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Abstract

This thesis designs and implements an autonomous mission control system for an autonomous
remotly operated vehicle (ROV) such that it is capable of performing autonomous underwater
inspection, maintenance and repair (IMR) operations within aquaculture. Autonomous ROVs
capable of conducting autonomous IMR operations could reduce the different risks associated
with subsea operations within aquaculture as well as enable the move towards exposed loca-
tions.

For designing the autonomous mission control system, the classical Guidance, Navigation,
and Control-control architecture is combined with the idea of a hybrid mission control archi-
tecture. A layered approach for implementing the different components in the hybrid mission
control architecture in an existing manual system is proposed. For assisting with creating and
visualizing the logic flow through an autonomous mission control system, a finite state ma-
chine (FSM) and a behavior tree (BT) is proposed for an autonomous mission control system.

The different underwater IMR operations in aquaculture and what would be required for
their implementation in an autonomous mission control system is established. The different
risks connected to the use of autonomous ROVs are also established.

An autonomous mission control system is then proposed for SINTEF Ocean’s Argus Mini
ROV, and elements of the autonomous mission control system are implemented. A previ-
ously created controller for autonomously traversing the net by utilizing a Doppler velocity
log (DVL) is used as the basis for an autonomous net inspection mode. A smaller FSM was
utilized for visualizing the logic flow within the net inspection mode. This system is capable
of performing an autonomous net inspection in simulations but requires improved filtering
and better simultaneous localization and mapping (SLAM) before it is viable in a real-world
aquaculture application. The implemented elements are a reactive behavior for handling the
loss of DVL measurements and a deliberative behavior for tracking the inspection progress
and creating a pattern for net inspection. The reactive behavior for handling the loss of
DVL measurements performs as intended both in simulation and field tests conducted in a
full-scale, real-world fish farm. The deliberative behavior for tracking the inspection progress
and creating an inspection pattern performed as intended in simulation; however, although
showing promise, the performance was unsatisfactory in the real-world tests. The unsatis-
factory performance was due to a large amount of wave and current-induced noise, a flawed
filter, and a poor SLAM algorithm.



Sammendrag

I denne oppgaven utformes og implementeres et autonomt system for oppdragskontroll av
en autonom ROV, slik at den er i stand til å utføre autonome undervanns- inspeksjons-,
vedlikeholds- og reparasjonsoppdrag innenfor akvakultur. Autonome ROV’er med mulighet
for å gjennomføre autonome inspeksjons-, vedlikeholds- og reparasjons-oppdrag kan bidra til
å redusere risikoene knyttet til undervannsoperasjoner i havbruk, og muliggjøre forflytningen
til mer eksponerte farvann.

For å designe systemet for autonom oppdragskontroll ble den klassiske guiding-, navigasjons-
og kontrollsystem arkitekturen kombinert med ideen om en hybrid oppdragskontroll-arkitektur.
En lagdelt tilnærming for implementering av de forskjellige komponentene i hybrid oppdragskontroll-
arkitekturen i et eksisterende manuelt kontrollsystem blir presentert. En endelig tilstands-
maskin og et atferdstre blir presentert for å gjøre det enklere å lage og visualisere logikkflyten
igjennom det autonome systemet for oppdragskontroll.

De forskjellige undervanns- inspeksjons-, vedlikeholds- og reparasjons-oppdragene i havbruk,
og hva som vil kreves for å implementere de i et system for autonom oppdragskontroll blir
etablert. De forskjellige risikoene knyttet til bruken av autonome ROV’er i havbruk blir ogs̊a
etablert.

Et system for autonom oppdragskontroll blir presentert for SINTEF Oceans Argus Mini
ROV, og elementer av dette blir implementert i et system for oppdragskontroll, slik at det er
i stand til å utføre autonom notinspeksjon. En tidligere implementert kontroller for autonom
traversering av nota ved hjelp av en Doppler velocity log (DVL) blir benyttet som basis for
en autonom notinspeksjonsmodus. Systemet klarer å gjennomføre autonom notinspeksjon
i simuleringer, men krever forbedret filtrering og en bedre algoritme for samtidig lokaliser-
ing og kartlegging (SLAM) før det vil være gunstig å bruke i fullskala akvakultur. De to
implementerte elementene er en reaktiv atferd for å h̊andtere tap av DVL m̊alinger og en
overveiende atferd for å ha kontroll p̊a fremgangen i inspeksjonen og generere et mønster for
autonom notinspeksjon. Atferden for å h̊andtere tap av DVL m̊alinger fungerer som tiltenkt
b̊ade i simuleringer og i fullskala tester utført i et ekte oppdrettsanlegg. Atferden for å ha
kontroll p̊a fremgangen i inspeksjonen og generere et mønster for autonom notinspeksjon fun-
gerer som tiltenkt i simuleringer, men yter ikke godt nok i fullskala tester. Årsaken til den
noe svake ytelsen var mye støy grunnet bølger og strøm, et filter som ikke fungerte og en svak
SLAM algoritme.
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Chapter 1

Introduction

This section introduces the background for the project, presents some of the important lit-
erature studied for this project, states the objective of the project, and finally presents the
structure of the report.

1.1 Background

Goal 2 of the UNs sustainable development goals is to end hunger, achieve food security,
improve nutrition, and promote sustainable agriculture [47]. An important contributor to
a food-secure future for all is the fisheries and aquaculture sector due to its significant and
growing role in providing food, nutrition, and employment [14]. Globally, it is estimated that
in 2018 about 156 million tonnes of fish were produced for direct human consumption [14].
While capture fisheries are stabilizing as they are reaching the limit of sustainable harvest,
the aquaculture sector continues to rise and since 2016 aquaculture has been the main source
of fish available for human consumption [14]. In Norway, the aquaculture industry has grown
substantially in the last 30 years, and in 2019 Norway produced 1 440 358 tonnes of salmon
and trout [46].

Figure 1.1: A typical fish farm using net cages, here SINTEF ACE Rataren located near the
island of Frøya, Trøndelag, Norway. (M.O. Pedersen, SINTEF Ocean AS) [3]
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The lack of available sheltered locations for new aquaculture production facilities along
the Norwegian coast and the necessity to preserve some of the natural landscape is pushing
the Norwegian aquaculture industry to move towards more exposed and remote sites. An
example of a fish farm in moderately sheltered waters can be seen in Figure 1.1. Moreover,
further offshore, the production conditions are potentially better since the farms experience
less negative consequences from sea lice [19]. The environmental impact is also reduced due
to a greater distance to wild salmon [19]. For the personnel working in aquaculture, the move
from sheltered waters to more exposed areas also means a higher risk of injuries and fatalities.
The aquaculture industry is already one of the most dangerous occupations in Norway [21],
meaning that these risks should be reduced as much as possible, as soon as possible. The
current technologies and operations in fish farms are highly dependent on manual labor for
tasks such as cleaning and maintenance. This leads to close human interaction with tools
and fish cage structures. Typical operations that are currently performed manually for each
net cage are the removal of dead fish as well as inspection, maintenance, and repair (IMR)
operations. [50]. Increased use of Remotely Operated Vehicles (ROVs) for these purposes will
create a positive chain reaction, reducing risk and increasing efficiency. ROVs can, to some
extent, replace diving operations, which are among the operations in aquaculture with the
highest risk [41].

Large actors in the oil and gas industry have been looking into the use of ROVs for IMR
operations for over a decade [38]. In the last decade, the use of ROVs in aquaculture has
increased, and it seems to continue increasing in the future. The use of ROVs in aquaculture
can be more challenging compared to the oil and gas industry, and there are several reasons
for this. The aquaculture net pens are flexible structures, and knowing their exact position
and movement is challenging. Collisions between the ROV and the net must be avoided as
it may weaken the net and ultimately cause a hole, hence causing farmed salmon to escape
the cage. Controlling the ROV is also more challenging because the aquaculture net pens are
situated in the wave zone, causing larger forces from waves than those experienced by ROVs
deep under the surface. Lastly, the large, dense biomass causes challenges for acoustic signals
and visual references that the ROV uses for communication and navigation. [3] Remotely
Operated Vehicles in the context of marine application usually refer to a box-shaped, tethered,
unmanned vehicle used for different underwater operations such as detailed inspection, subsea
installation, and maintenance. In [44], NORSOK defines three different classes of ROVs which
are presented in Table 1.1.

Class I Pure observation Small vehicles with cameras

Class II Observation class Vehicles able to carry additional sensors

Class III Work class vehicles Vehicles large enough to carry sensors and tooling

Table 1.1: Classes of ROVs from [44]

All of these classes can, to some extent, be found in aquaculture [3]. Class I ROVs are
only used for simple visual inspection; in aquaculture, this could be an inspection of the
net, examining fish behavior, etc. A Class II ROV differs from Class I by having additional
sensors as payload, and some could also have lights and simple tools. As they should still
be relatively small, they have limited abilities, but due to the ability to carry additional sen-
sors, they could perform advanced inspections. They could also possibly be used for tasks
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such as net repair, retrieval of mortalities, and other tasks that only require simple tools.
Class I and Class II ROVs can be found quite commonly in aquaculture. Class III ROVs are
not as commonly found in aquaculture due to their size and cost. They do, however, have
some more advanced uses, such as washing net cleaning and subsea drilling for anchoring bolts.

During the aforementioned operations, the ROV is usually manually controlled by an op-
erator on board the service vessel that launched the ROV. While the aquaculture environment
is complex, several of these tasks themselves are fairly simple, and could with some techno-
logical innovation, be performed by an autonomous ROV. An example of this is presented
in [4], where an ROV is outfitted with a Doppler velocity log (DVL) to estimate the position
of the net relative to the ROV, which then traverses the net autonomously. Figure 1.2 depicts
the mentioned ROV performing autonomous net traversal. This is an important step in the
direction of autonomous ROVs in aquaculture.

Figure 1.2: SINTEF Ocean’s Argus Mini ROV inspecting the net cage. [3]

The objectives for automating different functions in ROV operations are related to safety,
performance, consistency, time, and cost [13]. Today, it is common for ROVs in aquacul-
ture to have some automatic functions such as automatic depth control and hovering, which
allows for limited autonomy. A few more advanced ROVs have capabilities such as station
keeping, which allows for some more advanced autonomous functions. Further research and
technological innovation are required before ROVs in aquaculture can be fully autonomous.

1.2 Objective

This project looks into the mission control architecture for connecting the different automatic
functions and administering decisions for performing autonomous IMR operations. Therefore,
the objective is to design and implement a mission control system for an ROV such that it
can perform selected IMR tasks within aquaculture autonomously.
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1.3 Report Structure

� Chapter 1 describes the background and objective of this project.

� Chapter 2 introduces the theory required for designing the mission control architecture
of an autonomous ROV.

� Chapter 3 describes where and how different IMR operations could be implemented for
the Argus Mini ROV owned by SINTEF Ocean.

� Chapter 4 describes the iterative implementation process of selected IMR operations.

� Chapter 5 documents the results from field trials using the final implementation of the
mission control architecture.

� Chapter 6 discusses the results and challenges that occurred during implementation and
field tests and how these could be solved.

� Chapter 7 concludes the project and presents opportunities for further work.
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Chapter 2

Theory

This chapter will introduce the theory required for designing the mission control architecture
of an autonomous ROV. Most of the sections in this chapter were researched and written
during the pre-project, and forms the theoretical foundation for the developed control archi-
tecture.

2.1 Underwater IMR in Aquaculture

To determine what tasks and goals should be included in the mission control architecture for
an autonomous ROV in aquaculture, one must first have good knowledge of the real-world
tasks it should be able to complete. This section will therefore take a look at what IMR-
operations an autonomous ROV could perform. This section is largely based on a paper
written for the specialization subject ”TMR06 - Autonomous Systems”, talks with personnel
from SINTEF Ocean working closely with ROVs in aquaculture [3] and an analysis of current
ROV operations in the norwegian aquaculture, [41]. The paper was written by the author in
collaboration with fellow students at the Department of Marine Technology at NTNU, Vilde
Xiu Drønen and Hwang Jae Hyeong, and can be found in Appendix A.

2.1.1 Inspection

The net cage containing the fish is among the most crucial structures in aquaculture. The
risk with the most significant consequences in aquaculture, for both the environment and for
the asset, is the risk of fish escapes. The most frequent reason for fish escapes is structural
failures, such as mooring failure, breakdown of net cage structures, abrasion, and tearing of
nets [23]. An important tool in avoiding these structural failures is regular inspection. Several
of the structural parts which need regular inspection can be found underwater. In the last
couple of decades, the use of manually controlled ROVs for structural inspection operations
has gradually replaced the divers, lowering the risk of injuries and fatalities [41]. Inspection
can also be an important tool for monitoring fish welfare. During delousing or other operations
where the fish is forcefully moved (crowding), the fish is monitored for determining the effects
on the fish and if the operation affects the welfare of the fish. This monitoring is usually
conducted using a manually controlled ROV. Onward in the future, it can be expected that
the manually controlled ROVs could be replaced with autonomous ROVs. Three underwater
inspection operations where manual ROVs are currently used are net inspection, mooring
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inspection, and fish monitoring.

Net inspection

The main component of a net cage is the net itself, and as mentioned above, holes and break-
ages in the net are the most common reason for fish escapes. Holes are typically caused by
predators or caged fish biting the net, abrasion, collisions with boats, and handling procedures
such as lifting the net. To avoid fish escapes the nets must be inspected such that the holes
can be found and repaired. These inspections are scheduled regularly and are also usually
conducted after handling procedures. When the inspection is completed with an ROV, the
standard procedure is to pilot the ROV around in the net cage while pointing the ROVs
camera at the net. The distance between the ROV and the net is usually around 2-3 meters
from the net, but could be as low as 0.5 meters in low visibility conditions [41]. As parts
of the inspection will take place in the wave zone and the net cage contains other structures
and moorings, there is a risk of the ROV colliding with the net or getting the tether stuck in
some other structure. Avoiding collisions and maneuvering in a way that keeps the tether free
requires careful control of the ROV. While the ROV is piloted around in the net, the operator
monitors the video feed showing the net and identifies and reports deviations such as holes,
gnawing, misplacement, and other defects. The video feed is prone to disturbances, such as
low visibility, fast-moving currents, and fish coming between the camera and the net. For
this operation to be fully autonomous, it would require autonomous piloting of the ROV and
automatic detection of deviations. The use of a Doppler velocity log (DVL) to autonomously
track the net was first proposed in [36]. A method for guiding an ROV to autonomously
traverse the net by the use of a DVL is presented in [4]. Automatic detection of holes has
been researched and developed by SINTEF, but the algorithm is in its infancy [20]. Based
on the results in [4], autonomous traversal of the net pen is feasible with the use of a DVL,
although some further research is needed to achieve better control of the ROV and better
filtering of noise and errors in the DVL distance measurements. This could be combined
with further development of the automatic hole detection algorithm for an autonomous net
inspection. However, the autonomous net inspection will not be fully autonomous until the
traversal, and especially the detection system, can be completely independent of humans.

Mooring inspection

The moorings are related to the structure keeping the net cage in place. They consist of
anchor points, mooring chains, mooring ropes, and the joints between them. The different
components can have different failures, leading to the complete failure of a mooring which
again could lead to a complete breakdown of the net cage. While a complete breakdown of
the net cage is uncommon, it leads to the largest amount of escaped fish [23]. Inspections of
the moorings can help discover possible faults and prevent complete failure, and regulations
state that inspections should be conducted at least twice a year. ROVs usually conduct these
inspections as the mooring inspection is a time-consuming operation, and some of the anchors
could be located in deeper waters, making the inspection operation unsuitable for divers [41].
When the inspection is conducted with an ROV, the standard procedure is to place the ROV
in the water, outside of the net cage, and then follow a mooring line from top to bottom. It
can be challenging to control the ROV as it will be located in the wave zone for a part of the
operation. The location of the tether must also be considered to avoid wedging or damaging
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it. While the ROV is following the mooring line, the video feed is monitored for deviations
in the mooring line that could lead to a failure. As mentioned in the net-inspection section
above, this video feed is prone to disturbances, making it harder to detect deviations. The
most common deviations are ruptures or overlaps. Other deviations can be ropes being in
contact with other ropes or the bottom, rocks, and other hard surfaces that could rub or tear
the rope. These deviations will be reported and then patched up. General wear and tear of
the chain, rope, and joints can also be detected and used for planning future inspections or
reparations. A method for localizing a flexible anchor line was proposed and tested in [20,37],
and while it, in combination with an autonomous ROV, could be used for performing mooring
inspections autonomously, further research is required for this to be feasible. More research
has been conducted regarding detecting faults in ropes and chains, but again further research
is required as most of the research has been for ropes outside of water. For the mooring
inspection to become fully autonomous, the ROV must be able to perform as well as the
human operators do today or better. Hence, the detection system must be able to recognize
more than signs of rope and chain failure.

Fish Monitoring

The fish in Norwegian fish farms is protected by the Animal Welfare Act [27]. To avoid high-
stress levels in the fish during handling operations that utilize crowding, such as delousing, the
operation and the movement of the fish is monitored. In most handling operations utilizing
crowding, a crowding net is placed inside the net cage and shrunk in order to force the fish
into a desired area. ROVs are often used for inspecting fish behavior during these operations.
The ROV is placed inside the net cage but outside of the crowding net. It then follows the
movement of the fish inside the crowding net, and a video feed is used to monitor the behavior
of the fish. The ROV operators relay the information from the video feed to the personnel
conducting the handling operation, which then adapts the procedure according to the given
information. For this operation to be made autonomous, it would require a control system
that can follow the shrinking of the net, as well as the movement of the fish. Secondly, it
would require a computer vision system able to determine how stressed the fish are. To the
best of the author’s knowledge, both of these requirements are within an area where little
research has been conducted, meaning that a large amount of research must be conducted
before this operation can be made autonomous.

2.1.2 Maintenance

Maintenance work is performed to minimize the possibility of something going wrong or no
longer functioning as desired. It is also essential to maintain the primary function of several
components. The various pieces of the net cage require different maintenance operations.
The tension of the moorings must be checked and adjusted, and the moorings and net must
be cleaned from biofouling. The only maintenance task commonly performed with ROVs is
the operation of keeping the net clean from biofouling. This can be conducted with special
cleaning rigs, either manually operated by cranes, ropes, and humans, or by an ROV. The
benefit of using an ROV for this operation is reduced risk for workers and increased efficiency.
While other underwater maintenance operations may be required, these are rarely conducted
with ROVs as these operations often have precision requirements that are hard to satisfy with
ROV grippers. The primary focus of this subsection will therefore be net cleaning.
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Net cleaning

There are several reasons why the net should be kept clean, most of them related to the
welfare of the fish [7]. First, the biofouling reduces the oxygen level and waste flushing in the
net cage due to reduced water circulation in the cage. Second, the biofouling could contain
parasites such as louse, which could damage the fish or introduce diseases. Lastly, the weight
of the net can be greatly increased with biofouling, increasing the risk of structural failures.
Nets are often covered with a layer of antifoulants to reduce biofouling, but this does not last
forever, and biofouling will occur. Hence, cleaning is needed to remove the biofouling. There
are different ways of cleaning the net; currently, the most common method is spraying the
net with high-pressure water from a minimal distance. Cleaning methods utilizing brushes
can also be found. While more abrasive methods can be more efficient in cleaning the net,
they can cause more wear and tear of the net, as well as the release of chemicals from the
antifoulants, such as copper. As a result, they are not as common. During cleaning operations
with an ROV, the ROV is placed inside the net cage and then maneuvered around, touching
the net, while a cleaning tool cleans the biofouling from the net. There exist both purpose-
built ROVs for net cleaning and specialized cleaning rigs that can be mounted to work class
ROVs. An example of a purpose-built ROV for net cleaning can be seen in Figure 2.1, with
eight rotating discs spraying high-pressure water at the net.

Figure 2.1: The purpose-built net-cleaning ROV FNC8 2.0 from AKVA group, produced by
Sperre AS [1]

The FNC8 2.0 is also ”prepared for autonomous operations” [1]. It could also be feasible
for general work class ROVs with cleaning rigs to be made autonomous. As the ROV will be
interacting with the net while cleaning, it runs a high risk of damaging the net should some-
thing go wrong. Therefore, it is crucial that the ROV does not apply too much pressure to the
net and that any sharp edges or protruding objects are removed. For autonomous operations,
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an ROV would need a positioning system relative to the net, a precise control system, and
some system for determining whether the desired area of the net has been sufficiently cleaned.
Researchers at SINTEF Ocean have conducted research on the specifications of a permanent
resident, autonomous, and tetherless subsea robot for cleaning and inspection of net cages
in [29]. They state that no existing solution is able to fully address the challenges they found
for cleaning and inspection of net cages. Akva group and Sperre AS state that their FNC8
2.0 is prepared for autonomous operations, but the author could not find any examples of
this being tested or in use. Therefore, it can be assumed that they have a capable system
that requires more research and work before being ready for implementation.

2.1.3 Repair

Repair operations are essential for avoiding massive consequences, such as large-scale fish
escapes. Several of the components of a net cage are large and expensive, and they are
therefore easier and more economical to repair instead of replacing them. The net is one of
the components in aquaculture that is most exposed to damages and hence needs the most
repairs. It is also one of the most crucial components of aquaculture. Therefore, the most
important underwater repair operation which can be conducted by an ROV is the operation
of repairing a hole in the net.

Net Repair

As earlier stated, the formation of holes is the most common reason for fish escapes in Nor-
wegian aquaculture [23]. Even a small hole could lead to a larger rip, meaning that it is of
great importance to repair any holes that might occur in the net. The holes should also be
repaired as quickly as possible after being discovered. Holes are usually sewn back together
by divers. This is to achieve a repair of sufficient quality. There have been proposed some
solutions for repairing holes in the net with ROVs, but they are not widely used [41]. An
example is the sewing-machine tool produced by Sperre AS [42]. Using ROVs would greatly
reduce the risk for the divers; however, the quality of the repair must be satisfying for it to
be feasible. The use of ROVs could also increase the risk of expanding the hole, as the ROV
needs to be placed close to the hole with a repair tool such as a sewing machine protruding.
As holes should be repaired as quickly as possible, it could be beneficial if an ROV was able
to both conduct an inspection and perform a repair within the same operation. Before this
operation could be made autonomous, there would need to be a feasible solution for repairing
holes with an ROV. This could be a sewing-machine tool like the one from Sperre AS, but to
the best of the author’s knowledge, it lacks proper use in real-world application. Assuming a
solution exists, an autonomous ROV with systems for performing net repairs would require
several advanced systems. A precise controller for keeping stationary while conducting re-
pairs would be required. It should also be able to locate and move to the location of the hole
autonomously. The ROV would also need an autonomous repair system, which must be able
to identify the edges of the hole and how it can be repaired and then perform the reparation.
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2.2 Control Architecture

A mission control system for achieving the tasks presented in section 2.1 will have different
systems interacting to achieve the desired motion. These systems will be combined in some
control architecture. In regards to the control architecture for marine craft, Handbook of
Marine Craft Hydrodynamics and Motion Control (Fossen, 2011) [15] proposes a ”Guidance,
Navigation and Control”-architecture, often referred to as ”GNC”. This architecture is among
the most common approaches to vessel control, and it can be found implemented in a large
number of practical applications. The approach in (Fossen, 2011) [15] is based on the classical
approach to a control problem, but expanded with a guidance system for providing an im-
proved reference to the control system, and a navigation system for determining the position
of the vessel. A figure showing the three interconnected systems can be seen in Figure 2.2.
These will be further explained in the following sections.

Figure 2.2: The three interconnected subsystems of the GNC-architecture, reprinted from
(Fossen, 2011, p. 233) [15]

2.2.1 Guidance

The goal of the guidance system is to calculate reference signals for the controllers in a control
system. In the simplest form, the reference could be the goal position, but by improving the
reference signal, a more efficient and precise result could be achieved from the controller.
Path following is an example of this, where the guidance system calculates a path to the end
goal and sets a point along this path as the controller set point instead of setting the end goal
as the setpoint.

2.2.2 Navigation

The navigation system estimates the current state and position of the system, usually from
a combination of data provided by different sensors and observers. The resulting estimate is
used both by the guidance system for calculating the reference, and by the control system for
tracking of the reference signals.
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2.2.3 Control

The control system determines the necessary forces to achieve a goal. This desired goal is
calculated by the guidance system. The control system will also include the allocation problem
if a system has several ways of providing the necessary forces.

2.2.4 Expanding GNC for autonomy

The approach in (Fossen, 2011) [15] covers the solution of classical control problems in the area
of marine control. To introduce autonomy into this approach, the guidance, navigation, and
control systems must be expanded with more advanced and deliberative functions compared to
what is commonly found in marine control. When looking into a mission control architecture
for an autonomous ROV, the guidance system will be the most relevant part of the GNC-
architecture. The other systems could also be made to include more advanced and deliberative
components, but this will not be covered in this thesis.

2.3 Mission Control Architecture

Controlling an autonomous vessel is a complex task, and a well-conceived control architecture
can help manage this complexity. The autonomous vessel must be able to perform different
tasks and at the same time react to unexpected situations [40]. A mission control architec-
ture contains control laws, error detections, recovering, path planning, task planning, and
monitoring of events during mission execution [16]. The design of a control architecture is
one of the most important elements when developing the autonomy of a vehicle [10]. The
design of a mission control architecture is no exact science, there is no right or wrong answer,
but various control architectures have different advantages. Four different classes of methods
for robot control are presented in the Springer Handbook of Robotics [40]. These represent
different ideas and does not directly relate to the control architecture itself, however, the
different ideas lay a foundation for building the mission control architecture.

� Deliberative - Think, Then Act

� Reactive - Don’t Think, (Re)Act

� Hybrid - Think and Act Concurrently

� Behavior-Based Control - Think the Way You Act

These will be further explained in the following subsections.

2.3.1 Deliberative

The idea of deliberative control is that the robot uses all the available information from
sensors combined with previous knowledge to reason about what the next action should be.
This reasoning is typically a form of planning, where the system searches for the possible
action sequences and their outcomes. The system must then evaluate all the outcomes and
choose the one that achieves the goal or solves the task optimally. Planning is a significant
component in artificial intelligence and can be a complex process. An example of planning
can be path planning for a robot that is navigating through some environment. To generate
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the optimal plans the system must be able to look into the future and predict the outcomes of
possible actions. This means that the system must have an internal model of the environment,
often called a world model, that must be as accurate and up-to-date as possible for enabling
the system to choose the best action in any given situation. If the environment is a dynamic,
rapidly changing, and noisy environment, it can be challenging to keep the world model
accurate and up-to-date, especially in real-time. This gives purely deliberative robots a slow
reaction time, and as a result, it is rare to find purely deliberative robot systems today. [39,40]

2.3.2 Reactive

To allow the system to quickly respond to a dynamic, rapidly changing, and noisy environ-
ment, one could apply the idea of reactive control. In reactive control, there is no intervening
reasoning, and instead, there are simple rule-based methods preprogrammed into the system,
enabling rapid real-time responses. These rule-based methods can often be represented as
finite state machines, where the rules represent the state transitions. This allows the system
to quickly react to events as they happen. Examples of this can be object avoidance for a
robot with limited vision or reacting to sensor errors. Reactive control trades the complexity
of reasoning for a faster reaction time. For purely reactive systems, no information about
the state of the world is stored, and the overall system is limited to simple tasks with low
complexity. This makes it very challenging to design a robot that is capable of accomplishing
long-term goals or acting optimally. As a result, most robot systems today have some internal
model of the environment and plan for completing long term goals. [39, 40]

2.3.3 Hybrid

Hybrid control aims to combine the best aspects of the reactive- and deliberative control
ideas. This allows the system to utilize the rationality and optimality of deliberative control,
as well as the quick reaction time of reactive control. A common method for achieving this
combination is to let different subsystems manage the different control ideas. A reactive
subsystem will use preprogrammed rules to enable reactive actions, i.e., evasive maneuvers
for collision avoidance, while a deliberative subsystem will manage the overall plan, goals,
and challenges. The control system must then use some algorithm to decide which of the
actions provided by the subsystems it should use. In the simplest form, this algorithm could
be to always give the reactive control priority and then have a ”no-action” reactive action to
let the deliberative system through. However, this would highly rely on well-created reactive
actions, and a more advanced algorithm could be beneficial for more efficiently reaching the
goals. One example where a more advanced algorithm would be required is if a situation
evolves from a situation that would generally be managed by the reactive subsystem into a
situation that must be managed by the deliberative subsystem. Another example could be
where the deliberative subsystem must influence the reactive subsystem such that it does not
entirely digress from the overall goals. I.e., the system must make an informed decision of what
to do. The design of a controller using a hybrid mission control architecture requires good
knowledge of both the main goals and the main pitfalls for the controlled system, whether
it is a robot trying to find its way through some environment or an ROV performing IMR
operations in aquaculture. [39, 40]
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2.3.4 Behavior-Based

The idea of behavior-based control divides the mission control problem into different low-
level control behaviors. These behaviors are implemented as control laws and can all take
input from the sensors and other modules, as well as send outputs to the actuators and
other modules. The behaviors range from the most straightforward reactive behaviors to
more advanced behaviors capable of modeling the environment. All the behaviors are run
concurrently and interact mainly in the environment instead of internally in the system. The
combined output from all the behaviors should lead to the system reaching its overall goals. A
significant challenge for behavior-based control is the coordination algorithm needed to achieve
this. Designing this algorithm could be more challenging in behavior-based control compared
to hybrid control. It could also result in reduced efficiency or analyzability of the resulting
control system. However, it could be more suited to the application of machine-learning-based
methods such as reinforcement learning [39]. Another challenge with behavior-based control
is that it rarely fits into pre-existing systems but instead requires the entire control system
to be designed around it. [39, 40]

2.3.5 Choosing a Suitable Mission Control Architecture

The idea of reasoning and deliberative control is one of the key components for making a
system into an autonomous system. However, it is not as simple as just using the idea of
deliberative control to design a mission control architecture. An autonomous ROV in aquacul-
ture is subject to a complex environment. It has to cope with large moving biomass, relatively
large environmental forces from waves and current, and flexible structures moving with the
aforementioned environmental forces. Hence, a reactive component will be needed to react to
unplanned events and avoid unwanted situations. When choosing a suitable mission control
architecture for control of an autonomous ROV in aquaculture, a combination of these would
therefore be appropriate.

As ROVs are rarely purpose-built to be autonomous, they already have a control system
for manual control with some automatic capabilities. This control system will usually have
an architecture similar to what is presented in (Fossen, 2011) [15], and this is a well-known
approach for marine control systems. Hence, it could be beneficial to expand on this system
instead of re-doing the entire control system from the bottom up. This will fit more within the
idea of a hybrid mission control architecture compared to the idea of behavior-based control.
Another reason for choosing a hybrid architecture is that it is easier to design and understand.
A mission control architecture based on the idea of behavior-based control is more suitable
for multi-robot systems and other systems where scalability is more important. For the case
with an autonomous ROV for aquaculture, there is only one ROV and no need for scalability.

Further in this project, the mission control architecture will be based on the idea of a
hybrid mission control architecture.

2.4 Architectural layers

A common approach for dividing a mission control system into various subsystems is to let
different layers handle different parts of the control problem. One layer would handle planning
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and control calculations, while an execution layer would typically interact with the hardware
and execute the desired control actions. In the layered approach, the reactive ideas are in-
cluded in the execution layer, while the deliberative ideas are implemented into the overhead
control layer. There could also be a layer solely for communication and coordination between
the other layers. The actual layers used in different mission control systems can widely differ
and are usually both software and hardware dependent.

Hybrid control can significantly benefit from being implemented in a well-structured,
layered control architecture. A layered control architecture has the benefit of being easier
to understand, more reusable, and easier to test and validate. Several layered architectures
for robot control are presented in [40]. One of them is a three-layered architecture, with a
planning layer, an executive layer, and a behavior control level.

2.4.1 Planning Layer

As the name suggests, the planning layer takes care of planning the long-range goals of the
mission. It should be looking towards the future and determine the optimal plan for achieving
all the goals. If the system is unable to achieve the desired goals, it should be able to replan to
accomplish the goals. The planning layer can also include specialized planners, such as path
planners and resource optimizers, for efficiently and optimally solving particular planning
problems.

2.4.2 Executive Layer

The executive layer is the interface between the planning layer and the behavior control layer.
It translates high-level plans into lower-level behaviors and instructs the behavior control layer
on when the different behaviors should be executed and which behavior should be prioritized
over the others. The executive layer will monitor the execution of the low-level behaviors, and
if the execution fails, it will handle the exception. Some of these exceptions could require the
planning layer to replan the mission, while others could be solved by calling another behavior.
It can also manage constraints between different behaviors.

2.4.3 Behavioral Control Layer

The behavioral control layer represents the lowest level of control. While the name matches
the mission control architecture idea of behavioral control mentioned in Subsection 2.3.4, the
behavioral control layer is not entirely based on the idea of behavioral control. The behavior
control layer refers to behaviors as the different modes sensors and actuators can be in and
the tasks they can perform. Hence, the behavioral control layer is the layer that interacts with
the sensors and actuators of the system. It relays the information detected by the sensors up
to the higher layers and receives back instructions from the higher layers to execute with the
actuators. This layer primarily consists of classical methods from control engineering, with
each behavior solving one specific task.

2.4.4 Implementation in Practical Systems

Up to this point in this section, there has been little consideration for how these layers are to be
implemented in a practical system. In a practical system, one needs to consider the different
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hardware and software architectures and how they interact. All practical systems that rely
on electronics for control will require some hardware interfacing software for interacting with
the hardware. Usually, several different software could interact with each other before feeding
the resulting instructions to the hardware interfacing software. The hardware interfacing
software then ensures that the hardware performs the tasks it is given. It could seem like this
would suit the layers approach well, but for practicality, this software is rarely built with these
architectural layers in mind. Hence, the layers in the practical system could vary significantly
from what is presented in the theory. Usually, the theory would be altered to fit the system
when being implemented. However, some of the main components in the theory could still
be found in the practical system. One separation that would usually follow the theory is the
separation between the executive/planning layers and the behavior control level. As stated
above, the behavior control level will be similar to a classical control system and can often run
on the hardware of the system to be controlled, while the executive layer and the planning
layer will run on some software that the human operators could monitor and interact with.

2.5 Dynamic Mission Management Specification

Missions in underwater robotics are often quite advanced and require several different behav-
iors in the behavioral control layer. The logic for deciding what behavior to run and switching
between these behaviors can often be hard to keep track of and challenging to create in the
first place. Therefore, mathematical models of computation can be a valuable tool for creating
and visualizing the logic behind the control flow [11,22]. Mathematical models are well suited
to serve as the executional layer, but they could also be utilized within the other layers. Two
such mathematical models are Finite State Machines (FSM) and Behavior Trees (BT).

Finite State Machines originated within computational mathematics in the 1940s, and
research on FSMs was conducted into the 1980s. Today, most of the active research within
the area of FSMs has shifted away from the mathematical definition of FSMs and over to
the application of FSMs [22]. FSMs can be found in several fields of control, such as flight
control systems, motion controllers, constrained robotic systems and computer hardware [9].
They have also been used for several of the autonomous vehicles competing in the DARPA
Grand Challenge [28,33,48,49] and are common within other autonomous vehicles as well [3].
MathWorks also develops a control logic tool called Stateflow, which uses state transition
diagrams, a variant of FSMs, for designing control logic.

Behavior Trees were introduced in the late 2000s and were first developed for use in the
control of Non-Player Characters (NPCs) in computer games [11]. Previously, the control
of NPCs in computer games was commonly done with FSMs, but they are becoming less
common as they are replaced by BTs. The computer game industry is an industry with a
high pace of development, and BTs are to some extent already being replaced by utility-based
AI [34]. In academia, BTs have been a subject of research for the last ten years, with robotics
being one of the fields where BTs have shown potential [11, 31].

One of the main advantages of both FSMs and BTs is the ability to represent them
graphically with relatively little effort. This makes the logic easy to follow and increases the
readability and understandability for both developers and operators.
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In subsection 2.5.1 and subsection 2.5.2 these two different methods will first be presented
and then compared with regard to their use in underwater robotics.

2.5.1 Finite State Machines

Finite State Machines can be conceptualized as an abstract machine that can only be in one
out of a finite number of pre-defined states. To enter a different state a transition is per-
formed; this transition will only take place if the corresponding condition is true. Once in a
new state, some action can be performed until a condition for switching states is true, which
will cause the FSM to proceed to the next state.

This section will present some examples of FSMs, such that the reader should be able to
grasp the basic concepts should they be unfamiliar with FSM. The examples in this section
are adapted from Elements Of Robotics [8]. A more in-depth description of FSMs, as well
as several examples within embedded systems, can be found in Handbook of Networked and
Embedded Control Systems [9] and the formal definition and more indepth information can
be found in Introduction to Automata Theory, Languages, and Computation [22].

The basis for the mathematical model in FSMs is the concept of states and transitions.
The concept that something can have different states that can be changed with some transition
is familiar for most people. A basic example of this is appliances that can be either on or off,
such as a toaster. The states of the toaster will be ”on” and ”off,” and for switching between
these states, some transition must be taken. For a toaster, there will be two transitions, one
from ”on” to ”off” and one from ”off” to ”on.” These transitions must consist of a condition
and an action. The condition causes the transition to be taken, and the action is performed
when the transition is taken. Continuing with the toaster example, the conditions can be
the position of the lever and the value of the timer. For the transition from ”off” to ”on,”
the condition will be that the lever is down, and for the transition from ”on” to ”off,” the
condition will be that the timer has expired. The actions will be to either turn the heat on
or off, corresponding to the state of the toaster. A finite state machine also has a designated
initial state. The toaster is initially in the ”off” state when plugged in. The states and
transitions with conditions and actions can easily be visualized with a graph instead of in
writing. In the graph, each state is represented by a node and each transition by an edge.
The conditions and actions are labeled on the transitions. The initial state is represented by
an edge that is only connected to one node. A diagram of the FSM for the toaster can be
seen in Figure 2.3

off

true  heat off

on

lever down  heat on

timer expired  heat off

Figure 2.3: Finite State Machine Toaster Example
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The example in Figure 2.3 is among the most straightforward finite state machines. The
Finite State Machines found in the field of robotics can be quite complex. A simple example
from robotics can be a primitive wheeled robot searching for objects. In this example, the
robot is supposed to drive in a zig-zagging pattern until it finds an object. It should then
approach the object and stop right next to it. The robot has four different states:

Turning Left The robot turns left while driving forward

Turning Right The robot turns right while driving forward

Approach The robot moves towards a detected object

Found The robot stops near the object

Table 2.1: The four states of the primitive wheeled robot

The robot is constantly searching in the turning states. When the robot reaches ±45o

from the heading it started with, it will start turning in the other direction. If the robot
detects anything along its path, it will approach the object and stop near it.

left

true  turn left

right

approach found

at +45 deg turn right

at −45 deg turn left

detected  
set motors forwards

dete
cte

d  
set

motors
forw

ards

near object  set motors off

Figure 2.4: Finite State Machine Example

Constructing the diagram seen in Figure 2.4 can assist in both the implementation of the
control system as well as identifying failures during runtime.

FSMs can be used in different parts of the mission control system. Most notably, it can
be used to plan and execute the mission by combining the different higher-level behaviors to
achieve the overall goal. It can also be utilized within the different high-level behaviors for
tying together different low-level behaviors and achieving the goal of the high-level behavior.

Implementing an FSM is relatively easy in a single-software, single-layer control system.
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However, when implementing an FSM in more advanced systems, the implementation can be
divided between different software. This might not directly correspond with the layered ap-
proach, but the overall concepts from finite state machines and the layered control approach
still apply.

FSMs are widely used due to being easy to understand and implement, as well as being a
common structure within computer science [11].

2.5.2 Behavior trees

A behavior tree is a rooted tree, where the internal nodes are called control flow nodes,
and the leaf nodes are called execution nodes. There are four different types of control flow
nodes; Sequence, Selector, Parallel, and Decorator, and two different types of execution nodes;
Action and Condition. Behavior trees are executed in ticks with a given frequency; for each
tick, the tree is traversed in pre-order (depth-first). When an internal node is ticked, it will
route the tick further down the tree by ticking its children and then return either ”Success,”
”Running,” or ”Failure” to its parent node depending on the outcome of the child nodes.
A leaf node will either perform some computation or action depending on the type of node
and then also return either ”Success,” ”Running,” or ”Failure.” The different types of nodes
will be further explained in the upcoming subsections, and a behavior tree will be presented
for the same robot example as in subsection 2.5.1. More information about behavior trees,
pseudocode, and several examples can be found in Behavior Trees in Robotics and AI - An
Introduction [11].

Sequence Node

A sequence node will tick its children from left to right. If a child returns ”Failure” or
”Running,” the sequence node will return the same and not tick the next child. It will only
return success if all its children return success. The sequence node is commonly represented
in the diagram by a square containing an arrow. A representation of the sequence node in a
diagram can be seen in Figure 2.5.

→

Child 1 Child 2 . . . Child n

Figure 2.5: Sequence node with n children

Selector Node

The selector node1 starts by executing its children from left to right and returns ”success” as
soon as one of the children returns ”success.” If a child node returns ”running,” the sequence

1Also called the fallback node
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node will also return ”running” and not tick any remaining children. If none of the children
returns ”success,” the selector node will return ”failure.” The selector node is commonly
represented in the diagram by a square containing a question mark. A representation of the
selector node in a diagram can be seen in Figure 2.6.

?

Child 1 Child 2 . . . Child n

Figure 2.6: Selctor node with n children

Parallel Node

The parallel node ticks all its children simultaneously and will only return success if a pre-
defined number of children succeeds. If most child nodes are still running and the parallel
node cannot decide an outcome, it will return running. Failure is returned if the number of
child nodes still running plus the number of child nodes that have already returned success
are not enough to achieve the pre-defined number of successes. The parallel node is commonly
represented in the diagram by a square containing two arrows. A representation of the parallel
node in a diagram can be seen in Figure 2.7.

⇒

Child 1 Child 2 . . . Child n

Figure 2.7: Parallel node with n children

Decorator Node

The decorator node manipulates the return from its single, underlying child according to some
user-defined rule. It could invert the result from the child, repeat the execution of a child,
or limit the number of attempts a child node can have before always returning failure. The
decorator node is commonly represented in the diagram by a diamond, often with a label
describing the rule of the decorator. A representation of the decorator node in a diagram can
be seen in Figure 2.8.
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Invert

Child

Figure 2.8: Example decorator node with child

Condition

When ticked, the condition node checks a pre-defined condition and then returns the outcome
of the condition. It does not have any children, and it will never return running. The condition
node is commonly represented in the diagram by an ellipse, often containing the condition as
a label. An example of a condition node used with a selector node and an action node can
be found in Figure 2.9

Action

When ticked, the action node executes a pre-defined function or action and then returns
success if the action is completed successfully or failure if it cannot be completed. If the
action is still being performed, the node will return running. The action node is generally
where the physical processes of the system are completed. It is commonly represented in the
diagram by a rectangle containing a label describing the action. An example of an action
node used with a selector node and a condition node can be found in Figure 2.9

?

Detected?
Motor

forwards

Figure 2.9: A small behavior tree consisting of a selector node, a condition node and an action
node
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Node Type Succeds Fails Running

Sequence If all children succeed If one child fails If one child returns ”Running”

Selector If one child succeeds If all children fail If one child returns ”Running”

Parallel If ≥M children succeeds If > N −M children fail Else

Action Upon completion If unable to complete During completion

Condition If true If false Never

Decorator Custom Custom Custom

Table 2.2: The node types of a BT, from Behavior Trees in Robotics and AI - An Introduction
[11]

In Figure 2.10 is an example of a complete behavior tree. The example is the same as
the one represented in Figure 2.4, with a simple robot searching for an object by zig-zagging
forwards. There was no need for the decorator node or the parallel node; hence, the example
only utilizes four of the six nodes: The sequence node, the selector node, the condition node,
and the action node. Due to behavior trees being traversed depth-first, the default behavior
should be on the right side, and the most critical reactive behavior should be on the left side.
In this case, the default behaviors are the two ”turning and driving”-actions.

→

?

Near? Motor off

?

Detected?
Motor

forwards

?

At
−45 deg?

Turn
right

?

At
+45 deg?

Turn
left

Figure 2.10: Behavior Tree Example

In a similar way to FSMs, constructing this BT will ease the implementation of the control
system as the logic flow is much easier to follow. It will also reduce the risk of introducing
programming errors while changing the logic flow. Also similar to FSMs, BTs can be used
in different parts of the mission control system. The action nodes can be used to represent
different behaviors, which in combination can achieve the goals of the autonomous system.
These behaviors could both be low-level reactive behaviors, as well as high-level deliberative
behaviors. Action nodes in a BT could also be replaced by smaller BTs dealing with the inner
workings of the action. This makes it hard to place a BT in a specific layer, as it could be a
part of all three layers. The overall structure of the BT could be seen as the planning layer,
with conditions keeping track of what behavior (Action) should be executed at any given
time. These behaviors could be both deliberative and reactive, and some could be a part
of the planning layer themselves, i.e., a route replanning task, while others could be purely
reactive and belong in the behavioral layer.

Implementing a behavior tree requires more initial work, as the looping/ticking and all the
different nodes must be implemented before the actual BT can be constructed. Additionally,
it can be very challenging to implement the BT in a system consisting of several different
software. If anything is to be divided between software, it will be easiest to do so in the
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implementation of the actions. Even though the initial implementation can be challenging,
building the BT becomes a simple task of combining the different nodes to achieve the desired
BT. Editing an existing BT is also relatively straightforward, whether it comes to removing
nodes, adding new ones, or editing the existing nodes. This makes BTs scale quite well in
terms of complexity and maintainability, and BTs would be a good choice for large-scale au-
tonomous mission control systems.

Another asset of BTs is modularity. Subtrees of a BT can be reused in other BTs, or in
other areas of the same BT without changes. This reduces the amount of code that must be
written, and it reduces the complexity of restructuring the BT.

While FSMs have been the predominant design tool for transition between different modes
for marine craft control systems, BTs are growing in popularity within robotics and could
replace FSMs for some applications. Examples can be found in [43] where behavior trees
are utilized for creating a modular, versatile, and robust control architectures for mission-
critical systems in an AUV, and in [32] where behavior trees and control barrier functions are
combined to take both sequential and concurrent objectives into account for a collaborative
AUV coverage mission.

2.5.3 Choosing A Dynamic Specification Model

Both finite state machines and behavior trees could be valuable tools for creating and un-
derstanding the logic flow through an autonomous control system. They both have their
strengths and weaknesses, and there is no definitive answer for which one to choose for a
given mission control system.

The use of FSMs is widespread within the industry. While this might indicate that they
would be fit for the purpose, it does not necessarily mean that FSMs are the best choice for
any given mission control architecture. FSMs have been around for a long time, and there
exists a large amount of research and applications within several fields. Which makes finding
information about the creation and implementation of FSMs less demanding.

FSMs are also relatively straightforward to implement and could, in some instances, occur
where no explicit decisions were taken regarding mission control architecture. An example of
this could be a control system with three different controllers achieving different tasks, where
conditional logic is used for deciding what controller to use when. In this case, the different
controllers would be the different states, and the conditional logic for switching controllers
would be the transitions.

While FSMs are easy to create, implement, and understand when they only consist of a
few states and transitions, they can become unmanageable as they grow. Every transition in
an FSM must be implemented manually, which can be tedious work for a developer. In the
worst case, the number of transitions could be O(n2). If one state is removed or changed, all
transitions to/from this state must also be changed. This increases the amount of work for
the developer and thereby also increases the chance of an error being made. More states and
transitions also mean increased complexity which makes it harder to understand the logic
flow through the system, in turn partly defeating the initial purpose of the FSM. FSMs also
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suffer from their lack of modularity. While some methods or states could be reused, most of
an FSM will need to be custom-made to its exact purpose. Being able to reuse working code
can save time and reduce the chance of errors. Attempts to mitigate this lack of modularity
have been made, most notably Hierarchical Finite State Machines (HFSM) [17,25]; however,
they still suffer from low maintainability and manual implementation of transitions.

Behavior trees are both more modular and less complex in comparison with FSMs. In a
BT, the transitions are implicitly defined by the structure of the tree, massively reducing the
required work from a developer. A BT also scales much slower, with the worst-case number of
transitions being O(n). The tree structure of the BT will also enable the logic flow to be easily
followed, even with a large number of nodes. When it comes to modularity, parts of a BT
can be reused in other trees or other applications, as well as in the same tree. Another issue
with BTs is the fact that some behaviors could exhibit blocking behavior, causing the system
to be less reactive until the blocking is removed. This requires modifications of the standard
BT structure, removing some of the initial benefits of using a BT. Another challenge with
BTs is implementing them into an existing system. As the BT requires a ticking function and
full access to most of the control variables, it can be hard to retrofit to an already existing
system, i.e., something set up for manual control.

The computational difference between FSMs and BTs is not significant enough to war-
rant the use of one over the other. They are also both able to represent the same flow of
logic through an autonomous control system. As a result, the choice of a dynamic mission
management system can depend on the type of application. [30]

For smaller systems with few states where no significant changes or growth are expected
after the initial implementation, FSMs can be a viable choice. An FSM will make the imple-
mentation swift and uncomplicated, and the logic flow will be straightforward to manage. If
the mission control system requires a larger amount of transitions and states/actions, then
BTs would be a better candidate. While they require some extra work in the beginning, they
scale more effectively and allow for modifications without massively increasing the required
work to do so. One should, however, be aware of some of the challenges regarding BTs. BTs
are less mature as a topic within academia, and fewer tools and research are available when
compared with FSMs. One common challenge is concurrency, as most real-world systems
require the mission control system to handle different objectives simultaneously. As there
is no established method for implementing concurrency in a BT, how to do so is up to the
developer of the BT. When implementing concurrency in a BT, one challenge is to maintain
the advantageous aspects it has over FSMs. For instance, part of the solution when imple-
menting concurrency could be to introduce state within the nodes. This slightly complicates
the implementation and heavily reduces the modularity of the nodes/components with state
as they can no longer be fully reused in other parts of the BT. [11,30]

In general, the number of states and actions increases more rapidly than most expect,
meaning that BTs could be a good choice in most systems. The choice of dynamic mission
management specification model should be made early in the development process, as BTs
could require most of the mission control system to be built around it. If one already has an
existing control system for manual control, it could be far easier to implement an FSM in the
existing system instead of rewriting the control system around a BT.
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2.6 Risk for Autonomous ROV

For autonomous ROVs to be a viable replacement for manually operated ROVs, the au-
tonomous ROVs should not increase the risks connected to the use of ROVs in aquaculture.
Hence, a mission control system for an autonomous ROV should be able to detect situations
where the risk is higher than acceptable. Therefore, it is also important that the autonomous
ROV is capable of handling these situations to minimize the risk and the consequences. In
order to detect and handle these situations, it would first need to know what situations it
should avoid, and secondly, realize when the risk during regular operation is too high. In
these situations, the risks should be considered for the humans involved, the fish in the net
cage, and the ROV itself.
This section is primarily based on the paper written for the specialization subject ”TMR06
- Autonomous Systems”, which, as stated earlier, was written by the author in collaboration
with fellow students at the Department of Marine Technology at NTNU and can be found in
Appendix A.

2.6.1 Risk for Humans

Autonomy will reduce both the amount of overtime work and the general workload for the
ROV operators. Large amounts of overtime and a significant workload increase the possibility
of mistakes and operator-induced failures. The introduction of autonomy will therefore reduce
some of the current risks in aquaculture. However, the ROVs will also introduce new risks
for the operators. Currently, there are some risks tied to the handling of manual ROVs in
aquaculture. The ROV must be launched and recovered from the water, which is typically
done with cranes. Crane operations are connected to several risks for the operators; however,
little can be done by the autonomous mission control system to reduce these risks. Operators
could also be exposed to risks in situations where the autonomous ROV requires assistance.
This could happen if the ROV or some part related to it gets stuck. The ROV itself could
get stuck in the net, mooring lines, or other structures. It could also get the tether stuck
by wedging it somewhere or wrapping it around something. This would require the operator
to leave the relative safety of the control room and perform some physical action to get the
ROV back in operation. The mission control system should therefore minimize the risk of
getting stuck in structures by keeping track of its current and past positions relative to the
structures in the net cage.

2.6.2 Risk for the Fish

When it comes to risks related to the fish in the net cage, there are two different aspects.
Firstly, the risk of reduced welfare or fatality for individual fish should be considered. Sec-
ondly, risks affecting larger numbers of fish, or even the whole population of a net cage, should
be considered.
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Fish as individuals

For the individual fish, the highest risk of damage or fatality is the risk of coming into contact
with the ROV and its moving parts. This rarely happens with salmon as it will usually stay
clear of the ROV [24]. However, cleaner fish seem to be less mindful of the ROV and sometimes
comes right up to it [3]. This is not easily handled in the mission control system, as the fish
are unpredictable and in large numbers. Therefore, measures to reduce these risks should
instead be taken in the design of the ROV and the thrusters.

Another risk that could be increased by the ROV is the risk of reducing welfare due to
stress. Stress could lead to sickness, which again could lead to fatality [6]. The fact that the
salmon stays clear of the ROV could be an indication of increased stress. Research regarding
how different shapes, sizes, and motions affects the salmon was performed in (Kruusmaa, et
al. 2020) [24] but few conclusive results were found. However, the mission control system of
the autonomous ROV could minimize motions and movement through regions where the fish
typically gathers, i.e., minimize tracking across the net cage, for reducing the direct contact
with the fish.

Fish as a population

The highest risk for the whole population of fish, related to the use of ROV, is the risk
of creating holes and causing escapes. Escapes lead to economic loss for the aquaculture
company, fatality and reduced welfare of the fish, and most importantly, negative ecological
and genetic impacts for wild fish populations. While little evidence exists of ROVs causing
holes in the net, it is a risk that is present. ROVs could create holes when coming in contact
with the net, especially if they have sharp edges/points or something protruding from the
ROV. Therefore, it is important that the mission control system can perform the desired
operations without coming into contact with the net unless it is absolutely necessary. The
mission control system should also be able to decide in real-time if it is safe to proceed with
the operation or if it should be aborted.

2.6.3 Risk for the ROV

There are fewer risks related to the safety of the ROV, and the worst consequences would
be loss of the ROV or damages to a point where it no longer functions. As the ROV is
tethered, the tether would need to be cut for the ROV to disappear. This could happen
if the tether is gnawing on something over time or if it comes into contact with a spinning
propeller. Keeping track of the tether is challenging for the mission control system, but by
keeping track of the previous positions of the ROV, some knowledge of tether location can be
assumed. The mission control system could also minimize the movement near known vessels
to lower the risk of the tether being cut. Finally, the mission control system should be able
to detect if the tether is stuck.
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Method

The mission script in this project was implemented for SINTEF Ocean’s Argus Mini ROV,
used extensively for net inspection and fish monitoring purposes. The Argus Mini ROV has a
complex architecture tied to the guidance, navigation, and control of the ROV. The ROV uses
the simulation software FhSim, developed by SINTEF Ocean, for the low-level control and
operational modes such as station keeping and net-following. The interface between FhSim
and the operator is Aqueous, and it can also perform higher-level control tasks such as mode
switching. Aqueous was developed by students at NTNU as a part of the course TDT4290
Customer-Driven Project in the autumn of 2019. FhSim and Aqueous communicate by using
the Inter-Module Communication Protocol (IMC) developed by Laboratório de Sistemas e
Tecnologia Subaquática (LSTS).

This chapter will look into the current implementation of the control system, potential
new tasks, where they could be implemented, and how a mathematical model of computation
could support the implementation of the mission control system. As the implementation was
done in several iterations, it will be covered in chapter 4.
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3.1 Argus Mini ROV

Figure 3.1: SINTEF Ocean’s Argus Mini ROV, with a front-facing DVL sensor mounted on
the port side and the USBL transponder mounted on the outside of the frame on the starboard
side.

The Argus Mini ROV is a class II ROV developed by Argus Remote Systems AS for both
offshore and inshore use, marketed towards uses within science and aquaculture. It is 0.9
meters long, 0.65 meters wide, 0.5 meters tall, and weighs around 90 kilos in air. The Argus
Mini has six thrusters. Four of the thrusters are exclusively horizontal and are all angled
±35◦ from the longitudinal axis. These four thrusters enable the ROV to be fully actuated
in the horizontal plane. The two remaining thrusters are vertically mounted and actuate the
ROV in heave. Hence, the ROV is fully actuated in surge, sway, yaw, and heave. The ROV
is made to be self-stabilizing in pitch and roll. The Argus Mini comes with a depth sensor,
compass, lights, and a camera. In addition, up to 5kg of payload sensors and equipment
can be fitted. SINTEF Ocean has fitted their Argus Mini with a front-facing Nortek DVL
1000 for net-relative positioning and a Sonardyne Micro-Ranger 2 ultra-short baseline (USBL)
acoustic positioning system for dynamic positioning. [3, 5]
SINTEF Ocean’s Argus Mini ROV is depicted in Figure 3.1

3.2 FhSim

The software used for low-level control of SINTEF Ocean’s Argus Mini ROV is the simulation
software FhSim. FhSim is a software framework aimed at the simulation of marine systems
in the time domain. It does this by solving ordinary differential equations (ODE) such as the
equations of motion for the ROV or other models of reality. FhSim is written in C++ and
utilizes the fact that C++ supports object-oriented programming. More information about

Spring 2021 Page 33



TMR4930 Master Thesis

the details of FhSim can be found in [35] and [45]. The FhSim setup in this thesis was based
on the aquaculture robotics setup which is being continuously developed by SINTEF Ocean.
This setup includes a mathematical model of the Argus Mini ROV and allows for control of
the ROV in both real use and in simulation.

Figure 3.2: FhSim’s visualization of the ROV in the net cage, traversing the net by using the
DVL for estimating the net position

A predecessor of the current setup was used in [4]. It enables simulation, control, and
visualization of the Argus Mini ROV for manual IMR operations in aquaculture, as well
as dynamic positioning and autonomously traversing the net. It has later been expanded
to also include vertical traversal of the net. An example of a simulation using this setup
can be seen in Figure 3.2. This simulation is utilizing a model of the ROV, a simulated
DVL, and a simulated net cage in order to represent the real system as closely as possible.
As the aquaculture robotics setup has been in development for a while, it includes several
low-level behaviors that are useful when implementing autonomous IMR tasks. Examples
of these behaviors are; automatic heading hold, automatic depth hold, and station keeping.
Some of the low-level behaviors are useful as independent behaviors, while others are parts of
higher-level behaviors. They can also be included as parts of new, autonomous, higher-level
behaviors. The existing low-level behaviors might also require some alteration to be fully
utilized in an autonomous mission control system. FhSim would also be a suitable place for
implementing new low-level behaviors, such as reactive behaviors, for autonomous IMR tasks.
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Further, when referring to FhSim the author is alluding to the aquaculture robotics FhSim
setup, developed by SINTEF Ocean. In this thesis, FhSim has been used for all simulations
where a model of the ROV was required as well as all real-life experiments.

3.3 Aqueous GUI

The Aqueous GUI is a tool for monitoring the ROV and interacting with the control system.
Aqueous allows the operator to manually control the ROV, enable different modes, monitor
the different parameters of the ROV, and see the camera feed. It is written in the JavaScript
library React and was developed by students at NTNU as a part of the course TDT4290
Customer-Driven Project in the autumn of 2019 [12]. It has since been further developed
and maintained by SINTEF Ocean. For communicating with FhSim, Aqueous uses the IMC
protocol. Aqueous consists of two views, one view for choosing control mode and modifying
control values, and one view for showing the video feed from the ROV with some overlaid
data. Further in the project, these two views will be referred to as the control app and the
video app, respectively.

Figure 3.3: The control app in Aqueous while in the net-following mode, with all modes
available.

3.3.1 Control App

The control app, as the name suggests, allows for control of the ROV. This is where switching
between modes is done, and where the different parameters can be changed. The control app
also displays the incoming data. Both the parameters and the incoming data are dependent on
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the different modes. The state of the ROV, the available modes, and the camera is available
to monitor in all modes, but each mode can have some extra data that can be monitored.
The interface of the control app can be seen in Figure 3.3. The different modes are Manual
Mode, Net Following, and Dynamic Positioning.

Manual Mode

In manual mode, the operator can control the ROV with the keyboard or a game controller.
This is achieved by changing the force bias in the different directions. Apart from the input
from the keyboard or game controller, the operator can also input a heading for the automatic
heading holder, or a depth for the automatic depth holder. In manual mode, the state of the
ROV, as well as the desired biases from the keyboard or controller, can be monitored. Manual
mode will always be available and is the fall-back mode if one of the other modes fails.

Net Following

In net-following, the ROV is traversing the net by using the DVL measurements for estimating
the position of the net. The operator can input the desired depth, distance between the net
and the ROV, and the velocity perpendicular to the net, as well as choosing between vertical
and horizontal net-following. Similarly to in manual mode, the state of the ROV can be
monitored, in addition, there is a net-following state showing the current velocity, distance
to the net, and net angle. The current input for the net-following is also displayed.

Dynamic Positioning

Dynamic positioning (DP) allows the ROV to keep a stationary position or move small dis-
tances with great accuracy. The operator can input the desired position in north, east, down,
and yaw (heading) or use the ROVs current position. The desired position can also be changed
incrementally with input from the keyboard or a game controller.

3.3.2 Video App

The video app receives the video feed and displays it to the operator. Overlaid on the video
feed are data such as depth, heading, position relative to the service vessel, which modes are
available, which mode the ROV is currently in, and what the current state of that mode is.

3.3.3 Signal Flow Through Aqueous

Aqueous receives IMC messages from FhSim, translates the data, and saves it in global
objects, which can be accessed from anywhere in the Aqueous software. Part of this data is
directly displayed to the operator; examples of this are the position and depth. Some of the
data is synthesized before being displayed, such as the heading and velocity. And some of
the data is only available in the settings, which is the case with the camera settings. When
the operator changes some parameter of the ROV, i.e., the desired position in DP, the global
objects are modified, the data is validated, and then translated into IMC messages before
being sent back to FhSim.
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3.4 Inter-Module Communication Protocol

The communication between FhSim and Aqueous is done over the transmission control pro-
tocol (TCP) with the Inter-Module Communication Protocol (IMC) running on top. IMC is
developed by Laboratório de Sistemas e Tecnologia Subaquática (LSTS) (Underwater Systems
and Technology Laboratory) which is an interdisciplinary research laboratory located in Porto,
Portugal. The main goal of IMC is to define a communication protocol for interconnected
systems that can work for all types of vehicles and computer nodes in networked environ-
ments [26]. To achieve this, IMC abstracts the hardware it runs on and the communication
layers it uses. It then uses a pre-shared set of messages that are serialized and transported
over different communication technologies. This makes IMC independent of hardware and
communication technologies.

IMC relies on a standard set of messages, but custom messages can be pre-defined and
added. The communication between FhSim and Aqueous relies on a mix of standard messages
and custom messages. Currently, FhSim can receive all IMC messages, but not all messages
will result in control output [18]. Aqueous only supports the messages currently in use.
When expanding the existing software for autonomy, new custom messages would need to be
implemented, and standard messages not currently in use could become useful.

3.5 Existing Implementation

The implementation of autonomous functions in this thesis builds on the existing control
system implementation and the autonomous features already implemented in it. The existing
control system allowed for manual control of the ROV, autonomously following the net and
dynamic positioning, and appears to the operator as the three modes presented in section 3.3.
These modes build on several different controllers and behaviors implemented in FhSim. For
a clear overview of the current implementation, both in Aqueous and FhSim, the modes will
now be presented with the origin in how they appear in Aqueous.

3.5.1 Manual Mode

The manual mode allows for direct control over the ROV. In Aqueous the operator can input
desired control for control of the ROV in four degrees of freedom (DOF). This input is sent to
FhSim through IMC and first routed through an interface for reading messages from Aqueous
and writing messages to be sent back, called the Aqueous interface. From this interface it
is routed to a ModeSwitcher-object which checks the current mode and routes the desired
control forces into the thruster allocation object. If autoheading or autodepth is active, a
PI-controller calculates the desired forces for achieving the desired depth/heading. It is then
sent to the ModeSwitcher which replaces the original desired control forces with the calculated
control forces and routes them to the thruster allocation object. The Aqueous interface could
also cause a switch from one of the other modes into manual mode, if some required sensor
data is unavailable.

3.5.2 Net Following

The net-following mode enables the ROV to autonomously follow the net cage. It was created
in [2], and more details can be found in [2] and [4]. It has later been expanded to include
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net-following in the vertical direction. In short, the net-following mode utilizes a DVL for
estimating a vertical plane of the net relative to the ROV and then runs an Integral Line
of Sight (ILOS) controller for moving perpendicular to this estimated plane of the net. The
operator can choose the desired velocity, horizontal or vertical direction, depth, and distance
in Aqueous. Similar to the manual mode, this is sent to FhSim through IMC and routed
through the Aqueous interface. From the Aqueous interface, the parameters are entered into
the ILOS controller object. The ILOS controller object also requires the crosstrack error
relative to the desired path, the tangential angle to the desired path, and the heading and
pitch of the ROV. The heading and pitch are retrieved from gyro and compass of the ROV.
For calculating the crosstrack error and path tangential angle, a plane of the net must first be
estimated. This is done by the net approximation object, which takes in the distance beams
from the DVL and the position of the ROV, and estimates the plane relative to the ROV. The
net heading (normal vector in the horizontal plane), net pitch, and distance from the ROV
is then sent to a ”NetFollowingManager”-object, which calculates and returns the crosstrack
error and path tangential angle. All of this is then combined in the ILOS controller object
for calculating the desired speed in surge, sway and heave and yaw. The desired speeds are
then sent to different low level controllers for calculating the desired forces before being fed
to the thruster allocation object. As the net-following mode relies on the estimated net plane
based on the DVL distance beams, it cannot function without valid DVL signals. Because of
this, the Aqueous interface checks if the DVL beams are available and valid, and if it is not,
it switches mode to manual mode and relays this through IMC to the Aqueous GUI. When
using a DVL for measuring the distance and speed difference to the ocean floor, it can be said
that the DVL has bottom lock if the DVL has valid readings. A similar term for the case
where the DVL has a valid reading of the net can be ”Net-lock,” and this will be used as a
term regarding the availability of the DVL measurements for the remainder of this thesis.

3.5.3 Dynamic Positioning

The dynamic positioning mode allows the ROV to stay stationary in a chosen position or move
a small distance to a desired position. The operator can choose a desired position within 3
meters from the current position. This position is routed through to FhSim in the same
way as in the manual and net-following modes. The desired position, as well as the current
position, is inputted into a non-linear 4DOF controller, which calculates the required forces
for the ROV to reach, or stay in, the desired position. For calculating the required forces, the
distance and direction from the current position to the desired position must be known. Hence
a position-reference system is required. Position-referencing can be challenging underwater,
and SINTEF Ocean’s Argus Mini ROV utilizes a combination of sensors to achieve this. An
extended Kalman filter is used in FhSim for taking in measurements from different sensors
and outputting a position estimate. The extended Kalman filter takes in measurements from
a Sonardyne USBL acoustic positioning system, in combination with measurements from the
DVL, compass, depth sensor, and gyro.

3.6 Tasks in Autonomous Mission Script

In order to autonomously perform the operations mentioned in section 2.1 these operations
and their underlying behaviors must be implemented in the different layers of the control
system in the autonomous ROV. Some of them will be directly related to the IMR-operations
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listed in section 2.1, such as net inspection and mooring inspection. Other tasks will be
required for the different phases before, in between, and after IMR-operations, such as launch
and tracking. There will also be some more general behaviors that can be used in several of
the other tasks, such as dynamic positioning, automatic heading hold, and automatic depth
hold. Most tasks and behaviors should include functionality for monitoring and handling
risks.

3.6.1 Manual Control

The manual control mode will be the basis mode, similar to how it is today. If there is no way
the system can handle the situation, the ROV should switch to manual mode, and a human
operator should take over the controls. The manual mode in ROVs is familiar, as this is what
is standard use today. It should therefore be available through the Aqueous interface such
that the ROV can be used for operations that are not implemented in the autonomous mission
system. The manual mode does not need a large amount of functionality for monitoring and
handling risks, as this would be left to the human operator. Some measures for monitoring
risk could still be included for aiding the operator, i.e., the ROV could inform the operator
that it is about to hit something or that the tether is stuck. As the manual control mode is
already implemented, it will not be changed in this project.

3.6.2 Dynamic Positioning

The dynamic positioning (DP) mode is implemented in FhSim and enables the ROV to
keep stationary at a desired position. It can also do low-distance relocations to new desired
positions. The desired position in the current implementation allows for set points in surge,
sway, heave, and yaw. The two main situations in the DP mode that the autonomous mission
control system should be able to handle is if the ROV is unable to reach the desired position,
or if the USBL measurements are lost. Previously, a reactive behavior was implemented
for the second situation. If the USBL measurements were lost, FhSim switched to manual
mode and set automatic heading and depth hold such that the movement of the ROV was
minimized. However, the USBL position-estimate was replaced with the output of a Kalman
filter, which always outputs an estimate, effectively removing this behavior from the mission
control system. In the case where the ROV is unable to reach the desired position, the
autonomous mission control system should make a decision based on previous knowledge and
current position data.

3.6.3 Net Inspection

A mode for net-following is implemented in FhSim. It enables the ROV to autonomously
traverse the net while keeping a set depth, velocity, and distance relative to the net. The net-
following mode will be further expanded in this thesis in order to conduct inspections of the
full net cage autonomously. The decision to expand the net inspection mode was made as the
net-following mode is it could allow for fully autonomous net inspection. The net-following
mode needs several both reactive and deliberative behaviors to perform a fully autonomous
net inspection. The different behaviors will now be further explained.
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Basis Behavior - Net-Following

The basis behavior of the autonomous net inspection will be the net-following controller
from [4]. This utilizes a forward-looking DVL for estimating the distance and heading to
the net. The DVL measures the distance to four different points with a set angle between
them and estimates the net as a flat square between these four points. This is then used for
estimating the net and controlling the ROV relative to it. The net-following controller will let
the ROV traverse the net, with a distance and velocity given by user input. Currently, the only
risk handling functionality implemented in net-following is a simple switch to manual mode
with automatic heading and depth holding enabled. This switch will trigger if the DVL loses
its measurements of the net, i.e., loses net-lock. This is something that frequently happens
due to fish swimming between the net and the DVL. When a fish comes between the net and
the DVL, it usually only takes a few seconds before the DVL regains net-lock. Hence, some
filtering to allow this to happen and then continue traversing the net could greatly improve
efficiency. If the measurements of the net do not return, the ROV could enable DP in the
position where it last had net-lock. The ROV should then go back to net-following if the
net-lock returns. If this pattern repeats, or no net-lock is found while in DP, the ROV should
either start looking for the net, using a behavior for finding the net, or await controls from
an operator. A behavior for managing the loss of net-lock was implemented in this thesis.
A simple version of the find net behavior was also implemented. More details regarding
the implementation of these behaviors can be found in chapter 4. Another thing that could
happen while in net-following is that the ROV could get itself or the tether stuck, rendering
the ROV unable to move as desired. If this happens, the ROV should carefully attempt to
backtrack in order to free itself. And if this does not succeed, it should stay stationary to
minimize possible damages. This would require some method for detecting whether the ROV
can move as desired or not. Such a method does to the authors knowledge not yet exist, and
it was deemed out of scope for this thesis.

Path Planning

The net-following controller will currently only traverse the net at a given depth until in-
structed otherwise. By implementing a deliberative behavior, the ROV could be able to know
when it should change its depth or direction in order to inspect the whole net cage. For this
to be as efficient as possible, the system would need to include path planning. Path planning
could also reduce the risk of the ROV getting stuck and of the tether getting tangled. A
path planning behavior should ideally know the size and depth of the net cage, as well as the
location of different ropes and obstacles inside the net cage. When the net is fully inspected,
a ”return home” behavior should be called. A deliberative behavior for tracking the inspec-
tion progress and planning the inspection path, allowing the net to be fully inspected, was
implemented in this thesis. More details can be found in chapter 4

Locate Net and Achieve Net-Lock

When the ROV is placed inside the net cage, it should be able to autonomously locate the
net and achieve net-lock with the DVL to start the net-following behavior. It could also be
used during an inspection if net-lock is lost and the net needs to be found again. The ROV
should rotate around and attempt to gain/regain net-lock. If the DVL cannot locate the net
and regain net-lock, it should go to the DP mode and await operator interaction. A proof
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of concept ”locate net” behavior was implemented for this project. Details regarding the
implementation and discussion regarding the associated challenges can be found in chapter 4.

3.6.4 Mooring Inspection

A mooring inspection mode would have several similarities with the net inspection mode. It
would also need a following behavior as the basis behavior, but following the mooring line
instead of the net. For a mooring following behavior, the ROV would need some system
for positioning itself relative to the mooring line. Similar to in the net inspection mode,
the mooring inspection mode would need some sort of deliberative behavior to determine
the progress of the inspection. This could be a path planning behavior if information such
as anchor depth and mooring line length is provided. Otherwise, the deliberative behavior
must be able to identify if it has reached an end of the mooring. Again in similarity to net-
following, the mooring inspection mode must have some behavior for locating the mooring
from a position without a relative position reference. As mentioned in the theory chapter,
a method for localizing a flexible anchor line was proposed and tested in [20, 37]. It was,
however, not tested for use with an ROV. The general risk in mooring inspection, compared
to that of net inspection, is lower. This is due to the ROV being placed outside of the net.
The ROV could still run into the net, but the probability is lower. The ROV could also get
stuck in mooring lines or other obstacles, but this risk is also reduced as the ROV should
keep track of the mooring line during the inspection. One risk that is increased is cutting
the tether, as it might be cut if it comes in contact with the running propellers of a service
vessel. This could also lead to the ROV drifting off, potentially being lost.

3.6.5 Net Repair

A net repair mode would also have some similarities to the net inspection mode. Firstly the
net repair mode would need some way of locating the hole to be repaired. Ideally, the ROV
should be able to identify the hole in the net inspection mode and then switch to net repair
mode for repairs as this would reduce the complexity of the ”locate hole”-behavior. If the
ROV is unable to conduct inspections and repairs in the same run, the repair mode would
need to know the position of the hole and possibly be able to identify the hole. This would
require the ROV to have some positioning system, both georeferenced and also in reference
to the net cage. In addition, the ROV should have a sensor capable of measuring the distance
between the net and itself, such as the DVL used in [4]. This would be for minimizing the risk
of the ROV coming into contact with the net at an undesired point or time. Lastly, the net
repair mode would also require some behaviors that would not be found in the net inspection
mode. If the ROV is unable to conduct both inspection and repair in the same operation, the
ROV would require a tracking mode for navigating between the launch and recovery site and
the hole to be repaired. This will be explained further in Subsection 3.6.10. A basis repair
behavior would also need to be implemented and could be further divided into two behaviors;
one behavior for keeping the ROV stationary relative to the net and one for conducting the
repair using the relevant tools. Keeping the ROV stationary relative to the net could be
achieved with the method presented in [4] and would be important to avoid enlarging the
hole by getting the tool stuck in the hole. Conducting the repair itself requires controlling
some actuator or tool that seals the hole and identifying if the hole is properly sealed. Sealing
the hole could be performed by a sewing tool and the identification of completeness by a
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computer vision algorithm. Other solutions, such as attaching an extra piece of net over the
hole, could also be viable. Some solutions have been proposed by the industry but seem to
get little use [3, 41]. The net repair mode would greatly benefit from ROVs being used more
commonly for net repairs before being made autonomous.

3.6.6 Net Cleaning

The net cleaning mode would differ slightly from most of the other modes as it requires
constant contact with the net. However, it would still have some of the low-level behaviors
in common with other modes. In similarity with several of the other modes, it would need
a tracking mode for moving to or from the net cleaning operation. It could also benefit
from a behavior locating the net such as mentioned in net inspection, there is however a
possibility that the net locating behavior from net inspection could not be reused due to
differing sensors and tools. Another behavior similar to what can be found in net inspection
would be a behavior for keeping track of the cleaning progress. This would be useful for
avoiding moorings and obstacles in the net cages and for knowing what parts of the net have
been cleaned and what parts are remaining. It would also need a behavior for traversing the
net while in contact with it. This behavior should be careful not to apply unnecessary force to
the net and should be able to measure the force applied to the net. A behavior connected to
the activation and control of the cleaning tool would be useful for avoiding large consequences
in cases where the ROV is stuck or without control, and the moving parts of the cleaning tool
could make the situation even worse. While some purpose-built ROVs for cleaning of the net
exist and further research is being conducted, autonomous net cleaning has not been publicly
demonstrated, and no solution currently seems ready.

3.6.7 Automatic Heading Hold

The automatic heading hold behavior is a behavior that currently can be activated while in
the manual control mode. It controls the heading of the ROV such that it always points in
the same direction, while the ROV is available for control in any of the other directions. The
automatic heading hold behavior should incorporate some risk managing functionality. The
most relevant risk is that the heading hold is unable to reach or hold the desired heading.
In manual mode, this would just be relayed to the operator, while in other modes, it might
impact the decisions made by the system. Automatic heading hold would be most useful in the
net repair mode and possibly the mooring inspection mode, depending on how the mooring
inspection mode is implemented. The underlying controller of the automatic heading hold
behavior is used for controlling the heading in the net-following mode. This mode will further
be referred to as autoheading.

3.6.8 Automatic Depth Hold

Similar to the automatic heading hold behavior, the automatic depth hold behavior can
currently be activated in the manual control mode. It controls the depth of the ROV but
leaves the other directions available for control. Automatic depth hold is currently used in all
of the other modes, and it would be useful for most other modes in the autonomous mission
control system. Again in similarity with heading hold, the depth hold behavior could have
some risk functionality regarding if the ROV is unable to reach the desired depth or not. If
the ROV is unable to reach the desired depth, there can essentially only be three reasons,
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the ROV is stuck in the vertical direction, the ROV is at the bottom, or the ROV is at the
surface. Based on previous knowledge, the mission control system could then decide what
would be the best action. This mode will further be referred to as autodepth.

3.6.9 Launch and Recovery

Typically, ROVs used for aquaculture operations are launched from service vessels fitted with
cranes. The ROV is lifted by the crane and released into the net cage. Figure 3.4 shows the
Argus Mini ROV being manually lifted into the net cage. When the ROV has completed its
mission, it is lifted back onto the service vessel. This is currently a manual operation and will
probably continue to be so until the ROVs are fully resident and an autonomous Launch And
Recovery System (LARS) is implemented. The autonomous system would probably not be
ready to start operations directly after being placed in the net cage, and a launch behavior
could be useful. The launch behavior should check that all sensors, actuators, and other
relevant systems function as expected. If the positioning system is found to be functioning
as expected, the position of the launch should be saved as a possible safe position. The ROV
should also take measurements of environmental conditions such as current and waves for use
in the low-level control system. When all systems have been validated, and the calibration
has been completed, the autonomous mission control system should continue with the desired
operation.

Figure 3.4: SINTEF Ocean’s Argus Mini ROV being lifted into an aquaculture net cage by a
manually controlled crane

3.6.10 Tracking

The tracking behavior would enable the ROV to move from a point A to a point B. This
would be useful for most of the modes, exceptions being DP and manual control. All the
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other modes would at some point be completed, and the ROV would need to return to some
position for recovery. The net repair mode might also need to start by tracking to the position
of the hole. Tracking behaviors for ROVs exist today but are not common in aquaculture [3].
When implemented for ROVs in aquaculture, the tracking behavior must be able to detect
whether it is stuck and keep track of where it has been to minimize the risk of tangling the
tether. Ideally, it should also have capabilities for collision avoidance. The tracking behavior
would be closely related to path following or path tracking, which are well studies areas of
control. If the approximate locations of mooring lines and other obstacles are known, a path
planning algorithm could be implemented, both for efficiency and for reducing the risk of
tangling the tether.

3.7 Location of Further Implementation

To achieve a higher level of autonomy, new modes, behaviors, and switching logic would
need to be implemented. The different components could be implemented in different parts
of the software stack, and an important part of this thesis was to identify exactly where the
different components of the mission control system should be implemented. This was achieved
by combining the GNC architecture with the layered hybrid approach to mission control. The
autonomous components can be split into three different categories; deliberative components,
switching logic, and reactive components.

3.7.1 Implementation of Deliberative Components

As Aqueous handles parts of the high-level control such as managing modes, it was natural
to examine if it could be a suitable place for implementing the deliberative components. The
Aqueous software, as presented in [12], contains no deliberative functions, and all deliberation
must be done by the human operator. For deliberative functions to be implemented in
Aqueous, new modes should be implemented, and the existing modes and methods must be
expanded to enable higher levels of deliberation. Some of the modes could even be hidden
from the operator, as the operator only should intervene if the autonomous mission control
system is unable to handle a certain situation. A major part of the changes in Aqueous will
be to create methods and algorithms for building the knowledge required for deliberation,
based on the data from the ROV. Aqueous could be seen as part of the planning layer in the
layered control approach; it also performs some high-level guidance tasks, which would be a
part of the guidance block from GNC. With the existing software and software interaction,
Aqueous is a suitable location for implementing deliberative functions, as it has the data
from all the sensors readily available. Aqueous could also be running on a larger and more
powerful computer located onshore while the computer running FhSim must be in close
proximity to the ROV, possibly even be a part of the ROV itself. The proposed new modes
and extensions to the existing ones will be presented in Section 3.6. Further details regarding
the implementation of the deliberative components can be found in Section 4.

3.7.2 Implementation of Switching Logic

Both Aqueous and FhSim handle a share of the mode-switching. Aqueous handles the switch-
ing by operator input, while FhSim can switch to manual mode if the required sensors for the
other modes are missing. This can happen in DP-mode if the USBL signal is invalid or in
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net-following if the DVL does not have net-lock. As the different software and the communi-
cations between them does not precisely mirror the ideas from hybrid control or the different
architectural layers, the location of the switching-logic implementation will be dependent on
the different modes. Each mode will have some risk or goal-based criteria for changing away
from itself and to some other mode. For this thesis, the different switching logics could there-
fore be implemented in both Aqueous and FhSim, depending on what mode or behavior is
implemented for. As mentioned in section 3.5 the FhSim implementation already handles
mode switching based on loss of USBL and DVL measurements (net-lock). Further details
regarding the switching logic can be found in chapter 4.

3.7.3 Implementation of Reactive Components

Reactive behaviors could be implemented in Aqueous but should preferably be implemented
within the lower-level behaviors in FhSim as this would lead to faster response times and
make the ROV less reliant on Aqueous. In this thesis, a reactive behavior was implemented
in Aqueous. An attempt at implementing the same reactive behavior in FhSim was made,
but it was not used in the final simulations or the field tests. More information about this
can be found in chapter 4.

3.8 Dynamic Mission Management Specification

In order to create a mathematical model of computation, it must first be known what the
goals of the system are. In this section the focus will be on an autonomous mission control
system for fully autonomous inspection of the net cage. Hence, the goal will be to have
a mission control system capable of conducting a fully autonomous inspection of the cage.
This requires several of the tasks presented in section 3.6 to be implemented as high-level
behaviors in the autonomous mission control system. Depending on the chosen model, the
high-level implementation of the tasks could either be as states in an FSM or as actions in
a BT. Regardless of the model, the goal will stay the same. The mission control system
must be able to handle the following: When being placed in the net cage, the ROV should
check that all systems are working as intended. This check should continue throughout the
entire mission, and if something does not function as required, the ROV should return to the
recovery position. After the initial checks, the ROV should acquire net-lock if it does not
already have it. If the DVL loses net-lock, the ROV should reacquire it. The ROV should
then conduct a net inspection until the entire net cage has been inspected. If the ROV at any
point gets stuck, it should set DP and await assistance from the operator. When the entire
net cage has been inspected, the ROV should return to the start position for recovery.

The following mathematical models of computation have been made as suggestions for
how the required behavior stated above can be achieved in a fully autonomous mission control
system. The models include several of the high-level behaviors presented in section 3.6, but
do not go into detail for all the different reactive behaviors that should be implemented within
the high-level behaviors for handling the relevant risks.
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3.8.1 Finite State Machine
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Figure 3.5: A Finite State Machine for conducting an autonomous net inspection

3.8.2 Behavior Tree
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Figure 3.6: A behavior tree for conducting an autonomous net inspection
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T1 Systems failure  Go to recovery

T2 Net detected  Start net-following

T3 Net lost  Look for net

T4 Systems failure  Go to recovery

T5 Net inspection complete  Go to recovery

T6 Net found  Continue net-following

T7 Systems failure  Go to recovery

T8 No net found within timeout  Go to recovery

T9 No net detected  Look for net

T10 Unable to move  Set DP and await operator interaction

T11 Unable to move  Set DP and await operator interaction

T12 Net inspection not complete  Continue net-following

Table 3.1: The transitions of the FSM in Figure 3.5
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Chapter 4

Iterative Implementation Process

A selection of the operational modes and behaviors presented in section 3.6 has been im-
plemented for SINTEF Ocean’s Argus Mini ROV. The implementation of these modes and
behaviors was completed in several iterations. First, a proof of concept mission control sys-
tem was implemented and tested by simulation in FhSim. Parts of this implementation were
chosen for a field test in a real-world, full-scale aquaculture setting. Some alterations were
made, and the second iteration of the mission control system was tested at SINTEF ACE
Rataren, one of SINTEF Ocean’s full-scale aquaculture laboratories. Further alterations were
then made, taking the results from the field tests into consideration, and a final iteration of
the mission control system was implemented. This was first tested in simulations before being
tested in full scale at SINTEF ACE Tristeinen. Unfortunately, the final experiment was cut
short due to a local COVID-19 outbreak, but it still yielded some results.

In section 3.6, the words ”mode” and ”behavior” were used for describing different parts
of the mission control system. Modes are of a higher level; as mentioned in section 3.5, modes
can be seen and chosen in the GUI. Modes would also be important for a fully autonomous
system as a large part of the deliberative choices conducted in the planning layer would be
based on the active mode. In the case of SINTEF Ocean’s Argus Mini ROV and its control
system, the different modes would be implemented in Aqueous and call lower-level behaviors
implemented in FhSim. Most of the lower-level behaviors would be similar to what can be
found in classic control systems and suitable for implementation in FhSim. However, some
might require external toolboxes or software, and implementation into Aqueous would be
more suitable. Generally, it can be said that the planning layer is implemented in Aqueous
and the behavioral layer in FhSim. The executive layer will be split between Aqueous and
FhSim; where FhSim would handle the execution of reactive and less deliberative behaviors,
while Aqueous would handle the execution of more general and deliberative behaviors.

In this thesis, it was chosen to implement an autonomous mission control system capable
of performing a fully autonomous net inspection. This meant expanding the existing net-
following mode into a net-inspection mode. The net-following mode developed in [4] was used
as the basis for further extensions in this project. The reason for choosing to implement a
net inspection mode was that the net-following mode had already been established. It also
had the potential for implementing both reactive and deliberative behaviors. Several parts
of a fully autonomous net inspection mode could also be reused by other modes for fulfilling
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other tasks.

4.1 The Initial Implementation of the Hybrid Control Archi-
tecture

In the initial implementation of this thesis, two reactive behaviors and two deliberative be-
haviors were implemented in Aqueous. The first and most straightforward of the two reactive
behaviors handled the situation where the distance between the ROV and the net went below
some predefined threshold. The second reactive behavior handled the case where the DVL
lost net-lock. Both the reactive behaviors were implemented within the same function in
the Aqueous control app. When it comes to deliberative behaviors, the first was a behavior
for tracking the progress of the inspection in order to do some basic path planning, and the
second was for locating the net and achieving net-lock.

4.1.1 Reactive Behaviors

The control app uses a setInterval-function for listening to data from the ROV at given
intervals. The interval has a length of 300 milliseconds, meaning that the data updates
every 300 milliseconds. Another such setInterval-function with a length of 1 second was
implemented for checking if the ROV was in a high-risk situation. Inside the interval, a
function for detecting high-risk situations is called. In the initial implementation, this function
contained the two reactive behaviors.

Distance Below Threshold

This behavior receives the measured distance between the ROV and the net and checks if it
is below some predefined threshold. This threshold was chosen to be 1 meter for the initial
implementation. If the distance is below the predefined threshold, the behavior will add
another meter to the desired distance in the net-following controller. To avoid adding 1 meter
several times during the same violation of the threshold the implemented behavior also checks
if the time since the last violation is larger than 5 seconds. This time is counted up every
time the high-risk detection function is run, i.e., every second. If the threshold is exceeded,
the time is reset to zero.

Lost Net-Lock

Aqueous receives a boolean flag from the DVL, indicating whether the DVL has net-lock or
not. This flag is checked, and if net-lock is available, the current position is saved as a last
known point with net-lock. Simultaneously, a counter which will count the seconds without
net-lock is reset to zero. If the DVL does not have net-lock, FhSim will automatically switch
to manual mode with autoheading and autodepth activated, and the counter will accumulate
time since the DVL last had net-lock. A function in Aqueous for switching to manual mode
when this happens was removed in order to resume net-following if the net-lock returned.
This leaves Aqueous in the net-inspection mode, while FhSim is in manual mode. Hence,
if the DVL regains the net-lock while FhSim is in manual mode, Aqueous will resume the
inspection of the net by switching FhSim back to net-following. However, if the DVL does
not regain the net-lock within a predetermined period, it will trigger Aqueous to switch to
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the DP mode. This will then cause FhSim to also switch to the DP mode. For assisting the
operator with resuming the net inspection, the last known position with net-lock will be set
as the desired position for the DP mode. In the initial implementation, the predetermined
period was chosen to be 10 seconds. The mission control system will keep the ROV in DP
until an operator manually switches modes. This could be changed in the future, such that
the mission control system would resume the net inspection if net-lock is regained while in
DP. It would require changes in the DP mode such that FhSim could be running the low-level
DP behavior while Aqueous stays in the net inspection mode.

4.1.2 Deliberative Behaviors

The deliberative behaviors were implemented as individual functions in the net-following
mode, which is a sub-app of the control app. The behavior for tracking the inspection
progress relies on a setInterval-function with an interval of 500 milliseconds for keeping
track of the time. The behavior for locating the net is called when the operator manually
switches into the net inspection mode.

Track Inspection Progress

In the setInterval-function, two conditions are checked. Firstly the flag indicating if the
DVL has net-lock is checked, and secondly, it is checked that the IMC message containing the
data regarding the current net-following state of the ROV is not undefined. If both condi-
tions succeed, an initial net-heading will be saved, and a function for tracking the inspection
progress will be called. This function firstly increments a variable that counts how much time
has passed since the current loop of the net started. It then calculates the difference between
the current net-heading and the initial net-heading. This difference is used for determining
the location of the ROV relative to the starting point of the inspection. If the difference is
less than 5◦ and the time since starting the current circumnavigation is above 30 seconds,
the time counting variable will be reset, and the depth will be increased by 2 meters. The
different threshold-values for the initial implementation were chosen based on trial and error
in simulations and not real-world experience. The ROV will continue to circumnavigate the
net cage and go deeper for each completed circumnavigation of the net. No end-condition
was implemented in the initial implementation of this behavior.

Locate Net and Achieve Net-Lock

Find net was implemented as a function that would be called when switching to the net
inspection mode while no net-lock was available. Previously, if the operator attempted to
switch to the net-following mode while the DVL had no net-lock, it would simply return
nothing and stay in the mode it was already in. This was removed for the implementation of
the function for locating the net. Instead, Aqueous is switched to the net inspection mode,
and the desired depth is inherited from the ROVs’ current depth. It then calls the function
for locating the net. In this function, a while-loop runs for 20 seconds or until the DVL gains
net-lock. The heading towards the origin is calculated inside the while-loop and, auto-heading
is enabled with this heading. Autodepth is set to 6 meters. For the autodepth and autohead-
ing to function, the mode is switched to manual mode. The ROV will then turn towards the
origin and gradually go towards a depth of 6 meters. If net-lock is achieved, the loop will
quit, and the net-following behavior will be activated. Aqueous will then switch back to the
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net inspection mode. If no net-lock is achieved before the while-loop has completed the 20
seconds, the ROV and Aqueous will be set to DP in the current position, awaiting interaction
from the operator. This will be the case if the ROV is located at the side of the net cage that
lies furthest from the service vessel/origin.

The reason for choosing to point the ROV towards the origin when attempting to locate
the net is that the origin would usually be placed in the position of the service vessel that
launched the ROV, which would be outside of the net cage. Hence, if the ROV is placed in the
net cage from the service vessel, there should only be a small distance between the ROV and
the service vessel, and they would be separated by the net. However, the behavior for locating
the net could be used in other situations or areas of the net cage, and the behavior should
rely on something else for locating the net. This will be further discussed in section 4.2. The
reason for choosing a depth of 6 meters is that the beams from the forward-facing DVL are
not pointing straight forward; two of the beams are pointing slightly upward and the other
two slightly downward This can cause the two upward pointing beams to point over the top
of the net cage, such that no net-lock is achieved.

4.2 Initial Implementation - Results and Discussion

Several simulations with the initial implementation were conducted; however, this section
will focus on a single simulation that tested all the implemented behaviors. To simulate DVL
losses due to fish swimming between the ROV and the net, a basic signal modifier was im-
plemented in FhSim. This modifier is a pulse multiplied with the DVL signal such that the
signal is the actual DVL signal for 40 seconds and then 0 for 5 seconds. The desired velocity
for the net-following mode to traverse the net was set to 1.5 ms. This velocity is much higher
than intended and extends the expected ability of the controller; SINTEF Ocean ordinarily
keeps a velocity of under 0.3 ms [3]. Setting the desired velocity substantially higher than
what is ordinary was done to provoke situations that the reactive behaviors would need to
handle, such as the ROV coming too close to the net. The desired distance was changed
during the simulation to provoke the distance below threshold behavior several times. For
the majority of the simulation, the desired distance was set to 3 meters. The result of the
simulation can be seen in Figure 4.1. The ROVs track is represented in yellow, where the red
sections indicate that the DVL lacks net-lock while the yellow parts indicate that the DVL
has net-lock. The blue grid represents the net cage.

4.2.1 Results

Locate Net and Achieve Net-Lock

After the simulation was started, Aqueous was toggled to the net-inspection mode. As the
ROV was hovering at the surface, facing away from the net, it did not have net-lock, and
the find net behavior was initiated. The find net behavior set the desired heading of the
ROV such that it was directed towards the origin, as well as increasing the desired depth to 6
meters. The ROV then started simultaneously rotating towards the origin and increasing its
depth. Before the desired depth of 6 meters was reached, the ROV was facing the origin and,
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Figure 4.1: The full plot of the simulation illustrating the different results of the initial
implementation

by that, also the net. At around 5 meters of depth, the DVL was able to achieve net-lock,
and Aqueous signaled FhSim to start the net-following controller.

Distance Below Threshold

The net-following controller successfully traversed the net, and within a short amount of time,
the ROV was situated 1.5 meters from the net as initially desired. Due to the high velocity,
the ROV was unable to keep the desired distance of 1.5 meters, and the threshold of 1 meter
was exceeded. The desired distance was then automatically increased to 2.5 meters, and the
ROV continued to traverse the net. To provoke the behavior to run again the desired distance
was manually reduced to 1 meter. As expected, this caused the ROV to get closer to the net
than 1 meter. The desired distance was automatically changed to 2 meters. Due to the high
desired velocity, the desired distance of 2 meters still left the ROV close to 1 meter from the
net on occasions such as the corners of the net cage. After a little while, the ROV was within
1 meter of the net, and the threshold was exceeded again. This caused the final automatic
update of the desired distance, which was set to 3 meters. It was left at 3 meters for the
remainder of the simulation.
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Lost Net-Lock

Simultaneously as the threshold behavior ensures a safe distance between the ROV and the
net, fish swimming between the DVL and the net was simulated. This caused the DVL to
lose the approximation of the net, leaving it impossible for the net-following controller to
continue traversing the net. When the DVL lost net-lock, FhSim automatically switched
from the net-following controller to manual mode. However, Aqueous was still kept in the
net inspection mode, causing the net-following controller to be reactivated as soon as the
DVL regained net-lock. This functioned as desired, allowing the ROV to continue the in-
spection even though net-lock was lost at regular intervals. None of the simulated losses
of net-lock were long enough to cause the switch to the DP mode. However, in the final
stages of the simulation, the ROV reached the bottom of the net cage, and the DVL was
unable to achieve net-lock. After ten successive seconds without net-lock, Aqueous switched
to the DP mode, and the ROV moved slightly back to the last position where the DVL had
net-lock. The simulated inspection was then terminated due to the inspection being complete.

Track Inspection Progress

The final behavior tested in the simulation was the behavior for tracking the inspection
progress and creating a path that allowed the ROV to fully inspect the net cage. When the
ROV had circumnavigated the net, i.e., the heading of the estimated net plane was within
≈ 5◦ of the initial net heading, and some time had passed since the last time the ROV was
at this heading, the behavior increased the depth by 2 meters. This happened every new
circumnavigation of the net cage, although there were some variations in where the depth
change would occur. As no exit condition was implemented, the inspection continued until
the ROV reached the bottom of the net cage, and the DVL was no longer able to achieve
net-lock.

4.2.2 Discussion

In general, all the behaviors implemented in the initial implementation were able to achieve
what they were designed to do, and some performed quite well in doing so. The reactive be-
haviors were able to quickly react to undesired situations and keep the ROV in safe locations.
The deliberative behaviors were able to ensure that a full net inspection was conducted. How-
ever, all behaviors also had room for improvement, with the deliberative behaviors having the
most significant potential. The reactive behaviors could benefit from being implemented in
FhSim, such that the delay between sensing and acting is reduced. The autonomous mission
control system could potentially be improved by expanding the reactive behaviors to inform
the deliberative behaviors of the situation, such that the deliberative behaviors can make bet-
ter decisions. However, this is not necessarily a requirement considering that the behaviors
are able to achieve their goals. The deliberative behaviors in the initial implementation only
functioned for the special circumstances defined in the simulation. The implementation of
deliberative behaviors requires a great understanding of the different problems and how they
can be solved autonomously. In the initial implementation, the author had little to no expe-
rience with ROV operations in aquaculture, and while the implemented behaviors performed
decently in the simulation, several challenges would arise if these behaviors were to be tested
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in a real-world aquaculture setting. Both the reactive and the deliberative behaviors could
benefit from more tuning.

Distance Below Threshold

The reactive behavior for assuring that the distance between the ROV and the net is above
a predefined threshold worked as intended. The exact value of the threshold, the size of the
increase in desired distance, and how much time the ROV is given to move away from the
net could be changed for improving the behavior. These changes should be conducted by
someone with experience in using ROVs in aquaculture or by extensive testing.

The behavior could be made to be more responsive by adding a separate, more responsive
controller for avoiding contact with the net. It should also be considered that keeping a safe
distance does not necessarily mean the inspection will be conducted successfully. In situations
with low visibility, the ROV might need to be closer to the net to achieve acceptable video
footage for the operator or the computer vision algorithm to find faults in the net.

Lastly, if the net-following controller is unable to counteract the current and the ROV
constantly stays too close to the net regardless of desired distance, the reactive behavior
could relay this information to the deliberative behaviors, such that they could change the
goal or abort the mission.

In general, this behavior is relatively straightforward and could be improved by incor-
porating different measurements such as velocity towards the net, velocity parallel to the
net, history of distances, amount of exceedances, filtering of the input signal, etc. However,
by incorporating several different measurements, the complexity of the behavior is quickly
increased. This balance between complexity and responsiveness must be managed.

Lost Net-Lock

The reactive behavior for managing lost net-lock also worked as intended. During the sim-
ulated 5 second periods without net-lock, it kept a relatively stable position, and when the
net-lock returned, it resumed with the net-following. In periods without net-lock for above 10
seconds, the behavior switched to the DP mode with the last known position with net-lock as
the set point. The length of the period without net-lock before DP should be set would need to
be decided by someone with experience of using ROVs in aquaculture or by extensive testing.
While the behavior for managing lost net-lock performs as intended, it could still be improved.

The behavior could account for the frequency of net-lock losses, informing the operator if
losses happen too often to perform an acceptable inspection. This could happen if the fish
starts swimming between the ROV and the net, causing a moving wall of fish between the
ROV and the net, which again causes the DVL to lose its net-lock frequently.

In the initial implementation, it was decided that if a 10 second period had passed without
net-lock the ROV should use DP mode for going to the last known position with net-lock. It
would then stay in that position and await instructions from the operator. A different solu-
tion could be to let the ROV continue with net-following if the DVL regains net-lock while
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in DP. In this thesis, this was decided against, the reasoning being that if the DVL has been
without net-lock for more than 10 seconds, the problem is likely to be something that will not
disappear on its own. At the end of the simulation from subsection 4.2.1, the ROV reached
the bottom of the net cage, and the DVL was unable to estimate the position of the net. If
the ROV were to continue traversing the net from the position where it regained net-lock, it
would quickly encounter the same problem which caused the loss of net-lock in the first place.

Another possibility could be using the locate net behavior if no net-lock is acquired after
the ROV reaches the DP setpoint. I.e., if the ROV is within a certain distance of the set point
and no net-lock has been acquired, the behavior for locating the net and achieving net-lock is
called. However, this would rely on a more advanced behavior for locating the net than what
was implemented in the initial implementation in this thesis.

Similar to the other reactive behavior, increased use of other measurements and extra
calculations lead to increased complexity and reduced responsiveness.

Track Inspection Progress

The behavior for tracking the inspection progress and ensuring the inspection of the entire
net cage performs well in the simulated environment. It can inspect the entirety of the net
with no interaction from the operator required until the ROV reaches the bottom of the net
cage. By including a criterion for ending the inspection, the behavior could switch to a track-
ing mode and return the ROV to the surface for recovery. This criterion could simply be
the expected depth of the net cage such that the inspection would end as soon as the ROV
reaches the bottom of the net cage. Other means of measuring the inspection progress are
possible and requires more advanced path planning and possibly accurate localization and
mapping relative to the net.

While the behavior worked as intended in the simulation, several new challenges occur
when the ROV is placed in a real net cage.

First, the net cage will often deform such that the shape differs from the perfect cylin-
drical shape seen in the simulation. This could lead to different sections of the net with
the same net-heading, which would lead to the progress tracking behavior believing that the
ROV has completed a circumnavigation of the net. Better tracking of the inspection progress
should therefore be found. This could be achieved by including a positioning system such as
USBL for tracking the inspection progress. However, this would require previous knowledge
of the position of the net cage or a more advanced simultaneous localization and mapping
(SLAM) system. Slightly better tracking could be achieved by utilizing parameters such as
the circumference, diameter, and depth of the net cage. These could be used for checking
if the distances traveled by the ROV during the inspection corresponds with the length of a
circumnavigation of the net. Another possibility could be a video-based system that keeps
track of the seams in the net and compares this to the known amount of seams. This method
is sometimes used by ROV operators when performing net inspections manually. [3]

Another issue that would arise in an actual net cage is the issue of different obstacles in the
net cage. A behavior that does several circumnavigations of the net cage without switching
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direction could require the ROV to repeat the track in the opposite direction to avoid getting
the tether stuck. A different path is therefore required before this behavior will be useful in
a real aquaculture setting. Finding an optimal path that avoids obstacles would require the
position of the different obstacles to be known in advance. Initially, a more robust path could
be developed and implemented without being an optimal path.

Locate Net and Achieve Net-Lock

The behavior for locating the net and achieving net-lock was only functional in specific parts
of the net cage. In the simulation, the ROV was placed in a position near the net, and the
rotation towards the origin would leave the ROV pointing at the net. Hence, the most es-
sential function of the behavior was to sufficiently increase the depth of the ROV such that
all the beams from the DVL were able to acquire net-lock. This would work and could be
useful for situations where the ROV is positioned on the other side of the net for the service
vessel acting as the origin of the coordinate system. However, if the ROV is placed in the
middle of the net cage, it will probably need to move through the shoal of fish swimming in
circles before it can acquire net-lock. For locating the net in a situation where the ROV is far
away from the origin, the deliberative behavior must rely on different parameters for locating
the net. If the DVL has previously had net-lock, the behavior could use the position of the
ROV where it last had net-lock as a starting point for locating the net. Another possibility
could be to have a rough map of the net cage relative to the origin, such that the ROV could
estimate what would be the shortest distance to the net. Other methods for identifying the
net could also be used, i.e., computer vision algorithms might be able to identify the net.

Another possible challenge will be if the net is moving. The net could be shifted away
from where the behavior expects to find the net, and this would render some of the methods
above less useful than if the net kept its position.

Overall Performance and Challenges

The mission control system implemented in the initial implementation was able to perform
an autonomous net inspection. However, it was not fully autonomous as it needed interac-
tion from the operator to confirm that the task was completed and would have required the
operator to take the ROV back to the surface for recovery if it had been a real net inspection.
Although the net inspection was not fully autonomous, it will still facilitate safer and more
robust inspections. The initial implementation serves as a proof of concept for an autonomous
mission control system and shows that it is possible with the provided tools.

It should be noted that the simulated environment was close to the ideal environment.
The simulated net cage was perfectly stationary and did not deform during the simulation,
there were no mooring lines or other obstacles in the net cage, and the location of the tether
was not taken into account. Some effects of the fish were simulated, but the full influence
of the fish on the ROV would be considerably challenging to simulate. Other environmental
conditions such as waves and currents were also not simulated.
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4.3 The Second Implementation of the Hybrid Control Archi-
tecture

For the second implementation, the mission control system would be tested in a real-life,
full-scale aquaculture setting. This meant large changes to the initial implementation were
required. Some of the behaviors from the first implementation were abandoned, while others
received significantly more focus. The behaviors that were kept were the behavior for handling
lost net-lock and the behavior for tracking the inspection progress and ensuring the entire net
cage is inspected. The behavior for handling lost net-lock was first attempted implemented
in FhSim instead of Aqueous; however, this required large changes in the communications
between FhSim and Aqueous. It was therefore left approximately the same as in the previ-
ous implementation. The behavior for tracking the inspection progress received significant
modifications. The location of the implementation of these behaviors did not change, and
modifications were carried out within the existing functions from subsection 4.2.1.

The reactive behavior for preserving a minimum distance to the net was abandoned as the
net-following controller can keep a safe distance to the net on most occasions. The problem
would, therefore, only occur if the operator set the desired distance to be a small distance.
The behavior could be more useful as a general collision avoidance behavior utilizing the DVL,
but this would require the behavior to be completely rewritten.

The behavior for locating the net and achieving net-lock was abandoned due to it only
functioning in special conditions where the ROV were located close to the origin but on the
other side of the net. This would also require a significant amount of research and development
before being suitable for use in an autonomous mission control system.

4.3.1 Track Inspection Progress

The changes in the behavior for tracking the inspection progress and ensuring the entire net
cage is inspected were mainly changes to the path planning of the inspection. The function
was still called the same way as in the initial implementation, and the same initial net-heading
is used. But instead of checking if the current net-heading is within ≈ 5◦ of the initial heading,
the function checks if the difference is greater than 60◦. If this is the case, the function will
increase the desired depth by one meter, change the direction of the net-following and replace
the initial net-heading with the current net-heading. This should create a pattern where the
ROV moves back and forth between the initial net-heading and the net-heading 60◦ away
from the initial heading. The pattern will continue until the ROV reaches the bottom and
the DVL loses net-lock. As this causes the inspection to end, no proper end-condition was
implemented in this implementation of the behavior.

4.4 Second Implementation - Results and Discussion

The second implementation was first tested in simulation before being tested in SINTEF
Ocean’s full-scale aquaculture laboratory SINTEF ACE Rataren.
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4.4.1 Results

Simulation

The simulation setup was the same as the one used for the first implementation. It includes
simulated losses of net-lock but no environmental loads. The 3D visualization of the simu-
lated result can be seen in Figure 4.2. Another visualization combining the net-heading and
the desired depth can be seen in Figure 4.3. This visualization shows the heading changing
back and forth while the depth is increased. The heading has been shifted to avoid wrapping
around [−180◦, 180◦]. The exact location of the switches in direction can be identified by
examining the step-change in desired depth. The results from the simulation show that the

Figure 4.2: The simulated track of the ROV illustrating the back-and-forth pattern in the
second implementation

mission control system is capable of producing a pattern which the ROV can follow. The
ROV is able to follow this pattern even though the DVL regularly loses net-lock. The loss
of net-lock can be identified as red points in Figure 4.2 and by the spikes going up to 180◦

in Figure 4.3. When net-lock is lost, the net-heading is set to zero, but for visualization
purposes, these points were changed to be 180◦ in Figure 4.3. As the net-following behavior
is disabled when the net-heading is set to zero, these headings are not used in the behavior
for tracking the inspection progress.
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Figure 4.3: The estimated net-heading and the desired depth from the simulation of the back-
and-forth pattern in the second implementation

It should be noted that when the desired depth is changed, the change in depth for the
ROV is gradual. While some inaccuracies occur, they do not reduce the performance of the
inspection. Based on this simulation, the autonomous mission control system was deemed
ready for testing in a full-scale aquaculture laboratory.

Real World Test

The real-world test was conducted at SINTEF Ocean’s full-scale aquaculture laboratory SIN-
TEF ACE Rataren. During the test the wind was estimated to be ≈ 2 ms to 5 ms, the current
was estimated to be ≈ 0.3 ms, and the waves were estimated to be ≈ 0.1 m to 0.2 m. These
conditions are excellent conditions for a net inspection. The net cage chosen for the test con-
tained salmon, which were considerably smaller than the target weight. A 3D visualization
of the results from the field test can be seen in Figure 4.4. The position is from an extended
Kalman filter, combining USBL measurements with measurements from the DVL, compass,
depth sensor, and gyro. The red dots indicate positions where the DVL did not have net-lock.
Note that the net cage in the figure was manually placed afterward and not extracted from
the ROVs data. Another visualization combining the net heading and depth can be seen in
Figure 4.5. Similarly to Figure 4.3, the spikes in net-heading hitting 180◦ indicates that net-
lock is lost. The ROV was manually maneuvered to a position where the DVL had net-lock,
and the net inspection mode was activated. It then started following the net as expected. As
seen in Figure 4.5, the heading estimates based on the DVL contain a fair amount of noise.
This noise causes a double switch around 130 s, caused by an upwards spike, shortly followed
by a downwards spike. The ROV then increases its depth by 2 meters and goes on in the same
direction until it reaches ≈ 60◦ from the net-heading in the downwards spike at around 240 s.
It then switches, and the ROV starts moving in the opposite direction, decreasing the net-
heading. The section from 240 s to 400 s function exactly as desired. Shortly after switching
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Figure 4.4: The track of the ROV from the field test of the second implementation

direction again, a loss of net-lock causes another double switch when the net-heading is set to
zero and the value is read by the track inspection progress behavior in Aqueous. The reason
why this occurred will be discussed in subsection 4.4.2. The following section from 410 s to
600 s is largely successful, even with some net-lock dropouts. Shortly into the next section,
a group of fish comes between the ROV and the net. A screen capture of this can be seen
in Figure 4.6. This causes not only a loss of net-lock but also some incorrect measurements,
leading to an incorrect estimation of the net. The loss of net-lock and incorrect estimations
causes another double switch. The ROV then continues successfully for a little while until a
new stream of fish comes between the ROV and the net, causing another double switch. This
time the ROV reached the depth where the net changes from vertical walls to inclined walls,
and the inspection was aborted by the operator.

4.4.2 Discussion

The field test proved that the behavior for handling the loss of net-lock is capable of doing
so without larger problems. The behavior set FhSim to manual mode, while Aqueous stayed
in the net inspection mode. The ROV then hovers around in manual mode with autoheading
and autodepth activated, with no significant drift. When the DVL regained net-lock, FhSim
switched back to net-following, and the inspection continued from roughly the same position.
The initial losses of net-lock only lasted for a few time steps, and an operator would not notice
them without paying close attention. One of these short losses of net-lock caused a double
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Figure 4.5: The estimated net-heading and the desired depth from the field test of the second
implementation

switch, but this was due to a bug which will be discussed later and nothing was inherently
wrong with the behavior for managing losses of net-lock.

The field test also proved the viability of the behavior for tracking the inspection progress.
From the heading plot in Figure 4.5, it can be seen that the net-heading estimation is prone
to noise. Several of the switches happened due to noise and not due to the actual difference
in net-heading being larger than 60◦. The cause of this noise could be inaccuracies in the
DVL measurements, which again are caused by noise in the water column. DVLs are usu-
ally utilized in deeper waters for estimating the distance and relative speed to the sea floor.
When operating in the wave zone, there is much more movement in the water. In addition,
the structures of the fish farm can cause noise when waves slam into them or when moving
parts rub into each other. As a result, the amount of noise inside the net cage is probably
substantially more significant than what the DVL was designed for. A solution to this could
be to introduce filtering for reducing the noise and smoothing out the measurements.

A couple of the switches in the field test came as a result of the DVL losing net-lock.
This is caused by the net-heading being set to zero when the DVL loses net-lock. In the
simulation, this did not cause the switch to happen, but when using the real hardware of the
ROV, this became a problem. In the simulation, Aqueous and FhSim are perfectly in sync,
meaning that if the DVL regains net-lock, FhSim outputs an estimated net-heading before
Aqueous uses this heading to track the inspection progress. When using the real hardware of
the ROV, there could be some delay as the different sensors and systems run with different
refresh rates. This leads to the estimated net-heading being zero for a few time steps while
the DVL reports that it has net-lock, causing Aqueous to use the incorrect value. This causes
double switches because the incorrect value of zero often leads to a difference in net-heading
over 60◦. When the actual estimated net-heading returns, it will also give a difference in
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Figure 4.6: A screen capture of the video, taken around 650 s into the inspection

net-heading over 60◦. This could be solved by handling the special case where the behavior
for tracking the inspection progress receives a net-heading of exactly zero.

Another thing that seems to cause switches in both the simulation and the field trial is
the corners in the net cage. The net cage is not completely round but consists of flat panels
sown together. The stitching points between these panels are often connected to the top and
bottom rings of the net cage and used for stretching out the net, creating sharper corners. The
net cage in the simulation is octagonal at the bottom and fully circular at the top. The net
cage in the field trial consisted of a larger number of panels, but the corners still occur where
the net is anchored to top or bottom rings. In an actual net cage, these panels might also
have their own curves meaning that the net-heading can fluctuate throughout a panel that
would have a consistent net-heading in simulation. This could also be solved by introducing
a filter with a large window.

Some inaccuracies in the track could also be seen in the simulation, where the depth of
the ROV gradually increased after switching direction. This could introduce small areas of
the net that would not be covered by the video feed. The change was less gradual in the field
test as the depth controller seems to get a higher priority. However, this could be further
mitigated by utilizing the vertical net-following controller.

In summary, the second implementation proves that the 60◦-transect pattern can be a
viable part for fully inspecting the net. By repeating this pattern, the whole net cage could
be inspected autonomously. However, the net-following itself needs better filtering to avoid
unnecessary switches when inspecting the net in a real-life situation.
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4.5 The Final Implementation of the Hybrid Control Archi-
tecture

The focus for the final implementation was to make the behavior for tracking the inspection
progress more robust and able to do a full inspection of the net cage. The robustness was
increased by introducing different filters and utilizing vertical net-following for the changes
in depth. For the behavior to inspect the full net cage, an FSM was created to tie together
several 60◦-transect patterns.

4.5.1 Robustness Improvements

The results from the field test of the second implementation indicated that filtering could
significantly reduce the chance of incorrect switches. A median filter was chosen as a median
filter object was already implemented in FhSim and could be easily applied. The filter was
implemented in the FhSim domain of the mission control system, which normally runs at 10
Hz. To see the effect of the median filter and decide on the filter window a median filter was
applied to the results from the field test of the second implementation. The effect can be seen
in Figure 4.7, Figure 4.8, Figure 4.9 and Figure 4.10

Figure 4.7: A section of the results from Figure 4.5 plotted against the results from a median
filter with a window of 30 steps.

Figures 4.7 and 4.8 show two sections of the results from the field test in subsection 4.4.1,
first represented in Figure 4.5. This is plotted against the result from the median filter with a
window size of 30 time steps. Figures 4.9 and 4.10 show the same two sections of the results
from the field test but plotted against the results of a median filter with a window of 100 time
steps. Note that the delay these filters would introduce is not included as the filter is applied
afterward and not in real-time. Also, note that these sections of the results from the field
test were chosen because they contained noise that visualizes the effectiveness of the filters.
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Large sections of the results were similar to Figure 4.7 but without the spikes. These were
the sections where the behavior for tracking the inspection progress functioned as intended.

Initially, it was found that a window of 30 time steps, where one time step equals 0.1
seconds, would significantly improve the robustness. This would introduce a delay of three
seconds, but as the ROV moving through the net cage has a low velocity, this was considered
a small window. However, as can be seen in 4.7 and 4.8, there were still some inaccurate
measurements that had a length of more than 30 time steps. A window of 100 time steps was
then considered for further improving the robustness. This gives a 10-second delay, but this
was also deemed acceptable due to the low velocity of the ROV. The results seen in 4.9 and
4.10 showed great promise.

Figure 4.8: A different section of the results from Figure 4.5 plotted against the results from
a median filter with a window of 30 steps.

To avoid the gradual changes in depth and improve the net-following during these changes,
it was decided to utilize vertical net-following for increasing the depth at the end of a 60◦-
transect. This was done from Aqueous by switching from the net-following controller in
FhSim to the vertical direction. While the direction of net-following is vertical, the behavior
for tracking the inspection in Aqueous does not track changes in net-heading, but only track
changes in the depth. When the depth of the ROV is within 0.25 meters from the desired
depth, the direction of the net-following controller is switched from vertical to horizontal.
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Figure 4.9: The same section of the results from Figure 4.5 as in Figure 4.7 plotted against
the results from a median filter with a window of 100 steps.

Figure 4.10: The same section of the results from Figure 4.5 as in Figure 4.8 plotted against
the results from a median filter with a window of 100 steps.

4.5.2 Inspecting the Entire Net Cage

While the behavior in the first implementation was able to inspect the entirety of the net
cage, the inspection pattern left the ROV highly likely to get its tether stuck or tied around
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lines or other obstacles in the net cage. Therefore, part of the goal of the new implementation
was to inspect the net cage such that the ROV would avoid getting its tether stuck.

A solution to this was to split the inspection into 60◦ sections, where three sections to-
gether would equal 180◦ and thereby half the net cage. The sections would have a minimum
and maximum depth, which would keep the ROV slightly under the surface and avoiding the
bottom of the net cage. After inspecting half the net cage, the ROV could return to the
initial heading (the point where it started the inspection) and restart the inspection in the
other direction.

By avoiding doing a full circumnavigation of the net cage, the risk of getting the tether
stuck would be significantly reduced. To achieve this the, path planning algorithm for creat-
ing the 60◦-transect patterns was expanded. As the algorithm for achieving the 60◦-transects
was already implemented with conditional logic, it was natural to continue using conditional
logic for expanding it. Different conditions were added at the end of a 60◦-transect. The ROV
finishes a 60◦-transect when the difference in net-heading between the current net-heading
and a previously saved net heading is above 60◦.

If the ROV finishes a 60◦-transect between the minimum and maximum depth, the process
is the same as in the second implementation. In this case, the function increases the desired
depth by one meter, changes the direction of the net-following, and adds or subtracts 60◦

to/from the variable containing the previous net-heading, depending on the current direction.
This was changed from using the current estimated net-heading as this had some inaccuracies
and could cause inconsistencies in where the transects ended.

If the ROV finishes a 60◦-transect shallower than the minimum depth or deeper than
the maximum depth, there are several new conditional statements. A counter keeps track
of whether the ROV needs to move another 60◦ before it can change depth and start a new
transect. If this counter is even, the ROV can change depth and start a new transect. If it
is odd, it needs to move further, which is achieved by changing the previous heading variable
with 60◦ in the direction the ROV is moving. The behavior then compares the current direc-
tion with the initial direction of the inspection to figure out if it should move further in the
same direction or if it should switch direction and move 120◦. If the ROV is to move 120◦,
the previous net-heading variable will be changed, and the counter will be reset such that the
same check will be done again after a 60◦-transect. If the direction is the same as the initial
directing, the behavior also checks if the difference between the current net-heading and the
initial net-heading is larger than ±160◦.

This indicates that the ROV has inspected half the net cage, and a boolean variable in-
dicating that the ROV should return to the initial position is set to true. As long as this
variable is true, the ROV will only move back towards the initial position. When the esti-
mated net-heading is within ±7.5◦ of the initial net-heading the variable is set to false, and
the initial direction is flipped.

A counter keeping track of how many times the ROV has been back at the initial position
is also increased. If this counter reaches two, it means the ROV has conducted two 180◦ in-
spections of the net cage and returned to start. Hence, the entire net cage has been inspected,
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and the behavior switches the mode of the ROV to manual as the net inspection is finished.
For an easier understanding of this path planning algorithm, an FSM was created.

FSM for Net Inspection

The FSM covers the main logic of the autonomous net inspection mode. It can be seen in
Figure 4.11, and the transitions can be seen in Table 4.1. In the diagram, H-NF is short
for Horizontal Net-Following, V-NF is short for Vertical Net-Following, and RtS is short for
Return to Start. It could be a part of either the net inspection state in the FSM or the net
inspection action in the BT. Reactive behaviors such as switching to manual while waiting
for net-lock and setting DP if no net-lock is acquired are omitted as they are implemented
within every state in the FSM and would require transitions from every state.

The choice to create an FSM was made when the conditional logic of the behavior for
tracking the net inspection became hard to follow. Before the FSM above was developed,
no explicit decision had been made regarding a mathematical model of the control system.
Instead, simple conditional logic was expanded several times, reducing the readability and
understandability for each added state or transition. The resulting FSM can be seen in
Figure 4.11.

H-NF V-NF

NF Com-
pleted

H-NF RtS

T1

T2

T6

T7

T8

T3

T4

T5

Figure 4.11: Finite State Machine for Net Inspection
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T1

NetHeadingDiff > 60◦ && Depth inside min/max
 Change depth

T2

Depth within 0.25 meters of the desired depth
 Start horizontal net-following, switch direction

T3

Depth outside min/max && CurrentDir == InitialDir && InitHeadingDiff >= 160◦

 Return to Start

T4

InitHeadingDiff < 7.5◦

 Start new inspection in the other direction

T5

InitHeadingDiff < 7.5◦ && ReturnToStartCounter == 2
 Net inspection complete

T6

Depth outside min/max && GoFurther && CurrentDir == InitialDir
 Restart horizontal net-following

T7

Depth outside min/max && GoFurther && CurrentDir != InitialDir
 Restart horizontal net-following, switch direction

T8

Depth outside min/max && !GoFurther
 Change depth

Table 4.1: The transitions of the FSM in Figure 3.5
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Chapter 5

Results

This section documents the results of the final implementation. The final implementation was
first tested in simulation before being tested in the field. The results are therefore divided
into results from the simulation and results from the field test. In all 3D figures, the track
of the ROV is represented in red or white, where the red sections indicate that the DVL
lacks net-lock while the white sections indicate that the DVL has net-lock. The blue grid
represents the net cage. In the figures displaying the results from the field tests, the displayed
net cage is placed by hand, and therefore only approximately the location of the actual net
cage. In the 2D figures, the lack of net-lock is displayed as gaps in the net heading, and it can
also be seen as the small changes in desired depth. The values used to plot the figures have
been altered to avoid going through [−180◦, 180◦], making the figures easier to follow. Some
position has also been rotated around the z-axis to allow for better slices in the 3D plots. In
all instances, the difference relative to other values has been kept the same, such that the
results still convey the same information.

After conducting all the final experiments in this thesis, the author noticed a bug in the
Moving Median Filter object in FhSim. The bug caused the input length to be discarded, and
a default length of 5 time steps was always used. This was the case for all the experiments
in this thesis that utilized the median filter. It was also the case for all the previous trials
SINTEF Ocean had done, utilizing the median filter. Considering the proposed filter length
in this thesis was 100 time steps, the length of 5 time steps gave little to no filtering. The filter
also introduced some other issues and edge cases. This will be further discussed in chapter 6.

5.1 Simulation

The simulation setup used was mostly the same as in section 4.2. The velocity of the ROV
was reduced to 0.5 ms, and although this is still higher than what is used in the real world, it
makes little difference in the simulation. As the simulated environment and sensors had little
to no noise, the main focus of the simulation was to demonstrate the ROVs’ capability to
inspect the entire net cage in a way that reduced the chances of getting stuck. The minimum
depth was set to 2 m and the maximum depth was set to 8 m. The ROV was then supposed
to inspect the entire net cage by doing three 60◦ sections in a row before returning to start
and restarting the process in the other direction. This was achieved by positioning the ROV
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such that it had net-lock and initiating the final implementation of the net-inspection mode.
The following figures are from the same simulation, showing different parts of the simulation.
Figure 5.1 shows the full net inspection, while Figure 5.2 shows the first half including the
ROVs return to its initial position.

Figure 5.1: The full simulated net inspection

Figure 5.2: The first half of the full simulated net inspection

The ROV was able to fully inspect the net cage. The inspection can be split into two
180◦ sections, which both start and end in the same location. The first of the two sections
can be seen in Figure 5.2. The ROV does not circumnavigate the net cage but still overlaps
at the end of each 180◦ section such that every part of the net is inspected. Within each 180◦
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section, the ROV does three 60◦ sections before returning to the position where the section
started. The track of the ROV continuing to the next section can be seen at the bottom left
in Figure 5.2. Depending on the number of transects the ROV must do before reaching the
minimum or maximum depth, the 60◦ sections could be ended on the opposite side of the
section to where the next section begins. If this is the case, the ROV backtracks 60◦ to the
point where the new section starts.

Figure 5.3: 2D plot of the heading and desired depth for the full simulation

Figure 5.4: 2D plot of the heading and desired depth for one 60◦ section from the simulation
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An example of this is displayed in the middle section in Figure 5.2, where the ROV moves
towards the left until it finishes the 60◦ transect. The three sectors have a slight variation in
length because of corners causing significant changes in the estimated net-heading. Figure 5.3
displays the heading and desired depth of the entire net inspection, and it represents how
the plot should ideally look for a complete net inspection. Figure 5.4 displays the first 60◦

section, representing the desired plot of net-heading and desired depth during a 60◦ section.

5.2 Field

The field tests were conducted at SINTEF Ocean’s full-scale aquaculture laboratory, SINTEF
ACE Tristeinen. Tristeinen is a fish farm located among small islands and reefs off the coast
to the north of Ørland Municipality. The site is located outside of sheltered waters and is
more exposed to environmental forces than the average fish farm. The seas were calm (state
1) at the begging of the trial in the morning to then built up during the day (state 3). The
weather during the field tests was also calmer than what would generally be expected for the
area but similar to the waves, the wind and the current both increased during the day. The
observed wave height increased from 0.2 m to 0.5 m, the wind increased from 3 ms to 6 ms
and the current increased from 0.1 ms to 0.5 ms. The current was observed around buoys and
other stationary structures in the water and could vary within the net cage as the net can
influence the current. The weather was primarily coming from the north, which meant that
the net cage chosen for the field trials would get negligible sheltering from other net cages
and the surrounding islands.

The net cage chosen for the tests was estimated to contain approximately 190 000 indi-
vidual salmon with an average weight of 2.45 kg, totaling approximately 467 tonnes of biomass.

Seven tests were conducted, but this section only presents the results from the second,
fourth and fifth tests. The reason for omitting the first, sixth and seventh test is discussed
in chapter 6; however, it can be summarized as follows: The first test started off successfully,
but when it was supposed to switch depth, direction and start a new transect, it continuously
changed depth. This was thought to be due to a bug in the code, and the test was aborted.
The third test was omitted due to not providing new insights or situations which did not
already occur in the second or fourth test. From the fifth test and onwards, the DVL had
great difficulties achieving net-lock. The reason for this is suspected to be the harsher weather
conditions causing underwater noise, which interfered with the acoustics of the DVL. This
made it impractical to conduct tests relying on net-following, and the tests were nothing more
than attempts at achieving a steady net-lock. All tests suffered from the bug in the median
filter.

The tests were conducted by placing the ROV in the net cage, manually positioning it
such that the DVL achieved net-lock, and activating the net inspection mode in Aqueous.
The desired velocity was set to 0.1 ms for the first and second tests and increased to 0.2 ms
for the remaining tests. The minimum depth was initially set to 2 m and the maximum depth
to 8 m. They were both increased after the second test, the minimum depth to 2.8 m and the
maximum depth to 10 m.
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5.2.1 The Second Field Test

Figure 5.5: 3D plot showing the position of the second field test

In the second field test, the ROV started the net inspection with an initial estimated net
heading of 2◦ and immediately encountered a small challenge. As the net-following controller
started working its way towards the net, the ROV rotated a bit back and forward, and for
a little moment, the DVL caught a corner in the opposite direction of the desired direction
of travel. This led to the estimated net-heading sharply decreasing before sharply increasing
again. The sharp decrease and increase can be seen around time step number 1000 in Fig-
ure 5.6 and Figure 5.7. As the change was not larger than 60◦ from the initial net-heading,
no switch happened. The ROV then moved further and encountered another corner right
before 200 seconds had passed (time step number 2000), this time in the desired direction.
When the ROV was heading towards the corner, the estimated net-heading was decreasing
and was about −10◦ right before the corner. The corner then caused a ≈ 40◦ − 50◦ jump
in the estimated net-heading. Again, the net heading steadily decreased until the ROV en-
countered a new corner at around 280 seconds. This corner caused another ≈ 40◦− 50◦ jump
in the estimated net-heading. However, in combination with some noise, it also caused the
mission control system to finish the transect and change depth and direction, which can be
seen as the step in desired depth in Figure 5.6 and Figure 5.7. The ROV then increased its
depth and started moving in the opposite direction. It then quickly encountered the same
corner, which caused another jump in the estimated heading. Which again, in combination
with noise, caused the mission control system to finish the transect. These events are also
displayed in Figure 5.5, as the reverse ”S” in the top left. The ROV continued without issues

Spring 2021 Page 73



TMR4930 Master Thesis

Figure 5.6: 2D plot of the heading and desired depth from the second field test

for a little while until a new corner combined with noise caused a switch after 410 seconds.
After changing depth and direction, the ROV reencountered the corner, but this time with
reduced noise, hence avoiding the switch. The ROV moved back towards the start without
issues until encountering the same corner, which caused the double switch around 280-300
seconds. This corner caused another switch, which can be seen around the 500 second mark
in Figure 5.6 and Figure 5.7. After changing depth, at 550 seconds, the ROV encountered a
stream of fish which caused the DVL to lose net-lock in short periods. It also considerably
increases the amount of noise. The view from the ROVs camera during this event can be
seen in Figure 5.8. The ROV drifted slightly away from its original position, but it was able
to regain a stable net-lock shortly after. It then started to continue as intended, but due to
a combination of noise and the corner, another switch happened at 570 seconds. The ROV
then moved away from the corner and continued as intended until the noise caused another
switch at 610 seconds. After the switch, it moved back towards the corner. The corner was
now less sharp due to the change in depth, and the jump in estimated net-heading was re-
duced from the earlier ≈ 40◦ − 50◦ to ≈ 20◦ − 30◦. Hence, the corner caused no issues for
the mission control system. However, shortly after, at around 650 seconds, the noise caused
another switch. This switch is not visible in the results due to not changing the desired depth
of the net-following controller. This time the ROVs depth exceeded the maximum depth, and
the mission control system starts a new transect for moving 60◦ over before changing depth.
However, due to noise or possibly issues with the median filter, another switch happens at 670
seconds. As soon as the ROV changed its depth, another switch happens. This time it was
due to the actual net-heading having a 60◦ difference from the noise point that caused the
last switch. When the ROV finally reached the new desired depth at around 710 seconds, it
traversed the net successfully for around 170 seconds. During this period, it passed a corner
without issues before reaching another corner which rightfully triggered the switch. However,
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Figure 5.7: A zoomed in section of the plot in Figure 5.6

possibly due to an issue with the moving median filter, another switch was immediately trig-
gered. After reaching the desired depth, the ROV continued traversing the net for around
100 seconds before the test was aborted.

Figure 5.8: A view from the ROVs camera at around 550 seconds into the second field test.
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5.2.2 The Fourth Field Test

Figure 5.9: 3D plot showing the position of the fourth field test

The fourth field test started with an initially estimated net-heading of 17◦. The ROV traversed
the net similarly to in the second field test and passed a corner after around 50 seconds. Before
this corner, the estimated net heading had dropped by around 20◦. The corner caused a jump
of ≈ 30◦. The ROV continued traversing the net, and at around 100 seconds, the first switch
happens. The switch happens prematurely because of noise. Shortly after, at 115 seconds,
another switch happened. This was probably due to an issue with the moving median filter.
This double switch can be seen as a reverse ”S” in Figure 5.9 and as two steps with few time
steps between them in the desired depth in Figure 5.10. After changing depth, the ROV
continued in the same direction as before until some losses of net-lock combined with issues
with the moving median filter caused the mission control system to switch again at around
175 seconds. From the track in Figure 5.9, the ROV seems to perform three more transects
without further issues; however, all the switches happened prematurely due to noise or other
issues. While the ROV also encountered corners in the fourth field test, they were not as
sharp as the corners in the second field test.
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Figure 5.10: 2D plot of the heading and desired depth from the fourth field test

5.2.3 The Fifth Field Test

Between the fourth and the fifth test, an attempt at creating a moving average filter in
Aqueous was made. This also meant that some time passed between the fourth and fifth test,
which allowed for the wind, waves, and current to increase. When attempting to start the
test, the DVL could not achieve steady net-lock. In hopes that the conditions would be better
deeper in the net cage, the depth of the ROV was increased. This depth increase can be seen
as the near-vertical, mostly red line in Figure 5.11. After reaching a depth of approximately
6 m, the DVL was able to achieve net-lock, and the net inspection was started. As the test
was started by attempting net-following, the initial heading was set long before the more
successful net inspection started. The test started with an initially estimated net-heading of
9◦. After steady net-lock was acquired, the ROV traversed the net as intended, and a little
after the estimated net-heading reached ≈ 70◦, the mission control system switched desired
direction and depth. This can be seen around time step 2500 (250 seconds) in Figure 5.12.
The slightly delayed switch, as well as some outliers not triggering the switch, indicated that
the filter could be working; however, as the filter was implemented in Aqueous, its output is
not visible in Figure 5.12. The ROV then continued to traverse the net for a little over 100
seconds. During these 100 seconds, no outliers triggered the mission control system to switch,
as can be seen between 240 and 300 seconds in Figure 5.12. At around 300 seconds, the
DVL measurements significantly worsened, and the net-following controller barely controlled
the ROV; instead, the ROV spent most of the time with the autoheading and autodepth
controllers activated. This essentially left the ROV to drift until the test was aborted.

Spring 2021 Page 77



TMR4930 Master Thesis

Figure 5.11: 3D plot showing the position of the fifth field test
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Figure 5.12: 2D plot of the heading and desired depth from the fifth field test
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Chapter 6

Discussion

This chapter will discuss the performance and challenges of the final implementation of the
autonomous mission control system, which was tested in the field.

The performance of the final implementation in field tests was not significantly improved
when compared to the field tests of the second implementation. This largely came down to
issues with the filtering and harsher weather. Another thing that affected the results was a
local COVID-19 outbreak at Frøya. The outbreak caused the second day of field trials to be
canceled, and personnel from SINTEF Ocean and the author were quarantined. This removed
a significant number of tests. It also removed the possibility for errors from the first day to
be fixed before the tests on the second day.

6.1 Filtering

The main issue in the field tests was insufficient filtering. It was clear that filtering would
be needed already from the field test of the second implementation. An attempt at filtering
the net-heading with a moving median filter was therefore made in the final implementation.
However, due to a bug in the FhSim moving median filter object provided by SINTEF Ocean,
the filtering had minimal effect. The bug was discovered by the author of this thesis while
investigating possible sources of errors.

The length of the filter in this thesis was selected to be 10 seconds; this was first believed
to be 100 time steps. However, this was based on the frequency of the output and not on the
frequency of the integration in FhSim. As 100 time steps in the integration equal 1 second,
the actual length of the filter should have been 1000 time steps. This was fixed during the
field tests, but the input length was discarded due to the bug in the moving median filter
object. Instead, the default length of 5 time steps was used. As the filter was intended to
have a length of 10 seconds but ended up with a length of 0.05 seconds, the resulting filtering
was insignificant.

Instead of improving the net inspection, the moving median filter introduced new issues.
Both issues are rooted in the event where the filter would return an average between two
values. According to the implementation of the moving median filter, this should only be the
case for a filter of even length. However, output values from the median filter, which were
never returned by the net approximation object, were found several times in several different
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tests.

First, if the estimated net-heading was in the area around [−180◦, 180◦], the median filter
could have two values of approximately −180◦ and 180◦ as the median. This would return
the average value of zero, which would give a completely wrong value to the mission control
system. This is suspected to be the cause of several of the switches at the end of both the
first and second field tests, as the original heading before being altered for the purpose of
presenting the results were around ±180◦. In addition, the average of the two middle values
also caused issues when the net approximation object was unable to approximate the net,
or a few time steps later, and returned the value of zero. This was managed in Aqueous by
omitting values that were exactly equal to zero. However, these were included in the median
filter and used for calculating the average of the middle values. If the previous net-heading
was around 60◦ before losing net-lock and getting net-heading values of zero, this could lead
to the median filter returning values of 30◦, which again could cause the mission control sys-
tem to switch incorrectly. This was found to be the case for the switch around 440 seconds
in Figure 5.10.

Both the bug in the implementation of the moving median filter, as well as the other is-
sues a median filter could introduce, can be hard to notice in simulations and usually require
real-world testing to be properly assessed.

The potential of the median filter was proved in section 4.5. To see what effect it could
have had on the final field tests a moving median filter with a length of 10 seconds was applied
to the net-heading estimate in the second and fourth field tests. The results can be seen in
Figure 6.1 and Figure 6.2. It should be noted that if applied in real-time, the moving median
filter would introduce a substantial delay.

Figure 6.1: The result of subsequently applying a moving median filter to the net-heading
estimate from the second field test.
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Figure 6.2: The result of subsequently applying a moving median filter to the net-heading
estimate from the fourth field test.

While this would have drastically have improved the net inspection, there would still be
issues with the net inspection mode. For instance, the sections where the moving median
filter cannot filter the net-heading due to losses of net-lock would still occur and would need
to be managed. The moving median filter could also require further tuning to avoid being
too slow or to avoid large overshoots.

6.2 Corners

An issue that would still occur is the jumps in net-heading caused by the stitching points in
the net forming sharp corners. As the net is a soft body, it can flex significantly between
the points where it is anchored to the remainder of the net cage structure. This causes the
panels between the anchor points to arch, which could create significant changes in the actual
net-heading over a small area. These corners appear when the current and waves deform the
net significantly, and there are significant forces on the anchoring points. The severeness of
the corners could vary between different depths, and sharp changes in the net heading could
also occur when traversing the net vertically; however, this is not as common as the horizontal
corners. An exaggerated example of such a corner can be seen in Figure 6.3, where the inside
of the net cage is the top part of the figure, while the sharp corner would be attached to the
remainder of the net cage structure on the outside of the net. If the corner in Figure 6.3
were to be traversed from left to right, the actual net-heading would start at ±180◦, the
normal vector of the estimated plane pointing out of the net, straight towards the bottom in
the figure. The net-heading would then slowly change towards −135◦ right before the DVL
beams hit the other side of the corner. At this point, the normal vector of the estimated
net plane is pointing towards the lower left of the figure. As the DVL beams continue past
the corner, the net-heading rapidly changes to approximately 135◦. The normal vector of
the estimated net plane now points towards the lower right of the figure. The net-heading
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then finally increases back up to ±180◦. Figure 6.4 shows the actual corner, which caused
numerous issues in the second field test from the perspective of the ROVs camera.

Figure 6.3: An exaggerated example of a possible corner in a net cage seen from above.

Figure 6.4: An example of a real corner from the second field test.

Using only the net-heading for keeping track of the ROVs’ position during the net in-
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spection may not be sufficient, even with improved filtering. For overcoming the challenges
introduced by corners, the mission control system could include other measurements such
as the USBL position estimates, the diameter of the net cage, and the time, velocity, and
heading of the ROV. These could also be combined in a Kalman filter or similar to achieve a
better situational awareness regarding the localization of the ROV relative to the net cage.

6.3 Signal Processing of the DVL

The DVL is believed to be the source of the noise in the field tests. The gyrocompass of the
ROV could be another source; however, gyrocompasses have been used in ROVs in aquacul-
ture for a longer time, and larger deviations would have been noticed. DVLs are typically used
for measuring the velocity and distance relative to the seafloor and have only recently been
tested for applications in aquaculture. DVLs have been found to be suitable in aquaculture;
however, this field is still in its infancy, and as far as the author knows, no DVL has been
purpose-made for tracking the net in fish farms. Hence, the DVL used in this thesis could
possibly be tuned better for use in aquaculture.

The challenge of using DVLs in aquaculture became apparent during the field trials at
Tristeinen, where the performance of the DVL decreased as the day progressed until the point
where it became unusable. The cause of the reduced performance is not clear, but it can be
assumed that it is related to the harsh weather. As the DVL relies on acoustics to function,
it could be disturbed by waves and structures reacting and creating sound. It is also possible
that temperature differences in the water could cause different densities and therefore interfere
with the acoustics of the DVL. A large amount of biomass moving around in the net cage
could also disturb the acoustics of the DVL; however, this has not been an issue in previous
field trials utilizing the DVL for net-following.

There could be several ways of improving the performance of a DVL for use in a fish farm.
One thing that stands out is SINTEF Oceans’ utilization of the DVL. The net approximation
object created by personnel at SINTEF Ocean is very conservative in the way it handles the
signals from the DVL. The net approximation object relies on a flag from the DVL, indicating
whether all the four beams of the DVL provide good measurements. When applying the
DVL for estimating a plane of the net, it does not require the same measurements as when
measuring the distance and velocity relative to the seafloor. For estimating a plane, only three
points are required. Hence, it could be sufficient if the DVL only has three beams providing
good measurements. By changing this, the frequency of net-lock losses could possibly be
significantly reduced.

6.4 Loss of Net-Lock

Due to the issues with the DVL as mentioned in section 6.3, the behavior for managing the
loss of net-lock saw regular use. For the short periods where net-lock was unavailable, the
behavior functioned satisfyingly. For longer periods, which were still shorter than the 10-
second threshold for setting DP, or periods where net-lock was frequently lost and regained,
the ROV could drift more than desired. This could be mitigated by switching to the DP mode
instead of only utilizing the autoheading and autodepth controllers. However, using the DP
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mode would tear more on the different components of the ROV, and implementing it would
be significantly more demanding than utilizing the autoheading and autodepth controllers.

6.5 Tracking the Inspection Progress

The pattern implemented in the final implementation could be more efficient. A large amount
of depth and direction changes increases the chance of wrongful switches. All the switches
which occurred due to corners in the net are examples of this. By only switching once every
180◦, the number of switches would be significantly reduced, and the required difference in
net-heading to cause a switch would be 3 times larger. It would still encounter some issues
with the corners, but the pattern should be less affected by corners. Another solution could
be to mainly utilize vertical net-following, running transects from the top of the net cage
to the bottom, with small horizontal change in-between. After inspecting 180◦, the ROV
would utilize horizontal net-following for return to the start. An attempt at this was made
in this thesis; however, it was found that even in simulation, the net-heading would not be
sufficient for this to work. To only utilize net-heading for tracking the ROVs position in the
net cage would require a completely circular net and a highly accurate net-heading. Instead of
doing 60◦ horizontal moves, the net inspection mainly utilizing vertical net-following would do
changes smaller than 10◦. Similarly to in section 6.2, the net-heading would not be sufficient
for SLAM of the ROV relative to the net cage. A combination of different measurements
and previous knowledge could be utilized for improving the tracking of the net inspection
progress.

6.6 Practicality of Finite State Machine

The FSM implemented in this thesis functioned as intended in the simulation. Due to the
issues mentioned above, the FSM did not see complete testing in the field tests. Only parts of
the FSM were tested, and these seemed to function as intended. None of the numerous incor-
rect switches were due to the FSM. The implementation of the conditions in the FSM should
be sufficient, but robustness improvements are required before the conditions will function as
intended.

The FSM contributed to easier implementation as well as improved testing. Initially, it
reduced the challenge of keeping track of the different states and transitions. However, as the
FSM grew, it became increasingly challenging to keep track of the logic flow through as well
as understanding the transitions in Table 4.1. A possible alternative to the implemented FSM
would be to implement a BT. However, this would require a more extensive restructuring of
the net inspection mode.

Choosing a mathematical model of computation for dynamic mission management specifi-
cation early in the development process could be beneficial for the mission control architecture.
Regardless of the mathematical model chosen, it would reduce the clutter when implement-
ing an autonomous mission control system. Creating a mathematical model of computation
late in the development process does not significantly improve the mission control architecture.
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Chapter 7

Conclusion

The main task of this thesis was to design and implement an autonomous mission control sys-
tem for connecting the different automatic functions and administering decisions for an ROV
such that it is capable of performing autonomous underwater IMR operations. Autonomous
ROVs capable of conducting IMR operations could reduce the different risks associated with
aquaculture, facilitating the move towards exposed locations.

The design of the autonomous mission control system is fundamentally based on classical
control architectures such as the Guidance, Navigation, and Control architecture and then
expanded upon for adding autonomous capabilities. Autonomous functions could be intro-
duced in all the different parts of the GNC architecture; however, as mission control systems
fall under guidance, it is natural for the autonomous mission control system to do the same.
The autonomous mission control system is based on the idea of a hybrid mission control
architecture. A hybrid mission control architecture was chosen as it combines the ideas of
reactive control and deliberative control. For a system to be autonomous, it must be capable
of some deliberation, and for a system to function in a highly dynamic and unpredictable
environment such as a net cage in aquaculture, it must be able to quickly react to unplanned
events. The autonomous mission control architecture is divided into three different layers. A
planning layer for planning the long-range goals of the mission, a behavioral control layer for
interacting with sensors and actuators, and an executive layer that functions as an interface
between the planning layer and the behavior control layer. For better understanding the flow
of logic through the planning and executive layers, FSMs and BTs were studied, and an FSM
was implemented in the autonomous mission control system.

The autonomous mission control system in this thesis was created to perform autonomous
underwater IMR operations with an ROV. The different IMR tasks the ROV could capable
of performing were therefore studied. Most of these tasks, such as mooring inspection, net
inspection, fish monitoring, and net cleaning, are currently conducted with manual ROVs,
while repairs of the net are usually conducted by divers. Mooring inspection, net inspection,
and net cleaning have considerable potential for autonomy. Net repair also has potential for
autonomy but requires efficient tools before full autonomy can be considered. In this thesis,
the net inspection task was chosen for implementation due to existing automatic functions
and research.
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As the autonomous mission control system should be able to detect and handle high-risk
situations, the different risks connected to the use of autonomous ROVs were studied. The
risks with the most prominent consequences are the risk of creating a hole in the net and the
risk of the ROV getting stuck.

An autonomous mission control system was then implemented for SINTEF Ocean’s Argus
Mini ROV. This ROV is controlled by the simulation software FhSim, and operator inputs
are provided through the Aqueous GUI. The different behaviors in the autonomous mission
control system were implemented in Aqueous. The two behaviors showing the most potential
were the behavior for handling loss of net-lock and the behavior for tracking the inspection
progress and creating an inspection pattern.

The behavior for handling loss of net-lock was largely successful and significantly improved
the autonomy of the net inspection. It could still be slightly improved by utilizing DP for
keeping stationary while attempting to regain net-lock.

The behavior for tracking the inspection progress and creating an inspection pattern was
successful in simulations but did not function as well in the field tests. The primary reason
for this was the noisy measurements in combination with insufficient filtering. However, the
shape of the net cage also caused problems, and a better SLAM algorithm could significantly
improve the performance of the behavior.

The autonomous mission control system implemented in this thesis was able to perform a
fully autonomous net inspection in simulations. It also showed potential for fully autonomous
net inspection in real-world fish farms, but further improvements are required for this to be a
reality. A net cage is a challenging environment for ROVs as it is positioned in the wave zone
with large quantities of fish, creating unpredictable currents. This demands robust control of
the ROV as well as robust decisions from the autonomous mission control system. With the
aquaculture industry moving further away from sheltered waters, the required robustness is
increasing further. The mission control system implemented in this thesis can be of benefit to
SINTEF Ocean as it makes ROV operations safer and more robust. However, further work
is required before an autonomous ROV can perform IMR operations in exposed aquaculture.

7.1 Further work

The autonomous mission control system implemented in this thesis can be improved by further
testing and tuning, as well as including various measurements not utilized in the current
implementation. An improved SLAM algorithm could significantly improve the performance
of the autonomous mission control system. Significant improvement can also be found by
researching the use of DVLs in aquaculture and using a less conservative approach to its
utilization. Methods for automatically detecting holes in the net are also of interest when
it comes to fully autonomous net inspection. The system could also be expanded to include
other IMR tasks in aquaculture, such as mooring inspection and net repair. Autonomous
mooring inspection would require further research into methods for detecting and tracking
mooring lines. For autonomously net repair, new tools and systems for controlling them must
be developed. Different systems could be created for net cleaning, using some of the ideas

Spring 2021 Page 87



TMR4930 Master Thesis

presented in this thesis combined with purpose-built ROVs or specialized tools. In addition,
the field of resident, possibly tetherless, ROVs could be further researched in order to allow
for fully autonomous IMR capable ROVs in the future.
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Abstract: The objective of this paper is to describe and discuss the risk factors and
safety challenges regarding autonomy in aquaculture. The Norwegian sea-based aquaculture
is a dangerous occupation for the human operators and expanding fish farms offshore will
increase the need for autonomous monitoring, operations and decision support systems. New
technological solutions are necessary for ensuring safety and efficiency. Not only for the human
operators but also for the fish and the environment. Autonomous ROVs could help reduce these
kind of risks however there are still risks tied to autonomous ROV operations. These risks are
discussed and used to build a decision base for the autonomous ROV. By considering risk factors
and suitable actions for the autonomous ROV, it is possible to prevent unwanted situations in
advance. Fuzzy logic was implemented to analyze risk factors in fish farming with an autonomous
ROV. Simulations were done with a fuzzy logic model implemented in SIMULINK.
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1. INTRODUCTION

1.1 Background

Risk analysis has wide applicability to aquaculture. It can
be applied in assessing risks to the environment posed
by hazards created by aquaculture development, which
includes risk of environmental degradation, pests, genetic
impacts and so on. Another aspect could be the risk to
the fish, such as the risk of fish escape, which would have
an impact on both the environment and the economy
of the fish farm. On the other hand risk analysis can
be applied to the people working at the aquaculture
facilitates. The sea-based fish farming is one of the most
dangerous occupations in Norway, and sometimes operate
at the edge of safety limits (Utne et al., 2015). High
manual workload, utilization of heavy equipment and
harsh weather conditions, contribute to the risk.

With an increased growth of the fish farming industry,
the need for expanding to new locations is inevitable.
This includes moving fish farms into more exposed areas
with more severe weather conditions and demanding sea
states (Bjelland et al., 2015). Operations and technolo-
gies in fish farms are today highly dependent on human
interactions with tools and fish cage structures. The en-
vironmental challenges at sea create limited operational
weather windows, which makes it difficult to carry out
operations without exposing the operating personnel for a
significant risk of harm. It is therefore desirable to develop
solutions where less operators must be present to carry out
tasks manually. New and adapted methods that improve
tools, technology and platforms in aquaculture with more
autonomy are needed.

Fig. 1. Fish cage with operators in exposed area.

More exposed locations for aquaculture makes the use
of remote control and underwater vehicles (UV) feasi-
ble for underwater operations (?). More frequent use of
autonomous and remote control options such as vessel-
control, Remotely Operated Vehicles (ROV) and cage-
integrated intervention tools will help enlarging the
weather window without putting any human operators at
risk. One can also argument for reduced risk of fish escapes
and net-faults by implementing autonomy. For instance,
having ROVs doing net inspections and continuously re-
porting holes or other failures of the fish cage will help
prevent fish escapes.



1.2 Objective and scope of paper

The objective of this paper is to present the different
challenges connected to risk in autonomous aquaculture
and discuss autonomy as a tool of preventing risk and
cause of risk. Several risks are present in relation to ROV
operations in aquaculture today, and by implementing au-
tonomous ROV operations the challenges regarding safety
and risk will change, possibly reducing some while in-
troducing others. These challenges will be presented and
discussed. An approach of using fuzzy logic to develop a
safety decision basis for the ROV will also be presented.

2. RISK RELATED TO AUTONOMY IN
AQUACULTURE

Risk can be divided into consequence categories in several
different ways. We have decided on 4 main categories;
Safety, Environment, Asset and Biological Welfare and
Safety. In an aquaculture setting the safety category refers
to the safety of the humans involved, i.e. the risk of injuries
and fatalities. The environment category refers to the
possible consequences for the ecosystem, an example being
the risk of escaped fish spreading diseases to wild salmon.
The asset category is related to the risk of damaging or
losing the asset which is what brings value. For an ROV
in aquaculture this could be divided in two. The most
important asset in aquaculture is usually the fish, as it
is the primary value of a fish farm. The other asset is the
ROV itself, which is costly to replace or repair. We also
include the safety and well-being of the fish, as it is a
living being that can feel pain and should not be exposed
to unnecessary trauma (Ashley, 2007).

2.1 Safety

Sea based aquaculture is one of the most dangerous
occupations in Norway (Holen et al., 2016). Most of these
accidents are not directly related to ROV operations, but
ROV operations could be a contributing factor. Most ROV
operations requires a service vessel next to the submerged
net-cage which contains the fish. As the fish farms and
net-cages can be found in a variety of different areas,
they can be exposed to a variety of different sea states.
According to (Holen et al., 2016) harsh weather is a risk
influencing factor both for risk concerning humans, and
risk concerning the structures. When using an ROV in
connection to a fish farm, the usual sequence of events
is as follows: A service vessel maneuvers to the net-cage,
and launches the ROV. The service vessel then stays more
or less in the same position while the ROV conducts an
inspection, maintenance or repair (IMR) operation. After
the operation is finished the service vessel will pick up the
ROV and return to its base. During this stage the involved
humans will be stationed on board the service vessel. The
consequences for the humans in this operation are mostly
connected to the service vessel. Either due to events on
the service vessel itself, such as loss of power, unexpected
movement or loss of vessel, or due to events such as moving
heavy objects and using cranes when launching/retrieving
the ROV (Solem, 2017). This type of operation will likely
be the same in the coming years. Even though ROVs could
become autonomous, they would not remove the need for
the service vessel until they are fully resident.

2.2 Environment

The major risk for the environment is the risk of fish
escapes, as they could have detrimental genetic and eco-
logical effects on wild fish or other fauna in the coastal
environment (Østen Jensen, 2010). ROVs are important
for inspecting the net and structures containing the fish,
and thereby reducing the risk of fish escape. However the
use of ROV could also contribute to fish escapes, i.e. if it
gets stuck in the net, or runs into the net with something
sharp protruding from the ROV. The general understand-
ing is that using ROVs are beneficial when it comes to
inspecting and maintaining the fish farm, as the risk of
the ROV breaching the net is small when compared to the
risk it reduces by inspecting the net or other structures.
Another possible consequence for the environment that
can be connected to the use of ROVs is pollution of micro
plastics. This is something that happens when the net is
being cleaned with high pressure water, and microscopic
parts of the nylon net is torn off.

2.3 Asset

The most important asset is the fish and the largest risk
regarding the fish in aquaculture is again the risk of escape.
If a large portion of the fish in a fish farm escapes, a large
amount of the value is lost with it. However, as the fish is
a living asset there are several other risks tied to loss of
the fish in aquaculture. Stressing or injuring the fish could
devalue it or in the worst case kill it which again will cause
it to lose value. This will be further discussed later, but
in relation to the welfare and safety of the fish and not in
relation to economic value.

The other asset is the ROV, and the common risks would
be damaging or losing the ROV. Losing an ROV can
happen if the tether is cut and the ROV is in an open
area, and not inside a net-cage. This is not something that
commonly happens, but it has happened (Olsen, 2020).
Damaging the ROV is more common, and could happen if
it runs into some obstacle, gets stuck in the net or tangles
the tether in some mooring lines.

The fish in Norwegian fish farms is protected by the Ani-
mal Welfare Act (The Norwegian Ministry of Agriculture
and Food, 2009). As a result, the welfare and safety of the
fish must also be considered when discussing consequences.
In relation to the usage of ROVs the largest consequence
is fatality, which could occur if the fish get stuck in the
structure of the ROV or if the fish comes into contact
with the propeller blades in one of the thrusters. Fatalities
could also occur as a result of sicknesses induced by stress,
injuries or lice infection(Ashley, 2007). The use of ROVs
could influence the stress in fish, as well as cause injuries.
How ROVs influence fish welfare is not widely researched,
but the use of ROVs probably have some influence on
fish welfare. This could be both positive and negative.
An example with positive outcome is the use of ROVs
for improving net pen conditions. However, according to
SINTEF personnel working closely with ROV operations
in aquaculture and (Kruusmaa et al., 2020), salmon usu-
ally stays away from the ROV. This is indicating that the
ROV scares and stresses the salmon, which is a negative
consequence. Cleaner fish seem to be indifferent to the



ROV, coming right up to the ROV. While this could be an
indication that the cleaner fish are less scared or stressed
by the ROV, it means that the risk of the ROV directly
damaging the cleaner fish is higher than what it is for the
salmon.

3. KNOWLEDGE BASE

We have been able to identify some risks related to
the use of ROV in aquaculture, the largest being the
risk of fish escape. The most frequent reason of escape
of fish is structural reasons, including mooring failure,
breakdown of net-cage structures, abrasion and tearing of
nets (Østen Jensen, 2010). For ROV operations the most
relevant of these are abrasion and tearing of nets. While
damages to these structures are among main reason for fish
escapes, ROV operations are not among the most critical
operations in terms of a potential escape (Thorvaldsen
et al., 2015). However, from the perspective of an ROV
operation the risk of fish escape is the largest risk directly
related to the ROV.

We will now look into how we can use the identified
risks in a decision making process for an ROV to avoid
fish escapes. The focus will be on scenarios where the
ROV could come close to the net and cause damages to
the structures containing the fish. Initially we will look
into the operational modes of the ROV, and identify
the risk scenarios in relation to each operational mode.
The operational modes and the related risks have been
specified based on (Solem, 2017) and an interview with
relevant people at SINTEF, working closely with ROVs in
aquaculture.

3.1 Operational modes

An autonomous ROV would need several operational
modes for autonomous inspection, maintenance and repair
in aquaculture. Some of these could be quite simple and
obvious, such as launch, transit, station keeping (DP) and
recovery, while others are more advanced and require extra
sensors or equipment. The simple ones will probably be
common in most autonomous underwater vehicles (AUV),
and they have already been researched and implemented
(Rist-Christensen, 2016). A few more advanced opera-
tional modes are already researched and some even imple-
mented for some ROVs, examples are net following, net
repair and net cleaning. Other potential modes that could
be researched and developed in the future are; mooring
line following, dead fish collecting, net-relative navigation,
etc.

3.2 Launch

During the launch phase of an ROV operation, the ROV is
put into the water and all systems are tested to see if they
are stable and ready for operations. Today, this is usually
performed manually. In this phase, the ROV is in close
proximity to the work boat and if any system is inoperative
to the extent that the ROV does not function normally
the operation should be aborted and the ROV should
be recovered. For the autonomous system, there is not
many decisions to make apart from possibly discontinuing
the mission. The only event tied to risk in the control

mode for launch will therefore be a ”Systems Faulty”
event. This event will also be relevant for all the other
modes. If the ROV does not function as expected, it could
damage structures such as the net. If it later were to get
stuck/inoperable somewhere away from the work boat this
would require some human controlled operation to recover
the ROV, which leads to increased risk of both damaging
structures and injuring humans.

3.3 Transit

In the transit mode, the ROV is moving from one point to
another, either along a predefined path or by moving in a
direction while avoiding obstacles if the ROV is capable of
detecting and avoiding obstacles. Autonomous transit has
been implemented in research projects, (Rist-Christensen,
2016), but currently transit is most commonly done by
manual control. In autonomous transit, there are several
events that could lead to unwanted consequences. One ex-
ample is the possibility of being off a predefined track, such
that the path no longer is cleared of obstacles. Another
example is when the ROV has detected an obstacle and
need to avoid it. A final example is if the ROV has taken a
bad path and managed to get its tether stuck, preventing
the ROV from moving as expected. This scenario will be
relevant for several of the modes, but most relevant for
transit as transit is the mode where the ROV travels the
greatest distance. Both the ROV being unable to move
as expected, and the tether being stuck in some structure
leads to an increased risk of damaging structures. It could
also require some human controlled operation to free it
from being stuck.

3.4 Station Keeping

In the station keeping mode, the ROV is staying stationary
in one position. It will be able to do small and precise
changes in its position/heading, but for a larger distance
it will use the tracking mode. Station keeping or dynamic
positioning (DP) as it is often called, is common for surface
ships such as supply vessels in the oil and gas industry. DP
is well studied and an example of this is (Chen and Moan,
2004), which looks into the risks of collision between a
shuttle tanker and FPSO while offloading. They mainly
look into the possibility of a ”drive off” which is when the
shuttle tanker drives away from the desired position due
to wrong control input or some other error causing wrong
thruster forces. They also mention ”drift off”, which is
when no thrust or not enough thrust is produced and the
vessel drifts away from the desired position. These two
events can be adapted for an ROV in station keeping as
well.

3.5 Recovery

The recovery mode is when the ROV is back at the surface
and close to the work boat. Similarly to the launch mode,
this is currently usually done manually. In this scenario
there are no big risks of any structural damage or damage
to the fish. As the recovery itself is an operation involving
humans there is some risk of injuries and fatalities, but
this would not be something the ROV needs to take into
account.



3.6 Net Following

During the last decade ROVs have gradually replaced
divers when it comes to inspection of the net pen. A
method for autonomous net following has therefore been
researched and implemented (Amundsen et al., 2020). In
this mode the ROV is using DVL (Doppler-Velocity-Log)
to estimate the relative position of the net, and moving
along it at a constant distance. There are several scenarios
in the net following mode that could lead to structural
consequences, as the ROV operates in close proximity to
the net. One scenario is the scenario where the ROV is
closer to the net than some predefined threshold, and even
small disturbances can cause the ROV to hit the net.
Another scenario is the scenario where the DVL loses track
of the net, leaving the ROV unable to follow the net or
know where the net is. There could be several reasons for
this, but a common one is due to fish swimming between
the ROV and the net. The fish usually keep on swimming
and most of the time the DVL is able to regain track of
the net within a short amount of time. Finally there is
the scenario where the ROV is following the net, but the
distance estimate or angle is wrong, leading the ROV to
drive into the net. In these three scenarios, all it takes is
a small disturbance and it could lead to the ROV hitting
the net, possibly getting stuck and thereby causing a tear
in the net.

3.7 Net Cleaning

The accumulation of biofouling on cage nets is a major
problem in aquaculture (Bloecher et al., 2013). ROVs with
purpose built washing tools, or purpose built ROVs are
used for cleaning the nets (Solem, 2017). When cleaning
the net these ROVs have to come close to, and sometimes
even in contact with, the net. This could lead to situations
where the ROV makes a tear in the net, or enlarges an
existing tear. The cleaning rigs are usually made in such
a way that they minimize the wear and tear on the net,
but there is still a risk of tearing the net. Scenarios where
this could happen are similar to the drive off and drift off
scenarios in the station keeping mode, as the control and
movement of the ROV will be similar to station keeping
until it touches the net. There are also some scenarios
related to the contact with the net, such as applying too
much force, or getting the cleaning rig entangled or stuck
in the net.

3.8 Net Repair

Holes in the net containing the fish is one of the most
common causes of fish escape (Østen Jensen, 2010). While
usually fixed by divers, there have been research and devel-
opment of tools that enable ROVs to fix holes (SINTEF,
2012). It is therefore possible to assume such tools and
operations will be researched and implemented for au-
tonomous ROVs as well. When repairing the net, the ROV
has to come in contact with the net. This is something
that can have great consequences if something were to
go wrong, especially if there already is a hole that could
expand. Some solutions also require the ROV to apply
force to the net for the repair tool to work, something that
increases the risk of a further tearing of the net. Due to the

aforementioned reasons, there are several scenarios in this
operational mode that could lead to unwanted structural
consequences. Similarly to net cleaning, a couple of these
scenarios can be the ones mentioned in the station keeping
mode. Another scenario, highly relevant in this mode, is if
the ROV applies to much force to the net. Lastly the ROV
could get itself or the repairing tool stuck in the net.

3.9 Other operational modes

The other modes mentioned in the introduction of op-
erational modes are not as common, less researched, or
less used in current aquaculture when compared to the
different modes discussed above. As a result, we have not
looked any further into these modes and the risk connected
to them.

3.10 Knowledge Base for Fuzzy Logic

In this paper, the focus will be on a few of the specific
scenarios listed in the net following mode as it is a mode
where the ROV will spend a substantial amount of time in
close proximity to the net. One of the scenarios we want
to include in a decision making system for an ROV is the
scenario where the ROV is closer than some predefined
distance. If the ROV was able to keep at a safe distance,
there would never be any risk of tearing the net. The other
scenario we will include in our fuzzy logic simulation is the
scenario where the DVLs estimate of the net position is
lost. If this happens the ROV no longer knows its position
relative to the net, and a collision with the net could easily
happen.

3.11 Rules

Based on the scenarios above, we structured some rules
for use in the decision making system, which in this paper
will be a fuzzy logic simulation. The rules can be found
in Table 1. The different categories in the table will be
defined in section 4.

Table 1. Knowledge Rules.

DVL Reference Distance to Net Action

Red Green AbortMission
Red Yellow AbortMission
Red Red AbortMission

Yellow Green Continue
Yellow Yellow GoToLastSafeWithReference
Yellow Red GoToLastSafeWithReference
Green Green Continue
Green Yellow Continue
Green Red GoToLastSafeWithReference

4. FUZZY LOGIC

Fuzzy logic was first developed by Lotfi Zadeh in 1960s
who was a professor in the University of California at
Berkeley. He introduced fuzzy set in order to quantify
vagueness of natural language. Fuzzy logic describes un-
certain or vague situation as various kind of status, not
only expressing it as true or false. It considers 0 and 1 as
the extreme cases of truth and false but also thinks various



status in between 0 and 1. For example in risk assessment
0 may describe safe and 1 would describe dangerous. De-
pending on the resulting values of fuzzy logic, we can figure
out just how dangerous the situation is.

Fig. 2. Fuzzy logic interference system

4.1 Fuzzification

A crisp set of input data are gathered and converted to a
fuzzy set using fuzzy linguistic variables, fuzzy linguistic
terms and membership functions. This step is known as
fuzzification. It is the process of generating membership
values for a fuzzy variable using membership functions.

ROV Distance

We will divide area in three zones where ROV operates,
green, yellow and red. Red zone is the most risky area
which is from 0m to 2.5m. Yellow zone is from 2.5m to
5m. Green zone is from 5m to 10m. ”ROV distance” in
the rest of the paper refers to the current distance to the
net, or the last distance sent from the DVL before it lost
connection.

Time Since Last DVL Reference

Another factor that may influence the risk of hitting the
net in net following is the sensor data. In our system, a
DVL is used for measuring distance to cage. Three regions
are set for ”Time Since Last DVL Reference”, hereby
referred to as ”DVL lost connection time”. These three
regions are green, red, yellow. Green is the case when DVL
lost signal from 0 to 2.5 seconds ago, yellow is for the case
where the signal was lost from 2.5 to 7.5 seconds and red is
the case where the signal was lost 5 seconds ago or more.

ROV Decision

Possible decisions were simply categorized as three. Abort,
GoToLastSafeWithReference (It will be described as Go-
ToRef) and Continue. When the situation is highly risky
the ROV should abort the mission and return to the base.
Those are cases when the ROV is too close to the net and
the DVL has lost connection for long time. Based on the
DVL connection status the ROV can decide to go to a safe
reference point (GoToRef). When both conditions are fine,
the ROV is allowed to continue the mission.

4.2 Fuzzy Rule Set

In this paper, 6 input fuzzy sets and 3 output fuzzy sets
are defined. Every fuzzy set is expressed with membership
functions. Figure 3, figure 4 and figure 5 represents the
membership functions for input and output variables. How
the graphs in the membership functions are configured is
listed in Table 2

Fig. 3. Input Variable ROV Last Distance.

Fig. 4. Input Variable DVL Lost Connection.

Fig. 5. Output Variable ROV Decision.

4.3 Defuzzification

The defuzzification step is for calculating crisp output
from fuzzy output using membership functions. After
fuzzification, output data shall be numerically generated,
which will tell the ROV which decision to choose.
GoToLastSafeWithReference is described as GoToRef in
Table 2 in order to make it fit into the table length.



Table 2. Fuzzy sets and membership functions.

Input and Output variables Fuzzy Set Fuzzy Set parameters

ROV Distance(m) red -2.5 0 1 2.5
yellow 2 2.5 5
green 5 7 10 12

DVL Lost Connection(t) red 5 10 15 16
yellow 2.5 3.75 7.5
green -2.5 0 2.5

Decision abort -0.5 0 0.5
GoToRef 0.1 0.4 0.6
continue 0.5 1 1.5

Table 3. Simulation result from simulink.

ROV Distance DVL lost Connection ROV Decision

0.47 0.70 0.36
6.78 10.18 0.16
6.79 10.18 0.16
9.34 14.02 0.16
3.83 5.75 0.33
5.19 7.79 0.23
8.30 12.46 0.16
0.34 0.51 0.36
0.53 0.80 0.36
5.29 7.94 0.23

5. SIMULATION

5.1 Setup

MATLAB SIMULINK was used to setup our simulation of
the fuzzy logic. The command fuzzy enables the user to
set the graphs and rules of fuzzy logic and by implementing
it in SIMULINK, we can run different cases with random
inputs and get different outputs. ROV Distance and DVL
lost Connection time can be given by using the Uniform
Random Number block in SIMULINK, by choosing dif-
ferent maximum values. These random numbers can be
checked with a display block for each cases. After running
these values through the Fuzzy Logic Controller with Rule-
Viewer, defuzzified output value can also be checked with
a display block. By using this value the ROV can decide
which action to take. By running the SIMULINK model
we can get output data and analyze it by surface output
and rule output. In order to record every simulated cases,
a simout block was used for sending the data to them
MATLAB workspace. 10 cases were simulated in total.

Fig. 6. Simulink model.

Fig. 7. Surface Output

Fig. 8. Fuzzy Interference diagram.

Fig. 9. Result Plot.

5.2 Results

Even though we used random numbers in SIMULINK,
the output values are located between 0 and 0.4. We can
see when the ROV Distance is green(5.297m) and DVL
lost Connection time is red(7.946sec) output value is 0.23
and the ROV has to take the action ”Abort”. However,
we can also see that the defuzzified output tells of an
uncertain decision at the separation between the yellow
and green zones of ROV distance, at 5m. We can also
check this at figure 7. The output of most simulated
cases are below 0.5. It seems like every case has to abort
mission as we set output values from 0 to 0.5 should
abort mission. However, it turns out only four cases should
abort mission, [6.78,10.18,0.16], [6.79, 10.18, 0.16], [9.34,
14.02, 0.16], [8.30, 12.46, 0.16], and rest of cases should
return to reference point. This shows characteristics of



fuzzy logic that the decision is made by a combination of
different fuzzy input variables. By running a larger amount
of simulations and tuning the membership functions in the
fuzzy logic controller, we could probably have achieved
results closer to our expected rules from Table 1.

6. CONCLUSION AND FURTHER WORK

This paper addresses the challenges related to exposed
aquaculture and autonomy in underwater operations. In-
troducing autonomy in ROV operations can reduce oper-
ator risk, cost and be time saving. An operator will still
be needed to supervise the operations, and in the near
future this operator will be on board a service vessel next
to the net cage. But in the future there are possibilites for
resident ROVs, enabeling the supervising operator to be
located on shore in a safer environment. A major challenge
is to develop autonomous ROV systems that can handle
and respond to the unstructured environment of a fish
farm. A major part of this is the decision making system of
the ROV, which needs a model for analyzing risk factors.
Uncertainty regarding risk influencing factors (RIF) will
affect the performance of the ROV, which must be taken
into account in the ROV-based operations. In this paper
a Fuzzy logic basis for an ROVs decision making system
is presented.

In order to mimic the nature of random faults and failures
in the ROV subsystem, this study uses a simulation with
random inputs. Hence, the results may not reflect true
behaviour of the sensors and the ROVs decisions. By
using live ROV sensor data the validity of the method
would be increased. However, the fuzzy interference system
provided a systematic basis for the decision support basis
of the ROV. In this system fuzzy rules have been designed
according to what was seen as realistic events of possible
hazards caused by the ROV. The result obtained could
be valuable for development of a decision making system
in ROVs, based on consequence analysis and operational
safety.

Further research could be to expand this decision making
system to include multiple of the modes and scenarios
discussed in the Knowledge Base section. There is also
potential for further research of the risks and consequences
of using ROVs in aquaculture.
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Introduction 
Remotely operated vehicles (ROVs) are vital for the aquaculture industry and are used for inspection, 
maintenance, and repair (IMR) operations such as net inspections, mooring inspections, net cleaning, 
and biomass monitoring. It is well documented that industry workers at fish farms are exposed to 
risks, and as the industry grows and fish farms are moved further offshore, the risk for the people 
involved increases [1]. More autonomous ROVs can help mitigate this risk by performing some of the 
most dangerous underwater operations autonomously. Efficiency could also be improved with 
autonomy. Per today most ROVs have some autonomous abilities, but none can perform complete 
aquaculture IMR tasks autonomously. ROVs operating in aquaculture net cages face several unique 
challenges compared to most other oceanic industries, such as manoeuvring inside dynamic 
structures and operating in the wave zone. 

This paper proposes a system architecture for autonomous mission control of ROVs operating in the 
aquaculture domain. We also present an analysis of which IMR operations in aquaculture have the 
potential to be conducted by autonomous ROVs, including their implementation requirements for an 
autonomous mission control system. The different risks connected to the use of autonomous ROVs in 
aquaculture are also analysed. 

Materials and methods 
Motion control systems for autonomous marine vehicles are usually constructed of three 
independent blocks, guidance, navigation, and control, which together makes up a GNC system [2]. 
However, when the complexity of the vehicle mission and the number of possible mission states 
increases, these three blocks can become tightly coupled and there may exist functionalities which a 
GNC-system may not describe. 

The GNC architecture is therefore seen in context with classical robot control architectures such as 
deliberative, reactive, hybrid, and behaviour-based architectures for mission management [3]. The 
proposed mission control system consists of a hybrid approach building on the GNC-architecture, 
such that an autonomous ROV can both react to unplanned events and keep an overall plan of the 
task it is performing. Furthermore, the mission control system is divided into different layers for 
implementation. The layers proposed are a planning layer, an executive layer, and a behavioural 
control layer. The planning layer handles high level control and deliberation, such as keeping track of 
the mission progress and moving from point to point. The planning layer is implemented in SINTEF 
Ocean's GUI for ROV control, Aqueous [4]. The behavioural layer consists of lower-level control 
behaviours such as dynamic positioning, net following and path following. It also ensures reactivity 
by handling exceptions in execution of the low-level behaviours. The behavioural layer is 
implemented in the simulation framework FhSim [5]. The executive layer is divided between 
Aqueous and FhSim, where FhSim handles reactive transitions while Aqueous handles deliberative 
and manual transitions. For visualizing and understanding the conditions and transitions between the 
different behaviours a finite state machine (FSM) is utilized. 



Results 
The proposed mission control system has been implemented on an Argus Mini ROV and verified in 
simulations using the simulation framework FhSim. Furthermore, in a proof-of-concept experiment, 
elements of the autonomous mission control system were successfully tested at SINTEF ACE, a full-
scale industrial fish farm laboratory located off the coast of mid-Norway. The trial targeted 
aquaculture inspection operations and during the experiments the ROV performed an autonomous 
inspection of a net pen using a Doppler velocity log (DVL) [6]. The autonomous mission control 
system was able to handle loss of sensor measurements through reactive behaviour. Furthermore, 
using deliberative behaviour the mission control system tried to keep track of and manage the 
autonomous net inspection task. The results are promising, even though they show that better 
localization of the net pen is required. 

Discussion 
The implemented system architecture for autonomous mission control allows the ROV to perform 
both deliberate and reactive behaviours. The results show that the proposed GNC-based architecture 
utilizing a layered hybrid approach can be expanded and improved for increased autonomy in the 
future, for instance, by adding new behaviours to the autonomous mission control system. 

Conclusion and further work 
An analysis of ROV operations in aquaculture that have the potential to be autonomized have been 
conducted. Furthermore, a proposed mission control system for ROVs operating autonomously in 
aquaculture net cages has been implemented and tested in a full-scale experiment. The results are 
promising and demonstrates the potential in autonomous ROV operations in aquaculture. Further 
work includes the implementation and field validation of more autonomous functionality, as well as 
improving the net inspection tracking performance. 
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