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Abstract in Norwegian 

Kreft kjennetegnes av molekylære forandringer som resulterer i unormal og høy 

celledeling. Opp gjennom årene har et vesentlig antall kjemoterapier rettet mot å 

hemme denne celledelingen blitt godkjent for bruk i behandling av kreft. 

Anvendelsen av disse har ført til generelt forbedrede prognoser for kreftpasienter, 

men fortsatt er det slik at langt fra alle pasienter responderer på slik behandling, og 

i tillegg opplever mange bivirkninger. For å øke effekten av kreftbehandling, 

fokuserer mye av dagens forskning på mulighetene for mer målrettet behandling ved 

å spesifikt angripe de molekylære endringene som gir opphav til sykdommen. Denne 

behandlingsformen antas å være gunstig av flere grunner, blant annet ved at 

bivirkningene blir mindre, og ved at mulighetene for persontilpasset behandling blir 

større. Selv om målrettet behandling i teorien er en lovende strategi, er det også flere 

utfordringer. En av disse utfordringene er knyttet til plastisiteten til kreftceller, der 

endringer i kreftcellenes molekylære signalertrafikk ofte gir opphav til 

behandlingsresistens. Bruken av medikamentkombinasjoner har vist seg å være en 

effektiv strategi for å omgå resistens, men på grunn av det astronomiske antallet 

mulige kombinasjoner som må undersøkes eksperimentelt, har relativt få blitt 

vurdert, godkjent, og nådd klinisk bruk. I tillegg antas mangler i den biologiske 

likheten mellom mange av dagens eksperimentelle kreftmodeller og virkelige 

svulster å føre til lite samsvar mellom eksperimentelle og kliniske responser.  

Med hovedmål om å øke kunnskapen om hvordan kreftbehandling kan 

effektiviseres, var arbeidet i denne doktorgraden spesielt rettet mot å undersøke 1) 

hvordan bruk av mer avanserte eksperimentelle kreftmodeller, med antatt økt klinisk 

relevans, kan brukes i høykapasitets-utprøving av mange medisiner, og 2) hvordan 

datamodeller kan brukes som verktøy i søket etter effektive 

medikamentkombinasjoner. Gjennom en storskala studie som studerte effekten av 

21 medikamentkombinasjoner i klassiske (2D) og mer avanserte (3D) 

eksperimentelle kreftmodeller, ønsket vi å finne forskjellene i medikamentrespons 

forårsaket av forskjeller i den tredimensjonale oppbyggingen av kreftsvulster. 

Resultatene fra studien viste signifikante forskjeller i kombinasjonseffekt mellom 

kreftmodeller, som igjen belyser viktigheten av å nøye vurdere den kliniske 

relevansen av ulike modeller ved design av eksperimentelle studier. Av de 21 

medikamentkombinasjonene som ble testet i studien, ble en betydelig andel funnet å 

være ineffektiv i begge modellene. For å vise at datakraft kan brukes til å forutsi 

medikamentrespons og dermed fungere som et verktøy for effektivisering av 

eksperimentelle studier, designet vi en datamodell basert på medikamentene som er 

inkludert i kombinasjonsstudien vår. Datamodellen ble oppdatert basert på 

eksperimentelle funn, og kunne deretter brukes til å identifisere en rekke nye 



medikamentkombinasjoner med mulig høyere effekt. Alle disse ble bevist riktige i 

en oppfølgingsstudie, som viser kraften i å bruke datamodeller for å effektivisere 

eksperimentelle studier av medikamentkombinasjoner. Avslutningsvis, rettet mot å 

ytterligere øke den kliniske relevansen av eksperimentelle kreftmodeller, utviklet vi 

en metode for medikamentresponsstudier i primære pasientderiverte kreftmodeller 

(sfæroider). Denne studien viste klare forskjeller i respons mellom sfæroider fra 

forskjellige pasienter, som igjen understreker relevansen av persontilpasset 

behandling av kreft. 
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Abstract  
Cancer is characterised by molecular alterations that lead to abnormal and excessive 

cellular proliferation. Over the years, a considerable number of chemotherapies, 

aimed to prevent proliferation by inducing cell death, have been approved for 

treatment of cancer. The use of such therapies has led to an overall increase in the 

quality of life and survival of cancer patients, but far from all patients respond to 

treatment. In addition, many patients experience side-effects to therapies. Seeking to 

increase the effect of cancer therapies, today’s research has turned towards the 

possibility of treating cancer using strategies that more specifically target the 

molecular alterations that are the assumed cause of the disease. Treating cancer by 

specific targeting of aberrant molecular mechanisms is believed to be beneficial from 

several points of view. As treatments are designed to specifically target cancer cells, 

the risk for side-effects is supposedly lower. Also, based on evidence of large 

molecular heterogeneity between cancer patients, targeted therapy is a promising 

strategy for personalising cancer treatment. Although a promising strategy in theory, 

the reality of targeted therapy however faces multiple challenges, including, 1) 

molecular signalling of cancer cells, which is highly adaptive and often results in 

treatment resistance. While resistance may be circumvented by administrating drugs 

in combinations 2) identifying such combinations is challenging due to the large 

combinatorial space that experimentally needs to be explored. In addition, 3) 

biological discrepancies between in vitro cultures and tumours in vivo are large, 

which may contribute to low clinical translatability of therapies identified as 

successful in vitro.  

Ultimately seeking to contribute to increased knowledge on how to improve cancer 

treatment, the work of this thesis was aimed at investigating 1) how drug response 

can be assayed in more complex culture models that more closely mimic a clinical 

setting, and 2) how computational models can be employed in the search for 

synergistic drug combinations.  

By performing an unbiased high-throughput screen of 21 drug combinations in 

planar (2D) and spheroid (3D) cultures of colorectal cancer cell lines, we studied the 

impact of culture complexity on drug combination effects. We found that drug 

synergy in general was more pronounced in 2D-cultivated cells, but also noticed that 

3D-cultivated cells were more sensitive and showed greater synergistic response to 

specific combinations. Altogether the results from the study hence indicated that 

already at the cell line level, culture complexity has a significant impact on drug 

response, which in turn highlights the importance of careful selection of the most 

clinically relevant in vitro culture system when seeking to make the most possible 

out of drug response data. To take 3D models as a tool for in vitro screening one step 
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closer to a clinical scenario we also developed a procedure for drug testing in patient-

derived tumour spheroids. Doing so, we were able to show that by studying just a 

small group of samples we could capture sample-heterogeneity in terms of growth 

rate and drug response. These results highlight the relevance of tailoring cancer 

treatment to individual patients. Both the combination screen and evaluation of 

response in patient-derived tumour spheroids were performed in an exhaustive 

design testing all potential drug combinations. To show that computational 

modelling can be used for prediction of drug response and hence guiding of drug 

screens, we constructed a mechanistic computational model encompassing 

signalling pathways known to be dysregulated in multiple cancers. By adjusting the 

model to increase its predictive capacity for pairwise combinations, we next used it 

for prediction of synergistic third and fourth-order combinations. The model 

identified three synergistic third-order combinations, out of which all were 

confirmed in a subsequent screen. Altogether the results point towards the benefits 

of using computational tools when designing large-scale experiments.  

 

To summarise, this thesis presents a thorough study of models and strategies 

available for preclinical testing of drugs and drug combinations. As investigated 

models span over a wide range of application areas, the study is expected to cover 

many of the aspects of preclinical drug testing; from early computational simulations 

of drug response to in vitro screening of clinically approved agents in patient-derived 

tumour cultures.  
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Introduction  
Each year accounting for the death of millions of people worldwide1, cancer 

constitutes a growing threat to global health. While decades of research have been 

aimed at uncovering universal treatment options for the disease, most of the findings 

point in the same direction: cancer is a highly heterogeneous disease, both in terms 

of progression and treatment response2. Consequently, researchers have turned their 

focus towards the possibility of adapting cancer treatment to better fit individual 

patients; a strategy called personalised medicine3.  

Today, we are for certain cancer subtypes partly there, as several examples of 

successful applications of personalised medicine have been brought into the light 

during the past two decades4,5. However, despite the overall promise of this treatment 

strategy, personalised medicine is still faced by multiple challenges. Some of them 

relate to the economic aspects of individualising treatment, others to the ethical 

issues6,7. Some of the more practical challenges are related to the selection of the 

most efficient treatment strategy for each patient, a process that, before advancing to 

the clinical setting, requires systematic procedures for testing large numbers of 

therapeutic options in clinically relevant in vitro and in silico models8,9. By 

investigating the landscape of such preclinical models available for evaluation of 

cancer treatment response, the greater aims of the work presented in this thesis are 

to contribute to scientific progress within the field of personalised medicine in 

general, and to streamlining treatment selection in particular.  

In the subsequent introductory text, I aim to give the reader a theoretical background 

to the main topics of the thesis: (1) drug combinations as means to individualise 

cancer treatment and counteract development of resistance to cancer therapy, (2) 

high-throughput screening as a tool for evaluating the effect of drugs in vitro, and 

(3) computational modelling as a tool for prediction of the effect of anti-cancer 

therapy in silico. I will start by giving a general background to the development of 

cancer, by highlighting the multitude of dysfunctional events that ultimately lead up 

to the transformation of normal cells into cancer cells. In the light of cancer as a 

multifaceted and adaptive signalling disease, I then introduce the concepts of cancer 

systems biology and combination therapy and describe how these can be employed 

in cancer therapy. Parts three and four give the reader an overview of strategies for 

high-throughput screening and computational modelling of signalling networks and 

describe how such methods can be implemented for prioritization of therapeutic 

agents. The objectives of the thesis are outlined in Objectives of the study. 
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The Development of Cancer  

 

Cell Proliferation throughout Life 

The human body is a complex organism, consisting of trillions of cells. Every human 

life however starts with a single cell, and for the complex structures of you and me 

to develop, a significant amount of cell proliferation is needed. Proliferation takes 

place during the early development and is characterised by a cell’s growth and 

division to produce daughter cells. As cells formed during the early development 

eventually gain specialised skills and find their functional context in different tissues 

and organs, their proliferation rate usually decreases, but with large variations 

between tissues, from tissues where most cells are in a resting state, to tissues with 

a high turnover due to tissue renewal. Apart from a few cells which never divide 

again, most cells retain the capability to start proliferating whenever they need to. 

The latter is the case when cell replacement is needed due to e.g., tissue injury or 

loss due to normal wear and tear10,11. When new cells are needed by the body, resting 

cells are stimulated to start proliferating. Upon this stimulation, the cell leaves an 

arrested state and enters the cell cycle. The cell cycle consists of the four stages G1, 

S, G2 and M, whose collective task is to, for each lap in the cycle, produce two new 

cells, identical to the mother cell12,13. A cell’s progression through the cell cycle is 

closely monitored by multiple molecular surveillance systems, and decision to 

continue is assessed at multiple points throughout the cell cycle14. These checkpoints 

serve to guarantee that proliferation is carried out in a way that is influenced by both 

cues from neighbouring cells and cues that are cell-intrinsic. In particular, several of 

the checkpoints ensure the integrity of DNA, a highly important task, as abnormal 

cellular proliferation threatens the integrity of both the cell and the organism. For 

each cell division there is a small but not negligible risk of introducing alterations to 

the DNA, called mutations. With accumulation of mutations the growth capacity of 

the cell can be influenced to neither take cues from the neighbouring cells, nor to 

ensure continued integrity of DNA. 

 

A Cancer Cell Arises  

Uncontrolled proliferation is a key feature of cancer, enabled by defects in multiple 

systems that are supposed to regulate cellular growth15. Molecular defects resulting 

in the growth advantage of cells are often considered as hallmarks of cancer. In 

January 2000, Douglas Hanahan and Robert Weinberg published the paper The 

Hallmarks of Cancer presenting a thorough literature study of factors that govern the 

transformation of normal cells into cancer cells16. With this study, the authors aimed 

to show that most, if not all, cancers share a relatively small number of traits, so-
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called acquired capabilities, which collectively support tumour growth16. The six 

hallmarks originally presented by Hanahan and Weinberg are summarised below.  

• Self-sufficiency in growth signals. To be able to grow and divide, all cells 

are dependent on receiving signals that tell them to do so. Such signals are 

often received by membrane-bound receptors, which transmit the signal 

across the cell membrane, where then other molecules take over the role as 

intracellular signalling mediators17–21. In normal cells, the transduction of 

pro-proliferative signals is tightly regulated to ensure that cells only commit 

to cell division when they receive exogeneous growth stimulation17. Most 

cancers, however, depend less on such stimulation as they have invented 

strategies for how to produce growth-promoting signals themselves. This 

may occur by multiple different means, out of which mutations resulting in 

overexpression of intracellular components responsible for transducing the 

signals probably is the most common22–29.   

 

• Insensitivity to anti-growth signals. Just as much as growth-promoting 

signals encourage cells to proliferate, growth-inhibiting signals prevent the 

proliferation from being excessive17. Normally, unwanted cellular growth is 

prevented by growth-inhibitory proteins of the cell cycle, such as the 

retinoblastoma protein and p53, which particularly govern the transition 

from G1 to S phase30,31. In many types of cancers, one or both of these and 

other growth-inhibiting proteins are lost, consequently resulting in the 

constant activation of the cell cycle32–35.   

  

• Evading apoptosis. The apoptotic program, comprising a series of events 

by which cells may undergo regulated death, is present in latent form in 

virtually all cells in the human body. Under normal conditions, this program 

ensures that cells that do not display enough capacity for life do not continue 

to be a potential source of proliferation36. Upregulation of anti-apoptotic 

proteins, as well as downregulation of pro-apoptotic proteins are frequently 

observed in cancer, which altogether has been found to render cancer cells 

insensitive to conditions which normally would be associated with regulated 

cell death37–41.   

 

• Limitless replicative potential. All the above-mentioned acquired 

capabilities provide cancer cells with a replicative advantage. Normally, the 

acquisition of one or several of these traits would however not constitute that 

much of a threat, as healthy cells carry a program which prevents them from 

undergoing too many replication cycles42. Not surprising, cancer cells have 

acquired the capability to continue replicating far beyond what is normal for 
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non-cancerous cells; a trait which in 85-95% of all cancers has been found 

to be enabled by an upregulation in an enzyme, telomerase, which ensures 

the constant rebuilding of chromosomes43–45.   

  

• Sustained angiogenesis. During the development of tissues and organs, the 

increased need for oxygen and nutrients is met by an increased formation of 

blood vessels; a process called angiogenesis46. As organs become fully 

developed, the formation of new blood vessels eventually ceases, and in 

order to grow large, tumours must at some point, acquire the capability to 

reactivate angiogenetic capacity47. In most cancers, the latter is enabled by 

altered expression of angiogenetic inducers and inhibitors, which in turn 

results in a change in the balance between these factors and a push towards 

angiogenesis48. 

• Tissue invasion and metastasis. Eventually most untreated tumours 

acquire the capability to invade surrounding tissue and spread to distant parts 

of the body where new tumours, metastases, are formed. Tissue invasion and 

metastasis have been found to be the results of changes in the physical 

coupling of cancer cells to each other and to their microenvironment, which 

eventually allows the cells to detach from the primary tumour. Alterations 

in cell adhesion molecules (CAMs) are frequently observed in metastatic 

tumours, and are believed to be some of the key steps to metastasis49,50. 

 

In 2011, Hanahan and Weinberg revisited the topic and extended the list of hallmarks 

based on the recognition that the acquisition of the previous six hallmarks is made 

possible by additional enabling characteristics51. The development of genomic 

instability was highlighted as the most prominent enabling characteristic and is 

referred to as a higher mutational frequency in cancer cells compared to normal cells, 

a feature that in turn enables the acquisition of the substantial number of mutations 

needed for the other hallmarks to occur. The authors highlighted that the 

development of genomic instability arises from either or both of 1) increased 

sensitivity to mutagenic agents and 2) breakdown of components in the genomic 

maintenance machinery where p53 is considered to play a major role. Further, 

tumour-promoting inflammation was highlighted as another enabling characteristic, 

whereas reprogramming of metabolism and evasion of immune destruction were 

considered as emerging hallmarks.  
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Treatment of Cancer  

 

While the number of acquired capabilities accounting for the transformation of 

normal cells into cancer cells is relatively small, one must remember that the 

acquisition of each one of the traits often depends on molecular alterations in 

multiple components involved in proper execution of affected cellular functions. In 

addition, distinct combinations of molecular alterations may lead up to each of the 

cancer hallmarks, which altogether makes cancer a highly heterogeneous disease. 

Despite this, cancer has traditionally often been treated as a uniform disease, using 

methods aimed at targeting general cellular targets or traits.  

 

DNA-Damaging Therapies: Chemotherapy and Radiotherapy 

 

History  

For almost a century, chemotherapy and radiotherapy have been two of the leading 

modalities for treatment of cancer, in addition to the surgical approaches52,53. The era 

of cancer chemotherapy began in the early 1940s with the observation of the anti-

tumoral effects of an alkylating agent, nitrogen mustard, in lymphoma patients54,55. 

The use of radiation to treat cancer is considered to have started multiple decades 

earlier, with reported use as early as in the late 1800s56. The early use of these 

treatment methods was associated with modest efficacy and severe side-effects, in 

large due to a lack of understanding of the molecular effects of the treatments on all 

cells in the body54,56. An increased understanding of these effects as well as of the 

inherent responding mechanisms of our cells has led to improvement of both 

chemotherapy and radiotherapy52,57.  

 

General Mechanism of Action 

While strikingly different to their physical nature, chemotherapy and radiotherapy 

share multiple properties that make them suitable for treatment of cancer. Especially, 

both treatment modalities exert their anti-tumoral effects by inducing direct or 

indirect DNA damage in cells52. Depending on the type of the induced damage, the 

cells respond by activating various DNA damage response (DDR) pathways, whose 

main purpose is to either activate mechanisms for repair of DNA, or, if the damage 

is too large, induce apoptosis58. Distinct types of DDR pathways have been found to 

be activated upon treatment with various types of chemo and/or radiotherapeutics. 

Altogether this stems from the fact that various treatments have been found to 

compromise DNA integrity in distinct ways52. As an example, the two 
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chemotherapeutic agents oxaliplatin and 5-fluorouracil (5-FU), which are both used 

for treatment of advanced colorectal cancer (CRC), induce DNA damage by 

strikingly different means. The platinum-based compound oxaliplatin exerts its 

DNA-damaging effect by forming intra- or inter-strand crosslinks (ICLs)59, whereas 

the antimetabolite 5-FU, on the other hand, induces DNA damage by either 

inhibiting synthesis of thymidine, one of the major building blocks of DNA, or by 

outcompeting thymidine in DNA strands. These are events which ultimately lead to 

the induction of either single-strand breaks (SSBs) and/or double-strand breaks 

(DSBs)52. 

 

Treatment Resistance 

The implementation of oxaliplatin, 5-FU and a range of other chemotherapies and 

radiotherapies has improved the prospects for cancer patients, but despite this 

positive trend, many cancer patients still fail to respond to treatment or are found 

develop treatment resistance over time. Resistance to especially chemotherapy can 

occur at many levels, whereof changes in the processing of treatment-induced 

damage and evasion of apoptosis are two that also apply to radiotherapy resistance60. 

Resistance due to changes in the processing of DNA damage may occur if these 

changes lead to increased activity of pathway(s) responsible for repairing the 

damage60,61. Resistance due to evasion of apoptosis may on the other hand arise if 

proteins involved in regulating the onset of apoptosis are dysfunctional. Here, the 

tumour suppressor protein p53 is considered to have a major role, as the protein 

normally promoting onset of apoptosis upon irreparable DNA damage62–64.  

To increase the effect of especially chemotherapeutic agents, a great deal of the last 

decades’ research within cancer therapy has been focused on developing agents that 

specifically target and inhibit damage repair pathways and other cellular components 

contributing to resistance52. In particular, it has been shown that cancers with 

compromised DNA repair, which is a way of enabling a cancer-beneficial higher 

mutation rate, can be targeted with drugs that increase DNA damage beyond the 

point where cancer cells can benefit from the high mutation rate: poly (ADP-ribose) 

polymerase (PARP) protein inhibitors4,65. By inhibiting these proteins, which have a 

vital role in the repair of especially SSBs, PARP inhibitors have been found to 

potentiate the effect of both therapy-induced and natural DNA damage52,66. Due to 

their role in the repair of DNA damage, PARP inhibitors are often referred to as DDR 

modulators, but they also belong to a class of cancer therapy called targeted therapy. 
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Cancer-Signalling Therapies: Targeted Therapies 

 

Concept 

Targeted therapy, or molecularly targeted therapy, constitutes a treatment method 

where chemical agents are used in order to specifically target molecules involved in 

promoting cancer growth and progression67. Examples of such molecular targets are 

proteins involved in pro-proliferative signal-transduction, and those mediating 

resistance to apoptosis68. Due to their target specificity, as well as low toxicity to 

cells that proliferate by mechanisms other than the intended mechanism, targeted 

therapies are often considered advantageous over chemotherapy and other broadly 

acting therapies3,68,69.  

Targeted therapies are typically designed to act on specific molecules that, due to 

e.g., mutations, predominantly feature in cancer cells and drive cancer growth. 

Genetic mutations that give rise to a selective growth advantage of cancer cells are 

labelled driver mutations. Scientific discoveries over the past few decades  in genetic 

sequencing and bioinformatics has enabled the discovery of a considerable number 

of driver mutations, which has opened new possibilities for targeted treatment of 

cancer70.   

 

Types of Targeted Therapies 

There are two main classes of targeted therapy: monoclonal antibodies and small 

molecule inhibitors. Monoclonal antibodies (mAbs) constitute a class of targeted 

therapy that exhibits high specificity to extracellular proteins such as receptors, to 

which antibodies bind and thereby interfere with normal receptor-ligand interaction. 

Targeted therapy using mAbs may induce a range of different effects, including  

immune system-mediated antibody-dependent cellular cytotoxicity, inhibition of 

signal transduction pathways, as well as induction of apoptosis69. Compared to the 

other main class of targeted therapy, the small molecule inhibitors, mAbs usually 

exhibit higher target specificity, but are, due to their large size, typically around 150 

kDa, limited to interacting with extracellular targets71. Due to the inability of mAbs 

to target intracellular molecules, which are of main interest in this thesis, I will from 

now on focus on small molecule inhibitors in the discussion of targeted therapy.  

Compared to mAbs, small molecule inhibitors (SMIs) have considerably lower 

molecular weight, typically less than 1 kDa, and can possess the ability to penetrate 

cell membranes to reach intracellular targets. SMIs have been found to interact with, 

and inhibit, a wide range of intracellular targets, whereof kinases has been a long 

term focus of research69. Kinases are protein enzymes that catalyse the transfer of 
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phosphate groups from ATP-donating molecules to receiving protein target 

molecules, a biochemical process called phosphorylation. The protein target that is 

phosphorylated will typically have a shift in its surface charge, which induces a 

conformational change that can change the enzymatic activity of the target protein. 

Such phosphorylation regulation accounts for a significant part of pro-proliferative 

signal transduction. Mutations represent another mechanism by which proteins can 

have a similar shift in surface charge, for instance in a mutation of a hydrophobic 

amino acid to a hydrophilic amino acid. Such phospho-mimetic mutations can cause 

dysregulation with constant activation of kinases that may result in increased 

proliferation. Altogether this makes kinases attractive targets for SMIs. Kinase 

inhibitors exert their inhibiting effect by competitively binding to catalytic sites of 

kinases, thereby preventing ATP from binding to these sites. As the binding of ATP 

is crucial for the catalytic activity of a kinase, the act of SMIs results in inactivation 

of the drug-targeted kinase. A list of some examples of clinically approved SMIs is 

presented in Table 1. 

Table 1. Examples of small molecule inhibitors approved for treatment of cancer. 

Small 

molecule  

Target Target 

type 

Approved for cancer 

type 

Ref.  

Erlotinib EGFR Kinase Non-small cell lung 

cancer 

72 

Idelalisib PI3Kδ Kinase Chronic lymphocytic 

leukaemia 

73 

Lapatinib HER2/EGFR Kinase HER2 positive breast 

cancer 

72 

Sorafenib VEGFR/KIT/FLT3/PDGFR Kinase Renal cancer 

Hepatocellular 

carcinoma 

72 

Trametinib MEK1/2 Kinase BRAF-mutated 

melanoma 

74 

Vemurafenib BRAF Kinase BRAF V600E-

mutated melanoma  

75 

Olaparib PARP PARP BRCA-mutated 

advanced ovarian 

cancer 

76 

Palbociclib CDK4/6 CDK Metastatic breast 

cancer 

77 

Venetoclax BCL-2 Anti-

apoptotic 

protein 

Chronic lymphocytic 

leukaemia 

Small lymphocytic 

lymphoma  

Acute myeloid 

leukaemia 

78–80 
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Strategies to Increase the Effect of Cancer Treatment  

 

Predictive Biomarkers 

As targeted therapies are designed to inhibit specific cellular proteins, stratification 

of patients to targeted therapy is today to a large degree dependent on our knowledge 

of the mutational status of proteins that can either be targeted by inhibitors or predict 

the response of inhibition of other proteins. For example, for the clinical use of the 

BRAF inhibitor vemurafenib, BRAF V600E mutation, where the hydrophobic 

amino acid valine (V) at position 600 is replaced by the hydrophilic glutamate (E), 

is used as a positive predictor of response to this drug for some cancer types (Table 

1). The predictive capacity of this mutation stems from the fact that vemurafenib 

blocks activity of the mutated BRAF protein with a much higher affinity than active 

wild type BRAF proteins81. Likewise, mutated BRCA1/2 is used as predictor of 

sensitivity to the PARP inhibitor olaparib (Table 1). Here, BRCA1/2 mutation 

implies non-functional homologous recombination, a feature which makes these 

cells more dependent on another pathway, base-excision repair, for repair of DNA 

damage. Base excision repair relies on the presence of functional PARP – hence, 

inhibition of this protein will render even this repair pathway non-functional, 

ultimately leading to DNA damage overload, and cellular death. BRAF V600E and 

BRCA mutations are examples of genetic biomarkers that predict drug sensitivity. 

Apart from BRAF V600E and BRCA mutations as predictors of sensitivity to 

vemurafenib and olaparib, respectively, a number of mutations have been identified 

and approved as genetic markers of sensitivity (or lack of sensitivity) to different 

targeted therapies82. Despite this, for many patients no predictive biomarkers are 

found, and even in the presence of a biomarker, many patients fail to respond to these 

treatments. This has been attributed to the fact that single mutations rarely alone are 

responsible for the progression of disease83. To better understand how molecular 

mechanisms and mutations infer sensitivity as well as resistance to targeted therapy, 

cancer should instead of being studied as a disease arising from dysfunction in 

isolated signalling entities and pathways, be studied as a disease where signalling 

pathways are highly integrated in large signalling networks and where the dynamics 

of the networks influence disease progression and treatment response84,85.  

 

Cancer Systems Biology 

The behaviour of a cell can largely be described by the joint activity of intracellular 

components, like transcription factors and protein kinases, and their integrated 

responses to cell internal and external cues. Traditionally, the effects of these 

components on cellular phenotypes like proliferation and apoptosis have been 

described by signalling pathways, like the canonical Ras-Raf-MEK-ERK and PI3K-
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AKT signalling pathways. The assumption that the signalling events of these 

pathways occur independently of each other has enabled the study of their proposed 

effect on cell fate. Today, however, a major shift is taking place in that rather than 

being isolated from each other, the signalling pathways of cells are studied as a 

highly interconnected large signalling network. Studying the dynamics of such 

networks is considerably less trivial compared to studies of isolated signalling 

pathways and has called for mathematical and computational solutions.  

Systems biology is the study of complex biological systems, like signalling 

networks, aided by computational and mathematical power and has been widely used 

in multiple contexts within biology for the past 20 years84,86–88. These studies have 

been enabled by the generation of large datasets of genomics, transcriptomics, 

proteomics etc., as the foundation for computational and mathematical analysis of 

biological events. Cancer systems biology is a branch of systems biology, 

specifically focusing on causes and treatment of disease using cancer-specific data 

and tools, for the purpose of improving cancer diagnosis and treatment prediction – 

foundations for personalised medicine88. A large part of these studies relies on the 

power of computational models, which will be introduced later in this thesis. By 

taking on a network-based approach for studies of cancer cell signalling, cancer 

systems biology has enabled identification of multiple possible mechanistic causes 

of tumorigenesis and treatment resistance. This has more than ever highlighted the 

molecular heterogeneity of cancer and the need for more complex treatment options.  

 

Drug Combinations 

Combinations of chemotherapeutic agents have a long clinical history within cancer 

treatment54. Today, also some targeted drug combinations have been approved for 

treatment of cancer. One example is the combination of dabrafenib (BRAF inhibitor) 

and trametinib (MEK inhibitor) for treatment of non-small-cell lung cancer and 

malignant melanoma89.    

Drug combinations are believed to be advantageous over monotherapy (i.e., single-

drug treatment), both due to the combinations’ expected ability to induce larger 

absolute effects for the same concentration of individual drugs, and by being 

associated with reduced side-effects90. The observation of a larger treatment effect 

for drugs administered in combination, compared to when these drugs are 

administered separately, is referred to as synergy. Drugs’ ability to act synergistically 

may account for reduced side-effects if lower concentrations of the individual drugs 

can be used to induce the same treatment effect as that induced by higher 

concentrations of the individual drugs. Reduced side-effects of combinations 

involving particularly targeted drugs can also be ascribed to the even higher 

specificity by which these combinations can target cancer cells. However, it should 
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be kept in mind that synergistic toxicity is also conceivable. Using drug 

combinations for treatment of cancer has also been suggested as a promising 

approach to overcome resistance to monotherapy. Here, the superiority of drug 

combinations is ascribed to the combinations’ ability to simultaneously interfere 

with multiple parts of the cancer signalling network and by these means blocking the 

mechanisms that are normally used by the cell to infer treatment resistance. 

Targeting multiple pathways jointly, tailored to the experimental cancer system, has 

also been proposed to allow for higher biological selectivity, which implies that 

synergistic drug combinations might act more potently on cancer cells than other 

growing cells in the body, and thus reduce side-effects91. Lastly, as drugs can be 

combined in large number of ways, such combinations hold great promise for 

personalisation of cancer treatment, where a drug combination can be selected to 

match the molecular makeup of cancer92–94.   

 

Identification of Cancer Treatment Effects In Vitro 

 

Increased knowledge of the molecular heterogeneity of cancer as well as the 

identification of a wide range of druggable targets have increased the demands of 

parallel testing of large numbers of drugs in large panels of cancer cell cultures. In 

1951, the first human cancer cell line HeLa was established from cervical cancer and 

set the stage for experimentation of cancer drugs without administering these to 

patients or animals directly95. Since then, cancer cell lines from many cancerous 

tissues have been established and subjected to drug testing in small-scale 

experiments, and to drug screening in high throughput setups96,97. Today, drug 

screens are typically performed in multi-well plates where each well represents a 

reaction chamber. The implementation of technology for high-throughput screening 

has revolutionised the field of drug testing, by providing automated solutions for 

many of the key steps of in vitro evaluation of drug responses, such as plating of 

cells in multi-well plates, dispensing of small volumes of drugs to wells, and not 

least assessment of treatment response. This technological advancement has not only 

reduced the experimental workload of in vitro drug testing, but also enabled 

generation of larger amounts of more reproducible data compared to corresponding 

small-scale experiments. Traditionally, high-throughput drug screens have been 

performed on 2D-cultivated cell lines, with response assessed using different, mostly 

viability-based, endpoint readouts assessing ATP content as a surrogate marker for 

the number of viable cells98. The contribution of data from these screens to cancer 

research has been invaluable – yet the biological relevance of the traditional 

screening format has been frequently debated, due to e.g., 1) the obvious structural 

differences between 2D-cultivated cell lines and tumours in vivo8, 2) possible 
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limitations stemming from assessment of treatment response at a single timepoint, 

and 3) the short observation time for drug screens compared to clinical/in vivo 

tumour growth and responses. Overall, this has led to further advancement of high-

throughput screening technology, including implementation of solutions for drug 

testing in more tumour-like in vitro models and development of phenotypically 

diverse readouts enabling continuous assessment of response99. 

 

Culture Formats for High-Throughput Screening 

The cell culture constitutes the navel of in vitro drug testing. This is the biological 

entity which drugs are tested on and whose response lays the foundation for how we 

evaluate the effect of drugs. Hence, the more extensive the molecular 

characterisation of these cultures, the more we hope to be able to conclude about the 

terms of effect of individual and combined drugs. Cell lines constitute one of the 

most well-characterised in vitro culture models, and due to the ease by which these 

cells can be cultivated in suspension or on planar plastic surfaces, cell lines are well 

suited and historically the most widely used culture system for screening in the multi-

well plate format100,101. However, despite the large number of drug screens 

performed on traditionally cultivated (2D) cell lines, drugs identified as effective in 

such screens have often been met by poor clinical translatability102. While many 

different factors may account for the low degree of translatability, the clinical 

relevance of 2D-cultivated cell lines has been a highly debated topic over the past 

decades, not least due to the obvious structural differences between cells cultivated 

on flat surfaces and solid tumours in vivo8. An important feature of tumour cells in 

vivo is the ability of these cells to interact and communicate with each other in all 

three dimensions - a feature, which to a high degree, is lost in 2D cultures. By 

maintaining the possibility for cellular interaction in three dimensions, 3D-cultivated 

cell lines (spheroids) have been suggested to potentially be a biologically more 

relevant tumour model, compared to 2D cultures103. In addition to enabling more 

extensive cell-cell communication, cell line spheroids have also been found to 

display several of the gradients frequently observed in tumours in vivo, such as 

oxygen, nutrient, and proliferation gradients103,104. All these are structural 

characteristics, which may affect how cells respond to drug treatment. While the 

biological relevance of 3D cultures also has been discussed for almost half a century, 

their implementation in high-throughput drug screening settings is relatively new. 

This progress has been enabled by the development of technical solutions for the 

generation of spheroids in specialized multi-well plate formats, typically employing 

a U-shaped bottom, and by optimisation of spheroid-specific readout technology for 

assessment of response105,106.   
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While cell lines (2D and 3D) still constitute the most widely used culture system for 

drug screening and other culture-based applications and has contributed largely to 

an increased understanding of cancer biology, the relevance of cell lines in 

personalised drug screening is unclear. This stems in part from these cultures’ 

proposed inability to reflect the cellular heterogeneity of tumours, and which may 

impact treatment response107. Patient-derived tumour spheroids (PDTSs), 

established directly from primary or metastatic tumours of cancer patients, have been 

suggested as an alternative model for prediction of individual patient response to 

drug treatment. The response-predictive potential of these cultures has also been 

demonstrated in clinical studies108–111. While the widespread use of PDTSs in high-

throughput drug screens is limited due to the, compared to cell lines, smaller amounts 

of material typically available, screening of such cultures can, when the quantity of 

material allows, be performed based on the same principles and technology as for 

cell lines.  

 

Selection of Doses for Screening  

Once seeded in the multi-well plate format, cell cultures can be subjected to large-

scale drug screening. This step involves the addition of small volumes of drug 

solution to each well, where the effect of each drug typically is evaluated at multiple 

different doses and in several technical replicates. While the selection of doses for 

screening of single-drugs usually is a relatively uncomplicated task, and which can 

be guided either by the effect of the drugs in other cell lines, or by the sensitivity of 

the assayed cell line(s) to related drugs, selection of doses for combination screening 

is a lot more challenging. This stems from the fact that while the synergistic effect 

of two (or more) drugs could be considered as an effect irrespective of doses or dose 

ratios, observed synergies tend to vary in strength across the combinatorial landscape 

of doses112. Whether or not we will be able to observe synergistic effects of a given 

drug combination in drugs screens will therefore be influenced by the doses at which 

we decide to combine the drugs. Multiple different strategies for combining of doses 

for drug combination screening have been reported in the literature113–115. One 

commonly used design is the anchor drug design, where one drug is applied at a 

fixed dose, whereas the other is used at multiple continuous doses115. Drugs can also 

be combined in a ray design where the doses of both drugs (for pairwise 

combinations) are varied and combined according to an equimolar or equipotent 

ratio114,116. The most complex form of drug combination screening is to combine 

drugs according to a matrix design, in which each dose of one drug is combined with 

each dose of the other113,117,118. However, even with the matrix design, the doses 

tested typically are non-continuous, meaning that the sparsity of the data will also 

here influence what synergies will be observed. While the matrix design strategy 

offers the largest coverage of the dose landscape per drug combination it also 
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constitutes the most challenging method screening-wise, due to the large number of 

conditions to test per such combination. As an example, while a 4-dose ray screen 

of 21 drug combinations in three cell lines would result in testing of a total of 252 

conditions, a corresponding matrix screen would require testing of 1008 conditions. 

Regardless of which strategy one aims to use for combining drugs on the dose level, 

the individual doses of the drugs should be selected with the intention of not inducing 

too large effect on their own, as this would prevent synergistic effects from being 

detected (and conversely for drug antagonism).  

 

Assessment of Treatment Response  

To be able to evaluate the effect of a drug or drug combination on cells, we need to 

measure the cellular response to treatment. This is commonly done 24-96 hours after 

drug exposure initiation, depending on the design and purpose of the study96,97. 

Cellular response to treatment is often assessed by indirect measurement of 

phenotypes such as viability, proliferation, and cell death (apoptosis). The choice of 

phenotypic measurement often depends on the intention of the study, and while drug 

effect usually is assessed by measuring cellular viability, toxic effects are commonly 

quantified by assessment of cell death. As phenotypes are not intrinsically 

measurable, we make use of different phenotypic surrogate markers to quantify 

cellular response. Examples of such markers are ATP concentration for viability, and 

caspase 3/7 protein expression for apoptosis119–121. Quantification of surrogate 

markers is often done using cell-based assays. A wide range of cell-based assays 

have been developed for assessment of cellular phenotypes, but overall, they rely on 

the same basic principle, a principle where the surrogate marker is allowed to interact 

with specific components of an added assay reagent, which in turn leads to the 

generation of measurable, often optical, signals, such as luminescence and 

fluorescence. One example of such an assay is the CellTiter-Glo viability assay, in 

which ATP catalyses the conversion of the added reagent luciferin to oxyluciferin, 

whereof the latter component produces a measurable luminescent signal122. In the 

case of CellTiter-Glo, luminescence is therefore proportional to the level of ATP and 

hence the number of viable cells. Due to the simple use of cell-based assays, such as 

CellTiter-Glo and the corresponding assay for 3D-cultivated cells (CellTiter-Glo 

3D), many of these are employed for assessment of cellular response to treatment in 

high-throughput drug screens123. This allows the generation of large amounts of data 

within a relatively short timeframe and without too much manual effort. 

Unfortunately, CellTiter-Glo and many other cell-based assays have the limitation 

of being endpoint assays, which stems from the fact that in order for indicated 

cellular reactions (such as the conversion of luciferase) to take place, cells need to 

be lysed and thereby terminated. This prevents valuable time-course studies of 

response (unless multiple plates are prepared in parallel), as well as retrieval of 
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cellular material following finished treatment. To enable continuous assessment of 

treatment response, multiple less invasive and even label-free detection assays have 

been developed for high-throughput screening124. Some examples are NucView and 

CellTox Green, which both enable fluorescence-based continuous assessment of cell 

death. In addition, repeated imaging constitutes a valuable method for generation of 

continuous data on treatment response.  

 

Assessment of Drug Synergy 

When screening for the effect of single-drugs, a screen can be regarded as relatively 

finished when response has been assessed and data analysed. In drug combination 

screening, however, the most important step remains at this point: the quantification 

of expected drug combination effects, to which the observed drug responses is 

compared in order to identify drug synergies. Quantification of expected drug 

combination effects is done mathematically, by the integration of drug response data 

according to one or several reference models125. While there is a disagreement within 

the research community about what constitutes the most valid way of quantifying 

the expected drug combination effects, it is generally agreed that the total observed 

effect of a drug combination AB (EAB) comprises an expected effect (EA+B) that can 

be calculated based on the effect of each individual drug A (EA) and B (EB), and an 

additional interaction effect (IAB): 

EAB = EA+B + IAB 

Based on this principle, a combination AB will generally be classified as synergistic, 

when the total observed effect of the combination is larger than the expected effect 

(i.e., EAB > EA+B). According to the same principle, a combination for which EA+B > 

EAB, will be classified as antagonistic, whereas combinations for which EAB = EA+B 

will be regarded as additive125.  

Different models have been developed for quantification of expected drug 

combination effect, whereof the highest single agent (HSA), Bliss independence, and 

Loewe additivity models constitute some of the most widely adopted methods126.  

The HSA model provides the simplest classification of drug synergy, by stating that 

the expected effect of a combination equals the effect of the most effective single-

drug, i.e.,  

EA+B = max(EA,EB) 

According to this definition, a combination AB is therefore classified as synergistic 

as soon as its total observed effect (EAB) exceeds that of the most effective single-

drug.  
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Compared to the HSA model, the Bliss independence model provides stricter 

synergy classification. In the Bliss independence model, the expected effect of two 

drugs A and B is the product of the two single-drug effects. Bliss independence 

assumes that the drugs act by independent probabilistic mechanisms, by assuming 

that the two drugs cannot both act on the same population of cells (or, analogously, 

both on the same drug target). Therefore, given that drug A acts on a fraction of the 

cells, drug B can only act on the fraction of cells which have been left unaffected by 

drug A. According to probabilistic theory, this assumption renders the following 

definition of the expected effect of drugs A and B, 

EA+B = EA + EB - EA·EB 

According to the Bliss independence model, a combination will be classified as 

synergistic when EAB > EA + EB - EA·EB. 

In this thesis the HSA and Bliss independence metrics were used. A third commonly 

used reference framework is Loewe additivity. Briefly, the principle of Loewe 

additivity relies on the assumption that if an effect E can be obtained by either 

administering a drug A at concentration X or a drug B at concentration Y then drug 

B can substitute drug A fully or partially along an additive line. Example: If drug A 

induces 50% growth inhibition at a dose of 1 µM, and drug B induces 50% growth 

inhibition at a concentration of 5 µM then a combination of drug A and B, can for 

instance comprise drug A at 0.5 µM and drug B at 2.5 µM. If the effect of this 

combination is retained at level E the combination is classified as additive. If the 

effect is greater than E, the doses of drugs A and B can be lowered until the effect 

level E is produced, and a drug synergy is called. 

One limitation of the Loewe additivity model is that a dose response relationship is 

needed to evaluate synergy for a combination, and that the effect of a combination 

cannot supersede the maximum effect of each individual drug. Given these two 

constraints, the HSA and Bliss independence metrics are more commonly used for 

assessment of drug synergy in high throughput experiments, and in particular for 

targeted therapies, for which it is not always possible to observe an effect of 

individual drugs, even though such targeted therapies can interact synergistically. 

 

Identification of Cancer Treatment Effects In Silico 

  

The use of drug combinations has been proposed as a promising strategy to increase 

the effect of treatment both for patient groups and for individual patients, but despite 

the advancements within high-throughput drug screening, it is virtually impossible 

to explore more than a fraction of all available treatment options in vitro. Taking 
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tumour response heterogeneity, which most likely calls for tumour-specific screens 

for the identification of effective drug combinations, into account, it is obvious that 

non-guided screening for identification of the most suitable treatment option for a 

patient will not be feasible. To increase the relevance of future drug screens we need 

to be able to prioritise what drugs and combinations to test in these screens. This can 

be done by computer assisted drug screens. Computational methods to this end are 

typically divided into two major branches: data-driven and model-driven (also called 

physics-driven) approaches127. Data-driven approaches relate to data analysis with 

fewer assumptions of underlying mechanisms as basis for the model. Model-driven 

approaches typically assume particular mechanisms and combine these to larger 

models, where prior knowledge on biology forms the foundation for the model. In 

reality, the boundary between these two main approaches is often blurred. 

For model-driven approaches to drug testing, this can be done by computationally 

simulating the effect of treatment options of interest, model the recoded behaviour, 

whereafter options predicted to be effective can be selected for further validation by 

e.g., testing drug responses in vitro. Experiments that are performed via 

computational simulation are referred to as in silico experiments and engage 

computational models as the basis for simulation. For model-driven approaches 

discussed here, these models are designed to represent an abstraction of a system of 

interest, e.g., the signalling network of a cancer cell. Compared to experiments 

performed in vitro, in silico experiments have several advantages when it comes to 

testing capacity, which stems from the fact that while in vitro tests usually take days 

to perform, a computational simulation evaluating the corresponding effect in silico 

can be executed within seconds. Another advantage of computational models is the 

relative ease by which these can be manipulated to enable exploration of conditions 

that are not even possible or at least complicated to study in vitro. Also, for model-

driven approaches that are based on representing mechanisms, any observed 

behaviour of the model can in principle be computationally studied in order to 

identify the simulated mechanism responsible for the in silico behaviour, and such 

proposed mechanisms can form hypotheses for follow-up experiments in vitro. 

One use-case for computational cancer modelling has been the study of drug 

responses114,128–130. While computational models can simulate the effect of drug 

responses, it must be considered that computational models constitute highly 

simplified representations of reality. Therefore, in order take full advantage of 

computational models as representations of e.g., a disease, these models must be 

constructed with high accuracy. For this, prior knowledge of the disease is 

paramount.   
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Prior Knowledge Networks  

While the mathematical modelling of cell signalling can be performed using multiple 

strategies, simulations of mechanistically based models are, regardless of modelling 

approach, preceded by construction of a prior knowledge network (PKN). The PKN 

aims at describing the molecular interactions between the components of the system 

that is to be modelled and is constructed based on information about signalling 

interactions reported in publications and databases (i.e., prior knowledge). Examples 

of databases which store information about the causative relationship between 

biological components of cells are Signor and KEGG131,132. 

As the PKN constitutes the topology based on which model simulations will be 

performed, the network should primarily be constructed around the components 

(genes, proteins, complexes etc.) considered to be relevant for the purpose of the 

modelling. E.g., for modelling efforts aimed at simulating the effect of drug 

perturbation using specific targeted agents, the PKN should be constructed around 

the molecular targets, and related pathways, of the drugs whose effect is to be 

studied. If mutational status of specific genes is in addition believed to be of 

relevance for the effect of drug perturbations, components corresponding to these 

genes/proteins should also be included, and the consequence of the mutation can also 

be simulated, e.g., constitutive activation or inhibition. In addition, to be able to 

quantify the effect of in silico perturbations, the PKN also needs to encompass 

proteins whose activity status will allow us to evaluate the drugs’ effect on cellular 

phenotype(s). For the study of cancer cell growth, central in this thesis, examples of 

such proteins are those involved in regulation of proliferation (e.g., CDK4/6) and/or 

apoptosis (Caspase-3/7).  

 

Simulation of Signalling Networks 

In order to make use of a PKN for simulation of e.g., drug perturbation or disease 

development, the network must be converted into a mathematical model. Several 

mathematical approaches have been described for modelling of signalling networks, 

both quantitative133,134 and qualitative135,136.  

 

ODE Modelling 

Quantitative modelling of signalling networks is commonly performed by using 

ordinary differential equations (ODEs), where the concentration of a component 

(e.g., a protein) at a given timepoint is described by the rates by which this 

component is produced and consumed by other components of the system, and where 

the concentration can take any value on a continuous scale133. As such, the signalling 

network can be described as a set of ODEs, one for each component of the network 
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and the convergence of signalling can be studied by simultaneously solving the set 

of ODEs. As the chemical reactions that govern cell signalling are often non-linear, 

ODE modelling is in theory a highly relevant approach for studies of the dynamical 

behaviour of such signalling. Commonly, rate parameters of chemical reactions 

between model components are however unknown and in these cases ODE 

modelling is not trivial.  

 

Logical Modelling  

Logical modelling is a modelling approach where network behaviour is studied 

qualitatively, without taking detailed reaction kinetics into account. While this 

principle represents a simplification compared to ODE modelling, the ease by which 

this modelling strategy can be used, even for systems where kinetic data are lacking, 

makes the application field wide.   

In a logical model, the activity of each component (protein, gene etc.) can be 

described by a discrete value. For the simplest logical models, the Boolean models, 

each component can hold two different values, True or False, or conversely, 1 or 0. 

Here, 1 indicates that the component is active, whereas 0 indicates inactivity. For 

multileveled logical models on the other hand, one or several components can take 

on more than two values. Multilevel logical modelling is often employed for studies 

of components which are known to have different roles depending on their level of 

activity. In both Boolean and multileveled logical models, the activity state of each 

component is determined by the activity states of its regulators (given by the PKN) 

according to a regulatory rule, which in turn is based on the Boolean operators AND, 

OR, and NOT. For each component in the prior knowledge network, or node, a 

logical rule is assigned, which unambiguously specifies the integrated influence of 

the activity states of regulatory components. As an example, where protein A is 

active in the presence of either protein B or protein C, and in the absence of protein 

D, the regulatory rule could be: 

Protein A = (Protein B OR Protein C) AND NOT Protein D 

When regulatory rules have been assigned to all components of a logical model, the 

global behaviour of the model can be simulated. This is performed by updating the 

activity state of all components in a series of timesteps and can be done either 

synchronously (updating of all components simultaneously) or asynchronously 

(updating of one component at the time). While asynchronous updating usually is to 

be regarded as a more comprehensive study of the dynamical properties of a model, 

this updating strategy also calls for larger computational capacity, which makes it 

less suitable for modelling of large signalling networks.  
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Applications of Logical Modelling  

Many applications of network-based logical modelling of cancer and other 

conditions have been described in the scientific literature. Developed models have 

been aimed at studying e.g., cell fate decision mechanisms in the absence or presence 

of mutations and/or DNA damage, disease progression, and treatment response.  

In 2013, Grieco et al., presented a logical model aimed at studying mechanisms 

governing cell fate decision in urinary bladder cancer137. The model was constructed 

around the mitogen-activated protein kinase (MAPK) signalling network, which is 

frequently deregulated in cancer. By performing simulations of relevant network 

perturbations (mutations), the authors found that model results agreed highly with 

published data for this cancer type. Specifically, their modelling effort demonstrated 

that EGFR overexpression in the presence of p53 was associated with a proliferative 

phenotype, which agrees with these alterations’ frequent occurrence in aggressive 

bladder cancer138.   

Logical modelling has also been employed in studies of mechanisms that govern 

cellular response to DNA damage139–141. Based on a logical model encompassing 

DNA damage signalling pathways involved in regulation of G1/S transition, 

Mombach et al. studied mechanisms involved in DNA damage-induced onset of the 

tumour-suppressive phenotype senescence141. They studied a range of model 

perturbations corresponding to gene loss- or gain-of-function and found that many 

predicted phenotypes were comparable to those described for these mutations in 

vitro. In addition, they identified that loss-of-function alterations to the cell cycle 

protein CDC25A in the presence of DNA damage enhanced senescence, which 

highlights inhibition of CDC25A as a potential treatment strategy. In another study 

by authors from the same group139, a logical model was constructed to determine the 

effect of DNA damage on phenotypes senescence, apoptosis, and autophagy in 

glioblastoma cells. The model suggested that in the absence of other perturbations, 

DNA damage can stochastically induce either of apoptosis, senescence, or 

autophagy, with probabilities that decrease in this order. Simulations further implied 

that induction of the three phenotypes occurred in a p53-dependent manner.  

Disease progression in terms of epithelial mesenchymal transition (EMT) has been 

modelled by several groups142,143. In 2015, Cohen et al.142, presented a logical model 

aimed for studies of mutations involved in metastatic development. The model was 

constructed to recapitulate experimentally assessed effects of specific mutations on 

metastasis and was used for further prediction of other mutations/mutation 

combinations possibly involved in this process. These predictions specifically 

suggested that overexpression of the signalling protein Notch in combination with 

p53 deletion synergistically induces a phenotype capable of metastasis, which was 

supported by the literature144.   
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Multiple models have also been constructed for the purpose of studying treatment 

response128,129,145. In 2020, Eduati et al.130, presented a study where patient-specific 

logical models were generated based on data from drug screens on pancreatic tumour 

biopsies. Generated models were used for studies of mechanisms causing response 

heterogeneity and for further prediction of patient-specific response to 174 drug 

combinations. More recently, in 2021, Béal et al.146, presented a study where logical 

modelling was employed to study response to BRAF inhibition in multiple 

melanoma and colorectal cancer cell lines. The model was constructed based on prior 

knowledge of the MAPK pathway and factors involved in mediating resistance to 

BRAF inhibition and was calibrated to cell lines by integrating cell line-specific 

omics data. The authors found that cell line-specific predictions of BRAF inhibition 

well matched responses observed for corresponding cell lines in vitro. 
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Objectives of the Study  
Cancer is a multifaceted disease, requiring multifaceted tools and strategies for 

efficient treatment. The aim of this thesis was to gain an increased understanding of 

the complexity of cancer and what tools we can make use of in the search for 

treatments for the disease. The project is part of the DrugLogics Initiative at NTNU, 

Trondheim, an interdisciplinary research initiative with the overall objective “to 

investigate and demonstrate how Systems Medicine can deliver a well-constructed 

pipeline for rational screening for synergistic drug combinations and become a 

foundation for clinical decision-making for anti-cancer combination therapies under 

the precision oncology vision.” More specifically, the objectives of the thesis were 

to develop methods to study cancer treatment response in vitro and in silico and 

compare the different methods to gain increased understanding of the dynamics and 

responses to therapy of cancer. The thesis is constructed around three subprojects, 

each contributing to fulfilling the overall study objectives.  

 

Sub-project 1: 2D vs. 3D screening 

The project aimed at identifying drug combinations with synergistic properties in the 

most widely used in vitro culture system; the cell lines. By studying the effect of 

drug combinations on cell lines cultivated in 2D (monolayer) and 3D (spheroids), 

we aimed to highlight the complexity of choosing the ‘right’ cultivation system(s) 

for screening. The workflow involved 1) optimisation of a procedure for high-

throughput screening using  several different readouts in both culture formats, 2) 

screening for the effect of single-drugs in order identify drug-specific dose ranges to 

be used in combination screening, 3) screening for the effect of combined drugs 

administered in a 4x4 matrix design, and 4) concluding data analysis, where the 

effect of drug combinations was evaluated and compared within and across cell lines, 

as well as within and across culture formats.  

 

Sub-project 2: Computational modelling  

The project aimed at providing a theoretical follow-up to the combination screen 

performed in sub-project 1. In sub-project 2 we aimed to use computational 

modelling to predict cellular response to treatment with pairwise and higher-order 

drug combinations (>2 drugs). The workflow involved 1) construction of a prior-

knowledge network encompassing all signalling pathways targeted by drugs in sub-

project 1, 2) transformation of the signalling network into a Boolean model for study 

of network dynamics, 3) model reconstruction for improvement of predictive 

capacity where data from sub-project 1 were used as reference, 4) simulation of 

network dynamics upon second and higher-order perturbation, and 5) in vitro 

validation of predictions in (4). 
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Sub-project 3: Patient-derived tumour spheroids 

The project aimed at taking 3D cultures as a tool for evaluation of treatment response 

in vitro one step closer to the clinic, by stepping away from the cell line spheroids 

studied in sub-project 1, towards patient-derived tumour spheroids. With the higher 

aim of implementing the use of such spheroids as a future tool for clinical decision-

support, the objective of this sub-project was to optimise procedures and readouts 

allowing for rapid and informative drug screening in primary tumour spheroids 

derived from CRC patients. The workflow included 1) optimisation of sample 

processing and cultivation parameters, 2) optimisation of image-based 

multiparametric screening readouts, and 3) initial testing of the robustness of the 

procedure by screening for the effect of a clinically used treatment regimen in 

patient-derived tumour spheroids.  

 

 

  



 

25 

 

Summary of Papers 
 

Paper 1: High-throughput screening reveals higher synergistic effect of MEK 

inhibitor combinations in colon cancer spheroids 

When it comes to tackling drug resistance in cancer therapy, drug combinations are 

believed to be advantageous over monotherapy. By interfering with the signalling 

network of cancer cells at multiple points, targeted drug combinations have been 

shown to overcome some of the resistance frequently developed upon treatment with 

single agents147. However, despite large screening efforts, aimed at identifying 

synergistic drug combinations in vitro, relatively few targeted drug combinations 

have been approved for clinical use, with the notable exception of combined BRAF 

and MEK inhibitors, used for several malignancies that contain activating BRAF 

mutations113,117. The inability of traditionally 2D-cultivated cells to recapitulate 

response in vivo has been suggested as a possible explanation to the low translational 

throughput, and 3D cultures have been mentioned as a physiologically more relevant 

screening model, since it retains cell-cell contact and physiological gradients that 

can be assumed to influence drug responses103. Few studies have, however, 

compared the two culture formats in terms of their ability to uncover synergistic drug 

combinations.  

 

In this work, we sought to study and compare the effect of cell culture format and 

readout methods on identification of synergistic drug combinations in vitro. To 

accomplish this, treatment response to 7 single agents and 21 drug combinations was 

assessed for three CRC cell lines (HCT-116, HT-29, SW-620) cultivated in 2D 

(monolayer) and 3D (spheroids). Drug combinations comprised all pairwise 

combinations of the single agents and were administered in 4x4 dose matrices. By 

monitoring growth (imaging) and viability (CellTiter-Glo) of cells in a 48h 

combination screen we were able to identify synergistic drug combinations shared 

among cell lines and cell culture formats, but also synergies that were specific to one 

cell line or culture format. In general, synergy was more pronounced in 2D-

cultivated cells, while we noticed that 3D-cultivated cells were more sensitive to 

combinations involving a MEK inhibitor. Increased sensitivity of 3D cultures to 

MEK inhibitors has been demonstrated by others before us148, indicating 

reproducibility of the method.  

 

Altogether, the results from our study demonstrate that screening in 3D cultures, as 

well as inclusion of more readouts, hold great promise as support as well as 

complement to standard viability-based screening in 2D-cultures when searching for 

synergistic drug combinations in vitro.  
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Paper 2: Synergistic effects of complex drug combinations in colorectal cancer 

cells predicted by logical modelling  

While the use of drug combinations holds great promise as a tool to overcome 

resistance to cancer therapy, identification of synergistic drug combinations is 

limited by today’s available screening technology. A strategy for decreasing 

experimental workload, as well as for increasing the efficiency of drug screens, is to 

make use of computational modelling to design rationalised drug screens. The value 

of using computational models in preclinical medicine has been highlighted both by 

the power of models to predict treatment response, and by their ability to uncover 

molecular mechanisms accounting for treatment response and/or resistance145. 

However, while computational models have frequently been investigated for their 

capability to predict the effect of single and pairwise perturbations, the effect of 

higher-order perturbations has rarely been studied in silico149,150.  

 

In this study, we aimed to make use of computational modelling to predict cellular 

response to treatment with higher-order combinations of drugs evaluated in the 

pairwise combination screen in Paper 1. Using the software-suite GINsim, we 

constructed a Boolean model encompassing all signalling pathways targeted by 

drugs in the combination screen (Paper 1), as well as additional pathways frequently 

dysregulated in cancer. Following construction, the model topology was updated to 

increase its predictive capacity of pairwise synergistic drug combinations identified 

in the screen (Paper 1). The resulting model allowed us to predict additional 

synergistic effects of three third-order drug combinations, out of which all involved 

inhibition of PI3K and MEK, as well as induction of DNA damage. All predictions 

were validated in a high-throughput combination screen, which confirmed synergism 

of all three combinations, as well as non-synergism of two additional combinations 

predicted to be non-synergistic.  

 

Overall, our study shows that computational modelling can be used to predict the 

effect of higher-order perturbations, which is of great importance when seeking to 

rationalise higher-order drug combination screens.  

 

Paper 3: Growth and treatment response of colorectal cancer spheroids 

evaluated with imaging 

Patient-derived tumour spheroids have been shown to retain tumour heterogeneity 

of individual patients and are expected to become an important supporting tool 

within the field of personalised cancer treatment. Several recent studies have pointed 

at the clinical value of this relatively new in vitro model by demonstrating its ability 

to predict patient response to several clinically used chemotherapeutic agents108–110. 

However, despite the clinical relevance of data obtained with this model, the 
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generation of such data is still hampered for several reasons. Limited amount of 

screening material is considered a major contributing factor, as are invasive whole-

well readouts, which prevent continuous monitoring of response as well as post-

treatment analysis of already limited sample material.   

 

Aiming to increase the amount of screening data obtained for patient-derived tumour 

spheroids, we developed a method for non-invasive continuous image-based analysis 

of spheroid growth and shape in the presence and absence of chemotherapeutic 

perturbation. The method allowed us to assess measures such as total area (covered 

by spheroids in brightfield images), average spheroid area, diameter, perimeter, and 

circularity in a high-throughput manner. By using the method to study growth of 

spheroids from tumour samples in the absence and presence of chemotherapeutic 

perturbation, we could conclude that while all measures of size (total and average 

area, diameter, and perimeter) could detect growth and response of spheroids, total 

area normalised to day one, which we defined as relative total area, provided the 

most robust readout. 

 

To summarise, results from our study demonstrate that growth and response of 

patient-derived tumour-spheroids can be continuously and robustly assessed by 

employing relative total area, evaluated based on brightfield images, as a readout. 

The readout and suggested readout method are highly relevant for collection of data 

on samples for which material is scarce and for which non-invasive readout methods 

imperative.   
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Discussion  

Despite the fact that most cancers share a number of traits, summarised as the 

hallmarks of cancer16, which altogether provide cancer cells with a growth 

advantage, cancer is a highly heterogeneous disease, on both the cellular and 

molecular levels, and in terms of disease progression and treatment response. 

Historically, chemotherapy has been the most common treatment modality for 

metastatic cancer disease. For localised disease, surgery and radiotherapy are 

important treatment modalities. Overall, chemotherapy and radiotherapy regimens 

are aimed at inhibiting cancer by inducing direct or indirect DNA damage in cells. 

Research within both chemotherapy and radiotherapy has therefore benefited largely 

from the past decades’ increased understanding of DNA damage response and repair 

mechanisms in human cells. Altogether, this has resulted in the development of a 

considerable number of chemo and radiotherapeutic treatment strategies with 

significant effect in cancer patients. However, despite the progress, many patients 

fail to respond to existing cancer therapies. Genetic and other molecular variability 

between patient tumours is considered to be the main contributors to observed 

variations in treatment response.  

 

The term “personalised medicine” was introduced to the public in 1999 and has over 

the years come to be used interchangeably with terms such as “precision medicine” 

and “stratified medicine”151. In short, it refers to a medical model where treatment 

strategies, including interventions and therapeutic agents, are being tailored to 

individual patients based on their molecular profile. For the past two decades, genetic 

profiling of patient tumours has gradually been implemented in the clinic, and today 

genetic profiling is being established as routine diagnostics to underpin clinical 

decision-making. In particular, several genetic markers (mutations, amplifications, 

translocations) are used for guidance for personalisation of cancer treatment. A few 

of these markers have contributed significantly to improved cancer care, but overall, 

the use of genetic markers as predictors of clinical treatment response has so far been 

met by a modest success. It can be speculated that this can be ascribed to these 

markers’ limited ability in describing the dynamics of the signalling networks that 

are assumed to govern the behaviour of cancer. Protein markers are to some extent 

analysed by immunohistochemistry, and markers of gene expression for smaller 

gene panels are used for diagnostics of subtypes of breast cancer117,. However, large 

scale assessment of protein expression and protein modifications (proteomics), and 

large-scale gene expression analysis (transcriptomics), assumed to better reflect the 

dynamics of disease, are due to the limited knowledge of how to use these data for 

diagnostic purposes not routinely profiled within the clinical setting today, although 

the technology for establishing such profiles exists.  
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Systems biology has provided us with tools to model and analyse the complex 

dynamical networks of cancer and other diseases computationally and 

mathematically, and to integrate different data types of proteomics, transcriptomics, 

genomics, and others in meaningful ways86. While the construction of models 

reflecting the behaviour of molecular interactions between genes, proteins etc., 

allows us to study progression and treatment of disease on a computationally 

efficient mathematical basis, we are still challenged by the heterogeneity of cancer 

between cancer model systems or patients, which calls for the calibration of these 

models in order to increase their performance for individual cell lines or tumours154. 

Calibration of a model as employed in Paper 2 relies on gathering of activity data for 

the studied cell line/tumour, followed by model refinement to make the activity 

profile of the model compliant with data. This is usually a time-consuming process, 

and efforts have been done to automate this process for these approaches to be 

suitable tools for treatment-prediction within clinical settings155.  

 

Accurate modelling of treatment response also challenges our understanding of how 

drugs target cells and cell signalling processes. While the name of a drug may imply 

that targeted therapies inhibit a single molecule class, most such agents are 

associated with a range of additional targets156. Such off-target effects of drugs stem 

from the fact that proteins are evolutionary conserved, and in particular the ATP-

binding pocket typically targeted by a drug is similar for many classes of protein 

kinases157. This constitutes a challenge to prediction of treatment response for 

mechanistic model-based approaches, since the model can only simulate what has 

been specifically annotated.  However, if drug target profiling underpins the claim 

that the effect on one drug target is more prominent than the influence on other 

targets, then neglecting the effects on off-target proteins is a pragmatic way of 

simulating drug responses. After careful selection of which drugs to use in laboratory 

experiments, simulations can be simplified, as was done in our study in Paper 2, by 

choosing to neglect off-target effects, while acknowledging that by doing so we also 

risk loss in predictive capacity due to the impossibility of avoiding off-target effects 

in living cells. While modelling treatment response without taking off-target effects 

into account constitutes the most practical modelling approach, there may be 

occasions when including such effects could be of interest and even crucial. 

Examples are when an off-target protein is known to be inhibited to the same degree 

as the primary target or when an off-target protein corresponds to a cancer driver 

protein. In these cases, multileveled logical modelling could enable simulation of 

off-target effects by providing a strategy for representation of a partly inhibited 

component. Here we are, however, challenged by how to model the regulatory effect 
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of a partly inhibited component as this most likely requires that even its effector 

components (and likely most of the network components) are assigned a multileveled 

representation, which increases the state space of simulations significantly, and 

which is typically not trivial to match with observed data that must be split into a 

number of value ranges corresponding to the logical levels.   

 

While the effect of pairwise drug combinations has been studied by mechanistic 

modelling, most modelling approaches to study the effect of higher-order drug 

combinations have employed data-driven strategies149,150,158. In Paper 2, we studied 

the effect of higher-order drug combinations using a mechanistic approach and were 

able to predict three synergistic effects out of 35 possible. This could be regarded as 

a low number, when taking into account that we by studying the same cell line were 

able to observe 13 synergistic pairwise combinations out of 21 possible in the screen 

in Paper 1. The low number of predicted synergies in Paper 2 may indicate that 

mechanistic modelling as a strategy to identify synergistic higher-order 

combinations might be more restrictive compared to data-driven modelling. Others 

have found that for higher-order combinations the total number of synergies usually 

increases with the number of individual drugs in the combination159. In the study in 

Paper 2, we did not perform a full-scale validation screen, but the screen that was 

performed identified more synergistic combinations than what could be predicted by 

the model.   

 

Many researchers pursue the use of drug combinations for treatment of cancer. While 

drug combinations generally are assumed to be associated with lower side-effects, it 

should be recognised that we by administering combinations comprising multiple 

different drugs also risk engaging a larger number of off-targets which could also 

lead to increased side-effects. The benefits of administering higher-order 

combinations should therefore be closely monitored. In our validation screen in 

Paper 2, we recognised that when present, synergy of higher-order combinations was 

relatively week. As the screen was based on a viability readout we could not 

conclude if cells were apoptotic, but the model suggested that this was the case for 

these combinations. If higher-order drug combinations are indeed able to induce a 

more permanent cytotoxic treatment effect by killing cells, there are obvious clinical 

benefits associated with the use of higher-order combinations. It is further possible 

that targeted single-agents and pairwise combinations mainly induce temporary 

growth arrest without necessarily killing cells and that higher-order combinations 

could be needed in order to induce long-term effects116. In the simulations in Paper 

2 we concluded that all synergistic pairwise combinations were associated with 

growth arrest. If this was the case in vitro was not investigated in this study, but in a 
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long-term study of synergistic effects of pairwise combinations in Paper 1, we could, 

by measuring confluency, conclude that while the fully targeted combination of the 

drugs PI-103 and 5Z-7-oxozeaenol (PI3K inhibitor and TAK1 inhibitor, 

respectively) was synergistic during the first half (48h) of the study, cells over time 

seemed to overcome the inhibition, which was manifested by increased growth 

during the second half of the experiment (48-96h). Overall, these results could 

indicate that targeted inhibitors of at least this combination did not induce a 

perturbation that resulted in permanent growth arrest or death.  

 

If the superiority of higher-order combinations in relation to pairwise combinations 

primarily is manifested in a more sustained effect rather than in increased synergy 

strength, we will need to reconsider how the effect of these combinations is evaluated 

in validation screens, as conventional screening strategies most likely will not enable 

study of this. Firstly, if it is true that synergistic higher-order combinations affect the 

same fraction of cells as synergistic lower order combinations but induce a different 

phenotype in these (apoptosis instead of growth arrest), we will most likely not be 

able to evaluate this in a 48-hours screen where viability is employed as measure of 

response. This stems from the fact that by using viability as a readout we will not be 

able to distinguish between arrested and apoptotic cells i.e., cytostatic vs cytotoxic 

effects160. Here we would instead need to make use of e.g., readouts of markers 

reflecting apoptosis, in addition to the viability readout, to determine if the higher-

order combinations induce a different phenotype within this time. It is however 

possible that higher-order combinations manifest their advantage, not by inducing 

apoptosis but by inducing permanent growth arrest (senescence). This too we will 

most likely not be able to study in 48-hours screen, but here we will need to employ 

screens with longer exposure time. How to design in vitro screens is an overall 

frequently discussed topic within the medical field161. Whereas the research 

community calls for standardisation of screening procedures to deal with poor inter-

experiment reproducibility between labs162, there will always be cases where one 

will need to design screens for specific purposes. Screens can be varied on multiple 

different levels, including culture models, exposure times, and readout methods. In 

this thesis we present several different screening designs for evaluation of treatment 

response in vitro. By in Paper 1 studying the effect of drug combinations at multiple 

timepoints, we demonstrate that drug synergies are classified differently depending 

on the timepoint for readout. In all of Paper 1-3 we further evaluate and compare 

multiple different readout methods and culture models, for assessment of response 

to treatment with drug combinations (Paper 1-2) as well as single-drugs (Paper 1-3). 

Which readout and design that is most apt to identify clinically relevant drug 

combinations remains to be decided. Depending on the validation setup planned for 

proposed drug combinations, either a greedy approach, in which any combination 
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that by any synergy metric is classified as a synergy, can be chosen, or a conservative 

approach, in which drug combinations classified as synergistic across multiple 

timepoints and synergy metrics, can be chosen for follow-up experiments. 

 

Viability measurements constitute one of the most widely adopted standardised 

readouts for assessment of treatment response in drug screens163. We used viability, 

assessed by the assay CellTiter-Glo, as the main readout throughout our screens in 

Paper 1 and Paper 2, and we were able to observe excellent reproducibility in all 

studies, which is of high importance in a field where reproducibility generally has 

been reported to be poor162,164. In addition to assessing response based on viability, 

we made use of image-based readout methods in both Paper 1 and Paper 2. In both 

studies we observed strong correlation between viability and image-based readout 

methods, supporting the use of the latter as a powerful backup. While image-based 

methods generally are more time consuming and labour-intensive compared to 

whole-well readouts like CellTiter-Glo, they are advantageous in the sense that they 

enable continuous and non-invasive estimation of response. Here, the latter is of 

importance for studies of response in samples where the availability of material is 

limited (e.g., patient material) and where it therefore may be crucial to be able to 

preserve sample material following finished exposure, in order to perform further 

molecular analyses. In Paper 3, we highlight the suitability of using image-based 

readouts for this purpose, by optimising such a method enabling non-invasive 

continuous analysis of growth and response of PDTSs.  

 

While the choice of exposure times and readout methods are both of importance for 

the outcome of a screen, the choice of culture model is probably the single largest 

factor governing treatment outcome. For cell lines vs. PDTSs the differences in 

treatment response are to be expected, as cell lines have for long been cultivated in 

an artificial environment, something that in turn has induced clonal selection of cells, 

while PDTSs originate from an environment with large cellular heterogeneity 

reflected in their composition of cells165. These are differences that most likely result 

in these models’ different responses to treatment. However, even for the same cell 

line, cells have been found to behave and respond differently to treatment depending 

on whether they are cultivated in 2D or 3D, and in many studies103,166,167, including 

our own (Paper 1) 3D-cultivated cells have overall been found to be less sensitive to 

treatment compared to their 2D-cultivated counterparts. A part of the reduced 

sensitivity observed for 3D-cultivated cells can likely be ascribed solely to the 

structural differences between the models, as in 3D models, a smaller fraction of 

cells is directly exposed to the drug solution, as the surface cells to some extent can 

protect bulk cells. Reduced direct exposure does however not explain all responses. 
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For example, we, and others148, have found that 3D-cultivated cell lines are more 

sensitive to MEK inhibition, compared to cells cultivated in 2D. Instead, these results 

could indicate that 3D-cultivation confers changes in signal transduction 

pathways104,168,169. These changes can be hypothesised to be ascribed to 3D-

cultivated cells’ increased ability to interact with cells in more than two dimensions, 

a feature that would further provide a possible explanation to why also we observed 

clear differences in synergistic effects between 2D and 3D cultures in Paper 1.  

 

The choice of culture model should in large be based on the purpose of the study. If 

the purpose is to perform a large-scale study of single-drug sensitivity across 

multiple cancer types, a 2D design, where each cancer type is represented by a panel 

of cell lines, is probably suitable. If one, on the other hand, aims to perform a large-

scale study of the effect of drug combinations, it must be considered that synergies 

are likely to be differently displayed in 2D and 3D170. Here, attention should be paid 

to which cultivation format that is the most relevant to the cancer type studied. While 

3D models generally have been hypothesised to be more clinically relevant, this has 

also turned out to be dependent on the cancer type studied, and overall 3D models 

have been found to be superior to 2D models for studies of cancers that form solid 

tumours171. Based on this reasoning, the 3D models studied in Paper 1 can be 

regarded as superior to the 2D models for the cancer type studied (CRC). Lastly, if 

the purpose of a study is to provide data for clinical decision-support, it is obvious 

that a model as similar as possible to the clinical tumour should be studied, e.g., 

PDTSs172–174. Here, it is also of importance that the model can be generated and 

screened within a clinically relevant timeframe of 4-6 weeks. In our study in Paper 

3, we demonstrate that such a study can been performed in less than two weeks from 

sample collection without relying on expansion of samples. For the purpose of 

clinical decision-support, it is further supported that a sample processing strategy 

that maintains the cellular heterogeneity of the sample is adopted. Whether 

maintained 3D structure is crucial for the clinical relevance of PDTSs is still unclear, 

and both full-processing (for generation of single cells) and partly processing of 

samples have been reported in the literature108,165,173,175. It is possible that cell-cell 

interactions, rather than the 3D structure per sé, is of importance for maintaining the 

tumour heterogeneity in PDTSs. In tumours, multiple different cell types interact and 

the interplay between these cells will govern the overall response of the tumour when 

this is subjected to treatment. Even if all cell types are technically represented in a 

sample for which one chooses to perform full processing, a large part of the cellular 

interplay will be lost in the regenerated spheroids as these mainly will be clones of a 

single cell. If one instead does not allow the sample to be fully digested, it is possible 

that a larger degree of the interaction between different cell types is maintained, 

which may be of importance for the response and how similar this response will be 
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compared to that of the tumour. As we in the future hope to be able to use 

computational models to guide high-throughput screens even for PDTSs, it is 

however important that future tumour-models will also be compatible with such a 

screening format.  
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Conclusions and Future Perspectives 

Increased efficiency of future cancer therapy will most likely require a strategy 

where treatment selection is based on each cancer patient’s unique molecular profile. 

This will in turn increase the demand of systematic analysis of data using 

computational power and robust experimental methods for evaluation of treatment 

response. The work of this thesis was aimed at investigating both sides of this coin, 

as well as their common value.   

Treating cancer with combinations of drugs has been proposed as a strategy to 

improve treatment outcome. The work in this thesis demonstrates that both 

computationally simulated and experimentally executed drug screens can be 

employed for identification of combinations whose effect is larger than that of 

individual drugs. We show that these methods can be integrated in order to 

economise drug screening. I believe that studies like this will be of high value to the 

field where approaches to personalise cancer treatment most likely will be dependent 

on pipelines where drug screens are guided by predictions from patient-specific 

computational models. The integrated work in Paper 1 and Paper 2 of the thesis is a 

direct application of this. The patient-relevance of predictions generated by 

computational models will likely require that models are informed by patient-

specific data. This also means that we will need to be able to validate the predictions 

in culture systems as similar as possible to the unique tumour. For relevance as 

clinical decision-support, such validation experiments also need to be executable 

within a clinically meaningful timeframe, i.e., around one month from patient 

referral to treatment start. In this thesis we have demonstrated that patient-derived 

tumour cultures can be established and screened within two weeks from sample 

retrieval, which points at the relevance of this method as a possible tool for clinical 

decision-support. However, it remains to be assessed how patient-specific tumour 

cultures should be established in order to be fully valid as predictive tools of patient-

specific treatment response. This assessment is important, especially as it has been 

shown that cells may respond differently to especially combination treatment 

depending on whether they are cultured in 2D or 3D, which is also highlighted in 

this thesis. As drug combinations will likely be a part of the personalisation strategy, 

this will need to be investigated also for patient-derived tumour cultures.   

Future approaches for personalisation of cancer treatment will likely rely on the 

integration of computational and experimental methods for selection of patient-

specific treatment options. By studying some of the key steps of this strategy, the 

work presented in this thesis is aimed at contributing to improved knowledge within 

this field, which eventually is hoped to lead to increased quality of life of cancer 

patients. 
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High‑throughput screening reveals 
higher synergistic effect of MEK 
inhibitor combinations in colon 
cancer spheroids
Evelina Folkesson1,5, Barbara Niederdorfer1,5, Vu To Nakstad3, Liv Thommesen4, 
Geir Klinkenberg3, Astrid Lægreid1 & Åsmund Flobak1,2*

Drug combinations have been proposed to combat drug resistance, but putative treatments are 
challenged by low bench‑to‑bed translational efficiency. To explore the effect of cell culture format 
and readout methods on identification of synergistic drug combinations in vitro, we studied response 
to 21 clinically relevant drug combinations in standard planar (2D) layouts and physiologically more 
relevant spheroid (3D) cultures of HCT‑116, HT‑29 and SW‑620 cells. By assessing changes in viability, 
confluency and spheroid size, we were able to identify readout‑ and culture format‑independent 
synergies, as well as synergies specific to either culture format or readout method. In particular, we 
found that spheroids, compared to 2D cultures, were generally both more sensitive and showed 
greater synergistic response to combinations involving a MEK inhibitor. These results further shed 
light on the importance of including more complex culture models in order to increase the efficiency of 
drug discovery pipelines.

Colorectal cancer (CRC) is the third most common neoplastic malignancy  worldwide1, and although improve-
ments in standard treatments have increased the survival rates over the past 20  years2, far from all patients benefit 
from currently available therapies. Targeted therapy, using drugs aimed to target specific molecules involved 
in tumour growth, is being regarded as a promising tool to increase response rates to cancer therapy. However, 
the number of such therapies that have made it all the way to the clinic has been limited. This may be explained 
by lack of therapy response due to adaptive drug resistance, or transient response due to acquired resistance. 
Drug combinations are being discussed as a promising strategy to overcome the resistance frequently observed 
upon administration of targeted  monotherapy3,4. The augmented effect of targeted drug combination treatment 
is frequently ascribed to the drugs’ ability to jointly interfere with the growth-promoting signalling network of 
cancer cells at multiple points. High-throughput cell line screening platforms have been successfully employed as 
tools to uncover novel synergistic drug combinations. In the study ALMANAC of the National Cancer Institute 
(NCI), where a large number of pairwise combinations of FDA-approved cancer drugs were screened in vitro, 
several novel pairs of synergistic drug combinations were identified, whereof roughly a third also were shown to 
be efficient and synergistic in vivo5. Another example is the Merck Research Laboratories screen, in which 583 
combinations of experimental and approved cancer drugs were screened in a panel of cancer cell lines, identify-
ing well-known as well as novel synergistic drug combinations in vitro6.

Despite large combination screening efforts with successful hits in vitro, putative treatments are challenged 
by low bench-to-bed translational efficiency. The insufficient ability of cell lines grown on planar surfaces to 
correctly recapitulate drug response in vivo has been debated as a possible explanation for  this7. Accompanied 
by several studies pointing towards signalling and response differences between planar (2D) and spheroid (3D) 
cultures in vitro8,9, it has been discussed whether spheroid cultures would offer a more reliable in vitro system. 
Although different cultivation techniques allow for different levels of complexity of 3D  cultures7, they all share 
the common characteristic of representing a cellular architecture with physiologically relevant gradients, not pre-
sent in planar cultured  cells8,10. These gradients relate to e.g. concentrations of nutrients, growth factors, oxygen 
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and drugs, which have been shown to mimic corresponding gradients in patient tumours, including chemical 
gradients set up by the proximity of blood vessels in vivo8. In contrast to 2D-cultured cells, where the larger part 
of the cell population is actively proliferating, 3D cultures are considerably more heterogeneous with respect 
to the proliferative capacity and have, unlike cells cultured in 2D, been found to contain a non-proliferating 
quiescent or hypoxic cell population similar to that of tumours in vivo8. Clinically, quiescent tumour cell popula-
tions constitute a major treatment hurdle, as the quiescent phenotype frequently is associated with resistance to 
standard  therapies11,12. Monitoring the effect of drugs considering also non-proliferating cells may therefore be 
of great significance in order to increase the bench-to-bed translational efficiency. Overall, these considerations 
are some, among many others, that may partly explain why drugs with documented efficiency in 2D cultures 
often do not show the same effect in more complex cellular contexts and in vivo.

In the present study, we have performed a high-throughput screen to systematically compare drug com-
bination effects in 2D versus 3D culture models of three CRC cell lines (HCT-116, HT-29 and SW-620). The 
combinatorial treatments investigated comprised all pairwise combinations of five experimental or approved 
targeted small molecule inhibitors and two approved chemotherapeutic drugs. Our results show that several 
drug combination effects are observed in only one of the culture modes as measured by ATP content, a widely 
used readout for cell viability. Inclusion of cell confluency and spheroid size as additional cell growth readouts 
identified additional synergistic combinations, although synergistic drug combinations called by the different 
readouts overall showed high agreement within culture formats. These findings highlight the importance of more 
advanced screening platforms, encompassing different phenotypic readouts and more so, 3D culture models, for 
identification of synergistic drug combinations.

Results
Screening procedure. To identify efficacious synergistic drug combinations, we screened five targeted and 
two chemotherapeutic drugs in 2D and 3D CRC cell line cultures (HCT-116, HT-29, SW-620). Drugs were 
selected based on approval for clinical use in CRC or other cancer types (5-FU, oxaliplatin, olaparib, palbociclib), 
and on their ability to target pathways frequently dysregulated in cancer (MAPK/ERK pathway, PI3K/AKT/
mTOR pathway and TGF-beta pathway). The combination screen, in which all 21 pairwise combinations were 
screened in 5 × 5 dose matrices, was preceded by a single-drug screen, where cells were subjected to a broad 
dose range (0.01–20 µM) of the drugs in single application. Results from the single-drug screen were used to 
guide the selection of doses for the combination screen (Fig. 1). In line with procedures applied by other drug 
screen  labs5,6,13,14, we used viability as assessed by ATP content (CellTiter-Glo) as the main readout to gauge 
drug responses in 2D and 3D cultures. Additional readouts included measurement of confluency (2D), spheroid 
diameter (3D) and cell death (2D).

MEK and TAK1 inhibitors most strongly compromise cell viability upon single‑drug treat-
ment. To evaluate the optimal dose range for the drug combination screen, we performed curve  fitting15 
and calculated IC20 and Area Under the Curve (AUC) values (Fig. 2a,b) based on single-drug response viability 
data (Supplementary Table S1, Supplementary Fig. S4). As shown in Fig. 2a,b, the MEK (MAP2K1, MAP2K2) 
inhibitor PD0325901 (PD) was found to be the most potent single-inhibitor across all cell lines in both 2D- 
and 3D-cultured cells, followed by the TAK1 (MAP3K7) inhibitor 5Z-7-oxozeaenol (5Z). Comparison of drug 
responses between culture formats (2D versus 3D), indicated that HT-29 cells were less sensitive to oxaliplatin 
(OXA) and palbociclib (PAL) when cultured in 3D, while HCT-116 appeared to be more sensitive to MEK inhi-
bition in the 3D format, compared to planar cultured cells. Although comparison between 2D and 3D cultures 
revealed general response differences between the two culture formats, no clear trend pointing towards either of 
them being more sensitive than the other was observed.

Single‑drug treatment reduces viability independently of cell death. As the CellTiter-Glo ATP 
assay provides viability information based on cellular metabolic  activity16 rather than giving an absolute pheno-
typic outcome, we additionally assessed confluency and cell  death17,18 in 2D-cultured cells and included assess-
ment of spheroid size in 3D-cultured  cells19,20. Although most drugs showed effect in terms of reduced viability, 
which was also accompanied by a reduction in relative confluency (Supplementary Figs. S4, S5), increased levels 
of caspase-3 (NucView) or cellular DNA (CellTox Green) were rarely observed for any of the single-drugs (Sup-
plementary Fig. S6). Out of the seven single-drugs, only the TAK1 inhibitor (5Z) induced cell death detectable 
by both cell death assays at several concentrations across all cell lines. Apoptotic effects of the TAK1 inhibitor 
have previously been reported in HeLa and HT-29 cells, where TAK1 inhibition using 5Z-7-oxozeaenol was 
found to downregulate the apoptosis inhibitor NF-κB in a dose-dependent  manner21. The overall little effect of 
single drugs on cell death was also reflected in considerably stronger correlation between cell viability and cell 
confluency responses compared to the correlation between the viability readout and either of the cell death read-
outs (Fig. 2c). While none of the treatments reduced confluency compared to start of treatment (Supplementary 
Fig. S5a), several of the compounds reduced confluency relative to untreated cells upon 48 h exposure (Supple-
mentary Fig. S5b), indicating a cytostatic rather than cytotoxic effect. Spheroid size reported an overall response 
similar to ATP, with a correlation coefficient of R = 0.73, and was found to be only weakly affected by treatment, 
with the TAK1 inhibitor having the largest effect followed by the MEK inhibitor (Supplementary Fig. S7).

In summary, our results suggest that, at least in 2D cultures, most of the tested single-drugs reduce viability 
independently of apoptosis. Overall, response in 3D correlated well with 2D response. As only two of the tested 
compounds induced cell death at doses selected for the combination screen, this readout was omitted in the 
combination screen.
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Synergistic drug combinations are more frequently observed in 2D cultures. Next, the drugs 
were combined in all possible pairwise combinations across all doses in a 5 × 5 matrix (Supplementary Methods: 
Table II). Drug combination effects were evaluated using the Bliss independence  model22, where Bliss excess 
values below and above 0 were classified as synergy and antagonism, respectively. The choice of the Bliss inde-
pendence model as synergy metric was based on that it is, alongside Loewe additivity and the extension of 
Combination Indexes, one of the most widely used synergy  metrics23,24.

Out of all tested combinations in both 2D- and 3D-cultured cells, we observed that approximately 36% (369 
of 1,008 data points, 2D) and 35% (351 of 1,008 data points, 3D) showed a greater than expected combination 
response (viability), i.e. Bliss excess < 0. Of the 21 pairwise drug combinations, 13 and 8 further showed an average 
Bliss excess < 0 across the whole dose–response matrix in at least one cell line in 2D and 3D, respectively (Fig. 3a). 
The combinations found to be synergistic included the well-documented combination effect of co-targeting PI3K 
and  MEK25–27 as well as combined application of the PI3K inhibitor with the TAK1 inhibitor, previously reported 
by  us28 and later also by  others29. The clinically approved combination of oxaliplatin (OXA) with 5-fluorouracil 
(5-FU)30 was found to be synergistic at low doses of oxaliplatin across all cell lines, albeit with low efficacy of 

Figure 1.  Overview of drugs, targets and screening procedure. (a) Drugs included in the study are presented 
with their full name, abbreviation and target/effect. (b) Single-drug screen: cells were treated with each drug 
in single application in a broad dose range. Combination screen: drugs were combined pairwise in 5 × 5 
matrices. Dose selection was guided by single-drug response. In both screens, cells were subjected to drugs or 
drug combinations for 48 h. Combination effect was calculated using the Bliss independence reference model. 
Responses in both single and combination screens were assessed by measuring cell viability (ATP-content, 
CellTiter-Glo). Cell confluency and spheroid size was additionally quantified in 2D- and 3D-cultured cells, 
respectively.
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Figure 2.  Single-drug screen data. (a) Principle: IC20 and AUC values were estimated from viability-based 
dose–response curves per cell line, culture format and drug. (b) Bar plots of IC20 and AUC values, where < D.r. 
and > D.r. indicate values below and above the tested dose range (0.01–20 µM), respectively. NA indicates that no 
IC20 could be calculated. Error bars represent standard error of the mean (SEM) of four technical replicates. (c) 
Correlation between CellTiter-Glo (viability) and other responses (confluency, CellTox Green and NucView) in 
2D cultures following 48 h of incubation with single-drugs.
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Figure 3.  Drug combination effects of tested compounds in 2D and 3D cultured cell lines. (a) Heatmaps of 
Bliss excess averaged across the matrix per combination, cell line and culture format, within cell line comparison 
of 2D and 3D cultures. Rows are sorted based on Euclidean distance. (b) Number of drug combinations showing 
Bliss excess within given intervals. Combinations with Bliss excess < 0 are classified as synergistic.
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only reducing viability to < 0.5 in 2D-cultured HCT-116 cells. Other drug combinations deemed to be synergistic 
include palbociclib with either the TAK1 inhibitor, oxaliplatin and the MEK inhibitor (Fig. 3). As can be seen in 
Fig. 3b, in general fewer combinations were observed to be synergistic when cells were assayed in 3D as compared 
to 2D. While in 2D, six combinations were identified to be synergistic in more than one cell line, in 3D, only three 
combinations—olaparib with 5-FU, and the MEK inhibitor with either of olaparib and oxaliplatin, displayed 
synergistic action in more than one cell line. This may indicate that cell line-dependency of combination effects 
is more pronounced in 3D or may be attributed to a generally lower overall number of synergistic combinations 
in 3D. Interestingly, none of the combinations identified as synergistic in more than one cell line in 3D were 
among the combinations identified as synergistic in more than one cell line in 2D-cultured cells.

Together, these results indicate that not only is cell line dependency of drug combination effects more pro-
nounced in 3D, but it is even more profoundly different. In summary, our findings indicate that the drug com-
bination effects vary depending on whether planar or spheroid cultures are studied, and that frequently, for a 
given cell line, one specific combination can be found to act synergistically in only one of the culture formats.

Synergy‑viability plots identify MEK inhibitor combinations as more synergistically effective 
in 3D cultures. Synergy scores give an estimate of the interaction effect of drugs, but do not inform about 
the magnitude of remaining viability of cells following treatment. Hence, two different combinations might 
score as equally synergistic, even though both single-drugs and the combination, affect viability considerably 
more in one pair compared to the other pair and may thus be of higher interest for further characterisation. 
To take this into account, we introduced two additional measures of combination effects; one by which effect 
on viability was assessed without taking synergy scores into account (effective combination = combination that 
strongly compromises viability), and one by which combinations were evaluated jointly based on their effect 
on viability and synergistic properties. We use the term ‘synergistically effective combination’ for combinations 
that act synergistically and strongly compromise viability (i.e. ≤ 50% for one or several doses). To evaluate the 
absolute combination treatment effect on viability, we averaged viability data over the whole matrix per cell 
line and drug combination. We found that combinations involving the MEK inhibitor most strongly reduced 
this viability score in both 2D- and 3D-cultured cells, with significantly increased sensitivity in 3D compared 
to 2D for several combinations (Fig. 4a, Supplementary Fig. S8). Although 2D cultures were generally found 
to be more sensitive when assessed across all drug combinations, 3D cultures tended to be more sensitive to 
combinations involving the MEK inhibitor. For HCT-116 the higher sensitivity of spheroids was significant for 
all combinations involving the MEK inhibitor, whereas in HT-29 and SW-620 cells, it was evident for three and 
two combinations, respectively (Fig.  4a, Supplementary Fig.  S8). Although strongly effective in both culture 
formats, the synergistic effect of MEK inhibitor combinations, compared to non-MEK inhibitor combinations, 
was generally weaker in 2D compared to 3D (Fig. 3a). This was also reflected in number of ‘synergistically effec-
tive combination’ concentrations (Fig. 4b,c). Here, five out of six MEK inhibitor combinations were among the 
most synergistically effective combinations in 3D, whereas only two of these combinations were among the five 
most synergistic and effective combinations in 2D (Fig. 4c). These results indicate that whereas in 2D cultures 
high sensitivity towards MEK inhibition alone most likely accounts for the strong reduction in viability observed 
upon treatment with MEK inhibitor combinations, the viability reduction in 3D cultures is a synergistic effect 
that can to a larger extent be ascribed to both drugs in the pairwise combinations involving the MEK inhibitor. 
Overall, the landscape of synergistically effective combinations appears to be more diverse in 2D cultures, with 
four different drugs (PD, PAL, PI and 5Z) involved more than once in the top five combinations (Fig. 4c), com-
pared to only two different drugs (PD and PI) in 3D cultures.

In summary, by implementing the definition ‘synergistically effective combinations’ we were able to identify 
drug combinations with viability-compromising, as well as synergistic, properties. This strategy further allowed 
us to identify MEK inhibitor combinations as more synergistically effective in 3D compared to 2D cultures. Sev-
eral of the combinations classified as synergistically effective have been tested in clinical trials (including the MEK 
inhibitor with either PI3K inhibitor or palbociclib), alluding the potential clinical value of this scoring metric.

Synergistic combinations show high agreement within culture formats. After studying differ-
ences in drug combination response between 2D and 3D-cultured cells by standard viability readout, we further 
investigated whether imaging-based readouts can provide us with additional distinct information regarding the 
combinatorial effect of drugs. For this we studied overall Bliss excess scores for synergy classification per combi-
nation, cell line and readout. None of the observed synergies were called based on data from all readouts across 
all cell lines and in common between both 2D- and 3D-cultured cells (Supplementary Fig. S9, Supplementary 
Table S2). In 2D-cultured HCT-116 and SW-620 cells, synergistic combinations identified by confluency were 
also identified as synergistic based on viability, while synergy by viability did not necessarily imply synergy by 
confluency (Supplementary Table S2). In HT-29 cells three combinations were classified as synergistic based on 
confluency but not by any other readout (Fig. 5a, Supplementary Fig. S9). These combinations showed signifi-
cantly stronger synergistic response when assessed by confluency compared to the viability readout (Fig. 5b), 
however, none of the combinations showed strong effect on growth inhibition (Additional file 5). While the 
largest number of synergistic combinations was called by viability and confluency readouts of 2D-cultured cells, 
additional distinct synergistic combinations were captured by the two different 3D readouts (Fig. 5a). In total 
four combinations were only observed using the 3D viability readout (Fig. 5a), out of which one combination 
(PD + OXA in HCT-116) showed synergistically effective doses within the tested dose range (Fig. 4c).

These results imply that for 2D-cultured HCT-116 and SW-620 cells there is a strong resemblance in the 
synergistic landscape uncovered by confluency measures compared to the synergies we see based on cell viability 
(Supplementary Table S2). While in general drug combinations show a lower effect on confluency than on 2D 
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Figure 4.  Drug combination effects judged by combined synergy-viability assessments. (a) HCT-116 viability averaged across 
the matrix per drug combination and culture format (2D, 3D). Asterisks (*) indicate a statistically significant difference in 
average viability between 2D- and 3D-cultured cells per drug combination, with p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 for *, ** and 
***, respectively. (b) Bliss excess versus viability plots for 2D- and 3D-cultured cells treated with PI3K inhibitor and MEK 
inhibitor (PI + PD). Red boxes enclose data points considered to be synergistically effective according to the definition (Bliss 
excess < 0, viability < 0.5). (c) Number of synergistically effective doses per combination, cell line and culture format. Empty 
positions along the x axis indicate combinations for which no synergistically effective doses were observed (alphabetically per 
culture format).
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viability (Additional file 1 & 5), combinations found to be synergistically effective in reducing relative viability 
(Fig. 4c), were also found to be synergistically effective in reducing relative confluency (Supplementary Fig. S10a). 
The same trend can be observed when comparing synergistic combinations that show an effect on spheroid 
viability (Fig. 4c) and size (Supplementary Fig. S10b). To summarise, while different readouts within the same 
culture format overall show high agreement in synergy calling, additional synergistic combinations of potential 
interest are revealed by screening in 3D cultures, in addition to standard 2D cultures.

Prolonged drug exposure alters drug combination effects and induces apoptosis upon MEK 
inhibition. As several drug combinations were found to potently affect viability, we next explored whether 
also apoptosis was induced and if observed drug effects were reversible or increased with longer exposure time. 
For this, we continuously monitored apoptosis in addition to cell confluency (2D) and spheroid size (3D) and 
increased incubation time to 96 h. Viability was included as endpoint measurement for both 2D- and 3D-cul-
tured cells. Three combinations were selected for this follow-up screen based on (1) their synergistic effectiveness 
(viability ≤ 50% and Bliss excess < 0) in both 2D and 3D at 48 h (5Z + PI, Fig. 4c), or (2) their stronger synergistic 
effect (Bliss excess) in 3D versus 2D culture at 48 h (PD + OXA, Fig. 3a), or (3) the observation of few synergistic 
and effective doses across all tested conditions at 48 h (PI + 5-FU, Fig. 4c), but with clinically relevant  targets31,32.

While in general little to no apoptotic response was observed in any of the cell lines and culture formats upon 
treatment with the PI3K inhibitor combinations, MEK inhibitor treatment alone induced apoptosis at all con-
centrations in HCT-116 spheroids (Additional file 9). At high concentrations of oxaliplatin, a further increased 
apoptotic effect was observed by combination treatment (Fig. 6d,e). This effect was not observed in 2D-cultured 
HCT-116 cells, in contrast here HT-29 cells showed increased apoptosis under MEK inhibitor treatment, which 
was also weakly observed in HT-29 spheroids (Additional file 10).

Overall, the correlation between combination drug responses at 48 h and 96 h was strong, with a correlation 
coefficient (R) ranging from 0.74 to 0.89, and from 0.81 to 0.96 in 2D and 3D cultures, respectively (Fig. S11). 
When comparing mean viability and combination effect (Bliss excess) at the two time points (48 h and 96 h), 

Figure 5.  Differences in synergy calling per readout. (a) Total number of synergistic drug combinations called 
per readout (black bars), and total number of readout-specific synergistic combinations (coloured bars), where 
filled data-points highlight the readout by which synergistic drug combination(s) shown in the coloured bars 
are uniquely called. (b) Differences in synergy strength between indicated readouts per cell line. Asterisks (*) 
indicate a statistically significant difference in synergy strength, with p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 for *, ** and 
***, respectively.
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Figure 6.  Readout and synergy scoring data upon 48 h and 96 h incubation with drugs. (a) Comparison of 
mean viability at 48 h (combination screen) versus 96 h (96 h screen) for HCT-116 cells cultured in 2D and 
3D. Asterisks (*) indicate statistically significant difference in average viability between 48 and 96 h per drug 
combination, with p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 for *, ** and ***, respectively. (b) Mean Bliss excess at 48 h 
(combination screen) versus 96 h (96 h screen). (c) Relative confluency compared to 0 h and vehicle control in 
2D-cultured SW-620 cells exposed to PI and 5Z at the indicated concentrations. (d) Relative apoptosis compared 
to 0 h and vehicle control in 3D-cultured HCT-116 cells treated with the MEK inhibitor PD0325901 (PD), 
oxaliplatin (OXA), or combination (PD + OXA) at 1.25 (PD) + 2.5 (OXA) µM. (e) Representative 72 h-image of 
apoptotic cells in HCT-116 spheroids treated with vehicle control, 1.25 µM PD, 2.5 µM OXA or combination 
(PD + OXA). Scale—100 µm. (c,d) represent the average of three biological replicates with standard deviation.
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we found that although response on average was stronger at 96 h (Fig. 6a, Supplementary Fig. S12), likely due 
to increased exposure time, combination effects overall decreased across all cell lines (Fig. 6b). This was also 
reflected in the decreased number of synergistically effective doses in 3 out of 6 conditions (Supplementary 
Fig. S13). Most striking was the strong effect of MEK inhibition alone, with the highest dose of single PD 
(1.25 µM) being able to reduce viability to less than 25% across all cell lines, while the combination effect of this 
inhibitor with oxaliplatin was considerably lower at 96 h compared to 48 h (Fig. 6b). Contrary to the general 
reduction in mean viability at 96 h compared to 48 h, we observed a significant increase in mean viability of HCT-
116 spheroids and SW-620 planar-cultured cells when treated with the PI3K inhibitor in combination with the 
TAK1 inhibitor (Fig. 6a, Supplementary Fig. S12). This was also reflected by an increase in relative confluency/
size in both cell lines, albeit weaker in HCT-116 cells (Fig. 6c).

In summary, these results demonstrate that whereas longer incubation time with drugs not unexpectedly 
further reduces viability compared to 48 h, the synergistic effect of the tested drug combinations overall tends 
to be weaker and sometimes even reversed at 96 h. This might be due to already strongly compromised viability 
at 96 h for each single drug at selected doses, and therefore a much smaller viability range for any synergistic 
combination response observations. Results from the 96 h exposure screen further support our previous findings 
of the MEK inhibitor PD0325901 (PD) as a strongly potent inhibitor, which also in single application was able 
to induce considerable apoptosis in several of the tested conditions (Fig. 6e).

Discussion
Advances in high-throughput screening and high-content imaging have accelerated testing and discovery of 
anti-cancer drugs in vitro. However, despite demonstrating efficiency in vitro, only a small fraction of putative 
treatments has been found to display similar effects in in vivo experiments, and yet fewer in human clinical 
 trials7,33. The insufficient ability of in vitro 2D-cultures to recapitulate treatment responses in vivo is believed to 
be one among many other possible explanations for the slow developmental progress. 3D cell culture models 
may more closely mimic the architecture of solid tumours and are being anticipated to enable identification of 
more clinically relevant drug  treatments34. As a step towards mapping differences and similarities between the 
two culture formats, we here systematically examined response and combination effects of 7 single-drugs and 
21 pairwise combinations in three 2D- and 3D-cultured CRC cell lines (HCT-116, HT-29 and SW-620). While 
single drug responses have previously been compared in 2D and 3D  cultures9,35,36, only two other studies have, 
to our knowledge, compared effects of drug combinations between the two culture formats. The number of 
combinations tested in these studies has, however, been low  (three37 and  ten38 drug combinations, respectively). 
Furthermore, while Yan et al.39 tested 56 drug combinations in 3D cell line cultures, none of these combinations 
were tested in 2D cultures. To our knowledge, our study represents the largest published comparison of 2D and 
3D cultures and their response to cancer-relevant drug combinations.

Altogether, our high-throughput drug screening platform enabled effective identification of single and com-
bination responses in both culture formats. Differences in drug combination responses were observed both 
between 2D and 3D culture models, readouts and cell lines. This demonstrates the value of including additional 
readouts and, more so, the use of spheroid-based models for drug combination studies to allow for detection of 
synergistic effects in different phenotypes and culture formats.

Several studies have reported on altered drug responses in comparisons of spherical versus planar 
 cultures8,35,37,40–42. Alterations manifest both as increased and decreased effect of the same drug or drug 
 combination12. We too observe culturing mode-related differences in drug sensitivity for some of the tested 
compounds, with no clear trends pointing towards one of the culture formats as being more sensitive than the 
other. Consistent with findings by others, we observed reduced sensitivity to the chemotherapeutic agent oxali-
platin in 3D cultures. Riedl et al. previously reported reduced cell cycle progression in several CRC cell lines 
including HCT-116, HT-29 and SW-620 cells when cultured as spheroids compared to planar  cultures8, similar 
to what has also been shown for other cancer  types40. This accords with our observations of reduced sensitivity 
of HT-29 spheroids to the cell cycle progression inhibitor palbociclib.

Although the number of studies reporting on differences in single-drug responses between 2D and 3D 
cultures has been on the rise during the last years, high-throughput drug combination studies are still scarce, 
with only a few pioneering studies published so  far38,39. We show that several synergistic drug combinations 
identified in 2D cultures are not rediscovered in 3D cultures, but also that some synergistic combinations are 
solely identified in spheroid cultures. In contrast to the observed trend of weaker effect of drug combinations in 
spheroids, we found that combinations involving the MEK inhibitor PD0325901 exerted a stronger inhibitory 
effect in 3D cultures. This supports the notion that spheroids show increased dependency on the MEK pathway 
for their  survival41. Combinations involving 5Z-7-oxozeanol, which in addition to being a TAK1 inhibitor also 
has been reported to inhibit MEK1 and  ERK243, did in general not show stronger effect in 3D compared to 2D, 
which could indicate that the inhibitory effect of the TAK1 inhibitor on MEK is considerably weaker than that 
of PD0325901, in line with other  reports44,45.

Overall, our results indicate that 2D screening identifies a higher number of positive hits compared to screens 
of spheroid cultures. This is in contrast to findings by Mathews Griner et al.38 who reported a generally higher 
number of synergistic combinations observed in 3D compared to cells cultured in 2D. Overall, this indicates 
that there is no general trend in which of the two culture systems appears to be more sensitive to combination 
treatment. These results thus highlight that when using both culture formats additional interesting combina-
tion effects can be observed, that are distinct to one of the culture systems and that would have been missed in 
screening efforts applying only one of them.

In concordance to findings by Gautam et al.13, we notice that readout method matters, underpinned by the 
fact that we observed several differences in identified drug synergies, synergy strength and combination effect 



11

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11574  | https://doi.org/10.1038/s41598-020-68441-0

www.nature.com/scientificreports/

between the different readouts used in this study. The generally high compliance of identified synergies between 
viability and confluency measurements in 2D cultures can be expected as both assays can be considered as prox-
ies for the number of live cells. The lower compliance of identified synergies between 3D viability and spheroid 
size might be explained by the generally lower number of observed synergistic effects. Alternatively, differences 
might be explained by loosening of spheroid structure upon certain treatments, as observed by  others46 and 
which might be interpreted as an increase in size, or low effect on cell death by our treatments.

Although synergistic drug combinations called by different readouts (viability vs. confluency/size) overall 
showed high agreement within culture formats in our screen, the use of imaging-based readouts might still be 
of high value for assuring technical validity of drug screens, especially when performing drug screens in 3D 
cultures. While progress in 3D cultivation technologies has simplified the production and handling of spheroids, 
many cultivation techniques still suffer from limitations associated with generation of uniform  spheroids47, some-
thing that might affect reproducibility of data originating from these models. In our screen, technical as well as 
biological variability in viability was on average slightly higher in 3D compared to 2D cultures (Supplementary 
Table S3, Supplementary Fig. S2). As shown by Zanoni et al., both volume and shape of spheroids might affect the 
response to treatment, in particular when using agents aimed to target proliferating  cells47. Imaging might allow 
for pre-selection of optimal spheroids for drug screens by enabling selection of those spheroids meeting specific 
criteria in terms of e.g. size and  morphology47,48. By constituting a non-invasive readout method, also real-time 
monitoring of phenotypic and cellular events is  possible19, as demonstrated by the continuous measurements 
of apoptosis (2D, 3D), confluency (2D) and size (3D) in our 96 h screen. Similar to the study by Zanoni et al.47, 
viability data showed relatively high correlation with data from brightfield imaging in our screen (Supplementary 
Fig. S14), indicating the power of using imaging not only as a backup to the standard viability readout, but also 
as a possible complement allowing for non-invasive continuous monitoring of drug response.

Today, drug combination screens are commonly performed on large panels of carefully characterised cell 
 lines6,49, where combinations considered as clinically relevant often are those classified as synergistic either across 
the whole panel, or across cell lines in certain mutational-driven clusters. Here, by implementing an approach 
where drug combinations were mapped according to synergy scores (doses classified as synergistic for Bliss 
excess < 0) as well as viability response (doses classified as effective for viability ≤ 50%) in 2D and 3D in vitro 
cultures, we show that the highest scoring drug combinations comprise a sizable number of combinations that 
are in clinical testing. These results point to the importance of using assessment of cellular phenotype such as 
viability in addition to synergy score as metrics when evaluating drug combination effects, similarly to what was 
shown by Meyer et al.50. Interestingly, the fourth most synergistically effective drug combination in 3D cultures, 
5-FU with the MEK inhibitor, did not demonstrate any synergistically effective doses in 2D cultures, and hence 
would have been left unidentified if screening in 2D cultures exclusively. The same is true for the two combina-
tions comprising the TAK1 inhibitor with either oxaliplatin or the MEK inhibitor, which were synergistically 
effective at multiple doses in 3D-cultured HCT-116 and SW-620 cells, but not in 2D-cultured cells. Altogether 
these results suggest that future screening platforms ideally should encompass monitoring of both conventional 
ATP-based and additional readouts, as well as more complex culture models, in order to cover as large part of 
the therapeutic synergy landscape as possible.

Methods
Cell lines, drugs and reagents. Human CRC cell lines used in this study were HCT-116 (CVCL_0291), 
HT-29 (CVCL_0320) and SW-620 (CVCL_0547). The cell lines were directly obtained from NCI. No myco-
plasma testing was done in-house. Cells were routinely cultured in 1X RPMI-1640 medium (Thermo Fisher Sci-
entific) supplemented with 10% fetal bovine serum (FBS, Sigma Aldrich), 2 mM l-Glutamine (Sigma Aldrich) 
and 100 U/mL Penicillin–Streptomycin (Thermo Fisher Scientific). All cells were maintained at 37 °C with 5% 
 CO2 and 80% relative humidity and passaged according to in-house protocols (see Supplementary Methods). 
Cells used in experiments never exceeded passage 21.

Drugs used in screens were olaparib (Selleckchem), oxaliplatin (Selleckchem), palbociclib (Selleckchem), 
PI-103 (Selleckchem), PD0325901 (Sigma Aldrich), 5-fluorouracil (5-FU, Sigma Aldrich) and 5Z-7-Oxozeaenol 
(Enzo Life Sciences). Assay reagents used in screens were CellTiter-Glo 2.0 Assay (Promega), CellTiter-Glo 3D 
Cell Viability Assay (Promega), CellTox Green Cytotoxicity  Assay17 (Promega) and NucView 488 Caspase-3 
 Substrate18 (Biotium).

Drug screens. Cell seeding procedure. For screening in planar (2D) and spheroid (3D) cultures, cells were 
plated with 30 µL complete growth medium in 384-well black tissue culture treated plates (Corning) and 384-
well black round-bottom ultra-low attachment plates (Corning), respectively. Seeding densities and plating set-
ups are described in Supplementary Methods: Table  I. In the 96  h follow-up screen, seeding numbers were 
reduced for 2D cultures to ensure that controls did not reach full confluency before the endpoint readout. Fol-
lowing seeding, 2D plates were shaken (1,600 rpm, 30 s) to ensure uniform sedimentation of cells. 3D plates were 
shaken (1,600 rpm, 30 s) and centrifuged (200G, 5 min) to allow aggregation of single cells into spheroids. Before 
drug addition, cells in 2D and 3D were allowed to adhere/aggregate for 24 h and 72 h, respectively.

Drug treatment. Drug compounds and doses used in screens are summarised in Fig. 1a and Supplementary 
Methods: Table II. For the combination screen, four of the original eight doses screened in single applications 
were selected (see Supplementary Methods). Drugs in single, combination, vehicle (DMSO, water, DMSO + water 
1:1) and positive controls (staurosporine, digitonin) were added in four technical replicates per condition to the 
wells using a Tecan Freedom EVO robotic system (5 µL/well). For measurement of apoptosis in the 96 h screen, 
3 µL of NucView 488 Caspase-3 Substrate (final reagent concentration: 3.43 µM) and 2 µL of drug solution were 
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added to the wells. DMSO concentration never exceeded 0.5%. Cells were incubated (37 °C with 5%  CO2, 80% 
relative humidity) with drugs, vehicle, or positive controls for 48 h (single-drug and combination screens) or 
96 h (96 h screen).

The single-drug screen was performed with four technical replicates and one biological replicate. The drug 
combination screen was performed with four technical replicates and two biological replicates per condition. 
The drug combination PD + 5Z at doses 0.05 µM + 0.01 µM was excluded from biological replicate 1 as no drug 
was added to the wells due to a robotic error. The 96 h screen was performed with 2–4 technical replicates and 
three biological replicates.

Readouts. All readouts are listed in Supplementary Methods: Table III. Shortly, for 2D-cultured cells conflu-
ency was assessed based on brightfield imaging. Apoptosis was assessed using NucView 488 Caspase-3 Substrate 
and fluorescence imaging (excitation: 456 nm, emission: 541 nm). Cell death (membrane integrity) was moni-
tored using CellTox Green Cytotoxicity Assay by reading fluorescence at 535 nm. Cell viability was measured 
by reading luminescence after 10 min incubation with CellTiter-Glo 2.0 reagent (20 µL/well, mixed 1:1 with 
PBS prior to addition). A SpectraMax i3x reader equipped with a MiniMax 300 Imaging Cytometer (Molecular 
Devices) was used for all 2D readouts and image analysis.

Spheroid viability was measured by reading luminescence (Tecan infinite M200 Pro) after 60 min incubation 
with CellTiter-Glo 3D reagent (20 µL/well). Preceding addition of the CellTiter-Glo 3D reagent, images (× 4 
magnification) were captured using an EVOS 1 imaging system (single-drug screen) or an ImageXpress Micro 
Confocal High-Content Imaging System (Molecular Devices). Apoptosis in spheroids was monitored using 
NucView 488 Caspase-3 Substrate and confocal fluorescence imaging. Fluorescent Z stack images (five planes 
per stack and 50 µm separation between planes at 0-72 h; ten planes per stack and 10 µm separation between 
planes at 96 h) were captured continuously. At each time point, spheroid size was estimated using brightfield 
imaging of mid-planes.

Data processing and statistical analysis. Confluency and apoptosis (2D) were estimated by re-analys-
ing brightfield and fluorescence images using the SoftMax Pro 6 software. For each well, percentage of covered 
area (confluency) and number of fluorescent objects (apoptosis) were estimated. Spheroid size was quantified 
by high-throughput size measurement using  SpheroidSizer51 in Matlab (The MathWorks Inc., Natick, Massa-
chusetts) version 2017a (single-drug screen) or 2015a (combination and 96 h screen). Apoptosis in spheroids 
was quantified by estimating the number of fluorescent cells in imaged sections using the MetaXpress software. 
All treatment effects are normalised to the internal vehicle control per plate and reported as average ± standard 
deviation. Pearson’s correlation coefficient (R) has been used to quantify the association between variables.

R versions 3.5.1 and 3.5.3 were used for data processing and graphics, respectively. Packages are summarised 
in Supplementary Methods: Table IV. For statistical analyses, a two-tailed Student’s t test (with p < 0.05 being 
considered significant) has been used when comparing two groups.

Synergy scoring. The Bliss independence reference  model22 was used to estimate synergy. The Bliss expec-
tation  (EAB, Bliss) is calculated for drugs A and B from effect (E) as  EAB, Bliss = EA + EB −  EAEB, and synergy is called 
if the observed effect of the combination is larger than the expectation. Synergy scores were calculated per 
biological replicate, followed by calculation of mean synergy scores across biological replicates as presented  in52. 
We report both average and standard deviation of Bliss excess values per dose and biological replicate, as well as 
across the matrix.

Screen reproducibility. Inter- and intra-experiment reproducibility of response was assessed by compar-
ing data points (doses) common for the different setups (Pearson correlation). The correlation coefficients for 
single-drug responses (viability data) in the single-drug screen and the combination screen were 0.78 and 0.77, 
for 2D and 3D cultures, respectively (Supplementary Fig. S1). The intra-experiment reproducibility for the com-
bination screen was assessed based on the two biological replicates. Correlation coefficients were 0.97, 0.92, 0.93 
and 0.95 for 2D viability, 2D confluency, 3D viability and spheroid size, respectively (Supplementary Fig. S2). 
The intra-experiment reproducibility for the 96 h screen was assessed based on three biological replicates. Cor-
relation coefficients (viability data) ranged from 0.96 to 0.99 (Supplementary Fig. S3). Technical variability was 
assessed by computing the Coefficient of Variation (CV) per condition (treatment), biological replicate and 
readout. An overall CV was calculated by averaging the CV values per biological replicate and readout (Sup-
plementary Table S3).

Data availability
All data supporting the conclusions of this article are available in the Figshare repository (https ://figsh are.com/s/
b2b07 26049 f10a7 63e39 ).
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Additional file 1 

Supplementary Methods 

Cell passaging 

Long-term stored in liquid nitrogen, HCT-116, HT-29 and SW-620 cells were thawed 

and passaged for at least two weeks (split twice a week) before entering 

experiments. The standard splitting procedure included i) aspiration of old medium, 

ii) PBS wash (1-2 á 12 mL), iii) trypsinization (Thermo Fisher Scientific), 5 minutes at 

37°C, iv) resuspension in complete growth medium (RPMI Medium 1640 (1X) 

supplemented with 10% fetal bovine serum (FBS), 2 mM L-Glutamine and 100 U/mL 

Penicillin-Streptomycin). A fraction of cells (1:10, 1:8 and 1:6 for HCT-116, HT-29 

and SW-620 cells, respectively) was transferred to a new T75 flask. Final volume in 

T75 flask: 15 mL. Cells were passaged twice per week.  

 

Selection of doses  

Doses for the combination screen were guided by the IC20 for each single-drug 

observed with CellTiter-Glo in 2D and 3D cultures. IC20 calculations were 

performed in R (version 3.3.3) using the drc package version 3.0.1 and a five-

parameter log-logistic dose-response model1. In cases where the lowest drug 

concentration used in the single-drug screen reduced viability with more than 20%, 

the four lowest screened doses from the single-drug screen were selected for the 

combination screen. In cases where the highest drug concentration reduced 

viability with less than 20%, the four highest screened doses from the single-drug 

screen were selected. In remaining cases, we selected the 4-points dose range that 

covered as many of the calculated IC20 values as possible for that specific drug. 

Note that for each drug, the same doses were selected for all cell lines in 2D and 

3D.  
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Table I. Seeding numbers and assay reagent concentrations (at plating). Setup 1 = cells in medium, 
Setup 2 = cells in medium + CellTox Green, Setup 3 = cells in medium + NucView 488 Caspase-3 
Substrate. * Cells (2D, 3D) seeded in medium (Setup 1) - NucView 488 Caspase-3 Substrate added at 
drug addition. 

Cell line 

Seeding density (cells/well); assay reagent concentration 

Single-drug screen Combination screen 96 hours screen* 

2D 3D 2D 3D 2D 3D 

Setup 
1 

Setup 
2 

Setup 
3 

Setup 
1 

Setup 
1 

Setup 
1 

Setup 
1 

Setup 
1 

HCT-116 1200; 
- 

1200; 
1:1000 

1200; 
3.43 µM 

1200; 
- 

1200; 
- 

1200; 
- 

300; 
- 

1200; 
- 

HT-29 3750; 
- 

3750; 
1:1000 

3750; 
3.43 µM 

4800; 
- 

3750; 
- 

4800; 
- 

900; 
- 

4800; 
- 

SW-620 3000; 
- 

3000; 
1:1000 

3000; 
3.43 µM 

600; 
- 

3000; 
- 

600; 
- 

900; 
- 

600; 
- 
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Table II. Compounds and doses used in the single-drug (SDS), combination (CS) and 96 hours screen 
(96h).  
* Primary target according to manufacturer.  

Compound Abbreviation Primary target* Solvent 

Doses (µM)                   

PubChem CID 

SDS CS    96h 

Olaparib OLA 
PARP1, 
PARP2 

DMSO 

0.01, 
0.05, 
0.25, 
1.25, 
2.5, 
5.0,  
10,  
20 

2.5,  
5,  

10,  
20 

Not 
included 

23725625 

Palbociclib PAL 
CDK4, 
CDK6 

Water 

0.25, 
1.25, 
2.5,  

5 

Not 
included 

11478676 

PD0325901 PD 
MEK1, 
MEK2 

DMSO 

0.01, 
0.05, 
0.25, 
1.25 

0.01, 
0.05, 
0.25,  
1.25 

9826528 

PI-103 PI 
PI3K 

(p110α/β/γ/δ) 
DMSO 

0.01, 
0.05, 
0.25, 
1.25 

0.01, 
0.05, 
0.25,  
1.25 

9884685 

5Z-7- 
Oxozeanol 

5Z TAK1 DMSO 

0.01, 
0.05, 
0.25, 
1.25 

0.01, 
0.05, 
0.25,  
1.25 

9863776 

5-Fluorouracil 5-FU 
Thymidylate 

synthase 
DMSO 

2.5,  
5,  

10,  
20 

2.5,  
5,  

10,  
20 

3385 

Oxaliplatin OXA DNA synthesis Water 

0.05, 
0.25, 
1.25, 
2.5 

0.05, 
0.25, 
1.25,  
2.5 

4609 
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Table III. Readouts per culture format in single-drug (SDS), combination (CS) and 96 hours 
screen (96h). Assays, as well as readout time points, are indicated. Confluency and apoptosis 
were assessed by imaging two views per well. 

Culture 
format 

Readout 
Assay 

reagent 
Detection 
method 

Time point (h) 

SDS CS 96h 

2D 

Viability 
CellTiter-Glo 

2.0 
Luminescence 48 48 96 

Confluency - 
Brightfield 

imaging 

0, 6,  
12, 18,  
24, 30,  
36, 48 

48 
0, 12,  

24, 48,  
72, 96 

Cell death 
CellTox 
Green 

Fluorescence 

0, 6,  
12, 18,  
24, 30,  
36, 48 

- - 

Apoptosis 
NucView 

488 
Fluorescence 

imaging 

0, 6,  
12, 18,  
24, 30,  
36, 48 

- 
0, 12,  

24, 48,  
72, 96 

3D 

 
Viability 

CellTiter-Glo 
3D 

Luminescence 48 48 96 

Size - 

 
Brightfield 

imaging 
 

0, 48 48 
0, 24,  

48, 72,  
96 

Apoptosis 
NucView 

488 
Fluorescence 

imaging 
- - 

0, 24,  
48, 72,  

96 
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Table IV. R packages used for data processing and graphics. 

Execution Package  Version Comment 

Data processing  

tidyr  0.8.3 R version 3.5.1 

dplyr  0.8.1 R version 3.5.1 

lattice 0.20.38 R version 3.5.1 

PharmacoGx 1.12.0 R version 3.5.2 

Graphics 

ggplot2  3.2.0 R version 3.5.3 

ComplexHeatmap2 1.20.0 

2.3.2 

R version 3.5.3 

ggpubr  0.2 R version 3.5.3 

gridExtra  2.3 R version 3.5.3 

ggrepel  0.8.1 R version 3.5.3 

grid  3.5.3 R version 3.5.3 

UpsetR3 1.4.0  R version 3.5.3 
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Additional file 2 

Supplementary Tables 

Table S1 - IC20 (µM) values estimated from viability data (single-drug screen). Non-computable IC20 
values are indicated by NaN in the table. Estimated IC20 values outside screening range (0.01-20 µM) 
are indicate by < D.r.  and > D.r..  
 

 IC20 (µM) 

 

Drug 

HCT-116 HT-29 SW-620 

2D 3D 2D 3D 2D 3D 

OLA NaN NaN NaN < D.r. NaN NaN 

PAL 2.33 ± 0.85 0.47 ± 2.13 5.26 ± 0.17 NaN 2.70 ± 3.78 0.013 ± 0.47 

PD 0.02 ± 0.33 < D.r. < D.r. 0.01 ± 0.02 < D.r. < D.r. 

PI 0.41 ± 0.11 0.93 ± 0.12 > D.r NaN 0.38 ± 0.05 0.10 ± NA 

5Z 0.29 ± 0.06 0.07 ± 0.04 0.06 ± NA 0.01 ± NA 0.45 ± 0.09 0.06 ± NA 

5-FU 3.49 ± 0.52 3.28 ± 0.62 11.58 ± 2.65 NaN 13.60 ±7.34 NaN 

OXA 0.47 ± 0.07 1.01 ± 0.16 2.90 ± NA < D.r. 0.06 ± 0.09 0.26 ± 0.05 
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Table S2 – Synergistic drug combinations (x) per readout and cell line. Average Bliss score per 5x5 
matrix was calculated for all drug combinations per readout and cell line. Imaging corresponds to 
assessment of confluency and size in 2D and 3D cultures, respectively.  

Synergistic 

drug 

combinations 

HCT-116 HT-29 SW-620 

Viability Imaging Viability Imaging Viability Imaging 

2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 

5Z + PAL X  X X X  X  X  X  

5Z + PI X  X  X  X X X  X  

PD + OLA X X X    X   X  X 

PD + PI X X X  X  X X     

5-FU + PAL X X X X         

PD + OXA  X   X X  X     

PD + PAL X  X  X  X      

OLA + 5Z X     X X      

OXA + PAL X  X  X        

PAL + OLA X X X          

PI + OLA X  X         X 

5Z + OXA     X   X     

OLA + 5-FU  X        X   

OXA + 5-FU     X  X      

5-FU + PD      X       

5-FU + PI       X      

5Z + 5-FU       X      
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Table S3 – Average Coefficient of Variation (%) per biological replicate and readout. Average CV values 
were calculated by averaging those per condition (treatment) within each biological replicate and 
readout.  

Readout Average CV (%) 

Rep 1 Rep 2 

Viability 2D 6.01 6.90 

Confluency 2D 3.03 4.95 

Viability 3D 9.59 9.55 

Size 3D 4.19 3.88 
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Supplementary Figures 
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Figure S1 - Inter-experiment reproducibility for single-drug and combination screens. (a) Correlation 
plots showing Pearson’s correlation between data points (viability) common for the single-drug dose-
response screen and the combination screen in 2D and (b) 3D. 
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Figure S2 - Intra-experiment reproducibility for the combination screen. (a) Correlation plots showing 
Pearson’s correlation between replicates per readout in 2D and (b) 3D. 
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Figure S3 - Intra-experiment reproducibility for the 96 hours screen. (a) Correlation plots showing 
Pearson’s correlation between replicates (viability) in 2D and (b) 3D. 
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Figure S4 - Single-drug dose-response viability data (endpoint, 48h). Relative viability of HCT-116, HT-
29 and SW-620 cells upon exposure to seven single compounds as measured by CellTiter-Glo. 

 
  

 
 

 

  

 
  

  

 

  

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

  

 

 

  
 

 
  

   
 

 

   

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

  

     

 

 

 

       
 

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

  

  

  

 
   

  
 

 
    

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

    

 
   

 

 
  

     

 
  

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

   

        

  
 

 
    

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

   

 

 

 

 
 

 
  

 
 

    
 

 

 

   

 

                         

         

 
  
 
   
  
  
 
 
 
 
 
  
 
  
 
  
 
 
  
 
  

   

                               



15 
 

 

Figure S5 - Single-drug dose-response confluency data. Cellular confluency of HCT-116, HT-29 and SW-
620 cells upon exposure to seven single-compounds as measured by brightfield imaging. (a) 
Continuous confluency compared to 0h. Control shows cell growth of internal plate control. (b) Relative 
confluency at endpoint (48h) compared to vehicle control and 0h. 

     

 
  

 

   

 

                         

         

  

     

 
  

 

   

 

                         

         

  

        

 

   

 

                         

         

  

 
 

      

 

   

 

                         

         

    

   
 

    

 

   

 

                         

         

   

        

 

   

 

                         

         

   

  
    

 
 

 

   

 

                         

         

   

 

 
 
  
  
  
  
 
 
  
 
 
 
 
 

HCT 11 HT   S    0

 
 
  
  
  
  
 
 
  
 
 
 
 
  
  
  
 

a b

 

 

 

 

 

  

  

     

        

         

 

 

 

 

     

        

       

 

 

 

 

     

        

        

 

 

 

 

 

  

  

     

        

         

 

 

 

 

     

        

       

 

 

 

 

     

        

        

 

 

 

 

 

  

  

     

        

         

 

 

 

 

     

        

       

 

 

 

 

     

        

        

 

 

 

 

 

  

  

     

        

           

 

 

 

 

     

        

         

 

 

 

 

     

        

          

 

 

 

 

 

  

  

     

        

          

 

 

 

 

     

        

        

 

 

 

 

     

        

         

 

 

 

 

 

  

  

     

        

          

 

 

 

 

     

        

        

 

 

 

 

     

        

         

 

 

 

 

 

  

  

     

        

          

 

 

 

 

     

        

        

 

 

 

 

     

        

         

         
    

    

    

    

   

 

  

  

       



16 
 

 

Figure S6 - Single-drug dose-response cell death data (continuous). (a) Relative cell death of HCT-116, 
HT-29 and SW-620 cells upon exposure to seven single-compounds at doses 0.01 – 20 µM, as measured 
by CellTox-Green (cell membrane integrity) and (b) NucView (apoptosis). 
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Figure S7 - Single-drug dose-response spheroid size data (endpoint, 48h). Relative spheroid size of HCT-
116, HT-29 and SW-620 spheroids upon exposure to seven single-compounds as measured by 
brightfield imaging. 
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Figure S8 - Average viability in the combination screen (endpoint, 48h). (a) Viability averaged across 
the matrix per drug combination and culture format (2D = light, 3D = dark) in HT-29, and (b) SW-620 
cells. Asterisks (*) indicate statistically significant difference in average viability between 2D and 3D 
cultured cells per drug combination, with p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 for *, ** and ***, respectively. 
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Figure S9 - Venn diagrams showing the number of synergistic drug combinations identified by one or 
more readouts. Here, synergy is defined as an overall Bliss excess < 0 when data points are averaged 
over the 5x5 matrix per cell line and drug combination. 
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Figure S10 - Number of synergistic doses per combination, cell line and culture format, which reduce 
confluency or spheroid size to < 0.7. Empty positions along the x-axis indicate combinations for which 
no doses were observed to fulfil this (alphabetically per culture format). 
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Figure S11 - Combination and 96 hours (here referred to as long-term) screen viability and Bliss excess 
correlation. (a) Pearson’s correlation between viability at 48h (combination screen) and 96h (long-
term screen) in 2D (left) and 3D (right), and (b) Bliss excess scores at 48h (combination screen) and 96h 
(long-term screen) in 2D (left) and 3D (right). 
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Figure S12 - Average viability per combination in the combination and 96 hours screens. Viability of 2D 
(left) and 3D (right) cultured HT-29 and SW-620 cells in the combination screen (48h = light) and 96 
hours screen (96h = dark). Viability was averaged across the matrix per drug combination, culture 
format and time-point. Asterisks (*) indicate statistically significant difference in average viability 
between 48h and 96h per drug combination, with p ≤ 0.05, p ≤ 0.01 and p ≤ 0.001 for *, ** and ***, 
respectively. 

 

Figure S13 - Number of synergistically effective doses per combination, cell line and culture format at 
48h (high-throughput screen) and 96h (96 hours screen). 
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Figure S14 - Correlation between relative readout response in the combination screen in a) 2D, and b) 
3D-cultured cells. 
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