
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Marvin Reza

Efficient Sample Reusage in Path
Space for Real-Time Light Transport

Master’s thesis in Computer Science
Supervisor: Theoharis Theoharis

June 2021

M
as

te
r’s

 th
es

is

Marvin Reza

Efficient Sample Reusage in Path
Space for Real-Time Light Transport

Master’s thesis in Computer Science
Supervisor: Theoharis Theoharis
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

In this thesis, we investigate the current state of real-time global illumination
techniques. Specifically, we look at the problem of computing the direct
lighting in virtual scenes with thousands, and even millions, of emissive
objects. Efficient many-light sampling is an intricate problem that remains
even in offline rendering—that is, without the real-time constraints. Many
of the problems stem from the difficulties of efficiently determining which
lights that contribute the most at given points.

To address this, we propose an algorithm that extends the current state of
the art, ReSTIR. In contrast to ReSTIR, our algorithm, Path Space Impor-
tance Resampling (PSIR), additionally samples its candidates from a hash
table that stores light samples in path space. The hash table is constructed
by discretizing the path space vertices into voxels of dynamic size. Sub-
sequently, we insert lights stochastically into the hash table based on each
light’s expected contribution. Accordingly, the data structure performs an
unordered grouping of lights into local pools, which facilitates effective fil-
tering of distant and weak lights.

We test our algorithm and compare it against ReSTIR. The results show that
our algorithm consistently outperforms or equals ReSTIR, both qualitatively
and quantitatively. However, in most cases, we see that the differences be-
tween the results are relatively minimal. Nonetheless, we also see that PSIR
comes at a performance cost depending on the scene complexity, screen res-
olution, and the number of lights in the scene.

i

Sammendrag

I denne oppgaven undersøker vi ulike eksisterende løsninger for sanntidssi-
mulering av global belysning. Nærmere bestemt, ser vi på problemstillingen
rundt det å beregne mengden av direkte belysning i virtuelle scener med tu-
senvis, og til og med millioner, av lysemitterende objekter. Effektiv utvelging
av mange lys er et komplekst problem som også oppstår i offline rendering—
det vil si, uten hensyn til sanntidsbegrensninger. Mange av problemene som
oppstår kommer av vanskelighetene rundt det å effektivt bestemme hvilke
lys som bidrar mest til gitte områder av scenen.

For å ta tak i disse problemene foreslår vi i denne oppgaven en utvidelse til
den nåværende state-of-the-art algoritmen, ReSTIR. I motsetning til ReSTIR,
vil vår algoritme, Path Space Importance Resampling (PSIR), i tillegg trekke
et tilfeldig utvalg av lyskandidater fra en hashtabell som lagrer dem i “path
space”. Hashtabellen er konstruert ved å diskretisere punktene i path space
til “voxler” av dynamiske størrelser. Dermed kan vi utføre stokastisk inn-
setting av lysdata, med sannsynligheter basert på lysenes forventede bidrag.
Følgelig kan det betraktes at datastrukturen utfører en uordnet gruppering
av lysene inn i lokale grupper, hvilket fasiliterer for effektiv filtrering av
fjerne og svake lys.

Vi tester vår algoritme og sammenlikner den med ReSTIR. Resultatene viser
at vår algoritme konsekvent oppnår bedre eller like resultater som ReSTIR—
både kvantitativt og kvalitativt. Imidlertid ser vi i de fleste tilfeller at forskjel-
lene mellom de to algoritmene er relativt minimale. Riktignok ser vi også at
PSIR har en ytelseskostnad som, blant annet, avhenger av scene kompleksi-
teten, skjermstørrelsen og antallet lys i scenen.

iii

Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my ad-
visor, Theoharis Theoharis, for his continuous support, supervision, motiva-
tion, and advice during this thesis. It was mainly because of the discussions
we had before the start of this thesis and the invaluable guidance he gave
that I could work on something I genuinely had an interest in.

Finally, none of this would have been possible without the unwavering love
and patience of my family, friends, and loved ones, and my heartfelt grati-
tude goes out to them.

v

List of Abbreviations

BRDF Bidirectional reflectance distribution function

BVH Bounding volume hierarchy

GPU Graphics processing unit

NEE Next-event estimation

PDF Probability density function

PSIR Path space importance resampling

ReSTIR Reservoir-based spatiotemporal importance resampling

RIS Resampled importance sampling

RMSE Relative mean squared error

spp Samples per pixel

TAA Temporal anti-aliasing

Nomenclature

n Normal vector

ω Direction vector

Φ Radiant flux

E Irradiance

fr BRDF

L Incident or exitant radiance

M Radiant exitance

vii

Contents

Contents ix

1 Introduction 1
1.1 Notation and Conventions . 2
1.2 Thesis Overview . 2

2 Theory 5
2.1 Monte Carlo Integration . 5

2.1.1 Basic Monte Carlo Integration 5
2.2 Variance of the Monte Carlo Estimator 7

2.2.1 Importance Sampling 7
2.2.2 Resampled Importance Sampling 8
2.2.3 Multiple Importance Sampling 9

2.3 Ray Tracing . 11
2.3.1 Acceleration Structures 12

2.4 Radiometry . 12
2.4.1 Radiant Flux . 13
2.4.2 Irradiance and Radiant Exitance 13
2.4.3 Radiance . 13

2.5 Lighting Interactions . 14
2.5.1 Diffuse Surfaces . 15
2.5.2 Specular Surfaces . 16
2.5.3 Microfacet Models . 16

2.6 Global Illumination . 17
2.6.1 The Rendering Equation 17
2.6.2 Path Tracing . 18
2.6.3 Next Event Estimation 19

2.7 Image Space Filtering for Monte Carlo Noise 21

3 Related Work 23
3.1 Denoising . 23

3.1.1 Screen Space Denoising 25
3.1.2 Path Space Filtering . 28

3.2 Many-Light Sampling . 30

ix

Contents

3.2.1 Lightcuts . 30
3.2.2 Reservoir-Based Spatiotemporal Importance Resampling 31

4 Algorithm 33
4.1 ReSTIR . 33

4.1.1 Resampled Direct Lighting 33
4.1.2 Weighted Reservoir Sampling 34
4.1.3 Streaming RIS with Spatiotemporal Reuse 35

4.2 GPU Hash Tables . 38
4.2.1 Spatial Hashing . 39
4.2.2 Construction of hash keys through discretization . . . 40
4.2.3 Reducing quantization artifacts with jittering 41

4.3 Path Space Importance Resampling 41

5 Experiment 45
5.1 Setup . 45

5.1.1 Our Test Scenes . 45
5.1.2 Implementation Details 46

5.2 Results . 48
5.3 Discussion . 53

6 Conclusion 61
6.1 Limitations and Future Work 62

Bibliography 65

x

CHAPTER 1
Introduction

Photorealistic rendering of virtual scenes has a long-standing tradition in
the field of computer graphics. With an ever-increasing demand for visual
fidelity and realism of these renderings and widespread use in the entertain-
ment industry, it remains an important research topic to this day.

One aspect of achieving photorealism in rendering is light transport, which
studies light and its interactions with the virtual world. Ideally, the light
transport algorithms should capture the global illumination in a scene. The
rendering equation [Kajiya, 1986] provides a framework that facilitates sim-
ulation of global illumination. Interestingly, many of the light transport
techniques can be viewed as methods of approximation of this framework
[Arvo and Kirk, 1990]. Informally, the rendering equation expresses that the
outgoing light from any point depends on the reflected and emitted light
at every other point in the scene. However, simulating many light bounces
quickly becomes computationally infeasible. Accordingly, many of the most
popular global illumination algorithms are based on Monte Carlo methods,
where random sampling forms a natural part of the process that generates
the image. These methods do not necessarily differ in the visual fidelity of
the images they can compute. In fact, for a given scene, most of them will
produce the same solution if run long enough. Instead, they mainly differ
in the time required to produce a visually acceptable result. This is of practi-
cal significance since we only ever have a finite amount of available time to
render an image.

In this thesis, we are concerned with the problem of sampling many lights.
When there are many light sources in a scene, it becomes infeasible to trace
shadow rays to all of them. Furthermore, finding the lights that contribute
the most at a given point depends on various factors, for instance, each
light’s visibility to that point, the reflectance distribution function at the

1

1. Introduction

point, and the light source’s emission characteristics. Our objective, as such,
is to find and understand the limitations of the current state of the art for
sampling many light sources and propose a solution to these problems.

For these purposes, we present an extension to the algorithm which, at the
time of writing, is considered the current state of the art, namely, ReSTIR.
Our proposed algorithm extends ReSTIR by facilitating for it to perform re-
sampling in path space and, thus, enable it to sample higher quality light
samples. Accordingly, we conduct an experiment and present the corre-
sponding results to investigate the changes in the rendering quality when
applying our proposed version of ReSTIR. Moreover, we accompany the re-
sults with an analysis to understand and evaluate the costs and benefits of
our presented algorithm. Finally, note that, in this work, we only account
for direct lighting on primary surfaces. However, our approach is not inher-
ently limited in this regard and may be extended to higher-order bounces
and indirect lighting in future work.

1.1 Notation and Conventions

Throughout the text, the author (Marvin Reza) uses the author’s ”we” and,
for the reader’s convenience, we have included a nomenclature listing sym-
bols and abbreviations used in this work. It precedes the table of contents
and this introduction. We have tried to keep the notation as standard as pos-
sible while unifying it across the entire work. For mathematical notations
regarding rendering algorithms and equations, we try to follow the notation
of [Pharr et al., 2016].

1.2 Thesis Overview

The rest of the thesis is structured as follows:

• Chapter 2 contains background material on Monte Carlo rendering,
ray tracing, physically based rendering, and global illumination. The
main focus is on understanding why global illumination is difficult,
and why its results can be so noisy.

• Chapter 3 presents the related work, with a focus on others’ work on
denoising and many-light sampling.

• Chapter 4 presents our proposed algorithm and gives an in-depth ex-
planation of the algorithms and data structure it is built upon.

• Chapter 5 starts by explaining the experiment conducted to evaluate
the proposed algorithm and, accordingly, presents the corresponding
results and accompanies it with a discussion.

2

1.2. Thesis Overview

• Finally, Chapter 6 concludes the work and the results in this thesis and
mentions exciting avenues of future work.

3

CHAPTER 2
Theory

This chapter contains the material to back up our work in this thesis. In
order to keep this chapter succinct, some of the material is briefly touched
upon for readers with little to no background in Monte Carlo rendering, ray
tracing, or physically based rendering. Some of the more complex topics
and proofs are outside the scope of this thesis. Nonetheless, we include the
corresponding references, so the reader can look them up if so desired.

2.1 Monte Carlo Integration

Monte Carlo integration is a probabilistic method for numerically integrat-
ing functions. Rendering methods based on Monte Carlo integration were
first introduced to graphics by Cook et al. [Cook et al., 1984] in order to ren-
der distributed effects such as motion blur, depth of field, and soft shadows.
Kajiya later applied the Monte Carlo method to the rendering equation to
render global illumination effects [Kajiya, 1986].

2.1.1 Basic Monte Carlo Integration

Monte Carlo integration is based on the fact that the integral I =
∫

Ω f (x)dx,
for integrand f and domain Ω, can be approximated with the following
estimator:

Î =
1
N

N

∑
i=1

f (xi)

p(xi)
(2.1)

Where N random samples {x1, . . . , xN} are drawn from a sampling distribu-
tion with probability density function (PDF) p. This makes the estimator
Î a random variable and, from this, we have that its expected value can be

5

2. Theory

computed as:

E
[
Î
]
= E

[
1
N

N

∑
i=1

f (xi)

p(xi)

]
i.i.d
=

1
N

N

∑
i=1

∫
Ω

f (x)
p(x)

p(x)dx =
∫

f (x)dx (2.2)

Where the second equality is due to the assumption that the samples are
independent and identically distributed (i.i.d) random variables, and that
the expected value of a random variable X with PDF g(x) is defined as:

E[X] =
∫

R
xg(x)dx

The derivation in Equation 2.2 shows that the estimator Î yields the correct
result on average—or, in other words, that the estimator is unbiased. More-
over, by the law of large numbers, we have that the estimator is guaranteed
to converge to the expected value as N → ∞, as long as p(xi) > 0 whenever
f (xi) 6= 0.

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.1: Estimating
∫ π

0 sin(x)dx with the Monte Carlo method. The x-axis
represents the number of samples N, and the y-axis represents the estimated
value of the integral Î. We plot 1000 runs of Monte Carlo integration in grey
and the 2.5th and 97.5th percentile in blue to see how the variation in y
changes with sample size. The red line denotes a sample path. Note that
all estimation runs converge towards the correct result and that the variance
decreases as the sample size increases.

6

2.2. Variance of the Monte Carlo Estimator

In Figure 2.1, multiple runs of Monte Carlo estimation of the integral I =∫ π
0 sin(x)dx using Equation 2.1 are shown. In fact, this integral can be solved

analytically:

I =
∫ π

0
sin(x)dx = − cos(x)

∣∣∣π
0
= 2

The figure illustrates a large amount of variation for all the runs when the
sample count is low. In addition, it shows how all estimates converge to-
wards the correct result I = 2 as the sample count is increased. Moreover,
it also illustrates that when the sample count is high, newer samples appear
to have less and less effect on the final result. From closer inspections of
the Monte Carlo estimator (Equation 2.1), we see this happens because each
sample is scaled by 1/N; hence, each sample will have less of an effect on
the overall value when the sample count N is high.

Finally, it is worth mentioning that Monte Carlo integration is rather popular
nowadays due to its ability to handle general, non-continuous, high dimen-
sional integrals [Kroese et al., 2014]—it only requires that f can be evalu-
ated at the sample points. This generality and simplicity make Monte Carlo
integration ideal for computer graphics, where we often need to calculate
multi-dimensional integrals with integrands that are seldom well-behaved.

2.2 Variance of the Monte Carlo Estimator

The variance of the Monte Carlo estimator in Equation 2.1 is:

Var
[
Î
]
= Var

[
1
N

N

∑
i=1

f (xi)

p(xi)

]
=

1
N

Var
[

f (xi)

p(xi)

]
(2.3)

This has multiple implications for the estimator Î. For instance, as long as
Var[f (xi)/p(xi)] is finite, then the estimator Î will be consistent. Moreover,
Equation 2.3 shows that the variance will approach zero as N → ∞. This
condition is met if p(xi) > 0 whenever f (xi) 6= 0.

However, Equation 2.3 also shows an inherent limitation of Monte Carlo inte-
gration: The variance of the estimator Î only decreases linearly with respect
to N, and therefore the standard deviation only decreases proportionally
to
√

N. Consequently, to decrease the expected integration error by, say, a
factor of two, we would have to increase the number of samples N by a
factor of four—a relatively poor convergence rate. This slow convergence is
illustrated in Figure 2.1, where we see that the rate of variance reduction is
decreased for increasing sample counts.

2.2.1 Importance Sampling

Importance sampling is one of the most important variance reduction tools
in Monte Carlo integration, mainly due to the generality it provides. We saw

7

2. Theory

earlier from Equation 2.3 that we can decrease the variance by increasing the
sample count N. However, from closer inspection of the mentioned equation,
we notice that the variance of the Monte Carlo estimator Î also depends on
the ratio f (xi)

p(xi)
. Thus, if the variance of this ratio is decreased, then the overall

variance can also be reduced without increasing the number of samples
N. In other words, the closer the sampling density p(xi) approximate the
integrand f (xi), the lower the variance.

Importance sampling refers to the technique of choosing the sampling density
p to minimize the variance of this ratio. Ideally, we want p ∝ f , that is, with
p(x) = f (x)

I = f (x)∫
f (x)dx . This gives us a constant ratio for all xi and a variance

of:

Var
[

f (x)
p(x)

]
= Var

[
f (x)

f (x)/I

]
= Var [I] = 0 (2.4)

Unfortunately, building such a zero-variance estimator is most of the time
not practical as it would require knowledge of f in order to normalize
the distribution p. This also dramatically limits our sampling distribution
choices, as the distributions must be normalized and should be easy to gen-
erate samples from. Consequently, many algorithms rely on building useful
approximations to f .

One such practical approximation heuristic is to sample from parts of the
integrand f . In particular, if the integrand is a product function, the distri-
bution p is typically chosen to match a few of the terms, but seldom all of
them. This is because the complexity of the distribution can quickly grow in
the number of terms [Pharr et al., 2016].

Note that we still need to be careful when selecting our sampling distribu-
tions, as it is also possible to increase the estimator’s variance if we choose
p poorly. Indeed, this is what often happens in global illumination appli-
cations since the exact form of the integrand f is unknown a priori [Talbot
et al., 2005].

2.2.2 Resampled Importance Sampling

As discussed in the previous subsection, the sampling distribution p should
be normalized and easy to sample from (e.g., using rejection sampling or
inversion sampling) for the Monte Carlo estimator Î to be well-behaved. To
overcome the restriction of the sampling distribution p, Talbot et al. mod-
ify the Monte Carlo estimator [Talbot et al., 2005]. In particular, M ≥ 1
candidate samples x = {x1, . . . , xM} are instead generated from a source dis-
tribution q that may be sub-optimal (e.g., q can be unnormalized), but easy

8

2.2. Variance of the Monte Carlo Estimator

to sample from. For each candidate sample xi a weight w(xi) is generated:

w(xi) =
p̂(xi)

q(xi)
(2.5)

Where p̂(x) is the desired target PDF, for which no practical sampling algo-
rithm may exist.

Accordingly, with the generated candidates x their and corresponding weights
w(xi), we resample these candidates by drawing N � M samples y =
{y1, . . . , yN} with replacement from x, with probabilities proportional to the
proposal weights w(xi). The resampled importance sampling (RIS) estimator
with RIS weights w(xi) is defined as:

L̂N,M
ris =

1
N

N

∑
i=1

(
f (yi)

p̂(yi)

)
· 1

M

M

∑
j=1

w(xj) (2.6)

When M = 1, the samples are marginally distributed according to q. As
M → ∞, the distribution of each sample approaches p̂. To illustrate this,
Figure 2.2 shows the distribution of the RIS-generated samples for different
values of M when the candidate and target distributions, respectively, are
given as q ∼ U (0, 1.5) and p̂ = cos(θ) + sin4(6θ).

Talbot et al. give proof of the algorithm’s unbiasedness in their work [Talbot
et al., 2005]. In short, the RIS estimator is unbiased as long as M, N ≥ 1,
and the candidate density q and target density p̂ are positive wherever the
integrand f is non-zero.

Moreover, Talbot et al. show that the RIS estimator may reduce the esti-
mator variance under the conditions that: First, p̂ is a better importance
sampling density than q (i.e., p̂ mimics f better)—otherwise, there will be
no advantage to performing the resampling step; second, generating candi-
date samples is computationally more efficient than evaluating the samples.
Otherwise, we would be better off simply computing more samples, rather
than wasting time generating candidates.

Intuitively, the RIS estimator uses the generated candidate samples yi as if
they were drawn from the desired distribution p̂, and then uses the latter
factor of Equation 2.6 (i.e., the average RIS weight) to correct for the fact that
the true distribution of yi only approximates p̂.

2.2.3 Multiple Importance Sampling

Multiple importance sampling (MIS), as coined by Veach and Guibas [Veach
and Guibas, 1995], refers to the family of techniques that extends impor-
tance sampling to the case where more than one sampling technique is used.

9

2. Theory

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
M=∞
M=1

M=2

M=8

Figure 2.2: The distribution of the samples that were output from RIS for
different values of M. The samples are distributed according to the uniform
candidate density q when M = 1. As M → ∞, the sample distribution ap-
proaches the target distribution p̂. Note that the low estimates on the lower
left for M = 1, M = 2, and M = 8 are artifacts of the density estimation
method. Adapted from [Talbot et al., 2005]

When applying MIS, the samples are robustly weighted using heuristics that
are designed to reduce the variance.

Veach and Guibas noted that we often know that the integrand f can be
well-mimicked by any one of a set of K sampling distributions {p1, . . . , pK}
which we take {n1, . . . , nK} number of samples from. However, we do not
know a priori which pi that minimizes the variance the most. In that case,
Veach and Guibas propose using a multi-sample estimator F of the function
f which combines all the sampling distributions into a single density:

F =
K

∑
i=1

wi(xi)
f (xi)

pi(xi)
(2.7)

Where wi are the MIS weights of distribution i. As long as ∑i wi = 1 and
wi(xi) > 0 only when pi(xi) > 0, F will converge to the correct result. Veach
and Guibas suggest using the balance heuristic—a heuristic that provably re-
sults in a variance that is smaller than any other unbiased combination strat-

10

2.3. Ray Tracing

egy, to within a small additive term [Veach and Guibas, 1995]:

ŵi(x) =
ni pi(x)

∑k nk pk(x)
(2.8)

Which is equivalent to sampling from the mixture of the PDFs. With this
in mind, we see that MIS provides a practical procedure for making Monte
Carlo rendering more robust: Whenever there is some situation that is not
handled well by a single sampling technique, we can simply add other sam-
pling techniques that are designed better for those situations alone, and
weight the distributions according to Equation 2.8.

2.3 Ray Tracing

Ray tracing is a technique for generating images where rays are generated
from a user-defined camera and traced into a virtual scene. The image is
generated by simulating how these rays interact with objects in the scene.
Usually, ray tracing is seen as a recursive algorithm: For each ray-surface
collision, several new rays can be spawned; for instance, reflection rays
can be spawned on reflective surfaces, or refractive rays can be spawned
through transmissive materials. In contrast, methods, such as rasterization,
that project geometry onto the image plane, have problems with accurately
capturing global effects such as reflections and shadows because they are
principally designed for rendering the primary surfaces (i.e., the visible sur-
faces). Since one can interpret the ray tracing model as a light transport
model, it can be understood that ray tracing inherently captures these ef-
fects.

The first ray tracing algorithm was introduced by Arthur Appel [Appel,
1968] in 1968. His idea was to cast a ray through a pixel of an image plane
from the eye and follow it until it collided with geometry in the scene. Ac-
cordingly, the algorithm would stop when the ray hit the closest object—this
form of ray tracing was dubbed ray casting. The illumination values could
then be computed by spawning light rays from the collision point to each
light source. The final illumination for the corresponding pixel was com-
puted based on whether the light sources were occluded or not. In 1979,
Turner Whitted [Whitted, 1979] took the next step and described what we
would today recognize as traditional ray tracing. Specifically, he made the ray
casting algorithm a recursive process and, consequently, made it possible
to robustly render global effects such as reflections, refractions, and shad-
ows. In particular, at surface hits, up to three rays of different types could
be spawned: reflection rays, refraction rays, or shadow rays. Shadow rays
resembles the light rays defined by Appel and checks for a light’s occlusion
so that the contribution of light to the surface can be computed. A reflec-

11

2. Theory

tion and refraction ray represent the rays in the mirror direction and the
transmitted light direction, respectively.

2.3.1 Acceleration Structures

Naively implementing a ray tracer can result in unacceptable performances
since a linear-time intersection algorithm would have to test a ray against
every object in the scene. With modern scenes containing millions of trian-
gles and an increasing visual fidelity, this naive approach quickly becomes
infeasible. Instead, rays are often traced against acceleration structures, which
performs hierarchical subdivision of the scene and, consequently, reduces
the intersection time substantially. Particularly, the complexity of perform-
ing ray-geometry intersections becomes logarithmic. The core idea of such
acceleration structures is to cluster nearby geometries into larger entities
and trace against these larger entities instead; if a ray does not intersect
with the cluster, all the geometry contained in the cluster can be skipped
as such. Common acceleration structures include k-d trees and bounding
volume hierarchies (BVH) [Meister et al., 2021].

The speed-ups provided by such acceleration structures have proved to be
so influential that hardware vendors have started implementing hardware
support for traversing these structures. For instance, NVIDIA recently intro-
duced the RT cores in their NVIDIA Turing graphics processing unit (GPU)
architecture, which accelerates BVH ray traversal and triangle intersections
[NVIDIA, 2018]. In this thesis, we assume that a ray is traced against such a
hardware-accelerated BVH when we mention that a ray is traced through a
virtual scene.

2.4 Radiometry

In order to generate an image of a virtual scene, the amount of reflected
light towards the viewer needs to be computed. Radiometry provides the
theoretical basis for how this works and is the science and technology of
the measurement of radiation from all wavelengths within the optical spec-
trum [Heath and Munson, 1996]. That is, it deals with the measurement of
light propagation and reflection. Concretely, radiometry describes light at
the geometrical optics level, where macroscopic properties of light suffice
to describe how light interacts with objects much larger than its wavelength
[Pharr et al., 2016]. Due to this abstraction, effects such as polarization,
diffraction, and interference cannot be captured by radiometry without ex-
tending the framework. The rendering algorithms presented later in this
chapter are based on the radiometric theory presented here.

Textbooks on physically based rendering will typically include exhaustive
theory on radiometry. We base this section mainly on [Pharr et al., 2016]

12

2.4. Radiometry

and cover only the theory required to understand this thesis. Nonetheless,
the reader is highly encouraged to consult the mentioned work, as well as
other work, for more information.

2.4.1 Radiant Flux

One of the fundamental units of radiometry is radiant flux—also known as
radiant power—and is denoted by Φ. It captures the total amount of energy
passing through a surface or region of space per unit time and is expressed
in watts (i.e., joules/second). Formally, radiant flux can be computed by
taking the derivative of the radiant energy Q (received, emitted, or reflected)
with respect to the time t:

Φ = lim
∆→0

∆Q
∆t

=
dQ
dt

(2.9)

2.4.2 Irradiance and Radiant Exitance

Given a surface with finite area A, the average density of radiant power Φ
over the area is given by:

E =
Φ
A

(2.10)

Thus, the unit is given in watts/m2. The quantity of E represents either the
incident or exitant power on a surface per unit surface area. As such, if we
look at the area density of flux arriving at a surface the quantity is called
irradiance (E). Conversely, if we look at the area density of flux leaving a
surface, the quantity is referred to as radiant exitance (M).

2.4.3 Radiance

The most important radiometric quantity in this thesis, and perhaps in gen-
eral, is radiance, L. While irradiance and radiant exitance do not distinguish
the directional distribution of radiant power, radiance takes this last step: It
measures the irradiance or radiant exitance with respect to solid angles. To em-
phasize, this makes radiance the solid angle density of irradiance or radiant
exitance. It is defined by:

L =
dE

dω cos θ
=

dΦ
dω cos θdA

(2.11)

The quantities involved in this formula are visualized in Figure 2.3: dΦ is the
differential incoming or outgoing radiant flux. dω is the differential solid an-
gle which, in the figure, is represented by the red cone. dA is the differential
area of the surface, given by the flat rectangle in blue. The projected area is
computed by multiplying dA with cos θ to consider Lambert’s law, that is,

13

2. Theory

dA cos θ

dA

dω
θ

Figure 2.3: Radiance is the solid angle density of irradiance. That is, the
energy along a ray. Figure adapted from [Pharr et al., 2016].

the fact that dA becomes ”stretched out” over a larger surface area when dω
comes from grazing angles (thus, the tilted rectangle in blue).

Put differently, from the second equality in Equation 2.11; radiance can
equivalently be understood as the radiant flux per unit projected area per
unit solid angle. This makes the unit of the measure watts/(m2·sr). Radi-
ance is a natural quantity to compute with ray tracing since the radiance
remains constant as it propagates along rays in vacuum. Moreover, it is a
logical quantity to use because it captures how surfaces appear with respect
to the viewpoint of the observer.

2.5 Lighting Interactions

Light behaves differently depending on the materials it interacts with. For
instance, metals and glossy surfaces have mirror-like appearances, while
matte surfaces, like painted walls, appear about the same from any viewing
angle.

The bidirectional reflectance distribution function (BRDF) gives a formalism for
describing reflection from a surface. It describes the reflectance of a sur-
face for a given combination of incoming and outgoing light direction. It
is defined as the ratio between the reflected differential radiance in exitant
direction ωo, and the differential irradiance incident through a solid angle
dωi (i.e., the direction ωi is considered as a differential cone of directions) at
x:

fr(x, ωi, ωo) =
dLo(x, ωo)

dE(x, ωi)
=

dLo(x, ωo)

Li(x, ωi) cos θidωi
(2.12)

Where the last equality comes from the fact that the first equality in Equa-
tion 2.11 can be refactored:

L =
dE

dω cos θ
=⇒ dE = Ldω cos θ

This means, in other words, that the BRDF captures how much light is re-
flected in a given direction when a certain amount of light is incident from
another direction, depending on the properties of the surface.

14

2.5. Lighting Interactions

For a BRDF to be considered physically based, it should have these two quali-
ties [Pharr et al., 2016]:

1. The Helmholtz Reciprocity property: The value of the BRDF is un-
changed if we swap the incident and exitant directions. That is,

fr(x, ωi, ωo) = fr(x, ωo, ωi)

2. Conservation of energy: The surface cannot reflect more energy than
it recieves,

∀x, ωo

∫
Ω

fr(x, ω, ωo) cos θdω ≤ 1

Finally, it is worth noting that we have, up to now, assumed that light which
enters at a point p leaves from the same point. However, in the general case,
the light which enters at a point p in some direction ωi might instead leave
at another point q in a new direction ωo, creating a ”subsurface scattering”
effect. Reflectance functions that take this into considerations are called
bidirectional surface scattering reflectance distribution functions (BSSRDF), and
compute the ratio between the incident and exitant radiance between (p, ωi)
and (q, ωo). Nevertheless, in this work, we disregard this phenomenon to
simplify our BRDF implementations, and we, consequently, set the exit point
equal to the entry point. The following subsections present examples of
common material types.

ωi

(a) Perfectly diffuse

n
ωi

(b) Perfectly specular

Figure 2.4: Exitant directions of perfectly diffuse (a) and perfectly specular
(b) surfaces.

2.5.1 Diffuse Surfaces

One of the simplest material types is the perfectly diffuse BRDF and is
shown in Figure 2.4a. Such a material type is often called a Lambertian
material. It assumes that the incident light is scattered in all possible direc-
tions uniformly within the hemisphere oriented about the surface normal.
Diffuse materials are not view-dependent as such. While not being physi-
cally plausible, it is still, nonetheless, a reasonable approximation to many

15

2. Theory

real-world surfaces such as matte paint [Pharr et al., 2016] and is very fast
to evaluate as well. The BRDF for a diffuse material is given by,

fr(x, ωi, ωo) =
ρ

π
(2.13)

where ρ is defined as the reflectivity of the material, which specifies how
much of the incident light is reflected in the diffuse lobe. It is typically
calculated from a user-defined ”base color” parameter [Cook and Torrance,
1982].

2.5.2 Specular Surfaces

A perfectly specular surface will reflect or refract light in one direction only,
as shown in Figure 2.4b. A mirror is an example of such a surface. We
can compute the reflected direction R for incident direction ωi and surface
normal n from the law of reflection:

R = 2(n ·ωi)n−ωi (2.14)

How much light reflects away (or scatters into) from the material, given
an angle of incidence, is described by the Fresnel equations. Moreover, for
materials that can both reflect and refract light—such as glass—the direction
of refraction can be found using Snell’s law.

2.5.3 Microfacet Models

Real-world materials are rarely either perfectly diffuse or perfectly specu-
lar; instead, they are often a mix of those two. This occurrence can be ex-
plained by the assumption that rough surfaces are composed of many tiny
facets—each of which acts as a perfect specular reflector. These microfacets
are assumed to have normals that are distributed about the normal of the
actual surface. Particularly, the facet distributions are usually described, sta-
tistically, from the degree to which the microfacet normals differ from the
normal of the actual surface. In practice, the degree of variance to these
distributions is determined by a roughness scalar parameter of the surface,
where values close to zero correspond to near-perfect specular reflection,
and values close to one correspond to diffuse reflections.

More formally, the microfacet model postulates that if a surface reflection can
occur between an incident direction ωi and exitant direction ωo, then there
must exist some portion of the surface, or microfacet, with a normal aligned
halfway between ωi and ωo [Burley, 2012]. This ”half-vector”, sometimes
referred to as the microsurface normal, is defined as ωh = ωi+ωo

||ωi+ωo || . A gen-
eral form of the BRDF for a microfacet model is the Torrance-Sparrow BRDF
(also known as the GGX BRDF):

fr(x, ωi, ωo) =
D(ωh)G(ωo, ωi)F(ωo)

4 cos θo cos θi
(2.15)

16

2.6. Global Illumination

Where D is the microfacet distribution function, which tells us the fraction of
microfacets that are oriented about ωh so that incident light from direction
ωi will be reflected in direction ωo. F is the Fresnel reflection function which
describes how much light is reflected off the surface for incident direction
ωi. Finally, G is the geometric attenuation and masking-shadowing function
that accounts for mutual shadowing and masking of microfacets.

2.6 Global Illumination

2.6.1 The Rendering Equation

Ω

x

n
ωiωo

Figure 2.5: A visualization of the quantities involved in the rendering equa-
tion. The reflected radiance Lr, from x in direction ωo (red), is the integral
of the incoming radiance Li from all incoming directions ωi (blue) over the
hemisphere Ω oriented around the surface normal n (green). For each direc-
tion, radiance is converted to irradiance and scaled by the BRDF fr. In this
figure, one sample incident direction ωi is shown.

Light transport is described by the rendering equation and was first introduced
by Jim Kajiya in 1986 [Kajiya, 1986]:

Lo(x, ωo) = Le(x, ωo) + Lr(x, ωo)

= Le(x, ωo) +
∫

Ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n)d ωi

(2.16)

In practical terms, the outgoing radiance Lo from the point x in direction
ωo can be described as the sum of two terms: The emitted radiance Le and
the reflected radiance Lr. The former describes the self-emission in the direc-
tion ωo on the surface at x. It allows us to model light sources in the scene,
including natural emitters such as the sun or artificial emitters such as flash-
lights or lamps. The latter term, that is, the reflected radiance Lr, describes
the amount of light that is received by x from other surfaces and reradiated
towards direction ωo. It is computed recursively with the following integral:

Lr(x, ωo) =
∫

Ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n)d ωi (2.17)

The quantities involved in this integral are shown in Figure 2.5: Lr is com-
puted as an integral over all incoming hemispherical directions ωi at x.

17

2. Theory

Moreover, the three terms of interest are as follows. Li describes the amount
of light that arrives at x from incoming direction ωi; fr is the BRDF of the sur-
face, which describes how much of the received light is reflected towards the
outgoing direction ωo; and (ωi · n) is a foreshortening term that scales how
much of the incoming radiance that is received by a surface with normal n.

2.6.2 Path Tracing

Path tracing was introduced by Kajiya in 1986 [Kajiya, 1986] and attempts to
simulate light transport by estimating the recursive integral for the reflected
radiance Lr in Equation 2.17 by using Monte Carlo integration (section 2.1).

The integral in the rendering equation can be estimated by evaluating the
integrand for one direction (sample) ωi oriented around the surface normal
n at shading point x, which is sampled at random according to a PDF p(ω)
[Veach, 1998]. Consequently, the Monte Carlo estimator for Lr becomes:

L̂r(x, ωo) =
1
N

N

∑
i=1

fr(x, ωi, ωo)Li(x, ωi)(ωi · n)
p(ωi)

(2.18)

Accordingly, the radiance estimation Li(x, ωi) in Equation 2.17 is computed
by recursively evaluating the equation above. Indeed, the recursive estima-
tions form paths that are traced through the scene until light sources are
encountered. In practice, ray tracing can be used to simulate the light trans-
port of samples that form these traced paths [Whitted, 1979]. That is, the
rays will represent light samples that are bounced around the scene at var-
ious surface points x in different directions ω, depending on the surface
properties of the materials the samples are bounced on.

A simple choice of the PDF p(ω) could be based on the uniform area of a
hemisphere p(ω) = 1

2π . However, this would result in inefficient sample us-
age near the horizon where (ω · n) ≈ 0. Instead, a cosine-weighted distribution
p(ω) = cos θ

π = ω·n
π is usually used, which directly cancels the foreshorten-

ing term in Equation 2.18 and, consequently, lowers the estimator variance
[Pharr et al., 2016].

In consequence, we have an algorithm that yields unbiased estimates of
the rendering equation (subsection 2.6.1) that will converge to the correct
result after a sufficient amount of time and samples. Unfortunately, for
practical sample counts, the algorithm results in noisy images due to the
variance in the estimator. The following section presents a method that uses
importance sampling (subsection 2.2.1) to reduce the variance of the path
tracing estimator drastically.

18

2.6. Global Illumination

2.6.3 Next Event Estimation

Naively tracing paths based on local importance sampling of the BRDF ac-
counts for all factors contributing to the sampling density, except the emitted
radiance Le. Neglecting the importance sampling of this term can cause ex-
cessive variance: We expect Le to be zero for most surfaces in the scene and
be very large for a small subset of the light sources.

(a) BRDF sampling (b) Next-event estimation

Figure 2.6: Different path sampling strategies: BRDF sampling (a) samples
directions based on the lobes of the BRDF and can lead to high variance
because many of the reflected directions are not directed towards the light
sources. In contrast, next-event estimation (b), also called direct light sam-
pling, additionally samples directions towards the light sources directly (in
dashed lines) and can significantly reduce the variance.

Naive path tracing relies on BRDF sampling (i.e., sampling according to fr)
to find emissive surfaces—which is inadequate in scenes with more com-
plex placements of light sources. To mitigate this issue, we can employ a
technique called next event estimation (NEE). In NEE, we sample for each
shading point x the light source directly by connecting the path from x to
a sampled light position y, as shown in Figure 2.6, where BRDF sampling
is compared to NEE. This technique can drastically reduce the variance in
a Monte Carlo renderer [Pharr et al., 2016], and an example demonstrat-
ing the dramatic effect of applying NEE is shown in Figure 2.7—notice the
dramatic decrease in noise. Note that sampling direct lighting using a sep-
arate ray towards the light source is a form of importance sampling: We
effectively ignore many directions on the hemisphere and instead focus on
directions where the light sources are visible. Accordingly, we also need a

19

2. Theory

PDF to sample from in order to weigh the samples correctly. In particular,
we want a PDF that is zero for most hemispherical directions and constant
over the area of the light source projected on the hemisphere. This is the
case if the PDF is p(ωi) = 1

SA(ωi)
, where SA is the area of the light source

projected on the hemisphere—in other words, the solid angle:

SA(ωi) =
Alight(nlight ·ωi)

dist2

Where Alight is the area of the light, nlight is the surface normal of the light,
and dist is the distance between the current point and the light.

Figure 2.7: NEE (left) vs. without NEE (right) in a 16 spp path traced render.
Notice how NEE dramatically reduces the variance and noise in the image.

With this, we have two different techniques to sample lights: By directly
sampling the light using NEE, and by ”indirectly” sampling lights by sam-
pling according to the BRDF of the surface at x. We can, therefore, also
apply multiple importance sampling (subsection 2.2.3) to the path tracer in
order to further reduce the variance. As such, we obtain better estimates
by combining the results from NEE and BRDF sampling. In practice, this
is done by inserting the computed probability densities of both techniques
into Equation 2.8 to compute the MIS weights directly. The weights are,
accordingly, used to combine the results of the techniques robustly.

20

2.7. Image Space Filtering for Monte Carlo Noise

(a) 1 spp (b) 4096 spp

Figure 2.8: 1 spp (a) and 4096 spp (b) path traced renders of the Cornell

Box scene, which took around 3ms and over 3s to render, respectively.

2.7 Image Space Filtering for Monte Carlo Noise

Despite the different variance reduction techniques presented so far in this
chapter, it can still take a prohibitively large amount of samples to generate
noise-free images with a path tracer. This is exemplified in Figure 2.8, where
a 1 sample per pixel (spp) image is compared against a 4096 spp image—
both rendered with a path tracer. While the former is rather noisy, it only
took 3ms to render. In contrast, the latter is almost noise-free but took over
3 seconds to render. As a result, this still makes path tracing unsuitable
for real-time applications—and even in some contexts for offline rendering
since convergence can take prohibitive amounts of time. With more complex
scenes and more complicated effects, this only becomes a bigger problem.

The purpose of filtering in Monte Carlo rendering is to reduce the variance
by combining the estimates of multiple Monte Carlo estimators with the
assumption that they converge to similar values. This can significantly help
to reduce the amount of visually disturbing noise so that noise-free images
resembling the converged result can be obtained quickly. A popular and
efficient way of achieving this is to work in the screen space (equivalently
referred to as image space in this thesis) and do a weighted blending of
nearby pixels by exploiting the spatial coherence in images:

ĉp =
∑q∈Np

cqw(p, q)

∑q∈Np
w(p, q)

(2.19)

Where the filtered color ĉp for pixel p is a weighted sum of the noisy colors

21

2. Theory

cq for each pixel q in a window Np, which is centered on p. w(p, q) denotes
the weight between p and q.

Nevertheless, the assumption that neighboring pixels converge to the same
value is usually not satisfied. Consequently, combining neighboring pixels
can result in additional bias. For instance, if we were to combine samples
of pixels on opposite sides of an edge, a large amount of bias would be
introduced: As a result, the edge would be attenuated and smeared. In this
regard, the goal of the filtering algorithms is to reduce variance while also
keeping the introduced bias small. Visible high-frequency noise has to be
filtered, while low frequency and sharp features present in the converged
render should be retained.

Finally, note that while filtering in image space is currently a popular and
practical method, other alternatives exist. For example, it is also possible
to perform filtering in path space (equivalently referred to as world space
in this thesis) instead of in image space [Hachisuka et al., 2008]. However,
filtering in image space remains an attractive choice because of its low com-
putational costs since the complexity of the algorithms is independent of the
scene complexity and only depends on the number of pixels. Furthermore,
image space filters are often relatively easy to integrate into existing render-
ers due to them generally working as post-process filters, independent of the
rendering pipeline architecture. In fact, image space filters often only need
the final image and possibly other auxiliary buffers (such as depth, normal,
and color data) as inputs to perform the filtering.

22

CHAPTER 3
Related Work

This section presents related work to this thesis. The focus will mainly be
placed on earlier work on denoising and many-light sampling in the context
of Monte Carlo rendering.

3.1 Denoising

Figure 3.1: 1 spp path-traced render of a simple scene consisting of a diffuse
sphere, a diffuse plane, and a spherical light source.

As we have seen so far, noise is an inevitable consequence in Monte Carlo
rendering due to the inherent variance in the Monte Carlo estimator Î. Al-
though variance reduction techniques such as importance sampling, MIS,

23

3. Related Work

and RIS can help, we will likely end up with visibly perceptible noise for
lower sampling rates. This is exemplified in the 1 spp render in Figure 3.1,
where there is visible noise even for such a simple scene. Moreover, in the
context of real-time rendering, the number of samples per pixel is bound
to be low [Keller et al., 2019], which likely means that we have to continue
handling noisy renders for a while. As a consequence, denoising—also inter-
changeably referred to as filtering in this thesis—is often an integral part of
any rendering system based on Monte Carlo rendering.

An essential part of many denoising algorithms, which enables them to filter
even at lower sampling rates, is that they increase the effective sampling
rate by appropriately reusing the relevant sample data (e.g., pixel and path
data). Concretely, these algorithms commonly use the insight that spatially
and temporally adjacent samples are, in general, related; these samples can
thus be reused in order to improve the effective sample rate. Section 2.7
introduced the concept of image space filtering in the context of Monte Carlo
rendering, and the recent survey by Zwicker et al. covers much of the work
that has been done in this field [Zwicker et al., 2015]. Briefly, Zwicker et al.
distinguishes between a priori and a posteriori methods. In general, a priori
methods attempt to form reconstruction filters from analysis of the light
transport equations, while a posteriori methods instead attempt to analyze
the samples generated by the renderer.

A priori methods often require reconstructing high-dimensional samples
and are, consequently, seldom applied in the context of real-time rendering
[Hachisuka et al., 2008]. Thus, most of the research done in the past decades
has been on a posteriori methods in the form of post-process filtering. In prac-
tice, a posteriori approaches often rely on image space filtering because of
its simplicity and efficiency [Zwicker et al., 2015]. Notably, recent research
on path space filtering has also shown promising results. The following two
subsections (subsection 3.1.1 and subsection 3.1.2) will, respectively, present
various image space and path space filter methods.

Interestingly, more recent work [Bitterli et al., 2020, Lin and Yuksel, 2020]
has indicated that performing the filtering at earlier stages in the rendering
pipeline, as opposed to at the end of the pipeline (as a post-process), can pro-
vide better results—even for interactive and real-time use-cases. A weakness
of image space filters is that they often solely act on reconstructed pixels: Sig-
nificant data could be lost from combining noisy samples with little infor-
mation, and, as such, the existing data might be further corrupted by other
outliers. On the contrary, there is much critical information that is only avail-
able earlier in the rendering pipeline. Accordingly, this information could
potentially be used for further guiding the filtering algorithms with higher
quality data. The information could, for instance, be BRDF values, sampling
probabilities, directions, or other kinds of higher-order bounce information.

24

3.1. Denoising

In practice, recent work has been focusing on filtering light sampling probabil-
ities to guide the renderer on which lights to perform lighting calculations
with. Algorithms that filter these light sampling probabilities are often re-
ferred to as many-light sampling algorithms and the current state of these are
presented in section 3.2.

3.1.1 Screen Space Denoising

Performing the denoising in screen space is an attractive choice when design-
ing denoising algorithms. Section 2.7 presented the fundamentals of screen
space filtering, explaining that screen space filtering is often preferred due
to its low computational costs and ease of integrating into existing rendering
systems. The low computational costs mainly come from the fact that the
cost of the filtering computation is decoupled from the geometric complexity
in the virtual scenes [Mara et al., 2014].

(a) (b)

(c)

Figure 3.2: An example of a G-buffer consisting of: (a) Surface albedos,
(b) surface normals, and (c) world space positions. Each buffer consists
of three-dimensional values, which are visualized directly as RGB triplets.
(The Classroom is by Christophe Seux under the CC0 license)

Screen space denoising methods can usually assume access to excess infor-
mation from the rendering pipeline, as it is applied at the end of the pipeline
as a post-process. This information may include world positions, depth, sur-
face normals, albedo, material properties, and more. Moreover, the informa-

25

3. Related Work

tion is usually output from a renderer as textures of the exact dimensions as
the actual output image from the renderer. Saito and Takahashi introduced
the concept of saving buffer data inferred from the geometry as G-Buffers
[Saito and Takahashi, 1990]. Figure 3.2 shows an example of a G-buffer
consisting of buffers such as normals, world space positions, and albedos,
which are standard to be output from any renderer. As we will see later in
this section, properly utilizing the information provided by the G-buffer is
paramount for performing high-quality image filtering.

Offline Denoising

Offline denoisers are common for movie production. Since there are typically
little to no strict time constraints for the renderers in these applications, a
higher sample count can be used [Zwicker et al., 2015]. Thus, the amount of
noise in the rendered images is usually close to negligible, which simplifies
the job of the denoisers. Even with the larger computational budgets, de-
noising remains crucial due to the denoisers’ ability to short-circuit the slow
convergence of Monte Carlo integration. Furthermore, it is also possible
in offline rendering for the filtering methods to guide the sample genera-
tion process in Monte Carlo renderers so that more samples are generated
at problematic areas in screen space—also known as adaptive filtering [Li
et al., 2012].

Due to their simplicity of integrating with existing renderers and effective-
ness, general edge-preserving image filters like guided image filtering [He
et al., 2013] or non-local means filtering [Buades et al., 2005], that are guided
with G-buffer data, have been applied in these use-cases. Alternatively, in-
stead of handpicking the weights of the filters using heuristics, other works
have attempted to fit the G-buffer data to the noisy output images by fitting
an online regression-based model [Bitterli et al., 2016, Moon et al., 2014].
Central to these methods is the idea of extracting a weighting kernel and
computing the denoised result as a linear combination of kernel-weighted
noisy pixels. Finally, another more recent and promising approach that has
been shown to outperform regression-based denoisers under specific circum-
stances has been to use neural networks [Kalantari et al., 2015, Vogels et al.,
2018, Chaitanya et al., 2017]. The neural networks are first trained on a com-
plete set of frames from a feature-length movie [Bako et al., 2017] and are
then used to denoise the noisy frames as needed. This approach has proven
effective in offline rendering due to the availability of a large amount of
training data and computational resources for the neural networks to be ad-
equately trained. Consequently, employing this type of denoiser can result
in more robust denoising results when the (trained) neural networks are
used for inference [Dahlberg et al., 2019].

26

3.1. Denoising

Real-time Denoising

Despite the advancements of hardware-accelerated ray tracing and more
efficient sampling algorithms, it has been suggested that it is very likely that
a limit of 1-4 spp will persist for a long time [Schied et al., 2017, Koskela et al.,
2019]. As a result, we can only afford a handful of samples per pixel under
the constraints of real-time rendering. Furthermore, with an ever-increasing
demand in the geometric level of detail and display resolution for real-time
applications, it seems unlikely that any immediate increase in computational
power will benefit the sample counts. Because of the resulting degree of
sparsity for the samples, the applied denoising algorithms are often said to
reconstruct the image rather than filter the noise from it.

Real-time denoisers, such as the ones in [Schied et al., 2017, Mara et al.,
2017, Koskela et al., 2019], differ from offline denoisers presented earlier
in that they assume that the G-buffer output from the renderer is noise-free.
This allows the algorithms to safely use the G-buffer data as a ”guide” to,
for instance, avoid blurring samples across geometry edges or help reduce
smearing the details in the textures. The screen-space denoisers in [Mara
et al., 2017, Schied et al., 2017] do this by guiding a cross-bilateral filter
[Tomasi and Manduchi, 1998] with the G-buffer. Moreover, Schied et al.
takes it a step further and additionally steers the filter with a spatiotempo-
ral estimate of the luminance variance [Schied et al., 2017]. Consequently,
their algorithm can filter more aggressively in areas of high variance (e.g.,
near penumbras) and less in areas with little variance (e.g., in areas of hard
shadows). Algorithms such as Blockwise Multi-Order Feature Regression
[Koskela et al., 2019] takes an additional step and uses the feature buffers as
covariates to fit a regression model that predicts the denoised color values.

In addition to filtering the noisy data spatially, a key element of these real-
time denoisers is that they often reproject and temporally accumulate samples
from previous frames. This is critical for reducing the temporal noise that
varies between consecutive frames; thus, improving the temporal coherence
between the frames. A 2D motion vector associated with each color sample Ci
for frame i is required to perform the reprojection. Specifically, the motion
vectors describe the geometric motion between the current and prior frame
and allow the algorithms to project the color sample Ci to its screen space
location in the prior frame. By backprojecting Ci to access Ci−1 from a color
history buffer, output by the filter in the prior frame, the filtering algorithms
can continuously accumulate color samples over multiple frames by blend-
ing between consecutive frames. The temporally blended color sample C′i is
generally computed with an exponential moving average:

C′i = αCi + (1− α)Ci−1 (3.1)

Where α is a blending parameter, often fixed to a value such as α = 0.2. How-

27

3. Related Work

ever, using a fixed α can result in artifacts such as ghosting and flickering
on, for example, disocclusions and fast camera movement. Consequently,
it is often proposed [Schied et al., 2017, Koskela et al., 2019] to implement
the blending similarly to how it is done in the temporal anti-aliasing (TAA)
algorithm [Karis, 2014], with the exception that there is usually no clamping
of the temporal neighbors performed, as it is typically done in TAA.

3.1.2 Path Space Filtering

Due to screen space filters being limited to the information only visible infor-
mation on the screen and the assumption of a noise-free G-buffer, stochastic
primary ray effects such as depth of field, motion blur, and transparency
becomes incompatible [Schied et al., 2017]. Moreover, visible artifacts in the
form of overblurring and smearing can occur during disocclusions.

Many of the aforementioned limitations can be addressed by filtering in
world or path space instead. Hachisuka et al. store samples in a multidimen-
sional path space, which may include effects such as motion blur, depth of
field, and soft shadows [Hachisuka et al., 2008]. Hachisuka et al. first esti-
mate the local contrast incurred by an initial set of samples and adaptively
distribute more samples in the multidimensional space where the contrast
is the highest. In a second pass, they reconstruct the image by integrating
the multidimensional function along all but the image dimensions. The re-
construction is performed by determining the extent of each sample in the
multidimensional space using an anisotropic nearest neighbor filter. One big
drawback, which limits this method from real-time use-cases, is the fact that
a complex high-dimensional data structure has to be maintained for place-
ment and spatial queries of the multidimensional samples. In particular, the
algorithm quickly becomes computationally infeasible in higher dimensions
due to its dependence on k-d trees, making it challenging to simultaneously
render distributed effects such as motion blur, depth of field, and soft shad-
ows.

Recently, parallel path space filtering has gained more traction in real-time use-
cases through the works of [Binder et al., 2021, Pantaleoni, 2020]. Instead
of maintaining complex tree-like data structures, which necessarily do not
map well to GPUs, hash tables are used for storing and querying the multi-
dimensional samples. By constructing hash keys through discretization of,
say, world space positions, surface normals, and other relevant surface prop-
erties, one can efficiently store, query, and evict spatial samples in the hash
table. Binder et al. use this data structure by efficiently looking up, stor-
ing, and computing the average light contributions between similar vertex
descriptors in parallel. Instead of filtering per vertex, filtering is incurred
per discretized cell (i.e., voxel). Note that querying hash tables, assuming
it is sufficiently sized, often requires only a single memory access, resulting

28

3.1. Denoising

in a constant complexity most of the time. Consequently, the costly neigh-
borhood searches can be replaced by averaging contributions directly at the
quantized path space descriptors, which is essential for the algorithm pro-
posed by Binder et al. to work in real-time framerates.

(a) Noisy input (b) Naive average of neighbors

(c) Quantized filtering (d) Jittered quantized filtering

Figure 3.3: A 2D Example showing how path space filtering works: Given a
noisy input (a), a naive filtering algorithm (b) can result in visible artifacts.
Instead, Binder et al. propose to perform quantized filtering (c) by filtering
in each cell. Moreover, by jittering before accumulation and look-ups (d),
the quantization block artifacts can be effectively resolved in noise. Adapted
from [Binder et al., 2021]

Finally, for each selected vertex, its associated averages (stored in the hash
table) are used in the corresponding radiance calculations and are accumu-
lated in their respective pixel. In order to mitigate the various discretization
artifacts that can occur (due to discontinuities of the quantization), Binder et
al. propose to jitter the components of the hash keys. Specifically, Binder et
al. suggest spatially jittering the world space positions on the tangent plane
of the surface normals. Accordingly, the quantization artifacts are traded for
noise that is more amenable to the eye and simpler to remove by a secondary
filter such as the ones presented in subsection 3.1.1.

A two-dimensional example demonstrating the key ideas of path space fil-
tering is shown in Figure 3.3. Notice how the final result still has some noise
in it; however, the noise is far more pleasable to the eye than the residual

29

3. Related Work

noise in Figure 3.3c and 3.3b. Moreover, if required, this noise can easily be
filtered by one of the presented screen space filters.

The use of hash tables and discretized vertex descriptors to perform filtering
is explored further in this thesis. Subsequently, a presentation of this data
structure is given in greater detail in section 4.2.

3.2 Many-Light Sampling

Handling many lights in scenes has been a challenge in real-time rendering
due to the complexities of accumulating illumination from all light sources
for all pixels on the screen. Consequently, most game engines handle scenes
with many lights using a mixture of baking (i.e., precomputation of the
radiance values for each surface area unit) and tile-based deferred rendering
[Olsson and Assarsson, 2011, Olsson et al., 2012] to determine which pixels
should be illuminated by which light sources. Furthermore, the current
solutions are still limited to use a handful of carefully selected dynamic
and shadow-casting lights, while the rest of the lights have to be static. We
would ideally like to select light samples with a probability in proportion
to each light’s contribution. However, the contributions vary spatially and
depend on the local surface properties and visibility of the light sources. It
is therefore challenging to find a global PDF that works well everywhere.

Methods such as the Light BVH [Moreau et al., 2019] attempt to lift these
limitations. The idea is to use a hierarchical acceleration structure, such as
BVHs and k-d trees—which are built from the scene lights—and use them to
guide the sampling process hierarchically. The nodes in these trees represent
clusters of lights so that when one traverses the tree from top to bottom,
one can at each level estimate how much each cluster contributes. This
means that lights are chosen approximately proportional to their expected
contributions without explicitly recomputing storing the light PDFs at each
shading point.

3.2.1 Lightcuts

The main limitation of algorithms that maintain light hierarchies, such as
Light BVH, is that their computational cost limits the number of light sam-
ples usable at real-time frame rates, resulting in noisy lighting estimations.
Because the current state of real-time renderers are restrained to tracing be-
tween 1-4 rays per pixel [Koskela et al., 2019], the cost of constructing and
maintaining these hierarchies is higher relative to the time spent rendering.

Work by Lin and Yuksel instead uses a lower quality acceleration structure
to lower the cost of maintaining and constructing the hierarchy [Lin and
Yuksel, 2020]. Though this may affect the quality of the tree and the light

30

3.2. Many-Light Sampling

sample distribution, this reduction in sample quality may be exchanged by
generating more light samples. In other words, the time saved from tree
construction and sample selection is used for more light samples, resulting
in better radiance estimations.

To be specific, the authors construct a balanced binary tree in their work
(i.e., a tree where all leaf nodes appear at the bottom-most level of the tree).
Because of this, there is no need for storing child node pointers since the
child node indices can be computed directly from the parent node index.
Accordingly, through parallel construction of the tree (in a way that exploits
the GPU capabilities), the tree is constructed fast enough to be rebuilt every
frame.

Following the light tree construction, a cut through the tree is selected. A
cut through a tree is defined as a set of nodes (i.e., a cluster of nodes) such
that every path from the root of the tree to a leaf contains exactly one node
from the cut [Walter et al., 2005]. Lin and Yuksel select the lightcuts prob-
abilistically using the stochastic lightcuts method [Yuksel, 2019]. The nodes
for the lightcuts are sampled based on probabilities generated from weights
that are approximately proportional to the expected illumination of the se-
lected nodes in the lightcut. This stochastic sampling, consequently, allows
for unbiased sampling of the lights.

Finally, a critical factor of Lin and Yuksel’s work, which enables their algo-
rithm to give decent results in real-time contexts, is the introduction of cut
haring. Similar to the key findings in denoising methods (subsection 3.1.1),
the authors observe that neighboring pixels often share the same lightcuts.
Based on that observation, they accelerate the cut selection by performing it
for a group of pixels rather than independently for each pixel. As such, the
cut sharing accelerates the light sampling with a smaller additional memory
footprint for storing the cut.

3.2.2 Reservoir-Based Spatiotemporal Importance Resampling

Although light BVHs and lightcuts allow for importance sampling lights in
sub-linear time, the overhead of traversing the tree structures at low sample
counts may become too great. Consequently, we cannot afford photorealistic
images at real-time rates. Perhaps more importantly, the current state of
these algorithms (based on light hierarchies) does not account for the BRDF
and the visibility of the sampled lights. Consequently, these methods may
lead to additional estimator variance since they only sample parts of the
product in the rendering equation. Finally, another drawback is that these
methods require implementing and maintaining complex data structures,
which is challenging to do in real-time with fully dynamic environments.

Concurrent work by Bitterli et al. [Bitterli et al., 2020] addresses the afore-

31

3. Related Work

mentioned limitations by introducing an algorithm that can sample lights by
repeatedly resampling a set of candidate samples. In similarity to real-time
lightcuts by Lin and Yuksel [Lin and Yuksel, 2020], Bitterli et al. also accel-
erate their algorithm through further spatiotemporal resampling to leverage
information from relevant adjacent samples. The authors derive an unbiased
Monte Carlo estimator that achieves equal-error 6×-60×faster than state-of-
the-art methods and a biased estimator that reduces noise further and is
35×-65×faster, at the cost of some energy loss. This thesis will focus on the
biased version of the method since it is simpler to implement and more
relevant for real-time contexts due to its superior execution times over the
unbiased version.

The key idea of the algorithm is to, for each pixel, generate many cheaper
light samples that are re-weighted using RIS (explained in subsection 2.2.2)
in order to convert them into the desired number of higher quality samples.
These high-quality samples are, after that, used in the corresponding light-
ing calculations. Moreover, to enable a high-performance GPU implemen-
tation, a stochastic and lightweight data structure in the form of a reservoir
[Chao, 1982, Vitter, 1985] is employed. In particular, the reservoir allows
RIS to omit storing all the generated candidate samples. Instead, the mech-
anism for storing these samples in the reservoir is stochastically driven by
an unfair coin toss based on the RIS weights (given in Equation 2.5) of the
generated samples. Finally, with little additional cost, the quality of the sam-
ples is further enhanced through spatiotemporal resampling, which increases
the effective sample count for each pixel. Ultimately, Bitterli et al. presented
a simple algorithm that requires no complex data structures, requires a fixed
number of computations per frame, and can sample the full product of the
rendering equation approximately.

Since this algorithm—coined ReSTIR by the authors—is core to this thesis,
an in-depth explanation of the algorithm will be given in section 4.1.

32

CHAPTER 4
Algorithm

This chapter aims to present our proposed algorithm, which addresses some
of the limitations of ReSTIR. In short, the algorithm proposed in this work
uses the GPU hash tables data structure found in the path space filtering
algorithm [Binder et al., 2021] to facilitate for sampling lights in world space
using ReSTIR [Bitterli et al., 2020]. Accordingly, section 4.1 and section 4.2
will detail how the ReSTIR algorithm and the GPU hash table work, respec-
tively. Finally, the technicalities of the proposed algorithm are presented in
section 4.3.

4.1 ReSTIR

The ReSTIR algorithm [Bitterli et al., 2020] is based on two techniques:
RIS [Talbot et al., 2005] and weighted reservoir sampling (WRS) [Chao,
1982, Vitter, 1985]. A general overview of RIS was presented earlier in subsec-
tion 2.2.2. We will, as such, in this section, instead present how RIS is used
for many-light sampling (subsection 4.1.1) as well as how WRS works (sub-
section 4.1.2). Accordingly, details on how the aforementioned algorithms
are combined to transform RIS into an efficient streaming algorithm, suitable
for real-time GPU implementations, will be given in subsection 4.1.3.

4.1.1 Resampled Direct Lighting

Given the rendering equation (Equation 2.16), we can reparameterize it to
compute the direct lighting due to an area light source a:

Ld(x, ωo) =
∫

y∈A
fr(x, ωy, ωo)Le(y, ωy)V(x, y)

(ωy · n̂x)(−ωy · n̂y)

||x− y||2 dA (4.1)

33

4. Algorithm

where A is the surface of the area light a, n̂y is the normal of the light source
surface at point y, ωy = (y−x)

||y−x|| is the direction from x toward y on the
light source, Le(y, ωy) is the radiance emitted from y in direction ωy, and
V(x, y) is a visibility term that equals 1 if the point x is visible from y and 0
otherwise.

For the sake of brevity, we omit the exitant direction ωo and shading point

x, define the geometry term as G(x, y) =
(ωy · n̂x)(−ωy · n̂y)

||x− y||2 , and denote the

differential area as dx. Thus, the rendering equation for computing direct
lighting calculation can be rewritten as:

L =
∫

A
fr(x)Le(x)G(x)V(x)︸ ︷︷ ︸

F(x)

dx (4.2)

When sampling direct lighting, we wish to sample light from a distribution
p that is proportional to the full integrand F. However, due to the complexi-
ties of computing visibility V(x), it becomes inherently difficult to compute
such a distribution. Particularly, computing the visibility requires tracing
additional visibility rays which can be prohibitive in real-time contexts.

Instead, Bitterli et al. [Bitterli et al., 2020] propose to use RIS: Sample M
”cheaper” samples from from a candidate distribution q (which should be
easy to sample from, and may be sub-optimal) and resample them for N � M
higher quality samples that are distributed according to a target PDF p̂.
In particular, instead of sampling the full product F(x), we sample from
only one of its factors which is cheaper to compute. Bitterli et al. choose
q(x) ∝ Le(x) as candidate distribution and p̂(x) = fr(x)Le(x)G(x) as target
distribution (note the omission of visibility); as such, a light can be sampled
by simply sampling it from a PDF based on the scene lights’ power and area.
Moreover, the visibility computations can be postponed to the end (when
the final light sample is selected), making the visibility computations inde-
pendent of M. Knowing that RIS can generate unbiased samples and may
also reduce the estimator variance, we can safely generate a large number
of cheaper candidate samples that can robustly be transformed into (fewer)
high-quality samples that are approximately distributed according to our
desired probability distribution and are, accordingly, used in the radiance
calculations.

4.1.2 Weighted Reservoir Sampling

There are a few limitations with RIS. One of the most significant practical
limitations is that no matter how we sample our candidates—be it with bisec-
tion or linear search—we have to generate and store all candidates upfront

34

4.1. ReSTIR

before selecting the output. This does not map well to GPUs because we
want to resample many thousand times in parallel, and we, accordingly, do
not want to store thousands of these samples per pixel.

To solve this issue, Bitterli et al. propose to use weighted reservoir sampling
[Chao, 1982, Vitter, 1985] for stochastically selecting and storing the samples.
In short, the algorithm can randomly select an item from a stream with
preassigned weights in a single pass over the data—without needing to store
the entire stream.

More formally, WRS is a stream-based sampling algorithm for choosing
N random samples from a stream {x1, x2, . . . , xM} of possibly unknown
length M in a single pass over the data. Each element in the stream has
a corresponding weight w(xi) so that xi is selected with the probability
P(xi) = w(xi)/ ∑M

j=1 w(xj). In our contexts, the N samples are chosen with
replacement, since we want independent selections xi for the Monte Carlo
integration.

Subsequently, an input stream is processed in order, and a reservoir of N sam-
ples is maintained. At any point in the stream, WRS maintains the invariant
that the samples in the reservoir are drawn from the original stream’s distri-
bution (over all elements processed so far). When processing a new stream
element, the reservoir is updated to maintain the invariant that sample xi
occurs in the reservoir with probability w(xi)/ ∑M

j=1 w(xj). When updating
the reservoir with a fresh sample xm+1, another sample in the reservoir xi is
stochastically replaced. The probability of xm+1 successfully being stored in
the reservoir is,

pselect,m+1 =
w(xm+1)

∑m+1
j=1 w(xj)

(4.3)

ensuring that xm+1 appears in the reservoir with a probability maintaining
the mentioned invariant. Implementing WRS is surprisingly simple, and the
pseudocode that backs up this claim is given in Algorithm 1. Note that only
the samples of relevance and a running sum of weights are stored, making
WRS very space-efficient.

Finally, WRS is combined with RIS into what Bitterli et al. call Reservoir Re-
sampling, which selects an output sample from a stream of generated candi-
date samples without storing all of them: For each number of target samples,
a reservoir is created and stochastically updated with the generated candi-
date samples xi, using their corresponding RIS weights w(xi). Ultimately,
RIS is transformed into a streaming algorithm.

4.1.3 Streaming RIS with Spatiotemporal Reuse

Nonetheless, another problem remains: Even with the use of WRS, we still
have to compute all of the candidate samples. For complex scenes, a large

35

4. Algorithm

Algorithm 1 WRS for storing N = 1 samples

1: // S is the input stream containing pairs of samples and corresponding weights
2: function WeightedReservoirSampling(S)
3: total weight← 0
4: selected sample← None

5: for (item, weight) ∈ S do
6: total weight← total weight+ weight

7: if random() < weight/total weight then
8: selected sample← item

9: return selected sample

number of candidate samples might be required, and computing all these
candidates may not be practical in real-time contexts.

With the knowledge that resampling provides a slightly improved distribu-
tion, Bitterli et al. suggest feeding the reservoir resampling algorithm with
other samples also generated by a similar RIS procedure. This will increase
the effective sample count and help the algorithm by feeding samples from
similar distributions. In particular, by resampling each sample with their spa-
tially and temporally adjacent neighbors, we can increase the effective sample
count by orders of magnitude at an amortized cost. Moreover, the sample
variance may get further reduced since the spatially and temporally neigh-
boring RIS samples likely follow similar distributions. Feeding these corre-
lated samples to RIS may result in more well-behaved estimates of the target
function [Talbot et al., 2005].

Combining multiple reservoirs is surprisingly straightforward: You simply
treat each reservoir’s selected sample y as a fresh sample with weight wsum
(i.e., the reservoir’s current sum of weights of all candidates seen so far) and
feed these samples as input into a new reservoir (regarded as the ”output or
combined reservoir”). Mathematically, the result is equivalent to having per-
formed reservoir sampling on the two reservoirs’ combined input streams.
However, with the proposed method, the reservoir merging is instead done
in constant time. This is because it only requires access to the reservoir’s cur-
rent state—thus, avoiding the need to store and retrieving elements of either
input stream.

An initial set of M candidates are first generated per pixel in order to pro-
duce a reasonably good initial set of samples. These candidates are streamed
through their corresponding reservoirs, which are stored in image-sized
buffers. Spatial reuse of neighboring reservoirs can then be performed, for
each pixel, by selecting k neighbors and combining their reservoirs with
the pixels’ reservoir using the procedure outlined above. Notably, per pixel
costs are O(k + M) but each pixel effectively sees k ·M candidates. In addi-

36

4.1. ReSTIR

tion, spatial reuse can be repeated multiple times using the outputs of the
prior reuse pass as input, which can further increase the effective sample
count.

Taking it a step further, temporal reusage can also be performed since the
prior frame can provide additional candidates that are similar enough to be
reused. After rendering a frame, the final reservoirs for each pixel are stored
for reuse in the next frame by, for example, reprojecting the current reservoir
to the previous frame using 2D motion vectors. This is done similarly to
how it was done with temporal accumulation for the screen space filters.
Accordingly, if frames are rendered sequentially, and the final reservoirs are
passed to the next frame, a frame combines candidates, not just with those
of the previous frame, but all previous frames in the sequence—which may
significantly improve the image quality and temporal stability [Bitterli et al.,
2020].

Computations including the visibility term have been omitted until now.
Since the target distribution p̂ is set to the unshadowed illumination, noise
due to visibility starts to dominate as the number of candidate samples M
grows large [Bitterli et al., 2020]. However, we cannot simply incorporate
visibility to the target function because we evaluate it for every candidate to
compute the RIS weight. We cannot afford to trace a visibility ray for each
candidate sample. To solve this issue, visibility reuse is performed. Before
performing spatiotemporal reuse, the visibility of the selected sample y for
each pixel’s reservoir is evaluated. If y is occluded, the reservoir is discarded
by setting the sample’s corresponding weight to 0. Consequently, if we
follow up visibility reuse with spatiotemporal reuse, the occluded samples
will not propagate to neighboring pixels after this initial visibility test, and
all candidates going forward will incorporate visibility in their distribution.
Thus, each pixel will leverage the information from many visibility rays
from its neighboring pixels and its past to greatly improve its distribution
and approximately sample all terms of the product in Equation 4.2.

The final algorithm, dubbed ReSTIR, is performed per pixel q in the follow-
ing order:

1. Generate M initial candidates and resample them to N target candi-
dates, maintained in the reservoirs.

2. Evaluate visibility for the initial candidates and set their weight to 0 if
they are in shadow.

3. Perform temporal reservoir reusage, for instance, using temporal re-
projection with 2D motion vectors.

4. Perform spatial reservoir reusage n times for k neighbor, for example,
by sampling spatial neighbors in a disk of user-defined radius R.

37

4. Algorithm

5. Compute the radiance estimates, given the current reservoir’s state,
using Equation 2.6.

Finally, it is worth noting that RIS is unbiased as long as q(x) > 0 where
p̂(x) > 0. Bias will be introduced as such if this requirement is not met.
This could, for instance, happen when we use samples from neighboring
pixels, and Figure 4.1 shows two examples of situations where this might
be the case. Furthermore, Bitterli et al. mathematically demonstrate that
bias occurs when the RIS weighting factor is no longer an estimator of the
inverse PDF. They propose a method for correcting this bias which, however,
is rather expensive in real-time rendering as it requires tracing additional
visibility rays. Instead, a more practical solution is to attempt minimizing
bias: Using a simple heuristic, the normals and depths of the neighboring
pixels are compared, and if they are too different, the samples from those
pixels can be rejected.

(a) Sample with wrong orientation (b) Occluded sample

Figure 4.1: Two examples of where bias can occur when performing spa-
tiotemporal resampling with ReSTIR: (a) when the neighbor sample is below
the normal-oriented hemisphere, or (b) when the neighbor is occluded. In
both cases, qneighbor(x) > 0 while p̂current(x) ≤ 0, which results in bias if that
neighboring sample is combined with the current sample.

For real-time, this bias-speed trade-off is beneficial, and Bitterli et al. show
that the biased algorithm can result in considerably less variance, at the cost
of some energy loss and image darkening, when compared to the unbiased
variant executed and measured at equal times.

4.2 GPU Hash Tables

The hash table implementation in this thesis follows the work by Binder et
al. [Binder et al., 2021] and Pascal Gautron [Gautron, 2020]. In short, these
methods attempt to discretize the vertices, in world-space, into voxels of
non-uniform size, which are stored in a hash table for efficient look-up and

38

4.2. GPU Hash Tables

insertions. The following will present how the table is generated and used.

4.2.1 Spatial Hashing

p3 p2

p1

Hc(p2)Hc(p1) Hc(p3)

Hi(p3) = Hi(p1)
Linear probing

Checksums

Data

L(p1) L(p3) L(p2)

Figure 4.2: Simplified example demonstrating how spatial hashing is per-
formed when inserting an entry into the hash table. Hash cell conflicts are
solved through linear probing. The sample data stored here is some output
of an arbitrary function L(p).

The whole procedure for performing spatial hashing and inserting an entry
into the hash table is summarized in Figure 4.2: Given a position p in world
space, an n-dimensional hash function hi(p) is applied, which yields a hash
key that acts as the entry index to the hash table (i.e., hi : Rn 7→ N). More-
over, in order to uniquely identify each entry, a checksum is computed and
stored with each entry using a secondary hash function hc(p). As such, col-
lisions between entries can efficiently be identified using these checksums.
As mentioned by Binder et al., linear probing has shown to perform well in
practice when implemented on GPUs [Binder et al., 2021]. Accordingly, we
also apply linear probing in this work to resolve conflicts among hash table
entries.

39

4. Algorithm

4.2.2 Construction of hash keys through discretization

To discretize, say, a 3D point p, nesting is performed [Perlin, 1985]: Each
component of the point (e.g., px, py and pz in 3D) are individually hashed
using some hash function h:

H3D(p) = h(pz + h(py + h(px))) (4.4)

However, naively hashing the bits to the floating-point coordinates of a point
may result in that two spatially nearby entries not appearing close to each
other in the hash table. In other words, that would mean that the output of
Hi(p) would be different for two nearby points, and it would not be possible
to process the two points together. To avoid this, Gautron and Binder et al.
suggest resorting to discretization, which would mean that the points instead
are discretized into voxels of size s:

H3D(p) = h(bpz/sc+ h(bpy/sc+ h(bpx/sc))) (4.5)

As such, two points within the same voxel (i.e., they are within distance s of
each other) will end up with the same hash index.

For the discretization to work in dynamic contexts, Binder et al. suggest
using an adaptive voxel size sadaptive by parameterizing it on the projected
size of a defined screen area using the projection theorem. Consequently, the
voxels will have a non-uniform resolution that adaptively changes based on
the size of the projected screen area of a voxel when using the following
revised hash function:

H3D(p) = h(bpz/sadaptivec+ h(bpy/sadaptivec+ h(bpx/sadaptivec))) (4.6)

To make the hash key dependent on the voxel size resolution (which can
also be seen as a level of detail identifier), we can further nest H3D(p) with
the adaptive voxel size sadpaptive, making the function 4D:

H4D(p) = h(sadaptive + H3D(p)) (4.7)

Finally, for the hash function to take into consideration that two nearby
points still may be different due to different surface orientations, the surface
normal n is also nested:

H7D(p) = h(bnzsndc+ h(bnysndc+ h(bnxsndc+ H4D(p))))) (4.8)

where snd is a discretization factor (e.g., snd = 10). Ultimately, H7D(p) be-
comes the spatial hashing function for the hash table, and it is applied to
any input point p in world space.

40

4.3. Path Space Importance Resampling

4.2.3 Reducing quantization artifacts with jittering

Due to the discretization applied, quantization artifacts may occur. In a
similar fashion to Binder et al., and as explained in subsection 3.1.2, this is
addressed by resolving the quantization artifacts in noise. Specifically, when
inserting and looking up entries in the hash table, the world space positions
are jittered in the tangent plane of the surface.

4.3 Path Space Importance Resampling

The proposed algorithm, dubbed Path Space Importance Resampling—or, PSIR
for short—is an extension to the original ReSTIR algorithm for it to work in
path space (interchangeably referred to as world space in this thesis).

The key idea of PSIR is to address one of the main limitations of the orig-
inal ReSTIR algorithm: It is only able to operate on the first vertex of the
camera path (i.e., the primary hit point), which makes it difficult for ReSTIR
to be extended to direct lighting and global illumination beyond the first
hit. This limitation stems from the fact that the original ReSTIR algorithm
operates on image buffers. While this makes the algorithm fast, simple and,
memory-efficient, it will result in the aforementioned limitation. Moreover,
ReSTIR is also limited because the initially selected light samples are se-
lected through importance sampling based on a PDF computed from the
light sources’ power and area. Consequently, the initial candidates do not
account for the actual distances to the light samples. This can be of practical
relevance, as we will waste computational resources on distant light sources
with high power that likely will not contribute to the final lighting surfaces
due to lighting attenuation. PSIR attempts to mitigate these limitations by
extending ReSTIR beyond screen space.

In particular, the proposed algorithm augments ReSTIR as following: A
hash table is, firstly, filled with light samples using the procedure presented
in section 4.2—that is, light samples are inserted into the hash table by con-
structing a spatial hash key based on their positions and surface normals.
Moreover, once the hash cell—containing a fixed number of lights—is full,
the light samples are stochastically inserted to the hash table by applying RIS
based on the lights’ expected contribution to the hash cell volume (i.e., the
voxel’s volume). Concretely, we apply RIS by setting the target PDF p̂(x) to
the expected unshadowed illumination from the light to any surface covered
by the hash cell (i.e., p̂(x) = fr(x)Le(x)G(x)) and the candidate distribution
q(x) proportional to the probability of selecting a light (i.e., q(x) ∝ Le(x)).

For each light sample, we store the light’s properties, such as its orientation,
position, and emissive color, as well as its selection probability. Moreover,
our hash table ”build step” is performed on a per-frame basis and is per-
formed by iterating through each light in the scene, in parallel, using the

41

4. Algorithm

thousands of threads available in GPUs. There are ncell hash cells, and for
each of those, nentries of light samples are stored. Consequently, at least
ncell · nentries bytes of data needs to be allocated for storing the values of the
hash table if each light sample stores a byte each. A visualization displaying
how the hash cells are assigned when hashing the visible surfaces, using the
procedure outlined in subsection 4.2.2, is shown Figure 4.3.

(a) Reference (b) Generated Hash Cells

Figure 4.3: Visualization of how the hash cells are assigned (b), with the
reference scene shown in (a). In (b), each hash key is given a color based on
their cell index, which is then directly visualized. Notice how the granularity
of the cells depends on both the position, distance from the camera, and the
surface orientation at that point.

At this point, the hash table is filled with relevant light samples. The data
structure can now, in theory, be used in any step of the ReSTIR algorithm:
Simply provide the necessary data of a surface (e.g., its world position and
surface normal) to construct a spatial hash key in order to look up if light
sample data is available in that corresponding cell. If not, perform the re-
sampling as you normally would do with ReSTIR; otherwise, use the light
sample data retrieved from the hash table. If there are multiple light candi-
dates in the hash cell, resampling may be applied to those lights to select the
final light sample stochastically. Since any world space position and surface
normal may be used to construct the spatial hash for performing hash table
lookups, this data structure may be beneficial in shading secondary surfaces
where a primary hit G-buffer is unavailable. For instance, this structure
could be instrumental in performing light sampling for secondary rays dur-
ing path tracing.

Intuitively, the described hash table construction step could also be inter-
preted as a process for generating unordered groups of the light samples: Lights
with similar characteristics—that is, lights that are nearby or on similar ori-
ented surfaces—are grouped in the same voxels. Subsequently, when sam-
pling lights from this structure, only ”relevant” lights are considered, and
lights that are likely too far away to contribute are inherently filtered out

42

4.3. Path Space Importance Resampling

during the lookup of the light samples.

Our algorithm directly extends ReSTIR and, accordingly, follows the same
pipeline on a per-frame basis. Subsequently, the concrete steps of our algo-
rithm are, orderly, given as follows:

1. Build hash table by iterating through each light and fill the light sam-
ples in the hash cell. If a hash cell is full, use RIS to maintain the hash
cell stochastically.

2. Generate M initial candidates as in ReSTIR but sample them from the
hash table instead. If the corresponding hash cell for the surface posi-
tion and normal is empty or invalid, perform ReSTIR as you otherwise
would.

3. Perform visibility reuse.

4. Perform spatiotemporal resampling as standard ReSTIR.

5. Compute radiance estimates.

Finally, note that we also jitter (as explained in section 4.2) the sample posi-
tions to minimize quantization artifacts when inserting and looking up data
from the hash table.

43

CHAPTER 5
Experiment

This chapter begins by presenting the experiment conducted for evaluating
the performances of PSIR. The purpose of this experiment is to evaluate how
well PSIR extends ReSTIR. With this, we can investigate when or if the for-
mer should be preferred over the latter. Subsequently, the results discovered
during this thesis are presented and are accompanied by an analysis for it.

In this chapter, we highly recommend the reader to zoom in when inspecting
the figures, assuming this document is read digitally, to get a better and
more clear view of ReSTIR’s and PSIR’s noise characteristics.

5.1 Setup

5.1.1 Our Test Scenes

We test our implementation on two different scenes: Bistro and Zero-Day.
The first and most important reason for this selection of scenes is that the
lighting in these scenes fully depends on the direct illumination from the
many area light sources—assuming we neglect the environment map contri-
bution. Consequently, this allows us to demonstrate the results of perform-
ing efficient many-light sampling; specifically, by resampling many lower-
quality samples into fewer but higher quality samples. The second reason
is that both scenes contain challenging, professionally created, high-quality
assets, and—even better—they are publicly available and are free for anyone
to use. Finally, do note that scenes also are employed to stress our imple-
mentations under varying conditions.

Bistro. Amazon Lumberyard Bistro (Fig. 5.1a) is the first scene we use.
It was revealed at the 2017 Game Developer Conference to showcase new
anti-aliasing and transparency features in the Lumberyard game engine. It

45

5. Experiment

(a) Bistro (b) Zero-Day

Figure 5.1: Sample renderings of our test scenes, (a) Bistro and (b) Zero-
Day. Sample images from [Bitterli et al., 2020].

was later donated to NVIDIA’s Open Research Content Archive (ORCA)
[Lumberyard, 2017]. The scene consists of two sub-scenes, an interior, and
an exterior scene, containing 1, 046, 609 and 1, 293, 691 triangles, respectively.
Bistro contains in total 20,638 emissive triangles, which makes it a great
environment for testing and comparing our resampling algorithms.

Zero-Day. BEEPLE Zero-Day (Fig. 5.1b) is the other scene we employ.
It was created by Mike Winkelmann for a short film called Zero-Day in
2015 [Winkelmann, 2019] and was also donated to ORCA. It consists of
two sub-scenes, Measure One and Measure Seven, which contain 1, 372, 670
and 1, 294, 866 triangles, respectively. In addition, the two sub-scenes also
contain 10, 103 and 10, 989 dynamic emissive triangles, respectively. Subse-
quently, this gives us another scene with many emissive triangles to bench-
mark; however, this time in another context, with different materials and
lighting conditions.

5.1.2 Implementation Details

We build our implementations of ReSTIR and PSIR on top of our custom-
made, fully ray-traced, rendering engine. It uses the NVIDIA CUDA [NVIDIA
et al., 2020] parallel computing platform for general GPU computations and
the NVIDIA OptiX [Parker et al., 2010] ray tracing engine to take advantage
of NVIDIA’s ray tracing hardware.

Generating A Frame

Our engine renders a frame as follows: First, a geometry pass is executed
by tracing primary rays for each pixel and computing the corresponding ge-
ometry and material properties for each visible surface. The output from
this pass is a G-buffer (see subsection 3.1.1). Secondly, we compute the direct
lighting for each pixel by sampling a light and computing the illumination

46

5.1. Setup

by performing a single evaluation of the rendering equation. For this, we
need to evaluate the BRDF of the visible surfaces by using the recently gen-
erated G-buffer. Subsequently, we need to evaluate the visibility by casting
shadow rays. It is in this stage of the pipeline that we would apply ReSTIR
or PSIR for sampling the lights for the direct lighting calculations. In the
third stage, indirect rays may be traced by sampling new directions based
on the current surface’s BRDF. In our engine, we use a unified material
model consisting of a GGX microfacet layer [Walter et al., 2007] atop a Lam-
bertian substrate, enabling us to render physically based materials efficiently.
The indirect lighting stage is optional, and the maximum number of indirect
rays per surface hit is limited to 1 to stay within the target render time of
16.67ms (i.e., 60 frames per second). Finally, we perform a composition pass
to combine the indirect and direct illumination.

Resampling Settings

For initial candidate generation and spatiotemporal resampling, in both
PSIR and ReSTIR, we found the implementation choices made by Bitterli
et al. [Bitterli et al., 2020] to work quite well in practice. Our resampling
implementation follows most of their suggestions, albeit with some dispar-
ities. In particular, we generate M = 32 and resample with candidate PDF
q(x) ∝ Le(x) and target PDF p̂(x) = ρ · Le · G. In more practical terms, this
means that we generate our initial samples by importance sampling emis-
sive surfaces based on their power and solid angle. We then evaluate the
target PDF by computing a single sample of the rendering equation without
considering visibility.

However, in contrast to the implementation proposed by Bitterli et al., we do
not consider the contributions made by the environment map since we as-
sume they are not present in our scenes. Nonetheless, it should be relatively
straightforward to add support for environment maps. For instance, a pro-
portionality, or probability factor, may be defined, which yields the portion
of initial samples that must come from the environment map. Moreover, we
only implemented the biased version of the resampling algorithm since we
quickly observed that the improvement in visual quality was not worth it,
compared to the performance decline for the unbiased implementation. Ac-
cordingly, we evaluate N = 1 samples for each frame (i.e., one shadow ray
is traced per pixel each frame), resample k = 5 spatial neighbors in n = 1
spatial reuse pass, followed by a temporal resampling reuse pass. We also
discard different samples using the suggested heuristic, which compares the
surface and material properties of the samples.

47

5. Experiment

Hash Table Settings

Our GPU hash table implementation mainly follows the work by Binder et al.
[Binder et al., 2021] and is presented in section 4.2. Although the parameters
for the hash table are initially assumed to be scene-dependent, we found
it sufficient to use the same parameters for both our test scenes. Namely,
we generate the hash keys using the procedure outlined in subsection 4.2.2.
However, instead of computing the adaptive discretization factor sadaptive
from the projected pixel size of a voxel, we instead found it effective to
compute sadaptive based on the distance between the camera and the target
world position:

sadaptive = 2
⌊

log2

(||pcamera−p||
sscale

)⌋
sscale (5.1)

Where pcamera is the world space camera position, p is the world space posi-
tion of the point we want to hash, and sscale is a scene distance scale constant
that works as a discretization constant for quantizing our computed dis-
tances. In our experiments, we found sscale = 0.01 to work well as it resulted
in smaller-sized hash cells for positions far away and larger-sized cells for
nearby positions. Finally, to nest our normals into our hash key, we use
snd = 10.0 as discretization constants to quantize our normals.

We use pcg [O’Neill, 2014] as our index hash function hi and xxhash32 [Col-
let, 2016] as our checksum hash function hc, since those have been shown
to be fast enough to be useful for real-time, while also being high-quality
enough (e.g., these lies along the Pareto frontier) for almost any graphics
use-case [Jarzynski and Olano, 2020]. Prior to insertion or retrieval of data
from the hash table, we jitter the world-space position p on the correspond-
ing tangent plane of its surface before performing the discretization for gen-
erating the position-component h3D of the hash key. In case two hash keys
map to the same hash cell, we perform linear probing to resolve the conflict,
as outlined in subsection 4.2.1. If the hash table lookup fails, even after lin-
ear probing—for instance, due to a hash cell being empty—we fall back to
the original ReSTIR algorithm. Finally, for our two test scenes, we allocated
a total of ncells = 1, 000, 000 hash cells and nentries = 32 entries per hash cell.

5.2 Results

We test our implementations at standard HD resolution (1280×720 pixels)
on a system with an NVIDIA GeForce RTX 2070 SUPER GPU. We initially
attempted to implement the algorithms at full HD (1920x1080 pixels), how-
ever, due to the memory available on the GPU, we had to render at the first-
mentioned resolution. The rendering times we report only include the total
lighting computation timings; as such, the measured timings include the initial
sample generation, spatiotemporal resampling, direct lighting computation,

48

5.2. Results

optionally the indirect lighting computation, and the hash-table build step
if PSIR is applied. Moreover, we report the image errors in Relative Mean
Squared Error (RMSE):

RMSE =
1
N

N

∑
i=1

(yi − ŷi)
2

y2
i

(5.2)

Where N is the total number of pixels in our rendered output, while ŷi and
yi are our estimated and reference value of pixel i, respectively. We use this
measure since previous work has reported that computing the relative er-
ror can be less sensitive to outliers than, for instance, computing the mean
squared error (MSE) [Bitterli et al., 2020]. This observation was also consis-
tent with our findings of the various error metrics. Finally, the data is gen-
erated by rendering a frame using the setup presented in subsection 5.1.2;
that is, a 1 spp ray tracer is used to render the scene, where one of PSIR or
ReSTIR is employed to sample lights when evaluating the rendering equa-
tion. In general, our figures show the first frame rendered. The exception
is if temporal reusage in ReSTIR or PSIR is used—in that case, our figures
show the final frame of a 20 frame render in order to ”warm up” our history
buffer with temporal data [Karis, 2014, Bitterli et al., 2020, Koskela et al.,
2019].

ReferencePSIRReSTIR

Time: 8.5ms Time: 9.3ms

 ReSTIR
RMSE: 0.452

 PSIR
RMSE: 0.350

Reference

Figure 5.2: Single-frame snapshot of Bistro rendered using ReSTIR and
PSIR, accompanied with a 2048 spp reference render. There is less energy
loss in the images rendered with PSIR since it is better able to filter distant
lights that are likely noncontributing.

Figure 5.2 and Figure 5.3 show equal-time comparisons of PSIR against
ReSTIR—which works as the baseline for our comparisons in our two test
scenes. Quantitatively, in both the test scenes, our technique exhibits lower
or equal error than Bitterli et al.’s ReSTIR. Moreover, inspecting the rendered
frames of both algorithms, we also see that PSIR yields frames of higher
quality. That is, frames that, qualitatively, look more similar to the reference
render. Specifically, we see that PSIR results in images with less energy loss

49

5. Experiment

ReferencePSIRReSTIR

Time: 5.5ms Time: 5.9ms

 ReSTIR
RMSE: 0.120

 PSIR
RMSE: 0.118

Reference

Figure 5.3: Single-frame snapshot of Zero-Day rendered using ReSTIR and
PSIR, accompanied with a 2048 spp reference render. Notice that PSIR can
better sample the non-visible lights (e.g., the images rendered with PSIR
have more orange lighting in them) in the scene.

in certain areas in Figure 5.2. Furthermore, we also see from Figure 5.3 that
PSIR is able to sample the light sources outside the primary view, resulting
in more orange-colored highlights in certain areas, which corresponds bet-
ter with the ground truth. In general, we see that the quality between the
two algorithms is near-identical. Ultimately, it is worth noting that the extra
steps PSIR incur to ReSTIR are not free, and, in average, comes at the cost
of from 0.7ms to at most 2.0ms for our two test scenes.

Reference

ReferenceWith JitterNo Jitter

Figure 5.4: Single-frame snapshot of Zero-Day rendered with PSIR, with
and without jittering applied. The boundaries between adjacent hash cells
are visible when jittering is omitted. In contrast, when jittering is applied,
these quantization artifacts are traded for noise which is easier for the eyes
to ignore.

We also tested the importance of jittering our samples when looking up
or inserting samples into the data structure. From the leftmost zoomed-
in crop of Figure 5.4, we see that quantization artifacts can occur when
jittering is neglected. In fact, we see the discretization boundaries between
neighboring hash cells when jittering is omitted. However, by performing

50

5.2. Results

jittering, we see that these artifacts effectively are removed—at the cost of
little to no additional performance penalties, assuming that the amount of
jitter is not excessive (we would otherwise be trashing the GPU cache lines).
In particular, from the middle crop of the mentioned figure, we see that
there is a bit more additional unstructured noise, but, at the same time, the
color boundaries that previously stood out are now eliminated.

 PSIR
RMSE: 0.089

 ReSTIR
RMSE: 0.090

ReferencePSIRReSTIR

Figure 5.5: Snapshot of Bistro (at day time) rendered with PSIR and ReSTIR,
only using temporal resampling. There are only minor differences between
ReSTIR and PSIR, both qualitatively and quantitatively.

Bitterli et al. showed that temporal reusage could dramatically increase
the effective sample count and, consequently, drastically improve the final
image quality. To further test the effectiveness of PSIR, we decided to eval-
uate the algorithm with and without temporal reusage. Figure 5.5 displays
a snapshot of Bistro rendered with ReSTIR and PSIR, with only tempo-
ral reusage enabled (in addition to initial sample generation). The results
between PSIR and ReSTIR are qualitatively and quantitatively close to vir-
tually identical—with almost the same reported RMSE and image quality.
However, from closer inspections (e.g., the selected crop in green), we see
that PSIR, in some areas, is still better than ReSTIR at outputting images that
better resemble the reference image. In particular, we see additional white
lighting on the border of the rectangular spotlight on the image rendered
using PSIR. There is otherwise very little that separates the two images.

Our algorithm was, furthermore, also tested without temporal reusage (i.e.,
we only executed spatial resampling and initial candidate generation). Fig-
ure 5.6 shows a render from the same view as Figure 5.5. There is a great
reduction in image quality, and the reported error is almost a magnitude
larger than previously—demonstrating the impact of reusing temporally ad-
jacent samples. However, looking at the errors of the two algorithms relative
to each other, we see that the disparity between them is still not that big. Fur-
ther inspection of the image (e.g., the selected crop in green) shows that PSIR
results in less noise and can result in more evident structures in the image.

51

5. Experiment

 PSIR
RMSE: 0.368

 ReSTIR
RMSE: 0.387

ReferencePSIRReSTIR

Figure 5.6: Snapshot of Bistro (at day time) rendered with PSIR and ReSTIR,
only using spatial resampling, from the same view as Figure 5.5. There are
visibly larger differences between PSIR and ReSTIR when temporal sample
reusage is omitted.

Specifically, we see that PSIR is able to show more of the red color of the
awning and its white specular highlights.

ReferencePSIRReSTIR

Time: 6.5 ms Time: 7.2 ms

 ReSTIR
RMSE: 0.468

 PSIR
RMSE: 0.399

Reference

Figure 5.7: Snapshot of Bistro rendered with PSIR and ReSTIR, only using
the initially generated samples, accompanied with a 2048 spp reference render.
Notice that, without any kind of sample reusage, the effectiveness of PSIR
is visibly improved over ReSTIR.

Accordingly, we also tested our algorithm without any kind of sample reusage.
That is, we only executed the initial sample generation stage where we gen-
erated M candidate samples. For PSIR, we also performed the hash table
build step before the initial sample generation and used the generated table
as an ”initial sample pool” for generating the candidate samples. Figure 5.7
shows that the difference in error between the two algorithms is now even
more prominent. Looking at the differences between the images (e.g., see
selected crops in red and green), we see evident disparities between the out-
puts produced by the two algorithms. On surfaces close to the light sources,
we see that ReSTIR results in noisy outputs with little to no structure. In con-

52

5.3. Discussion

trast, the selected crops indicate that PSIR has better capabilities at sampling
lights which are more likely to contribute to the final illumination.

Finally, we remark that the additional performance cost of using PSIR on
top of ReSTIR was roughly between 0.7ms to around 2.0ms on our two test
scenes. We found the additional performance cost of performing lookups
of light sample data from the hash table negligible when we performed re-
sampling. The main cost came from constructing the hash table at each
frame. For our two test scenes, we found the build step performance to
be approximately the same, with an average execution time of 0.5ms-1.2ms,
depending on the total number of lights in the scene and the number of
lights in the proximity of the primary view. Another aspect of PSIR is
memory usage. Extending ReSTIR with a hash table required an additional
∼ 500MB of memory—which was used for storing hash keys, the hash cells’
age, and the corresponding values—so that the cells in the data structure
would sufficiently ”cover” the test scenes. This additional memory usage
could be critical depending on the target platform. Allocating too few cells
would result in fuller hash tables, which prompted linear probing to occur
more often (due to the higher likelihood of a hash cell collision) and would,
consequently, lead to slower hash table build times. However, on the con-
trary, allocating too many hash cells would result in excessive use of the
limited amount of GPU memory we have. Nonetheless, compared to the
other screen-sized buffers, such as the reservoir buffer, the diffuse and spec-
ular illumination buffer, and the G-buffer, the overall memory impact of the
hash table size was found to be relatively minimal for our test scenes.

5.3 Discussion

From the reported results, we saw that PSIR generally had the edge over
ReSTIR—both quantitatively and qualitatively. However, the differences be-
tween the outputs of the two algorithms were mostly rather minor. Through
further visual inspections, we noticed there were only certain areas in the
scenes where PSIR drastically improved the image quality over ReSTIR; in
particular, the biggest differences between PSIR and ReSTIR only occurred
when we omitted temporal resampling. We believe this is due to the nature
of how temporal resampling between consecutive frames is performed: A
frame combines candidates not just with those of the previous frame but
also with all previous frames in the sequence. Consequently, reusing data in
this manner improves the effective sample count dramatically and, accord-
ingly, the final image quality. Furthermore, this also meant that the effect of
applying PSIR would be hidden or masked by the temporal sample reusage
since the majority of the sample contributions would come from reusing the
samples temporally. This can be deduced through visual assessments of Fig-
ure 5.2, Figure 5.3 and Figure 5.5 where the output images from both PSIR

53

5. Experiment

and ReSTIR look to be nearly converged. Though, even while the images
look to be almost converged, PSIR still shows some improvements over Re-
STIR. For instance, we saw in Figure 5.5 that PSIR was better able to capture
the correct lighting around the border of the spotlight, which gave some—
perhaps weak—indications that the algorithm was properly able to sample
the relevant (i.e., the most likely contributing) lights.

Note that we can also draw similar conclusions, regarding the improved
effective sample counts, from Figure 5.6, where we only perform spatial
resampling—albeit, the effect is not to the same degree as when applying
temporal resampling. When we perform spatial resampling, samples from
similar surfaces and in close proximity are reused and combined. Accord-
ingly, by only performing spatial resampling, we will not achieve the same
dramatic increase in sample counts as we did with temporal resampling.
The combined samples are not propagated to their spatially adjacent neigh-
bors efficiently, which means that the sample counts may not increase drasti-
cally. The consequences of this become evident when comparing Figure 5.5
and Figure 5.6, where the reported RMSE increases by almost an order of
magnitude and the visual quality drastically deteriorate when going from
temporal-only resampling to spatial-only resampling. The differences be-
tween PSIR and ReSTIR become more apparent as such, in the form of better
visible specular highlights and improved lighting in certain areas. This dis-
crepancy is likely because PSIR can now contribute more due to the lower
effective sample counts when performing spatial resampling only.

PSIR’s Role

ReferencePSIRHeatmapReSTIR

Figure 5.8: Error heat map of Figure 5.7 between PSIR and ReSTIR.

To better understand where, why and how PSIR performs better than Re-
STIR, we refer to Figure 5.8, which shows the error heat map of Figure 5.7 be-
tween ReSTIR and PSIR. Specifically, it shows the error between ReSTIR and

54

5.3. Discussion

PSIR without any kind of sample reusage since we found sample reusage
(albeit mostly the temporal sample reusage) to ”hide” the contributions of
PSIR. From the heat map, we see at least three areas where the RMSE is
particularly dense and has the highest errors. We highlight these three areas
in the red, green, and orange crops. Interestingly, the selected crops show
that the differences between PSIR and ReSTIR are the highest on surfaces
closest to the light sources. When we further inspect the renders for ReSTIR
and the corresponding one for PSIR and compare it against the reference,
we see that PSIR indeed is better able to account for the contribution from
the closest light source—which is often the one contributing the most to the
final lighting for that surface.

The fact that PSIR shows better tendencies at sampling light from the closest
light source corresponds well with our intuition of the algorithm, which we
explained at the end of section 4.3. In short, what our path space data struc-
ture effectively does is to create an unordered set of light samples, which are
stored in the same or close-by voxels and, accordingly, in the same or nearby
hash cells. To understand why this helps, we will look at how ReSTIR per-
forms the initial sample generation. As mentioned in section 5.1, with Re-
STIR, we generate our M initial samples by importance sampling emissive
surfaces based on their expected contribution. The expected contribution is
computed based on the lights’ power and area; that is, the distances to each
light from the surface points are not considered. Thus, light sources with
high emissive power are still sampled a lot, even if they are positioned far
away from the surface points. In reality, computing the illumination from
a distant light source will result in an attenuated contribution due to the
inverse-square attenuation law [Pharr et al., 2016]. Fortunately, the proba-
bilities of selecting these lights are stochastically filtered when using RIS,
and the samples are completely removed when the surface is in shadow and
visibility reuse is performed [Bitterli et al., 2020]. Nevertheless, even if our
sampling probabilities are effectively filtered, we still waste our computa-
tional resources on generating and filtering these samples that might not
even contribute to the final result.

To demonstrate how such distant lights affect ReSTIR and PSIR, we examine
an extreme case where an ”anomalous light source” with a large and dis-
proportionate amount of emissive power is inserted in Bistro, at a position
far away from the scene. Figure 5.9 shows how PSIR and ReSTIR handle
such a case where we have a highly skewed initial light distribution; that
is, a light distribution where the probability mass is skewed towards a par-
ticular light source. Remember, we pre-process (specifically, we generate an
alias table [Walker, 1977]) our lights before we start rendering so that we can
efficiently sample lights using this initial light distribution. Since ReSTIR
samples its candidate sample only based on that initial distribution, it will
likely sample the anomalous light without considering the distance towards

55

5. Experiment

ReSTIRPSIR

Figure 5.9: PSIR vs. ReSTIR when an anomalous light source, with an exces-
sive amount of emissive power, is placed far away from the scene.

it. Consequently, these selected anomalous samples will be wasted since RIS
or the visibility tests will ”trash” them. In fact, this is what we see happens
with ReSTIR in Figure 5.9, where the final image produced hardly contains
any visible structure at all.

On the contrary, PSIR generates its initial samples by looking up available
sample data from the path space hash table, based on the current surface’s
position and normal. Since we build the hash table effectively through an
unordered grouping of the lights into discrete voxels, we will essentially
have filtered away many of the distant noncontributing lights in the hash
table construction step. Moreover, since we select the lights stochastically
with RIS, the generated light pool should be robust, containing mostly rele-
vant samples—assuming that our selected candidate and target distribution
is well-behaved and that our hash cells are full. As such, we believe that the
main contribution of PSIR to ReSTIR is that it boosts the quality of the samples—
particularly by boosting the quality of the candidate samples. Indeed, from
Figure 5.9 we see this in practice. Here we see that since PSIR additionally
samples its candidate samples from the hash table, it becomes more robust
due to it being capable of disregarding the anomalous light. Subsequently,
this results in a significantly more visible structure to the final image with a
lot more low-frequency detail.

To summarize our discussion up to now, we have seen that PSIR extends and
improves ReSTIR mainly by boosting the quality of the generated samples.
By pre-processing the lights and grouping them into discrete voxels in a
hash table construction step, we would effectively pre-filter noncontributing
and distant light sources. Consequently, we saw the most significant differ-

56

5.3. Discussion

ences in sample quality between ReSTIR and PSIR on surfaces close to the
light sources since ReSTIR would not be able to ignore the distant and non-
contributing lights directly. In contrast, with PSIR, we would effectively ig-
nore these distant and noncontributing lights when sampling from the hash
table due to how we construct these light pools. On the final image, around
the surfaces close to the light sources, we would have more noise with Re-
STIR, whereas PSIR would have less noise and exhibit more low-frequency
detail with more evident structure. Although there were improvements in
image quality with PSIR when using spatiotemporal resampling, we saw
the biggest quality improvements when we rendered images by only using
the initial candidate samples. These improvements over ReSTIR made sense,
as ReSTIR only generated the initial samples by importance sampling emis-
sive surfaces based on PDFs generated from the light sources’ power and
area. By also considering the samples in our path space data structure, the
selected candidate samples would be ”pre-filtered” and take the distance
to the light sources into account—which would effectively cull distant and
weak lights that likely would not contribute much to the final result.

PSIR’s Performances

The focus of the discussion has so far been about what PSIR brings over
ReSTIR to the final image quality. However, as we saw from the results
presented earlier, PSIR does in fact incur extra performance costs. The main
drawback of PSIR’s performance is that it depends on the number of lights
in the scene. Moreover, for the hash cells to sufficiently ”cover” the scene, it
becomes crucial to allocate a sufficient amount of memory for the hash table.
Ideally, we would like to allocate enough memory so that a hash cell at least
covers a certain area around its designated light source (i.e., the light source
closest to the hash cell’s unprojected world space position). For our two test
scenes, which contained around 10, 000 and 20, 000 emissive triangles, the
additional cost of looking up and inserting samples to the hash table was
between 0.7ms and 2.0ms, depending on the view direction and the scene
complexity.

The performance numbers in the figures presented earlier in this section
were dominated mainly by the hash table construction step at each frame.
As a matter of fact, the cost of looking up light samples from the hash
tables seemed to be ”hidden” by the performance costs of performing re-
sampling. Curiously, this corresponds well with how the GPU is designed:
Since many thousands of threads run in parallel, the performance of each
individual thread will be hidden by the total performance. Consequently,
the focus is on the overall throughput rather than the latency of each in-
dividual thread. We tested the scalability of the hash table build step by
inserting up to one million artificial light sources placed randomly in the

57

5. Experiment

0 200000 400000 600000 800000 1000000
Number of artificial light sources

0

2

4

6

8

10

12

14

16

Ti
m

e
[m

s]

Figure 5.10: Smoothed graph of how the hash table construction step per-
forms (in milliseconds) as a function of the number of lights to be inserted.

scene. Figure 5.10 shows the smoothed results of this simulation using the
hash table settings specified in section 5.1. Notice how there is more vari-
ance to the measurements after 200, 000 lights are placed. This variability
in execution timings is likely because of the linear probing being performed
more frequently since the probability of hash collisions increases with the
higher light counts (given a fixed number of hash cells and entries). More-
over, we find that when the number of light sources increases, the execution
time varies almost linearly. This trend indicates that the hash table construc-
tion step, initially proposed by Binder et al. [Binder et al., 2021], scales well
with an increasing scene complexity.

Even so, for use cases requiring more than 200, 000 light sources, we see that
PSIR might not be viable for real-time contexts, including the fact that the
hash table requires more than 2ms to be constructed per frame. As such, the
question of whether it is worth implementing PSIR, given its performance
costs, is a question that depends on a multitude of factors, such as the target
platform, the use case (e.g., whether the rendered images are used in a game
or a movie) and the desired scene complexity.

To conclude this discussion, we remark that while the differences between
PSIR and ReSTIR are not drastic, PSIR’s role in boosting the quality of the
initial candidates and its intrinsic abilities to filter distant lights should not
be understated. As we have seen from the results in this section, PSIR pro-
vides more low-frequency details to the final renders due to its abilities to

58

5.3. Discussion

inherently filter distant and likely noncontributing light sources. These con-
siderations in details are paramount because it makes the job of an accompa-
nying denoiser a lot simpler. For instance, in the selected crops of Figure 5.8,
a denoiser would have it difficult to denoise the output from ReSTIR since
there is little to no low-frequency detail in the output. On the other hand,
PSIR visibly has more detail and structure, making the job of the denoiser
more straightforward because the output better conforms with the G-buffer
guide. Subsequently, for lower sampling rates, PSIR makes it simpler for the
denoiser to output more temporally stable image sequences, as well outputs
with less spatial ”boiling”. In use cases where we neither can perform spatial
nor temporal reusage—for instance, due to various memory or performance
constraints—PSIR should especially help to provide less noisy images, with
better and more low-frequency structure, than ReSTIR.

59

CHAPTER 6
Conclusion

In this thesis, we have taken a closer look at the problem of many-light
sampling. We began by investigating the related work in this field and
looked at the different methods’ limitations. Subsequently, we proposed an
extension to the algorithm currently considered state-of-the-art for many-
light sampling—namely, ReSTIR.

Our proposed algorithm, PSIR, attempts to extend ReSTIR by facilitating re-
sampling in path space through the use of a hash table. This data structure
was constructed by creating a discretized representation of the virtual scene.
The discretization was performed by generating hash keys that would quan-
tize the 3D space into dynamically sized voxels. In the hash table build step,
the light sample data of the scene lights would be stochastically inserted
into the hash table by: First, generating hash keys based on the lights’ orien-
tations and world-space positions; and, then, using RIS to, probabilistically,
decide if the light sample was to be stored. Subsequently, the filled hash ta-
ble could be used for lookups in any step of the original ReSTIR algorithm,
given that the surface normal and world-space position was available—so
that a hash key could be constructed and used for lookup or insertion into
the data structure.

The results from our experiments showed that PSIR indeed was able to pro-
vide outputs with generally lower error and higher image quality than Re-
STIR. However, while PSIR provided improved results, the improvements
were generally rather minor over ReSTIR. In particular, we saw that PSIR
generally outperformed ReSTIR on surfaces close to the light sources and
when the effective sample counts were low. From the results, we discov-
ered this was because the hash table in PSIR was able to pool the lights into
local unordered groups, which could then be used as ”initial sample sets”
to boost the quality of the candidate generation or spatiotemporal resam-

61

6. Conclusion

pling stage. As such, distant and weak lights would be pre-filtered during
the hash table build stage. We concluded that PSIR mainly extends ReSTIR
by boosting the quality of the generated samples and, especially, the initial
candidate samples.

Ultimately, the work carried out in this thesis has shown that while we are
not quite yet able to simulate artifact-free global illumination at real-time
performances, we are getting close. With stochastic algorithms such as Re-
STIR, PSIR and, stochastic lightcuts facilitating for sampling thousands to
even millions of light sources, at least at interactive framerates, the previous
restrictions limiting ourselves to only a couple of hand-picked light sources
become lifted. This alleviation should make it easier for content creators to
create detailed scenes with realistic and physically-based lighting. Indeed,
with the steady improvements we see with rendering hardware, and on re-
search on real-time rendering, it seems that that the dream of movie quality
graphics in a fully dynamic virtual scene will more and more likely become
closer to reality.

6.1 Limitations and Future Work

One of the main limitations of PSIR was that the spatiotemporal sample
reusage still was performed among spatially and temporally adjacent sam-
ples in screen space. This is because what PSIR does is to provide ReSTIR
with localized sample data from a spatial data structure which, in practice,
improved the quality of the initial samples. Extending PSIR to perform spa-
tiotemporal sampling in path space may be an exciting avenue for future
work, and Bitterli et al. suggest rethinking how samples are combined [Bit-
terli et al., 2020].

Another limitation of our proposed algorithm was that the time complexity
of constructing the hash table was linearly dependent on the number of
lights in the scene. Thus, an avenue for future research could be to inspect
and revisit the hash construction step and, perhaps, even rethink how the
hash table stores its data. To give an example, the hash table could instead
store the light sample data based on the current view and stream in, or
rebuild itself, whenever the view changes drastically. For instance, instead
of iterating through each light in the build step, we could instead iterate
through each hash cell and ”unproject” the cells back to their original input
keys (i.e., the world space positions and surface normals) so that we can find
and store the closest and most similar lights in proximity. This approach
could, however, require designing a bijective hash key as we would need
to go back and forth between hash cell and input keys. Furthermore, since
the primary focus in this work was the image quality impact of PSIR, it
would also be interesting to see a more extensive analysis on how much

62

6.1. Limitations and Future Work

of a performance cost PSIR is to ReSTIR and how the algorithm could be
optimized further.

We have in our work constructed the hash keys and discretized the virtual
scene world based on the world positions and surface normals of objects.
This design choice was mainly due to the suggestions provided by Binder et
al. on designing the hash keys to be fast to construct but to also be of high
quality [Binder et al., 2021]. It would, as such, be interesting to see how other
kinds of hash functions would affect the performances of PSIR. For instance,
one could also include the incident and exitant directions of a surface point,
as well as the surface’s material parameters, in order to introduce an even
higher level of granularity for the hash cells. However, further investigations
may need to be done when employing PSIR with high-dimensional keys due
to the curse of dimensionality.

Finally, in this work, we have mainly focused on the impact PSIR has on
the direct lighting quality. While direct lighting often is the kind of lighting
that impacts the overall illumination the most, PSIR could also, in theory, be
applied to indirect light sampling due to the sample data in the hash table
being stored in world space. Consequently, it will be interesting to see how
PSIR affects the convergence tails of Monte Carlo renderers, such as path
tracers, when we apply it to higher-order bounces.

63

Bibliography

[Appel, 1968] Appel, A. (1968). Some techniques for shading machine ren-
derings of solids. AFIPS ’68 (Spring), page 37–45, New York, NY, USA.
Association for Computing Machinery.

[Arvo and Kirk, 1990] Arvo, J. and Kirk, D. (1990). Particle transport and
image synthesis. SIGGRAPH Comput. Graph., 24(4):63–66.

[Bako et al., 2017] Bako, S., Vogels, T., Mcwilliams, B., Meyer, M., NováK, J.,
Harvill, A., Sen, P., Derose, T., and Rousselle, F. (2017). Kernel-predicting
convolutional networks for denoising monte carlo renderings. ACM Trans.
Graph., 36(4).

[Binder et al., 2021] Binder, N., Fricke, S., and Keller, A. (2021). Massively
parallel path space filtering.

[Bitterli et al., 2016] Bitterli, B., Rousselle, F., Moon, B., Iglesias-Guitián,
J. A., Adler, D., Mitchell, K., Jarosz, W., and Novák, J. (2016). Nonlin-
early weighted first-order regression for denoising Monte Carlo render-
ings. Computer Graphics Forum (Proceedings of EGSR), 35(4):107–117.

[Bitterli et al., 2020] Bitterli, B., Wyman, C., Pharr, M., Shirley, P., Lefohn, A.,
and Jarosz, W. (2020). Spatiotemporal reservoir resampling for real-time
ray tracing with dynamic direct lighting. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 39(4).

[Buades et al., 2005] Buades, A., Coll, B., and Morel, J. . (2005). A non-local
algorithm for image denoising. In 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05), volume 2, pages
60–65 vol. 2.

[Burley, 2012] Burley, B. (2012). Physically-based shading at disney.

[Chaitanya et al., 2017] Chaitanya, C. R. A., Kaplanyan, A. S., Schied, C.,
Salvi, M., Lefohn, A., Nowrouzezahrai, D., and Aila, T. (2017). Interactive
reconstruction of monte carlo image sequences using a recurrent denois-
ing autoencoder. ACM Trans. Graph., 36(4).

65

Bibliography

[Chao, 1982] Chao, M. T. (1982). A general purpose unequal probability
sampling plan. Biometrika, 69(3):653–656.

[Collet, 2016] Collet, Y. (2016). xxhash: Extremely fast hash algorithm.
https://github.com/Cyan4973/xxHash.

[Cook et al., 1984] Cook, R. L., Porter, T., and Carpenter, L. (1984). Dis-
tributed ray tracing. In Proceedings of the 11th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’84, page 137–145,
New York, NY, USA. Association for Computing Machinery.

[Cook and Torrance, 1982] Cook, R. L. and Torrance, K. E. (1982). A re-
flectance model for computer graphics. ACM Trans. Graph., 1(1):7–24.

[Dahlberg et al., 2019] Dahlberg, H., Adler, D., and Newlin, J. (2019).
Machine-learning denoising in feature film production. In ACM SIG-
GRAPH 2019 Talks, SIGGRAPH ’19, New York, NY, USA. Association for
Computing Machinery.

[Gautron, 2020] Gautron, P. (2020). Real-time ray-traced ambient occlusion
of complex scenes using spatial hashing. In ACM SIGGRAPH 2020 Talks,
SIGGRAPH ’20, New York, NY, USA. Association for Computing Machin-
ery.

[Hachisuka et al., 2008] Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K.,
Humphreys, G., Zwicker, M., and Jensen, H. W. (2008). Multidimensional
adaptive sampling and reconstruction for ray tracing. In ACM SIGGRAPH
2008 Papers, SIGGRAPH ’08, New York, NY, USA. Association for Com-
puting Machinery.

[He et al., 2013] He, K., Sun, J., and Tang, X. (2013). Guided image filtering.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6):1397–
1409.

[Heath and Munson, 1996] Heath, M. T. and Munson, E. M. (1996). Scientific
Computing: An Introductory Survey. McGraw-Hill Higher Education, 2nd
edition.

[Jarzynski and Olano, 2020] Jarzynski, M. and Olano, M. (2020). Hash func-
tions for gpu rendering. Journal of Computer Graphics Techniques (JCGT),
9(3):20–38.

[Kajiya, 1986] Kajiya, J. T. (1986). The rendering equation. In Proceedings of
the 13th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’86, page 143–150, New York, NY, USA. Association for Com-
puting Machinery.

66

Bibliography

[Kalantari et al., 2015] Kalantari, N. K., Bako, S., and Sen, P. (2015). A
machine learning approach for filtering monte carlo noise. ACM Trans.
Graph., 34(4).

[Karis, 2014] Karis, B. (2014). High quality temporal anti-aliasing. Advances
in Real-Time Rendering for Games, SIGGRAPH Courses.

[Keller et al., 2019] Keller, A., Viitanen, T., Barré-Brisebois, C., Schied, C.,
and McGuire, M. (2019). Are we done with ray tracing? In ACM SIG-
GRAPH 2019 Courses, SIGGRAPH ’19, New York, NY, USA. Association
for Computing Machinery.

[Koskela et al., 2019] Koskela, M., Immonen, K., Mäkitalo, M., Foi, A., Vi-
itanen, T., Jääskeläinen, P., Kultala, H., and Takala, J. (2019). Blockwise
multi-order feature regression for real-time path tracing reconstruction.
ACM Transactions on Graphics (TOG), 38(5).

[Kroese et al., 2014] Kroese, D. P., Brereton, T., Taimre, T., and Botev, Z.
(2014). Why the monte carlo method is so important today. Wiley In-
terdisciplinary Reviews: Computational Statistics, 6:386–392.

[Li et al., 2012] Li, T.-M., Wu, Y.-T., and Chuang, Y.-Y. (2012). Sure-based op-
timization for adaptive sampling and reconstruction. ACM Trans. Graph.,
31(6).

[Lin and Yuksel, 2020] Lin, D. and Yuksel, C. (2020). Real-time stochastic
lightcuts. Proc. ACM Comput. Graph. Interact. Tech. (Proceedings of I3D 2020),
3(1).

[Lumberyard, 2017] Lumberyard, A. (2017). Amazon lumberyard bistro,
open research content archive (orca). http://developer.nvidia.com/orca/
amazon-lumberyard-bistro.

[Mara et al., 2017] Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. (2017). An
efficient denoising algorithm for global illumination. In Proceedings of High Per-
formance Graphics, New York, NY, USA. ACM.

[Mara et al., 2014] Mara, M., McGuire, M., Nowrouzezahrai, D., and Luebke, D.
(2014). Fast global illumination approximations on deep g-buffers. Technical
Report NVR-2014-001. NVIDIA Corporation.

[Meister et al., 2021] Meister, D., Ogaki, S., Benthin, C., Doyle, M. J., Guthe, M.,
and Bittner, J. (2021). A Survey on Bounding Volume Hierarchies for Ray Tracing.
Computer Graphics Forum.

[Moon et al., 2014] Moon, B., Carr, N., and Yoon, S.-E. (2014). Adaptive rendering
based on weighted local regression. ACM Trans. Graph., 33(5).

67

Bibliography

[Moreau et al., 2019] Moreau, P., Pharr, M., and Clarberg, P. (2019). Dynamic many-
light sampling for real-time ray tracing. In High Performance Graphics.

[NVIDIA, 2018] NVIDIA (2018). Nvidia turing gpu architecture:
Graphics reinvented. https://images.nvidia.com/aem-dam/en-zz/

Solutions/design-visualization/technologies/turing-architecture/

NVIDIA-Turing-Architecture-Whitepaper.pdf.

[NVIDIA et al., 2020] NVIDIA, Vingelmann, P., and Fitzek, F. H. (2020). Cuda, re-
lease: 10.2.89. https://developer.nvidia.com/cuda-toolkit.

[Olsson and Assarsson, 2011] Olsson, O. and Assarsson, U. (2011). Tiled shading.
Journal of Graphics, GPU, and Game Tools, 15(4):235–251.

[Olsson et al., 2012] Olsson, O., Billeter, M., and Assarsson, U. (2012). Clustered
deferred and forward shading. In Proceedings of the Fourth ACM SIGGRAPH /
Eurographics Conference on High-Performance Graphics, EGGH-HPG’12, page 87–96,
Goslar, DEU. Eurographics Association.

[O’Neill, 2014] O’Neill, M. E. (2014). Pcg: A family of simple fast space-efficient
statistically good algorithms for random number generation. Technical Report
HMC-CS-2014-0905, Harvey Mudd College, Claremont, CA.

[Pantaleoni, 2020] Pantaleoni, J. (2020). Online path sampling control with progres-
sive spatio-temporal filtering.

[Parker et al., 2010] Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J.,
Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M.
(2010). Optix: A general purpose ray tracing engine. ACM Trans. Graph., 29(4).

[Perlin, 1985] Perlin, K. (1985). An image synthesizer. In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’85,
page 287–296, New York, NY, USA. Association for Computing Machinery.

[Pharr et al., 2016] Pharr, M., Jakob, W., and Humphreys, G. (2016). Physically Based
Rendering: From Theory to Implementation. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition.

[Saito and Takahashi, 1990] Saito, T. and Takahashi, T. (1990). Comprehensible ren-
dering of 3-d shapes. In Proceedings of the 17th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’90, page 197–206, New York, NY,
USA. Association for Computing Machinery.

[Schied et al., 2017] Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chaitanya,
C. R. A., Burgess, J., Liu, S., Dachsbacher, C., Lefohn, A., and Salvi, M. (2017).
Spatiotemporal variance-guided filtering: Real-time reconstruction for path-
traced global illumination. In Proceedings of High Performance Graphics, HPG ’17,
New York, NY, USA. Association for Computing Machinery.

68

Bibliography

[Talbot et al., 2005] Talbot, J. F., Cline, D., and Egbert, P. (2005). Importance resam-
pling for global illumination. In Proceedings of the Sixteenth Eurographics Confer-
ence on Rendering Techniques, EGSR ’05, page 139–146, Goslar, DEU. Eurographics
Association.

[Tomasi and Manduchi, 1998] Tomasi, C. and Manduchi, R. (1998). Bilateral filter-
ing for gray and color images. In Sixth International Conference on Computer Vision
(IEEE Cat. No.98CH36271), pages 839–846.

[Veach, 1998] Veach, E. (1998). Robust Monte Carlo Methods for Light Transport Simu-
lation. PhD thesis, Stanford, CA, USA. AAI9837162.

[Veach and Guibas, 1995] Veach, E. and Guibas, L. J. (1995). Optimally combining
sampling techniques for monte carlo rendering. In Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’95, page
419–428, New York, NY, USA. Association for Computing Machinery.

[Vitter, 1985] Vitter, J. S. (1985). Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1):37–57.

[Vogels et al., 2018] Vogels, T., Rousselle, F., Mcwilliams, B., Röthlin, G., Harvill, A.,
Adler, D., Meyer, M., and Novák, J. (2018). Denoising with kernel prediction and
asymmetric loss functions. ACM Trans. Graph., 37(4).

[Walker, 1977] Walker, A. J. (1977). An efficient method for generating discrete ran-
dom variables with general distributions. ACM Trans. Math. Softw., 3(3):253–256.

[Walter et al., 2005] Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M.,
and Greenberg, D. P. (2005). Lightcuts: A scalable approach to illumination.
ACM Trans. Graph., 24(3):1098–1107.

[Walter et al., 2007] Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. (2007).
Microfacet models for refraction through rough surfaces. In Proceedings of the 18th
Eurographics Conference on Rendering Techniques, EGSR’07, page 195–206, Goslar,
DEU. Eurographics Association.

[Whitted, 1979] Whitted, T. (1979). An improved illumination model for shaded
display. page 14.

[Winkelmann, 2019] Winkelmann, M. (2019). Zero-day, open research content
archive (orca). https://developer.nvidia.com/orca/beeple-zero-day.

[Yuksel, 2019] Yuksel, C. (2019). Stochastic lightcuts. In High-Performance Graphics
(HPG 2019), pages 27–32. The Eurographics Association.

[Zwicker et al., 2015] Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ramamoor-
thi, R., Rousselle, F., Sen, P., Soler, C., and Yoon, S.-E. (2015). Recent advances
in adaptive sampling and reconstruction for Monte Carlo rendering. Computer
Graphics Forum (Proceedings of Eurographics - State of the Art Reports), 34(2):667–681.

69

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Marvin Reza

Efficient Sample Reusage in Path
Space for Real-Time Light Transport

Master’s thesis in Computer Science
Supervisor: Theoharis Theoharis

June 2021

M
as

te
r’s

 th
es

is

