo-

cation to the next within a particular draw call. The process of loading uniforms

to the shader invokes a state change in the shader program[9] which involves GPU

communication.

OpenGL also includes API functions to draw multiple instances within the

same draw call[8]. This method is essentially the same as invoking multiple draw

commands without changing the shader program state, except for an additional in-

ternal integer variable accessible in the shader, equal to the index of the currently

rendered instance. This form of instancing is often referred to as hardware instanc-

ing[20].

2.6 Axis Aligned Bounding Boxes

An Axis Aligned Bounding Box (AABB) is a subcategory of bounding volumes[23].

Bounding volumes are generally used to improve efficiency in many different algo-

rithms. This is usually done by encapsulating a complex volume with a relatively

simpler volume representation. Computationally expensive algorithms may query

10

Figure 6: An example of an Axis Aligned Bounding Box.

the simpler volume first, before the complex model is evaluated, such that all models

that fail the simple query can skip the expensive algorithm altogether. AABB’s are

one of the simplest forms of closed bounding volumes. They are defined by two

parameters: its position, and its scale. This means AABB’s are always aligned with

the axes to the coordinate system it resides in, and cannot be rotated to better fit

a volume in envelops, as seen in figure 6.

2.7 Student’s T-test

The t-test is a statistical test where the test statistic follows a Student’s t-distribution

under a null-hypothesis[22]. The test can be used to measure if the difference in

mean of two data sets are statistically significant. In such cases, the null-hypothesis

would state that the two means are equal. To prove or disprove the null-hypothesis,

a t-score is calculated from the equation:

t =
x̄− µ0

s/
√
n

(5)

where x̄ is the sample mean µ0 is the population mean, s is the sample standard

deviation, and n is the sample size. From the t-score, a p-value can be found from

a look-up table to determine the probability of obtaining test samples at least as

extreme as the observed samples, were the null-hypothesis is correct. If the p-value

11

is below the chosen threshold for statistical significance (α, usually 0.05), the null-

hypothesis can be rejected, and one can accept the alternative hypothesis (the two

means are not equal).

2.8 Related Work

2.8.1 Vertex textures

Vertex textures are not a novel technique. At the Unite 2016 conference [25], Jonas

Norberg introduced a new way of rendering a large number of animated characters in

the game engine Unity3D. His method involved putting animation-data in textures,

such that the expensive process of animating a large amount of skinned models

are off-loaded to the vertex shader through the use of hardware instancing. This

method was the main inspiration for the fall project, mentioned in 2.8.3. Norberg’s

implementation was aimed at lower powered systems like phones, to achieve better

performance. Multiple animations were assembled into one texture, by the use of

compression and texture-atlases, which were decoded and played through the vertex

shader. This allowed them to use instancing to render multiple animated models in

one draw call, increasing performance considerably.

In 2017, Yi Fei Boon presented 4,000 Adams at 90 Frames Per Second [6],

which used a near identical approach to Jonas Norberg. The title of the talk refers

to a 3D model named ”Adam”, consisting of over 69 700 vertices and 139 100

triangles, being drawn 4 000 times per simulation step, 90 times per second through

the use of their implementation. They did not implement any form of compression,

but advocated for stacking multiple animations into one texture.

Ashraf and Junyu [3] chose to use a hybridized approach, whereby four distinct

animation methods were presented and tested. The first method were CPU skinning,

in which all skinning operations were done on the CPU. The second was GPU

skinning, where the skeleton was passed to the vertex shader for each instance, doing

the skinning on the GPU. Third and fourth used a novel texture approach where

a ”dummy” fragment shader was used to skin the model, and store post-skinning

vertices to a texture. This made it possible to take advantage of instancing, where

12

for the third method, each model could look up the skinned vertices in the vertex

shader. In the last technique, the computed texel vertices was read back to the CPU

in a CPU-GPU alternation strategy, instead of using the vertex shader. The model

vertices was then updated with the deformed vertices, and finally rendered. This

implementation does not skin every animated character individually, where each

instance in a predefined group are playing the exact same animation. The position,

rotation, and scale was varied, and placed within other groups playing different

animations to reduce cloning artifacts. The read-back (fourth) method rated highest

in the performance statistics, then came GPU skinning, vertex fetching, and finally

CPU skinning at the bottom. They attribute the poor performance of the vertex

fetching technique to the expensive cost of texture look-up’s through the vertex

shader in the graphics API that was used.

2.8.2 Bone textures

In 2013, Rudomin, Hernández, Gyves, Toledo, Rivalcoba, and Ruiz [20] publicized

GPU Generation of Large Varied Animated Crowds. In the paper, they propose a

novel approach to character modeling and animation. Their implementation uses

texture-based methods to model, rig, skin, and animate varied crowds. They achieve

variety through the use of template sub-models (head, arms, torso, legs etc.) which

are combined together to form a final character. The characters all share the same

internal attributes, including the texture coordinates, which they use to form a

universal skeleton in texture space that can be used to skin the sub-models. The

paper did not disclose any performance statistics of their approach.

2.8.3 Fall project

The fall project[13] is a precursor to the research presented in this thesis. It explored

a method of storing and animating skinned 3D polygonal models by sampling ver-

tices at fixed intervals during the animation timeline (vertex textures). The imple-

mentation succeeded by encoding vertex deviations to textures to be loaded to the

GPU to minimize communication between the two processors. This allowed for hard-

ware instancing of skinned animated 3D models, reducing draw calls considerably.

13

No benchmark were present however. The goal of the fall project was to evaluate

the implementation related to its simplicity, flexibility, efficiency, and usability. The

project concluded that together with a rudimentary GUI the method and its output

could be altered to maximize animation fidelity relative to the generated texture

size. In terms of implementation and usability in a hypothetical content pipeline or

existing program, special tools need to be developed to take advantage of the tech-

nique. Further, the project included no form of compression on the texture data,

and argued that the produced texture sizes could be significantly reduced through

different means of animation compression.

14

3 Methods

3.1 Overview

In this section the implemented methods and techniques are defined in detail. This

includes the libraries and hardware used, such that one could construct a similar

solution.

3.2 Hardware Specification

This is a list containing the hardware architecture of the system when the applica-

tion was built, tested, and evaluated:

Platform Windows 10 64-bit

CPU Intel Core i7-9770K @4.80 GHz

GPU Nvidia GTX 1080TI

RAM 32GB DDR4

3.3 Application Control Flow

The application is implemented using OpenGL in the C++ programming language.

It can import fbx files through the fbx SDK provided by Autodesk. During importa-

tion, the file is searched for relevant data structures containing geometry, skeletons,

and animations. The data is given through fbx classes and data structures, which

are converted to data structures used by the rest of the application (OpenGL Math-

ematics library (GLM)). This process is done through a custom FbxAnimationCon-

verter class, which is also responsible for animating and skinning the mesh during

the rendering loop. After the mesh is converted, a VAO and other accompanying

buffers are generated to be able to use the OpenGL rendering API. The application

supports importing multiple meshes per fbx file, in which this process is repeated

for each one. This process is visualized in figure 7

15

Figure 7: Application control flow

16

3.3.1 Skeleton data structure

The skeleton representation in the fbx files are simply nodes within the scene, con-

taining a transformation - constituting of a location, rotation, and scale. Both the

fbx SDK, and the skeleton data structure used in the application takes the form of a

scene graph (as seen in figure 8). The initial transformation of each bone represents

the resting pose/rest-pose of the skeleton, where no deformation is present. For

humanoid characters this pose is usually called a T-pose[9] or an A-pose, where the

character may resemble the aforementioned letters, as seen in figure 9.

One or more meshes may be bound to a skeleton through another data struc-

ture named a cluster. These are bindings that map vertices in a mesh to the skeleton.

This mapping contain a weight value which determines the influence each bone has

on each vertex. The final vertex position is the sum of the applied bone transfor-

mations, multiplied by their respective weights:

v′i =
n∑

j=1

wj,i × vi ×Bj × L−1j (6)

where v′i is the final deformed vertex, vi is the initial vertex position, n is the number

of bones in the skeleton, Bj is the bone transformation in world space, Lj is the

bone link matrix, and wj,i is the binding weight between vertex i and bone j.

When the skeleton data-structure is in the rest-pose configuration, no ver-

tices should be moved from their initial position during the skinning step. For this

reason, the link transformation L−1 must be used, which is simply the inverse world-

transforms of the bones in the resting pose. When skinning the vertex, the bone

transformation is multiplied with the respective link transformation, which would

result in the identity transform in the case of the rest-pose.

17

Root Bone

Spine 1

Spine 2

Thigh RThigh L

Knee L Knee R

Foot RFoot L

Arm R

Hand R

Arm L

Hand L

Head

Shoulder L Shoulder R

Transformation
Propagation=

Skeleton Graph

Figure 8: The skeleton data structure is a scene graph, where every node represents a bone. This
figure represents a (simplified) humanoid skeleton.

18

Figure 9: T-pose - the rest-pose of this particular character when no animation is played. The red
lines represent the bones in the virtual skeleton.

It is important to note that the vertices are duplicated for each polygon during

the VAO conversion. This is to support both flat and smooth shading, as with flat

shading the vertex normals may differ per polygon. To avoid duplicating the vertices

in the animation sampling process, each vertex gets an additional vertex attribute,

pointing to their ”true” index in the original model with no vertex duplicates. It is

this attribute which is later used to look up the correct row index in the animation

texture.

3.4 Sampling Animation Key-frames

3.4.1 Vertex Samples

To be able to encode vertex positions into a textures, each and every vertex position

throughout the animation needs to be known. For this reason, a CPU skinning

method must be used. The skeleton is animated at a fixed interval chosen by the

user, which is defaulted to the native frame rate of the animation. At every interval,

the mesh is skinned by the CPU to sample the deformed vertices.

19

Figure 10: Vertex sampling example. The deviation from the rest pose is being sampled, not the
vertex position itself.

When the vertex positions are being encoded into texels, an AABB is updated

during the sampling process. For each column in the texture, we encode a positional

delta rather than explicit vertex locations to maximize precision. This is important

as this implementation uses a 24-bit encoding scheme, which means only one byte is

used per channel. For each frame, and for every vertex, a minimum and maximum

vector is updated to construct the AABB. The center of the bounding box is then

calculated and encoded into the texture, along with its dimensions. This allows for

a more efficient encoding scheme, where the encoded vertex position is relative to

the AABB center, where its 256 steps of precision is confined within the bounding

box dimensions, utilizing the limited precision the most efficiently.

Another consideration is the size of the texture itself. For the vertex animation

textures, the first column of texels are reserved for metadata about the texture, such

that a shader can be reused for multiple different animation textures. This includes

the length of the animation, sampling/frame rate, and the AABB definition. For the

rest of the texture, the rows represents the individual vertices in the model, while

the columns consists of the different key-frames in the animation. By testing, it

would seem OpenGL prefer texture sizes which are a power of two. Arbitrary sizes

20

appeared to produce strange artifacts, which disappeared when enforcing a power

of two rule.

3.5 Bone Samples

Bone sampling shares many similarities with vertex sampling. In this instance,

AABB’s are also used to improve encoding precision of the bone samples, but rather

than using one bounding volume for the entire mesh, an AABB is used for every bone

in the skeleton, as seen in figure 12. Metadata, as with vertex animation textures,

are stored in the first column. Since bone animation textures use one AABB for

each bone, the amount of metadata texels required increases considerably.

3.5.1 Matrix Samples

For matrix transformations, the translation information is stored in the last column.

To be as size efficient as possible, each row of the 4x3 matrix are encoded. This

means that three texels with four components (RGBA) are used to encode one bone

transform. Because the rotational values (3x3 matrix) always range from [−1, 1],

the values are mapped directly to 8 bits of precision: [0, 255]. The translation

information is encoded relative to the AABB center, and divided by the bounds:

t = t0−C
B
· 255 where t is the encoded translation, t0 is the sampled translation, B is

the bounding volume dimensions, and C is the bounds center. Each bone matrix is

encoded as such:
r r r tx

r r r ty

r r r tz

⇒

R G B A

R G B A

R G B A

AABB metadata can be encoded using 3 texels, as to not exceed the number of rows

in the texture (except for the two extra texels used for animation length, and sample

rate) which means we have 3 · 4 = 12 8-bit values to work with. For each bounding

volume, both the center and bounds is encoded in an integer part, and a decimal

part. The center integer is cast directly to the first three texels where we assume

each component does not exceed 255(absolute). The center decimal part is mapped

to the three next texels, from [−1, 1]⇒ [0, 255]. The sign of the decimal part gives

21

Sampling Animation Key-frames
For Each Frame of the Animation

Animate SkeletonSkin Mesh (CPU)

Calculate Bounds Center Calculate Bounds Center

For Each Vertex

Sample position
deviation from mesh

rest pose

Update vertex
Maximum and

Minimum Bounds
(Vertex Bounding

Volume)

Sample Normal
Vector

Sample Bone
transformation as

Matrix

For Each Bone

Update Bone
Maximum and

Minimum Bounds
(Translation)

Sample Bone
transformation as
Dual Quaternion

Update Bone
Maximum and

Minimum Bounds
(Translation
Quaternion)

Encode Vertex Texture
For Each Vertex Sample

Get Difference From
Bounds Center

Normalize (Divide by
bounds)

Multiply by 255
(Byte Maximum Value)

Encode Texel
(XYZ = RGB)

Normal SampleVertex Sample

Encode Bone Texture
For Each Bone Sample

Multiply by 255
(Byte Maximum Value)

Encode Texel
(XYZ = RGB)

Matrix Sample Dual Quaternion
Sample

Last Column
(Translation)

Dual Part
(Translation)

Get Difference From
Bounds Center

Normalize (Divide by
bounds)

Rest of
Matrix / Dual
Quaternion

Figure 11: Animation Sampling control flow.

22

Figure 12: An AABB is constructed for every bone in the skeleton. Here the left ankle bounding
volume is visualized.

the sign of the whole decoded component in the shader. The same procedure is done

for the AABB bounds, however we gain 1 bit of precision because the bounds are

always positive such that they can be mapped from the range [0, 1] instead.

3.5.2 Dual Quaternion Samples

Dual quaternions have the advantage of being 50% smaller in terms of memory

footprint, compared to transformation matrices. As with matrix encoding, AABB’s

are also used for each bone to increase translation precision, and are encoded in

the first metadata column in the texture. This unfortunately also induces one less

texel for AABB metadata encoding. This implementation only encodes the integer

parts of the bounding volume, omitting the decimal value completely. The encoded

dual part is then found by qd =
qd0−C
B
· 255 where qd is the encoded dual part, qd0

is the sampled dual part, B is the bounds, and C is the bounds center. The real

part responsible for the rotation is always a unit-quaternion, such that we may map

them directly from [−1, 1]⇒ [0, 255] similar to the rotation matrix. In the texture,

each part of the dual quaternion gets one texel each:qrx qry qrz qrw

qdx qdy qdz qdw

⇒
R G B A

R G B A

23

Figure 13: Left: Matrix texture. Right: Dual quaternion texture. The resulting animation
textures from the vampire model, playing the strut animation. The green line is a play head
visualizer, showing which texels are currently being sampled in the animation by the shader.
Note: the alpha values are not present in this visualization.

3.6 Rendering

This section presents the rendering loop of the application, which is important as

context for the benchmark. Certain steps are universal for all the implemented

rendering pipelines, including computing model matrices in the scene graph, and

extracting the view-projection matrix from the camera view point.

24

3.6.1 CPU Skinning

The first rendering method uses only the processor to skin the vertices. This tech-

nique is not used in the benchmark, but is included to be able to sample the vertices

to an animation vertex texture. In the rendering step, the skeleton is animated for

each instance being rendered. The model matrix is also updated per instance. Then

for each mesh per instance, the mesh is skinned and updated in the VAO. Finally the

mesh is rendered by a simple vertex shader, which is only responsible for applying

the model matrix to the vertices and normals.

3.6.2 GPU Skinning

The GPU skinning pipeline is the first technique being used in the benchmark. Sim-

ilar to the CPU skinning, the skeleton is animated for each instance being rendered.

The computed bone transformations (matrices or dual quaternions) are then loaded

to the shader through uniform variables, along with the instance model matrix.

Finally, each mesh of the current instance are drawn.

In the vertex shader, each vertex uses vertex attributes (byte vectors) for in-

dexing three bone transformations in the uniform bone array computed by the CPU

in the previous step. The bone transformations are then aggregated and weighted

by another vertex attribute (default float-32 vector) to form the final deformation

transformation. For dual quaternions, an additional normalization step is required

to ensure the real part remains a unit-quaternion. Finally, the vertex and normal are

deformed by the computed deformation transformation. The GPU skinning pipeline

is visualized in figure 14.

3.6.3 Vertex Texture Skinning

Vertex texture skinning was previously developed in the fall project, and remains

similar in this implementation. For each mesh in the original instance, the animation

textures are bound before the mesh is drawn instanced. Continuing in the vertex

texture shader, each vertex reads the metadata located in the first column of the

texture to correctly play the encoded animation. These include animation length

25

GPU Skinning

CPU Step
Calculate View-
Projection Matrix

For each Instance

Animate Skeleton
Load Bone

Transformations into
Shader Uniforms

Update Instance
Model Matrix Uniform

Draw Mesh

For each Mesh

GPU Step
For each Vertex

Calculate Weighted
Bone Transformation Deform Vertex Deform Normal

Figure 14: GPU skinning pipeline - ambiguous for both matrix and dual quaternion implementa-
tions.

26

Vertex Texture Skinning

CPU Step

Calculate View-
Projection Matrix Bind Textures Draw Mesh

Instanced

For each Mesh

GPU Step

For each Instance
For each Vertex

Read Texture
Matadata

Read Animation
AABB

Read and Calculate
Vertex Delta

Deform VertexDeform Normal Read Normal

Figure 15: vertex skinning pipeline.

(number of texels used in the horizontal axis), sampling rate, and the AABB. Based

on the current animation time and sampling rate, two texels are read from the

texture. The values are decoded and linearly interpolated between to find the final

vector. This decoded vector is then added to the initial vertex position, to form the

output vertex. The same steps are repeated for the normals, but must be done with

a separate animation normal texture. This process is visualized in figure 15.

3.6.4 Bone Texture Skinning

In the bone texture pipeline, loading the link transformation are done as an addi-

tional step before rendering the meshes, to be able to encode the bone transforms in

world space. Next, for each mesh in the original instance, bind the animation bone

textures, and subsequently draw the mesh instanced. In the bone texture shader,

27

metadata is also read per vertex to decode the animation data correctly. Next, ver-

tex attribute indices (byte vector) are used to read three bone transformations (three

texels for matrices, two for dual quaternions), to be aggregated and weighted by a

second vertex attribute (default float-32 vector). In the case of dual quaternions,

they are also normalized to ensure the real part remains a unit-quaternion. This

step is repeated to find a second deformation transformation to interpolate between,

according to the current animation time. For both matrices and dual quaternions,

linear interpolation is used. Because the dual quaternions are always normalized,

employing spherical linear interpolation is unnecessary to achieve accurate rotational

data. The vertex and normal is then finally deformed by the computed deformation

transformation. The bone texture skinning control flow is visualized in figure 16.

3.6.5 Benchmarking

This section presents the benchmark algorithm used to get performance metrics

from the rendering techniques specified in the sections above. The benchmark uses

exactly one view port, testing one rendering technique at a time. The metric being

sampled is time since last simulation step (frame), known as the time delta. The data

is transformed to Frames Per Second (FPS) (1
td

where td is time delta) in the final

output, where a greater value represents better performance. FPS is also used as a

more familiar performance metric commonly found in other graphics applications.

This means the output data will look skewed, resembling a 1
x

function versus a linear

proportional graph.

Benchmark Algorithm

The benchmark algorithm is executed in a loop:

• Increment pre-sample clock until 500 ms has elapsed.

• Sample frame times for 1000 ms, and average the result.

• If the frame time difference from the previous sample is within the threshold

[1, 2) ms, or the current number of instances is one more than the previous

sample, save the data point.

• If the frame time is above or equal 2 ms, set the number of instances I =

I0 + I1−I0
2

where I is the new instance count, I1 is the current instance count,

28

Bone Texture Skinning

CPU Step
Calculate View-
Projection Matrix

Bind Textures Draw Mesh
Instanced

For each Mesh

GPU Step

For each Instance
For each Vertex

Read Texture
Matadata Read bone AABB Read and Calculate

Bone Transforms

Multiply with Link
Transformations

Calculate Weighted
TransformationDeform Vertex

Deform Normal

Load Link Transforms
into Shader Uniforms

Figure 16: Bone texture skinning pipeline - ambiguous for both matrix and dual quaternion im-
plementations.

and I0 is the instance count of the previous sample point.

• If the frame time is below 1 ms, set the number of instances I = I0 +2(I1− I0).

29

Figure 17: View of the benchmark mode of the application. Here 1024 instances of the X bot
model is being rendered with the GPU skinning pipeline.

3.6.6 Instance Manager

The instance manager is a class used to control and manage the instances being

rendered during the benchmark. The class contain three collections: positions,

rotations, and animation offsets. They are used to update the model transformations

of the instances being rendered, and controls the instance animation time. For the

non-instanced rendered techniques (CPU and GPU skinning), the model matrix

is being updated between each draw call. For the instanced meshes, the model

matrices are updated per vertex through vertex attributes. An attribute divisor is

used to tell OpenGL to update the attribute per instance versus per vertex. The

benchmark uses the pre-sample clock before sampling any data to avoid instance

generation having an impact on the performance results.

30

3.7 Model Previews

Models, rigs, and animations (with the exception of the Box model) were graciously

provided by Mixamo[19].

Figure 18: Box

Figure 19: Vampire

31

Figure 20: X Bot

Figure 21: Y Bot

32

4 Results and Discussion

In this section the results of the benchmarks are presented. Discussion and evalua-

tion on the hypotheses presented in the introduction are also covered here.

4.1 Results overview

The results presented were produced from data gathered from the benchmark al-

gorithm shown in 3.6.5. The testing was done on a build of the application with

full optimization flags enabled in the compiler. No form of culling was performed

on the models where every instance was skinned and rendered regardless of being

visible in the view port of the application. The results are presented by model, each

with tables showing the complexity of the mesh, skeleton, and the size of the anima-

tion texture (excluding texels needed to fill power-of-two requirement). The graphs

represent the performance results of each skinning method in Frames Per Second (y-

axis), per number of instances rendered (x-axis). The GPU skinning method is the

only one not employing hardware instancing (See 2.5), where each mesh rendered

induces a new draw call.

33

4.2 Box

Animation Name Test Animation

Meshes 2

Total Vertices 312

Total Triangles 116

Bones 4

Vertex to Bone Ratio 78:1

Table 1: Model complexity of the Box model.

Dual Quater-
nion Texture

Matrix Texture Vertex Texture

Width 249 249 249×2

Height 10 14 42 + 20

Total Texels 2 490 3 486 15 438

Format 8-bit RGBA 8-bit RGBA 8-bit RGB

Table 2: Animation texture sizes of the Box model. Note: vertex textures need one additional
texture for normals.

34

Figure 22: Box - GPU Skinning Performance

Figure 23: Box Performance

35

4.3 Vampire

Animation Name Strut

Meshes 1

Total Vertices 45 066

Total Triangles 15 022

Bones 65

Vertex to Bone Ratio 693:1

Table 3: Model complexity of the Vampire model.

Figure 24: Vampire Performance Results

Dual Quater-
nion Texture

Matrix Texture Vertex Texture

Width 86 86 86

Height 132 197 7 870

Total Texels 11 352 16 942 676 820

Format 8-bit RGBA 8-bit RGBA 8-bit RGB

Table 4: Animation texture sizes of the Vampire model.

36

4.4 X Bot

Animation Name Jogging

Meshes 2

Total Vertices 99 796

Total Triangles 49 112

Bones 52

Vertex to Bone Ratio 1919:1

Table 5: Model complexity of the X Bot model.

Figure 25: X Bot Performance Results

Dual Quater-
nion Texture

Matrix Texture Vertex Texture

Width 154 154 154 × 2

Height 106 158 14 232 + 10 514

Total Texels 16 324 24 332 3 810 884

Format 8-bit RGBA 8-bit RGBA 8-bit RGB

Table 6: Animation texture sizes of the X Bot model.

37

4.5 Y Bot

Animation Name Hip-hop Dancing

Meshes 2

Total Vertices 319 944

Total Triangles 159 272

Bones 67

Vertex to Bone Ratio 4775:1

Table 7: Model complexity of the Y Bot model.

Figure 26: Y Bot Performance Results

Dual Quater-
nion Texture

Matrix Texture Vertex Texture

Width 132 132 N/A

Height 136 203 N/A

Total Texels 17 952 26 796 N/A

Format 8-bit RGBA 8-bit RGBA N/A

Table 8: Animation texture sizes of the Y Bot model.

38

4.6 Performance Results

The performance aspect of animation textures is perhaps the most important prop-

erty for considering them in a real world scenario. The main advantage comes from

the possibility of using hardware instancing to render a large number of skinned

meshes, potentially improving performance by limiting CPU - GPU communica-

tion. Before any results were known, a number of hypotheses were constructed

based on preconceived expectations:

1. Dual quaternion skinning will always outperform matrix skinning.

- Insinuates dual quaternions are always cheaper to compute compared to ma-

trix transformations, in the context of skinning.

2. Bone texture skinning will always outperform traditional GPU skin-

ning.

- Implies the new technique of storing the skeleton bone transformations into

textures to allow hardware instancing, is less expensive than traditional skin-

ning methods.

3. Vertex texture skinning will always outperform bone texture skin-

ning.

To test them, a benchmark was used measure the relative performance between

animation textures and traditional skinning methods (See 3.6.5).

39

4.6.1 Relative Performance Breakpoints

Table 9 holds data of the represented rendering techniques at different frames per

second break points.

Box Vampire

FPS 120 60 30 120 60 30

Control 100% 100% 100% 100% 100% 100%

GPU DQ 3.5% 4.5% 5.1% 38% 49% 52%

GPU Matrix 1.8% 2.1% 2.3% 16% 25% 26%

DQ Texture 75% 63% 63% 56% 62% 67%

Matrix Texture 56% 50% 48% 38% 46% 47%

Vertex Texture 113% 100% 100% 88% 99% 102%

Table 9: Box and Vampire models performance breakpoints. Relative number of instances rendered
compared to control/no animation. The vertex texture skinning in some instances outperforms the
control as can also be perceived in figure 23. This is an artifact coming from the linear interpolation
between sample points.

X Bot Y Bot

FPS 120 60 30 120 60 30

Control 100% 100% 100% 100% 100% 100%

GPU DQ 41% 58% 64% 100% 100% 100%

GPU Matrix 21% 32% 33% 92% 95% 89%

DQ Texture 53% 57% 57% 71% 77% 77%

Matrix Texture 38% 40% 41% 58% 59% 61%

Vertex Texture 88% 87% 83% 0% 0% 0%

Table 10: X Bot and Y Bot models performance breakpoints. Relative number of instances ren-
dered compared to control/no animation.

4.7 Hypothesis 1 (1.1)

4.7.1 Dual Quaternion VS. Matrix Skinning

In 3/4 of the performance benchmarks, the dual quaternion implementations ap-

peared to outperform their matrix counterpart, with the exception being the Y bot

model where the results did not appear to sufficiently deviate. The students t-test

can be used to determine if the means of two data sets are significantly different

40

from each other. To use the t-test, we need a metric to compare between the two

benchmarks. FPS, and number of instances are only representative of performance

when paired together, which is why a combined unit; Peformance Rating(defined

as the FPS × number of instances), is applied in these tests. The t-test also assumes

the samples (fps / number of instances) follows a normal distribution, which is the

assumption in this thesis.

The box model is the most simplistic, both in terms of vertex- and bone count.

To test one part of the first hypothesis, we create a null-hypothesis: The mean

difference in performance between GPU dual quaternion skinning and GPU matrix

skinning is not statistically significant. Using the t-test for the two traditional GPU

skinning methods with a statistical significance threshold α = 0.05 we get:

Dual Quaternions Matrices

Mean X̄ 1.44E6 6.49E5

Variance σ2 1.18E11 2.20E10

Samples n 39 38

Degrees of Freedom d.f. 52

t-stat t 13.19

P(T ≤ t) two-tail p 3.25E − 18

Table 11: t-test of the Box model comparing GPU dual quaternion skinning to GPU matrix
skinning, assuming the variances are unequal.

Because 3.25E − 18 < α we can reject the null-hypothesis, and say that

the performance difference between the two methods are statistically significant

for the Box model. This method is used to test every dual quaternion technique

versus the corresponding matrix implementation, to confirm or disprove hypothesis

1. In table 12 the initial row represents the relative mean difference, displaying

the relative performance disparity between the two data structures. The percentage

gives the method with the highest mean performance rating a positive score for dual

quaternions, and a negative for matrices, meaning 0% represents the results were

equal.

From the t-tests, we can see the null-hypothesis can be rejected for every

instance, except for GPU skinning in the Y Bot model. However, in this instance

both techniques are also not deviating from the control benchmark. This suggests

41

Box Vampire X Bot Y Bot

GPU DQ VS Matrix R.M.D. 122% 98.9% 97.9% 4.62%

P score 3.25E-18 3.87E-17 2.12E-17 0.24

DQ- VS Matrix textures R.M.D. 25.1% 45.6% 36.4% 23.5%

P score 7.49E-08 9.75E-16 2.93E-13 5.16E-08

Table 12: T-tests checking if the mean Performance Rating is statistically significant (α < 0.05)
for dual quaternion skinning versus matrix skinning.
Relative Mean Difference (R.M.D.) = X̄dq/X̄m where X̄dq is the mean performance rating for
dual quaternion skinning, and X̄m is the mean performance rating for matrix skinning. A positive
percentage means dual quaternions had a higher mean performance rating.

that the skinning computation was insignificant to the results, and was not the main

performance bottleneck in that specific instance. Taking this into account, we can

confirm hypothesis 1, for the hardware architecture specified in chapter 3.

Recalling that to represent dual quaternions, one requires 8 floating point

numbers vs. the 12 in transformation matrices (4x3). During the deformation

step, a vertex needs 24 multiplications and 21 additions for dual quaternions, but

only 12 multiplications and 8 additions for the 4x3 matrices. It is important to

note that the shader samples 3 bones per vertex, which all need to be weighted by

their influence, thus increasing the number of operations of the dual quaternions to

24+8·3 = 48 multiplications and 21+8·3 = 45 additions, compared to 12+12·3 = 48

multiplications and 8 + 12 · 3 = 44 additions for the matrices. Further is each

bone multiplied by the link transform, to get the correct vertex transformation.

Combining two dual quaternion requires 48 multiplications and 40 additions. To

combine a 4x3 matrix, 48 multiplications and 36 additions are needed. This results

in dual quaternions doing 48 + 48 · 3 = 192 multiplications and 45 + 40 · 3 = 165

additions, compared to 48+48·3 = 192 multiplications and 44+36·3 = 152 additions.

Theoretically, this should mean the matrix transformations are slightly cheaper to

compute, which conflicts with the performance results. This may be implementation

dependent, as a simple loop comparing 220 dual quaternion multiplications to 220

matrix multiplications gave an identical computation latency.

To understand the GPU skinning bottlenecks better, simple A/B testing were

conducted where each feature configuration was sampled. There were three points

of interest in the rendering pipeline that could affect the performance:

42

• CPU skeleton computation.

• Uploading the skeleton to the GPU.

• Switching VAO for each mesh per instance.

The Box model was used, as it had the lowest GPU skinning performance score,

relative to the other techniques. All features were enabled at the start of the test,

until 60 000 instances were reached - constituting in 30 FPS. Continuing, the features

were individually disabled, and the performance rating is sampled. This process is

repeated until all combinations have been exhausted.

Skeleton
Compu-
tation

Skeleton
GPU
Upload

VAO
Switch

P.R. Dual
Quaternions

Relative
%

P.R.
Matrices

Relative
%

ON ON ON 1 800 000 100% 960 000 100%
ON OFF ON 1 920 000 107% 1 020 000 106%
OFF ON ON 2 460 000 137% 2 460 000 256%
OFF OFF ON 2 760 000 153% 2 760 000 288%
ON ON OFF 960 000 53% 540 000 56%
ON OFF OFF 1 020 000 57% 540 000 56%
OFF ON OFF 3 720 000 207% 3 660 000 381%
OFF OFF OFF 4 320 000 240% 4 320 000 450%

Control (No Animation) 31 200 000 1 733% 31 200 000 3 250%

Table 13: A/B Testing of the GPU dual quaternion skinning at 60 000 instances. The performance
rating is equal FPS × number of instances. The Control is taken max instances at 30 FPS. Data
is sampled and averaged over 120 simulation steps/frames.

The samples are averaged over 120 simulation steps. The results can give

some insight into the cost of each step during the GPU skinning pipeline. The first

interesting detail is that the skeleton computation is the most expensive operation,

less so for dual quaternions versus matrices. When disabling this feature, both

techniques achieved equal performance. The problem may lay in the recursive nature

of the skeleton computation algorithm, where the additional memory footprint of the

matrices is responsible for the performance loss during the skeleton graph traversal.

The skeleton upload step appears to be relatively inexpensive, while its perfor-

mance impact does seem to scale with the amount of data dispatched to the GPU.

When the switch was disabled, the skeleton data was required to be uploaded twice,

once for each mesh. This was presumably the main factor of the performance boost

seen in the last configuration. The upload step also appears to favor dual quater-

nions over matrices, likely coinciding with the 50% size discrepancy of the two data

43

structures.

Another noteworthy finding is that VAO switching has a significant cost asso-

ciated with it. The explanation is the skeletons must be computed n times, where n

is equal to the number of meshes the 3D model is composed of. For the Box model,

n = 2 such that the skeleton is computed twice per instance, when VAO switching

is disabled. When skeleton computation is disabled, a relative performance increase

of 50% is observed. To reduce the impact of skeleton computations, caching the

skeleton, using multi-threaded/parallel solutions, or converting the algorithm from

a recursive- to an iterative nature may help significantly. This implementation ini-

tially did not use either, but a caching paradigm was implemented to confirm the

performance benefit. The result of caching the skeleton transformations resulted

in the performance rating rising to 2 040 000 (113% relative) for dual quaternions

and 1 980 000 (206% relative) for matrices. The instance model matrices which are

needed to position the instances in the scene was also disabled together with the

skeleton computation step. When these were disabled and combined with skeleton

transform caching, the result represented the missing performance gains from the

previous result of disabling skeletal computations.

The final insight to be discussed, is the case when all features are disabled.

This configuration produced results orders of magnitude worse compared to the

performance results of the control test. This configuration corresponds to drawing

the same VAO without changing the internal rendering state. This in theory should

be equivalent to hardware instancing, according to the OpenGL specification[8].

This appears to highlight the fixed cost of draw calls, as the GPU pipeline executes

2 · 60 000 = 120 000 draw commands to the GPU each simulation step, compared

to just 2 in the hardware instanced methods. This fact was discovered through the

use of the Nvidia Nsight Graphics debugging tool, and may be vendor/architecture

dependent.

4.8 Hypothesis 2 (1.2)

The next claim that Bone texture skinning will always outperform traditional GPU

skinning, needs only one conflicting t-test to reject the hypothesis. Looking at the Y

44

Bot model performance graph, a significant gap can be perceived between the bone

texture methods versus the rest. By testing if the performance difference between

dual quaternion texture skinning and GPU dual quaternion skinning is significant,

we can reject hypothesis 2:

GPU Dual Quaternion
Skinning

Dual Quaternion Tex-
ture Skinning

Mean X̄ 20 012.14 15 579.11
Variance σ2 1.08E7 6.47E6
Samples n 43 40
Degrees of Freedom d.f. 78
t-stat t 6.89
P(T ≤ t) two-tail p 1.25E − 9

Table 14: t-test of the T Bot model comparing GPU dual quaternion skinning to dual quaternion
texture skinning, assuming the variances are unequal.

1.25E−9 is below α, and we can conclude that the the performance advantage

GPU skinning exhibits over bone texture skinning are statistically significant, which

means we can reject hypothesis 2.

Looking at the performance graph of the Y Bot Model, the bone texture

pipeline performs significantly worse than all other techniques (ignoring vertex tex-

ture skinning). This model is the most complex in terms of number of vertices. To

better understand the intricacies of the bone texture pipeline, we can map out the

differences it has versus vertex texture skinning:

• Bone textures need to access more texels per vertex.

• Bone textures need to perform deformation calculations/skinning.

From these differences, three stages present in the bone texture pipeline is explored:

Metadata texel reads - each bone needs to decode the AABB to correctly decode the

bone transformation, Bone interpolation - Needed for smooth motion in-between

sample frames, and Skinning - The act of actually deforming the vertices with the

decoded bone transformation. Another A/B test can then be used to explore which

operations are the most computationally expensive:

45

Metadata
Texel
Reads

Bone
Interpola-
tion

Skinning P.R. Dual
Quaternions

Relative
%

P.R.
Matrices

Relative
%

ON ON ON 15 900 100% 13 780 100%
ON OFF ON 18 020 113% 16 960 123%
OFF ON ON 16 430 103% 15 370 112%
OFF OFF ON 16 960 107% 17 490 127%
ON ON OFF 16 430 103% 14 310 104%
ON OFF OFF 17 490 110% 17 490 127%
OFF ON OFF 16 960 107% 15 370 112%
OFF OFF OFF 18 550 117% 18 550 135%
Skip 1/3 Bones 19 610 123% 19 610 142%
Skip 2/3 Bones 20 140 127% 20 140 146%

Control (No Animation) 21 730 137% 21 730 158%

Table 15: A/B Testing of the GPU dual quaternion skinning at 530 Y Bot instances. The perfor-
mance rating is equal FPS × number of instances. The Control is taken max instances at 30 FPS.
Data is sampled and averaged over 120 simulation steps/frames.

From the data, bone interpolation seems to be the most expensive step. In-

terpolation doubles the number of texture reads, as two samples are an inherit

requirement for interpolation procedures. Disabling this feature gave the biggest

performance gain, especially for matrix textures. The implementation computes the

two weighted deformation transformations, and then interpolates between them for

the final transform. By instead reading and interpolating the decoded texels first,

and then weighting the interpolated transforms, a 6% performance increase was

observed for dual quaternions, and 12 % for matrices. The amount of texel reads

remains the same, except in this procedure the texels are accessed in closer proxim-

ity to each other. This is beneficial as the GPU contains a texture cache as seen in

figure 5, which makes subsequent reads located close together less expensive[7].

The texture metadata reads represent 2 + 6 · 3 = 20 texel reads for dual

quaternions and 2 + 9 · 3 = 29 for matrices. As they are all located in the first

column, they exhibit some data locality, and can be reasonably cached by GPU.

Because all metadata is constant, a potential to ”hard-code” the values into the

shader is possible, at the disadvantage of having to recompile the shader for different

animation textures. This approach may also work for link transformations, as these

also remain constant. Link transformations are currently provided through uniform

variables in the current implementation.

Skinning the vertices with the decoded deformation transformations are com-

paratively cheap to the operations involving texture reads. Both dual quaternion-

46

and matrix skinning appear to be relatively similar in cost.

Because every vertex can be influenced by three bones at a time, an additional

test was done to see potential performance gains of skipping one and/or two bones

during the bone transformation decoding. This would effectively reduce texture

reads by 33% and 66% respectively (ignoring metadata). From the result, one could

deduce this process is likely responsible for the last performance difference versus the

control performance score. Individually, 3D models may require a different amount

of deformation bones to correctly deform vertices. This is a constant metric that

could also be encoded as metadata, or defined during shader compilation, to further

optimize this solution.

4.9 Hypothesis 3 (1.3)

From the performance results, one can already conclude that indeed, vertex texture

skinning are less expensive than bone texture skinning from the initial results. As

vertex textures only need one texel read per vertex (excluding metadata), and per-

forms no skinning operations, the relative performance ratings are to be expected.

The biggest problem with vertex textures are the size needed for complex models.

In this implementation every vertex is represented in the rows of the texture. When

the meshes are complex, the required texture size becomes considerably large. In the

case of the Y Bot model, it exceeded the maximum texture size set by the OpenGL

API, failing completely. Constructing textures whereby a vertex is not inherently

locked to a specific row, but rather a texel offset, one could remedy this problem

considerably, and reduce wasted pixels introduced by the power-of-two rule. Anima-

tion compression could further be used to limit the amount of texels used to encode

low frequency information, a technique previously showcased by Jonas Norberg[25].

When considering more cache coherent texel fetches for the bone texture im-

plementation, along with no vertex duplication (mentioned in 4.13), the performance

disparity between vertex textures and bone textures narrows considerably. In fact,

only the box model had a vertex texture performance rating that was statistically

significant, relative to the bone textures. In no circumstances did the bone texture

pipeline perform significantly better than vertex textures. Based on the newfound

47

information discovered in 4.13, hypothesis three can be confirmed at sufficiently

simplistic meshes, with low vertex counts.

4.10 Texture Precision

The implementation constructed every animation texture with 8-bits of precision

per channel, which is the default precision format for most image files. This means

that the values represented in the textures can represent 28 = 256 steps. To use

the space most effectively, AABB’s are used to define the bounding space for which

the 256 steps are defined. In terms of animation quality, vertex texture skinning

does exhibit precision artifacts for large and complex meshes, as every vertex shares

one AABB. Further, when limiting the sampling rate to 6Hz, a noticeable ”bob-

bing” artifact appears, originating from linearly interpolating rotational motions.

Matrix bone textures need to be specified in world space, then multiplied by the

link-transformation to get the final deformation transform in the shader. This is

done because encoding the deformation transforms directly, greatly diminishes the

effectiveness of the AABB’s, as they are no longer united in a common coordinate

system. When world transformations are used in matrix textures, they become in-

distinguishable from the original animation, at sufficient sampling rates. At 6Hz,

matrix bone textures also exhibit the same visual artifact as vertex textures. This

could be solved by deforming the vertex by each bone transform, and then using

spherical linear interpolation to get the final correct vertex position.

The same strategy is used for dual quaternions, but they do not exhibit the

same ”bobbing” artifact at low sampling rates, without utilizing spherical linear in-

terpolation. The reason for this advantage is the normalization step at the end of the

final transformation computation. Looking at figure 34, the magnitude of the rota-

tional real part of the dual quaternion is always equal 1. At higher sampling rates,

the final animation does look noticeably imprecise, where motions appear jittery in

comparison to the ground truth, even after enforcing world space encoding. Because

the dual part is a factor of the real part of the complete dual quaternion, the transla-

tion data does not exist in Cartesian coordinates, diminishing the value of AABB’s

in this implementation. Encoding the raw position in the texture, and computing

the final dual quaternion in the shader instead, could remedy the precision artifact

48

observed, and improve visual quality. This is possible because the translation dual

part is constructed through the rotational real part (qd = 1
2
(0, tx, ty, tz)× qr, where

qd is the dual part, t is the translation vector, and qr is the real part)[16]. Addition-

ally, the current encoded dual part is constructed with a real part of higher precision

than the one encoded in the shader. The resulting decoded dual quaternion may

not have corresponding real and dual parts, possibly exacerbating the artifacts that

can be seen in the final animation. Another consideration is using textures with a

higher precision format, however this may increase texel sampling latency.

Figure 27: Benefits of using an Axis Aligned Bounding Box, where the limited precision is utilized
more efficiently.

The fall project included an additional approach for vertex texture encoding

which uses four components (x, y, z, w) instead of three. This version have been

used previously in [25] and [6]. The vector direction is encoded in the first three

components, and the normalized magnitude in the fourth. This gives us an angular

precision of p(v) = (90
128

) = 0.703°, and a scalar precision of p(d) = x
256

where x is the

maximum deviation distance. Other than using one additional byte for precision,

this method encodes the vertices using discrete parametric rays instead of Cartesian

coordinates. The four component method encodes the vectors in spherical hulls,

which is not useful for bounding boxes. Tri-axial ellipsoids could be substituted for

AABB’s, which is essentially a sphere defined by three different orthogonal radii.

An additional two values must be encoded for the normalized magnitudes for each of

the ellipsoid axes, increasing the needed texels from four to six. If precision becomes

a problem this approach may be helpful.

49

Figure 28: Examples of ellipsoids[1]. Tri-axial ellipsoid is at the bottom left, where each axis have
a unique magnitude.

4.11 Vertex Textures Versus Bone Textures

Vertex texture skinning can be superior to bone texture skinning in terms of per-

formance, as concluded in 4.9. The main advantage of bone textures is their inde-

pendence of the model itself. Bone textures encode the skeleton, which means it’s

size is fixed, regardless of the mesh complexity. This also makes it easier to animate

models consisting of multiple meshes, as each mesh can share the same animation

texture. Comparatively, vertex textures need unique vertex- and normal textures

for each mesh, while the texture size directly correlates to the mesh complexity.

4.11.1 Texture Space efficiency

The vertices are duplicated in the VAO, however using an additional vertex attribute

makes it possible to point to the correct index in the original model, and eliminates

duplicated texels in the animation texture.

Every vertex in the model is represented in each time step/key frame of the

animation texture, even if the next sample point is identical to the previous one. The

presentation at Unite 2016[25] improved this issue by using animation compression.

It worked by splitting the texture into predetermined time intervals, as seen in

figure 29. This allowed them to individually compress each vertex at each time

50

region, where vertices with low frequency deviations would be compressed the most.

This was achieved by encoding time information using one additional texture that

holds the correct offset in the time dimension. This essentially means that each time

region has its own sampling frequency. Finally, to maximize texture space usage,

they allowed vertex segments to reside on the same row, reducing wasted space

considerably. This meant the shader needed additional information to know the start

index for each vertex, as the rows no longer corresponded to the vertex indices. The

same approach should be possible with bone textures, where low frequency changes

in the bone transformations can be represented with fewer texels.

Figure 29: Animation compression excerpt taken from the Unite 2016[25] presentation

4.12 Animation Texture Advantages and Disadvantages

The biggest advantage of using animation textures is the ability to play skinned

animations with hardware instancing. Within certain criteria where the model com-

plexity is low, the performance advantage can be orders of magnitude higher, com-

pared to traditional skinning methods, as concluded in 4.8. This was mainly the

result from reducing draw calls and much of the overhead cost from CPU-GPU com-

munication. Because of it’s instancing nature, every model are effectively clones of

each other. In crowd simulation where animation textures can be greatly advanta-

51

geous, model variability if often desired. This means additional efforts need to be

employed to reduce cloning artifacts. Building models consisting of multiple inde-

pendent but interchangeable meshes like in [20] can be used to great effect. If every

mesh utilizes a mutual skeleton structure, the bone textures can be shared between

all models.

Because the animation data is baked into textures, they cannot be easily

modified. Techniques that require procedural animation like inverse kinematics,

and rag dolls, may prove difficult to implement, versus a traditional approach where

the skeleton resides on the main memory, and can easily accessed and modified by

the CPU.

4.13 Duplicated Vertices

One consideration that likely have severely impacted the benchmarks in a negative

manner, is the duplicated vertices from the VAO generation step. Vertices were

originally duplicated as to support flat shading, where each vertex could contain a

unique normal for each polygon it was a part of. As an example, the X Bot model

consisted of 24 746 vertices as of importation, which got transformed to 99 796

vertices after VAO conversion. That results in a duplication rate of 99796
24746

= 4.03.

Because the number of texel fetches is proportional to the amount of vertices, the

performance results were most likely affected. A second benchmark were performed

which removed all vertex duplicates, to properly test the impact a reduced vertex

count has on the performance. For this benchmark, the traditional GPU imple-

mentations were using a cached skeleton structure, skipping the real-time skinning

step for each instance. The bone texture pipeline were also utilizing the more cache

coherent texel fetches in the shader, discussed in 1.2.

52

Figure 30: Box Performance - No vertex duplicates. 5.03 × less vertices.

Figure 31: Vampire Performance - No vertex duplicates. 5.73 × less vertices.

53

Figure 32: X Bot Performance - No vertex duplicates. 4.03 × less vertices.

Figure 33: Y Bot Performance - No vertex duplicates. 4.01 × less vertices.

54

From looking at the new performance graphs, every model achieved a higher

performance score compared to their previous result. Looking at the control bench-

mark, an estimated 100-35% (from lowest- to highest model complexity) perfor-

mance gain can be attributed from the reduced vertex count. More notably, the

relative difference between the different skinning techniques has narrowed consider-

ably. An argument can be made to say this benchmark is a more candid comparison

than the first. This is due to the GPU pipeline being limited to using cached versions

of the skeleton hierarchy, thus operating on the same grounds as the bone texture

pipeline. Based on these findings we can conclude further, that the main advantage

of texture based approaches is the reduction of draw calls. Rendering simple models

need considerably more draw calls to reach the same number of triangles, compared

to a complex model.

Box Vampire X Bot Y Bot

GPU DQ VS Matrix R.M.D. 4.26% 12.6% 9.31% 4.90%

P score 0.40 0.0044 0.016 0.18

DQ- VS Matrix textures R.M.D. 7.02% 33.8% 3.20% 4.79%

P score 0.08 9.00E-11 0.39 0.23

Table 16: T-tests checking if the mean Performance Rating is statistically significant (α < 0.05)
for dual quaternion skinning versus matrix skinning.
Relative Mean Difference (R.M.D.) = X̄dq/X̄m where X̄dq is the mean performance rating for
dual quaternion skinning, and X̄m is the mean performance rating for matrix skinning. A positive
percentage means dual quaternions had a higher mean performance rating.

From the t-tests of the new benchmarks, we can still confirm that dual quater-

nion skinning do perform better than matrix skinning, albeit less indisputable. This

also speaks to the importance of cache coherent texture fetches, as the difference

between dual quaternion texture skinning and the equivalent matrix technique have

narrowed considerably, even though matrices need 50% more texels to represent a

full transformation. One interesting tidbit is the dual quaternion textures seemingly

favoring the Vampire model, which consists of a single mesh. Both the dual quater-

nion texture and the matrix texture are the same size, due to the power-of-two rule

as can be seen in figure 13.

55

4.14 Ease of Implementation

The application supports importing the proprietary fbx format. A majority of pop-

ular 3D applications supports exporting 3D animations with the fbx file extension,

as these files are relatively common. To be able to generate vertex textures, only

the final transformed vertices need to be known. Bone textures in contrast, re-

quire knowledge of the underlying skeleton structure to work. If only considering

using vertex textures, using the fbx format is unnecessary. Another open source file

format; Alembic, only contains baked data, which would constitute ”post-skinned”

vertices in regards to animations[2]. This could facilitate a simpler algorithm that

can ignore the CPU skinning step altogether.

A consideration is the storage of the generated animation textures. This im-

plementation always generates the animation textures on demand, which takes time

to compute. Writing the textures to a permanent storage would alleviate this issue,

and allow for exportation to other applications. The lossless PNG image format is

one possibility. For a potential program to be able to use the produced animation

texture, it would need the capability to import PNG files. As the PNG format is a

common standard for encoding image data, implementing such functionality should

be fairly straight forward.

To be able to deform a model with an animation texture, the host program

needs access to the vertex shader in some form. Some programs used in the 3D

industry may not have direct access to the programmable shader stages, but rather

present them through abstracted forms as materials. These approaches are also

usually accompanied with a node system to simplify shader/material creation. The

open source 3D application, Blender, is an example which presents shader creation

in this form[21]. As long as the application offers some form of a vertex offset,

animation texture skinning should be possible.

The final effort needed to use the animation texture is actually writing/constructing

the animation texture shader. The shader needs to correctly decode the animation

texture which depends on the sampling technique used. Constants like sampling

frequency, animation length, and Axis Aligned Bounding Box definitions also need

to be present in order to correctly decode the texels.

56

5 Conclusions

5.1 Conclusion

This thesis has explored the concept of encoding animation data into textures, which

have been mainly evaluated in terms of performance, while accuracy, and memory

footprint of the tested implementations were also discussed. For evaluation, three

hypotheses were presented, based on intuition and previous knowledge. In terms

of hypothesis 1 (1.1), dual quaternions always achieved a higher performance score

relative to the corresponding matrix implementation, but the difference was not

statistically significant for every tested scenario. The thesis concluded the size dif-

ference of the two data structures was the main reason for the performance discrep-

ancy, as both traditional GPU skinning and bone texture skinning need to access

50% less data in the case of dual quaternions compared to matrices. For hypothesis

2 (1.2), the traditional GPU skinning technique achieved equal or even surpassed

the performance of bone texture skinning in some instances, thus disproving the

hypothesis. Bone texture skinning produced superior performance results by orders

of magnitude when rendering simple models. The reduced vertex count allowed

the number of draw calls to become significant in regards to traditional GPU skin-

ning, which the bone texture pipeline avoided through the advantage of hardware

instancing. The last hypothesis were initially confirmed for all scenarios where the

texture size was not a problem. After some further testing, texel fetch optimiza-

tions was implemented through improving texture cache coherence. Continuing by

removing duplicate vertices, the performance advantage of the vertex texture skin-

ning technique disappeared in every benchmark, except for the simplest box model.

Hypothesis 3 was therefore confirmed for simple meshes consisting of few vertices.

This also highlighted the importance of data locality, as to better utilize the texture

cache.

The thesis further discussed the advantages of bone textures being independent

of the meshes utilizing them. The size of bone textures is dependent on the number

of bones the skeleton structure is composed of, where the generated texture can

be shared between different meshes. In contrast, vertex textures need two unique

textures per mesh (vertex, and normal) which size is directly proportional to the

57

mesh complexity.

5.2 Further Work

This section explores possible improvements and techniques that can improve the

results discussed in the results.

5.2.1 New Encoding Schemes

One potential avenue is new methods for encoding vertex positions. This thesis

used Cartesian coordinates to encode positions in space, and raw rotational data

with 8-bits of precision. The fall project included an additional encoding scheme for

vertex textures, using parametric rays. Here the x, y, and z components represent

the normalized direction vector, while w is the normalized magnitude. This could

potentially be used in conjunction with tri-axial ellipsoids (see figure 28) for a po-

tential bounding volume solution, where the maximum axis magnitude is included

in the shader.

Because the real part of a dual quaternion represents a unit-quaternion, its

length must equal 1. This characteristic can allow for reconstructing one of the

components in the shader, reducing the amount of encoded values required down to

three. This combined with utilizing the world space position of the bone, instead

of the actual dual part (as discussed in 4.10), only six components would need

to be encoded when considering dual quaternions. The two extra values could be

exploited to encode data necessary for compression, like time information as seen

in Jonas Norberg’s implementation[25], or simply be ignored to reduce the memory

footprint by 25%.

5.2.2 Animation Blending

One technique often used in game development is blending multiple animations

together to form a new pose, which does not explicitly exist in the sampled anima-

tion[12]. Animation blending can allow for smooth procedural transitions between

different animations, such as from walking to running. The same benefits of ani-

58

mation blending could potentially be applied to skinned animation textures as well,

where the blending operations take place in vertex shader instead of being computed

by the CPU.

5.2.3 Testing Other Architectures

The results presented in this thesis are dependent on the hardware architecture

used. A proposed next step is to conduct equivalent tests for systems of different

hardware configurations. Lower powered architectures, like phones, and embedded

systems may exhibit different performance traits than those found in this thesis.

5.2.4 Animation Compression and Artifact Heuristics

The application provides a 1:1 animation preview of the ground truth input together

with the generated texture animations. The visualization is important, as it helps

highlight errors and artifacts in the encoded animations. Measures and statistics

like FPS and texture size are also given in the interface to give some insight into how

the given parameters affect output. The possibility for a factual measurement of the

error/deviation of the texture animation versus the ground truth, would be useful to

more effectively give a better insight where additional samples may be needed. The

aliasing effect visible in the matrix texture skinning, and vertex skinning techniques,

originated from linearly interpolating between samples where rotational context were

not taken into account. This artifact is not apparent in dual quaternions, as they

are normalized prior to vertex deformation step.

Consider figure 34 where a bone modeled as a vector rotates 90° between

two sample points; A and B. An accurate interpolation between the two samples

would generate points along a circular arc, with center equal the bone origin. Linear

interpolation rather produces points in a straight line resulting in an inconsistent

magnitude along the path. This inconsistency could be used to construct a heuristic

to estimate aliasing between samples, for example by subtracting the area of the

interpolated path (triangle) from the area of the circular arc (circle). The heuristic

could be shown to the user and/or be used as a cost in the sampling algorithm to

determine an optimal sampling frequency to achieve high texture space efficiency,

59

while minimizing the aliasing effect. This heuristic may be more useful for matrix

bone texture generation, as vertex textures are not directly skinning vertices in the

shader. Directly using the distance between the initial and deformed vertex position

would likely be a superior heuristic in this case.

Figure 34: Difference between spherical linear interpolation and linear interpolation.

Spherical linear interpolation (slerp) is a technique that accurately interpolates

directional vectors along a circular path, defined by this equation:

p′ = p1
sin[(1− t)Ω]

sin(Ω)
+ p2

sin(tΩ)

sin(Ω)
(7)

Where 0 ≤ t ≤ 1 is the interpolation parameter, and Ω is the angle subtended by

the arc. This formula can be utilized with matrix texture skinning, where a vertex

needs to be deformed by two deformation matrices, where the final vertex position

is the product of using slerp on the two deformed vertices. This could significantly

reduce the aliasing effect produced by low sample counts when considering matrix

textures.

60

References

[1] Ag2gaeh. Ellipsoid - Wikipedia. [Online; accessed 12. Jun. 2021]. June 2021. url: https:

//en.wikipedia.org/w/index.php?title=Ellipsoid&oldid=1027558780.

[2] Alembic. [Online; accessed 6. Dec. 2020]. July 2016. url: http://www.alembic.io.

[3] Golam Ashraf and Junyu Zhou. “Hardware Accelerated Skin Deformation for Animated

Crowds”. In: Advances in Multimedia Modeling. Springer, Berlin, Heidelberg, Jan. 2007,

pp. 226–237. isbn: 978-3-540-69428-1. doi: 10.1007/978-3-540-69429-8_23. url: https:

//link.springer.com/chapter/10.1007/978-3-540-69429-8_23.

[4] Norman Badler and Stephen Smoliar. “Digital Representations of Human Movement”. In:

ACM Comput. Surv. 11 (Mar. 1979), pp. 19–38. doi: 10.1145/356757.356760.

[5] William Kingdon Clifford. Mathematical papers, 1845-1879. [Online; accessed 19. May 2021].

May 2021. url: https://archive.org/details/mathematicalpap00smitgoog.

[6] GameDaily Connect. 4,000 Adams at 90 Frames Per Second | Yi Fei Boon. [Online; accessed

2. Dec. 2020]. May 2017. url: https://www.youtube.com/watch?v=rXqKu9uC0f4.

[7] Randima Fernando. GPU Gems: Programming Techniques, Tips and Tricks for Real-Time

Graphics. Boston, MA, USA: Addison-Wesley Professional, Mar. 2004. isbn: 978-0-32122832-

1. url: https://www.amazon.com/GPU-Gems-Programming-Techniques-Real-Time/dp/

0321228324.

[8] glDrawElementsInstanced - OpenGL 4 Reference Pages. [Online; accessed 18. May 2021]. Apr.

2021. url: https://khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElementsInstanced.

xhtml.

[9] GLSL Object - OpenGL Wiki. [Online; accessed 18. May 2021]. Jan. 2021. url: https:

//www.khronos.org/opengl/wiki/GLSL_Object.

[10] Sir William Rowan Hamilton. Elements of Quaternions, 1805-1865. [Online; accessed 19. May

2021]. May 2021. url: https://archive.org/details/elementsofquater00hamirich.

[11] Alec Jacobson et al. “Skinning: Real-time Shape Deformation”. In: ACM SIGGRAPH 2014

Courses. 2014.

[12] Daniel Jeppsson. “Realtime character animation blending using weighted skeleton hierar-

chies”. PhD thesis. Institutionen för datavetenskap, Lunds tekniska högskola, 2000.

[13] Marcus Benjamin Johansson. Exploring GPU Animation Textures. Dec. 2020.

[14] Ladislav Kavan and Jiri Zara. “Real-Time Skin Deformation with Bones Blending”. In:

(2003). [Online; accessed 13. Sep. 2020]. url: https://www.cs.utah.edu/~ladislav/

kavan03real/kavan03real.html.

61

https://en.wikipedia.org/w/index.php?title=Ellipsoid&oldid=1027558780
https://en.wikipedia.org/w/index.php?title=Ellipsoid&oldid=1027558780
http://www.alembic.io
https://doi.org/10.1007/978-3-540-69429-8_23
https://link.springer.com/chapter/10.1007/978-3-540-69429-8_23
https://link.springer.com/chapter/10.1007/978-3-540-69429-8_23
https://doi.org/10.1145/356757.356760
https://archive.org/details/mathematicalpap00smitgoog
https://www.youtube.com/watch?v=rXqKu9uC0f4
https://www.amazon.com/GPU-Gems-Programming-Techniques-Real-Time/dp/0321228324
https://www.amazon.com/GPU-Gems-Programming-Techniques-Real-Time/dp/0321228324
https://khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElementsInstanced.xhtml
https://khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElementsInstanced.xhtml
https://www.khronos.org/opengl/wiki/GLSL_Object
https://www.khronos.org/opengl/wiki/GLSL_Object
https://archive.org/details/elementsofquater00hamirich
https://www.cs.utah.edu/~ladislav/kavan03real/kavan03real.html
https://www.cs.utah.edu/~ladislav/kavan03real/kavan03real.html

[15] Ladislav Kavan et al. “Skinning with Dual Quaternions”. In: 2007 ACM SIGGRAPH Sym-

posium on Interactive 3D Graphics and Games. ACM Press, May 2007, pp. 39–46. url:

https://www.cs.utah.edu/~ladislav/kavan07skinning/kavan07skinning.html.

[16] Ben Kenwright. “A Beginners Guide to Dual-Quaternions: What They Are, How They

Work, and How to Use Them for 3D Character Hierarchies”. In: Semantic Scholar (2012).

url: https : / / www . semanticscholar . org / paper / A - Beginners - Guide - to - Dual -

Quaternions%3A-What-They-to-Kenwright/5f560a48d89cadfd9ff04f41c942ebbbf0fea35a.

[17] Jeff Lander. “Skin Them Bones: Game Programming for the Web Generation”. In: Game

Developer Magazine (May 1998). url: http://www.darwin3d.com/gamedev/articles/

col0598.pdf.

[18] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. “Joint-dependent local deforma-

tions for hand animation and object grasping”. In: 1989.

[19] Mixamo. [Online; accessed 22. May 2021]. Apr. 2021. url: https://www.mixamo.com/#.

[20] Isaac Rudomin et al. “GPU Generation of Large Varied Animated Crowds”. In: Revista

Computación y Sistemas; Vol. 17 No.3 (Sept. 2013). issn: 1405-5546. url: https : / /

repositoriodigital.ipn.mx/handle/123456789/17229.

[21] Shader Editor — Blender Manual. [Online; accessed 12. Jun. 2021]. June 2021. url: https:

//docs.blender.org/manual/en/latest/editors/shader_editor.html.

[22] Student. “The Probable Error of a Mean”. In: Biometrika 6.1 (Mar. 1908), pp. 1–25. issn:

0006-3444. url: http://www.jstor.org/stable/2331554.

[23] T. Theoharis et al. Graphics and Visualization: Principles & Algorithms. A K Peters/CRC

Press, Oct. 2007. isbn: 978-1-56881274-8. url: https://www.amazon.com/Graphics-

Visualization-Principles-Algorithms-Theoharis/dp/1568812744.

[24] Uniform (GLSL) - OpenGL Wiki. [Online; accessed 18. May 2021]. Jan. 2021. url: https:

//www.khronos.org/opengl/wiki/Uniform_(GLSL).

[25] Unity. Unite 2016 - Rendering a Large Number of Animated Characters Using the GPU.

[Online; accessed 1. Dec. 2020]. Dec. 2016. url: https://www.youtube.com/watch?v=

1ZPcXcCBFIs.

62

https://www.cs.utah.edu/~ladislav/kavan07skinning/kavan07skinning.html
https://www.semanticscholar.org/paper/A-Beginners-Guide-to-Dual-Quaternions%3A-What-They-to-Kenwright/5f560a48d89cadfd9ff04f41c942ebbbf0fea35a
https://www.semanticscholar.org/paper/A-Beginners-Guide-to-Dual-Quaternions%3A-What-They-to-Kenwright/5f560a48d89cadfd9ff04f41c942ebbbf0fea35a
http://www.darwin3d.com/gamedev/articles/col0598.pdf
http://www.darwin3d.com/gamedev/articles/col0598.pdf
https://www.mixamo.com/#
https://repositoriodigital.ipn.mx/handle/123456789/17229
https://repositoriodigital.ipn.mx/handle/123456789/17229
https://docs.blender.org/manual/en/latest/editors/shader_editor.html
https://docs.blender.org/manual/en/latest/editors/shader_editor.html
http://www.jstor.org/stable/2331554
https://www.amazon.com/Graphics-Visualization-Principles-Algorithms-Theoharis/dp/1568812744
https://www.amazon.com/Graphics-Visualization-Principles-Algorithms-Theoharis/dp/1568812744
https://www.khronos.org/opengl/wiki/Uniform_(GLSL)
https://www.khronos.org/opengl/wiki/Uniform_(GLSL)
https://www.youtube.com/watch?v=1ZPcXcCBFIs
https://www.youtube.com/watch?v=1ZPcXcCBFIs

Figure 35: Application window

Appendix

A User Interface

The animations in the application are rendered in a re-sizable window. The appli-

cation is using the GLFW library for OpenGL development, to more easily achieve

cross-platform support (although, the FBX SDK currently used only supports win-

dows). The application window can be divided up into to four view-ports, each

displaying a different skinning technique as seen in figure 36. These include the

CPU skinning, GPU skinning, bone-texture skinning, and vertex texture skinning

pipelines. The scale of the imported models are normalized, such that they are

always visible when playing the animation.

63

Figure 36: Comparison-mode view port of the application. Top Left: CPU skinning Top Right:
GPU skinning Bottom Left: Bone texture skinning Bottom Right:

Vertex texture Skinning.

An additional quad is also rendered in the window, behind the animating

models. Its job is to visualize the generated textures, helping in analyzing and de-

bugging the encoding process with different parameters. The quad has the same

dimensions as the visualized animation texture, such that the texture is displayed

without stretching- and or compression artifacts. A green vertical line is also ren-

dered on top of the texture, acting like a play head pointing to the texels currently

being read by the shader.

A.1 DearImGUI

To draw the user interface, the C++ library, DearImGUI, is used to render a simple

Graphical User Interface which is used to both adjust animation sampling parame-

ters, as well as other controls helping the user to inspect the final output animation.

64

The library allows for creation of collapsible, movable, and re-sizable panels which

can be fitted with a range of multiple different widgets. The application is sep-

arated into two distinct modes: comparison-mode, and benchmark-mode. In the

comparison-mode, the GUI is separated into five distinct panels that can be shown

or hidden from the ’Show’ file menu. They include: the parameter pane, the time-

line, texture statistics, performance metrics, and a debug pane.

The parameter pane provides a combo-box used to change the animation being

played, followed by another combo-box to modify the animation sampling frequency,

ranging from 6 Hz to 120 Hz. Below them is a button to apply the chosen parameters,

for which the animation textures will be re-sampled. Next, there exists four buttons

for toggling the rendering of the different skinning techniques. Lastly, is a checkbox

for toggling enforcing no vertex duplication.

On the timeline pane, controls for tuning the animation playback is given.

The first controls the animation playback speed, the second contains a drag-able

slider representing the current animation frame, and the button at the bottom gives

the user the ability to pause and play the animation playback. The arrow buttons,

step one key-frame forwards or backwards in the encoded animations.

Texture statistics are shown on its respective pane. It contains a combo-box

to chose which texture to be visualized, along with a check-box to enable or disable

the visualizing texture quad. Shown below them, are the respective statistics of the

chosen texture.

The performance metrics is found on the largest pane, first displaying two

graphs of FPS and frame time respectively. Further, is two values only important

during benchmarks; Ms difference from last sample, and the frame time difference

threshold needed for next sample point. Below them, are statistics about the number

of instances being rendered, useful for estimating performance impact.

The last pane is used for debugging, first giving an integer slider where a bone

in the skeleton can be indexed. From the selected bone, the transformation can be

viewed (either matrices or dual quaternions). The transformation can be shown with

or without link-transformations applied, specified by the button below the integer

slider. The debug vector is used to enable or disable features in the application

65

and shaders, to help with debugging. Next is a check-box to visualize the skeleton

with red lines when rendering with the traditional GPU skinning method. Next is

visualizing the AABB used when encoding the bone transform into textures, and

the last is changing the visualized AABB to the one used by vertex textures instead.

Figure 37: Demonstration of the DearImGui panes used in the comparison-mode in the application.

In the benchmark-mode accessed in the file menu, the benchmark panel be-

comes visible. The first combo-box selects the current skinning method, ranging

from CPU skinning, GPU skinning, bone texture skinning, vertex texture skinning,

an Control (no skinning). Next is the number of instances rendered. Then the

spacing between the rendered instances, before a check-box to continually update

the instance data each simulation step. Next is a multi-select list, specifying which

methods are to be tested in the benchmark. Finally, the benchmark is initiated by

the ”Start benchmark” button.

66

Figure 38: Benchmark-mode panel.

A.2 Other Controls

Keyboard Controls

Rotate view port Right mouse button + drag

Translate camera vertical Middle mouse button + drag

Zoom view port Scroll wheel

Translate texture visualizer Ctrl + middle mouse button + drag

Zoom texture visualizer Ctrl + Scroll wheel

W, A, S, D Translate camera forward, left, backward, right

E, Q Translate camera up, down

Reset camera position R

Skip one key frame forwards Right arrow key

Skip one key frame backwards Left arrow key

Table 17: Keyboard control to navigate the view port.

67

A.3 Importing Animations

When the application is started, a default animation file is imported. To import a

different fbx file in the application, the new file needs to be drag-and-dropped into

the application window.

68

B Matrix Bone Texture Encoding and Decoding

B.1 Encoding - C/C++

for (int boneIndex = 0; boneIndex < boneCount; ++boneIndex) {

auto centerBonePos = bonePositionCenters->at(boneIndex);

auto bounds = boneBounds->at(boneIndex);

auto multiplier = 255.f / bounds;

for (int frameIndex = 0; frameIndex < numFrames; ++frameIndex) {

auto matrix = matrices[boneIndex * frameCount + frameIndex];

auto positionDifference = matrix[3] - centerBonePos;

auto positionVector = positionDifference / bounds;

// Encode only three first columns, as last is encoded in the w

component.↪→

for (int columnIndex = 0; columnIndex < 3; ++columnIndex) {

auto column = matrix[columnIndex];

unsigned char x;

unsigned char y;

unsigned char z;

unsigned char w;

auto positionComponent = positionVector[columnIndex];

x = (unsigned char) (column.x * 127 + 128);

y = (unsigned char) (column.y * 127 + 128);

z = (unsigned char) (column.z * 127 + 128);

// We encode the positional data in the alpha channel

w = (unsigned char) (positionComponent * 127 + 128);

auto columnInTextureIndex = boneIndex * widthInBytes * 3 +

columnIndex * widthInBytes + frameIndex * 4;↪→

textureBuffer[columnInTextureIndex] = x;

textureBuffer[columnInTextureIndex + 1] = y;

textureBuffer[columnInTextureIndex + 2] = z;

textureBuffer[columnInTextureIndex + 3] = w;

}

}

69

}

B.2 Decoding - GLSL

mat4x3 getBoneMatrix(int frameIndex1, int frameIndex2, float interpolation, int

boneIndex, vec3 boneCenter, vec3 bounds){↪→

uint boneInTextureIndex = boneIndex * 3;

vec4 col11 = texelFetch(animationTextureSampler, ivec2(frameIndex1,

boneInTextureIndex), 0) * 2 - 1;↪→

vec4 col12 = texelFetch(animationTextureSampler, ivec2(frameIndex1,

boneInTextureIndex + 1), 0) * 2 - 1;↪→

vec4 col13 = texelFetch(animationTextureSampler, ivec2(frameIndex1,

boneInTextureIndex + 2), 0) * 2 - 1;↪→

vec3 col14 = vec3(col11.w, col12.w, col13.w) * bounds + boneCenter;

vec4 col21 = texelFetch(animationTextureSampler, ivec2(frameIndex2,

boneInTextureIndex), 0) * 2 - 1;↪→

vec4 col22 = texelFetch(animationTextureSampler, ivec2(frameIndex2,

boneInTextureIndex + 1), 0) * 2 - 1;↪→

vec4 col23 = texelFetch(animationTextureSampler, ivec2(frameIndex2,

boneInTextureIndex + 2), 0) * 2 - 1;↪→

vec3 col24 = vec3(col21.w, col22.w, col23.w) * bounds + boneCenter;

vec3 col1 = mix(col11.xyz, col21.xyz, interpolation);

vec3 col2 = mix(col12.xyz, col22.xyz, interpolation);

vec3 col3 = mix(col13.xyz, col23.xyz, interpolation);

vec3 col4 = mix(col14, col24, interpolation);

mat4x3 worldMatrix = mat4x3(col1, col2, col3, col4);

mat4 linkMatrix = mat4(transformationLinkMatrices[boneIndex]);

return worldMatrix * linkMatrix;

}

70

mat4x3 getDeformationMatrix(int frameIndex1, int frameIndex2, float

interpolation){↪→

mat4x3 deformationMatrix = getBoneMatrix(frameIndex1, frameIndex2,

interpolation, boneIndices.x, bone1Center, bone1Bounds) * boneWeights.x;↪→

deformationMatrix += getBoneMatrix(frameIndex1, frameIndex2, interpolation,

boneIndices.y, bone2Center, bone2Bounds) * boneWeights.y;↪→

deformationMatrix += getBoneMatrix(frameIndex1, frameIndex2, interpolation,

boneIndices.z, bone3Center, bone3Bounds) * boneWeights.z;↪→

return deformationMatrix;

}

void main()

{

float animationTime = mod((time + instanceAnimationTime) * frameRate,

float(animationLength));↪→

int startIndex = int(animationTime);

int endIndex = (startIndex + 1) % (animationLength);

float interpolation = min(animationTime - float(startIndex), 1);

mat4x3 defMat = getDeformationMatrix(startIndex, endIndex, interpolation);

vec3 finalPos = defMat * vec4(position, 1);

normal_out = normalize(mat3(M) * mat3(defMat) * normal_in);

gl_Position = VP * M * vec4(finalPos, 1);

}

71

C Dual Quaternion Bone Texture Encoding and Decoding

C.1 Encoding - C/C++

for (auto boneIndex = 0; boneIndex < boneCount; ++boneIndex) {

auto quatCenter = quaternionCenters->at(boneIndex);

auto quatBounds = quaternionBounds->at(boneIndex);

for (int frameIndex = 0; frameIndex < numFrames; ++frameIndex) {

auto dq = dualquats[boneIndex * frameCount + frameIndex];

auto real = dq[0];

auto dual = dq[1];

// The dual part holds the position

auto dualDifference = dual - quatCenter;

auto dualPart = dualDifference / quatBounds;

auto encodedQuat = glm::dualquat(real, dualPart);

for (int i = 0; i < 2; ++i) {

auto offset = (2 * boneIndex + i) * widthInBytes + frameIndex * 4;

auto quat = encodedQuat[i];

auto x = (unsigned char) (quat.x * 127 + 128);

auto y = (unsigned char) (quat.y * 127 + 128);

auto z = (unsigned char) (quat.z * 127 + 128);

auto w = (unsigned char) (quat.w * 127 + 128);

textureBuffer[offset] = x;

textureBuffer[offset + 1] = y;

textureBuffer[offset + 2] = z;

textureBuffer[offset + 3] = w;

}

}

}

72

C.2 Decoding - GLSL

vec4 quaternionMultiply(vec4 p, vec4 q){

float x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y;

float y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z;

float z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x;

float w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z;

return vec4(x, y, z, w);

}

mat2x4 dualQuaternionMultiply(mat2x4 p, mat2x4 o){

vec4 real = quaternionMultiply(p[0], o[0]);

vec4 dual = quaternionMultiply(p[0], o[1]) + quaternionMultiply(p[1], o[0]);

return mat2x4(real, dual);

}

mat2x4 getDualQuaternion(int frameIndex1, int frameIndex2, float interpolation,

int boneIndex, vec4 quatCenter, vec4 bounds){↪→

int boneInTextureIndex = boneIndex * 2;

vec4 real1 = texelFetch(animationTextureSampler, ivec2(frameIndex1,

boneInTextureIndex), 0) * 2 - 1;↪→

vec4 real2 = texelFetch(animationTextureSampler, ivec2(frameIndex2,

boneInTextureIndex), 0) * 2 - 1;↪→

vec4 dual1 = texelFetch(animationTextureSampler, ivec2(frameIndex1,

boneInTextureIndex + 1), 0) * 2 - 1;↪→

vec4 dual2 = texelFetch(animationTextureSampler, ivec2(frameIndex2,

boneInTextureIndex + 1), 0) * 2 - 1;↪→

vec4 real = mix(real1, real2, interpolation);

vec4 dual = mix(dual1, dual2, interpolation);

mat2x4 worldDualQuat = mat2x4(real, dual * bounds + quatCenter);

mat2x4 linkQuat = linkQuaternions[boneIndex];

return dualQuaternionMultiply(worldDualQuat, linkQuat);

}

73

mat2x4 normalizeDQ(mat2x4 dq){

float magnitude = sqrt(dot(dq[0], dq[0]));

mat2x4 ret = dq / magnitude;

return ret;

}

mat2x4 getDeformationDualQuaternion(int frameIndex1, int frameIndex2, float

interpolation){↪→

mat2x4 deformationDQ = getDualQuaternion(frameIndex1, frameIndex2,

interpolation, boneIndices.x, bone1Center, bone1Bounds) * boneWeights.x;↪→

deformationDQ += getDualQuaternion(frameIndex1, frameIndex2, interpolation,

boneIndices.y, bone2Center, bone2Bounds) * boneWeights.y;↪→

deformationDQ += getDualQuaternion(frameIndex1, frameIndex2, interpolation,

boneIndices.z, bone3Center, bone3Bounds) * boneWeights.z;↪→

mat2x4 result = normalizeDQ(deformationDQ);

return result;

}

vec3 deformDualQuat(mat2x4 dualQuat, vec3 vec){

vec4 real = dualQuat[0];

vec4 dual = dualQuat[1];

vec3 result = (cross(real.xyz, cross(real.xyz, vec) + vec * real.w +

dual.xyz) + dual.xyz * real.w - real.xyz * dual.w) * 2 + vec;↪→

return result;

}

vec3 rotateQuat(vec4 quat, vec3 vec){

vec3 uv = cross(quat.xyz, vec);

vec3 uuv = cross(quat.xyz, uv);

return vec + ((uv * quat.w) + uuv) * 2;

}

74

void main()

{

float animationTime = mod((time + instanceAnimationTime) * frameRate,

float(animationLength));↪→

int startIndex = int(animationTime);

int endIndex = (startIndex + 1) % (animationLength);

float interpolation = min(animationTime - float(startIndex), 1);

mat2x4 dq = getDeformationDualQuaternion(startIndex, endIndex,

interpolation);↪→

vec3 pos = deformDualQuat(dq, position);

normal_out = normalize(mat3(M) * rotateQuat(dq[0], normal_in));

gl_Position = VP * M * vec4(pos, 1);

}

75

D Vertex Texture Encoding and Decoding

D.1 Encoding - C/C++

for (int vertexIndex = 0; vertexIndex < numVertices; vertexIndex++) {

int rowOffset = vertexIndex * textureWidthBytes;

for (int frameIndex = 0; frameIndex < frameCount; frameIndex++) {

auto position = samples[frameCount * vertexIndex + frameIndex];

auto relativeToCenter = position - vertexCenter;

auto withinBounds = relativeToCenter / vertexBounds;

auto x = (unsigned char) (withinBounds.x * 127.f + 128);

auto y = (unsigned char) (withinBounds.y * 127.f + 128);

auto z = (unsigned char) (withinBounds.z * 127.f + 128);

textureBuffer[rowOffset + frameIndex * 3] = x;

textureBuffer[rowOffset + frameIndex * 3 + 1] = y;

textureBuffer[rowOffset + frameIndex * 3 + 2] = z;

}

}

76

D.2 Decoding - GLSL

vec3 getVertexPosition3Channel(int startIndex, int endIndex, float

interpolation){↪→

vec3 startPos = (texelFetch(animationVertexTextureSampler, ivec2(startIndex,

trueIndex), 0).xyz * 2 - 1) * vertexBounds + vertexCenter;↪→

vec3 endPos = (texelFetch(animationVertexTextureSampler, ivec2(endIndex,

trueIndex), 0).xyz * 2 - 1) * vertexBounds + vertexCenter;↪→

vec3 finalPos = mix(startPos, endPos, interpolation);

return finalPos;

}

void main()

{

float animationTime = mod((time + instanceAnimationTime) * frameRate,

float(animationLength));↪→

int startIndex = int(animationTime);

int endIndex = (startIndex + 1) % (animationLength);

float interpolation = min(animationTime - float(startIndex), 1);

vec3 finalPos = getVertexPosition(s, e, interpolation);

vec3 startNor = texelFetch(animationNormalTextureSampler, ivec2(s,

trueIndex), 0).xyz * 2 - 1;↪→

vec3 endNor = texelFetch(animationNormalTextureSampler, ivec2(e, trueIndex),

0).xyz * 2 - 1;↪→

vec3 finalNor = normalize(mix(startNor, endNor, interpolation));

normal_out = normalize(mat3(M) * finalNor);

gl_Position = VP * M * vec4(position + finalPos, 1);

}

77

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Marcus Benjamin Johansson

Skinned Animation Textures

Master’s thesis in Computer Science
Supervisor: Professor Theoharis Theoharis

June 2021

M
as

te
r’s

 th
es

is

	Glossary
	Acronyms
	Introduction
	H1
	H2
	H3
	Structure
	Demonstration Video

	Background
	Theory
	Polygonal Models
	Transformation Matrices

	Scene Graphs
	Skeletal Animation
	Bone Hierarchy - A Self Contained Scene Graph
	Quaternions
	Dual Quaternions

	Graphics Pipeline
	Instancing and Draw Calls
	Axis Aligned Bounding Boxes
	Student's T-test
	Related Work
	Vertex textures
	Bone textures
	Fall project

	Methods
	Overview
	Hardware Specification
	Application Control Flow
	Skeleton data structure

	Sampling Animation Key-frames
	Vertex Samples

	Bone Samples
	Matrix Samples
	Dual Quaternion Samples

	Rendering
	CPU Skinning
	GPU Skinning
	Vertex Texture Skinning
	Bone Texture Skinning
	Benchmarking
	Instance Manager

	Model Previews

	Results and Discussion
	Results overview
	Box
	Vampire
	X Bot
	Y Bot
	Performance Results
	Relative Performance Breakpoints

	Hypothesis 1 (1.1)
	Dual Quaternion VS. Matrix Skinning

	Hypothesis 2 (1.2)
	Hypothesis 3 (1.3)
	Texture Precision
	Vertex Textures Versus Bone Textures
	Texture Space efficiency

	Animation Texture Advantages and Disadvantages
	Duplicated Vertices
	Ease of Implementation

	Conclusions
	Conclusion
	Further Work
	New Encoding Schemes
	Animation Blending
	Testing Other Architectures
	Animation Compression and Artifact Heuristics

	Appendix
	User Interface
	DearImGUI
	Other Controls
	Importing Animations

	Matrix Bone Texture Encoding and Decoding
	Encoding - C/C++
	Decoding - GLSL

	Dual Quaternion Bone Texture Encoding and Decoding
	Encoding - C/C++
	Decoding - GLSL

	Vertex Texture Encoding and Decoding
	Encoding - C/C++
	Decoding - GLSL

