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Abstract 
Society, systems and related businesses are increasingly dependent on software applications, 
which are integrated and interoperate with other systems. This dependency has implications for 
the dependability of both the systems and the businesses. There have been reported cases over 
the years of both systems and business failures due to software defects. However, the work and 
effort needed to correct defects is not trivial. This involves changing existing applications, 
which may be overly complex in their structure. Software undergoes constant evolution due to 
changes in the business environment such as introduction of new technology or new 
requirements. It is therefore not surprising that the cost of software maintenance is normally 
estimated to be the highest in the overall software budget. As the software evolves, so does its 
size and complexity.  

One aspect of software complexity is dependency cycles that are formed among software classes 
and packages. Many design guidelines advocate to avoid dependency cycles and argue that they 
inhibit software quality. Despite this conventional wisdom, empirical evidence shows that 
modern software indeed is riddled with this anti-pattern. The question remains that if cyclic 
property is known to be complex and is pervasive in software applications, how does it relate to 
defects and change in general, and what can be done to improve efforts to mitigate it?  

This thesis investigates dependency cycles among software components; an aspect of software 
structural complexity, to find how such properties correlate with defect measures and change 
rates, and how this knowledge can motivate to refactor and improve these possible defects 
hotspots in affected systems. The two main research questions to achieve these objectives are 
stated as follows: 

RQ1. What is the effect of dependency cycles on external quality measures of software 
systems? 

RQ2. How to refactor dependency cycle to impact the structural quality and reduce 
refactoring efforts? 

This work contributes mainly to improvement in software quality (maintainability and 
indirectly, reliability) and software metrics. The following are the three major contributions of 
this thesis: 
C1. Better understanding of how to utilize different defect metrics to improve software quality 
C2. Identification of the impact of dependency cycles on software quality 

C2-1: Identification of dependency cycles and neighbourhood as defect hotspots in software 
systems 
C2-2: Better understanding of the change impact of dependency cycles 

C3. Tool and metrics to refactor defect- and change-prone hotspots in dependency cycles 
C3-1: Added metrics to understand the complexity of components and improve the 
refactoring of cyclically dependent components 
C3-2: A cycle breaking decision support system to refactor cyclically connected 
components 
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1 Introduction 
 

 
 

 
 

 
 

 
 

1.1 Problem Outline 
Today, virtually all aspects of systems (critical and non-critical) and businesses are 
dependent on software programs to execute their functions and operate successfully. 
This dependency implies that a failure1 within a software program has the likelihood to 
result in a system or business failure. A system or business failure may be the result of a 
software fault/defect2. As noted by Lilley (2012), software does not “wear out” after 
some period of proper operation as hardware components do. In addition, defects in 
software systems may not be apparent over time but when they are exposed, they act 
like a hidden bomb (Lilley, 2012). There are numerous evidence of system and business 
failures due to software defects (Leo, 2013; Lilley, 2012). Therefore, early knowledge 
of probable locations of software defects is useful to improve the dependability of these 
systems. 
Removing a large number of defects may have a trivial effect on reliability as pointed 
out by Adams (Adams, 1984). The study of Adam shows that most of the latent defects 
lead to very few failures in practice, while the vast majority of observed failures are 
caused by a relatively tiny number of defects. In addition to this observation, both Ebert 
et al. (2005) and Boehm and Basili (2001), argue that 60-80% of the correction effort 
and 80% of avoidable rework are due to 20% of the defects. This shows that it is not the 
number of defects, but rather their severity that matters. A high severity defect usually 
points to a fatal error resulting in a system failure, whereas low severity defects mostly 
points to some cosmetic issues. Thus, there is a pressing need for more studies both to 
identify and remove critical defects in software systems, and to find their probable 
locations within the software. 

The structural connections among components in a software system have been 
demonstrated to relate to defects (Abreu and Melo, 1996). Figure 1 shows that structural 
properties in software impact the human cognitive ability, which in turn affects the 

                                                
1 Failure: The inability of a system or system component to perform a required function within specified limits 
2 Defect/Fault: An anomaly in a software code unit or product that can be the cause of one or more failures 
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external quality attributes of a system. Conversely, quality attributes, when improved 
can reduce structural complexities and other software properties. Many of the current 
software systems are overly complex and indeed highly interconnected. The higher the 
complexity of a system, the more difficult it is to maintain, and the higher is the risk of 
accidental and unexpected failures (Fenton and Pfleeger, 1997). One area of software 
complexity is dependency cycles that are formed by direct or indirect decisions during 
software development and evolution. Dependency cycles among components are 
notorious for extremely increasing the coupling complexity among interconnected 
components (Briand et al., 1998; Briand et al., 2001b).  

 
Figure 1 Relationships between structural properties, cognitive complexity, 

and external quality attributes (Genero et al., 2007) 
 

There are numerous claims that cycles inhibit external software quality attributes such 
as extendability, understandability, testability, reusability, buildability, maintainability 
and reliability (Fowler, 2001; Lakos, 1996; Parnas, 1979). Evidence shows that they are 
widespread in real-life software systems (Briand et al., 2001a; Hanh et al., 2001; Kung 
et al., 1996; Melton and Tempero, 2007b; Parnas, 1979). Intuitively, since cycles 
increase coupling complexity, it can be expected that it should correlate with defect-
proneness. However, there is no empirical evidence to support this intuition. Thus, it 
remains a gap in research open for thorough empirical studies. 

In studying dependency cycles of object-oriented systems, it can be argued that 
internally (source) declared types within a software application are of particularly 
interest.  We can exclude externally declared types (libraries) from our discussion for 
the following reasons3 (see Figure 2): 
1. Internally declared types usually depend on the externally declared types (e.g. 

standard APIs) and not vice versa. Thus, it is practically impossible for externally 
declared types to form cycles with internal application types.  

2. Developers can easily modify types declared in available software source files and 
alter the dependencies they have to one another and to externally declared types. 
However, it is not feasible (easy nor sensible) to alter the dependencies that 
externally declared types (e.g., 3rd party libraries) have to one another. In many 
cases, the source code of externally declared types is not available. 

3. Externally defined types are often more stable than internally defined types in the 
source files of the software applications. By making a decision to reuse externally 
declared types, we can assume that these types are thoroughly tested, and in general 

                                                
3 http://www.cs.auckland.ac.nz/~hayden/research.htm 

the structural properties (such as structural complexity and size) of a UML class diagram
have an effect on its cognitive complexity. Cognitive complexity can be defined as the
mental burden placed by the artefact on the people who have to deal with it (e.g.
developers, testers, maintainers). High cognitive complexity will result in the production of
an artifact that has reduced understandability, which will, in turn, produce undesirable
external qualities, such as decreased maintainability.

We proposed a set of eight measures for the structural complexity of UML class
diagrams (Genero et al. 2000, 2005; Genero 2002). The proposed measures were based on
(1) a theoretical analysis of the ontological structure of UML class diagrams and (2) a
review of the literature about the existing measures that can be used to measure the
structural complexity and size of UML class diagrams in the initial phases of an OO
software development life cycle (Li and Henry 1993; Brito e Abreu and Carapuça 1994;
Chidamber and Kemerer 1994; Briand et al. 1997; Marchesi 1998; Bansiya and Davis
2002) The proposed measures are related to the usage of UML relationships, such as
associations, dependencies, aggregations and generalizations.2 In the study reported herein,
we also considered traditional OO measures, such as size measures (see Table 1). In what
follows, the abbreviations for the measure names will be used.

These measures were validated theoretically according to the DISTANCE framework
(Poels and Dedene 2000), in order to guarantee the construct validity of the empirical
studies in which these measures were used.

1.1 Objectives of this Research

The proposal of measures is of no value if their practical use is not shown empirically
(Basili et al. 1999; Kitchenham et al. 1995; Schneidewind 1992; Cantone and Donzelli
2000). Hence, our main motivation was to investigate, through experimentation, whether
the measures we proposed for UML class diagram structural complexity and size could be
good predictors of two class diagram characteristics that are related to maintainability:
understandability and modifiability. If the predictive power of the proposed measures were
to be corroborated by several empirical studies, we really would have identified early
indicators of class diagram understandability and modifiability. These indicators would
allow OO software designers to make better decisions early in the software development
life cycle, thus contributing to the development of better quality OO software. From a

External Quality Attributes - ISO  9126

Structural          
Properties

(size and  
structural 

complexity)

Cognitive
Complexity Understandability

Analysability 
Modifiability

affect affect
Functionality Reliability

Usability

PortabilityEfficiency

Maintainability

affects

Fig. 1 Relationship between structural properties, cognitive complexity, and external quality attributes,
based on Briand et al. (1999) and ISO (2001)

2 These measures have been defined in a methodological way following a method proposed by Calero et al.
(2001), which consists of three main tasks: metric definition, theoretical and empirical validation. However,
in this paper, we focus only on empirical validation. Work related to the definition of measures and to
theoretical validation can be found in Genero (2002).

Empir Software Eng (2007) 12:517–549 519
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of excellent quality. Therefore, it is not very likely that these data types will change 
or that the interfaces to the types will change. 

The above reasons do not preclude dependency cycles from being formed with reused 
libraries in a large software organisation, or where source code to the libraries is 
available. An example is the Eclipse project where cycles are formed between the AWT 
package and SWING package. These are interesting cases for future study.  

The goal of this research is twofold: Firstly, to collect empirical evidence of the effect 
of dependency cycles among internally declared types on defects and change rate. This 
can consequently motivate for refactoring of defect-prone cyclic components. Secondly, 
to realize a cycle-breaking decision support system that could assist developers and 
maintenance engineers to refactor dependency cycles and improve the structure of the 
software. 

 

 
Figure 2 Application structure in relation to internal vs. external 

dependencies 

1.2 Research Context 
This PhD research has been done within the context of the Smart Grid Research 
Initiative of IME, NTNU. The main goal as defined within the software engineering 
project 4  is: Improved Management of Software Evolution for Smart Grid 
Applications. The main case study is Smart Grid software systems. This work has been 
done in collaboration with Powel AS, a major Smart Grid software vendor in Norway 
with more than 80% market share, and with the main office in Trondheim. We have 
performed a longitudinal study of one of the company`s Smart Grid software for three 
and half years. The study explored the source code, change set, and defect repositories 
for the selected application. The study included participation by an MSc student in the 
last phase of the thesis to implement a refactoring plugin for the development 
environment used by the company. The justification for analysing defects in relation to 
the structural design of the software driving the Smart Grid, is very strong. As a system 

                                                
4 http://www.ntnu.edu/ime/research/smartgrid/project-f 
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of systems (SoS), Smart Grid faces risks and challenges typical to SoS environment 
(Creel and Ellison, 2008), such as:  
1. Potential for change in the system(s) from any direction: stakeholders, constituent 

systems as well as evolving business requirements. 
2. Less predictability regarding stakeholders’ needs, technology advances and 

component behavior typical in an environment with no central control. 
3. Failures with cause or impact (cascade) beyond the individual system boundary.  
4. Constraints in terms of new development and evolution because of existing 

collection of design choices. 
5. Limited knowledge of individual system state and behaviour.  
Smart Grids are still in the formation stage, and represents a shift from a relatively 
closed grid structure to more complex and highly interconnected systems. It thus faces 
practical challenges from the many requirements that are needed to accomplish its 
vision. It is therefore an important goal that defects and especially critical defects are 
located and reduced, and that the defect locations are improved within the structures of 
the software systems. In addition, reducing the complexity of these hot spots to reduce 
the effort to make changes would be important in these applications. 

1.3 Research Questions and Design 
The aims of this work are to (1) investigate how dependency cycles affect non-
functional requirements (quality attributes) of software systems, and (2) propose tools 
and methods to refactor dependency cycles. In particular, the thesis investigates the 
effect of dependency cycles on maintainability, and indirectly reliability attributes of 
software systems. Direct measurement of maintainability and reliability is not the goal 
of this thesis. Therefore, in this thesis, defect and change rates have been used as proxy 
metrics to quantify the aforementioned quality attributes. Ultimately, this work is aimed 
to improve the structural quality and the management of the software applications 
during evolution.   

1.3.1 Research questions 
The main research questions and the sub-questions investigated in this thesis are: 

RQ1. What is the effect of dependency cycles on external quality measures of software 
systems? 
RQ1-1 What is the effect of using different defect metrics to identify critical 

software components? 
RQ1-2 What is the effect of dependency cycles on software defect?  
RQ1-3 What is the effect of refactoring cycles on defect-proneness? 
RQ1-4 What is the effect of dependency cycles on change rate? 

RQ2. How to refactor dependency cycles to impact the structural quality and reduce 
the refactoring efforts? 
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1.3.2 Research methodology 
The research methodologies that are mostly relevant in software engineering can be (a) 
controlled experiments, (b) case studies, (c) survey, (d) ethnographies, and (e) action 
research (Easterbrook et al., 2008). In this study, literature review (pre-study), case 
studies, survey, and design science research methodologies have been used. Design 
science is a methodology commonly used in information systems research (Peffers et 
al., 2007). Case studies are empirical methods aimed to offer in-depth understanding 
about how and why a certain phenomenon occurs. It can use both quantitative and 
qualitative methods. Whereas, design science is aimed at creating artefacts that could 
change existing situations to a more preferred ones (Hevner et al., 2004). Design 
science research should address unsolved problems in a unique and innovative way, or 
an already solved problem in a more effective or efficient way to distinguish them from 
routine design, (Hevner et al., 2004). Design science research methodology (DSRM) is 
made up of six activities (Peffers et al., 2007), they are: problem identification and 
motivation, defining the objectives of a solution, design and development, 
demonstration, evaluation, and communication. 

Studies 1, 2 and 3 in this research were empirical in nature (see Figure 3). Study 1 used 
case study and survey, while studies 2 and 3 used literature review and several case 
studies to understand the relationships between (1) dependency cycles and defects, and 
(2) dependency cycles and change frequency. The outcome of the previous studies 
motivated for refactoring of cyclically connected components. Thus, in Study 4, a cycle-
breaking decision support system was implemented by using design science research 
methodology. 
In relation to the research goals and research questions, the research methods used in 
this thesis are discussed below: 
RQ1: Case studies (Quantitative and Qualitative methods) are used to answer the 
research question. Firstly, to investigate how several defect measures can be used to 
identify critical components in software systems. Secondly, to investigate the 
relationships between dependency cycles and defects, and dependency cycles and 
change frequency 

RQ2: This RQ is addressed by using design science methodology in the construction of 
a cycle-breaking decision support system using an improved metric to refactor 
dependency cycles. We then used a case study approach and interview for evaluation. 
The details of the research design are depicted in Figure 3. It shows the connections 
between the research questions, the methodology, and the contributions. There are 
challenges particularly when conducting an empirical study with industrial companies. 
Some of these are:  
1) Unmanageable challenges and scope arising from the challenges of the Smart Grid 

companies. 
2) Smart Grid is not yet mature; hence, it could be difficult to obtain sufficient 

empirical data necessary for the study 
3) Lack of effort on the part of industrial partners.  
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Figure 3 Connection between research questions, publications and 

contributions 

The above risks have been minimized because of the good collaboration with Powel 
AS. The company has also provided all support needed at the different stages of the 
research work. In addition, there is a regular feedback of the research findings to the 
company, which have triggered further studies, and an implementation of approaches 
and tool to improve the system’s structures. 

1.4 Papers 
P1 Oyetoyan, T.D., Conradi, R., Cruzes, D.S., 2013. A Comparison of Different Defect 

Measures to Identify Defect-Prone Components, Joint Conference of the 23rd 
International Workshop on Software Measurement and the 2013 8th International 
Conference on Software Process and Product Measurement (IWSM-MENSURA), 
2013, Ankara, Turkey. pp. 181-190  

The main goal of this paper was to evaluate the usefulness of several defect measures 
such as number of defects, defect density, defect correction effort, and severity of 
defects, to define defect-prone components. The study aims to find out whether there 
are significant variations between different defect measures in identifying defect-prone 
components and architectural hotspots. Results demonstrated that employing several 
defect metrics is an important and useful approach to model construction, testing 
activities, and for performing defect analysis of software components. This publication 
contributes to RQ1-1 

Own contribution: I was the leading author in this study. I performed the data 
collection, design and implementation of the experiment, and wrote the paper. The two 
co-authors reviewed the paper.  
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P2 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013. A study of cyclic dependencies 
on defect profile of software components. Journal of Systems and Software 86 
(12), pp. 3162-3182.  

This paper explores the relationships between cyclic dependent components and defects. 
By testing four different hypotheses on six non-trivial systems we established that: 

1) Components in and near cycles have higher likelihood of defect-proneness than those 
not in cyclic relationships. 

2) The higher number of defective components is concentrated in components in and 
near cycles. 

3) Defective components in and near cycles account for the clear majority of defects in 
the systems investigated. 

4) The defect density of components in and near cycles is sometimes higher than those 
in non-cyclic relationships. 

This paper contributes significantly to addressing RQ1-2. 
Own contribution: I was the leading author in this study. I performed the data 
collection, design and implementation of the experiment and wrote the paper. The 
remaining two authors reviewed the paper. 

 
P3 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013. Criticality of Defects in Cyclic 

Dependent Components, 13th IEEE International Working Conference on Source 
Code Analysis and Manipulation (SCAM), Eindhoven, Netherlands, pp. 21-30  

This paper investigates the criticality of defects in cyclic dependent components. 
Removing a large number of defects may have trivial effect on system reliability. The 
most number of latent defects lead to very rare failures in practice, while the vast 
majority of observed failures are caused by a relatively small number of defects. This 
shows that it is not the number of defects, rather their severity that matters. Thus, we are 
compelled to find out if this majority of defects and defect-prone components in cyclic-
related components are also the majority in both critical defects and severe defective 
components.  In the two applications that are empirically investigated, results 
demonstrated that components in and near cycles account for almost all the critical 
defects. This publication addresses RQ1-2. 

Own contribution: I was the leading author in this study. I performed the data 
collection, design and implementation of the experiment, and wrote the paper. The two 
co-authors reviewed the paper. 
 

P4 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013. Can Refactoring Cyclic 
Dependent Components Reduce Defect-Proneness?, 29th IEEE International 
Conference on Software Maintenance (ICSM), 2013 pp. 420-423  

The results from P2 and P3 indicate that components with cyclic relationships are 
responsible for the largest number and severity of defects and defect-prone components. 
Therefore, the goal of this paper is to investigate the variables within cyclic dependency 
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graphs that correlate with number of defect-prone components. By using network and 
statistical analysis, the results demonstrate that adding new components or creating new 
dependency relationships correspond strongly to an increase in the number of defect 
prone components. We can therefore hypothesize that refactoring dependency cycle can 
reduce the defect-proneness of components. This publication contributes to RQ1-3. 

Own contribution: I was the leading author in this study. I performed the data 
collection, design and implementation of the experiment, and wrote the paper. The two 
co-authors reviewed the paper. 
 

P5 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2014. Transition and Defect Patterns 
of Components in Dependency Cycles During Software Evolution, IEEE 
Conference on Software Maintenance, Reengineering and Reverse Engineering 
(CSMR-WCRE), 2014 Software Evolution Week, Antwerp, Belgium, pp. 283-
292  

This study investigates the defect-proneness patterns of cyclically connected 
components vs. non- cyclic ones when they transition across software releases. By using 
empirical studies on many applications and releases, it is established that cyclically 
connected components remain in defective states during evolution more than non-cyclic 
components. In addition, the class reachability set size (CRSS) metric is found to 
increase more among cyclically connected components that turn defective in future 
releases. We conclude that (1) refactoring cyclically connected components may yield 
benefits in terms of reduction in defect-proneness in future releases (2) such refactoring 
should focus on minimizing the class reachability set size (CRSS) metric. This 
publication contributes to RQ1-3 
Own contribution: I was the leading author in this study. I performed the data 
collection, design and implementation of the experiment, and wrote the paper. The two 
co-authors reviewed the paper. 

 
P6 Oyetoyan Tosin. D, Dietrich Jens, Falleri Jean-Remy and Jezek Kamil, 2015,  

Circular Dependencies and Change-Proneness: An Empirical Study, 22nd IEEE 
International Conference on Software Analysis, Evolution, and Reengineering, 
École Polytechnique de Montréal, Québec, Canada, pp. 238-247  

Recent studies have proposed new heuristics and approaches to distinguish between 
“bad” and “harmless” cycles. In this study, we have investigated (1) whether cycles are 
generally change-prone more than non-cycles, (2) whether cycles that have high 
diameters within their package containment tree (PCT-diameter) are more change 
prone, and (3) whether cycles that contain subtype knowledge (STK) in their structure 
are more change-prone. We found that (1) dependency cycles have big change impact 
on their direct in-neighbours, (2) neither the PCT-diameter nor the STK properties can 
identify “harmless” or “critical” cycles, and (3) certain design patterns do contain cycles 
(e.g. Visitor pattern) and may be “harmless” in terms of their change-proneness. This 
paper contributes to RQ1-4 
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Own contribution: I was the leading author in this study and contributed about 60%. I 
wrote the code for the experiment, collected the data and performed the experiment. I 
also wrote about 40% of the paper. 
 
P7 Oyetoyan, T.D., Cruzes, D., Thurmann-Nielsen, C., 2015, A Decision Support 

System to Refactor Class Cycles. Accepted at the 31st International Conference on 
Software Maintenance and Evolution ICSME, Bremen, Germany  

In this study, we have proposed and developed a cycle breaking decision support system 
(CBDSS) that implements existing design approaches in combination with the class 
edge contextual data to refactor class dependency cycles. Furthermore, we have 
implemented a new metric called IRCRSS that identifies the reduction rate of class 
reachability set size (CRSS) from a class interface to improve the overall refactoring 
efforts. The results of the evaluations on multiple systems show that (1) the IRCRSS 
metric could identify fewer classes for cycle breaking and thus reduce the refactoring 
efforts reasonably, and (2) the CBDSS could assist software engineers to plan the 
restructuring and refactoring of large and complex dependency cycles in classes. This 
publication contributes to RQ2. 

Own contribution: I was the leading author in this study. I performed the design and 
implementation of the Java tool and the underlying algorithm and wrote the paper. The 
second co-author reviewed the work and paper. The last co-author implemented the 
Java algorithm in a C# plugin. 

1.5 Contributions 
This work has contributed both to the theory and practice in software quality 
(maintainability and indirectly, reliability) and software metrics (See Figure 4 and 
Table 1). The following have been identified as the main contributions with sub-
contributions related to the research objectives. 

C1 Better understanding of how to utilize different defect metrics to improve 
software quality. 

C1-1: Identification of the usefulness of using different defect metrics to classify 
critical software components. 

C2 Identification of the impact of dependency cycles on software quality. 
C2-1: Identification of dependency cycles and neighbourhood as defect hotspots in 
software systems. 
C2-2: Better understanding of the change impact of dependency cycles. 

C3 Tool and metrics to refactor defect- and change-prone hotspots in dependency 
cycles. 

C3-1: Added metrics to improve the refactoring of cyclically dependent components. 
C3-2: A cycle breaking decision support system to refactor cyclically connected 
components. 
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1.5.1 Contribution to software quality 
C1-1 Identification of the usefulness of different defect metrics to classify critical 
software components (RQ1-1, P1). 
A quantitative and qualitative analysis of defects and source code data of an industrial 
Smart Grid application, shows that several defect measures such as defect counts, defect 
density, defect correction effort, and defect severity have variations in their 
identification of defect-prone components that are critical to the application. By using 
the four metrics, it was possible to identify a significant number of components 
classified as critical by developers. The result contrasts with using the popular defect 
counts and defect density. The study grows the knowledge about the need to include 
several defect measures during component-defect analysis. 
 

C2-1 Identification of dependency cycles and neighbourhood as defect hotspots in 
software systems. 

(1). Empirical evidence of dependency cycles as defect hotspots (RQ1-2, P2). 
A quantitative analysis of defects and source code of a commercial Smart Grid and open 
source applications show that components in and near dependency cycles have more 
defects and are more defect-prone than those not in cycles 

(2). Empirical evidence of dependency cycles as hotspots for critical defects (RQ1-2, 
P3). 

A quantitative analysis of defects and source code of a commercial Smart Grid and open 
source applications show that the majority of critical defects are concentrated in 
components in and near dependency cycles. This links to C1, that critical components 
are located in cycles or near cycles. 

(3). Better understanding of the relationship between refactoring dependency cycles and 
defects (RQ1-3, P4 & P5). 

A quantitative analysis of defects and source code of a commercial Smart Grid and open 
source applications show that components in cycles that turn defective in future releases 
distinctly and significantly have higher class reachability set size than non-cyclic ones. 
  

C2-2 Better understanding of the change impact of dependency cycles (RQ1-4, P6) 
A quantitative analysis of change proneness of cyclically connected components shows 
that dependency cycles could have significant change impact on its neighbourhood and 
less change within its structure especially for some special cycle types (e.g. cycles 
formed by the Visitor pattern). Furthermore, some special types of cycles (cycles with 
STK and cycles with high PCT-diameter) do not show higher correlation with change-
proneness than cycles without these properties. 
Summary: C1 and C2 have contributed greatly to understand the location of defect 
hotspots in software structure. It has motivated the refactoring of cyclically connected 
components to create maintainable, testable, and reusable components. It has improved 
the understanding of the relationship between refactoring cyclically connected 
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components and defect-proneness. In addition, it has provided insight into the presence 
of high coupling and change-proneness in dependency cycles and neighbourhoods of 
cycles.  

 
C3-2 A cycle breaking decision support system for refactoring of cyclically dependent 
components (RQ2, P7) 
Currently, there is little advice on how to refactor dependency cycles at the class 
granularity level. The decision support system contributes to improving existing 
software structure by providing approaches and implementable actions to decouple 
classes that are in dependency cycles. 
Summary: C3-2 has contributed to performing the actual restructuring task to achieve a 
maintainable system 

1.5.2 Contribution to software metrics 
C3-1 Added metrics to understand the complexity of component and improve the 
refactoring of cyclically dependent components (RQ1-2, RQ1-4 & RQ2, P2, P3, P6 & 
P7). 

First, the research presents additional metrics that help to better understand cyclically 
connected components. It introduce a metric termed “depend-on-cycle” that shows that 
components with this property share some similarities with those directly in cycles. 
Second, it extends the metric (class reachability set size) proposed in (Melton and 
Tempero, 2007a), which is a variant of the CCD metric by Lakos (Lakos, 1996). The 
new metric, named the “Interface Reduction rate for class reachability set size 
(IRCRSS)”, identifies the reduction rate in the reachability set size between a class and 
its interface. The results from empirical validation shows that the application of the 
metric provides better results and is a useful indicator of a reduction in software 
complexity and refactoring efforts on existing systems. It is able to select fewer 
candidates when applied as compared to refactoring without using the metric. 
 

Table 1 Research questions vs. contributions and papers 
Research Questions Contribution Papers Area of contribution 

RQ1-1 C1 P1 Software quality 

RQ1-2 C2-1, C3-1 P2, P3 Software quality and metrics 

RQ1-3 C2-1 P4, P5 Software quality 

RQ1-4 C2-2, C3-1 P6 Software quality and metrics 

RQ2 C3 P2, P3, P6, P7 Software quality and metrics 
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Figure 4 State-of-the-art and area of contributions from PhD Study 

1.6 Thesis Structure 
This thesis is structured into two parts. The first part contains six chapters to introduce 
the thesis, put the research into context, evaluate the research design, integrate the 
results and discuss the contributions of this thesis. The second part is a collection of the 
selected papers for the thesis. 

Chapter 2: State-of-the-Art discusses the state-of-the-art in software engineering, 
software quality, software testing, object-oriented metrics, software patterns and anti-
patterns, software evolution, maintenance and software refactoring. 
Chapter 3: Context and Research Design explores the research context and design of 
the thesis. We discuss and describe the research focus, the software we have used for 
the studies, the metrics and the approach for measurement and data collection. The 
research designs for the studies are then described and lastly, the threats to the validity 
of our results are discussed. 

Chapter 4: Results presents the results of the studies. 
Chapter 5: Evaluation and Discussion of Results evaluates and discusses the 
contributions of this thesis. 
Chapter 6: Conclusion and Future Work provides the conclusion and a direction for 
future studies. 
Appendix A: (enclosed, selected papers) presents the seven primary papers selected for 
this thesis. 
Appendix B: presents abstracts of three secondary papers, which are partly related to 
this thesis. 
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2 State-of-the-Art 
 

 
 

 
 

 
 

 
 

This chapter presents state-of-the-art topics relevant to this thesis. Section 2.1 presents 
software engineering with definition, concepts, and challenges. Section 2.2 looks into 
the topic of software quality and discusses related quality attributes. Section 2.3 
presents software testing. Section 2.4 presents object-oriented metrics. Section 2.5 
presents software evolution and maintenance. In Section 2.6, software patterns and anti-
patterns are presented. Section 2.7 presents related studies in software refactoring. 
Lastly, in Section 2.8, we summarize and discuss the challenges of this thesis. 

2.1 Software Engineering: Definition and Challenges 
According to IEEE Computer Science (SWEBOK) (Bourque and Fairley, 2014), 
Software engineering is defined as: 
“(1) The application of a systematic, disciplined, quantifiable approach to the 
development, operation, and maintenance of software; that is, the application of 
engineering to software. (2) The study of approaches as in (1)” 

In ISO/IEC/IEEE Systems and Software Engineering Vocabulary (ISO/IEC/IEEE 
24765:2010), Software engineering is defined as: 

“(1) The systematic application of scientific and technological knowledge, methods, and 
experience to the design, implementation, testing, and documentation of software  (2) 
the application of a systematic, disciplined, quantifiable approach to the development, 
operation, and maintenance of software; that is, the application of engineering to 
software”  
The term “software engineering” was first coined at a NATO conference in 1968 (Naur 
and Randell, 1969) to discuss the prevalent software crisis at this time (Sommerville, 
2011; van Vliet, 2000). Software problems such as late delivery, unfulfilled 
functionality, large post-release errors, and adaptability challenges were common at this 
time.  These challenges stem from individual approaches and lack of a systematic or an 
engineering approach to the development of large and complex software systems 
(Sommerville, 2011). Following the 1969 conference, substantial effort in the 70s and 
80s, has been invested into creating new software engineering techniques and methods 
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such as structured programming, information hiding, object-oriented development, 
tools, and standard notations (Sommerville, 2011). Software engineering has thus 
evolved into a discipline where development and the development process are 
standardized and supported with several approaches and tools (Mohagheghi, 2004). 
Despite the improvements in the way software is produced, software projects and 
development still face many problems. There is still evidence of system failures due to 
software failure (Leo, 2013; Lilley, 2012). Due to the nature and role of software, there 
are some key challenges that affect them and they are briefly discussed below: 
1. Heterogeneity/interoperability (Pfleeger, 2001; Sommerville, 2011): More and 

more, systems must talk to each other, they need to run on different platforms, and 
interfacing new systems with legacy systems are all common challenges. 

2. Change (Pfleeger, 2001; Sommerville, 2011): The dynamic nature of our 
environment forces change in technologies. This necessitates the need for adaptable 
software processes and products that are fulfilled within budget and on time. 

3. Security and trust (Sommerville, 2011): Software is increasingly interconnected 
with every aspect of people’s lives. Thus issues about confidentiality and integrity 
are critical subjects in software. 

To limit the impact of change within a software structure, several design guidelines (e.g. 
Acyclic Dependencies Principle) and approaches (e.g. component-based software 
engineering (CBSE)) have been proposed. Nevertheless, recent empirical evidence 
show that internal software structures that usually are the first target of change, have 
structural complexity problems (Dietrich et al., 2010; Melton and Tempero, 2007b).  

2.2 Software Quality 
According to (ISO/IEC 25000:2014; ISO/IEC 25010:2011), software quality is defined 
as the: 
“(1) Capability of a software product to satisfy stated and implied needs when used 
under specified conditions  (2) degree to which a software product satisfies stated and 
implied needs when used under specified conditions” 

Software quality can be viewed from many different perspectives as it relates to the 
stated and implied needs. Such views can be transcendental, user, manufacturing, 
product, and value-added (Naik and Tripathy, 2011; Pfleeger, 2001). A transcendental 
view says that quality is something that can be recognized but not defined in any 
tractable form. The user view sees quality as the extent to which a product meets user 
needs and expectations. The manufacturing view is concerned with whether the product 
meets the stated requirements. This view suggests two characteristics to measure: the 
defect count and the rework cost. The product view sees quality by assessing the 
internal qualities with the hypothesis that products with good internal quality would 
have good external quality. Lastly, the value-based view looks at quality from the 
viewpoints of excellence and worth. The product and manufacturer views are the centre 
of the investigation in this thesis. Essentially, the structural characteristics of software 
product are investigated to find correlation with the external quality metric, which is 
quantified by various defect metrics.  
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ISO/IEC/IEEE defines internal measure of software quality as: “the measure of the 
degree to which a set of static attributes of a software product satisfies stated and 
implied needs for the software product to be used under specified conditions”. 

As noted by (Franch, 1998), non-functional requirements need a comprehensive and 
formally defined languages to state the quality requirements in the software itself. This 
approach can improve the evaluation of a product to determine whether it falls within 
the stated non-functional requirements. The lack of this formality has had negative 
impact on many software development tasks.  To measure software quality, different 
models have been described in earlier work. McCall et al. (1977) classified the software 
quality model using eleven factors (correctness, reliability, efficiency, integrity, 
usability, maintainability, testability, flexibility, portability, reusability, and 
interoperability). ISO 9126, now replaced with ISO/IEC 25010:2011, categorize the 
product quality model into eight main quality characteristics (functionality, suitability, 
reliability, performance, efficiency, usability, security, compatibility, maintainability, 
and portability). Bass et al. (2003) have described these characteristics as software 
quality attributes.  
The quality attributes at the higher level can only be measured indirectly. By defining 
lower level criteria for each attribute and combined with the ratings it is possible to have 
measurement of the extent that the quality factor is satisfied (van Vliet, 2000). This 
thesis investigates two quality attributes (maintainability and indirectly reliability) by 
using indirect measures. Quality is a difficult concept to define or measure, and it is also 
about acceptable compromises (Gillies, 1997). Notwithstanding, to assess and improve 
software quality would require imposing some degree of control (Kitchenham and 
Pfleeger, 1996), and to assert control would require defining measurable attributes 
(DeMarco, 1982).  

Table 2 describes the ISO/IEC 25010:2011 product quality model, the quality attributes, 
and their criteria (sub-characteristics). Emphasis is given to the two attributes 
(reliability and maintainability) most relevant to this thesis. The defect metrics are 
employed as the indirect measure for reliability. Measuring actual reliability by using 
for example, the “Mean-Time-To-Failure (MTTF)”, is not the major focus of this 
thesis. It is therefore not possible to conclude on the actual impact the defect metrics 
used have towards measuring reliability of the systems. In terms of the maintainability 
attribute, (Roger, 2005) has indicated using a simple time-oriented metric, “Mean-Time-
To-Change (MTTC)”. There are of course challenges with this metric. For example, an 
accurate “change time” should include the time it takes a developer to reason about the 
task. However, this may not be possible as such cognitive task could be accomplished 
anywhere and anytime. In this thesis, we have used the cycle metrics and change-
probability metrics as indirect indicators.  Section 3.3 describes the details of these 
metrics. 

2.3 Software Testing 
According to SWEBOK (Bourque and Fairley, 2014), software testing is defined as: 

“the dynamic verification of the behaviour of a program on a finite set of test cases, 
suitably selected from the usually infinite executions domain, against the expected 
behaviour”  
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Table 2 Software quality attributes, criteria and measures (ISO/IEC 
25010:2011) 

Quality 
Attributes 

Criteria Description Indirect 
measure (own 
addition) 

Functionality 
suitability 

Completeness 
Correctness 
Appropriateness 

  

Reliability Maturity 
Availability 
Fault tolerance 
Recoverability 

Fault tolerance: degree to which a 
system, product or component operates as 
intended despite the presence of hardware 
or software faults 

Defect severity, 
Defect density, 
defect count and 
defect probability 

Performance 
efficiency 

Time behaviour 
Resource utilization 
Capacity 

  

Usability Appropriateness  
Recognizability 
Learnability 
Operability 
User error 
protection 
User interface 
aesthetics 
Accessibility 

  

Security Confidentiality 
Integrity 
Non-repudiation 
Accountability 
Authenticity 

  

Compatibility Co-existence  
Interoperability   

Maintainability Modularity 
Reusability 
Analyzability 
Modifiability 
Testability 

Modularity: degree to which a system or 
computer program is composed of discrete 
components such that a change to one 
component has minimal impact on other 
components 

Modifiability: degree to which a product 
or system can be effectively and 
efficiently modified without introducing 
defects or degrading existing product 
quality.  

Modifiability is a combination of 
changeability and stability 

Cycle metrics and 
change-
probability metric 

Portability Adaptability 
Installability 
Replaceability 

  

One key aim of software testing is to discover defects in software and expose failures 
(van Vliet, 2000). Defects can be present at various phases of software development; 
requirements, design, and implementation (Pfleeger, 2001) and during its operational 
usage, i.e., maintenance phase (van Vliet, 2000). For instance, during initial 
development, a requirement specification may be defective because of a missing or un-
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implementable requirement. Undiscovered defects at previous phases thus have 
potential to spread to other stages in the software life cycle. The type of defect to be 
treated can be categorized using the orthogonal defect classification (ODC) (Chillarege 
et al., 1992). The ODC classifies defects into function, interface, checking, assignment, 
timing/serialization, build/package/merge, documentation, and algorithm. The 
orthogonal feature of ODC enables defects to belong to only one category. It is thus 
effective to discover the part of the development phase that requires attention (Pfleeger, 
2001). 
Van Vliet (2000) states that testing a requirement specification should be aimed at 
testing its completeness, consistency, feasibility, and testability. (Poston, 1987) grouped 
the common errors in a requirement specification as missing information, wrong 
information, and extra information.  
In the design phase, a high-level conceptual model of the system is developed from the 
requirement specification. This model shows how the system is decomposed into 
subsystems, components, and modules, and the interactions among them (van Vliet, 
2000). This decomposition allows the architecture to be tested against specific quality 
attributes (Bass et al., 2003). Designing a system for testability requires that the design 
is not too complex and the states of the system are controllable and observable (Bass et 
al., 2003)  

The implementation phase involves translating the design to executable source code. A 
number of testing techniques are applied such as code-inspection and code-walkthrough 
(van Vliet, 2000). Different test stages are involved such as unit testing, integration 
testing, system testing, function/acceptance testing, and installation testing (Pfleeger, 
2001; van Vliet, 2000).  
The maintenance phase is the post-release stage of the system. At this stage, changes 
can be introduced in the system due to defects, new/changed requirements, or changes 
in technology. These changes are captured using different maintenance terminologies; 
corrective, preventive, adaptive, and perfective (van Vliet, 2000). When changes are 
made to the system, it would need to be retested to ensure its correctness. The testing 
performed at this stage is termed regression testing (van Vliet, 2000). 
To successfully manage software development and testing activities, a configuration 
management system (CMS) is required. A CMS allows the management of versions and 
releases of software, and enables coordination among testers and developers (Pfleeger, 
2001).  
Bertolino (2007) argued that the term “software testing” is used for a variety of aims 
and scopes, thus giving rise to multiple of meanings. However, the common 
denominator for the different testing goals is that testing always consists of observing a 
sample of executions, and giving a verdict over them. The author provided a unifying 
classification using six questions underlying any test approach. The questions why, 
how, how much, what, where, and when, can be used to distinguish the specific aspects 
that characterize the sample of observations. The “why” deals with test objective: why 
is it that we make the observation? The “how” deals with test selection: which sample 
do we observe, and how do we choose it? The “how much” deals with test adequacy, or 
stopping rule: how big of a sample? The “what” addresses levels of testing (unit test, 
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component/subsystem test, and integration test) otherwise described as testing stages by 
(van Vliet, 2000): what is it that we execute? The “where” asks: where is the 
observation performed (in-house, simulated environment, or the final target context)? 
Lastly, the “when” asks: when is it in the product lifecycle that we perform the 
observations? 

This thesis has investigated defects exposed in the operational stage of the software. 

2.4 Object-Oriented Metrics 
Object-oriented (OO) metrics have been proposed as a quality indicator for software 
components. The pioneering work in software metrics: Halstead’s software science 
metrics (Halstead, 1977), McCabe cyclomatic complexity metric (McCabe, 1976), and 
Henry and Kafura’s information flow metric (Henry and Kafura, 1981) have 
concentrated on complexity measures in the procedural paradigm. However, the OO 
paradigm expresses certain different programming philosophies such as inheritance, 
class or message passing that are not expressed in the procedural paradigm (Li and 
Henry, 1993).  
Chidamber and Kemerer (1994) proposed a suite of OO metrics to indicate the quality 
of a component (class). These metrics are; Weighted Methods for a Class (WMC), 
Depth of class in Inheritance Tree (DIT), Number of Children (NOC), Coupling 
Between Object Classes (CBO), Response For a Class (RFC) and Lack of Cohesion of a 
Method (LCOM). Li and Henry (1993) used the six metrics in addition to others to 
predict maintenance effort in OO systems. They concluded that the OO metrics are able 
to predict maintenance effort more than what size metrics can predict. Basili et al. 
(1996) validated the six OO metrics and claimed that CBO and RFC significantly 
correlate to defects than the rest four metrics. Briand et al. (Briand et al., 1998; Briand 
et al., 2001b) have investigated the set of metrics by Chidamber and Kemerer with 
several other derived metrics. They claim that CBO and especially import and method 
invocation coupling are important when building an OO quality model. 
Challenges with software metrics for building software quality models are addressed in 
(Fenton and Neil, 1999a; Fenton and Neil, 1999b). The author argues that: 
1) Complexity and/or size measures alone cannot provide accurate predictions of 

software defects 
2) Information about software defects (discovered pre-release) on its own provides no 

information about likely defects post-release. 
3) Traditional statistical (regression-based) methods are inappropriate for defects 

prediction 

Fenton propose that the way forward is to construct prediction models that account for 
explanatory factors, most notable testing effort and operational usage. 

2.5 Software Evolution and Maintenance 
Evolution is a natural phenomenon for software system that is used. According to 
Lehman (1980), software that is used undergoes continual change or it becomes 
progressively less useful. Arguably, the terms evolution and maintenance are used 
interchangeably (Sommerville, 2011). Software systems undergo changes in many 
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ways. They have to adapt to new environments or technologies, or undergo change 
because of defect fixes. The activity of changing a software system after its release is 
termed maintenance. Maintenance can be classified into four types; corrective, adaptive, 
perfective and preventive (van Vliet, 2000). However, these types of maintenance (with 
the exception of corrective maintenance) have no distinct difference in practice 
(Sommerville, 2011). According to (van Vliet, 2000), the ‘real’ maintenance activity is 
corrective maintenance and it accounts for about 21% of the total maintenance effort 
only. While perfective consumes 50%, adaptive 25%, and preventive 4%. 
Each of the maintenance types is defined as follows (ISO/IEC/IEEE 24765:2010): 

Corrective maintenance: the reactive modification of a software product performed 
after delivery to correct discovered problems. 

Adaptive maintenance: modification of a software product, performed after delivery, 
to keep a software product usable in a changed or changing environment. 

Perfective maintenance: software maintenance performed to improve the performance, 
maintainability, or other attributes of a computer program. 

Preventive maintenance: the modification of a software product after delivery to detect 
and correct latent faults in the software product before they become operational faults. 

The more a system is changed, the more it grows in complexity (Lehman and Ramil, 
2001) and the more it ages (Parnas, 1994). Parnas states that the key to control software 
aging is to design it for change (Parnas, 1994). This is consistent with Lehman’s 
Seventh Law – Declining Quality (Lehman and Ramil, 2001). Systems should be 
adapted to account for changes in the operational environment to prevent a decline in 
quality. It presupposes that the advice to reduce maintenance problems for systems 
during evolution is relevant during the initial system development (van Vliet, 2000). 
Some of the possible solutions to reduce maintenance problems as stated by (van Vliet, 
2000) are: 

• Higher-quality code, better test procedures, better documentation and adherence 
to standards and convention, can pay off for corrective maintenance; 

• Evaluation of software architecture with respect to ease of change can make 
future perfective and adaptive maintenance to be realized more easily; 

• Finer tuning to user needs may lead to savings in perfective maintenance; 

• Code size is correlated to maintenance. Less code means less maintenance. 
Reusing a bulky code has a maintenance penalty. 

In conclusion, we can assume that maintenance challenges may be unavoidable but they 
can be controlled and minimized with adequate adherence to design guidelines during 
initial development. In the evolution phase, it is then necessary to implement an 
iterative improvement program for refactoring and improving the code quality (see 
Figure 5). 
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2.6 Software Patterns and Anti-patterns  

2.6.1 Software patterns and empirical investigation on software 
maintenance 

Design pattern was first formulated by (Alexander et al., 1977). Patterns are known to 
be recurring solutions to recurrent design problems. They capture existing, well-proven 
designs (Rising, 1998). Gamma et al. (1995) catalogued twenty-three design patterns 
widely used in software development and classified them into three broad types; these 
are creational, structural, and behavioural patterns. Creational patterns include patterns 
such as Factory Method, Abstract Factory, Builder, Prototype and Singleton. Structural 
patterns include, e.g., Adapter, Bridge, Composite, Decorator, Façade, Flyweight, and 
Proxy. Lastly, behavioural patterns include, e.g., Interpreter, Template Method, Chain 
of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, 
and Visitor.  

According to Prechelt et al. (2002), the following are the advantages being claimed for 
design patterns: 

1. Using patterns improves programmer productivity and program quality.  
2. Novices can increase their design skills significantly by studying and applying 

patterns.   
3. Patterns encourage best practices, even for experienced designers.  
4. Design patterns improve communication, both among developers and from 

developers to maintainers.  

Thus, one of the claimed benefits of design patterns is that it reduces the effort and cost 
of software maintenance. 

2.6.2 Empirical validation of design patterns on software maintenance 
A plethora of studies have investigated the role of design patterns on software 
maintenance and change-proneness. Bieman et al. (2003) investigated the impact of 
design patterns on the change proneness of classes by using five systems, four small 
ones and one large system. They have mined the change data from a configuration 
management system. They concluded that classes participating in design patterns are 
rather more change-prone. A recent study on mining software repository (Herzig and 
Zeller, 2013) shows, however, that multiple tangled code changes could result into an 
incorrect classification of change/fault data. 

Di Penta et al. (2008) investigated whether certain design pattern roles are more change-
prone in general, and whether certain roles are prone to particular types of changes. 
Their results confirm that many design pattern roles do undergo changes within the 
pattern. Vokac (2004) analysed the defect rates of classes that participated in selected 
design patterns of a large commercial product. The study concluded that the Observer 
and Singleton patterns are correlated with large code structures and can thus serve as 
indicators for special attention. On the other hand, the Factory pattern instances tend to 
have lower defect counts. (Prechelt et al., 2002) reported a controlled experiment that 
showed Observer and Decorator patterns to result in less maintenance time while the 
results for the Visitor pattern were inconclusive. (Vokáč et al., 2004) replicated the 
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experiment by (Prechelt et al., 2002). Their results confirmed the previous results that 
the Observer, Decorator, and Abstract Factory patterns favour ease of maintenance. 
However, the Visitor and Composite patterns had strongly negative results on 
maintenance.  
Jeanmart et al. (2009), however, reported a positive relationship between the use of 
Visitor pattern and maintenance efforts. Wendorff (2001) reported on a large 
commercial software project where the uncontrolled use of design patterns has 
contributed to a severe maintenance problem. 

2.6.3 Software Anti-patterns 
Conversely, software anti-patterns are recognized as poor design choices and can exist 
at the code, design, and architectural levels (Koenig, 1998; Lippert and Roock, 2006).  
(Lippert and Roock, 2006) have catalogued a number of anti-patterns at the architectural 
level termed as “architectural smell”. In the next sections, selected anti-patterns at both 
the code and architectural levels are discussed. Furthermore, the section discusses 
empirical studies that have related anti-patterns to software quality. 

 
Figure 5 A cycle in Apache Velocity v1.6.2 (Oyetoyan et al., 2015b) 

2.6.3.1 Dependency cycles  
As illustrated in a concrete example in Figure 5, a cyclic dependency is formed when 
components depend on one another in a circular manner. The cycle in this figure is 
caused by the Visitor pattern that involves the abstract visitor, the abstract element, and 
the concrete element. This relationship covers both direct and indirect connection 
between those components. Formally, in graph theory (Cormen et al., 2001), a cyclic 
dependency graph, also known as strongly connected components (SCC) in a directed 
graph G = (V, E), is a maximal set of vertices C ! V such that for every pair of vertices 
u and v in C, both are reachable from each other. Cyclic relationships increase coupling 
complexities and thus have the potential to propagate defects in a network (Abreu and 
Melo, 1996).  
In terms of classes, Parnas (1979) identified “Uses relation” between two components 
and argues that the loops in the “Uses Relation” are detrimental to extensibility of a 
software system. Lakos (1996) provided extensive discussion concerning cyclic 
dependencies among C++ classes. Lakos claimed that cyclic physical dependencies 
among classes in C++ programs inhibit understanding, testing, and reuse. Other authors 

to use some sub-package semantics when organising code.
For instance, the package javax.swing has circular de-
pendencies with its “child packages” javax.swing.tree

and javax.swing.table. It appears that these cycles
forming in branches of the PCT are the result of splitting
large packages to facilitate maintainability, but the respec-
tive packages retain a high level of cohesion. AWT fea-
tures a similar structure. However, the core Java interface
libraries also provide an example of a critical cyclic de-
pendency spanning across branches of the PCT: AWT and
Swing mutually depend on each other. Figure 1 also shows
this. The critical dependency is caused by references to
javax.swing.JComponent in several AWT classes, in-
cluding java.awt.Window and java.awt.Component.
On the other hand, javax.swing.JComponent is a sub-
class of java.awt.Component. This design flaw had a
significant impact on early versions of the Java platform, and
there is evidence that it can be removed without impacting on
the functionality of the respective libraries. This is discussed
in more detail in [9].

D. Inadvertent Cycles

There are situations where cycles are a direct result of the
features and limitations of technologies and methods used in
projects. The most simple example in this category are the
cycles formed between non-static nested classes and their outer
classes in Java byte code. In particular, the compiler generates
access fields to reach inner class from outer one and vice-versa.

A more complex case that is common originates from the
use of certain design patterns that induce cycles. An example
is the use of Visitor, one of the classic gang of four patterns
[13]. The pattern consists of abstract and concrete visitors, and
abstract and concrete visited “elements”. The visitors reference
all concrete element types as parameters in the (overloaded)
visit methods, while the element types (both abstract and
concrete) use the abstract visitor type as parameter type in
the accept methods. Visitor is a very popular pattern, in
particular in programs that use hierarchical data structures
such as parsers for domain specific languages (DSLs). Such
an example is depicted in figure 2. The cycle is even an
instance of STK, caused by the inherits relationship between
the concrete elements (such as ASTIdentifier) and the
abstract element (Node). Note that the number of concrete
elements is typically large, in this example, there are 33 such
classes each representing a particular AST node type. This can
result in large SCCs.

These cycles can hardly be interpreted as signs of bad
design, on the contrary, the use of Visitor is widely seen as
good design as it allows developers to “plug-in” functionality
into complex object structures. This is also a case of choosing
a particular design to overcome limitations of the programming
language, in this case the lack of support for multiple dispatch
in Java [24]. Acyclic versions of Visitor have been proposed
[21]. However, acyclic visitors are even more complex than
visitors as additional abstract visitor types are required, and it
appears that they are not widely used.

In the velocity example used in figure 2, the Visitor has
been manually implemented. However, in many cases parser
code is generated by parser generators from abstract grammar
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Fig. 2. A cycle caused by the use of the Visitor pattern in Apache Velocity,
version 1.6.2

specifications. This is becoming more and more common with
the availability of good tools (such as ANTLR), and the
popularity of DSLs. Code with generated cycles can have
interesting change characteristics, for instance, if the code is
regenerated during each iteration as part of automated builds.

III. RELATED WORK

Several authors have investigated the relationship between
anti-patterns and the change-proneness of software artefacts.

Foutse et al. [19] examined classes involved in anti-patterns
and code smells and their change and fault proneness. The
study investigated four systems and thirteen anti-patterns. The
claims from this study are that classes participating in anti-
patterns are more change- and fault-prone than others and that
structural changes affect more classes with anti-patterns than
others. Romano et al. [34] investigated the impact of anti-
patterns on change-proneness using change data from source
code analysis. The results of this study is consistent with [19].
In addition, they showed that certain anti-patterns are prone
to certain types of changes such as API changes. Olbrich et
al. [25] performed a study on two open source applications
to study the impact of code smells. Their results show that
different phases could be identified during the evolution of
code smells and in particular, components infected with code
smells display a higher change frequency than others. Fontana
et al. [12] investigated the correlations between different smells
and antipatterns.

In our study, we have investigated one particular antipattern
on the structural/architectural level, and this is different from
these studies.

On the other hand, while anti-patterns are claimed to be
poor design choices, design patterns are recurring solutions to
design problems. A plethora of studies have also investigated
the relationships between design patterns and class change-
proneness. Bieman et al. [2] investigated the impact of design
patterns on the change proneness of classes by using five sys-
tems, four small ones and one large system. They have mined
the change data from a configuration management system.
They concluded that classes participating in design patterns are
rather more change-prone. Recent study on mining repository
[15], however showed that multiple tangled code changes could
result into an incorrect classification of change/fault data.
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also claimed that cycles inhibit system understanding (Fowler, 2001), testing in 
isolation, integration testing (Briand et al., 2001a; Hanh et al., 2001; Hashim et al., 
2005; Kung et al., 1996), and reuse (Martin, 1996).  Cyclically connected components 
are mutually dependent, thus in terms of understanding any of the classes; it is 
necessary to understand all other classes in the cycle. Furthermore, to test a class in 
isolation is practically impossible when it is involved in a cycle with other classes 
(Lakos, 1996). In integration testing, cycles prevent the topological ordering of classes 
that can be used as a test order (Briand et al., 2001a, 2003; Hanh et al., 2001; Jungmayr, 
2002; Kung et al., 1996; Melton and Tempero, 2007b), thereby inhibiting the testability 
of a system. 
In many OO systems developed with programming languages such as Java or C++, a 
package represents a physical organization of software components (Knoernschild, 
2012; Lakos, 1996). Packages are used to group classes that perform similar functions. 
They focus on manpower and they represent the granule of release (Martin, 1996). 
Applications are usually a network of interrelated packages and the work to manage, 
test, build, and release those packages is non-trivial (Martin, 1996). When cycles are 
formed at the package level, it seriously affects manpower since software engineers 
working on individual packages need to build with every other dependent package 
before they can release their package. Cycles among packages have thus been claimed 
to be detrimental to understandability (Fowler, 2001), production (Lakos, 1996; Martin, 
1996), marketing (Lakos, 1996), development (Lakos, 1996; Martin, 1996), usability 
(Lakos, 1996; Martin, 1996), and reliability (Lakos, 1996).  
It has been stated (Briand et al., 2001a; Hashim et al., 2005; Kung et al., 1996; Lakos, 
1996) and implied (Jungmayr, 2002; Martin, 1996) that cycles are pervasive in real-life 
software systems. However, it appears that only Melton and Tempero (2007b) have 
performed an elaborate empirical study of cycles in many software systems at the class 
level. Melton and Tempero carried out an empirical study of 78 Java applications. The 
result shows that almost all the 78 Java applications contain large and complex cyclic 
structures among their classes. 

  

 
Figure 6 An STK in the JRE v1.7.0 (Oyetoyan et al., 2015b) 

2.6.3.2 Subtype knowledge 
Subtype knowledge (STK) is an instance of a cycle and was first studied by (Riel, 
1996). It occurs in a cycle that contains at least one inheritance (extends) or realization 

classes within and near cycles account for the most defects
in programs. This study did not investigate particular types of
cycles and their relationship with change proneness. It used
a smaller data set, and did not study the classes directly,
but mined the comments in the issue tracking and subversion
systems instead.

The rest of this paper is organised as follows: we first
discuss the core concepts used in this paper in a background
section. We provide several real-world examples of the differ-
ent types of cycles we are interested in. We then discuss related
work and describe the methodology used in detail, followed
by a result section and a discussion that includes threats to
validity. We finish the paper with a conclusion.

II. BACKGROUND

A. Cycles and Dependency Graphs

The notion of cyclic dependency corresponds to strongly
connected components (SCCs) in dependency graphs. SCCs
can be effectively computed with Tarjan’s algorithm in linear
time [35].

A dependency graph is a simple model representing soft-
ware artefacts and their relationships. Such a graph can be built
on several levels of abstraction and aggregation. For instance,
in the case of Java programs, we can consider methods and
fields and their invoke and access relationships, classes and
interfaces and their uses, extends and implements relationships,
packages and their dependencies, and containers (jar files)
and their dependencies. Low-level cycles have been associ-
ated with potential problems for comprehension, testing, and
maintenance [3], [4]. However, to the best of our knowledge no
empirical studies on larger sets of real-world programs exist to
support this claim, and at least some of the cycles are created
by widely-used programming techniques like recursion.

Higher-level dependency graphs are typically obtained
from lower-level graphs by means of aggregation. For instance,
a package-level dependency graph is built from the dependency
graph of the classes contained in this packages. Cyclic depen-
dencies between classes in different packages induce cyclic
dependencies in the package graph. Therefore, we focus our
attention on SCCs in the class graph. The vertices in this
graph represent the classes of a Java program, while the edges
represent the relationships between these vertices. Classes here
refers to compiled classes, and also include other Java types
like annotations, interfaces and enums. Edges are labelled with
either uses, extends or implements. The extends and implements
labels are used according to the meaning of the respective
keywords defined in the Java Language Specification [14], uses
covers all other dependencies. We also use the label inherits
defined as the union of extends and implements.

Several empirical studies on real-world programs suggest
that the number of SCCs found in both the class-level and
package-level dependency graphs is large [23], [8]. The fact
that many of these systems are regarded as functional and
widely used suggests that not all cycles are as detrimental to
the quality of systems as previously thought. This seems to
indicate that it is not sufficient to only study general cycles.
Instead, certain types of cycles must be studied as well in order
to distinguish between critical and harmless cycles.

B. Subtype Knowledge

Subtype knowledge (STK) is an “antipattern” first studied
by Riel [33]. An instance of STK is basically a cycle that
has at least one extends or implements edge, and a back-
reference path connecting the target of this edge with its
source. Because the Java compiler (as well as most other
compilers) enforces that there are no cycles in the supertype
(inherits) graph, this path must contain at least one uses edge.
Situations producing inheritance cycles still exist when classes
are compiled separately, but they are rare and can be caught
by the Java Virtual Machine by means of static analysis during
linking.

The intention behind this pattern is that in a well designed
program, abstraction and implementation artefacts are sepa-
rated, and implementation artefacts depend on abstractions,
but not vice versa. This is also known as the dependency
inversion principle (DIP) [20]. STK cycles directly violate this
principle. Surprisingly, STK cycles are still common in real-
world programs [8].

Figure 1 depicts a STK cycle found in the Java Run-
time Environment, version 1.7.0. This is a class-level cy-
cle, but it also induces a package level cycle between
java.awt and javax.swing. The documentation of
LegacyGlueFocusTraversalPolicy indicates that this
is a FocusTraversalPolicy implementation that pro-
vides support for legacy applications. Yet, every other imple-
mentation of FocusTraversalPolicy depends on it as
there is a dependency from the abstract type to this particular
implementation. This is clearly an undesirable constraint for a
modular design.
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Fig. 1. A STK cycle in the Java Runtime Environment, version 1.7.0

Note that not all STK instances are equally critical. An
example is discussed below in section II-D where a STK is a
side-effect of using the visitor design pattern. This might still
have negative consequences, however, they are outweighed by
the benefits of using the design pattern.

C. Cycles and the Package Containment Tree

One possibility to distinguish between critical and harmless
cycles is to consider their location within the package contain-
ment tree (PCT) [10]. The PCT of a Java program is formed by
the hierarchical structure of package names. The Java language
specification stipulates that “The hierarchical naming structure
for packages is intended to be convenient for organizing
related packages in a conventional manner, but has no signif-
icance in itself ... ” [14, ch 7.1]. However, developers seem
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(implements) edge, and a back reference path connecting the target of the edge to its 
source. This type of anti-pattern violates the principle that base/super types should not 
know anything about their derived/sub types.  Empirical studies have shown that the 
subtype knowledge anti-pattern is common in real world programs (Dietrich et al., 
2010). An example of STK anti-pattern is shown in Figure 6 where javax.swing is in an 
STK type of cycle with java.awt.  

2.6.3.3 Abstraction without decoupling 
The Abstraction Without Decoupling (AWD) anti-pattern occurs when a client depends 
on an abstract type and at the same time uses the concrete implementation of this 
abstract type (Dietrich et al., 2012). The drawback is that it would be difficult to 
dynamically upgrade or replace the concrete implementation without touching the client 
code. This case is depicted in Figure 7 where class B depends on both the abstract class 
A and the implementation of A (Impl-A). It is possible to use dependency injection to 
refactor this anti-pattern (Dietrich et al., 2012; Fowler, 2004). 

 
Figure 7 Abstraction Without Decoupling 

2.6.3.4 Degenerated Inheritance 
A Degenerated Inheritance (DIH) anti-pattern is caused by cases of multiple inheritance 
paths from a subtype to a supertype (Dietrich et al., 2012; Sakkinen, 1989; Singh, 
1994). In object-oriented programming languages such as Java this is caused by using 
multiple interfaces. An example is depicted in Figure 8 where class D indirectly inherits 
from class A through two other classes B and C. 

 
Figure 8 A case of degenerated/multiple inheritance 
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2.6.3.5 Cycles in package containment tree 
Recent studies have also investigated new heuristics to classify “bad” and “harmless” 
package cycles (Falleri et al., 2011). The motivation behind this is that most cycles are 
formed within the package containment tree (PCT) hierarchies. By computing the 
diameter of a package cycle, it is possible to detect package cycles that cross module 
hierarchies, as a high diameter would be an indicator of “harmful” package cycles. The 
example in Figure 9 shows the two packages “java.awt” and “javax.swing” to have 
circular reference between them. 
 

 
Figure 9 PCT of package cycles (Oyetoyan et al., 2015b) 

2.6.3.6 Code smells 
Beck and Fowler (1999) introduced the term code-smells and argued that code smells 
are indication of deeper problems in the source code. For instance, “Duplicated Code” is 
a case where similar code structures exist in different parts of the program. This type is 
also referred as code clone (Baxter et al., 1998) and can be refactored by extract method 
approach, e.g., the approach described in (Tsantalis and Chatzigeorgiou, 2011).  Wake 
(2004) discussed Fowler’s code smells under six categories; “Duplication”, “Data”, 
“Interfaces”, “Responsibility”, “Unnecessary complexity”, and “Message calls”. 
Similarly, Mäntylä and Lassenius (2006); (Wake, 2004) provided a taxonomy for the 
code smells described by Beck and Fowler. The authors specified five categories for the 
twenty-four code smells as: “The Bloaters”, “The Object-Orientation Abusers”, The 
Change Preventers”, “The Dispensables”, and “The Couplers”. Wake states that not all 
code smells indicate a problem, but most are worthy of a look and a decision (Wake, 
2004). 
Several authors have investigated the relationship between code smells and the change-
proneness of software artefacts. Khomh et al. (2012) examined classes involved in code 
smells, and their change and fault proneness. The study investigated four systems and 
thirteen code smells. The claims from this study are that classes participating in anti- 
patterns are more change- and defect-prone than others, and that structural changes 
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affect more classes with code smells than others. Romano et al. (2012) investigated the 
impact of code smells on change-proneness. The result of this study is consistent with 
(Khomh et al., 2012). In addition, they showed that certain code smells are prone to 
certain types of changes such as API changes. Olbrich et al. (2010) performed a study 
on two open source applications to study the impact of code smells. Their results 
showed that different phases during the evolution of code smells could be identified, 
and in particular, components infected with code smells display a higher change 
frequency than others. 

2.7 Refactoring 
Fowler refers to refactoring as a disciplined way to clean up code in such a way that the 
chances of defects is reduced (Fowler, 1999). Refactoring is an act of safely improving 
the design of existing program (Wake, 2004). It is a process that improves the internal 
structure of a software system without changing its external behaviour (Fowler, 1999; 
Mens and Tourwe, 2004). It is believed that refactoring improves software quality and 
increases productivity by making it easier to understand and maintain software codes 
(Kim et al., 2012).  It is considered an important part of a software lifecycle or else the 
program design will decay (Fowler, 1999). Refactoring can be applied to smells at the 
code or at an architectural level (Lippert and Roock, 2006).  

The targets of refactoring are software artefacts that could be program source code, 
design artefacts, and/or requirement specifications (Mens and Tourwe, 2004). 
Finkelstein et al. (1994) and Hunter and Nuseibeh (1998) have used classical logic and 
quasi-classical logic to identify inconsistencies in requirements specification, and 
proposed approaches to support continued action. Russo et al. (1998) reported their 
work on restructuring of multi-perspective requirements specification from a NASA 
project. They identified inconsistencies in the requirements by decomposing the 
specifications into “viewpoints”, and identifying the relationships and inter-
dependencies among the “viewpoints”. The restructuring facilitates better requirements 
understanding, maintenance and evolution.  

Design level refactoring concerns the restructuring of design artefacts and most notably 
in the form of Universal Modelling Language (UML) models (Correa and Werner, 
2004; Sunyé et al., 2001). Van Gorp et al. (2003) proposed an extension to the UML 
metamodel to maintain consistency between a refactored design and its underlying 
source code. Boger et al. (2003) developed a refactoring browser integrated in a UML 
modelling tool. Van Der Straeten and D'Hondt (2006) implemented a rule-based 
approach for resolving inconsistencies in or between models.  
Refactoring at the source code or program level has been largely addressed (Beck and 
Fowler, 1999; Fowler, 1999; Opdyke, 1992; Wake, 2004). These refactoring make use 
of a number of approaches e.g. Extract class, Move method, Encapsulate field, Extract 
method, Pull-up method, Extract Interface, (Fowler, 1999) and are implemented on 
development environments (e.g. Eclipse, NetBeans, Visual Studio).  

Graph transformation has been extensively applied to model code-level refactoring 
activities (Mens, 2006; Mens et al., 2007; Van Der Straeten et al., 2004; Zhang et al., 
2005). The type of graph manipulation we have employed in this thesis does not 
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demand detailed graph formalism since we are only interested in removing or adding 
single edges in a graph during refactoring. 
Dietrich et al. (2012) identified high impact edges from the program dependency graph 
by assigning weights to each edge based on the number of anti-patterns it is involved 
with. Their results on the graph model demonstrated that it is possible to remove many 
anti-patterns (e.g., dependency cycles at the package level) by removing such high 
impact edges. Shah et al. (2013) implemented an automated refactoring on these edges. 
Their results from applying several refactoring approaches, show that certain edges are 
removable, while removing certain edges would introduce errors.  

 Laval and Ducasse (2014) implemented an enriched dependency structural matrix 
(eDSM) to detect dependency cycles between packages. They use contextual 
information such as the types of relationships between the coupled components, the 
proportion of referencing classes in the client package, and the proportion of referenced 
classes in the provider package. In addition, the matrix table uses different colour 
annotations to differentiate between direct cycles, indirect cycles, and other types of 
dependencies. Finally, the tool reports actions and propositions to be performed to 
remove detected dependency cycles.  

In relation to refactoring and software defects there are conflicting evidence of the 
benefits of refactoring. Weissgerber and Diehl (2006) found no correlation between 
refactoring and defects opened in the subsequent days. Their results show that there are 
periods where high refactoring was followed by an increase in the number of defects as 
well as phases where refactoring led to no defects, although, the latter type were more 
prevalent. Ratzinger et al. (2008) demonstrate that the number of software defects 
decreases in the preceding time period when the number of refactoring activities 
increases. Bavota et al. (2012) show that some kinds of refactoring are unlikely to be 
harmful, but certain kinds such as refactoring involving hierarchies (e.g. pull up 
method) are likely to induce defects. Kim et al. (2011) found that refactoring edits have 
a strong temporal and spatial correlation with bug fixes. In another study, Kim et al. 
(2012) discovered that refactored binary modules of Windows 7 experienced significant 
reduction in the number of inter-module dependencies and post-release defects. 

2.8 Summary of Research Challenges  
This chapter has presented software quality, software testing, software evolution and 
maintenance, software patterns, anti-patterns, and refactoring. In this section, the 
challenges that are relevant to this thesis are presented. These challenges are within the 
context of the presented topics in this chapter. We define the research challenges (RC) 
as follows: 

RC1: Metrics to identify critical software components: Several studies have focused 
on building software quality models by using software metrics as predictor variables, 
and defect counts or defect density as response variables: a comprehensive survey of 
studies can be found in (Hall et al., 2011).   One challenge is that other important defect 
metrics such as correction effort and defect severity are not included. We can relate this 
to the challenges discussed in (Fenton and Neil, 1999a; Fenton and Neil, 1999b). We 
consider the correction effort and defect severity metrics as crucial to understand the 
maintainability and reliability attributes of software systems. Another challenge is that 
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software components differ in the degree of their criticality to the system. We have not 
found any study that investigates how metrics can be used to identify such critical 
components in software. In the context of our study, criticality of defects and criticality 
of components are important concepts that we want to investigate.  

RC2: Empirical evidence of defect- and change-proneness of dependency cycles: 
Existing studies have claimed that dependency cycles can be harmful for software 
quality, e.g. (Lakos, 1996; Parnas, 1979). We need to understand the impact of 
dependency cycles on external quality metrics such as defect and change metrics. This 
understanding can help us to identify defect hotspots and guide refactoring efforts. To 
the best of our knowledge we have not found any systematic study of anti-patterns at 
the architectural level and their relationships to defect and/or change-proneness. 

RC3: Refactoring of dependency cycles: Refactoring of dependency cycles have been 
largely focused at the package granularity level (Dietrich et al., 2012; Falleri et al., 
2011; Laval and Ducasse, 2014) while there has been little focus for this activity at the 
class granularity level (Melton and Tempero, 2007c). Since class files represent 
maintenance units in systems developed with OO languages (e.g., Java and C#), it is 
important to consider refactoring at this granularity level. An approach and tool for 
refactoring dependency cycles would be important to improve the structural quality of 
the identified hotspots in software systems. 

RC4: Software Testing and Quality Assurance: Challenges related to software testing 
can be grouped into the “why”, “how”, “how much”, “what”, “where”, and “when” 
questions raised in (Bertolino, 2007). How to focus testing in the right sample of 
observation is important to reduce the possibility of software failure. In practice, it is 
impossible to achieve 100% test coverage (Roger, 2005), because quality assurance 
resources are limited and there is pressure of time-to-market. Efforts are therefore 
needed to identify specific code locations that should be focused for thorough testing. 
RC5: Software maintenance and evolution: Software grows in complexity during 
evolution. This complexity leads to a declining quality (Lehman, 1980). The main 
challenge is the “technical debt” (Brown et al., 2010) that is not paid by the software 
organization during the software life cycle. Technical debt describes a state of software 
where its future is negatively affected by the past decisions. For example, early software 
release versus maintainability. There is a need to develop approaches and tools to help 
manage technical debt during software evolution. 

RC6: Software patterns and anti-patterns: Patterns are claimed to be good solutions 
to design problems while anti-patterns are recurrent problems in software design. 
However, conflicting evidence exists as to the impact of patterns on software 
maintenance (see (Jeanmart et al., 2009; Prechelt et al., 2002)). There are also cases of 
patterns with instances of anti-patterns. A thorough empirical study of patterns with 
anti-patterns in relation to maintenance would be useful to guide software design 
decisions. 
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3 Research Context and Design 
 

 

 
 

 
 

 
 

 

This chapter presents the research context and design of this thesis. In Section 3.1, the 
research focus and questions are presented. Section 3.2 presents the software systems 
that have been used to investigate the research questions in this thesis. Section 3.3 
presents the metrics that are used in the studies. In Section 3.4, the approach of data 
collection is presented. Section 3.5 discusses research methods commonly used in 
software engineering. Section 3.6 presents the research design and lastly, Section 3.7 
presents the scope, concepts, and limitation of this thesis. 

3.1 Research Focus 
The main goal of this thesis, as stated in Section 1.2, is to Improve the Management 
of Software Evolution for Smart Grid Applications. A Smart Grid represents the 
injection of Information and Communication Technology (ICT) infrastructure to the 
electricity grid to allow for bi-directional flow of energy and information (NIST, 2010). 
A Smart Grid is a system-of-systems (SoS) where heterogeneous systems must 
interconnect and interoperate together (NIST, 2010). Continuous changes in the open-
world settings for heterogeneous systems need approaches to make them dependable 
(Bertolino et al., 2011). One key challenge of SoS is the ripple effect of change (Creel 
and Ellison, 2008). A change or failure in one system can cascade to some other 
systems in a SoS. Such effects can threaten the reliability of the SoS. Understanding 
defect/change-prone locations in individual systems of a SoS is thus a step in the right 
direction. Such knowledge can guide quality assurance and motivate for improvements 
in the different locations. 

A consistent approach taken in this thesis is to investigate whether the individual 
systems have design structures that lend themselves to modifiability and ultimately 
maintainability. To achieve this, we have quantitatively analysed a structural anti-
pattern called “dependency cycle” against maintainability and indirectly reliability. 
Maintainability and reliability are hard concepts to measure, however, it is possible to 
use proxy metrics such as defect metrics and change metrics to indirectly quantify 
maintenance and reliability. In pursuance of the research goals, we have performed an 
analysis of the defect repository and source code of a distribution management system 
of Powel AS in Trondheim.  
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This thesis focuses on the maintenance and evolution of software systems. We are 
interested to know how dependency cycles among software components affects the non-
functional requirements of software systems. In particular, we focus on maintainability 
and reliability quality attributes. We investigated this goal by performing empirical 
studies on released software systems. Figure 10 shows a summarized software 
development process model, the area of the investigation, and the contributions of this 
thesis. We show in this figure (see a - e) how an improvement program can be initiated 
by the findings from the empirical studies of released software systems as follows:  

 
Figure 10 The software development process with relationships to research 

contributions 

We can identify the locations for code restructuring through measurements of the 
structural quality of the system and analysis (a) against external quality metrics (defect 
and change frequency). The refactoring (b) could aim at improving the quality attributes 
(c) (e.g. maintainability and reliability that are focused in this thesis).  During the 
refactoring to improve the software quality (non-functional requirements), it is possible 
to introduce new design patterns and implement best design practice (d). Regression 
testing (e) would have to be performed to ensure the system’s behaviour is preserved 
(van Vliet, 2000). This iteration is possible for the entire life cycle of the software. 

Analysing the internal quality metrics against the external quality metrics (defect and 
change frequency) provide opportunities to pinpoint specific locations (components) 
that should be focused for improvement. This will reduce the probability of false 
positives and false negatives. This is the approach we have taken in this thesis to 
achieve the research goal. This is rather different from using internal quality metrics as 
the only decision variables for performing refactoring. The shortfall of the latter 
approach is that many code locations have to be improved based on the results from 
applying the metrics. However, quality assurance resources are indeed limited and in 
many cases it would be impossible to improve all the suggested area. In addition, we 
cannot really tell whether the locations we have refactored are more defect-prone or 
change-prone than the untouched ones.   
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We have discussed the two quality attributes (i.e., maintainability and reliability) in this 
thesis because we are able to quantify them using external quality metrics (defect and 
change rate) as indirect metrics. 

We have outlined and investigated two main research questions in this thesis. The 
motivation for the questions are discussed below: 

RQ1. What is the effect of dependency cycles on external quality of software 
components? 

The sub-questions to explore RQ1 are motivated as follows: 
RQ.1.1 What is the effect of using different defect metrics to identify critical 

software components? 

Defect distribution in software systems has been shown to follow the Pareto rule of 20-
80. This motivates the prioritization of components with the majority of defects for 
testing activities. Several studies have also suggested that smaller components have 
higher likelihood of defects when compared to the larger ones (Basili and Perricone, 
1984; Hatton, 1997; Moller and Paulish, 1993; Ostrand and Weyuker, 2002). These 
studies have used defect density measured as number of defects per thousand lines of 
code (LOC). It has been demonstrated that most complexity metrics (e.g. McCabe 
complexity metrics) correlate with a component’s size (Fenton and Pfleeger, 1998). It 
then means that more complex components and invariably larger components are given 
higher priority in prediction models that use defect count approach (largest-first 
prioritization).  
However, removing a large number of defects may have little effect on the reliability of 
the system, since most failures are caused by a tiny number of defects (Adams, 1984). 
This demonstrates the significance of a defect severity metric. 

The question we seek to investigate is whether there are significant variations between 
defective components and architectural hotspots identified by multiple defect measures. 
In addition, we seek to investigate whether defect metrics classify differently the 
defective components that developers consider critical in terms of their functionality to 
the system. 

RQ1.1 forms a basis for the remaining empirical studies in this thesis that explore 
component-defect analyses.  

RQ.1.2 What is the effect of dependency cycles on software defects?  

Best design practice advocates to avoid dependency cycles between software artifacts 
(Bass et al., 2003; Lakos, 1996; Martin, 2000; Parnas, 1979). Many authors (Bass et al., 
2003; Parnas, 1979) have claimed that such complex structure inhibit software quality 
(e.g. reliability testability, modifiability or reusability). Empirical evidence shows that 
dependency cycles are common among software components (Melton and Tempero, 
2007b). However, the question of how dependency cycles correlate with defects 
remains open. Since a dependency cycle is structurally complex, we hypothesize that it 
would contain the majority of defects and defect-prone components. The findings from 
this question can assist developers, maintenance engineers, and software project 
managers to effectively allocate resources during software quality assurance. 
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RQ.1.3 What is the effect of refactoring cycles on defect-proneness? 
This research question has been developed from the results of RQ1.2, to empirically 
investigate whether cycle-breaking refactoring lowers defect-proneness of components. 
The hypothesis is that transitioning a component from a dependency cycle to an out-of-
cycle structure would reduce its structural complexity and improve its testability.  Thus, 
it should result in a lowered defect-proneness. It is important to explore and understand 
whether any empirical evidence exists to support cycle refactoring in relation to defect 
proneness. 

RQ.1.4 What is the effect of dependency cycles on change rate? 
The research questions above have focused on corrective maintenance. Lientz et al. 
(1978) showed that correction efforts consume about 17.4% of the total maintenance 
effort. Van Vliet (2000) stated that correction efforts account for about a quarter (25%) 
of the total maintenance effort. We have thus dealt with a subset of normal software 
maintenance activity. However, how dependency cycles relate to other types of changes 
(perfective, preventive and adaptive) has not been explored. Our conjecture is that since 
dependency cycles have strong and complex structures, they would have potential for 
higher change propagation and ripple effects.  

We also conjecture that certain types of cycles could be more change-prone because of 
their properties. Cycles with inheritance relationships (defined by the STK metric), 
cycles that spread across a large package structure (defined by the PCT-diameter 
metric) and cycles formed by patterns (e.g. Visitor) are of particular interest. Our 
hypothesis is that it is possible to use these properties to classify “critical” or “harmless” 
cycles. 

RQ2. How to refactor dependency cycles to impact the structural quality and 
reduce the refactoring efforts?  

This research question is formulated based on the results from the previous research 
questions. The goal is to improve the structural quality of components in dependency 
cycles. Dependency cycles are detrimental to many software quality attributes such as 
modifiability, reusability, testability and reliability (Lakos, 1996; Parnas, 1979). It 
inhibits the formation of components to have manageable size and stand-alone 
properties (Melton and Tempero, 2007a). It is thus crucial to refactor those locations 
that are particularly defect and change prone. Performing a cycle breaking refactoring 
on existing systems at the class granularity level is not a trivial activity. It is therefore 
necessary to provide a decision support tool that could assist a developer or 
maintenance engineer to perform such refactoring activities. We seek to provide and 
implement approaches that could be used for cycle-breaking refactoring and at the same 
time would reduce the refactoring effort. 

3.2 Summary of Software Systems 
We have investigated 30 systems in the various studies in this thesis. These systems are 
different in functionality, age, domain, programming language, usage, and context. 
Table 3 provides a summary of the properties of the systems, and the papers where they 
have been studied and reported. One of the systems is a commercial Smart Grid 
application (with the pseudonym “CommApp”), which has been both quantitatively and 
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qualitatively studied. Twelve systems from the list are selected from the Qualitas corpus 
(Tempero et al., 2010). Using this standard dataset facilitates the replication of studies. 
The rest of the systems are selected based on common criteria such as popularity, age, 
support base, and programming language. 

3.3 Metrics and Measurement 
Software processes and products need measurements to characterize, evaluate, predict, 
and identify areas of improvements (Park et al., 1996). Naik and Tripathy (2011) stated 
three reasons for quantitative measurements of software quality: (1) Measurements 
allow an establishment of baselines for quality, (2) Measurements are a key to process 
improvement, and (3) the needs for improvement can be investigated after performing 
measurements. Similarly, Fenton and Pfleeger (1998) indicated that measurements 
make concepts more visible and as a consequence they are more understandable and 
controllable. Fenton and Pfleeger (1998) defines a measurement as: 
“the process by which numbers or symbols are assigned to attributes of entities in the 
real world in such a way as to describe them according to clearly defined rules” 
A software metric is a measurable property, which indicates the software quality criteria 
to be measured (Gillies, 1997). In this thesis, various metrics have been defined and 
employed to study software product quality with respect to reliability and 
maintainability. In the subsequent sections, the different definitions of metrics used, are 
presented and linked to the specific quality attribute they indirectly measure. 

Table 3 Properties of systems used in the thesis 
System Description Language License Papers 

CommApp An industrial Smart Grid system C# Commercial P1, P2, P3, 
P5, P7 

Eclipse Integrated development environment (IDE) Java Open P2, P4, P5 

Apache-Camel Routing and Mediation Engine Java Open P2 

Apache-
ActiveMQ 

Messaging and Enterprise Integration Pattern Server Java Open P2, P3, P4, 
P5 

Apache-Lucene Search Engine Java Open P2, P6 

Apache-CXF Service framework Java Open P5 

openPDC Smart Grid C# Open P2 

Azureus (Vuze) File Streaming tool Java Open P7 

JStock Stock market application Java Open P7 

VidCoder Ripping and video transcoding application for 
Windows 

C# Open P7 

Hibernate Object/Relational Mapper tool Java Open P6, P7 

Openproj Desktop project management application similar to 
Microsoft Project 

Java Open P7 

JXplorer Mature LDAP, LDIF and DSML client with i18n 
support 

Java Open P7 

Megamek A networked Java clone of BattleTech, a turn-based 
sci-fi boardgame for 2+ players 

Java Open P7 
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System Description Language License Papers 

Weka A collection of machine learning algorithms for 
solving real-world data mining problems 

Java Open P6, P7 

SomToolBox Open-source implementation in Java, that allows 
you to easily train self-organizing maps, and 
analyze them  

Java Open P7 

GanttProject A project scheduling application Java Open P7 

Squirrel-sql A graphical SQL client Java Open P7 

OpenRocket An Open Source model rocket simulator Java Open P7 

ermaster Eclipse plug-in to make ER diagram Java Open P7 

Logisim Educational tool for designing and simulating 
digital logic circuits 

Java Open P7 

Ant Parsers/generators/make Java Open P6 

Antlr Parsers/generators/make Java Open P6 

Argouml Diagram generator/data visualization Java Open P6 

Freecol Game Java Open P6 

Freemind Diagram generator/data visualization Java Open P6 

Jgraph Graph components Java Open P6 

Jmeter Testing tool Java Open P6 

Jung Diagram generator/data visualization Java Open P6 

Junit Testing Java Open P6 

Table 4 Defect metrics 
Metrics Definition Measurement 

scale 
Papers 

Defect counts Number of post release defects recorded for a component  Interval P1, P2, 
P3, P4, 
P5 

Defect severity The severity of recorded defect ranked on a scale 
(critical/blocker, high, medium or low) 

Ordinal P1, P3 

Defect 
correction 
effort 

The absolute number of hours for fixing a post-release 
defect 

Interval P1 

Defect density Number of defects per lines of code Interval P1, P2 

Defect 
probability 

The ratio of defective component to all components Ratio P2 

3.3.1 Defect metrics as proxy for reliability 
Measuring actual reliability (e.g., Mean-Time-To-Failure) is not the major focus of this 
thesis. It is therefore not possible to conclude on the actual impact of the defect metrics 
we have used with respect to the reliability of the systems. As discussed in Section 1.1, 
a study by Adams (1984) shows that most of the latent defects lead to very few failures 
in practice, while the vast majority of observed failures are caused by a relatively tiny 
number of defects. In this sense, it is important to consider defect metrics that could be 
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closely related to reliability. In Table 4, five defect metrics used in this study are 
defined and described. 

3.3.2 Change as a proxy for maintainability 
According to IEEE 610.12, maintenance is “the process of modifying a software system 
or component after delivery to correct faults, improve performance or other attributes, 
or adapt to a changed environment” (Radatz et al., 1990). Following this definition, we 
can use change (frequency of modifications) to only approximate maintainability. At a 
lower granularity level, the change metric has been defined as a probability measure for 
change in a component. A component may refer to a class or a package in object-
oriented system. The probability of change for a component is defined as (Oyetoyan et 
al., 2015b): 

 “Given a program P, let C be the set of classes in P, and V be the set of versions of 
P such that for each version v ∈ V, a successor version succ(v) exists. For a given set of 
classes S ⊆ C and a version v ∈ V we use changed(S,v) to denote the set of classes in S 
that have changed from v to succ(v). The change probability of a class in S is then 
defined as a function pchange : 2C × V → [0, 1] defined as:” 

𝑃!!!"#$ 𝑆, 𝑣 =
𝑐ℎ𝑎𝑛𝑔𝑒𝑑(𝑆, 𝑣)

𝑆  

Table 5 Cyclic dependency Metrics 
Metric Definition Measurement 

scale 
Papers 

in-SCC A component is in a strongly connected relationship to 
other components (circular dependency) 

Nominal P2, P3, P4, 
P5, P6, P7 

near-SCC A component (not in-SCC) but directly depends on in-
SCC component (Oyetoyan et al., 2013b; Oyetoyan et al., 
2015b) 

Nominal P2, P3, P4, 
P6 

out-of-
SCC 

A component that is not in-SCC and not near-SCC Nominal P2, P3, P5, 
P6 

isSTK An SCC that have a sub-type knowledge (Dietrich et al., 
2010) 

Nominal P6 

isVisitor An SCC that is formed by Visitor pattern Nominal P6 

PCT-
Diameter 

The normalized diameter of package tree for an SCC 
(Falleri et al., 2011; Oyetoyan et al., 2015b) 

Interval P6 

CRSS The set of classes that a class can reach transitively 
(Melton and Tempero, 2007a) 

Interval P5, P7 

IRCRSS The difference between the CRSS of a component and 
CRSS of its interface normalized by the CRSS of the 
component (Oyetoyan et al., 2015a) 

Interval P7 
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3.3.3 Cyclic metrics as proxy for maintainability 
Modularity is a sub-characteristic of maintainability. A system where modules are in 
circular dependencies violate the acyclic dependency principle (Martin, 2000) and 
would be difficult to maintain (Bass et al., 2003). Table 5 describes the metrics that 
have been used and defined in connection to the studies presented in this thesis. 

3.4 Data collection for Empirical Studies 
The studies in this thesis have used data from configuration management systems, 
defect tracking systems (DTS), program source files, and binary files. Figure 11 shows 
the different sources of data for this study and their mapping. We have extracted 
dependencies using both byte code analysis (binary files) and text analysis (for source 
files). From these dependencies, a simple graph model of components (classes or 
packages) and their relationships is built. The higher level of abstraction (e.g. packages) 
is computed by aggregating the dependencies at the class level. Strongly connected 
components (SCCs) are then computed based on Tarjan’s algorithm, which is suitable 
for this purpose and completes in linear time (Tarjan, 1972). 

Defect data is collected from DTS and mapped to the source files that are changed 
because of corrective maintenance action. This mapping is usually done through a 
defectID logged against the changed class. The defectID is used as a key to map the 
class files to other defect metrics (e.g. defect severity and correction effort). Indirect 
defect metrics such as the defect density are computed from the aggregated defect count 
for each class by dividing with the lines of code (LOC).  

The change data comes from differing two releases of a class using byte code analysis. 
Essentially, the members of a class in release i are compared to its members in release 
i+1 to detect a change (e.g., change in the return type or parameters of a method).  
The members considered are those that are API elements (public, protected or package-
private) and could be methods, fields or constructors. These elements are the source 
through which change can ripple through the system. 

In the final step, the graph model and the defect or change data are mapped. The data is 
presented for analysis. The kind of analysis to be performed depends on the 
measurement scale of the dependent and independent variables (Fenton and Pfleeger, 
1998). We have used both the Wilcoxon rank sum and Spearman/Pearson correlation 
tests in R statistical package for our analyses. 

3.5 Research Methods in Software Engineering 
Empirical research follows three types of research paradigms; the qualitative, 
quantitative and mixed-methods research (Robson, 2011; Wohlin et al., 2003).  
Qualitative research is about studying objects in their natural setting (Wohlin et al., 
2003). The goal of using this method is to explore and understand the meaning 
individuals or groups ascribe to social or human problems (Creswell, 2013). 
Quantitative research is concerned with quantifying a relationship between variables or 
comparing groups (Creswell, 2013; Robson, 2011; Wohlin et al., 2003). The variables 
are measurable and data generated is statistically analysed (Creswell, 2013). Mixed-
methods research combines both quantitative and qualitative methods (Robson, 2011). 
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Figure 11 Data collection from different repositories 

The approach integrates both qualitative and quantitative data to better understand the 
research problem (Creswell, 2013). It allows for triangulating results to enhance the 
validity of findings (Robson, 2011). 
Empirical studies can be exploratory (i.e., investigating parameters), prescriptive (i.e. 
finding distributions of certain characteristics), or explanatory (investigating why 
certain phenomena occur). Different strategies can be used in an empirical study; 
experiment, case study, survey, ethnography, or action research (Easterbrook et al., 
2008). We briefly discuss these strategies. In addition, we discuss another method; 
design science that is popular in information science but is as well applied in software 
engineering. 

Experiment: Experiment is a rigorous, controlled investigation where one or more 
independent variables are manipulated to measure their effects on one or more 
dependent variables (Easterbrook et al., 2008; Fenton and Pfleeger, 1998). A controlled 
experiment is useful to determine cause-effect relationship between variables. 
Experiments are normally performed in the laboratory and are thus referred as research-
in-the-small (Fenton and Pfleeger, 1998; Wohlin et al., 2003). 

Case study: A case study is used to investigate how and why certain phenomena occur 
and it is sometimes referred to as research-in-the-typical (Easterbrook et al., 2008; 
Fenton and Pfleeger, 1998). In a case study research, key factors that may affect an 
outcome of an activity are identified; then the inputs, constraints, resources and outputs 
of the activity are documented (Fenton and Pfleeger, 1998). A case study is an 
observational study in contrast to an experiment that is a controlled study. It is usually 
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aimed at tracking a specific attribute or establishing relationships between different 
attributes (Wohlin et al., 2003). 
Survey: A survey is referred as a research-in-the-large and it is often an investigation 
performed in retrospect (Wohlin et al., 2003). For example, it can be used to investigate 
the impact of a tool that has been in use for a while. A survey uses questionnaires or 
interviews as instruments to collect qualitative or quantitative data. In a survey, a 
representative sample must be drawn from a well-defined population (Easterbrook et 
al., 2008). The results are analysed to derive descriptive and explanatory conclusions 
(Wohlin et al., 2003) and can be generalized to the population (Easterbrook et al., 
2008). 
Ethnography: (Robson, 2011) defines ethnography as “an approach to the description 
and understanding of the life and customs of people living in various culture”. For 
software engineering, ethnography can be useful to understand how technical 
communities build a culture of practices and communication strategies that help them to 
perform technical jobs collaboratively (Easterbrook et al., 2008). Ethnographic studies 
are typically long term studies in their natural settings (Robson, 2011). Central to 
ethnographic study is a research question that is focused on the cultural tradition of the 
community and accessibility to the community (Easterbrook et al., 2008). 
Action research: In action research, researchers are interested to solve a real-world 
problem while simultaneously studying the experience (Easterbrook et al., 2008). 
Improvement and involvement are central goals of action research (Robson, 2011). 
Action researchers get involved in the studied situation with the central goal of 
improving it (Easterbrook et al., 2008; Robson, 2011). Central to action research is the 
collaboration between the researchers and the problem owner who must be willing to 
engage in an effort to solve an identified problem (Easterbrook et al., 2008; Robson, 
2011). 
Design science: Design science is an engineering approach to creating and evaluating 
software artefacts (Peffers et al., 2007). The artefact may extend the knowledge base or 
apply existing knowledge in new and innovative ways (Hevner et al., 2004). Design 
science research methodology (DSRM) is made up of six activities (Peffers et al., 
2007), these are: (1) problem identification and motivation, (2) defining the objectives 
of a solution, (3) design and development, (4) demonstration, (5) evaluation, and (6) 
communication. The research must produce an artefact to address a problem. The utility, 
quality and efficacy of the artefact must then be rigorously evaluated. Its contribution 
should be verifiable and it must be effectively communicated to the right audience 
(Hevner et al., 2004). 

3.6 Research Design 
The study was divided into four studies as shown in Figure 3 in Section 1.3. Table 6 
provides the summary of the research design. 
Study 1: In this study, the impact of using different defect metrics on software 
components is investigated. The study uses both case study and survey methodologies. 
It forms a background for the remaining studies that focused on defect analysis of 
software components. 
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Study 2: explores dependency cycles among software components and their relation to 
defects and change. The data comes from both defect tracking systems, configuration 
management systems, and the source/byte code. A case study methodology is used. 
Study 3: investigates the effect that refactoring dependency cycles have on the defect-
proneness of the components. A case study methodology is used. 
Study 4: The last study has used design science as an approach to improve the 
refactoring of components in dependency cycles and evaluated using case study and 
interview. 

3.6.1 S1: Empirical investigation of using different defect metrics to 
classify critical components  

The goal for Study 1 was to investigate identification patterns of multiple different 
metrics to identify critical components. Study 1 addressed the research question RQ1-
1. We investigated four different defect metrics using the post release defects of an 

Table 6 Summary of research design 
Study Study 

description 
Research 
methods 

RQ
1-1 

RQ
1-2 

RQ
1-3 

RQ
1-4 

RQ
2 

Paper Contri- 
bution 

S1 Empirical 
investigation of 
using multiple 
defect metrics 
to classify 
critical 
components 

Case study & 
Survey 
(Quantitative & 
Qualitative)  

X     P1 C1 

S2  Investigation of 
defect and 
change 
proneness of 
cyclically 
dependent 
components 

Case study 
(Quantitative) 

 X   X   P2,  
P3,  
P6 

C2-1, C2-
2, C3-1 

S3  Investigating 
the effect that 
refactoring 
dependency 
cycles have on 
defects 

Case study 
(Quantitative) 

  X   P4,  
P5 

C2-1 

S4 Improving the 
structural 
quality of 
cyclically 
dependent 
components 
using tools and 
metrics 

Design Science, 
Case study & 
Survey 
(Quantitative&
Qualitative) 

    X P7 C3 
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industrial Smart Grid system. The four defect metrics are defect counts, defect density, 
defect severity, and defect correction effort. These metrics were quantified on software 
components by using four related measures. These measures are:  

1) Defect-Prone Components (DPC), classified as the top 25% of components with the 
highest number of defects 

2) Defect-Dense Components (DDC), classified as the top 25% of components with 
the highest defect density 

3) Severe-Defective Component (SDC), classified as the top 25% of components with 
the highest number of critical defects 

4) Hard-to-fix Defective Components (HFC), classified as the top 25% of components 
with the highest correction effort 

We have used a case study to answer the research question since the data we sought 
could be gathered from the system’s repositories. In addition to a case study method, we 
have used survey to collect the data about the criticality of the components to the system 
from the developers. We did this by asking the developers to rank a set of identified 
components by the metrics using a defined scale. We then quantitatively analysed the 
results. 

 
Figure 12 Components in and near dependency cycles 

3.6.2 S2: Investigation of defect and change proneness of cyclically 
dependent components  

The goal of Study 2 was to assess the impact of dependency cycles on the defect 
proneness and change proneness of components. Study 2 addressed the research 
questions RQ1-2 and RQ1-4. The study is divided into three sub studies. Since the data 
needed for these studies could be mined from the various systems’ repositories, we have 
therefore used a case study methodology. We selected six systems with different 
properties in the first sub-study and two out of the six systems for the second sub-study. 
Furthermore, we mined the defect data from the defect tracking system and associate 
them against the components that are changed in the subversion repository (see Section 
3.4 for details). We defined a set of metrics to classify components into three groups, 
“in-SCC”, “near-SCC” and “out-of-SCC”. Where “near-SCC” refer to components that 
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Fig. 4. Neighborhood to an SCC

of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same
neighbours. For instance, figure 4 shows an example where
two cycles scc1 and scc2 share the same outward neighbour.
In order to avoid assigning a class to multiple cycles, we use
the following set of rules when a class is near multiple cycles:

1) If the class changes, prioritize cycles with change.
If there are multiple cycles that change, pick one
randomly.

2) If the class does not change, prioritize cycles without
change. If there are multiple cycles that change, pick
one randomly.

3) Otherwise randomly select a cycle.

E. Statistical analysis

1) Analysis Method: The input data for the statistical
analysis are provided by the three functions pchange, stk
and pct that associate SCCs version pairs with information
representing change probability, STK classifications and PCT
values.

We want to investigate (1) the change proneness of SCCs
against non-SCCs, (2) the change proneness of SCCs with
STK over SCCs without STK and (3) whether the pct
diameters of SCCs are correlated with change proneness.

a) Analyzing Change Proneness of SCCs vs. Non SCCs:
We analyse two data series for the two sets of classes:
the classes in SCCs, and the classes not in SCCs. The
hypothesis here is that classes in SCC are more change-
prone and they propagate change more to their neighbourhoods
because of their structural complexity. It is easy to expand
this investigation to include neighbourhoods of an SCC, by
also considering neighbours (in-neighbours out-neighbours) as
elements of SCCs as described above.

b) Analyzing Change Proneness of STK vs Non-STK :
Here we analyse two data series: the classes within STKs,
and the classes in non-STK SCCs. Note that we do not
directly compare STK instances with non-SCCs, however, this
relationship can be inferred by combining the results of this
and the previous experiment.

c) Analysing the Correlation between PCT Diameter
and Change Proneness: To answer this question, we use a
slightly different method. The input data are not just two
data series, but consist that two matrices where we map
pairs consisting of versions and individual SCCs to a change
probability using the formula defined above, and to the PCT
diameter value, respectively.

2) Testing of the Hypotheses: We have employed two
different statistical analysis methods to test our hypotheses.
The choice of either one depends on the measurement type of
the variables under investigation. To analyse the correlation
between two data series (RQ1 and RQ2), we used a non-
parametric test. To test the hypotheses in this category, the
data is first tested for normality using the Shapiro test. It
turned out that each dataset deviates strongly from normality.
Subsequently, we use a non-parametric test (Wilcoxon rank-
sum)[11] for analysis.

For interval variables used in the experiment for RQ3, we
have used Pearson and Spearman correlation.

3) Measuring interactions among experimental factors: It
is the goal to also understand if there are interactions among
the two factors being investigated in this study. We suspect
that classes with high pct diameter could also be prone to
STK anti-pattern. It is thus appropriate to treat the two factors
as a competing treatments and use one factor as a blocking
factor in the experiment [11]. A nested design is chosen where
the factor STK is selected as a blocking factor, since it is
nominal in its scale whereas PCT-Diameter is interval. Next,
the sccs are grouped into hasSTK -True or False groups and
a statistical analysis is performed between PCT-Diameter and
change-probability (dependent variable) in each group.

V. RESULTS

A. System Properties

Table I shows the average values for several systems prop-
erties while table II reports the (average) percentage of classes
in and near cycles. Averages are computed over all versions
of the respective program in the data set. The distribution of
classes within SCC range from 10.3% to 80.7%. For some of
the systems, a surprisingly high number of classes is within
cycles, including freecol (80.7%), jgraph (77%), hibernate
(62.8%) and freemind (55.3%). Two systems, jgraph and
freecol, have relatively large pct-diameter values. Freemind has
the largest percentage of changed classes (53.6%) as shown in
pchange column, while the rest of the systems have change
probabilities between 10.8% (jung) to 35.3% (freecol).

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size
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are not in cycles but directly depend on components in cycles (see Section 3.3.3 and 
Figure 12). 
In the third sub-study, we chose twelve systems from a standard curated dataset 
(Qualitas Corpus, see Section 3.2 for details). We then collect the change frequency 
data by extracting changed meta-data between two successive releases. We defined 
three new metrics (isSTK, isVisitor and PCT-diameter) in addition to the metrics in the 
first two sub-studies, to classify various SCCs.  

Lastly, we apply Wilcoxon rank sum test, Spearman, and Pearson correlation test for the 
analyses.  

 

 
Figure 13 A simple example of transitions of in-cycle components between 

releases 

3.6.3 S3: Investigating the effect that refactoring dependency cycles 
have on defects 

The goal of Study 3 was to empirically investigate whether refactoring components in 
dependency cycles could reduce their defect-proneness. Study 3 addressed the research 
question RQ1-3. We divided the study into two sub studies. The first part studied the 
correlation between graph properties of a cycle (such as its diameter, density, vertex 
size and edge size) and the number of defect-prone components in each cycle graph. 
The second part studied the transition and evolution patterns of cyclically dependent 
components. We chose a case study methodology in order to answer the research 
questions in both studies. 
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In the first sub-study, we defined two-transition states as in-cycle and out-of-cycle and 
formed a Cartesian product between the two states as shown in Figure 13. The resulting 
four states made it possible to investigate whether: 
1. Components in dependency cycles persist as defective in the “in-cycle” state more 

than components that persist in the out-of-cycle state 
2. There evidence of cycle-breaking refactoring between releases 
3. The transition of defective components from in-cycle to out-of-cycle reduce the 

defect-proneness of such components 
4. The coupling or size complexity of components that transition as defective between 

in-cycle states increase at a significantly higher rate than those that transition 
between out-of-cycle states 

We applied Spearman and Pearson correlation tests to determine the relationship 
between the cycle graph properties and defects in the first sub-study. For second sub-
study, we applied proportion and t-tests. 

3.6.4 S4: Improving the structural quality of cyclically dependent 
components using tools and metrics 

The goal of Study 4 was to improve the refactoring of classes in dependency cycles 
while reducing refactoring effort. Study 4 addressed the research question RQ2. We 
implemented a metric (IRCRSS) to identify candidates for cycle breaking refactoring 
(see Section 3.3.3). This is computed by finding the reduction between the CRSS value 
of a candidate and the CRSS of its abstraction (interfaces or abstract classes). This study 
aimed to improve an existing metric in addition to developing a refactoring tool. 
Therefore, a design science methodology was selected. In addition, we used case study 
and interview methods to evaluate the metric and tool. We investigated the following: 
1. Whether the system restructuring is better when IRCRSS reduction exists and it is 

used.  
2. Whether tuning with IRCRSS metric would produce refactoring fitness that is better 

than candidates’ selection without tuning with IRCRSS. 
3. Whether tuning with IRCRSS metric always improve the software structure Is it a 

common property that tuning with IRCRSS results to better fitness in every system 
or not? We want to find out empirically whether many applications exhibit this 
opportunity. 

4. Whether using IRCRSS metric would reduce the restructuring effort  
We then evaluated the improved approach on fifteen applications and used statistical 
test to determine the significance of the improvements. Finally, we performed a 
qualitative evaluation of the tool and approach. 

3.7 Scope, Concepts and Limitations 
Type of systems: In this thesis, object-oriented systems have been used for the 
analyses. Specifically, the systems are written with either Java or C# programming 
languages as shown in Table 3. This can be a limitation regarding the application of the 
findings in other programming language domain. 
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Size measure: There are two common approaches to define size or length of a source 
code; (1) as the number of lines of code (LOC) or (2) as a measure of functionality in 
software (Fenton and Pfleeger, 1998). LOC is more commonly used and can be defined 
as (Fenton and Pfleeger, 1998); non-commented source statements (NCLOC) or a 
combination of NCLOC and comment lines (CLOC). The studies in this thesis have 
used non-commented lines of code (NCLOC) as the size measure. Critics of LOC, e.g. 
(Jones, 1985) have argued that it is technology-dependent and therefore difficult to use 
for comparing software across different programming languages. The systems we have 
investigated are written in object-oriented languages (Java and C#). Both languages 
share similar properties and therefore simplify the possibility to use LOC as a size 
measure for the systems. 
Type and phase of defects: The analyses that have been performed in this thesis are 
based on post-release defects. These are defects reported during the operational period 
of the software and are different from pre-release defects that are captured during initial 
software development. The various types of defect, for instance, based on Orthogonal 
Defect Classification (ODC) (Chillarege et al., 1992), are not the focus of this study. 
Therefore, the defect metrics are used as described in Table 4. It will be an interesting 
future study to use the ODC for investigating defect-proneness in dependency cycles. 
Type of analysis: The studies in this thesis are based on static coupling measurements 
and not dynamic coupling measurements (Arisholm et al., 2004). It is thus possible that 
actual coupling among classes at runtime are not completely captured. This imprecision 
can occur due to polymorphism, dynamic binding and dead code in the software. For 
instance, the use of reflection in Java cannot be detected during static analysis as the 
coupling occurs at runtime. However, static code analysis has been found to be 
practically useful and less expensive to collect (Basili et al., 1996; Briand et al., 1998; 
Chidamber and Kemerer, 1994; Zimmerman et al., 2011). Additionally, static coupling 
measures reflects to a very high degree the coupling among classes at runtime. 
Therefore, the imprecision cannot bias the results obtained in the studies. 
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4 Results 
 

 
 

 
 

 
 

 

This chapter summarizes the results obtained in this thesis. The results are synthesized 
with the research questions, the papers containing the results and the main contribution 
from the research.  

Overview of Results and Contributions 
A summary of the studies, the research questions, its contributions and the papers for 
each study is given in Table 7. In Study 2, three sub-studies are reported. Similarly, in 
Study 3, two sub-studies are presented. 

4.1 Empirical Investigation of different Defect Metrics to 
classify Critical Components 

In Study 1, we evaluated the usefulness of several defect measures such as the number 
of defects, defect density, defect correction effort, and severity of defect, to identify 
defect-prone components that are critical to the system. The research question addressed 
in this study is: 

RQ1-1: What is the effect of using different defect metrics to identify critical software 
components? This is answered by paper P1 and led to contribution C1-1, i.e., 
“Identification of the usefulness of multiple defect metrics to classify critical software 
components”.  

The study aims to find out whether there are significant variations between the different 
defect measures to identify defect-prone components and architectural hotspots. We 
analysed the post-release data of an industrial Smart Grid application with a well-
maintained defect tracking system. Using the Pareto principle, we identify and compare 
defect-prone and hotspots components based on four defect metrics. Furthermore, we 
validated the quantitative results against qualitative data from the developers. The 
results from the study show that at the top 25% of the measures: (1) significant 
variations exist between the defective components identified by the different defect 
metrics and that some of the components persist as defective across releases. (2) The top 
defective components based on number of defects could only identify about 40% of 
critical components in this system. (3) Other defect metrics identify about 30% 
additional critical components and (4) by considering the pairwise intersection of the 
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Table 7 Studies and their relation to research questions, methods, and 
contributions 

Study S1 S2 S3 S4 

Research 
Questions 

RQ1 RQ1-2, RQ1-4 RQ1-3 RQ2 

Papers P1 P2, P3, and P6 P4, P5 P7 

Contributions C1. Identified 
the usefulness 
of using 
different defect 
metrics to 
classify critical 
software 
components 
and the need to 
incorporate 
different defect 
metrics during 
defect analysis 
of software 
components 

C2: (1) Observed 
a higher defect-
proneness for 
components in 
dependency 
cycles and near 
cycles. (2) 
Observed a 
significant change 
impact for 
components 
in/near 
dependency 
cycles 

C3. Added new 
metrics to 
understand cycle 
neighbourhoods 
and to improve 
the refactoring of 
cyclically 
dependent 
components  

C2: (1) Observed a 
strong correlation 
between the size of 
a cycle graph 
(nodes and edges) 
and defect-prone 
components. (2) 
Observed a higher 
defect-proneness 
for components 
that transition 
between 
dependency cycles 
than those that 
transition between 
out-of-cycles. 
Observed no 
systematic cycle-
breaking 
refactoring 
between releases 

C3: (1) Inclusion 
of new metric that 
improved the 
refactoring of 
cyclically 
dependent 
components and 
reduced 
refactoring efforts 
over previous 
approach. (2) 
Constructed and 
validated a cycle 
breaking decision 
support system for 
refactoring 
cyclically 
connected 
components 

Area of 
contribution 
to software 
quality 

Reliability Reliability & 
Maintainability 

Reliability & 
Maintainability 

Maintainability 

Research 
Methods 

 Case study & 
Survey 
(Quantitative 
& Qualitative) 

Case study 
(Quantitative) 

Case study 
(Quantitative) 

Design Science, 
Case study & 
Survey 

defect metrics, additional quality challenges of a component could be identified. 
Critical defects spread across components in systems: Defect distribution in systems 
has been shown to follow the Pareto rule of 20-80 where a few components account for 
the majority of the defects in the systems. However, Figure 14 shows the percentage of 
defect-prone components with critical defects when ordered by defect counts. It shows 
that critical defects spread across all the components and using the 20-80 rule for 
prioritizing testing could be a major limitation as many defect-prone components with 
critical defects might be missed. 
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Critical components and defect-proneness: It is observed by analysing several defect 
metrics and grouping them against the rankings by developers that:  
1. Critical components in a system are sometimes missed during testing when quality 

assurance (QA) is focused on a percentage of the components. The criticality of 
component to a system is determined by the role such component plays in the 
system and to other systems (e.g. a connector may be a critical component). 
Unfortunately, QA resources are limited; therefore, it is often impossible to 
thoroughly test every component in a system. 

2. The two metrics; defect severity and defect correction effort identified additional 
components that were ranked critical by developers and these were neither 
identified by the defect count nor the defect density metrics. 

3. Using multiple defect metrics can provide more insight about critical and defective 
components and guide the allocation of resources for testing. For example, by 
finding the pairwise intersections between the set of components identified by the 
different defect metrics, additional quality challenges of components are exposed. It 
will, however, require that developers exhibit a disciplined approach to recording 
defect data and that the development organization take advantage of the data for 
improvement purposes. 

Largest vs. smallest first prioritization approach: Proponents of “largest-first 
prioritization” typically focus testing efforts to components with the highest number of 
defects. On the other hand, “smallest-first prioritization” proponents focus testing 
efforts to components with the highest defect density. Interestingly, findings showed 
both approaches to miss a significant number of defective components that are ranked 
critical by the developers. 

 
Figure 14 % of DPC with critical defects identified at the top k% of the class-

files DPC over six releases (Oyetoyan et al., 2013a) 

Contribution: The findings in S1 exposed the usefulness and need to include different 
defect metrics when performing defect analysis of software components. Since quality 
assurance effort is limited, we have proposed including several defect metrics to 
identify significant number of critical components during defects analysis and to 
discover additional quality challenges of defective components. 
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4.2 Investigation of Defect and Change Proneness of Cyclically 
Dependent Components  

In Study 2, we investigated the relationships between cyclically dependent components 
and (1) defects, and (2) change rates. The research questions addressed in Study 2 were: 

RQ1-2: What is the effect of dependency cycles on software defect? The results are 
reported in papers P2 and P3 and presented in sections 4.3.1 and 4.3.2 respectively. 

RQ1-4: What is the effect of dependency cycles on change rate? The results are 
reported in paper P6 and presented in Section 4.3.3. 

Study 2 supports the main contributions stated in C2 and partly C3, i.e.,  
C2.1: Identification of dependency cycles and neighborhood as defect hotspots in 
software systems 
C2.2: Better understanding of the change impact of dependency cycles 

C3.1: Added metrics to understand the complexity of components and improve the 
refactoring of cyclically dependent components 

4.2.1 Empirical evidence of dependency cycles as defect hotspots in 
software components 

An investigation of the correlation between cycle components and defects was carried 
out. This is explored by using cycle metrics to mine and classify software components 
into two groups - the cyclic and the non-cyclic ones. Next, we have performed an 
empirical study of six software applications. Using standard statistical tests on four 
different hypotheses, we have determined the significance of the defect profiles of both 
groups. 

The results show that: 
1. Components in and near dependency cycles have higher likelihood of defect-

proneness than those not in cyclic relationships. 
2. The higher number of defective components is concentrated in components in and 

near dependency cycles. 
3. Defective components in and near dependency cycles account for the clear majority 

of defects in the systems investigated. 
4. The defect density of components in and near dependency cycles is sometimes higher 

than those in non-cyclic relationships. 
Dependency cycles and defect counts: We have identified that a clear majority of 
defects and defective components are contained within the cyclically dependent 
components and their direct neighbourhood. This follows that the majority of the 
components that account for most of the defects are concentrated in dependency cycles. 
We found this to be interesting in the discussion of the “20-80” defect distribution rule 
in software systems (discussed in Study 1). It presupposes then that the majority of the 
“20%” components are in dependency cycles.  Some cycles are also found to have large 
components and many incoming references (dependencies) in comparison to others. An 
example concerns utility components that are largely referenced because they provide 
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services to other components. In certain systems, they are found to be a major hub for 
large dependency cycles. 
Dependency cycles and defect density: Components in dependency cycles and the 
immediate neighbourhood showed lower defect densities in some systems as against 
those not in cycles. We observed that components not in dependency cycles have 
smaller size and thus higher defect densities. This is interesting in relation to the 
previous discussions about “smallest-first prioritization”. The findings in S1 confirmed 
that defect density metric for “classes” could only identify “average” and “minor” 
components in the studied system, whereas, other metrics could identify largely, 
“critical” and “major” components of the system. It reinforced the fact that dependency 
cycles and its neighbourhood accounted for very complex components in the systems 
studied and should be focused for refactoring and testing. 

4.2.2 Empirical evidence of the criticality of defects in cyclic 
dependent components 

We investigate the criticality of defects in cyclically dependent components. Removing 
a large number of defects may have trivial effect on system reliability. The most number 
of latent defects lead to very rare failure in practice, while the vast majority of observed 
failures are caused by a relatively tiny number of defects. This shows that it is not the 
number of defects, rather their severity that matters. Thus, we are compelled to find out 
if this majority of defects and defect-prone components in cyclically related components 
are also the majority in both critical defects and severe defective components.   

In the two applications that are empirically investigated, the main findings are that 
cyclically related components and their neighborhood components account for almost 
all of the critical defects and defect-prone components affected by these critical defects.  
Dependency cycles and critical defect: The vast majority of critical defects that could 
result into a system failure and the components affected by the defects are concentrated 
in cycles and the immediate cycle neighbourhood. Most of the critical defects are 
associated with the system’s reliability and are therefore very important. Defects mined 
in this category are for example; “Database running at 100% CPU and “Network 
bridges can deadlock when memory limit exceeded”. We found that approximately 50% 
of the in-cycle and neighbourhood components in the systems investigated accounted 
for almost all of the critical defects in the systems. It is thus more efficient to focus 
testing effort to about half of the components than all of the components. 
Dependency cycles and neighbourhood components: We have proposed a metric 
termed “depend-on-cycle” to show the complexity of components that depend on other 
in-cycle components. The results we have obtained showed that these components share 
similar complexity as those components in cycles and are therefore of specific interest.  
In summary, the case studies showed results that displayed a correlation between in-
cycle/near-cycle components and defects. We thus proposed a refactoring of the 
components in dependency cycles and hypothesized that such refactoring can reduce the 
defect-proneness of the components “in” and “near” cycles over time. 
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4.2.3 Empirical study of dependency cycles and change rate 
Two key issues are open with respect to the pervasiveness of cycles among software 
components. (1) It is probable that components in cycles incur maintenance penalty and 
(2) It could suggest that not all cycles are bad. Recent studies have proposed new 
heuristics and approaches to distinguish between “bad” and “harmless” cycles. In this 
study, we have investigated (1) whether classes in cycles are generally change-prone 
more than those not in cycles (2) whether cycles that have high diameters within their 
package containment tree are more change prone and (3) whether cycles that contain 
subtype knowledge in their structure are more change-prone.  
We find that (1) the presence of cycles can have a significant impact on the change 
proneness of the classes near these cycles and (2) neither subtype knowledge nor the 
location of the cycle within the package containment tree are suitable criteria to 
distinguish between critical and harmless cycles. 
Dependency cycles and change rate: We have found that dependency cycles have big 
impact on the change proneness of their direct neighbourhood. However, in the majority 
of the systems we investigated, components in dependency cycles undergo less change 
than those not in cycles. One explanation for this observation could be that certain 
utility components that are heavily referenced and turned back to become a major hub 
for big cycles. An example that fits this explanation is the case where abstraction is 
combined with the Singleton design pattern (Gamma et al. 1994).  Components that are 
heavily reused have a high responsibility and therefore tend to be more stable.  
However, components around the cycles (i.e. depend-on-cycle components) are 
unstable. In relation to our previous studies that used only defect data, we found 
consistency with the impact of cycles on the neighbourhood components. However, 
there are differences with the results we obtained from the studies that investigated 
cycles and defects. Cycles tend to be more correlated to defects (corrective 
maintenance) in the majority of the applications than the remaining types of change 
(perfective, preventive and adaptive). Replicated studies would be useful to consolidate 
the findings in these studies. 
Harmless and critical cycles: We attempted to distinguish between “critical” and 
“harmless” cycles by using certain cycle properties and heuristics. We found that certain 
cycles (e.g. cycles formed by the use of the Visitor pattern) may be stable. We call this 
inadvertent cycles formed as a result of limitations in technology. In the case of Visitor, 
this pattern is chosen to overcome the lack of support for multiple dispatch in Java 
(Muschevici et al., 2008). For other cycle properties investigated, such as those with 
subtype knowledge (STK) or high PCT-diameters, there was no difference in their 
change-proneness to the cycles without these properties. In particular, neither STK nor 
PCT-diameter is useful to classify “bad” or “harmless” cycles. We thus propose a study 
of a trade-offs between patterns and anti-patterns. 
Contribution: One main contribution of Study 2 was the identification of components 
in and near dependency cycles as hotspots for most defects and critical defects. Another 
contribution was the understanding of the impact of cycle neighbourhood on change 
rate. Lastly, there was better understanding about whether certain cycle properties could 
be used to classify harmless or critical cycles by considering their change rates. 
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4.3 Investigating the effect that Refactoring Dependency 
Cycles have on Defects  

The results from Study 2 indicate that components with cyclic relationships are 
responsible for the largest number and severity of defects and defect-prone components. 
Therefore, the goal in Study 3 was to investigate the variables within cyclic dependency 
graphs that correlate with number of defect-prone components. Furthermore, we wanted 
to investigate whether there are systematic cycle-breaking refactoring between releases, 
and whether the transitions of components between dependency cycles to out-of-cycle 
states, have effect on their defect-proneness. The research question investigated in 
Study 3 is: 
RQ1-3: What is the effect of refactoring cycles on defect-proneness? The results are 
reported in papers P4 and P5 and presented in sections 4.4.1 and 4.4.2 respectively. 
The study supports the main contribution C2-1: Identification of dependency cycles and 
neighbourhood as defect hotspots in software systems 

4.3.1 Empirical investigation of whether refactoring cyclic dependent 
components can reduce defect-proneness 

We have examined the relationships between the size and distance measures of cyclic 
dependency graphs and defect-prone components. The goal was to determine variables 
within dependency cycle structures that could be the focus for refactoring activity.  
Results demonstrated that the size of the cyclic graphs consistently correlates more with 
the defect-proneness of components in these systems than other measures. This implies 
that adding new components to and/or creating new dependencies within an existing 
cyclic dependency structures are stronger in increasing the likelihood of defect-
proneness. Since causality is evaluated, at least initially with data that describe 
correlation, we could hypothesize that refactoring (breaking) cyclic dependencies can 
reduce defect-proneness of components.  

Size of cycle and defective components: We observed that the size of a cycle correlate 
strongly with the number of defect-prone components. Increasing the number of 
components in cycles or forming new dependencies within cycles correlates with an 
increased number of defect-prone components. 

4.3.2 Empirical investigation of defect patterns of components in 
dependency cycles during software evolution 

We investigated the defect-proneness patterns of cyclically connected components vs. 
non- cyclic ones when they transition across software releases. In addition, we 
investigated whether cycle-breaking refactoring are performed between software 
releases and whether they have impact on the defect-proneness of affected components. 
The study also examined the coupling and size complexity of the components to 
determine their effect on the components defect-proneness during transition. 

The study found that most movements of classes occurred in the same state. For 
instance, the transitions between releases are mostly from “in-cycle” to “in-cycle” or 
from “out-of-cycle” to “out-of-cycle”. In other words, we found no evidence of any 
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systematic “cycle-breaking” refactoring between releases of the software systems. 
Furthermore, the results show that during software evolution, components that 
transitions between dependency cycles have higher probability to be defect-prone than 
those that transition outside of cycles. This case holds when the direct cycle 
neighbourhoods are not considered. In relation to defects, out of the three independent 
variables (LOC5, CBO6 and CRSS7) investigated, the study found that the CRSS metric 
tends to be more associated with classes that move between “in-cycle” states. 

Evidence of cycle-breaking refactoring: Among the software systems (including the 
industrial Smart Grid system), we found no systematic cycle-breaking refactoring 
between software releases of these systems.  The few components that transitioned 
outside of cycles in their next releases appeared to be an accidental transition. This may 
explain why dependency cycles are so pervasive among software components and 
across releases. 

Transitions of components between cycles and defects: We found that components that 
transition between dependency cycles across releases persist as defective than those that 
transition outside of dependency cycles. This pattern occurred when we excluded the 
depend-on-cycle category. It can therefore be hypothesized that refactoring of 
components in cycles could reduce their defect-proneness. 
Transitive coupling of cycles and defects: Among the three variables (LOC, fan-in and 
fan-out, and CRSS) that were investigated, we found that CRSS and LOC increased 
significantly for components that persist as defective across releases when they 
transition between cycles.  
Refactoring of dependency cycles and defects: we could not directly answer the 
question of whether the refactoring of components in dependency cycles could reduce 
their defect proneness in future releases. This is due to the lack of evidence to support 
cycle breaking refactoring as discussed above. The evidence we have obtained is 
indirect and concerns the transitions of components between dependency cycles and 
their defect-proneness. To have a direct answer to this hypothesis, we have thus 
formulated an experiment and discussed it in paper P4. 

Contribution: In Study 3, one of the major contributions was the identification of 
variables that could be focused for cycle-breaking refactoring. Another major 
contribution was a better understanding of defect-proneness of components when they 
transited from “in-cycle” to “out-of-cycle”. In addition, it provided more evidence of 
whether cycle-breaking activities occur between software releases.  

4.4 Improving the Structural Quality of Cyclically Dependent 
Components using Tools and Metrics 

In Study 4, we have implemented a cycle breaking decision support system and a new 
metric called IRCRSS. The IRCRSS identifies the reduction rate of class reachability 
set size (CRSS) from a class interface to reduce the number of components in 
dependency cycles. The research question investigated in Study 4 is: 
                                                

5 Lines of code 
6 Coupling between objects 
7 Class reachability set size 
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RQ2: How to refactor dependency cycles to impact the structural quality and reduce 
the refactoring efforts? The results are presented in paper P7 and it supports 
contribution C3: Tool and metrics to refactor defect- and change-prone hotspots in 
dependency cycle 
We have implemented a metric to identify the reduction ratio in the Class Reachability 
Set Size (CRSS) between a class and its interface. This is a new metric based on the 
CRSS metric by (Melton and Tempero, 2007a). The metric named “Interface-CRSS 
Reduction Rate (IRCRSS), in combination with an enhanced parameter selection 
method, aimed to reduce the number of classes in dependency cycles and the overall 
refactoring efforts. To evaluate the approach, we have constructed a cycle breaking 
decision support system that implements existing design approaches in combination 
with the class edge contextual data.  
The evaluations on multiple systems show that (1) the improved CRSS metric could 
identify fewer classes as candidates for breaking large cycles, and reduce the refactoring 
efforts reasonably, and (2) the model could assist software engineers to plan the 
restructuring of classes in complex dependency cycles. 
Added metric:  We have identified the interface reduction ratio for the CRSS of a class 
and its interface (the IRCRSS metric). This metric is an improvement over the CRSS 
metric. By using this metric, we recorded a significant improvement in the “cycle-
breaking” refactoring results and the overall refactoring efforts in some systems.   
Cycle breaking decision support system: We have constructed a cycle breaking 
decision support system that could aid developers and software maintenance engineers 
to refactor class dependency cycles (see Figure 15 for the system’s class diagram). The 
system integrates the improved metric to determine candidates for high impact 
refactoring. The system leverages the class contextual data (such as relationship and 
class type data) to provide practical and implementable actions for developers and 
maintenance engineers. The tool and approach have been evaluated using several 
applications to show that it could provide decision support for planning cycle-breaking 
refactoring activities at the class granularity level. The tool is useful to improve the 
structural quality of software systems that are riddled with defect-prone cycles. 
The decision support system is publically accessible at: https://bitbucket.org/ootos/j-
guirestructurer and https://bitbucket.org/ootos/c-sharprestructurer 
The C# version, developed by an MSc student, has integrated the refactoring module 
and algorithms from the decision support system written in Java. 
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Figure 15  Class Model for the Cycle breaking decision support system 

(Oyetoyan et al., 2015a) 
Contribution: The main contribution of this study was to (1) improve the structure of 
software systems with dependency cycles by constructing a cycle breaking decision 
support system and (2) reduce refactoring efforts during this process.  
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5 Evaluation and Discussion 
 

 

 
 

 
 

 
 

This thesis has investigated dependency cycles among software artefacts with respect to 
maintainability and indirectly to reliability. For maintainability, we have used change 
and defect metrics and for reliability, we have used defect severity as an indirect metric. 
We have performed several empirical studies to investigate the relationship between (1) 
cycles and defects and (2) cycles and change rate in general. In response to the results 
from the empirical studies, a decision support system to refactor class cycles has been 
developed and a new metric proposed to improve the structural quality of software 
systems. 

The thesis mainly contributes to improvement in the areas of software quality and 
software metrics. In the following, we discuss the contributions under each topic. The 
main contributions and the sub-contributions of this thesis are: 
C1. Better understanding of how to utilize different defect metrics to improve software 

quality 
C1-1: Identification of the usefulness of different defect metrics to classify critical 
software components 

C2. Identification of the impact of dependency cycles on software quality 
C2-1: Identification of dependency cycles and neighbourhood as defect hotspots in 
software systems 
C2-2: Better understanding of the change impact of dependency cycles 

C3. Tool and metrics to refactor defect- and change-prone hotspots in dependency cycle 
C3-1: Added metrics to understand the complexity of components and improve the 
refactoring of cyclically dependent components 
C3-2: A cycle breaking decision support system to refactor cyclically connected 
components 

The rest of this chapter is organized as follows: Section 5.1 provides the overall view of 
the thesis contributions in relation to the software engineering topic. Section 5.2 
evaluates the contributions of this thesis. Section 5.3 discusses the contribution against 
the state of the art. In Section 5.4, we provide overall recommendations. Section 5.5 



Evaluation and Discussion 

 

 56 

briefly evaluates the validity threats to the study while Section 5.6 provides a reflection 
on the research context. 

5.1 Overview of Thesis Contributions 
Figure 16 shows how the studies and the contributions are related to software quality 
attributes. The summary is listed in Table 8. The effects of the different studies on 
specific quality attributes are discussed. 

Reliability: The contribution of this thesis affects the reliability of software systems 
indirectly. We have identified critical defect hotspots (Contributions C1-1 and C2-1). 
Critical defects as discussed, impact on the reliability of software. By improving the 
structural quality in such hotspots through refactoring (Contribution C3), the overall 
reliability of the system can be improved.  
Modifiability: Dependency cycles are known to be detrimental to modifiability (Bass et 
al., 2003). Refactoring them is important to facilitate ease of change during software 
maintenance and evolution. The extent of the impact of dependency cycles is shown by 
the structural complexity of components that depend on them (in-neighbours). What is 
particularly useful here is that software evolution data can be used to identify specific 
cycles that could be recommended for refactoring (Contribution C2). Refactoring such 
defect and change-prone cycles can reduce ripple effect of change (Contribution C3). 

Reusability: During software development, code reuse is a standard practice and it can 
occur at different granularity levels. We are concerned with code reuse at the class 
granularity level and among internally declared types (see Section 1.1). A component 
that reuses another component in a dependency cycle has to depend on all the 
components contained in the cycle including the in-neighbours of the cycle.  It has been 
shown that usage relationships among components can be used to predict their defect-
proneness (Oyetoyan et al., 2012; Schroeter et al., 2006).  Breaking defect-prone 
(Contribution C3) and change-prone cycles (Contribution C2) can reduce the 
probability of defect-proneness since unnecessary code would not be copied during 
reuse. 

Testability: Dependency cycles are known to be detrimental to testability. Components 
in cycles are expensive to test, as it is impossible to test them in isolation. As (Lakos, 
1996) states, “Testing a component in isolation is an effective way to ensure reliability”.  
Effective testing would require components to be decomposed to become stand-alone 
and of manageable size. The acyclic dependency principle (Martin, 1996) is important 
to decompose components to become stand-alone and be of manageable size. It is 
advisable and necessary to refactor (Contribution C3) defect- and change-prone 
locations (Contributions C1 and C2) in dependency cycles to make the different 
components testable. In addition, selecting test sample that is adequate and 
representative enough is a challenge (Bertolino, 2007). Contributions C1 and C2 point 
to aspects of the software where test samples can be drawn to make it more efficient. 
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Figure 16 Overall relationships between the studies and contributions to 

software engineering field 
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Table 8 Connection between contributions, research questions, papers, and 
specific software quality attributes 

Contributions Description Study Research 
Questions  

Papers  Effect on 
software quality  

C1  Better understanding of how 
to utilize different defect 
metrics to improve software 
quality 

S1 RQ1 P1 Reliability 

C2  Identification of the impact of 
dependency cycles on 
software quality 

S2, 
S3 

RQ1-2, 
RQ1-3, 
RQ1-4 

P2, P3, 
P4, P5, 
P6 

Reliability & 
Maintainability 

C3  Tool and metrics to refactor 
defect- and change-prone 
hotspots in dependency cycle 

S2, 
S4 

RQ1-2, 
RQ1-4, RQ2 

P2, P3, 
P6, P7 

Maintainability 

5.2 Evaluation of the Contributions against the Research Goal 
The main goal of the IME research initiative for Smart Grid within software engineering 
is: Improved Management of Software Evolution for Smart Grid Applications. We 
discuss in the following how the contributions in this thesis are related to the research 
goal. 

C1: Identification of the usefulness of different defect metrics to identify critical 
software components 

The analysis of the defect and source code repositories of an industrial Smart Grid 
system resulted into contribution C1. Software evolution is a constant phenomenon in 
the software lifecycle. As software evolves, so does its complexity (Lehman, 1980). 
Software complexity has been correlated with defects. The contribution shows that it is 
possible to identify significant number of software components that are critical to a 
system when multiple defect metrics exist and are used. This contrast with using 
popular defect metrics, i.e. only defect counts and defect density. Such critical 
components can then be focused for improved quality assurance. The higher the test 
coverage that could be achieved for key software components during development and 
maintenance, the lower the risk for defects and system failure. The contribution can be 
considered to be significant for critical applications where sufficient test coverage is 
vital, but this remains a goal that equally competes with other goals for scarce quality 
assurance resources. 
C2-1: Identification of dependency cycles and neighbourhood as defect hotspots 

Contribution C2 showed a subset of the software components (i.e. dependency cycle 
and neighbourhood components) that should be focused for increased testing and 
refactoring. From empirical study of Smart Grid and other open source systems, we 
showed that dependency cycles and their neighbourhood are the major hub for defects 
and even critical defects that could result into a system failure. A system failure is 
critical in a system of systems and could have a cascading effect. This contribution 
improved the understanding of defect location in software systems. This knowledge is 
useful and provides new opportunities to identify refactorable locations in the system.  
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C2-2: Better understanding of the change impact of dependency cycles 

We found that dependency cycles have significant impact on the direct neighbourhoods. 
These are the components that depend on cycles. Additionally, we discussed the 
stability of Visitor pattern as interesting because it also contains anti-patterns. The 
usefulness of this result affects the design of software systems. Understanding “critical” 
and “harmless” cycles is important knowledge that could guide refactoring effort. It is 
more useful to refactor candidate cycles that are harmful as such refactoring would 
translate to improving the external quality of the system. 
C3-1: Added metrics to improve the refactoring of cyclically dependent 
components 
Metrics provide measurement that could be used for evaluating the quality of a system. 
In contribution C3-1, the two metrics that are proposed provide measurement that (1) 
increase the knowledge of defect location and component complexity in relation to 
dependency cycles (depend-on-cycle) and (2) improve the refactoring of components in 
dependency cycles in terms of refactoring effort and reduction of cycles (IRCRSS). 
Measurements of the software structural quality are important during evolution.  We 
need to use the measurements as a feedback to assess the direction of the structural 
evolution of the system and the opportunity for restructuring and refactoring.  
C3-2: A cycle breaking decision support system for refactoring cyclically 
connected components 
Architectural erosion is common during software evolution. To mitigate the effect of 
structural decay as the software evolves, there is a need for “agile” refactoring practices 
to monitor and regularly improve the structure of the system. Without adequate tool 
support, this is a challenging and difficult task for developers and maintenance 
engineers. Dependency cycles are signs of structural decay in many systems. A cycle 
breaking decision support system has been proposed and developed that can be used to 
discover and thus improve the structural quality of the system. The tool monitors the 
structure of a system and identifies undesirable cycles in the system that can be 
refactored.  This tool has been implemented in a commercial Smart Grid company to 
assist the developers and maintenance engineers in their maintenance tasks. There is 
currently little advice about how to refactor dependency cycles at the class granularity 
level. We believe this contribution is filling an important gap in the area of software 
evolution, maintenance, and refactoring. This is strongly connected to the research goal 
as the tool and approach would be useful to improve the structural quality of the Smart 
Grid systems (and other systems) during their evolution. Such improvement would 
result in a better testable and maintainable system during their lifecycle. 

5.3 Discussion of Contributions related to the State-of-the-Art 
This section discusses how each of the contributions is related to the state-of-the-art in 
software engineering research and practice. 
Contribution C1: Several studies have shown that the defect distribution in software 
systems follows the Pareto rule of 20-80 (Andersson and Runeson, 2007; Basili and 
Perricone, 1984; Boehm and Basili, 2001; Ebert et al., 2005; Fenton and Ohlsson, 2000; 
Ostrand and Weyuker, 2002; Tihana Galinac et al., 2012). Among these studies only 
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Ostrand and Weyuker (2002) reported the distribution of defective components based 
on the severity of their defects. The contribution C1 is novel because (1) it uses multiple 
defect dimensions (2) it identifies gaps and synergy between the defect metrics and (3) 
it investigates the effect and coverage the defect metrics have on critical software 
components. To the best of our knowledge, we have found no reported studies with this 
contribution. 
Contribution C2-1: The study by Zimmermann and Nagappan (2007) has observed a 
similar pattern in one of several hypotheses we explored in this thesis. Precisely, 
hypothesis P2.HA1: The number of defective components in cyclic relationships is 
significantly higher than non-cyclic defective components (in Paper P2). Our 
contribution C2, however, provides an in-depth study of the topic “dependency cycles 
versus defects” by exploring several defect metrics and a number of case studies. For 
instance, we have found no study that reports on dependency cycles and the criticality 
of defects.  
Contribution C2-2: In relation to dependency cycles versus change, we have found no 
studies that have explored this relationship. 
Contribution C3-1: In relation to the topic of dependency cycles, it appears that only 
our studies have discussed “depend-on-cycle” metric. However, this concept and metric 
has been used in other contexts in previous studies e.g. (Zimmermann and Nagappan, 
2008) and it is popular in network analysis (Wasserman and Faust, 1994). The second 
metric “IRCRSS” that we introduced is a novel contribution. It is a derivation of the 
metric CRSS by (Melton and Tempero, 2007a). The CRSS is synonymous to the 
cumulative component dependency8  (CCD) and its variants by Lakos (1996). In 
comparison to object-oriented metrics, the CRSS metric is related to the Response For 
Class (RFC) metric. We can assume that there is a linear relationship between CRSS 
and RFC metrics. The more classes a class can reach, the more its tendency to have a 
high RFC coupling since RFC considers the transitive method coupling closure of a 
class. 
Contribution C3-2: There are studies and approaches devoted to breaking dependency 
cycles albeit at the package granularity level (Dietrich et al., 2012; Falleri et al., 2011; 
Laval et al., 2009; Laval and Ducasse, 2014). Existing tools such as; JDepend 
(http://clarkware.com/software/JDepend.html), NDepend (http://www.ndepend.com), 
Dependometer (http://source.valtech.com/display/dpm/Dependometer), PASTA 
(Hautus, 2002), Classycle (http://classycle.sourceforge.net), CARE (Shah et al., 2013), 
STAN (http://stan4j.com/), LDM (Sangal et al., 2005), have also primarily focused on 
refactoring cycles at the package level. Apart from JooJ by (Melton and Tempero, 
2007c), there is currently little focus at the class granularity level. Our contribution is 
focused on refactoring cycles at the class granularity level by providing implementable 
actions and opportunities for assessing the structure of the code. 

5.4 Recommendations to Practitioners 
The results we have obtained in this study are interesting and useful for improving the 
structural quality of object-oriented software applications. In this section, various 
                                                

8 CCD of a subsystem is the sum of the components’ dependencies for each component in this subsystem 
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recommendations for stakeholders of software projects are suggested. These 
recommendations are drawn from the results that we have obtained in all the studies 
presented in this thesis.  Some of the recommendations are conventional wisdoms that 
are reinforced from the empirical results obtained in this thesis; however, some are new 
knowledge that would require some follow-up studies. 

Make measurement more reliable 
In our experience with mining defects data from repositories, we found that in some 
cases there are missing data points. An example is reporting defects in defect tracking 
systems and logging the defects fixed against the actual source files that are modified or 
created in the configuration management system. The reliability of the analysis results 
depends on the quality of the data. We recommend that defect data be accurately logged 
and consistently associated in the configuration management system to allow for quality 
measurement, analysis and feedback. 

Make measurement of work products and design 
Measurements provide the means for assessment and improvement. Our experience 
shows that the structural quality of work products is not usually measured. Some of the 
findings from the Smart Grid application of our industrial partner were surprising. It 
thus indicates that the data logged have not been used optimally for quality 
improvement programs. It is hard to know the structural quality and the extent of 
erosion unless a conscious measurement is made. We recommend that structural 
analysis of software be performed to determine refactoring possibilities/opportunities. 

Incorporate refactoring practices 
Architectural refactoring practices are many times overlooked in the software 
development process. The results we have obtained and interactions with the industrial 
partner confirmed this statement. The class cycles in the systems grow during evolution 
and we did not detect any major cycle refactoring practices. This can be due to the 
unavailability of tools that are practical and usable for such level of refactoring. Some 
of the tools available on the development environments are not for major code 
restructuring. During an evaluation phase performed with the industrial partner, it was 
obvious that the developers only perform low-level code refactoring. This is consistent 
with the results of the study in (Murphy-Hill et al., 2009). Another reason is that such 
refactoring is not prioritized during the software development process. 
A “functional” code does not mean that all is well. Erosion of code structure incurs 
change penalty and can drive maintenance cost to a much higher level. After all, this 
may not be surprising because software maintenance cost is claimed to be the highest in 
the software life cycle (van Vliet, 2000). We recommend a top-driven refactoring 
practice to be introduced. Why top-driven? Most times, managers are driven by time-to-
market at the expense of code quality (e.g. maintainability). Such attitude has impact on 
the developers who only work to produce “functional” code as against maintainable 
code. Theoretically, this is called a technical debt (Brown et al., 2010). Managers need 
to realize the need to avoid architectural erosion as the system evolves.  
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Take advantage of tools to avoid architectural erosion 

To achieve an “agile” refactoring practice, there is a need for tool support. Tools make 
the possibility of continuous refactoring a reality. Without tool support, it is not feasible 
for the work product and code structure to be easily controlled in terms of measurement, 
feedback, and improvement. We have in this study implemented a useful refactoring 
tool that could be leveraged by developers and maintenance engineers to monitor and 
restructure their existing code structure. 

Identify “critical” and “harmless” cycles 
Applications vary in many ways and generalization of results across systems may not be 
plausible. Organizations need to perform their own analysis to identify what roles 
dependency cycles play in their systems. We have found in certain systems that 
dependency cycles and their neighbourhood components do not incur change more than 
other components. Some systems have used patterns that have a cycle property, for 
example, the case of Visitor pattern. One of our findings showed the Visitor pattern to 
have less change than other types of cycles. There are also instances where cycles are 
formed because of references to utility components. Utility components usually have 
high in-degree (incoming connections). As Wake puts it, not all code smells are 
indicative of problems but they are certainly worthy of a look and decision (Wake, 
2004). Individual evaluation would thus be necessary to identify what is critical and 
harmless. 

5.5 Discussion of Validity Threats 
This section evaluates the threats to the validity of the studies we have performed. The 
threats to the validity of the studies are discussed in details in each paper (see 
Appendix-A). 

Conclusion validity: This is about “right analysis”.  This concerns the ability to draw 
correct conclusions from the relationships between the treatment and the outcome 
(Wohlin et al., 2003). Issues such as effect size or statistical power in data analysis are 
important test that should be performed to increase confidence in the conclusion. 

We believe we have used the right statistical analysis during our studies. One common 
challenge with defect data is that it is skewed; as such it is usually not normally 
distributed. It would therefore be inappropriate to use standard t-test when the data has 
not been tested for normality. In our studies, we have performed normality test to 
determine whether to use parametric (e.g. standard t-test) or non-parametric test (e.g. 
Wilcoxon ranked sum test). We have also considered the measurement types (interval, 
ordinal, nominal or ratio) of the variables to determine the appropriate analysis 
technique. We have also performed effect-size test to judge whether the conclusions 
drawn from the hypotheses testing are meaningful or not. 
Internal validity: This concerns “right data”. If the outcome is caused by the treatment 
and not by other factors not measured, we can conclude that the result has internal 
validity (Robson, 2011). It focuses mainly on the study design and whether the results 
follow from the data (Easterbrook et al., 2008).  
The defect data we have used in our studies have been mined from defect tracking 
repositories. A common threat is missing data points that occurred when not all defects 
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are logged in the repository. This threat is minimal in our studies as we were able to 
have good sample size for our analysis. Another challenge is the tagging of defect ids in 
the commit log of changed source files in the configuration management systems. In 
some cases, a source file that is changed because of defect fixes may not be associated 
with the defect ids in the commit messages. There are also cases of erroneous tagging.  
All these are known threats in these kinds of studies. In our studies, the mapped data we 
have mined is large enough for statistical analysis. In the case of source code data, our 
tool could not identify weak relationships caused by the use of reflection. This is a 
common challenge for static analysis tools.  

Construct validity: This is about “right metrics”. The main question asked here is 
whether the metrics measure what we think it measures (Robson, 2011). Are concepts 
clearly defined including interactions of different treatments in a way that right 
measurements can be taken? (Wohlin et al., 2003). We have addressed the threats to 
construct validity by identifying balanced hypotheses and research questions. We have 
considered different defect dimensions and used well-established metrics from the 
research literature.  
External validity: This concerns “right context”.  Can the results be generalized outside 
the scope of the study? Issues such as selection (sampling), context of study, constructs 
that are specific to the study are threats to generalization and should be considered 
(Robson, 2011). This thesis has used thirty applications with different functionality, 
domains, age, size, context, programming language and usage. Nevertheless, we cannot 
generalize the results to all software systems. In addition, only one of the systems was a 
commercial application. We therefore cannot conclude that the results from the studies 
of the commercial application reflect a general trend. The diversity between commercial 
application and open source applications (e.g. development practices) also shows that 
we cannot generalize across the systems. More studies will be necessary to compare 
with the results we have obtained in our studies. 

5.6 Reflections on the Research Context 
The research context is industry oriented and focused on Smart Grid software and its 
evolution. As mentioned previously in Section 1.2, we established cooperation with a 
relevant and large software company that develops applications for the power grid. This 
has enabled us to pursue the studies in this thesis within the research context. We were 
lucky to have a good partnership with the industrial partner. The company has provided 
all support needed at the different stages of the research work. As such, our work did 
not suffer from the challenges that are common when conducting an empirical study 
with industrial companies (see Section 1.3).  

We have conducted several presentations to provide feedback of our findings to the 
industrial partner. The results of the several empirical studies have triggered the 
implementation of a new tool. A decision support tool was developed to assist the 
developers and maintenance engineers to perform continuous refactoring of their code 
structure. We have also evaluated our proposed refactoring approach and tool using the 
industrial application as one of the major case studies.  

A common threat to deal with is a follow-up of the results and the applications of the 
tool and approach that we have proposed and developed. We have had one maintenance 
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engineer assigned to us for the whole duration of the tool evaluation and refactoring. 
This lasted for about 3 weeks (40 man-hours). However, we believe the knowledge 
should be disseminated to other developers on the project and in the company. In this 
way, the company can take full advantage of the results and tool that resulted from this 
thesis. 

In conclusion, the studies in this thesis have contributed to the improvement of the 
quality of Smart Grid systems during evolution. The results are not only relevant to the 
Smart Grid systems we have studied; they are also relevant to other open source 
systems that share similar context and domains as those we have used in this thesis.
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This thesis presents results of several empirical studies that have investigated defect 
distribution and change rate of software components in dependency cycles and near 
dependency cycles. A new metric has been introduced and investigated which can 
improve refactoring of undesirable dependency cycles and reduce refactoring efforts. 
Case studies have been drawn from an industrial Smart Grid software company and 
several open source projects. The thesis presents valuable insights into how defect 
metrics can be utilized to identify important and critical software components. 
Furthermore, the research has led to increased knowledge about defect locations in 
relation to components in cycles and those that reference cycles. Lastly, a cycle 
breaking decision support tool has been proposed, implemented, and evaluated, which 
can assist software developers and maintenance engineers to improve the structural 
quality of their software artefacts and code. 
This chapter sums up the findings and contributions of this work and outlines directions 
for future studies.  

6.1 Overall Summary of Findings 
We summarize the four key findings in this thesis as follows: 

Multiple defects and critical components: In the Smart Grid application that was 
investigated, we found that defect counts and defect density are not sufficient to identify 
and classify critical components in the system. Indeed, other metrics such as defect 
severity and defect correction effort classified a significant number of key components 
that developers considered critical to this application. Since quality assurance resources 
are limited, we propose to consider multiple metrics to identify critical components that 
should be focused for increased testing. As a critical infrastructure, it is essential to limit 
the risk of failure by focusing the testing efforts in the right direction.  

Observed patterns with respect to defects and dependency cycles: The results of 
several empirical studies in our research confirm that defects and critical defects are 
concentrated within dependency cycles and in components that have reference to cycles 
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(we call them in-neighbours). We found that in some systems about 50% of the 
components are in cycles and near cycles and these account for a clear majority of the 
defects, defective components, and critical defects. The findings provide important 
information about the subsets of the systems that should be focused for increased testing 
and possible refactoring. 

Observed patterns with respect to change and dependency cycles: Dependency 
cycles do have significant change impact on their neighbourhood (in-neighbours). 
However, the majority of the components in cycles have a lower change rate than those 
outside cycles. We attempt to distinguish between “critical” and “harmless” cycles by 
using some cycle properties. Our findings show that: (1) No significant difference exist 
between the change rate of cycles with subtype knowledge (STK) and those without  (2) 
no correlation exists between change rate and high PCT-diameter and (3) the cycles 
with the Visitor pattern are stable within the application where they exist. Overall, the 
results are interesting and open up possibilities for further studies. We discuss this in 
Section 6.2 

Opportunities for refactoring class cycles: The focus here are two areas; metrics and 
tools. First, we propose an improved metric named IRCRSS derived from the CRSS 
metric. By using this metric, it is possible to improve cycle-breaking refactoring and 
reduce refactoring efforts. Second, we have implemented a cycle breaking decision 
support system to improve the structural quality of software systems. The tool has 
integrated the improved metric and other enhanced selection parameters. It then makes 
propositions that developers or maintenance engineers can manually implement. There 
is little attention given to refactoring of class cycles. We therefore believe that our tool 
and approach are filling an important gap.  
Impact on software quality: The results reported in this thesis contribute to 
maintainability and indirectly to reliability of software systems. We have identified that 
dependency cycles and their immediate neighbourhoods are hotspots for critical defect 
in software applications. We show the need to apply multiple defect metrics to identify 
critical component that should be specifically in focus for more thorough testing efforts. 
We have developed a cycle breaking decision support system that could assist 
developers to improve the structural quality of their software. These contributions affect 
testability, reusability, modifiability, and reliability of the systems. 

6.2 Directions for Future Work 
Based on the results from this thesis, we outline different proposals for future study as 
follows: 
Distinguishing between “critical” and “harmless” cycles: More work is needed to 
identify cycle metrics and properties that can help to distinguish between a “critical” 
and a “harmless” cycle. Some cycles are stable and not defect-prone while some 
undergo high change and are defect-prone. Some cycles are formed by certain design 
patterns, for example the case of Visitor discussed earlier. In some cases, these kinds of 
patterns are code automatically generated by parser tools (e.g. ANTLR). We believe 
that context information would be necessary during cycle classification. If we are able 
to classify cycles into “critical” and “harmless” categories, we could save refactoring 
efforts by focusing on the critical ones. 
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A study of trade-off between patterns and anti-patterns: Cycles are pervasive in 
real-life software systems and certain design patterns are also known to contain this 
anti-pattern, which is traditionally known as an indicator of bad design (e.g. Visitor 
pattern). It presupposes that certain cycles may be justified because of the role that the 
involved artefacts play in the system. The question remains as to what extent a pattern 
should harbour an anti-pattern. Should a pattern be refactored? For instance the Acyclic 
Visitor proposed by Martin (1997). It is more complex than the Visitor pattern itself and 
seems not to be widely used. Are patterns with anti-patterns penalized by 
changes/defects more than those without anti-patterns? An extensive study of the trade-
off would be an interesting topic and a step to provide better design advice for future 
systems.  

Utilization of abstraction: Interfaces need to be better utilized during development to 
achieve loose coupling. Many times, cycles are formed because the Dependency 
Inversion Principle (DIP) is not applied and existing studies already showed that even 
when the abstraction exist, they are under-utilized (Gobner et al., 2004; Mayer, 2003; 
Steimann et al., 2003). One way to optimize interface utilization for the purpose of 
decoupling is to create a plugin in the development environment (e.g. Eclipse) that can 
provide a real-time feedback of the IRCRSS value of a dependent component. This 
solution can assist developers to implement dependency inversion with interface when 
they are reusing (importing) an exisiting class implementation. The idea is to base this 
feedback on the normalized CRSS values of the imported class and a real-time feedback 
of IRCRSS value when an interface is used instead. In this way, a developer can quickly 
decide for an abstraction of this class type rather than its implementation. 

Automation of propositions from the cycle-breaking decision support system: One 
aspect that would be beneficial for practitioners and researchers is to automate the 
manual propositions from the decision support system on the graph model to the actual 
source code. This is possible as such automated implementation can be applied on the 
abstract syntax tree (AST) model in many development environment (e.g. Eclipse). One 
way to achieve this is to create a plugin that passes the class binaries from an IDE as 
input to the CB-DSS, while the output (proposed actions) from CB-DSS is fed back to 
the plugin. The actions can now be applied on the AST model with an appropriate pre- 
and post-condition checks. 
Study of dependency cycles in Service-oriented systems: Applications based on 
service oriented architecture (SOA) are ubiqutous. Development for reuse (Sindre et al., 
1995) has in particular made organizations to transform software components into 
services that can be discovered for reuse. It will be interesting to study dependencies 
between services that are composed for reuse. Whether dependency cycles occur at this 
layer both from static and dynamic dependency viewpoints, would be useful to 
understand the maintenance cost. 
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Anti-Pattern: Poor design choices and can exist at the code, design and architectural 

levels 

Anomaly: Anything observed in the documentation or operation of software that 

deviates from expectations based on previously verified software products or reference 

documents (IEEE Std 1012-1986) 

Component: A component may refer to a class, a package or a jar file 

Defect: Imperfection or deficiency in a work product where that work product does not 

meet its requirements or specifications and needs to be either repaired or replaced (IEEE 

Std 1044-2009) 

Defect-density: The number of defects per unit of product size (ISO/IEC/IEEE 

24765:2010) 

Dependability: Trustworthiness of a computer system such that reliance can be 

justifiably placed on the service it delivers (IEEE Std 982.1-2005) 

Dependency: A relationship that defines that a component needs another component to 

function 

Dependency Cycle: A cyclic dependency graph also known as strongly connected 

components (SCC) in a directed graph G = (V, E) is a maximal set of vertices C ⊆ V 

such that for every pair of vertices u and v in C, both are reachable from each other 

(Cormen et al. 2001) 

Design Pattern: Patterns are recurring solutions to design problems. They capture 

existing, well-proven designs 
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Fault: Manifestation of an error in software (ISO/IEC/IEEE 24765:2010) 

Defect Tracking System: A system for recording a reported defect and for capturing 

the attributes of the defect such as its severity, date reported, priority and so on 

Error: The difference between a computed, observed, or measured value or condition 

and the true, specified, or theoretically correct value or condition (ISO/IEC/IEEE 

24765:2010) 

External measure of Software Quality: measure of the degree to which a software 

product enables the behaviour of a system under specified conditions to satisfy stated 

and implied needs for the system (ISO/IEC 25010:2011) 

Failure: The inability of a system or system component to perform a required function 

within specified limits 

Fan-in: The number of components that reference a component (in-coming connections 

to a component) 

Fan-out: The number of components that is referenced by a component (out-going 

connections from a component) 

In-Neighbours: Component that is not in dependency cycle but references 

component(s) in dependency cycles. 

Internal measure of Software Quality:  the measure of the degree to which a set of 

static attributes of a software product satisfies stated and implied needs for the software 

product to be used under specified conditions (ISO/IEC 25010:2011) 

Maintainability: The ease with which a software system or component can be modified 

to change or add capabilities, correct faults or defects, improve performance or other 

attributes, or adapt to a changed environment (ISO/IEC/IEEE 24765:2010) 

Measurement: The process by which numbers or symbols are assigned to attributes of 

entities in the real world in such a way as to describe them according to clearly defined 

rules (Fenton and Pfleeger, 1998) 

Reliability: The ability of a system or component to perform its required functions 

under stated conditions for a specified period of time (IEEE Std 610.12-1990) 
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Smart Grid: A modernized grid that enables bidirectional flows of energy and uses 

two-way communication and control capabilities that will lead to an array of new 

functionalities and applications (NIST, 2010) 

Software Engineering: (1) The systematic application of scientific and technological 

knowledge, methods, and experience to the design, implementation, testing, and 

documentation of software  (2) the application of a systematic, disciplined, quantifiable 

approach to the development, operation, and maintenance of software; that is, the 

application of engineering to software (ISO/IEC/IEEE 24765:2010) 

Software Quality: (1) capability of a software product to satisfy stated and implied 

needs when used under specified conditions  (2) degree to which a software product 

satisfies stated and implied needs when used under specified conditions” 

(ISO/IEC/IEEE) 

Software Maintenance: the process of modifying a software system or component 

after delivery to correct faults, improve performance or other attributes, or adapt to a 

changed environment (IEEE 610.12) 

Software Evolution: The stage in a software system’s life cycle where it is in 

operational use and is evolving as new requirements are proposed and implemented in 

the system 

Software Metric: A software metric is a measurable property, which indicates the 

software quality criteria to be measured (Gillies, 1997) 

Subversion system: A version control system for managing files and directories, and 

the changes made to them over time (SVNBOOK: www.svnbook.red-bean.com) 

System: Combination of interacting elements organized to achieve one or more stated 

purposes (ISO/IEC 25000:2014) 
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Abstract—(Background) Defect distribution in software systems 
has been shown to follow the Pareto rule of 20-80. This motivates 
the prioritization of components with the majority of defects for 
testing activities. (Research goal) Are there significant variations 
between defective components and architectural hotspots 
identified by other defect measures? (Approach) We have 
performed a study using post-release data of an industrial Smart 
Grid application with a well-maintained defect tracking system. 
Using the Pareto principle, we identify and compare defect-prone 
and hotspots components based on four defect metrics. 
Furthermore, we validated the quantitative results against 
qualitative data from the developers. (Results) Our results show 
that at the top 25% of the measures 1) significant variations exist 
between the defective components identified by the different 
defect metrics and that some of the components persist as 
defective across releases 2) the top defective components based on 
number of defects could only identify about 40% of critical 
components in this system 3) other defect metrics identify about 
30% additional critical components 4) additional quality 
challenges of a component could be identified by considering the 
pairwise intersection of the defect metrics. (Discussion and 
Conclusion) Since a set of critical components in the system is 
missed by using largest-first or smallest-first prioritization 
approaches, this study, therefore, makes a case for an all-
inclusive metrics during defect model construction such as 
number of defects, defect density, defect severity and defect 
correction effort to make us better understand what comprises 
defect-prone components and architectural hotspots, especially in 
critical applications.  

Keywords—defect distribution; defect measures; defect metrics; 
defect severity; defect correction effort; defect density; defect-prone 
component; Smart Grid; critical system; architectural hotspots 

I. Introduction  
Software testing is resource intensive in complex 
industrial systems [1], as such; any information that 
can help reduce testing effort is a step in the right 
direction. This is mainly the motivation for 
developing defect models to predict the part of the 
system that has the highest likelihood to be defect 
prone. The early knowledge of the components that 

may turn defective in the future release of a system 
is useful to focus code inspections, walkthroughs 
and reviews activities to catch defects in such part 
of the system.  

However, existing defect models are largely 
constructed to predict based on number of defects 
(e.g. [2-9]). The study by Adams [10] showed that 
removing large number of defects may have a 
trivial effect on reliability. As pointed out in [10, 
11], the most number of latent defects lead to very 
rare failure in practice while the vast majority of 
observed failures are caused by a relatively tiny 
number of defects. In addition to this observation, 
both Ebert et al. [9] and Boehm and Basili [8] 
argued that 60-80% of the correction effort and 
80% of avoidable rework are due to 20% of the 
defects. Therefore, showing that it is not the number 
of defects, rather their severity that matters. A high 
severity defect usually points to a fatal error that 
results into system failure whereas low severity 
defects mostly point to some cosmetic issues. Few 
studies have reported defect prediction models that 
predict the defect-proneness of components using 
defect severity (e.g. [12-14]). 
Several studies have also suggested that smaller 
components have higher likelihood of defects when 
compared to the larger ones [7, 15-17]. These 
studies have used defect density measured as 
number of defects per thousand lines of code 
(LOC). Since it has been demonstrated that most 
complexity metrics correlate with a component’s 
size [18], it supposes that more complex 
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components and invariably larger components are 
given higher priority in prediction models that use 
defect count approach. Results from literature [19] 
show that few studies have reported models that are 
based on defect density (e.g. [2, 20-22]) when 
compared to using number of defects. Koru et al. 
[23], by using the proposed theory of relative defect 
proneness (RDP) argued that the largest-first 
prioritization should lead to less effective defect 
detection compared to the smallest-first approach. 
Van Moll et al. [24] claimed that those components 
that are defect-prone and difficult to maintain 
should be the candidates for high priority inspection 
and testing. Thus maintenance effort may be 
pointing to structural complexity [25] in the 
components or could be a case of changing business 
requirements that is typical in critical system of 
systems (SoS) [26]. For instance, implementing a 
new technology (e.g. IPv6). The effort could be 
more than predicted as told by one of the 
stakeholders in the software company of the system 
under study. Very few studies have focused on 
predicting maintenance or development effort at the 
class level [25, 27, 28]. 
Thus, on one hand, a plethora of studies have used 
the largest-first prioritization, while on the other 
hand, a number of studies have suggested that the 
smallest-first approach would be more effective. In 
the light of this, it becomes obvious that in a 
software system, we can begin to focus on defective 
components from different points of views using 
both direct and indirect defect measures. Since there 
is no synergy between the various defect measures 
in a single defect prediction model environment, we 
conjecture that some significant differences might 
exist between what is identified by the top most 
defective components based on number of defects 
and those that are based on other measures. 

We also hypothesize that defect distribution 
based on defect count may not identify most of the 
critical components to the application in spite of the 
number of defects that the defective components 
may account for. In a software system certain 
components are more critical than the others. For 
instance, a component (connector) that integrates 

hardware and other subsystems is obviously critical 
to the application. The performance and reliability 
of the system will depend on such critical 
components. It is in this context that we are 
interested to know how much of such critical 
components can be identified at the top region of 
these defect measures and how this knowledge can 
help in testing effort and improvement of the 
components’ quality. 

Therefore, the central goal of this study is to 
examine and investigate the differences between 
components identified by four defect measures, 
namely; number of defects, defect density, severity 
of defect and defect correction effort. We want to 
know how significant or trivial these differences are 
in terms of the criticality of the components to the 
application under study. In addition, we want to 
know, if those differences persist across releases in 
this application. To the best of our knowledge, we 
have not found any study that focused on 
investigating the gap or the synergy between the 
distributions of several defect measures on the 
affected components at the same time.  

Our hypothesis is that all the data should be seen in 
tandem in order to not misplace critical defective 
components and architectural hotspots in critical 
systems. Architectural hotspots are defect-prone 
components with interface defects [3, 29]. This 
study complements other studies with focus on 
defect distribution in large and complex industrial 
systems. We conjecture that to be able to predict 
and identify subtle but critical defective 
components and architectural hotspots in critical 
systems need more than only one defect measure 
and one direction of prioritization. 

The rest of the work is structured as follows; in 
section II, we discuss related work to this study. 
Section III describes the software application that is 
under study. In section IV, we detail our empirical 
set up, such as: the definitions, research questions to 
be investigated and our approach of data collection. 
The results and discussion are provided in section 
V, while in section VI, we draw out the threats to 
the validity of our results. Lastly, section VII 
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provides the conclusion to this study with a note on 
future work. 

II. Related work 
Several empirical studies have shown the 
distribution of defects in software components to 
follow a 20-80 rule [7-9, 11, 15, 30, 31], that is, the 
so-called Pareto distribution principle. Among these 
studies only Ostrand and Weyuker [7] reported the 
distribution of defective components based on the 
severity of their defects. 

Defect distribution has also explored the 
relationship between size, measured as lines of code 
(LOC) and defect proneness of components. Two 
measures are focused in this relationship, the 
absolute number of defects and defect density. 
Studies in [7, 15-17] found trends between size and 
defect density. Either the defect density increases as 
the component size decreases [15] or that defect 
density increases above a size threshold and 
decreases below the size threshold [16, 17] or that 
defect density decreases up to a certain size 
threshold and then leveled up [7]. The findings in 
these studies suggest (1) that smaller modules are 
more defect-prone than the larger ones and (2) that 
there is a medium size that indicates the optimal 
size for a component. El Emam et al. [32] disputed 
these studies and reported that plotting the size vs. 
defect density can be misleading and that no such 
thresholds of optimal component’s size exist in the 
systems they analyzed. However, a study by Koru 
et al. [33] that focused their analysis on size-defect 
relationship solely arrived at the same conclusion of 
previous studies that smaller components are more 
defect-prone than larger components. Results from 
Fenton and Ohlsson [11] supported neither claims, 
their studies found no trend between size and defect 
density. 
Defect prediction models have taken advantage of 
defect distribution in a system to build models that 
can predict the defect proneness of software 
components. For example, many novel approaches 
have tested their models on the most defective parts 
of the system. Ostrand et al. [2] validated their 
prediction models using the top 20%. Schroeter et 

al. [34] obtained their best model by testing with the 
top 5% of the defective files in Eclipse. Zhang et al. 
[4] used the statistical medium to define a defect 
dense component for their model. Briand et al. [25] 
supported the largest-first prioritization of 
components during inspection and concluded that to 
use model across several projects, the number of the 
“largest-first” would in practice be driven by 
available time and budget.  

Maintenance effort prediction at a fine-grained level 
such as class level has also been explored. Li and 
Henry [35] built a regression model using object-
oriented (OO) metrics as independent variables and 
class change frequency as dependent variable to 
model maintenance effort. Bocco et al. [28] 
reported that the number of methods and the 
number of associations are good predictors of 
maintenance effort of a UML class diagram. 
Alshayeb and Li [27] concluded that OO metrics 
could fairly predict error-fix effort of a class in an 
XP-like process only when the system has sufficient 
design structure. Briand et al. [25] showed that 
fairly accurate prediction of class development 
effort could be made based on the class interface 
size alone.  

These previous studies have mainly focused on 
identifying defective components that can be 
focused for quality assurance by using the metrics 
independently. Furthermore, they have not 
considered how much of critical defective 
components to a system can be identified using any 
or all of these metrics. Also, there is no report of 
how the defect metrics can complement one another 
when dealing with defective components that 
should be given priority in testing activities. In this 
study, we seek to empirically validate the quantity 
of critical defective components that can be 
identified using largest-first and smallest-first 
prioritization approaches as used in previous 
studies. In addition, we seek to understand if some 
other defect metrics such as defect correction effort 
and defect severity can identify different critical 
defective components from the other defect metrics. 
Lastly, we want to find out how by using several 
measures we can prioritize testing activities. 
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III. System Description 
In this study, we performed an empirical study of an 
industrial Smart Grid application, a type of system 
of systems (SoS) applications. Several domains of 
Smart Grid exist such as the generation, 
transmission, distribution, markets, operations, 
service providers and consumers [36] with different 
types of software running in these domains (legacy 
systems and new applications). This software, in 
addition, performs different functions and provides 
different services. 
Our motivation for the choice of this case study is 
that, as a critical infrastructure, the availability and 
reliability of the Smart Grid is crucial to its safety 
and security. Smart Grid represents the injection of 
Information and Communication Technology (ICT) 
infrastructure to the electricity grid to allow for bi-
directional flow of energy and information [37]. 
Smart Grid is still in the formation stage, and 
represents a shift from relatively closed grid to a 
more complex and highly interconnected systems.  
Although, efforts are in place to develop 
interoperable standard, there is still substantial gap 
identified as a results of evolving requirements and 
different implemented software and hardware 
products [38]. The fact that these systems have to 
interoperate poses a quality challenge for the entire 
system. For instance, if software for collecting data 
from field devices that are designated for 
monitoring the health or quality of the transmission 
line fails as a result of software defect, the end 
operator (human or automated device) is denied 
real-time data for taking adequate control action.  
Thus, defect analysis using realistic and useful 
measurements is needed to support QA focus on 
different and identified defective parts of the 
various Smart Grid applications. A defect that 
results into failure in one part of such critical 
system can have cascading and serious effects on 
the rest of the Smart Grid systems. Since different 
software will drive different Smart Grid systems 
and many of the system will interoperate and 
integrate together, proper identification of critical 
defect-prone components in these systems is 

important for improving the overall quality of the 
grid. 
The system under study is a distribution 
management system designed to monitor and plan 
the Grid operations. It provides real-time 
operational support by continuously receiving status 
data from the power grid. By using this data, 
automation processes can then provide improved 
error handling, operational statistics, reporting and 
automated customer notification that ensure that 
customers are informed of power interruptions and 
irregularities. 
The system consists of three main parts: 
• The design module that is used for designing the 

single line diagrams based on input from 
Network Information System (NIS). 

• The operation center that monitors the 
distribution grid (through real-time data from 
the SCADA-system), where the operator 
performers switching in case of power 
interruptions or the execution of planned 
maintenance/repair. In addition the operations 
center simulates effects of changes to the grid 
and plans grid operations. It can also notify 
affected customers automatically. 

• The call center that provides information about 
the current grid status for customer center 
representatives, and also sends customer 
observations back to the distribution 
management system. 

The system has been in development for about six 
years and we have analyzed six post releases (field 
and operational) of this application. It is mostly 
developed with C# programming language with 
.NET framework. As listed in Table I, the system 
consists about 380KLOC and contains 1459 class 
files and 2484 classes as of version 4.2.4. In this 
system, a reported defect goes through several 
stages in its life cycle before it is finally closed. 
First, it is reviewed to ascertain if it is a defect, then 
it is assigned to a developer. Subsequently, the 
defect is closed after it has been fixed and tested. 
The actual fix effort (person-hours) therefore 
comprises the time to code, test and provide 
documentation. For copyright reason, we can only 
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provide the meta-data and the results of the study in 
this paper.
Initial investigation of the defects data shows an 
agreement with the Pareto distribution of 20-80 as 
noted in [8, 9]. Figure- 1a shows the distribution of 
defects against correction efforts. Between 20-40% 
of defects are responsible for an average of about 
80% of the correction efforts. Figure-1b displays 
the distribution of defective class files against the 
cumulative number of defects. In five of the 
releases, 20% of the defective class files are 
responsible for approximately 80% of the total 
number of defects. We can therefore safely 
conclude that the Pareto distribution of 20-80 holds 
for this system. Figure 2 shows defect density 
between 0.14 and 0.012 defects/LOC for the 
smallest components (class-files) less than 90 LOC 
and starting to flatten at 0.0002 defects/LOC for 
class-files larger than 680 LOC. This trend agrees 

with the results reported in [7] and is similar to the 
rest of the releases.

IV. Empirical setup 
Our goal is to investigate if there are significant 
differences between the distributions of defect 
measures over components and if they persist. In 
order to adequately investigate our research goal, it 
is appropriate to define some of the terms that are 
relevant and used in the rest of this paper. 

A. Definitions 

Defect-prone component (DPC): A defect-prone 
component is defined as a component in the top 
25% of components with the most number of 
defects. 

 
 

TABLE I.   SUMMARY OF SOFTWARE SOURCE CODE AND DEFECT DATA 

Release Date #Pkg #Class-File #Class KLOC #Defective Class-File #Defect 

4.2.4 Nov 14 2012 261 1459 2484 380.50 29 14 

4.2.2 Oct 12 2012 261 1454 2475 378.25 49 18 

4.1 Aug 17 2012 237 1246 2208 353.04 60 42 

4.0.1SP4 Apr 11 2012 204 1141 1953 322.81 69 29 

4.0.1SP2 Mar 26 2012 205 1139 1947 321.55 46 28 

4.0 Oct 14 2011 187 1041 1791 296.00 137 143 

 

 
Fig. 1. (a) Distribution of defect against correction effort  (b) Distribution of defective component against defect 
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Fig. 2. Defects/LOC vs. Size (LOC) 

Defect-dense component (DDC): A defect-dense 
component is defined as component in the top 25% 
of components with the most number of defect 
densities. 
Severe defective component (SDC): A severe 
defective component is defined as a component 
within the top 25% with the most severe defects. 

Hard-to-fix defective component (HFC): A hard-
to-fix defective component is defined as a 
component within the top 25% with the highest 
correction effort. 

Architectural hotspots: An architectural hotspot is 
defined as a component within the top 25% with the 
highest number of multiple-component defects 
(MCD). This definition is similar to Li et al. [3]. 

 

Multiple-component Defect (MCD): A MCD is a 
defect that affects more than one component. For 
detail discussions about MCD and interface defects 
see [3] and [29] respectively. 
Component: A component in our study represents a 
class file in C#.   
The decision to use the top 25% is based on the 
distribution of the system’s defects data as shown in 
Figure 1b. As observed in this plot, the top 25% of 
defective components account for an average of 
80% of the total defects. It is thus practical to use 
this number for our definitions. Li et al. [3] used 
20% to define the various measures in the study and 
argued that the quality of the system has no bearing 
on the top 20%. Irrespective of how defective the 
system may be, the 20% will still identify about 
80% of MCDs. We find this to be true in the system 
under study. Since the goal of our study is to 
investigate if differences occur between these 
measures, we find it appropriate to use this uniform 
figure (25%) across the various constructs. 

In our system, the interface defects among the 
source files account for an average of 78% of all the 
reported defects. This seems to agree more with the 
reported figure by Perry and Evangelist [29] than 
the figures in Li et al. [3] Therefore, in our 
subsequent analysis, we have treated both DPC and 
hotspots in the same way and did not analyze 
hotspots separately. 

B. Research questions 

In this study, we investigate three research 
questions that can help us clarify our original 
research goal.  
RQ1. Are there differences between components 

identified by DPC, DDC, SDC and HFC? 
In order to quantify the significance of the 
differences, we want to know if those identified 
components persist in the top 25% of the measure. 
Secondly and more importantly, we want to know 
how critical these components are from the 
system’s developers’ assessments. RQ2 and RQ3 
address these goals: 

RQ2. Do the identified defective components in 
RQ1 persist across releases in the same top 
25% region?  

RQ3. How critical to the application are the 
identified components in RQ1? 

To answer RQ1: 
a) We use DPC as a reference measure and 

compute the set differences (1) DDC-DPC (2) 
SDC-DPC and (3) HFC-DPC. By this, we show 
how many defective components are identified 
differently by other metrics from DPC. 

b) We use DDC as a reference metric and compute 
the set differences (1) SDC-DDC (2) HFC-
DDC. By this, we show how many defective 
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components are identified differently by other 
measures from DDC.

c) We use SDC as a reference metric and compute 
the set difference (1) HFC-SDC. By this, we 
show how many defective components are 
identified differently by HFC metric from SDC. 

In mathematical form, we compute the set 
difference D between two sets containing 
components measured by Mi and Mj as: 

 
Figure 3 shows the region of interest between Mi 
and Mj. The shaded portion captures components in 
Mi but not in Mj. 

 
Fig. 3. Region of set difference between Mi and Mj i.e. Mi – Mj 

To address the persistence of identified defective 
components, i.e. components in D (RQ2) across 
releases, we compute for each release the forward 
intersection of components in D in the current 
release with the components measured by Mi in all 
the future releases. In set form, we compute: 

 
The number of defective components that persist 
across future releases is calculated as the cardinality 
of the set: 

 
We discuss how we address RQ3 in the result 
section under qualitative investigation. 

C. Data collection 

We have collected data for six releases of this 
application by using an in-house automated tool. 
We describe in each subsection the details of our 

approach: (1) to collect the data from the defect 
repository, (2) to map the class files to the defects, 
(3) to aggregate the defect counts at the package 
level (4) of computing the defect-fix effort for each 
class file and (5) of ranking components by severity 
of defect. 

1) Defects collection from the defect 
tracking system (DTS) 

We have collected defect data from the HP-QC 
DTS. A Defect repository gives typically a high 
level overview of a problem report. For example, 
typical attributes of the HP-QC defect tracking 
system (DTS) are the Defect ID, severity of the 
defect, the type of defect, date defect is detected, 
the module containing the defect, the version where 
defect is detected, and the date the defect is fixed.  
Our first step is to determine the defects that affect 
each version of the system. In the HP-QC, we use 
“Detected in Version(s)”. A certain defect may 
affect multiple versions of a system. By this we 
mean persistent defects [3] that keep re-occurring 
and span several versions of a system. We include 
such defects in all the versions they affect. Next, we 
filtered out “Enhancement” and “Task” cases from 
the “Defect Type” field. 

2) Method to map class files to defects 
Version repository on the other hand is a 
configuration management system used by the 
developers to manage source code versions. The 
version system provides historical data about the 
actual class file that is changed and/or added as a 
result of corrective action (defect fixes), adaptive, 
preventive and perfective actions [39]. Thus, the 
SVN/CVS provides a detailed granularity level to 
know which source file(s) in the module(s) are 
changed to fix a reported defect. A common way to 
figure out what operation is performed on the 
source file is to look at the message field of the 
SVN commit. When developers provide this 
information with the bug number and/or useful 
keywords (e.g. bug or fix), it is possible to map the 
reported defect with the actual source file(s) [34, 
40]. In some cases, not all bug commits in the 
version repository contain the bug number or useful 
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keyword in the message field. In the past, 
researchers have approached this situation by 
mapping from defect repository to the version 
repository [34, 41].  
We have used both approaches to map defect from 
the HP-QC DTSs to the code changes. The defect 
fixed date allows us to map some of the untagged 
commits in the version system to the resolved bugs. 
Overall, we mapped an average of 71% for the six 
releases used for this study (see Table II). Table II 
lists in addition, the percentage of defect-fix efforts 
(correction efforts) recorded for the mapped defects. 

TABLE II.  % OF DEFECTS MAPPED FROM DTS TO SVN AND % OF FIX-
EFFORTS RECORDED FOR THE MAPPED DATA 

Version %Defects %Fix Efforts 

4.2.4 71.4 80.0 

4.2.2 83.3 100.0 

4.1 85.7 97.2 

4.0.1SP4 69.0 95.0 

4.0.1SP2 64.0 100.0 

4.0 51.7 75.7 

3) Aggregating number of defects per class 
file 

In a release, it is possible that multiple reported 
bugs be associated to one class file. The unique 
defect ID is thus appropriate to compute the number 
of defects fixes that affect a class file. From the 
mapped change data, we look up each class file and 
determine the total of defects per class file by 
counting the number of unique defect ID in this 
release.  

4) Method of computing the defect-fix 
efforts of class files  

In this system, each corrected defect has a recorded 
fix effort in person-hours in the DTS. The approach 
of collecting defect-fix effort for a resolved defect 
in this application has been discussed in section 2. 
Now, consider component x with 2 resolved 
defects, d1 and d2. Let us say that the recorded fix 
effort for d1 is f1 and the recorded fix effort for d2 is 
f2. If x shares d1 with n number of other 
components and shares d2 with m number of other 

components, what is the defect-fix effort for 
component x? To answer this question, we have 
used equal-blame approach where we assume that 
the correction effort is equally distributed among 
the components affected by a defect. This is similar 
to the approach used by Rombach [42] to 
characterized corrective maintainability effort. 
Based on this assumption, we can compute the 
defect-fix effort for x as:  

 
We thus define the defect fix-effort for a component 
x that shares defects d1, d2, d3, ..., dk with n1, n2, n3, 
..., nk number of components respectively, where f1, 
f2, f3, ..., fk represent the fix efforts as: 

 
5) Ranking of components by severity  

We want to be able to rank the components based 
on their number of the most severe defects. Unlike 
other studies [12-14] that have developed multiple 
models to predict two or three categories of defect 
severity, we can only devise an approach to have a 
single ranking of component based on its most 
severe defects. We describe this method [43] in this 
section since we believe other researchers and 
practitioners can find it useful.  
The defect tracking system (DTS) of the system 
under study uses four values (critical, major, 
average or minor) to describe the severity of each 
recorded defect. The severity is determined based 
on the impact of the defect on the system and the 
business. We keep in mind that a component can 
have many defects and therefore contain different 
severity values (i.e. different severities distributed 
over a component). For instance, a component can 
have 3 defects in this order {Critical=1, Major=1, 
Average=0, Minor=1}. To rank according to 
severity requires that we make some transformation 
to give the highest weights to components 
according to their most severe defect. 

We describe the transformation process we use for 
this purpose: 
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1. Given n number of components and m 
number of defect severity, we form an mxn 
matrix, where the column elements in the 
matrix stand for the severity values of a 
component in their order of severity. 

 
2. We form a new matrix B as follows; for each 

column element, starting from the first 
element, replace all elements below with 
zero if the element above is greater than zero. 

 

 
3. Form a weight row vector W of 1xm 

dimension containing the sum of the 
maximum element of each row below the kth 
row in B. The last column element in W is 
kept as 0: 

 

 
4. Form a new mxn matrix WD, where W is the 

diagonal elements and all other elements are 
zero  

 

5. Form matrix C by dividing each element in B 
by itself 

 

6. Finally, compute D = WD*C + B 

For example, with components; c1: {Critical=2, 
Major=1, Average=0, Minor=1}, c2: {Critical=0, 
Major=1, Average=3, Minor=0}, c3: {Critical=0, 

Major=3, Average=0, Minor=0} and c4: 
{Critical=0, Major=0, Average=0, Minor=1} gives 
matrix: 

 
Following the transformation steps II-VI yields 
matrices:  
 

 

 
From the matrix D’s result, c1 has the highest 
weight of 6, followed by c3 with a weight 4, then c2 
with a weight 2 and lastly c4 with a weight of 1. 
Table III presents the grouping of the components 
based on their most severe defects. Each component 
in the groups is ranked according to the 
transformation procedure (not shown in the table). 
For example, release 4.2.4 contains components 
with no critical defect but 20 defective components 
contain at least 1 major severity defect, while 2 
components contain at least 1 average severity 
defect and possibly minor defects as well but no 
critical or major severity defects. Lastly, 7 defective 
components have at least 1 minor defect but contain 
no critical, major or average severity defects. As we 
proceed from left to right, we can identify 
components purely on the scale of their highest 
severity defects. For instance, in release 4.2.2, from 
this table we identify 17 components with at least 1 
critical defect and 20 components that contain 
major defects but contain no critical defects. We 
also know that 10 components contain average 
severity defects but have neither critical nor major 
defects. This is useful and beneficial and can 
complement the other approach [12-14] of 
classifying severe defects in software components. 
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TABLE III.   GROUPING OF COMPONENTS BY THEIR MOST NUMBER OF 
SEVERE DEFECTS 

Release Critical Major Average Minor 

4.2.4 0 20 2 7 

4.2.2 17 20 10 2 

4.1 8 34 15 3 

4.0.1SP4 16 35 18 0 

4.0.1SP2 6 18 14 8 

4.0 93 29 15 0 

V. Results and Discussion 
Table IV presents the results of the differences 
between the defect measures described in RQ1.  
Our goal is to measure the difference between the 
most used measure (number of defects and defect 
density) in defect model and other defect measures 
(severity of defect and correction effort). In 
columns 2 (DDC-DPC), 3 (SDC-DPC) and 4 (HFC-
DPC), we present the percentage of defective 
components that are identified by DDC (density), 
SDC (severity) and HFC (correction effort) 
respectively and not by DPC (number of defects). 
Similarly, columns 5 – 6 lists the percentage of 
defective components identified by SDC and HFC 
and not by DDC. Lastly, column 7 presents the 
percentage of defective components identified by 
HFC and not by SDC.  

The results demonstrate clearly that other defect 
measures such as severity and correction effort 
could identify other defective components that 
could neither be identified by number of defects nor 
by defect density at the top 25% cut-off point. From 
the results, DDC shows an average of 20.5%, SDC, 
10.8% and HFC, 12.2% of defective components in 
all the six releases that are not identified by DPC. 
Furthermore, by using DDC as a reference measure, 
we show that SDC and HFC identified 18.7% and 
19.9% defective components that are not identified 
by DDC respectively. 
In Table V, we list the results of the persistence 
(RQ2) of the identified components in RQ1 over 
releases. As shown, an average of 36.9% of the 
identified components by DDC persist across 
releases in the top 25% region. In a similar way, 

SDC and HFC show an average of 31.3% and 
32.2% persistence respectively with DPC as a 
reference measure. With DDC as a reference 
measure, they show an average of 39.3% and 43.5% 
persistence respectively. Finally, using SDC as a 
reference measure, HFC gives an average of 29.4% 
persistence over releases. The results reveal the 
significance of the identified components by the 
other measures. These components remain defective 

TABLE IV.  PERCENTAGE OF IDENTIFIED COMPONENTS BASED ON 
DIFFERENCES BETWEEN DEFECT MEASURES 

Release DDC-
DPC 

SDC-
DPC 

HFC-
DPC 

SDC-
DDC 

HFC-
DDC 

HFC-
SDC 

4.0 18.9 6.6 6.6 17.5 16.8 8.8 

4.0.1SP2 21.7 10.9 17.4 21.7 23.9 21.7 

4.0.1SP4 21.7 14.5 11.6 24.6 17.4 18.8 

4.1 21.7 10.0 10.0 18.3 18.3 8.3 

4.2.2 18.4 12.2 10.2 16.3 22.5 22.5 

4.2.4 20.7 10.3 17.2 13.8 20.7 13.8 

Average 20.5 10.8 12.2 18.7 19.9 15.7 

in the top 25% region of the measure across 
releases.  
The results in Table VI demonstrate the possibility 
to identify components that share other quality 
challenges together. For instance, 17.5% of the top 
most defective components also have very high 
correction effort. 14.6% of the defective 
components have high number of defects, high 
correction efforts and high number of severe defects 
(column- 4). 

TABLE V.  PERCENTAGE OF IDENTIFIED COMPONENTS THAT PERSIST 
ACROSS RELEASES BASED ON DIFFERENCES BETWEEN DEFECT MEASURES 

Release DDC-
DPC 

SDC-
DPC 

HFC-
DPC 

SDC-
DDC 

HFC-
DDC 

HFC-
SDC 

4.0 38.5 0.0 44.4 50.0 65.2 41.7 

4.0.1SP2 40.0 40.0 75.0 40.0 81.8 70.0 

4.0.1SP4 26.7 0.0 25.0 17.7 25.0 15.4 

4.1 46.2 83.3 16.7 63.6 36.4 20.0 

4.2.2 33.3 33.3 0.0 25.0 9.1 0.0 

Average 36.9 31.3 32.2 39.3 43.5 29.4 
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TABLE VI.  PERCENTAGE OF INTERSECTION OF DEFECT-PRONE 
COMPONENTS AMONG THE MEASURES 

Release HFC!
DPC 

SDC!
DPC 

HFC!SDC!
DPC 

HFC!SDC!
DDC 

All 

4.0 17.5 18.2 14.6 3.6 2.9 

4.0.1SP2 8.7 15.2 2.2 0.0 0.0 

4.0.1SP4 11.6 10.1 4.3 0.0 0.0 

4.1 15.0 15.0 10.0 6.7 3.3 

4.2.2 14.3 12.2 2.0 0.0 0.0 

4.2.4 6.9 13.8 6.9 3.4 0.0 

A. Qualitative investigation 

In order to address research question 3 (RQ3), we 
investigated the criticality of the defective 
components identified by the various measures 
from the system’s developers. We devised a scale 
from 1 to 5, where 1 indicates the least critical and 
5 indicates the most critical component. 
Subsequently, we asked the developers to rank each 
defective component in the order of their criticality 
to the system. We then formed four categorical 
values Critical (4 + 5), Major (3), Average (2) and 
Minor (1). Figure 4 shows the summary of the 
ranking of 117 defective components by the 
developers. 

Among the defective components ranked by the 
developers, 15% are the most critical to the 
application, while 36% are of major importance, 
39% are of average significance and 10% of the 
components are minor to the system. 
In Table VII, we list the results of grouping the 
various components into the order of criticality as 
provided by the developers. In column 2, we list the 
average values of all identified defective 
components in all the six releases for each scale 
category. Column 3 lists the percentage of defective 
components identified by all the four measures for 
each scale category. 

 
Fig. 4. Distribution of defective components ranked by developers 

Columns 4-7 present the percentage of components 
identified by each measure for each scale category. 
Lastly, columns 8-13 present the percentage of the 
differences between the measures for each scale 
category. 

As shown in the result, by using all the four 
measures at the 25% top most cut-off point, we 
could identify an average of 72% of components 
that are critical to the application.  Also, we could 
identify 71% of major, 64% of average and all the 
minor components to this application. By using 
DPC, we could identify 43.4% of critical 
components followed by HFC that identifies 41.6% 
of critical components and then 37.7% by SDC and 
lastly 9.4% by DDC. We observe that, DDC 
identifies largely average and minor components to 
this system, whereas, other metrics could identify 
largely, critical and major components of the 
system. 

However, the differences in the measures show that 
all the critical components identified by DDC are 
not identified by DPC (column 8). This implies that, 
although, measures based on defect density might 
identify mostly non-critical components, it is still an 
important measure in identifying critical 
components in a system. In this application, HFC 
gave the most result in identifying other critical 
components not captured by the popular metrics 
(DPC and DDC). 

B. Findings 
First, we show that the defect distribution of this 
application behaves like other systems in previous 
studies [7-9, 11, 15, 30, 31]. We discovered a 20-80 
rule in the relationship between cumulative 
defective components and total defects that they 
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account for. In addition, we found a 30-67 rule in 
the relationship between cumulative defects and 
total correction efforts. Secondly, in this 
application, we found that other defect metrics HFC 
and SDC can identify significant and critical 
components in the application almost as much as 
DPC and much more than DDC. In addition, these 
metrics are able to identify other critical 
components not covered by DPC. Although, from 
the Pareto distribution plot (see Figure 1b), 25% of 
the defective components with the most number of 
defects in this system account for an average of 
about 85% of the total defects. Nevertheless, they 
could only identify 43.4% of critical components 
and 41.4% of major components in this application. 
The remaining 30% (approximate) of critical and 
major components are identified by other defect 
measures. In addition, the identified components by 
the other defect metrics persist in the top 25% 
region of these defect measures. 
The results in this study support neither the largest-
first prioritization approach nor the smallest-first9 
prioritization of components for testing activities. 
Since, we could only identify less than half of the 
critical defective components in this system by 
using either of the methods. However, it makes a 
strong case for an all-inclusive defect measures in 
order to discover critical components that are 
defect-prone in this system. For instance, focusing a 
defect model based on defect counts (largest-first) 
on the top 25% or 5% region could leave out quite 
many critical components to the application. 
Neither is it optimal to use defect density (smallest-
first) only at the class-file level. As observed, many 
critical components of this system are not 
identified. Using either or both number of defects 
and defect density in defect prediction models is a 
common practice, however, this study provides a 
useful direction to identifying most important 
components.  
Furthermore, our findings show that using this 
technique; it is possible to discover additional 
                                                

9 Note that the smallest-first approach in this study is based on defect 
density measure. In our study, this measure prioritized smallest components 
(in the top 25%. See Fig. 2). 

quality challenges of a component in a step-wise 
manner. For example, the intersection between DPC 
and HFC shows those components that share both 
high number of defects and high correction efforts. 
The intersection between HFC and DDC reveals 
smallest components that are defect dense with hard 
to fix defects. The intersection between DPC, HFC 
and SDC reveal components with high number of 
severe defects in addition to number of defects and 
high correction efforts. Thus, we can use this 
knowledge for effective decision support in 
assigning testing effort and improving the 
component’s quality.  

In defect prediction models, it makes sense to 
predict the number in addition to the severity, the 
density and the correction effort of defective 
components. Even if we have such defect prediction 
model that achieves 100% accuracy, it is still very 
useful and practical to group the predicted 
components in such a way that testing effort is 
appropriately focused. For instance, how severe is 
the defect in this component? How defect dense is 
the component? Will the correction effort to fix 
defects in this component be high? And does the 
component have many defects? A model based on 
only one measure leaves us with no further 
explanations about the predicted components. 
However, a possible shortfall of model that is based 
on multiple defect measures is the increase in the 
size of the components to be inspected due to the 
union of the models’ outputs. Nevertheless, the 
intersections between the models’ outputs present 
very useful outlook of the predicted components 
and could also minimize the number of components 
to be examined. 

VI. Threats to validity 
We have performed an analysis and evaluation of 
an industrial Smart Grid system using data from a 
single environment. Therefore, we cannot claim that 
this kind of pattern or related will be visible in other 
Smart Grid system or systems in other domains. As 
it is with most case studies, we cannot generalize 
these results across all systems. Further studies will 
be necessary to compare results across several 
systems.  
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TABLE VII.    GROUPING OF IDENTIFIED COMPONENTS BY THEIR CRITICALITY TO THE SYSTEM 

Scale Mean 

% of Mean 

All 4 DPC DDC SDC HFC DDC-DPC SDC-DPC HFC-DPC SDC-DDC HFC-DDC HFC-SDC 

Critical 8.83 72 43.4 9.4 37.7 41.6 9.4 7.6 15.1 37.7 39.6 22.6 

Major 21.33 71 41.4 14.9 32.8 36.7 10.2 8.6 14.9 28.1 32.0 21.9 

Average 14.33 64 15.1 48.8 23.2 23.2 39.6 14.0 14.0 8.2 10.47 12.8 

Minor 3.00 100 27.7 83.3 22.3 27.7 66.7 16.7 11.0 5.7 16.67 22.3 

 

For this study, we have relied on the defects logged 
in the defect tracking systems of each application. 
Our approach of defect data extraction is similar to 
what other researchers have used in the past [34, 40, 
41]. Nevertheless, common threats are whether 
defects logged in the DTS are accurately tagged in 
the respective code changes in the version systems. 
In addition, we cannot be sure if all defects are 
logged in the DTS. Also, there could be cases that 
the message log of the file that consists a change is 
not tagged with the bug numbers of the resolved 
defect. Furthermore, there could be cases of 
typographical error in the recording of the bug 
number in the version systems [41] and lastly, it is 
still possible that duplication will occur. 
We have used an approach that equally assigns 
correction effort to a group of components that 
share a fixed defect for the reason that the system’s 
developers did not track correction effort per 
component (class-file) and this is neither recorded 
in the DTS repository. This assumption that each 
component in the group has equal correction effort 
may lead to imprecision. For instance, the effort 
spent to fix a reported defect in two components 
may vary. Greater effort may be spent on one 
component than the other. We believe that the 
possibility of such imprecision cannot bias the 
result in a significant way. 

The recording of defect severity in many defect-
tracking systems has been argued to be subjective 
[19]. We cannot exclude the possibilities of 
subjective severity records in the DTS that we have 
used. However, most records point to the correct 
severity of defects in this application, therefore, we 
can rely on the quality of the data to a great degree. 

VII. Conclusion 
In this study, we have investigated the distribution 
differences of four defect measures in a non-trivial 
industrial Smart Grid system, namely; number of 
defects, defect density, defect correction effort and 
defect severity at the top 25% cut-off. We 
subsequently validated the results against 
developers’ assessment of the criticality of the 
components to the under study system. At the 25% 
top most region, we found significant differences 
among the measures in identifying critical and very 
important components to this application. We 
discovered that the severity of defect and correction 
effort could as well identify significant number of 
critical components to the application. Also, the 
defect density, although, identified mainly non-
critical components, nevertheless, could identify 
few distinct critical components that are not covered 
by the number of defects.  
We found that focusing defect prediction models 
using the largest-first approach leave out significant 
number of critical and significant components to 
this application. Also, using the smallest-first 
approach is not optimal in the identification of 
critical defective components in this system. Lastly, 
we discovered that it is possible to identify 
additional quality challenges of a component by 
performing pairwise intersections of the measures.  

This empirical study of a complex and industrial 
smart grid system brought out a useful perspective 
to our definition of component’s defect-proneness. 
This study demonstrates the need for an all 
inclusive defect measures in the construction of 
defect prediction models for critical systems. It 
further shows that using several measures 
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concurrently can assist to prioritize testing activities 
for important and critical defective components in 
critical systems. 

As future work, we propose to use the four 
measures in a single prediction model environment. 
We are interested to see how the output of models 
constructed with the four defect measures can 
improve the results of defect prediction models in a 
more useful and practical way, both in the industry 
and the academia. 
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Abstract - (Background) Empirical evidence shows that dependency cycles among software components are pervasive in 
real-life software systems, although such cycles are known to be detrimental to software quality attributes such as 
understandability, testability, reusability, build-ability and maintainability. (Research Goals) Can the use of extended 
object-oriented metrics make us better understand the relationships among cyclic related components and their defect-
proneness? (Approach) First, we extend such metrics to mine and classify software components into two groups - the cyclic 
and the non-cyclic ones. Next, we have performed an empirical study of six software applications. Using standard 
statistical tests on four different hypotheses, we have determined the significance of the defect profiles of both groups. 
(Results) Our results show that most defects and defective components are concentrated in cyclic-dependent components, 
either directly or indirectly. (Discussion and Conclusion) These results have important implications for software 
maintenance and system testing. By identifying the most defect-prone set in a software system, it is possible to effectively 
allocate testing resources in a cost efficient manner. Based on these results, we demonstrate how additional structural 
properties could be collected to understand component’s defect proneness and aid decision process in refactoring defect-
prone cyclic related components.  

 
Keywords-Cyclic Dependencies; Dependency cycle metrics; Software metrics; Empirical Study; Defect proneness; 

Software components 

1. Introduction 
Dependency cycles among components have for long been regarded as symptoms of design decay that 
should be avoided in software systems (Briand et al., 2001a; Fowler, 2001; Lakos, 1996; Martin, 2000; 
Martin, 1996; Parnas, 1979). Lakos (1996) argues that cycles among components present a unique problem 
in terms of understandability since there is no reasonably starting point and no single part of the system can 
make sense on its own. For Parnas (1979), cycles, referred as “loops in the Uses Relation”, can lead to a 
situation where nothing works in a system until everything works and that cycles prevent easy extension of 
software components. Similarly, Fowler (2001) says that cycles are problematic and that it makes system 
harder to understand “because you have to go around the cycle many times”. In addition, Fowler argues that 
cycles inhibit the reusability of the class code. Martin (2000) states that cycles inhibit build-ability because 
to release a module, it should be tested and this implies that all dependent components must compile and 
build. In addition, many authors have proposed several strategies to optimize stubs in order to break cycles 
during integration testing, showing that cycles are detrimental to testability (Briand et al., 2001a; Hanh et 
al., 2001; Kung et al., 1996). 
Despite numerous claims that cycles inhibit software quality attributes such as extensibility, 
understandability, testability, reusability, build-ability and maintainability (Fowler, 2001; Lakos, 1996; 
Martin, 2000; Parnas, 1979), evidence shows that cycles are widespread in real life software systems 
(Briand et al., 2001a; Hanh et al., 2001; Kung et al., 1996; Le Traon et al., 2000; Melton and Tempero, 
2007a; Parnas, 1979; Tai and Daniels, 1997). The extent to which cycles are pervasive in software systems 
suggests that design advice (Fowler, 2001; Lakos, 1996; Martin, 2000; Parnas, 1979) regarding cyclic 
dependencies has not been followed. Melton and Tempero (2007a) argues that, either we have a lot of bad 
software out there, or the advice is not useful. Intuitively, we would expect that since cycles increase 
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coupling complexities among components (Briand et al., 1998; Briand et al., 2001b), then it should have a 
positive correlation with defects.  
Furthermore, special analysis tools have been developed to facilitate refactoring of code modules, to detect 
and to warn developers about dependencies that are already cyclic or that could result into cycles. For 
instance, tools like, JDepend (http://clarkware.com/software/JDepend.html), NDepend 
(http://www.ndepend.com), JooJ (Melton and Tempero, 2007b), Dependometer 
(http://source.valtech.com/display/dpm/Dependometer), Classycle (http://classycle.sourceforge.net), 
Dependency Structural Matrix (Laval et al., 2009) are examples of existing tools and approaches that can be 
leveraged to dissuade developers from cyclic dependencies. However, in terms of defect-proneness and 
multiplicity of defects among components, are there undisclosed relationship between cycles and defect-
proneness? If yes, we speculate that such evidence can reinforce the need to seek the benefits of such tools, 
if we want to further discourage dependency cycles among components.  
The goal of the study presented in this paper is therefore to investigate the relationships between cyclic 
dependencies and defect profiles of cyclically dependent components. Although research efforts have 
focused on breaking cycles during integration testing (Briand et al., 2001a, 2003; Hanh et al., 2001; Kung et 
al., 1996; Le Traon et al., 2000; Tai and Daniels, 1997) collecting empirical evidence of cycles in software 
systems (Melton and Tempero, 2007a) and developing tools to break dependency cycles among components 
(Hautus, 2002; Melton and Tempero, 2007b; Sangal et al., 2005), there exist gaps regarding empirical 
evidence of defect proneness of cyclically related components.  

We have performed an empirical study on six software systems to provide field evidence of actual cyclic 
dependencies in object-oriented systems and how such interconnection can be used to discover patterns of 
defect-prone components. We choose Apache Camel, Apache ActiveMQ, Apache Lucene, Eclipse and 
openPDC because they are open source and to compare between systems with different development 
technologies (i.e. Java and C#) and with different functionalities. Lastly, we choose a commercial 
application to understand if the cyclic effects are the same or different from open source domain. 

Thus, the main contribution of this work is an empirical study of cycles and defect proneness of components 
caught in cycles. Furthermore, we propose metrics that identify cyclic dependency relations among 
components and use this information to understand the components defect proneness. For instance, it is not 
sufficient to only know components in cycle; we might be interested in the neighbors (Zimmerman et al., 
2011) that depend directly on these cyclically connected components. Our findings will be useful for both 
practitioners and researchers in the collective effort to minimize defects in real life systems and minimize 
effort and resource usage in system testing. Also, this study points out additional software structural 
properties that can be focused for understanding components’ defect proneness. Lastly, this effort is aimed 
to add significance to the need of collecting cycle metrics and focus on defect-prone cyclically dependent 
components for refactoring possibilities. 

The rest of the work is organized as follows; Section 2 explores related literature to our work. Section 3 
describes relationships and dependency concepts among software components and explains cyclic 
dependencies with examples. Furthermore, we define the terms used in the paper. In section 4, we detail our 
empirical design setup; In addition, we define the proposed metrics that are used in this paper. Additionally, 
we define our hypotheses and explain the statistical approaches that we employ. We likewise describe the 
case studies for this study and explain how our data is collected. In section 5, we present the results of our 
analysis and provide further discussions of the results and their implications. We draw out threats to the 
validity of the results in section 6. Finally, in section 7, we conclude the paper with additional notes on 
future work. 
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2. Related Work 
This study concerns cycles among inter-related components and understanding the defect proneness of 
components in this cyclically related category by using extended object-oriented (OO) metrics. We thus 
discuss related work in two areas; the first part covers related work in cyclic dependencies among 
components and the second part covers related work in OO metrics and approach for determining 
component’s defect proneness. 

A. Cyclic dependencies 
Over the years, researchers have conducted studies and provided design advice regarding cycles among 
components. In this section, we review previous work in dependency cycles among classes and packages 
and present empirical study of cyclic dependencies. 

In terms of classes, Parnas (1979) identified “Uses relation” between two components and argues that the 
loops in the “Uses Relation” are detrimental to extensibility of a software system. Lakos (1996) provided 
extensive discussion about cyclic dependencies among C++ classes. The author claimed that cyclic physical 
dependencies among classes of C++ program inhibit understanding, testing and reuse. Other authors also 
claimed that cycles inhibit system understanding (Fowler, 2001), testing in isolation, integration testing 
(Briand et al., 2001a; Hanh et al., 2001; Hashim et al., 2005; Kung et al., 1996) and reuse (Martin, 1996).  
Cyclically connected components are mutually dependent, thus in terms of understanding any of the classes; 
it is necessary to understand all other classes in the cycle. Furthermore, to test a class in isolation is 
practically impossible when it is involved in a cycle with other classes (Lakos, 1996). In integration testing, 
cycles prevent the topological ordering of classes that can be used as a test order (Briand et al., 2001a, 2003; 
Hanh et al., 2001; Jungmayr, 2002; Kung et al., 1996; Melton and Tempero, 2007a), thereby inhibiting the 
testability of a system. 

From package point of view, in many OO systems developed with language such as Java or C++, package 
represents a physical organization of software components (Knoernschild, 2012; Lakos, 1996). Packages are 
used to group classes that perform similar functions. As such they focus on manpower and they represent 
the granule of release (Martin, 1996). Applications are usually a network of interrelated packages and the 
work to manage, test, build and release those packages is non-trivial (Martin, 1996). When cycles are 
formed at the package level, it seriously affects manpower since software engineers working on individual 
packages need to build with every other dependent package before they can release their package. Cycles 
among packages have thus been claimed to be detrimental to understandability (Fowler, 2001), production 
(Lakos, 1996; Martin, 1996), marketing (Lakos, 1996), development (Lakos, 1996; Martin, 1996), usability 
(Lakos, 1996; Martin, 1996) and reliability (Lakos, 1996).  

Although, it has been stated (Briand et al., 2001a; Hashim et al., 2005; Kung et al., 1996; Lakos, 1996) and 
implied (Jungmayr, 2002; Martin, 1996) that cycles are pervasive in real-life software systems. However, it 
appears that only Melton and Tempero (2007a) have performed an elaborate empirical study of cycles on 
many software systems at the class level. Melton and Tempero carried out an empirical study of 78 Java 
applications and employed three “Uses Relation” types; “USES”, “USES-IN-SIZE” and “USES-IN-THE-
INTERFACE” as stated in Lakos (1996) to describe cyclically connected components within the 
applications. The result shows that almost all the 78 Java applications contain large and complex cyclic 
structures among their classes. This study is conducted on open source Java applications showing that 
further work is still needed to investigate other domains and programming languages before any 
generalization can be made. 

B. OO Metrics and defect proneness of components 
Object Oriented metrics have been widely used to indicate defect proneness of components. Basili et al. 
(1996) validated a set of OO metrics proposed by Chidamber and Kemerer (1994). Among these metrics, 
coupling between object classes (CBO) and response for class (RFC), are shown to correlate significantly to 



P2: A Study of Cyclic Dependencies on Defect Profile of Software Components 

 

 110 

a component’s defect. Briand et al. (1998); (2001b) have also conducted several studies that showed CBO, 
and especially import and method invocation coupling to be important properties when building an OO 
quality model.  

Additionally, Marinescu (2001) identified code smells (GodClass, ShortgunSurgery, GodPackage, etc.) by 
defining threshold values and rules based on code metrics. The author showed that code smells violated 
good design principles of low coupling, high cohesion, manageable complexity, proper data abstraction and 
standard component reuse (Capretz and Capretz, 1996; Capretz and Lee, 1992; Coad and Yourdon, 1991).  
Empirical study by Olbrich et al. (2009) on two open source applications further showed that different 
phases could be identified during the evolution of code smells. In addition, they pointed out that code smell 
infected components display a different change behavior. 
Actual dependencies of a component have also been employed to indicate the defect proneness. For 
instance, Schroeter et al. (2006) demonstrated that imported components in the eclipse software could 
predict the defect proneness of their dependent components. Further, we have recently validated this 
approach on a Smart Grid application (Oyetoyan et al., 2012).  
Social network analysis has been explored for defect prediction. Zimmermann and Nagappan (2008) 
showed that there is significant correlation between their proposed dependency graph metrics and the 
number of defects in the graph related components. Their results from a study of Microsoft Windows Server 
2003 demonstrated that a network-based model could predict the number of defects and could identify 
critical binaries missed by complexity models. In fact, in their previous study of similar system 
(Zimmermann and Nagappan, 2007) they made an implicit observation that binaries in dependency cycle 
have on average twice as many defects as those binaries not in cycle.  In another related study of Microsoft 
Vista and Eclipse, Zimmerman et al. (2011) showed that the properties of a component’s neighbor such as 
size, code churn; complexity, test coverage and organizational structure can influence the quality of the 
component. However, Weyuker et al. (2008) disputed the effect of the number of developers’ impact on 
defect-proneness of components. An elaborate empirical study by the authors concluded that the number of 
developers is not a major factor that could contribute to a component’s defect-proneness. 
Yutao et al. (2010) have proposed a multiple-dependency metric, m based on network analysis. The metric 
measures the degree of reusability of a component (incoming dependencies) as well as its direct and indirect 
coupling (reachable set). In the open source systems they analyzed, the authors found that fewer classes 
have high m value and that correlations exist (though weak) with WMC and LCOM (Lack of Cohesion of 
Method). Indicating that m may be used as a statistical indicator for defect-prone classes identified by WMC 
or LCOM. 
Related Metrics 

The following metrics regarding coupling between objects in object-oriented systems are of interest for 
our work: 
• CBO: The coupling between object classes (CBO) shows the number of other classes that are directly 

coupled to the class (Basili et al., 1996; Briand et al., 1998; Briand et al., 1999; Briand et al., 2001b; 
Chidamber and Kemerer, 1994).  

• RFC: Response for class (RFC) indicates the set of all methods that can potentially be invoked in 
response to a message received by the object of the class (Basili et al., 1996; Briand et al., 1998; Briand 
et al., 1999; Briand et al., 2001b; Chidamber and Kemerer, 1994). It considers both direct and indirect 
connections. However, it does not show if the connection is cyclic or not.  

• CyclicClassCoupling (Nagappan and Bhat, 2007; Zimmermann and Nagappan, 2008): This metric 
counts the number of direct cyclic connections between two classes. For instance, C1 depends on C2 and 
C2 depends on C1 (see Figure 3d). However, this metric only deal with direct cyclic coupling between 
two classes and does not consider transitive relationship where components can become cyclic 
indirectly (see Figure 3a).  
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• dwReach (Nagappan and Bhat, 2007; Zimmermann and Nagappan, 2008): This metric shows the 
number of components that can reach another component with the distance weighted by the number of 
steps. 

The above metrics measure the number of connections between objects and cannot be used for our purpose. 
Our proposed cyclic dependency metrics in section IV contains metrics that simply flag a component when 
it has a cyclic relationship. Although our work extends these previous studies, it differs in focus. We provide 
the first empirical study of defect proneness of cyclic dependent components. From this study, we are able 
to point out additional structural complexities that can be focused for defect tracing and testing activities. 
Additionally, our work indicates coupling property that can be useful and assessed for building quality 
models. 

3. Relationships and dependency concepts 
In this section we focus on explaining various types of relationships that exist among components when 
modeling with UML. Furthermore, we describe how a UML diagram is translated to an Object Relation 
Diagram (ORD) when the analysis concerns a client to server or supplier relationships. In addition, we 
present the definitions of an ORD that are appropriate for our study. In addition, we explain the component 
relationship level at which dependency is stronger and how this influences our choice of analysis decision. 
Lastly, we present and explain cyclic dependencies with examples and provide definitions that are necessary 
for our metrics.  

A. Relationships: From UML to Dependency Graph 

In software designs, class interactions are modeled based on the various relationships that exist among them 
(Bennett et al., 1999; Souza and Wills, 1999). If we concern ourselves with UML modeling, these 
relationships among the various classes can be modeled in UML10 as association (uni-directional, bi-
directional or reflexive), aggregation, composition, generalization (inheritance) and realization. An 
association relationship indicates a structural relationship between two class objects. The reasons for this 
relationship and the rules that govern the relationship are specified in an association relationship. 
Aggregation typifies a “whole-part” (has-a) relationship, where a class is modeled as a part of an aggregate 
class (whole). The “part” can exist independently of the “whole” and is therefore not destroyed when the 
lifecycle of the aggregate class ends. A composition relationship (part-of) is a special type of aggregation 
where the “part” class can no longer exist once the “whole” class lifecycle ends. Generalization illustrates 
an inheritance (is-a) relationship between a child class and its parent (super or base class). Realization 
relationship exists when a class implements (realizes) the behavior of another class.  

An Object Relation Diagram (ORD) has been widely used to describe components and their relationships 
(Briand et al., 2001a, 2003; Hanh et al., 2001; Kung et al., 1996; Le Traon et al., 2000; Tai and Daniels, 
1997). The term component in this study is used to represents a class or a package. A component X is said to 
have dependency on another component Y if X requires Y to compile or function correctly (Jungmayr, 2002). 
Three relationship types are described in ORD, that is: inheritance, I, association, As and aggregation, Ag. 
Where I, is used for both inheritance and realization relationships, and Ag is used to represent both 
composition and aggregation relationships11, while As maps to other cases of dependencies and associations. 
When an ORD is represented as a dependency graph, the relationship labels are usually ignored. Figures 1b 
and 1c show two design diagrams of the implemented code in Figure 1a. In Figure 1b, the UML relationship 
diagram shows a reflexive association relationship between class B and itself. In other words, an instance of 
class B can be related to another instance of B. A generalization relationship exists between classes A and 
                                                
10 http://www.omg.org/spec/UML/2.3/Superstructure/ 
11 Briand et al. (2001a) maps only composition relationship to Ag with the claim that compositions have a lifetime constraints between the whole 
and the parts and thus represent tight coupling. Whereas, As maps to simple aggregation (a type that is considered as a special type of 
association in UML and does not denote strong coupling), dependencies and associations. 
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B, since B is the super class of A. A Realization relationship exists between classes A and C since class A 
implements the behavior or contracts specified in class C. An aggregation relationship is shown between 
classes B and D and lastly, a composition relationship exist between classes D and E. Class E cannot exist 
when D’s lifecycle ends. 
For formal representation of an ORD, we borrow two definitions from Kung et al. (1996) and state these as 
follows: 
• Definition 1. An edge labeled digraph G = (V, L, E) is a directed graph, where V = {V1, ...,Vn} is a 

finite set of nodes, L = {L1, ..., Lk} is a finite set of labels, and E " V ! V !!L is the set of labeled 
edges. 

• Definition 2. The ORD for an OO program P is an edge-labeled directed graph (digraph) ORD = (V, L, 
E), where V is the set of nodes representing the object classes in P, L = {I, Ag, As} is the set of edge 
labels, and E = E1 # EAg # EAS is the set of edges. 

Applying these definitions to the ORD presented in Figure 1c gives V = {A, B, C, D, E}, L = {I, Ag, As} and 
E = {EA-B, EA-C, EB-D, ED-E}, where EX-Y denotes an edge that connects node X to node Y in the direction of 
Y. For the purpose of this paper, we ignore the edge labels L and concern ourselves with the set of nodes 
and the set of edges. Furthermore, in the data collection section (Section 4.4.4), we describe how the set of 
edges are determined for each class node and each package node. 

 

 
Figure 1(a – c) – Representation of component relationships with UML and ORD 

! 
public class A extends B  

implements  C{ 
 
private Map<String, String> a1; 
 
public void ma1(){} 
 
@Override 
public void mb1(){} 
 
@Override 
public void mc1(){} 

 
@Override 
public void mc2(){} 

} 
 
public class B { 

private D b1;    //Aggregation 
List<B> b2;     //Reflexive 
 
//constructor 
public B(D b1) { 
 this.b1 = b1; 
} 
private void mb1(){} 
private int mb2(){} 

} 
 
interface C { 

public void mc1(){} 
public void mc2(){} 

} 
 
public class D { 

private String d1; 
E d2 = new E();   //Composition 
 
public void md1(){} 
private void md2(){} 

 
//inner class 
class E { 

private double e1; 
 
protected void me1(){} 

} 
} 
 

  
 
 

 
 
 
 
 
 

(c) – Object Relation Diagram (ORD) (a) – Implemented code 

> a1;

Aggregation 

Reflexive 

Composition 

Realization Inheritance 

(b) – UML relationships diagram 
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B. Physical or Logical Dependency 

Lakos (1996) differentiated between logical relationships and physical dependencies and states that a 
physical dependency concerns dependency of the physical entities of a software unit and for instance 
requires the use of an “#include” directive in C++ in another components and that this type is 
stronger. Physical design decisions impact on deploy-ability, reusability and maintainability. A 
physical dependency implies that the dependent component12 requires the dependee component13 in 
order to compile and link. In Java systems, we can imply that to mean relationships between a .java 
and another .java files. In C#, this is equivalent to a .cs files relationships. Physical dependency thus 
requires that a physical class file have knowledge of another physical class file. A file can enclose 
multiple classes, including nested classes and we can define the logical relationships among these 
classes, for example, the case of class D and E in Figure 1. A physical dependency relationship is 
formed when there is dependency with classes in another physical file. However, we can infer or 
imply physical dependencies from logical relationships among components (Lakos, 1996). We 
concern ourselves in this study with dependency at physical level, that is, both files (top-level 
classes) and packages as described above since we can infer strong dependencies from it. 

C. Cyclic dependencies 
In Figure 1a, let us say that during system evolution, class E for some reasons is required to pass a 
message to class A. We introduce an instance variable of class A implemented locally in method 
me1() of class E (see Figure 2a). Figure 2b shows the dependency relationship that now occurs as a 
result of the new dependency of class E on class A. What we have is a cyclic dependency between 
classes B, D, E and A. In graph theory, this type is referred as strongly connected component (SCC) 
(Jungmayr, 2002). If we assume that class D resides in another package or another file, then a strong 
physical cyclic dependency exist among the connected classes.  

 
Figure 2 – Cycles and representation with Object Relation Diagram (ORD) 

Hypothetical Example 

As depicted in Figure 3a, cyclic dependency is formed when components depend on one another in a 
circular manner. For example, B depends on A, C depends on B, D depends on C and A in turn 
depends on D. In this network diagram, 2 cyclical paths exist: (i) A-D-C-B-A  (ii) A-D-C-F-E-A. 
This relationship covers both direct and indirect connection between components. Cyclic 

                                                
12 A component that depends on another component is called a dependent component  
13 A component that is dependent upon by other component is called dependee component  

 
 
 
! 
public class D { 

private String d1; 
E d2 = new E(); 
 
public void md1(){} 
private void md2(){} 

 
//inner class 
class E { 

private double e1;! 
 
protected void me1(){ 

A instanceA = new A(); 
instanceA.ma1(); 

} 
} 

} 
 
 
 

 
 

//MyObject.java    
public class MyObject extends MyParent  

implements  MyInterface{ 
 
MyFastSetInterface set = new MyFastSet(); 
public List toList(MyName name ){ 
 MyFastList my1 = new MyFastList(); 

my1.add(name); 
Iterator it = set.iterator(); 
while(it.hasNext()) { 

Object o = it.next(); 
my1.add(o); 

} 
return my1; 

} 
} 

//MyObject.cs 
public class MyObject : MyParent,  
MyInterface{ 

 
MyFastSetInterface set = new MyFastSet(); 
public List toList(MyName name ){ 
 MyFastList my1 = new MyFastList(); 

my1.add(name); 
IEnumerable<object> e = set.iterator(); 
foreach(element in e) { 

my1.add(element); 
} 
return my1; 

} 
} 
 

 
USES(MyObject) = {MyParent, MyInterface, MyFastSetInterface, MyFastSet, MyName, MyFastList} 
 

 
 

//Package USES 
package p; 
 
import p1.C1; 
import p1.C2; 
import p2.*; 
 
public class C3 
{ 

// 
} 

 
// 
package p; 
 
import p2.C1; 
import p2.C3; 
import p2.C4; 
 
public class C5 
{ 

// 
} 

(a) – Inner class E with instance of class A (b) – Cyclic dependency formed as a result of dependency of E on A 
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relationships increase coupling complexities and have the potential to propagate defects in a network 
(Abreu and Melo, 1996). A hypothetical case as depicted in Figure 3a-b demonstrates such effect. 
From Figure 3a, assume that component I contains some defects. We can further assume that the rest 
of the components A – H will have a certain probability to inherit the defect from I, since they are 
directly and indirectly dependent on I. To reduce the likelihood of defect propagation e.g. in Figure 
3b, let us say that, a new component J is created so that components D and C depend on J directly 
thereby breaking the cyclic effect. By performing such a refactoring, the effect of possible defect 
propagation is reduced to only component G.  
 

 
Figure 3(a - d) - Cyclic Dependencies and propagation effect on components in a software network

For the purpose of this paper, we define some of the terms used henceforth: Assume a component c 
! System P then: 

D1. Component’s Children: Components that are directly and transitively dependent on c. E.g. 
in Figure 3(a), All the components except component I are directly or transitively dependent 
on A.  Components G, and H have no children. We use TChildren for both direct and 
transitive children and DChildren for direct children. For example, DChildren(A) = {B, E}. 

D2. Component’s Parent: All components that c is both directly and transitively dependent 
upon. We use TParent for both direct and transitive parents and DParent for direct parents. 
For instance, TParent(G) = {A, B, C, D, E, F, I} and DParent(G) = {C}. 

D3. Component In-Cycle: Component c is said to be in cycle, if it has at least one parent that is 
the same as one of its children. E.g. B is in cycle because its parent A is also one of its 
children. 

D4. Component Depend on In-Cycle Component: Component c is said to depend on another 
in-cycle component if at least one of its direct parents is in cycle. G and H are examples of 
components that depend on In-Cycle components C and E respectively.  

D5. Component’s Minimum Number of Cycle: The minimum number of cycle that component 
c is involved with is defined as the sum of the number of its direct children that are in-Cycle 
and the number of its direct parents that are in-Cycle minus one. For instance, DChildren(A) 
= {Bin-cycle, Ein-cycle}, and DParent(A) = {Din-cycle}. Therefore, minCycle(A) =  3-1 = 2.  

D6. Associated Defect: Two components have associated defect if a specific defect affect both 
components. We use defect ID to track associated defect between components. 

D7. Cyclic Propagated Defect: Consider component M that directly depend on K (Figure 3c). 
Let us say that L contains some defects. These defects from L cannot be propagated to M. 
However, if M forms a cycle with L by depending on it (Figure 3d), we can thus infer that 
the defect from L may be propagated to M.  

 

4. Empirical Design 
Our goal in this work is to explore the defect profiles of cyclic dependent components in a system. 

As explained in (Fowler, 2001; Lakos, 1996; Martin, 2000; Martin, 1996), cyclic dependencies are 
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better studied at physical design levels such as the source file (compilation unit) and package levels, 
since physical dependencies are formed at such levels. In addition, previous empirical studies 
(Melton and Tempero, 2007a) on cyclic dependency have performed analysis at the file levels. 
Furthermore, when developers resolve defects, they usually log the changes at the file level and thus 
have file to defect mapping. Based on the above reasons, we identify relationships and dependencies 
at the compilation units (top-level classes for Java) and at the package level. We perform our 
evaluation in three ways: First, we propose a set of metrics built around cyclic dependency 
relationships. Second, we use our proposed metrics to mine software components and classify them 
into two groups, “Cyclic” and “Non-Cyclic”. Third, we statistically evaluate data from cyclic-related 
components and non-cyclic related components to determine their defect profiles. 

A. Proposed Metrics for our study 

We describe as follows the cyclic metrics and notations for our study. Consider a set of components, 
C in an object-oriented system. For each component c ∈ C: 

 
1. Component In-Cycle: 

inCycle: boolean 
∃p : p ⊆ (TParent(c) ∧ TChildren(c)) 
{∀c.inCycle(c) ↔ p ≠ ∅} 
Where inCycle(c) denotes c to be in a cyclic 
dependency 
 
Example 1. (Figure 3a): 
if c = A 
TParent(A) = {D, C, I, B, F, E} and 
TChildren(A) = {B, C, D, E, F, G, H} 
p = {B, C, D, E, F} 
Since p ≠ ∅ ∴ inCycle(A) ⇒ True 

 
2. Depend On Cycle: 

depOnCycle: boolean 
∃x : x ∈ DParent (c) 
{∀c.depOnCycle(c) ↔ (¬inCycle(c) ∧ 
inCycle(x))} 
Where depOnCycle(c) denotes c depends on 
inCycle component x that is a direct parent of c. 

 
Example 2. (Figure 3a): 
if c = H 
inCycle(H) = False, 
But DParent(H) = {E} and inCycle(E) = True 
∴ depOnCycle(A) = ¬inCycle(A) ∧ inCycle(E) = 
True 

 
3. Minimum Number of Cycles: 

minCycle: Integer 
∃p : p ⊆ (TParent(c) ∧ TChildren(c)) 
minCycle(c) = (|p ∧ DParent(c)| + |p ∧ 
DChildren(c)|) - 1 
 
Example 3. (Figure 3a): 
From Example 1, if c = A 
p = {B, C, D, E, F} 
DChildren(A) = {B, E} 
DParent(A) = {D} 
∴ minCycle(A) = (|{D}| + |{B, E}|) -1= 2 
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B. Hypotheses 
The main goal of this study is to investigate the impact of cyclic dependencies among components 
regarding their defect proneness. To verify the conjecture that the most defects are concentrated in 
the components with cyclic dependencies, we define our hypotheses as follows: 

HA: Cyclic dependent components are more defect-prone than non-cyclic dependent components. 
To evaluate this hypothesis, we further define two sub hypotheses: 
• HA1: The number of defective components in cyclic relationships is significantly higher than 

non-cyclic defective components. 
With this hypothesis, we seek to establish the group with the higher number of defective 
components. In addition, the number of defective components in each group allows us to 
measure the recall value that shows the ratio of defective components in each group to the total 
number of defective components in the system. 
 

• HA2: The proportion (ratio) of defective components in cyclic group is significantly higher than 
the proportion of defective components in non-cyclic group. 
Using this hypothesis, we aim to establish the group with higher defect propagation among 
their components. It is not sufficient to know the number of defective components in each 
group. We are also interested in knowing if defects spread in a group more than the other. The 
proportion data gives us idea about the concentration of defects in each group. This measures 
the ratio of defective components to non-defective components within each group and allows 
us to identify the group with relatively higher number of defective components.  

HB1: The actual number of defects in cyclic dependent components is higher than non-cyclic 
dependent components. 

HB2: Defect density in cyclic dependent group is higher than non-cyclic dependent components. 
Defects can be associated in nature, that is, a defect may propagate to a number of components. 
Therefore, in terms of number of defects, a component may have many defects and many 
components may have very few defects. If HA is true, HB1, therefore, allows us to verify if the 
components in cyclic group are defective due to more actual defects than the non-cyclic group. If this 
hypothesis is not rejected, we can conjecture that cycles probably trigger more defects. 

Defect density takes the size of the components into account. We compute defect density as the 
number of defects in each group per the source line of code in the group. We seek to know if there is 
an implicit relationship between size and defect in each group. 

C. Statistical Analysis 

For this study, we identify cyclic group and non-cyclic group from each system. In Table 1, we use 
C to represent all cyclic-related group, inC for group with components that are only in-cycle and NC 
for “Non-Cyclic” group. We have performed analysis both at the class and package levels. A cyclic 
group consists of all components (classes or packages) that are flagged to be (1) in-cycle and (2) 
cyclic-related, i.e. both in-cycle and also directly dependent on in-cycle components. If we use our 
Figure 3a, then inC and C groups for this hypothetical example consists of components {A, B, C, D, 
E, F} and {A, B, C, D, E, F, G, H} respectively, and non-cyclic (NC) group consists of only {I}. We 
use Table 1 to present how the data for each category and for each hypothesis is computed. For each 
system, we collect both cyclic dependency data and defect data for multiple versions (Table 2). For 
each version and each group, we determine the number of components, the number of defects, the 
number of defective components and the source line of code. Subsequently, we compute the 
proportion data and the defect density per group as shown in Figure 4. 
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Table 1 – Data computation for groups and hypotheses
Group #Component #Defect #Defective Component #Non-Defective Component SLOC 
inC inCN DinC inCD inC-inCD inCSLOC 
C CN DC CD C-CD CSLOC 
NC NCN DNC NCD NC-NCD NCSLOC 

 

 
Figure 4 – Computed data per group and for the hypotheses 

The next step is to determine what statistical approach is appropriate to test our hypotheses, either a 
t-test or non-parametric test. We initially perform statistical test to determine if our data sample is 
from a normally distributed population. For this, we use the Shapiro-Wilk normality test. If the data 
is normally distributed, we employ a t-test; otherwise we use a non-parametric statistical approach 
(Fenton and Pfleeger, 1997) such as Wilcoxon signed rank test (see Appendix B). 
Lastly, we test the difference in mean between both groups for significant difference that is greater 
than zero. Four categories are identified for both groups based on our hypotheses: 

I. Number of defective components in each group 
II. Proportion of defective components in each group 

III. Actual defect counts produced in each group 
IV. Defect density for each group measured as actual defect in each group per source lines of 

code in the group 
For these four categories, we test the hypothesis (1-tailed significance test): 
• H0: µC - µNC The mean of cyclic group is significantly less than or equal to the mean of non-

cyclic group 
• H1: µC > µNC The mean of cyclic group is significantly higher than the mean of non-cyclic group 
 

D. Data Collection 

We have performed a study on two Smart Grid systems, an open sourced (openPDC) 14 and a 
commercial application (commApp) developed with C#.  In addition, we choose an integrated 
development environment (Eclipse)15, a search engine (Apache Lucene)16, an integration framework 
(Apache-Camel) 17  and a messaging and integration pattern server (Apache-ActiveMQ) 18 , all 
developed with java. We have selected very active projects from the open source community and we 
also considered projects that have different functionalities and different development languages.  

Apache Camel is an integration framework that can serve as a routine and mediation engine between 
applications. ActiveMQ is a messaging server with the capability to handle various integration 
patterns. OpenPDC is a medium-sized Smart Grid open source software (OSS) named openPDC, 
supported by the Tennessee Valley Authority (TVA). The solution is developed using the .NET 

                                                
14 http://openpdc.codeplex.com/ 
15 http://archive.eclipse.org/eclipse/downloads/index.php 
16 http://lucene.apache.org/core/index.html 
17 http://camel.apache.org/index.html 
18 http://activemq.apache.org/index.html 

 

Significant = Y 
Not Significant = N 

 
 

 
 
 

Table 3 – % of defects mapped to SVN using bugnumber in commApp 

 
For instance, for each version or period, we did a post processing of the extracted change data that 
correspond to bug correction. We determine the percentage of the change log that includes the bug 
number in the log message. Figure 5 shows the percentage of defects for commApp from the DTS that 
are mapped to the commit log. There are other bug fixes that do not have the bug numbers in the 
commit log. These bug fixes are also included in the change data. To compute the actual number of 
defects per release, we use both the unique defect ID and the unique revision ID for those bug fixes 
where the bug numbers are not tagged in the commit log. 
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Hypothesis HA1: Number of defective components 
NumDefective (X) = XD 
 
Hypothesis HA2: Proportion of defective components 
Proportion (X) = XD/X 

 

Hypothesis HB1: Actual defect 
ActualDefect (X) = DX 

Where X can be inC, C or NC 
 

Hypothesis HB2: Defect density 
Defect Density (X) = DX/XSLOC 
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Framework and mainly with the C# programming language. The openPDC is a phasor data 
concentrator software that is designed to process real time data for user-defined actions and for 
archival purpose.  
The commercial application shares the same Smart Grid domain with openPDC. It is a distribution 
management system designed to allow for monitoring and planning of Grid operations. It provides 
real-time operational support by continuously receiving status data from the power grid.  

Eclipse is a popular open source integrated development environment (IDE), while Lucene is a high-
performance search engine.  Table 2 details some properties of the applications we have used for this 
study.  

Table 2 – Properties of selected applications 
System Language #Developers19 Domain License Bug Tracker Age Module Versions 

Analyzed 
Apache-
Camel 

Java 34 Routing and 
Mediation Engine 

Open JIRA 5 CORE 2.10.2, 2.10.1, 
2.10.0, 2.9.2, 
2.9.1, 2.9.0 

Apache-
ActiveMQ 

Java 24 Messaging and 
Enterprise 
Integration 
Pattern Server 

Open JIRA 6 CORE 5.7.0, 5.6.0, 5.5.1, 
5.5.0, 5.4.2, 5.4.1 

Apache-
Lucene 

Java 31 Search Engine Open JIRA 7 CORE 4.0, 3.6, 3.5, 3.4, 
3.3, 3.2 

Eclipse Java  IDE Open Bugzilla   All 3.0, 2.1, 2.0 
commApp C# 28 Smart Grid Commercial HP-Quality 

Center 
6 All 4.2.4, 4.2.2, 4.1, 

4.0.1SP4, 
4.0.1SP2, 4.0 

openPDC C# 13 Smart Grid Open CodePlex 3 All 1.5, 1.4SP2, 1.4 

1) Defects collection from the defect tracking system (DTS) 
We have collected defect data from three different DTSs. Some DTSs contain more details than the 
others and some are more difficult to filter. Defect repository gives typically a high level overview of 
a problem report. For example, typical attributes of the HP-QC defect tracking system (QC-DTS) are 
the Defect ID, severity of the defect, the type of defect, date defect is detected, the module 
containing the defect, the version where defect is detected, and the date the defect is fixed. These 
fields are similar to the Apache JIRA and CodePlex DTSs.  
Our first step is to determine the bugs that affect each version of the system. In Apache JIRA DTS, 
we readily use the “Affects Version” field to filter all bugs that affect a particular version of the 
system. For CodePlex, we use the “RELEASE” field and for HP-QC, we use “Detected in 
Version(s)”. A certain defect may affect multiple versions of a system. By this we mean “hotspot” 
defects (Li et al., 2011) that keep re-occurring and span several versions of a system. We include 
these defects in all the versions they affect. Next, we filtered out “duplicate”, “Not a problem”, and 
“Invalid” cases from the resolution field.  The Eclipse dataset that we use in this paper has been 
mapped in previous study (Zimmermann et al., 2007).  

 

2) Method of mapping class files to defects 
Version repository on the other hand is a configuration management system used by the developers 
to manage source code versions. The version system provides historical data about the actual file that 
is changed and/or added as a result of corrective action (defect fixes), adaptive, preventive and 
perfective actions (Gupta et al., 2010). Thus, the SVN/CVS provides a detailed granularity level to 
know which source file(s) in the module(s) are changed to fix a reported bug. A common way to 
figure out what operation is performed on the source file is to look at the message field of the SVN 

                                                
19 #Developers as used in this study represent all committers to the SVN 
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commit. When developers provide this information with the bug number and/or useful keywords 
(e.g. bug or fix), it is possible to map the reported defect with the actual source file that is modified 
to fix it (S'liwerski et al., 2005; Schroeter et al., 2006). In some cases, not all bug commits in the 
version repository contain the bug number or useful keyword in the message field. In the past, 
researchers have approached this situation by mapping from defect repository to the version 
repository (C'ubranic, 2004; Schroeter et al., 2006).  

We have used both approaches to map defect from JIRA and HP-QC DTSs to the code changes. The 
resolution date allows us to map some of the untagged commits in the version system to the resolved 
bugs. The second approach of mapping from defect repository to code repository is found suitable 
for CodePlex DTS. None of the bug is tagged in the commit log of the openPDC application. The 
observed style of developers in this community is to include the SVN revision number of the 
corrected bug in the comment field of the defect repository (e.g. “resolved with change set 79160”). 
We use the revision numbers from the comment field to identify class files that are changed because 
of bug fix. Overall, we mapped an average of 89.5% for Apache-Lucene, 90.1% for Apache-Camel, 
75.7% for Apache-ActiveMQ, 71.3% for commApp and 81.4% for openPDC. 
 

 
Figure 5 – Aggregating defect count at package or file level 

!
!

3) Aggregating number of defects per class file and per package 

In a release, it is possible that multiple reported bugs can be associated to one class file. The unique 
defect ID is thus appropriate to compute the number of defects fixes that affect a class file and a 
package. From the mapped change data, we look up each file and determine the total of defects per 
file by counting the number of unique defect ID in this release. At the package level, we aggregate 
the unique defect IDs for each class file in the package. As demonstrated in Figure 5, File1, File2 and 
File3 have 2 defects each, based on the defect ID and Pkg 1 has a total of 3 defects although it 
contains 3 files with 2 defects each. The unique defect-ID shows that for pkg1, only 3 defects are 
fixed. 

4) Source code data collection 

We have developed a small but very efficient java tool to extract source files meta-data. The source 
files are downloaded from the version repository. Organizational rules in java source file are 
substantially different from C# source file. As demonstrated in the relation diagram of a simple 
F1.java and F1.cs (Figure 6), a java source file has a one-one mapping from file to top-level class 
and it is not allowed to define another top-level class in a java file. In addition, the top-level class 
must have the same name as its enclosing file. Also, there is a one-zero or one-one mapping from file 
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to package; a maximum of one package can be defined in a java file. Finally, a java class can contain 
nested classes (one to many relation). In C#, multiple relations are possible. A file can contain many 
top-level classes and many top-level namespaces can also be defined in a file. It is also possible that 
a class contains nested classes and a namespace can equally contain nested namespaces. Unlike java 
file, the file name does not need to match any of the classes defined in it, although, good practices 
suggest to have filename as the same as a top-level class.  

Since the compilation unit for both Java and C# is the source file and we are considering 
dependencies at the physical level as explained in section III, we decide for the following: 

1. A dependency on any class in a source file implies a dependency on the source file. 
2. The cyclic metric for a class is computed using dependencies that cross compilation units 

(source files). We skip cycles that are formed among classes within a source file.  
3. The number of cycles for a compilation unit (source file) is the maximum cycle recorded for 

any of its classes. 
Melton and Tempero (2007a) adapts “USES” relations from Lakos (1996) to a set of Java software to 
study cyclic dependency among the systems’ classes. These relations have been applied on static 
code. Identifying coupling among classes using static code analysis has its drawback. As mentioned 
by Arisholm et al. (2004), because of polymorphism and the common presence of unused code in 
applications, coupling measures based on static code analysis loose precision, as they do not capture 
the actual coupling among classes at runtime. This study uses static code analysis because we 
consider various types of coupling that is not limited to message passing (method-method 
interactions) only. Also, class-level coupling data is easier to collect when using static code analysis 
and lastly, because ample evidence (Basili et al., 1996; Briand et al., 1998; Briand et al., 2001b; 
Chidamber and Kemerer, 1994; Zimmerman et al., 2011; Zimmermann and Nagappan, 2008) shows 
them to be useful predictors of defect-proneness of classes. We use the “USES” relations, which we 
have defined earlier as DParent and apply them also to the six software applications. We ignore all 
external library types (e.g., .NET and Java API) that developers have no access to their source codes 
since it is practically impossible for these external classes to form cycles with internal application’s 
classes.  

Figure 7 shows an example of the actual dependencies for MyClass and mypackage components. In 
order to collect other nodes (classes) to which MyClass is connected to requires that we scan the text 
of MyClass. The edge between MyClass and other DParent(MyClass) nodes is a directed path 
(without label, L) from MyClass to each node in the DParent set (Figure 7a-b). In the case of 
mypackage (Figure 7c-d), the DParent(mypackage), is a set of unique imported packages and is 
processed from the collected class data. 

 
Figure 6 – (a) Java: File-Package-Class Relation (b) C#: File-Namespace-Class Relation 
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Figure 7 – (a) Class source data (b) Dependency Graph for Class (c) Package source data (d) Dependency Graph for package 

 

5. Results and Discussions 
We report the results of mining the software data with the Cycle metrics. In section 5.1, we present 
the results of the analysis for both package and class mined with the proposed cycle metrics. Sections 
5.2 and 5.3 discuss the effect size and sanity checks on the reported results. Lastly, section 5.4 
provides further discussions of the results. 
We present the results of the statistical analysis of the in-cycle and cyclic-related (both in-cycle and 
depend-on-cycle) groups versus non-cyclic group. To simplify the replication of this study, we have 
listed the full results in Appendix A, Tables A.1 (Summary of the systems’ data), A.2 and A.3. 
Figures 8a-b, 9a-b, 10a-b and 11a-b show the number of defective packages and classes, their 
proportions, the actual number of defects they produce and their defect densities for the cyclic-
related and non-cyclic groups. In addition, in Appendix A, Figures A.1 and A.2, we provide the plots 
of the outgoing (efferent coupling) and incoming (afferent coupling) dependencies <V, Eout, Ein>  
and vertex vs. edge <V, E> for the cyclic dependency graphs for the last release of each system. As 
well, we show the diameters (Wasserman and Faust, 1994)20 and radius vs. number of cycles for 
each system. We have used the Floyd-Warshall algorithm (Cormen et al., 2001) to calculate the “all-
pairs shortest distance” between the nodes. Also, Table 3 lists the results of data normality tests using 
Shapiro and the t-tests or non-parametric Wilcoxon-test depending on the Shapiro p-value (see 
Appendix B, Figure B.3). A very small shapiro-wilk p-value (of less than 0.05) suggests that the data 
is significantly skewed (positively or negatively) or with significant kurtosis. The p-values of 1-tailed 
test for in-cycle vs. non-cyclic group is reported in column 2 and the p-values for cyclic-related vs. 
non-cyclic group are listed in column 3 of Table 3.  

A. Distribution of defect and defect-prone components (DPCs) in cyclic and non-cyclic 
groups 

We provide a break down of the results on the four categories of our data using Figures 8, 9, 10, 11 
and Table 3. Statistical results at the package level show that the number, proportion and actual 
defect count of defective components in the cyclic-related group are consistently higher in most 
cases than those in the non-cyclic. We use Figures 8 and 9 to present the package results as follows: 
• For Camel: defective components in cyclic-related group are 4.75 times higher than those in the 

non-cyclic group (Figure 8a). 31% of packages in the cyclic-related group are defective while 
11% are defective in the non-cyclic group (Figure 8b). Furthermore, the cyclic-related group has 
6.1 times the number of defect in the non-cyclic group  (Figure 9a). Finally, the defect density in 
cyclic-related group is 0.5 times lower than the non-cyclic group (Figure 9b).  

                                                
20 The diameter of a graph is the length of the shortest path between the most distanced nodes. This is calculated as the maximum of the 

eccentricities of the nodes or the maximum of the nodes’ geodesic distances in the graph. The eccentricity of a node is the longest geodesic distance 
between the node and any other node in the graph. A geodesic represents the shortest path between two nodes. 
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• In ActiveMQ, the defective components in the cyclic-related group are about 8.11 times higher 
than those in the non-cyclic group (Figure 8a). 45% of the packages in cyclic-related group turn 
defective while 12% are defective in non-cyclic group (Figure 8b). Defects produced by the 
cyclic-related group are 8.8 times higher than those produced in the non-cyclic group (Figure 
9a). Finally defects per a 1000-LOC in the cyclic-related group are 3.7 times higher than those 
in the non-cyclic group (Figure 9b). 

• In Lucene, the defective components in the cyclic-related group are 11 times higher than 
defective components in the non-cyclic group (Figure 8a). Over 30% of the packages in cyclic-
related group turn defective while 6% of packages in non-cyclic group are defective (Figure 8b). 
The cyclic-related group has 14 times more defects than the non-cyclic group (Figure 9a). 
Finally, defects per a 1000-LOC in the cyclic-related group are twice as higher as those in the 
non-cyclic group (Figure 9b).  

• In commAPP, defective components in cyclic-related group are 2.15 times higher than those in 
the non-cyclic group. In terms of proportion of defective components in each group, 34% of 
components in in-cycle group are defective while 9% of components in non-cyclic are found 
with defects. In addition, the total defects produced by the cyclic-related group are 2.9 times 
higher than those in the non-cyclic group. The defect density in the in-cycle group is 1.72 times 
higher than the non-cyclic group.   

• For openPDC: defective components in cyclic-related group are 14.2 times higher than those in 
the non-cyclic group. In terms of proportion, 15% of packages in cyclic-related are defective, 
whereas, 1% of packages in non-cyclic group turn out to be defective. Also, the defects produced 
by the cyclic-related group are 20.2 times higher than the non-cyclic group. The defect density 
in cyclic-related group is 7.3 times higher than the non-cyclic group.  

• For Eclipse, defective components in cyclic-related group are about 11 times higher than the 
non-cyclic group. In terms of proportion, over 50% of components in cyclic-related group are 
defective whereas 30% in non-cyclic are found with defects.  

At the class-file level, Figures 10 and 11 reveal that for:  
• Camel: defective components in the cyclic-related groups are 13.7 times more than defective 

components in the non-cyclic group (Figure 10a). 5.5% of in-cycle classes are defective while 
the non-cyclic group has 1.7% defective classes. (Figure 10b). The in-cycle classes have about 
9.6 times more defects than the non-cyclic group classes (Figure 11a). Lastly, defects per a 
1000-LOC in the in-cycle group are 1.4 times more than the non-cyclic group (Figure 11b).  

• ActiveMQ: defective components in the cyclic-related group are about 3.6 times higher than 
those in the non-cyclic group (Figure 10a). 12% of the classes in in-cycle group turn defective 
while 2% of the classes in non-cyclic group are defective (Figure 10b). Defects produced by the 
cyclic-related group are approximately 4.6 times higher than those in the non-cyclic group 
(Figure 11a). Finally, defects per a 1000-LOC in the in-cycle group are about 2.74 times more 
than the non-cyclic group (Figure 11b).  

• Lucene: defective components in the cyclic-related group are 4.28 times higher than defective 
components in the non-cyclic group (Figure 10a). 3% of the classes in cyclic-related group turn 
defective while 1% of classes in non-cyclic group are defective (Figure 10b). The cyclic-related 
group has 3.1 times more defects compare to the non-cyclic group (Figure 11a). Finally, defects 
per a 1000-LOC in the cyclic-related group are the same as that of the non-cyclic group (Figure 
11b).  

• commAPP: defective components in cyclic-related are 5.2 times more than those in the non-
cyclic group. In terms of proportion of defective components in each group, 15% of components 
in in-cycle are defective while 3% of components in non-cyclic are found with defects. In 
addition, the total defects produced by the cyclic-related group are 3.2 times higher than those in 
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the non-cyclic group. The defect density in the in-cycle group is 1.5 times higher than those in 
the non-cyclic group.   

• openPDC: defective components in cyclic-related group are 1.43 times higher than the non-
cyclic group. In terms of proportion, 2.2% of classes in cyclic-related are defective, whereas, 
1.4% of classes in non-cyclic turn out to be defective. Also, the defects produced by cyclic-
related group are approximately 0.86 times lower than the non-cyclic group. The defect density 
in cyclic-related group is about 0.58 times lower than the non-cyclic group.  

• Eclipse: defective components in cyclic-related group are about 4.3 times higher than the non-
cyclic group. In terms of proportion, 19% of components in the in-cycle group are defective 
whereas 11% are found with defects in the non-cyclic group. 

 
Figure 8 – (a) #Defective packages and (b) their proportions in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups 

 
Figure 9 – (a) #Defects and (b) Defect Densities of Packages in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups 

 

 
Figure 10 – (a) #Defective class-files and (b) their proportions in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups 
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Figure 11 – (a) #Defects and (b) Defect Densities of class-files in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups 

Table 3 – 1-tailed test for comparing cyclic and non-cyclic defective components 

 
CLASS PACKAGE 

System HA1 : Test of #defective components for Cyclic and Non-Cyclic defective components 

Shapiro-wilk 
p-value 

p-value (inC) p-value (C) Shapiro-wilk 
p-value 

p-value (inC) p-value (C) 

Camel 0.8389 0.0089* <0.0001* 0.8870 0.0008* 0.0012* 
ActiveMQ 0.4773 0.0023* <0.0001* 0.3947 <0.0001* <0.0001* 

Lucene 0.4928 0.0197* 0.0156* 0.4150 0.0005* 0.0005* 
commApp 0.8429 0.0017* <0.0001* 0.5999 0.5000 0.0002* 
openPDC 0.6369 0.0007* 0.7302 0.7804 0.0117* 0.0029* 

Eclipse 
0.9596 0.0307* 0.0008* 0.088 0.0136* 

0.0129* 

 HA2 : Test of Proportion data for Cyclic and Non-Cyclic defective components 
Shapiro-wilk 
p-value 

p-value (inC) p-value (C) Shapiro-wilk 
p-value 

p-value (inC) p-value (C) 

Camel 0.9451 0.0133* 0.0176* 0.9059 0.0016* 0.0021* 
ActiveMQ 0.3805 0.0011* 0.0016* 0.3279 <0.0001* <0.0001* 

Lucene 0.7329 0.0308* 0.0402* 0.8411 0.0007* 0.0008* 
commApp 0.4661 0.0023* 0.0016* 0.9505 0.0006* 0.0002* 
openPDC 0.4375 0.5703 0.3613 0.4375 0.1338 0.3613 

Eclipse 
0.2369 0.0669 0.1338 0.6548 0.0047* 0.0093* 

 HB1 : Test of number of defect for Cyclic and Non-Cyclic defective components 
Shapiro-wilk  
p-value 

p-value (inC) p-value (C) Shapiro-wilk  
p-value 

p-value (inC) p-value (C) 

Camel 0.2265 0.0079* 0.0086* 0.063 0.0084* 0.0090* 
ActiveMQ 0.1400 0.0019* 0.0022* 0.5220 0.0006* 0.0006* 

Lucene 0.2151 0.1177 0.0184* 0.2543 0.0065* 0.0065* 
commApp 0.0693 0.0156* 0.0078* 0.1368 0.0257* 0.0218* 
openPDC 0.8998 0.7062 0.5733 0.6369 0.0530 0.0139* 

 HB2 : Test of defect density for Cyclic and Non-Cyclic defective components 
Shapiro-wilk  
p-value 

p-value (inC) p-value (C) Shapiro-wilk  
p-value 

p-value (inC) p-value (C) 

Camel 0.1589 0.0727 0.0936 0.3373 0.9737 0.9746 
ActiveMQ 0.0186 0.0313* 0.0313* 0.1142 0.0009* 0.0009* 

Lucene 0.5237 0.6432 0.6275 0.2543 0.0433* 0.0433* 
commApp 0.2357 0.0156* 0.2578 0.0930 0.0389* 0.8437 
openPDC 0.6537 0.6911 0.7483 0.2983 0.0664 0.0606 

*: Significant p-value at α = 0.05 
 

Table 4 – Summary of hypotheses test 

 
 
System 

Summary of Hypotheses Test 
Class Package 
HA1 HA2 HB1 HB2 HA1 HA2 HB1 HB2 

Camel Y Y Y N Y Y Y N 
ActiveMQ Y Y Y Y Y Y Y Y 

Lucene Y Y Y N Y Y Y Y 
commApp Y Y Y Y Y Y Y Y 
openPDC Y N N N Y Y Y N 

Eclipse Y N - - Y Y - - 

Significant = Y 

Not Significant = N 

B. Effect size 
We discuss in this section the effect size check performed on the statistical data. As noted in 
Kampenes et al. (2007), effect size quantifies the size of the difference between two groups and 
allows us to judge whether the conclusions drawn from our hypotheses testing are meaningful or not. 
It is possible that the effect is small even when the statistical test is significant and vice versa. 
Therefore, for practical use of the results drawn from this study, we are compelled to carry out an 
effect size check on our results. In this study, we are concerned with two groups; the cyclic and the 
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non-cyclic groups. We apply the Hedges, g standardized effect size measure. Hedges, g is calculated 
as (Kampenes et al., 2007): 

 
Where:  
X1 and X2 represent the sample mean for each defect measure from cyclic and non-cyclic groups and 
sp stands for the pooled standard deviation derived from the standard deviations s1 and s2 of cyclic 
and non-cyclic groups respectively as: 

(Kampenes et al., 2007) 
With small samples, the correction factor for the Hedges, g, when multiplied with g, adjusts for small 
sample bias. The correction factor (cf) is computed as (Kampenes et al., 2007):  

 
Where: 
n1 = Sample size for the cyclic group (equals the number of analyzed releases) 
n2 = Sample size for the non-cyclic group (equals the number of analyzed releases) 
N = n1 + n2 
n1 = n2 = 6, for Camel, ActiveMQ, Lucene and commApp. 
n1 = n2 = 3, for openPDC and Eclipse 
For the effect size test, we are mostly concerned with the number of defect-prone components 
(DPCs) and the percentage of DPCs (proportion of DPCs*100) in both cyclic and non-cyclic groups. 
We therefore, in Table 5, report the Hedges, g for the two measures and for each system. 
Interpretation 

There are different ways to interpret effect size results as described in Kampenes et al. (2007). We 
choose to compare our effect size results to the reported results in Software Engineering empirical 
studies and categorized in Kampenes et al. (2007) under Table 9. In this Table, the size category for 
284 estimated values for Hedges, g is given as: Small: 0.00 – 0.376, Medium: 0.378 – 1.000 and 
Large: 1.002 – 3.40 
As shown in Table 5, the effect sizes as measured by the Hedges, g for both number of DPC and 
percentage of DPC for the package results are in the “large” category. At the class level, the effect 
size for openPDC is in the “small” category while in Lucene, it ranges between “medium” (0.52) and 
“large” (1.12) categories. For the remaining four systems, the effect size falls in the “large” category. 
It can be explained that these two systems, openPDC and Lucene have very small number of DPCs 
(see Table A.1). We speculate that if the number of analyzed releases is increased, the results for 
these two might be somewhat different. Overall, the effect size test suggests that a random selection 
of defect-prone components in these systems has a higher probability to originate from the cyclic 
related group, either from in-cycle or both in-cycle and depend-on-cycle groups. 
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The population standardized mean difference effect size
measure, which we will call dpop, is defined as

dpop ¼
l1 % l2

r
ð1Þ

The population standardized mean difference takes positive
or negative values, depending on the choice of l1 and l2. It
is estimated by the difference between sample means (X 1,
X 2) divided by an estimate of population standard devia-
tion. Different estimators of the population standard devi-
ation give different effect size estimators. The three
estimators most often referred to in the literature are
Hedges’ g, Cohen’s d and Glass’ D [24,34]. Hedges’ g has
the pooled standard deviation, sp, as the standardizer:

Hedges’ g ¼ X 1 % X 2

sp
ð2Þ

The pooled standard deviation is based on the standard
deviations in both groups, s1, s2:

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 % 1Þs2

1 þ ðn2 % 1Þs2
2

ðn1 % 1Þ þ ðn2 % 1Þ

s

ð3Þ

Cohen’s d also has the pooled standard deviation as its
standardizer, but with ni replacing (ni % 1) in Formula (3)
and in the estimators of the single si. Glass’ D applies the

standard deviation in one group only; the one considered
to be the control. According to [17], these three estimators
have the same properties in large samples (i.e., they are
equivalent in the limit (n1 + n2) fi1), but Hedges’ g has
the best properties for small samples when multiplied by
a correction factor that adjusts for small sample bias (For-
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Table 5 – Hedges, g effect size measure (cyclic vs. non-cyclic group) 

System 
Package Class-File 

X1 X2 S1 S2 cf Sp g X1 X2 S1 S2 cf Sp g 

#DPC               

Camel 12.5 2.67 4.64 1.37 0.923 3.42 2.65 35.17 2.67 24.52 2.16 0.923 17.41 1.72 

ActiveMQ 24.33 3 5.75 1.67 0.923 4.23 4.65 58.83 16.33 22.25 10.13 0.923 17.29 2.27 

Lucene 3.67 0.33 1.03 0.82 0.923 0.93 3.31 6.67 2.67 4.37 1.63 0.923 3.29 1.12 

commApp 14 6.5 4 3.4 0.923 3.71 1.86 37.83 10.5 20.37 10.13 0.923 16.09 1.57 

openPDC 4.67 0.33 1.15 0.58 0.8 0.91 3.81 6.67 4.67 7.02 4.16 0.8 5.77 0.28 

Eclipse 199.33 19 57.74 6.56 0.8 41.09 3.51 729 208.7 265.6 58.4 0.8 192.29 2.16 

Percentage of DPC               

Camel 31 11 11.3 5.7 0.923 8.95 2.06 5.5 1.8 3.9 1.4 0.923 2.93 1.17 

ActiveMQ 45 12 11 7 0.923 9.2 3.30 11.5 2.3 4.2 1.5 0.923 3.15 2.69 

Lucene 35.7 4.8 12.8 11.7 0.923 12.3 2.33 2.2 1.5 1.5 0.9 0.923 1.24 0.52 

commApp 17.3 9.1 6.6 6.2 0.923 6.4 1.18 15.2 2.6 9 3 0.923 6.71 1.73 

openPDC 15.1 0.8 6.1 1.5 0.8 2.58 2.58 2.2 1.4 2.3 1.2 0.8 1.83 0.35 

Eclipse 54 30.2 2.9 2.3 0.8 2.62 7.27 18.4 11.3 4.9 0.5 0.8 3.48 1.63 

C. Sanity Check 
We want to verify if the proportion of defect-prone components (DPCs) in the cyclic group is of 
interest or not. Earlier, we demonstrated that the cyclic group contains the higher number of DPCs 
than the non-cyclic group. However, this proportion can be a very small number since the 
distribution of defects and DPCs in a software system is usually skewed (Fenton and Ohlsson, 2000) 
and the proportion in each group (cyclic or non-cyclic) is relative to the proportion of DPCs in the 
entire system. As listed in Table A.1, the systems we analyzed agree with this observation because 
the DPCs are indeed few in number relative to the entire systems’ components.  
What is therefore of interest is to see if a standard classifier can find precisions/recalls over (100 – 
“actual percentage of DPCs in cyclic group”) or false alarm rates under “actual percentage of 
DPCs in cyclic group”. If either of these conditions is fulfilled, we can conclude that the proportion 
of DPCs in the cyclic group is important in this data set. To achieve this objective, we use Naïve 
Bayes (http://www.cs.waikato.ac.nz/ml/weka/) classifier because of its simplicity (Hall et al., 2011) 
and Random Forest because of its ability to generalize well on small dataset (Breiman, 2001). For the 
classification task, we employ three independent variables; the source lines of code (SLOC), the 
weighted method for a class (WMC) and coupling between class objects (CBO) (Efferent, ce and 
afferent, ca couplings) metrics because our tool already measures them and because they are shown 
to be good predictors of defect-proneness of components (Basili et al., 1996; Briand et al., 1998; 
Chidamber and Kemerer, 1994; Zhang, 2009). We trained the models by using cross validation 
method on the dataset for each group. In this approach, a training dataset is divided into 10-folds and 
the model is trained on each fold with the result cross-validated on the rest folds in each iteration. By 
doing this, we achieve both training of the model using each fold as training set and at the same time 
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testing the model’s performance on the entire dataset. For the purpose of the sanity check, we 
consider that this approach of model training and testing suffices. Also, since we are not focused on 
building a reusable model, we therefore do not concentrate on thorough training of each of the 
models. For these reasons, we have used default classifier parameters for Naïve Bayes and have only 
changed the default number of trees in Random Forest from 10 to 500.  
Table 6 lists the precision, recall, false alarm rates and the actual percentage of defect-prone 
components in the cyclic group averaged over the number of releases. As shown, in all the cases, the 
false alarm rates are lower than the actual percentage of defect-prone components in the cyclic 
group (i.e. Actual %CDPC). In addition, the precisions for Camel, ActiveMQ, Lucene and Eclipse are 
over (100-Actual %CDPC) at the package level. Also, the recalls for Camel, ActiveMQ, Lucene and 
Eclipse are over (100-Actual %CDPC). At the class-file level, the false alarm rates for Camel, 
ActiveMQ, commApp and Eclipse are lower than the actual percentage of defect-prone components 
in the cyclic group. But, for Lucene and openPDC, the classifiers could not divide between the DPCs 
and non-DPCs in some of the releases in these dataset because of the few number of DPCs recorded 
in these two systems. We therefore decided to exclude them from the results. As listed in Table A.2, 
Lucene has an average of 9.3 DPCs out of 501 class-files and openPDC has an average of 11.3 DPCs 
out of 616 class-files. Although, the small sample sizes of these two systems and the decision to 
exclude them based on the above stated reason do not override/invalidate the claims in this study. 
We however, learn a great deal that sanity checks can guide our decisions regarding where to focus 
such expensive cyclic dependency analysis efforts in software systems both for research and for 
industrial practices. 

D. Discussion 

Clearly, the results show interesting trends of significant higher defect profiles for cyclic dependent 
components in the systems. As revealed in Table 4, at the package level the null hypotheses for HA1 
and HA2 are rejected for all the systems indicating that the results are all significant. Similarly, the 
null hypotheses for HB1 are rejected for all the 5 systems that we have their actual defect dataset. We 
fail to reject the null hypotheses of HB2 for Camel and openPDC. At the class level the null 
hypotheses for HA1, HA2 and HB1 are equally rejected for all the systems except for openPDC and 
HA2 for Eclipse. However, for Eclipse, the effect size in Table 5 shows a large effect. This confirms 
that, even though the statistical test is not significant which largely can be due to the small sample 
size (number of releases). The effect size shows that the difference between the two groups for 
Eclipse is not negligible. The null hypotheses for HB2 are rejected for 3 out of the 5 systems. In all 
the cases where we fail to reject the null hypothesis for HB2, it is either there are higher number of 
cyclic components than non-cyclic or that the cyclic group’s size (LOC) is higher than the non-cyclic 
group. openPDC shows a contrasting result to the rest of the systems at the class level. It is hard to 
imply any pattern from the C# applications’ results at the class level because of the sample size (i.e. 
Number of systems analyzed) and also because of the number of defect-prone components available 
for this study. Further studies will be necessary to observe patterns in this direction.  

1) Multiplicity of Defect 
A clear observation from the results is that the cyclic-related group has significantly more defective 
components and accounts for higher number of defects than those in the non-cyclic group. In 
addition, the proportion of defective components in cyclic group is higher than those in the non-
cyclic group except for openPDC (class-file level). It thus means that components in cyclic 
relationships tend to be more defect-prone and that possibly, defects propagate more among 
components in cyclic relationships. Cyclic dependencies increase the probability of defect 
propagation and the tendency to make the system fragile, thus leading to possible increase in the 
number of system’s defects. While we cannot claim exclusively that cyclic relationship is 
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unequivocally responsible for this behavior, the results from this study, however, lend support to this 
pattern. This effect poses huge maintenance challenge as the system evolves. Defects become 
difficult to trace and system become more strenuous to test, thus resulting into higher maintainability 
cost. 

Table 6 – Classification results averaged over the number of releases 

System 
Cyclic 

Precision Recall FP Rate Actual %CDPC (100-Actual %CDPC) 

Package      

Camel* 69.6 51.1 8.8 30.5 69.5 

ActiveMQ* 75.2 43.5 10.8 44.9 55.1 

Lucene+ 77.1 57.9 8.3 32.4 67.6 

commApp* 67.8 55.1 5.1 19.2 80.8 

openPDC+ 55.6 19.4 3.8 15.1 84.9 

Eclipse+ 67.9 71.2 34.1 50.0 50.0 

Class-File      

Camel* 25.2 26.2 3.6 4.5 95.5 

ActiveMQ* 33.8 35.5 6.8 8.9 91.1 

Lucene - - - 2.2 97.8 

commApp* 42.3 45.7 6.4 10.1 89.9 

openPDC - - - 2.2 97.8 

Eclipse+ 55.7 26.1 3.3 13.8 86.2 

* Naïve Bayes 
+ Random Forest 

 

2) Cycle-Size Relationship 
We discover a positive correlation between LOC and minimum number of component’s cycle for 
both the packages and the classes in all the 6 systems. In many cases, there is a correlation of more 
than 0.5 between the size and the minimum number of component’s cycle. 

A look at the cyclic-related group distribution against the size (KLOC) in each group (Appendix A, 
Tables A.2 and A.3) reveals for example that: 

• For ActiveMQ: the in-cycle group has about 32.5% (inC/N) of the total classes but accounts 
for 55% of the total size (KLOCinC/(KLOCC+KLOCNC)).  

• For commApp: Packages in the cyclic group are 12.6% of the total packages and this number 
account for a total of 32% of the total size. Relatedly, the cyclic group at the class level 
contains 25.2% of the total classes and contributes 46.8% of the total size. 
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• For Lucene: Classes in the cyclic-related group are 38.8% of all the classes but account for 
57.5% of the total size. 

This effect accounts for the mixed results for hypothesis HB2. The correlation values also show that 
some large classes have many cycles and thus seem to promote cyclic relationships among 
interconnected components. (Melton and Tempero, 2007a) made similar observations about the 
presence of cycles in some large classes. Lines of Code (LOC) and degree of coupling have long 
been validated to correlate to defect-proneness (Basili et al., 1996; Briand et al., 2001b; Menzies et 
al., 2007). The large components we found in the cyclic group contain many cycles and a high 
number of incoming and outgoing couplings. A beneficial approach would then be the need to reduce 
the cyclic connections. Performing such refactoring would invariably reduce both the size and tight 
coupling in these large components.   

3) Number of Defect Prone Components in cyclic vs non-cyclic group 

In terms of number of defective components, cyclic relationships are convincingly important. As 
observed in Figure 12, the number of defective classes located in the cyclic group is very high. For 
instance, Apache Camel has 90% of all the defective classes (82% at the package level) in the in-
cycle group and 93% (83% at the package level) when combined with depend-on-cycle, that is, the 
cyclic-related group. We observe however that both applications developed with C# (commApp and 
openPDC) give the least results in the in-cycle group. Further investigation of many C# systems will 
thus be necessary to study the defect patterns of components in the cyclic group. Overall, this is a 
very useful finding that can be employed during system testing to effectively allocate testing 
resources in a software development and maintenance project. Furthermore, we suggest that based on 
these results, it is possible to investigate the cyclic metrics for improving existing quality models. 
Finally, since cyclic related components account for the highest number of defects and defect-prone 
components in these systems, we argue that focusing on defect-prone cyclically related components 
for refactoring could be a positive step. Our speculation therefore is that since cycles increase 
structural complexities (Briand et al., 1998; Briand et al., 2001b), performing such refactoring by 
taking advantage of existing refactoring tools could reduce the defect-proneness of components and 
consequently improve the reliability of the system.  

4) Package vs Class 
The burden of cyclic dependency is high as it increases the cost of software testing to trace or track a 
defect. As noted in the results, package level results are more significant than class level. openPDC 
has significant results for cyclic group at the package level even though at the class level the results 
are mostly significant for the non-cyclic group. This reinforces the Acyclic Dependencies Principle 
as proposed by Martin (2000). Package to package dependency also implies for instance, in Java that 
an “import” directive is used. Additionally, it translates to a strong cyclic physical dependency as 
mentioned by Lakos (1996). Cyclic dependencies among packages will result into strong structural 
complexity by making the modules to be tightly coupled and thereby increasing the tendencies of 
defect propagation. As Martin (2000) states, “a dependency upon a package is a dependency upon 
everything within the package” The implication is increasing cost of testing and maintenance as the 
system evolves. Is it then necessary to focus on this property? Our empirical results in this study 
suggest an affirmative yes. Empirical evidence shows that cycles in real-life systems mostly grow as 
these systems evolve (Melton and Tempero, 2007a), our results also agree with this pattern leaving 
us with strong doubt that refactoring option hardly focus on breaking dependency cycles. This study 
has very useful implications for maintenance engineers and system testers. The more information we 
have about the groups or subsets within a software system with the most defect-prone components, 
the better we can allocate quality assurance resources and efforts to trace and test components in the 
system. 
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Figure 12 - Number of defective components found in the cyclic group (a) Class and (b) Package 

6. Threats to Validity 
We have analysed and evaluated two Smart Grid systems, an integrated development environment, a 
search engine application, a versatile routing and mediation engine and a messaging and integration 
pattern server. Although, these six systems vary in terms of properties such as domain, functionality, 
programming language, size, age, usage, context and study period, we cannot claim that the observed 
defect patterns or related will hold for other systems. As it is with most case studies, we cannot 
generalize these results across all systems. Further studies will be necessary to compare results 
across several systems and domains. 
Our study is based on static coupling measurements and not dynamic coupling measurements 
(Arisholm et al., 2004); as such actual coupling among classes at runtime may not be completely 
captured. This imprecision can occur due to polymorphism, dynamic binding and dead code in the 
software. This as it may, static code analysis has been found to be practically useful and less 
expensive to collect (Basili et al., 1996; Briand et al., 1998; Briand et al., 2001b; Chidamber and 
Kemerer, 1994; Zimmerman et al., 2011; Zimmermann and Nagappan, 2008). Our study collects 
coupling types that are not only based on method invocation. In addition, static coupling measures 
reflects to a very high degree the coupling among classes at runtime. We do not think the data 
collected based on static code analysis can bias our result in any significant manner. 

For this study, we have relied on the defects logged in the defect tracking systems of each 
application. Our approach of defect data extraction is similar to what other researchers have used in 
the past (C'ubranic, 2004; S'liwerski et al., 2005; Schroeter et al., 2006). Nevertheless, a common 
threat is whether defects logged in the DTS are accurately tagged in the respective code changes in 
the version systems. In addition, we cannot be sure if all defects are logged in the DTS especially in 
cases where the defects are discovered by the developers. Also, there could be cases that the message 
log of the file that consists a change is not tagged with the bug numbers of the resolved defect. 
Furthermore, there could be cases of typographical error in the recording of the bug number in the 
version systems (C'ubranic, 2004) and lastly, it is still possible that duplication will occur. For 
instance, in cases where the commits in the log is not tagged with the bug number from the defect 
tracking system, we can never be sure that a commit with a particular bug fix is not “re-commit” in 
the version control system with the same bug fix. All these are common threats to the internal 
validity of studies that use mapped data from both the DTS and the version control system. 
Comparably, independent defect dataset of Eclipse yield results in the same direction as the defect 
dataset that we collected.  
We address construct validity using four different hypotheses. These hypotheses measure in detail 
the number, ratio and size of defect profiles of components in both groups. All dimensions to 
establish which particular group has higher defect profile are adequately captured with the stated 
hypotheses. 
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7. Conclusions and Future Work 
We have carried out, to the best of our knowledge the first and an extensive investigation into cyclic 
properties of software components and their defect profiles. Using our proposed cycle metrics, we 
divided the mined data into two groups; cyclic group and non-cyclic group. Statistical analysis 
reveals that components in cyclic relationships are more defect-prone, having more number of 
defects and containing more defective components. In addition, it shows that defect propagation in 
the cyclic group is significantly higher than non-cyclic group. This study shows additional structural 
component property that may impact on the defect proneness of software components. 

Furthermore, it reinforces the results from previous studies on coupling complexity and the impacts 
on system quality. A noteworthy observation is the presence of cycles in all the systems that we 
analyzed. Evidence from previous studies supports our result that cycles are indeed pervasive in real-
life systems. This further supports our hypothesis that cyclic dependencies should be considered 
when collecting structural properties of software components. 
These results have implications for software maintenance. By focusing on the cyclic group, it is 
possible to discover most defects and defective components in the system. Testing resources can 
therefore be effectively allocated to trace defects and test components in a cost efficient manner.  
As further study, we seek to analyze a large number of versions in each system we have analyzed so 
as to understand the evolution behavior of dependency cycles and defect proneness. We seek to 
know, if defective components increase in cyclic group as the system evolves and if certain factors 
have some effect (such as refactoring) on the evolution of defect in the cyclic group. 
In this study, we have used all types of dependency relationships that result in cycles. Some 
dependencies are stronger than the other in terms of their coupling characteristics (Briand et al., 
1999; Kung et al., 1996). Can we identify which dependency relationship (Inheritance, Aggregation 
or Composition) contribute most defects in a cyclically dependent components? Lakos (1996) 
explained that intrinsic cyclic dependencies are those cycles that cannot be avoided giving example 
of a Node and Edge in a graph, with node having information about the edge and vice-versa. Are 
there cycles we may care less about regarding their tendencies to propagate defects among inter-
related components and thus prune the cyclic group to those with higher probability of defect 
proneness? We would investigate these in our future work. 

In addition, we plan to investigate the most common types and severity of defects involved in cyclic 
dependencies and compare to non-cyclic group. Also, we will investigate how these results can be 
used in combination with other approaches to improve defect prediction models. Based on the 
current results, it is positive that we can employ the cycle variables as predictors of a component’s 
defect-proneness.  
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Appendices 
Appendix A   - Software data 

Table A.1 – Summary of software source code and defect data 

Release/Version 
Date #Pkg #Class-File #Class KLOC #Defective Class-File #Defect 

Apache-Camel        
2.10.2 Oct 15 2012 67 991 1108 78.91 16 11 
2.10.1 Aug 28 2012 67 991 1108 78.55 20 9 
2.10.0 Jul 01 2012 67 991 1108 78.23 59 30 
2.9.2 Apr 17 2012 65 959 1074 74.97 31 12 
2.9.1 Mar 05 2012 65 955 1068 74.32 23 17 
2.9.0 Dec 31 2011 65 952 1063 73.43 86 49 
Apache-ActiveMQ        
5.7.0 Nov 22 2012 82 1517 1665 136.22 35 68 
5.6.0 Jun 15 2012 83 1505 1649 133.25 88 102 
5.5.1 Oct 16 2011 78 1331 1472 118.27 54 76 
5.5.0 Apr 01 2011 78 1331 1472 118.27 115 105 
5.4.2 Dec 02 2010 77 1258 1393 113.01 80 66 
5.4.1 Sept 21 2010 77 1256 1386 112.20 79 63 
Apache-Lucene        
4.0 Oct 12 2012 20 620 1115 76.60 9 6 
3.6 Apr 12 2012 18 503 810 73.78 2 2 
3.5 Nov 27 2011 18 498 792 68.22 15 13 
3.4 Sep 14 2011 17 478 752 65.44 3 3 
3.3 Jul 01 2011 16 466 726 59.28 16 13 
3.2 Jun 03 2011 15 441 683 56.04 11 13 
        
Eclipse        
3.0 Jun 25 2004 645 10635 12671 1308.66 1566 - 
2.1 Mar 27 2003 429 7909 9258 988.45 845 - 
2.0 Jun 27 2002 378 6751 7704 797.93 968 - 
commApp        
4.2.4 Nov 14 2012 191 1203 2142 341.83 29 14 
4.2.2 Oct 12 2012 191 1199 2134 339.78 49 18 
4.1 Aug 17 2012 171 1002 1884 316.22 60 42 
4.0.1SP4 Apr 11 2012 141 904 1650 286.99 69 29 
4.0.1SP2 Mar 26 2012 142 903 1645 285.89 46 28 
4.0 Oct 14 2011 133 849 1546 266.11 137 143 
openPDC        
1.5 Oct 11 2012 73 637 798 105.69 6 6 
1.4SP2 Dec 28 2011 75 623 794 103.03 14 10 
1.4 March 12 2011 72 575 740 85.37 14 5 
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Table A.2 – Average of #defective components and their proportions for both Cycle and Not-In-Cycle groups21 

System N Nd inC DC C NC inCd DCd Cd NCd P(inCd) P(Cd) P(NCd) 

Class              

Camel 973.17 39.17 641.00 181.17 822.17 151 35.17 1.33 36.5 2.67 0.06 0.05 0.02 

ActiveMQ 1366.33 75.17 444.67 215.33 660.00 706.33 50.33 8.50 58.83 16.33 0.12 0.10 0.02 

Lucene 501.00 9.33 194.33 122.33 316.66 184.33 5.00 1.67 6.67 2.67 0.03 0.02 0.01 

commApp 1010.00 65.00 254.50 290.33 544.83 465.17 37.83 16.67 54.50 10.50 0.15 0.10 0.03 

openPDC 611.67 11.33 202.33 96.33 298.67 313.00 2.33 4.33 6.67 4.67 0.01 0.02 0.01 

Eclipse 8431.33 1126.33 3971.33 2610.00 6581.33 1850 729 188.67 917.67 208.67 0.18 0.14 0.11 

Package              

Camel 66.00 15.33 40.50 1.00 41.50 24.50 12.50 0.17 12.67 2.67 0.31 0.31 0.11 

ActiveMQ 79.17 27.33 54.33 0.00 54.33 24.83 24.33 0.00 24.33 3.00 0.45 0.45 0.12 

Lucene 17.33 4.00 10.83 1.00 11.83 5.50 3.67 0.00 3.67 0.33 0.36 0.32 0.05 

commApp 161.50 20.50 20.33 63.33 83.67 77.83 6.50 7.50 14.00 6.50 0.34 0.17 0.09 

openPDC 73.33 5.00 25.67 6.33 32.00 41.33 3.33 1.33 4.67 0.33 0.13 0.15 0.01 

Eclipse 484.00 229.33 368.00 53.67 421.67 62.33 199.33 11.00 210.33 19.00 0.54 0.50 0.30 

 
Table A.3 – Average of LOC, Actual defect and defect density for both Cycle and Not-In-Cycle groups 

System KLOCinC KLOCC KLOCNC DinC DC DNC D DDinC DDC DDNC 

Class           

Camel 60.71 66.30 10.1 22.30 20.83 2.33 22.33 0.34 0.32 0.23 

ActiveMQ 66.63 77.82 44.05 37.17 39.83 8.67 44.00 0.57 0.52 0.19 

Lucene 38.29 46.08 20.48 4.33 5.50 3.00 8.33 0.13 0.13 0.14 

commApp 143.26 224.94 81.20 20.83 24.33 7.67 25.67 0.15 0.12 0.10 

openPDC 38.33 63.17 34.93 3.00 4.00 4.67 7.00 0.08 0.06 0.12 

Eclipse 664.17 851.78 179.89 - - - - - - - 

Package           

Camel 69.95 70.62 5.79 20.00 20.17 3.33 22.33 0.29 0.29 0.59 

ActiveMQ 86.70 86.70 35.17 41.00 41.00 4.67 44.00 0.48 0.48 0.13 

Lucene 58.74 58.75 7.81 7.83 7.83 0.5 8.33 0.14 0.14 0.04 

commApp 98.04 224.40 81.74 17.67 23.67 8.17 25.67 0.19 0.11 0.11 

openPDC 58.05 70.16 27.94 5.33 6.67 0.33 7.00 0.09 0.10 0.01 

Eclipse 936.59 997.25 47.96 - - - - - - - 

 

                                                
21 inC = in-cycle; DC = depend-on-cycle; C = (inC ∪ DC); NC = non-cycle; N = Number of Components; Xd = Defective (X), where X can 
represent inC, C, DC, or NC, D = Total defect in the system; DX = Total defect for X group; DDX = DX/KLOCX , Defect density of X group; P(Xd) 
= Xd/X,  proportion of defective X group 

 



P2: A Study of Cyclic Dependencies on Defect Profile of Software Components 

 

 136 

(a) 

(b) 

(c) 

(d) 

(e) 



P2: A Study of Cyclic Dependencies on Defect Profile of Software Components 

 

 137 

(f) 

Figure A.1 - Scatter plots of <V, Eout, Ein>22 and <V, E>23 for cyclic dependency graphs for the last release of (a) Camel 
(b) ActiveMQ (c) Lucene (d) commApp (e) openPDC (f) Eclipse 

(a) 

 

(b) 

 

(c) 

                                                
22 Eout: Outgoing edge from a component and Ein: Incoming edge from a component. Each dot in the chart represents a single component (class file) 

and shows the number of Eout and the number of Ein at the same time 
23 Each dot in the <V, E> graph represent a cyclic dependency graph with a number of nodes and edges 
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(d) 

(e) 

(f) 

Figure A.2 – Diameter24  and Radius25 vs. number of Cycles for the last release of (a) Camel (b) ActiveMQ (c) Lucene 
(d) commApp (e) openPDC (f) Eclipse 

 

 
 

 
 

 
 

 
 

 

                                                
24 Diameter is the maximum eccentricities of the nodes in the graph 
25 Radius is the minimum eccentricities of the nodes in the graph 
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Appendix  B – R Code 
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Abstract—(Background) Software defects that most likely 
will turn into system and/or business failures are termed 
critical by most stakeholders. Thus, having some 
warnings of the most probable location of such critical 
defects in a software system is crucial. Software 
complexity (e.g. coupling) has long been established to be 
associated with the number of defects. However, what is 
really challenging is not in the number but identifying 
the most severe defects that impact reliability.  (Research 
Goal) Do cyclic related components account for a clear 
majority of the critical defects in software systems? 
(Approach) We have empirically evaluated two non-
trivial systems. One commercial Smart Grid system 
developed with C# and an open source messaging and 
integrated pattern server developed with Java. By using 
cycle metrics, we mined the components into cyclic-
related and non-cyclic related groups. Lastly, we 
evaluated the statistical significance of critical defects 
and severe defect-prone components (SDCs) in both 
groups. (Results) In these two systems, results 
demonstrated convincingly, that components in cyclic 
relationships account for a significant and the most 
critical defects and SDCs. (Discussion and Conclusion) 
We further identified a segment of a system with cyclic 
complexity that consist almost all of the critical defects 
and SDCs that impact on system’s reliability. Such 
critical defects and the affected components should be 
focused for increased testing and refactoring 
possibilities.  

Keywords—defect severity; dependency cycles; defect 
distribution; defect-prone components; software 
reliability; empirical study 

1. Introduction 
According to [1], software reliability is the 
probability that software will not cause a system 
to fail (i.e. behave incorrectly) for a specified time 
under specified conditions. A system failure may 
be the result of a software fault/defect [1]. 
Moreover as noted by [2], software does not 
“wear out” after some period of proper operation 
as hardware components do. In addition, defects 
in software systems may not be apparent over 
time but when they are exposed, they act like a 
hidden bomb [2]. 

There are many cases of system failures due to 
software defects. For example [2]: The “STS-126 
Shuttle Software Anomaly-2008”; The “Air 
Traffic Control Communication Loss – Los 
Angeles 2004”; The “Widespread Power Outage 
in the Northeast in Northern Ohio – 2003”; the 
“Ariane 5 Failure Forty Seconds After Lift-Off – 
1996”. In all these cases, the failures were caused 
by defects that we could classify to be of critical 
severity because of their impact on these systems. 
Critical defects are not limited to system and/or 
hardware failures. They may also be associated 
with many business failures. Many examples 
exist, for instance [3]; recently, a “Faster Payment 
System” at Lloyds bank, meant to speed up 
payment, was hit by critical defects and ironically 
delayed wage and bill payments and caused 
duplicate charges for PayPal users. Similarly, a 
trading software glitch was caused by critical 
defects that resulted in a $461.1million loss for 
Knight Capital last year [3].  
Many of today’s software systems are overly 
complex and indeed highly interconnected. The 
higher the complexity of a system, the more 
difficult it is to maintain and the higher the risk of 
accidental and unexpected failures [4]. One area 
of such software complexity is dependency cycles 
that are formed by direct or indirect decisions 
during software development and evolution. 
Dependency cycles among components are 
notorious for extremely increasing coupling 
complexity among interconnected components [5, 
6]. Despite numerous claims that cycles inhibit 
software quality attributes such as extensibility, 
understandability, testability, reusability, build-
ability, maintainability and reliability [7-9], 
evidence shows that they are widespread in real 
life software systems [9-13]. Intuitively, we 
expect that since cycles increase coupling 
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complexities among components [5, 6], then it 
should have a positive correlation with the most 
defects. In fact, by performing an empirical study 
on six software systems, we confirmed this 
conjecture of higher defect profiles for cyclic-
related components in all the six systems [14]. 
On the other hand, the study by Adams [15] 
showed that removing large number of defects 
may have a trivial effect on reliability. As pointed 
out in [15, 16], the most number of latent defects 
lead to very rare failure in practice while the vast 
majority of observed failures are caused by a 
relatively tiny number of defects [17, 18]. 
Therefore showing that it is not the number of 
defects, rather their severity that matters. A 
critical severity defect usually points to a fatal 
error that results into system, hardware and/or 

business failures whereas low severity defects 
mostly points to some cosmetic issues. 
Since cycles reduce our cognitive ability to reason 
about interconnected components, we conjecture 
that the most severe defects detected in such 
systems may have an “undisclosed” relationship 
with the cyclic complexity. Our hypothesis in this 
study therefore, is that, components in cyclic 
relationships have higher likelihood of containing 
significant number of highest severity defects and 
severe defective components than those not in any 
cyclic relationships. 
The remainder of the work is structured as 
follows: In section II, we lay the background for 
our study. In section III, we detail our empirical 
setup. Section IV presents the  

 
Fig. 5. (a - b) - Cyclic Dependencies and propagation effect on components in a software network [14]

results of this work while section V discusses our 
findings. In section VI, we draw out the threats to 
the validity of the results. Lastly, in section VII, 
we give the conclusion with a note on future 
studies. 

2. Background 
In a software system, a component X is said to 
have dependency on another component Y if X 
requires Y to compile or function correctly [19]. 
For formal representation of a dependency graph 
for an object-oriented (OO) program, we borrow 
two definitions from [12] and state these as 
follows: 

Definition 1. An edge labeled digraph G = (V, 
L, E) is a directed graph, where V = {V1, ...,Vn} is 
a finite set of nodes, L = {L1, ..., Lk} is a finite set 
of labels, and ! ! !!!!! is the set of labeled 
edges. 

Definition 2. The object relation diagram 
(ORD) for an OO program P is an edge-labeled 
directed graph (digraph) ORD = (V, L, E), where 
V is the set of nodes representing the object 

classes in P, L = {I, Ag, As} is the set of edge 
labels representing the relationships (Inheritance, 
Aggregation and Association) between the classes 
and E = E1 # EAg # EAS ! ! !! ! !!" ! !!"is the 
set of edges.  
We concern ourselves in this study with 
dependency at the physical level, that is, both files 
(top-level classes) and packages since we can 
infer strong dependencies from physical 
relationship [8]. As illustrated in Figure 1a, cyclic 
dependency is formed when components depend 
on one another in a circular manner. This 
relationship covers both direct and indirect 
connection between components. Cyclic 
relationships increase coupling complexities and 
thus have the potential to propagate defects in a 
network [20].  
A hypothetical case as depicted in Fig. 1 (a-b) 
demonstrates such effect. From Fig. 1(a), assume 
that component I contains some defects. We can 
further assume that the rest of the components A – 
H will have a certain probability to inherit the 
defect from I, since they are directly and 
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indirectly dependent on I. To reduce the 
likelihood of defect propagation e.g. in Fig. 1(b), 
let us say that, a new component J is created so 
that components D and C depend on J directly 
thereby breaking the cyclic effect. By performing 
such a refactoring, the effect of possible defect 
propagation is reduced to only component G. 

For the purpose of this paper, we use some of the 
terms defined in [14]: Assume a component c ∈ 
System P then: 

Component’s Children: Components that are 
directly and transitively dependent on c. E.g. in 
Fig. 1(a), All the components except component I 
are directly or transitively dependent on A.  
Components G, and H have no children. We use 
TChildren for both direct and transitive children 
and DChildren for direct children. For example, 
DChildren(A) = {B, E}. 

Component’s Parent: All components that c 
is both directly and transitively dependent upon. 
We use TParent for both direct and transitive 
parents and DParent for direct parents. For 
instance, TParent(G) = {A, B, C, D, E, F, I} and 
DParent(G) = {C}. 

Component In-Cycle: Component c is said to 
be in cycle, if it has at least one parent that is the 
same as one of its children. E.g. B is in cycle 
because its parent A is also one of its children. 

Component Depend on In-Cycle 
Component: Component c is said to depend on 
another in-cycle component if at least one of its 
direct parents is in cycle. G and H are examples 
of components that depend on In-Cycle 
components C and E respectively.  

Associated Defect: Two components have 
associated defect if a specific defect affect both 
components. We use defect ID to track associated 
defect between components. 

Some metrics such as CBO, RFC [21], 
CyclicClassCoupling26 and dwReach [22, 23] are 
of interest but not useful for our purpose since 
they cannot classify whether a component is 
involved in cyclic components indirectly. 
Therefore, we describe the cyclic metrics and 
                                                

26 This metric counts the number of direct cyclic connections between 
two classes. For instance, C1 depends on C2 and C2 depends on C1  

notations [14] relevant for our study. Consider a 
set of components, C in an object-oriented system. 
For each component c ∈ C: 
• Component In-Cycle: 

inCycle: boolean 

 
• Depend On Cycle: 

depOnCycle: boolean 

 
 

Cycles among components have been claimed to 
be detrimental to understandability [7], production 
[8, 24], marketing [8], development [8, 24], 
usability [8, 24], testability [8], integration testing 
[10-12, 19, 25], reusability [24], extensibility [9] 
and reliability [8]. 
Although, it has been stated and implied, to date, 
it appears that only one study [13] has performed 
an elaborate empirical study of cycles on many 
software systems at the class level. The result 
shows that almost all the 78 Java applications they 
analyzed contain large and complex cyclic 
structures among their classes.  

In a recent study [14], we established that 
components in cyclic relationships, either directly 
or indirectly, have significantly more defect-prone 
components than those not in any cyclic 
relationships. The four hypotheses we tested on 
six different and non-trivial systems confirm that: 

i.Components in cycles have higher likelihood of 
defect-proneness than those not in cyclic 
relationships. 

ii.The higher number of defective components is 
concentrated in cyclic dependent 
components. 

iii.Defective components in cyclic relationships 
account for the clear majority of defects in 
the systems investigated. 

iv.The defect density of cyclic related components 
is sometimes higher than those in non-
cyclic relationships. 

∃! ∶ !! ⊆ (!"#$%&' ! !⋀!!"ℎ!"#$%& ! ) 
∀!. !"#$%&' ! !!⟷ !!!! ≠ ∅ ! 
!ℎ!"!: 

!"#$%&' ! !!"#$%"&!!!!"!!"!!"!!!!"!#$!!!"#"$!"$%& 

∃! ∶ !! ∈ !"#$%&'(!) 
∀!.!"#$%&'()"(!)⟷ (¬!"#$%&' ! !⋀!!"#$%&' ! !) 
!ℎ!"!:! 

!"#$%&'()" ! !!"#$%"&!!!!"#"!"#!!"!!"#$%&'! 
!"#$"%&%'!!!!ℎ!"!!"!!!!"#$%&!!"#$%&!!"!! 
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However, as found in [15, 16], this is not 
sufficient to focus testing resources. We are 
compelled to find out if this majority of defects 
and defect-prone components are also the 
majority in both critical defects and severe 
defective components.  
Zhou and Leung [26], Shatnawi and Li [27] and 
Singh et al. [28] demonstrated that object-oriented 
design metrics could predict defect-proneness of 
classes based on defect severity. Bhattacharya et 
al. [29] on the other hand, revealed that graph 
based metrics are capable of predicting defect 
severity, maintenance effort and number of 
defects at both the function and module levels.  In 
similar direction like these studies but not 
concerned with prediction of defect-proneness of 
components, Menzies and Marcus [30], Lamkanfi 
et al. [31], Iliev et al. [32] and Yang et al. [33] 
have all focused efforts on models that could 
assign severity levels to defect reports. 
These studies focused on (a) predicting defect-
prone components based on their severity of 
defects using both the OO design and graph 
metrics and (b) predicting the severity of reported 
defects and not the affected components. Our 
work differs from these efforts in the sense that: 
None of these studies analyzed defect severity 
using cyclic complexity. In our study we 
identified cyclic dependent components as a set 
within software components that consists the 
majority of critical defects and defect-prone 
components with such critical defects.  

This study extends our previous study [14] and 
the findings are aimed to add significance to the 
need to collect cycle metrics and focus on defect-
prone cyclic related components with critical 
defects for increased testing activities and 
refactoring possibilities. 

3. Empirical Setup 
Our goal in this work is to determine the severity 
of defects in the cyclic dependent components of 
the systems under study. As explained in [7, 8, 
24], cyclic dependencies are better studied at 
physical design levels such as the source file 
(compilation unit) and package levels 
(Organizational and deployable units), since this 
type of dependencies is stronger than logical 

dependencies [8]. In addition, previous empirical 
studies [13] on cyclic dependency have performed 
analysis at the file levels. Furthermore, when 
developers resolve defects, they usually log the 
changes at the file level and thus have file to 
defect mapping. Based on the above reasons, we 
identify relationships and dependencies at the 
compilation units (top-level classes for Java) and 
at the package level. 

We perform our evaluation in two ways: First, we 
use the set of metrics built around cyclic 
dependency relationships proposed in our 
previous study [14] to mine software components 
and classify them into two groups, “Cyclic” and 
“Non-Cyclic”. Second, we statistically evaluate 
the severity of defects from cyclic related 
components and non-cyclic related components. 

 
A. Systems under study 

We choose two systems primarily because of their 
criticality to the environments where they operate. 
First, we analyze an industrial Smart Grid 
application, a type of system of systems (SoS) 
applications. Our motivation for the choice of this 
case study is that, as a critical infrastructure, the 
availability and reliability of the Smart Grid is 
crucial to its safety and security. Smart Grid 
represents the injection of Information and 
Communication Technology (ICT) infrastructure 
to the electricity grid to allow for bi-directional 
flow of energy and information [34].  

The system under study is a distribution 
management system designed to monitor and plan 
the Grid operations. It provides real-time 
operational support by continuously receiving 
status data from the power grid. The system has 
been in development for about six years and we 
have analyzed six post releases (field and 
operational) of this application. It is mostly 
developed with C# programming language with 
.NET framework. As listed in Table I, it has a size 
of approximately 341KLOC and contains 1203 
class files and 2142 classes as of version 4.2.4. 

Furthermore, we choose Apache-ActiveMQ27, a 
very powerful and open source messaging and 

                                                
27 http://activemq.apache.org/ 
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enterprise integration pattern server. Our 
motivation for this choice is that systems that 
provide integration platform for other applications 
are very critical and form the backbone for these 
applications. The security and reliability of the 
applications running on this platform depend 
mostly on it. We consider this system to be non-
trivial. As listed in Table I, the CORE module we 
analyzed as at release 5.7.0 (penultimate release) 
has about 136.22KLOC, containing 1517 class 
files and 1665 classes. 

 
B. Research Hypotheses 

The hypotheses investigated in this study are as 
follows: 

• HA: Cyclic dependent components have 
significantly higher number of highest severity 
defects than non-cyclic components. 

• HB: Cyclic dependent components have 
significantly higher severe defect-prone 
components than non-cyclic components. 

A severe defect-prone component (SDC) is 
defined as a component within the top 25% with 
the highest severity defects.  
To test our hypotheses, either a t-test or non-
parametric test [4] such as Wilcoxon signed rank 
test will be applicable depending on whether our 
data sample is normally distributed or not. Lastly, 
we test the difference in mean between both 
groups for significant difference that is greater 
than zero. Three categories are identified for both 
groups based on our hypotheses: 

i.Number of critical severity defects recorded in 
each group 

ii.Number of defect-prone components with 
critical severity defects. 

iii.Number of severe defect-prone components in 
each group. 

For these three categories, we test the hypothesis 
(1-tailed significance test): 

• H0: µC ≤ µNC (The mean of cyclic group is 
significantly less than or equal to the non-
cyclic group) 

• H1: µC > µNC (The mean of cyclic group is 
significantly higher than the non-cyclic group) 

 
A. Data collection 

We have collected data for six releases of two 
important applications. We describe in each 
subsection the details of our approach: (1) to 
collect the data from the defect repository, (2) to 
map the class files to the defects, (3) to aggregate 
the defect counts at the class-file and the package 
level, (4) of ranking components by severity of 
defect and (5) of dependency data collection 

 
1) Defects collection from the defect 

tracking system (DTS) 
We have collected defect data from both the HP-
QC DTS and JIRA DTS. A Defect repository 
gives typically a high level overview of a problem 
report. For example, typical attributes of the HP-
QC defect tracking system (QC-DTS) are the 
Defect ID, severity of the defect, the type of 
defect, date defect is detected, the module 
containing the defect, the version where defect is 
detected, and the date the defect is fixed. Our first 
step is to determine the defects that affect each 
version of the system. In the HP-QC, we use 
“Detected in Version(s)” and in Apache JIRA 
DTS, we use the “Affects version” field to filter 
all bugs that affect a particular version of the 
system. A certain defect may keep re-occurring 
and span several versions of a system (persistent 
defects [35]). We include such defects in all the 
versions they affect.  Next, we filtered out 
“duplicate”, “Not a problem”, “Invalid”,  
“Enhancement” and “Task” cases from the 
resolution/Defect Type field. 

 
1) Method to map class files to defects 

Version repository, on the other hand, is a 
configuration management system used by the 
developers to manage source code versions. The 
version system provides historical data about the 
actual class file that is changed and/or added as a 
result of corrective action (defect fixes), adaptive, 
preventive and perfective actions [36]. Thus, the 
SVN/CVS provides a detailed granularity level to 
know which source file(s) in the module(s) are
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TABLE VIII.   SOFTWARE SOURCE CODE AND DEFECT DATA 

Release 
Date #Pkg #Class-File #Class KLOC #Defective Class-File #Defects 

Apache-ActiveMQ        
5.7.0 Nov 22 2012 82 1517 1665 136.22 35 68 
5.6.0 Jun 15 2012 83 1505 1649 133.25 88 102 
5.5.1 Oct 16 2011 78 1331 1472 118.27 54 76 
5.5.0 Apr 01 2011 78 1331 1472 118.27 115 105 
5.4.2 Dec 02 2010 77 1258 1393 113.01 80 66 
5.4.1 Sept 21 2010 77 1256 1386 112.20 79 63 

CommApp        
4.2.4 Nov 14 2012 191 1203 2142 341.83 29 14 
4.2.2 Oct 12 2012 191 1199 2134 339.78 49 18 

4.1 Aug 17 2012 171 1002 1884 316.22 60 42 
4.0.1SP4 Apr 11 2012 141 904 1650 286.99 69 29 
4.0.1SP2 Mar 26 2012 142 903 1645 285.89 46 28 

4.0 Oct 14 2011 133 849 1546 266.11 137 143 

TABLE IX.  % OF DEFECTS MAPPED FROM DTS TO SVN 

Apache-ActiveMQ CommApp 

Release %Bugs Release %Bugs 

5.7.0 85.3 4.2.4 71.4 

5.6.0 93.1 4.2.2 83.3 

5.5.1 77.6 4.1 85.7 

5.5.0 82.9 4.0.1SP4 69.0 

5.4.2 80.3 4.0.1SP2 64.0 

5.4.1 85.7 4.0 51.7 

changed to fix a reported defect. A common way 
to figure out what operation is performed on the 
source file is to look at the message field of the 
SVN commit. When developers provide this 
information with the bug number and/or useful 
keywords (e.g. bug or fix), it is possible to map 
the reported defect with the actual source file(s) 
[37, 38]. In some cases, not all bug commits in the 
version repository contain the bug number or 
useful keyword in the message field. In the past, 
researchers have approached this situation by 
mapping from defect repository to the version 
repository [38, 39].  
We have used both approaches to map defect 
from the HP-QC and JIRA DTSs to the code 
changes. The resolution date allows us to map 
some of the untagged commits in the version 
system to the resolved bugs. Overall, for the six 
releases of each system, we mapped an average of 
84.2% for Apache-ActiveMQ and 71% for 
CommApp (see Table II). From these 
percentages, we consider only defects that 
are associated with source files of the 
analyzed modules and ignore defects for 
non-source files, test source files and source 

files of other modules not analyzed. 
Consequently, the reported defect figures in 
the results section are fractions of the 
mapped percentages. 
 

2) Aggregating number of defects per class 
file and per package 

In a release, it is possible that multiple reported 
bugs be associated to one class file. The unique 
defect ID is thus appropriate to compute the 
number of defects fixes that affect a class file and 
a package. From the mapped change data, we look 
up each file and determine the total of defects per 
file by counting the number of unique defect ID in 
this release. At the package level, we aggregate 
the unique defect IDs for each class file in the 
package. As demonstrated in Fig. 2, based on the 
defect ID, File1, File2 and File3 have 2 defects 
each and Pkg 1 has a total of 3 defects although it 
contains 3 files with 2 defects each. The unique 
defect-ID shows that for pkg1, only 3 defects are 
fixed. 

3) Ranking of components by defect 
severity 

The HP-QC DTS of CommApp uses four values 
to describe the severity of each recorded defect 
while in JIRA five values are used. The severity is 
determined based on the impact of the defect on 
the system and the business. From our observation 
of the message logs in both DTSs, defect 
severities with “blocker” and/or “critical” values 
relate strongly to reliability, performance and/or 
security issues in the system. For instance, in 
CommApp, an example is: “Database running at 
100% CPU”. An example in ActiveMQ is: 
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“Network bridges can deadlock when memory 
limit exceeded”. For HP-QC, a defect can be 
critical, major, average or minor. In JIRA, a 
defect can be blocker, critical, major, minor or 
trivial. Because of the few numbers of blockers 
and critical defects in the defect data for Apache-
ActiveMQ, we decided to merge these two to 
form only critical category. We transform the 
severity scales in both defect-tracking systems to 
map critical, high, medium and low. 
We want to be able to rank the components based 
on their number of the highest severity defects. 
This presents the possibility to be able to evaluate 
severe defect-prone components (SDC). Unlike 
other studies [26-28] that have developed multiple 
models to predict two or three categories of defect 
severity, we can only devise an approach to have 
a single ranking of component based on its most 
severe defects. We describe this method in this 
section since we believe it can find practical use 
by other researchers and practitioners.  

We keep in mind that a component can have many 
defects and therefore contain different severity 
values (i.e. different severities distributed over a 
component). For instance, a component can have 
3 defects in this order {Critical=1, High=1, 
Medium=0, Low=1}. To rank according to the 
highest severity of defects requires that we make 
some transformation to give the highest weights to 
components according to their most severe 
defects. 
We describe the transformation process we use for 
this purpose: 
1. Given n number of components and m number 

of defect severities, we form an mxn matrix, 
where the column elements in the matrix stand 
for the severity values of a component in their 
order of severity. 

 
2. We form a new matrix B as follows; for each 

column element, starting from the first 
element, replace all elements below with zero 
iff the element above is greater than zero. 

 

 
3. Form a weight row vector W of 1xm 

dimension containing the sum of the 
maximum element of each row below the kth 
row in B. The last column element in W is 
kept as 0: 

 

 
4. Form a new mxn matrix WD, where W is the 

diagonal elements and all other elements are 
zero  

 

5. Form matrix C by dividing each element in B 
by itself 

1.  

6. Lastly, compute D = WD*C + B 

For example, with components; c1: {Critical=2, 
Major=1, Average=0, Minor=1}, c2: {Critical=0, 
Major=1, Average=3, Minor=0}, c3: {Critical=0, 
Major=3, Average=0, Minor=0} and c4: 
{Critical=0, Major=0, Average=0, Minor=1} 
gives matrix: 

 
Following the transformation steps II-VI yields 
matrices:  

 
From the matrix D’s result, c1 has the highest 
weight of 6, followed by c3 with a weight 4, then 
c2 with a weight 2 and lastly c4 with a weight of 1.  
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4) Dependency data collection 

We have developed a small Java tool to extract 
source files dependency data [14]. The source 
files are downloaded from the version repository. 
Organizational rules in Java source file are 
substantially different from C# source file. A Java 
source file has a one-one mapping from file to 
top-level class and it is not allowed to define 
another top-level class in a Java file. In addition, 
the top-level class must have the same name as its 
enclosing file. Also, there is a one-zero or one-one 
mapping from file to package; a maximum of one 
package can be defined in a Java file. Finally, a 
Java class may contain nested classes (one to 
many relation). In C#, multiple relations are 
possible. A file can contain many top-level classes 
and many top-level namespaces can also be 
defined in a file. It is also possible that a class 
contains nested classes and a namespace can 
equally contain nested namespaces. Unlike Java 
file, the file name does not need to match any of 
the classes defined in it, although, good practices 
suggest to have filename as the same as a top-
level class. 

Since the compilation unit for both Java and C# is 
the source file and we are considering 
dependencies at the physical level [8], we decide 
for the following: 

1. A dependency on any class in a source file 
implies a dependency on the source file.

2. The cyclic metric for a class is computed 
using dependencies that cross compilation 
units (source files). We skip cycles that are 
formed among classes within a source file.  

We use the “USES” relations [8], which we have 
defined earlier as DParent and apply them to the 
two systems. We ignore all external library types 
(e.g., .NET and Java API) that developers have no 
access to their source codes since it is practically 
impossible for these external classes to form 
cycles with internal application’s classes. Fig. 3 
shows an example of the actual dependencies for 
MyClass and mypackage components. In order 
to collect other nodes (classes) to which MyClass 

 
Fig. 6. Aggregating defect count at the package and file level [14] 

 
Fig. 7. (a) Class source data (b) Dependency Graph for Class (c) Package source data (d) Dependency Graph for package [14] 

is connected to requires that we scan the text of 
MyClass. The edge between MyClass and other 
DParent(MyClass) nodes is a directed path 
(without label, L) from MyClass to each node in 
the DParent set (Fig. 3a-b). In the case of 
mypackage (Fig. 3c-d), the 
DParent(mypackage), is a set of unique imported 

packages and is processed from the collected class 
data. 

4. Results 
Table III lists the distribution of defect severity 
for the entire systems. Table IV lists the 
distribution of defects in each group. The total 
number of defects (ND), the number of defects in 
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in-cycle group (ICD), the number of defects in the 
depend-on-cycle group (DCD), the total number of 
defects in both groups (i.e. CD = ICD U DCD) and 
the number of defects in the non-cyclic group 
(NCD) for both class-files and packages. In Table 
V, we report the results of mining the components 
(class-files and packages) into in-cycle (IC), 
depend-on-cycle (DC) and non-cyclic (NC) 
categories. In Table VI, we list for each severity 
value and SDC, the percentages of cyclic-related 
defect-prone components (CDPC), non-cyclic 
defect-prone components (NCDPC), the number of 
defects in cyclic group accounted for by cyclic 
defect-prone components (CD), the number of 
defects in non-cyclic group accounted for by non-
cyclic defect-prone components (NCD), and the 
difference between the defects in cyclic group and 
non-cyclic group (i.e. CD-NCD and NCD-CD). 
Table VII reports the hypotheses tests of SDC, 
defect-prone components with critical severity 
defects and the number of defects with critical 
severity in cyclic and non-cyclic groups.  
 

A. Distribution of Defect Severity 
Table III lists the average distribution of defect 
severity in the six releases of the two systems. In 
Apache-ActiveMQ, 8% of defects are Critical 
(Blocker + Critical) defects and are distributed in 
8% of defect-prone components28 (DPC). 75% of 
defects are High (Major) severity defects and are 
spread across 78% of DPC, while 15% of total 
defects are Medium (Minor) severity defects and 
are distributed in 13% of DPC. Lastly, 2% of all 
defects are Low (Trivial) severity defects and are 
spread across 1% of DPC. In CommApp, 12% of 
defects are Critical (critical) severity defects and 
are distributed in 25% of DPC. 45% of defects are 
High (high) severity defects and are spread across 
42% of DPC. 36% of defects are Medium 
(average) severity defects and are distributed in 
27% of DPC and lastly, 7% of defects are Low 
(low) severity defects and are distributed in 6% of 
DPC. 

Fig. 4 illustrates how much of defect-prone 
components affected by critical severity defects 

                                                
28  A defect-prone component as used in this study is defined as 

components with one or several defects 

are accounted for when using the largest-first or 
the smallest-first29 prioritization approaches [40]. 
For both systems, this distribution shows critical 
severity defects to spread across both DPC with 
large size and number of defects and those with 
small size and number of defects. At the top 25%, 
we could only account for less than 45% of DPC 
with critical severity defects. This number is, of 
course, not desirable for critical applications. 
Even at the top 75%, we are still unable to 
account for all the DPC with critical severity 
defects (since the percentage identified is 
approximately 80%).  

In conclusion of this section, we can caution that 
models that target top k% may not uncover a 
significant number of defect-prone components 
affected by critical severity defects. At least this is 
confirmed in these two applications. There is a 
need for more studies in prediction methods that 
focus further on the severity of defects rather than 
number of defects. This is an additional 
motivation for us to conduct an investigation into 
how much of critical severity defects and defect-
prone components with critical severity defects 
are contained in cyclic dependent components. 

TABLE X.  % (AVERAGE) OF DISTRIBUTION OF DEFECT SEVERITY 

Severity Apache-ActiveMQ CommApp  

DPC #Defect  DPC #Defect  

Critical 8 8 25 12 

High 78 75 42 45 

Medium 13 15 27 36 

Low 1 2 6 7 

 
B. Distribution of defect and DPC in cyclic 

and non-cyclic groups 

Tables IV and V list the average of cyclic data 
and their defect profiles for the two systems we 
investigated. On the average, in Apache-
ActiveMQ, there are 1366.3 class-files out of 
which 75.2 are defective. 32.5% of class-files are 
in-cycle (IC) while 15.8% of class-files are 
dependent on other components in cycles (DC). 

                                                
29 Largest-first approach assumes that larger components are more 

defect-prone and therefore ranks components in the order of their highest 
number of defects while the smallest-first approach, however, assumes that 
smaller components are relatively more defect-prone 
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51.7% are not involved in any cyclic relationships 
(NC). Of the total defective class-files, both in-
cycle and depend-on-cycle components account 
for 78.3%, while non-cyclic components account 
for 21.7%. The system contains an average of 44 
defects, of which the IC group accounts for 
84.5%, the DC, 17% and the NC 19.8%.  

At the package level, there are average of 79.2 
packages with 27.3 defective ones. 68.6% of 
packages are in-cycle while none is dependent on 
any in-cycle components. 31.4% of packages are 
not in any cyclic relationships. Furthermore, 
packages in-cycle account for 89% of the total 
defective components while non-cyclic packages 
account for 11%. Out of the total average of 44 
defects in the system, IC group accounts for 
93.2% while NC group accounts for 10.7%. As 
can be seen from these statistics, the cyclic related 
components in Apache-ActiveMQ account for the 
clear majority of defective components and 
number of defects at both the class-file and 
package levels. 
For CommApp, the average class-files totaled 
1010, out of which only 65 are defective from 
25.7 defects. 24.8% of these class-files are in-
cycle and account for 57.4% of defect-prone 
components and 80.5% of total defects. The DC 
group contains 28.8% of the class-files and 
account for 26.5% of defect-prone components 
and 51.4% of the defects. Lastly, the NC group  

 
Fig. 8. % of DPC with critical defects identified at the top k% of the 

class-files DPC over six releases 

has 46.4% of the total class-files and account for 
16.2% of defect-prone components and 30% of 
total defects.

At the package level, the CommApp contains an 
average of 161.5 packages of which 20.5 turned 

defective. 12.6% of these packages are in-cycle 
and account for 31.7% of defect-prone 
components and 68.9% of total defects. The DC 
group contains 40.7% of the packages and 
account for 37.6% of defect-prone components 
and 57.6% of the defects. Lastly, the NC group 
has 46.6% of the total packages and account for 
30.7% of defect-prone components and 31.9% of 
total defects. As observed from these statistics, the 
cyclic related components in CommApp also 
account for the clear majority of both defect-prone 
components and the number of defects.

C. Distribution of critical defects and SDC 
in cyclic and non-cyclic groups 

We now investigate if this majority in both defect-
prone components and number of defects are also 
the clear majority in the number of critical defects 
and severe defect-prone components. As listed in 
Table VI, in Apache-ActiveMQ, the cyclic group 
of class-files contains 90.4% of SDC30, that is, 
defect-prone components in the top 25% based on 
their number of critical defects while the non-
cyclic group has 9.6%. Furthermore, the total 
percentage of the SDC defects31 in cyclic group is 
96.1% while that of NC group is 10.2%. Also, the 
cyclic group accounts for 90.3% of the defect-
prone components with critical severity defects 
while the non-cyclic group accounts for 9.7%. At 
the package level, 97.7% of SDC are in cyclic 
relationships while 2.3% of SDC are not in cyclic 
relationships. SDC defects in the cyclic group 
account for 95% while 5.2% are recorded for non-
cyclic group. In addition, all the defect-prone 
packages with critical severity defects are in 
cyclic relationships and they account for all the 
critical severity defects in this system.  
In the case of CommApp, the cyclic group of 
class-files consist 88.6% of SDC and this number 
accounts for 94.7% of SDC defects. Furthermore, 
the cyclic group accounts for all (100%) the 
critical severity defects and contains 82.2% of 
defect-prone components affected by the critical 
severity defects. At the package level, cyclic 
group comprises 65.6% of SDC and accounts for 
                                                

30 According to the ranking algorithm and the percentile figure used 
(Top 25% = 75th percentile), SDC might contain high severity defects in 
addition to critical severity defects. 

31 Note that defects in SDC are ranked as the highest severity defects. 
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80.8% of SDC defects. Also, the cyclic group 
accounts for all (100%) of critical severity defects 
and contains 75% of defect-prone packages 
affected by critical severity defects.  
Table VII lists the results of the hypotheses tests. 
Regarding the first hypothesis HA, the p-values of 
1-tailed test for the two systems and for both types 
of components (class-files and packages) are less 
than 0.05. Therefore, we reject the null hypothesis 
and confirm that the number of critical severity 
defects in the cyclic defect-prone components is 
significantly higher than those in the non-cyclic 
defect-prone components. Regarding HB, we 
reject the null hypothesis for HB1 at both the class-
file and package levels and affirm that defect-
prone components with critical defects are 
significantly higher in the cyclic group than non-
cyclic group. The null hypothesis HB2 is rejected 
for all cases except for package-level result for 
CommApp.  

5. Findings and Discussion 
First, as demonstrated in the distribution data of 
Fig. 4, defect-prone components affected by 
critical severity defects are spread across DPCs. 
In other words, prioritizing testing activities using 
the “largest-first” or “smallest-first” [40] approach 
is not optimal to discover such “first class” 
candidates that should be prioritized in critical 
systems. Furthermore, we revealed that all critical 
severity defects (100%) are located in the 
packages that are in cyclic relationships. 
Likewise, between 95% and 100% of critical 
severity defects can be discovered in the class-
files that are in cyclic relationships.  

When we look at the defect-prone components 
affected by those critical defects, we discovered 
that for cyclic related components, between 
82.2% and 90.3% are class-files in cyclic 
relationships and between 75% and 100% are 
packages that have cyclic relationships. In 
addition to these, when we rank components 
according to the number of their highest severity 
defects, we found that between 88.6% and 90.4% 
of defect-prone components (class-files) with the 
highest severity defects are in cyclic relationships. 
Also, between 65.6% and 97.7% of packages that 

are defect-prone and with the highest severity 
defects are in cyclic relationships.  
The set differences CD-NCD and NCD-CD present 
useful perception into identifying defects that are 
unique to each group. The findings in this study 
show that with certainty, we can confirm that 86% 
(class-files) and 100% (packages) of critical 
severity defects originate from the cyclic group in 
Apache-ActiveMQ while 4.8% (class-files) of 
critical severity defects originate from the non-
cyclic group. For CommApp, we are sure that 
44.4% (class-file) and 50% (packages) of critical 
severity defects originate from the cyclic group 
whereas no critical severity defect can be said 
with certainty to originate from the non-cyclic 
group (The set difference NCD-CD = null). 
One major contribution of this work is that we are 
able to partition a software dataset into sub sets 
that allows a maintenance engineer and software 
testers to look for defect and most especially 
critical severity defects in the right places. For 
instance, it is far more efficient to look for highest 
severity defects in 50% or less of a system´s 
components than the whole 100%. The cyclic 
related components in our study range between 
48.3% and 53.6% of the class-files and within this 
range, we can discover between 95.1% and 100% 
of critical severity defects. Several empirical 
results already revealed that defect distribution in 
software systems is skewed and followed the 
Pareto rule (20-80) [16, 17]. The challenge is 
higher when dealing with large and complex 
systems with thousands of components but 
extremely few defect-prone components. In such 
situations, prediction models have lower chance 
of good performance. It is even worse when fewer 
of those components are associated with critical 
severity defects, which is the case in many 
software systems. Finding them can be analogous 
to looking for a needle in a haystack (see Fig. 4). 
To reinforce this point, the study in [26] 
confirmed that prediction based on low severity 
defect performed better than prediction on high 
severity defects. 
The results in this study are useful to employ for 
focusing testing resources and refactoring 
possibilities in both industry and the academia. 
Many studies [9-13] of dependency cycle in
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TABLE XI.  SUMMARY OF COMPONENTS #DEFECTS32 (AVERAGED OVER SIX RELEASES) 

System 
 Class-File Package 

ND ICD DCD CD NCD ICD DCD CD NCD 

ActiveMQ 44 37.2 7.5 39.8 8.7 41 0 41 4.7 

CommApp 25.7 20.7 13.2 24.3 7.7 17.7 14.8 23.7 8.2 

TABLE XII.  SUMMARY OF CYCLIC DATA (AVERAGED OVER SIX RELEASES) 

   Class-File Package 

System N NDPC IC ICDPC DC DCDPC NC NCDPC N NDPC IC ICDPC DC DCDPC NC NC
DPC 

ActiveMQ 1366 75.2 444.7 50.4 215.3 8.5 706.3 16.3 79.2 27.3 54.3 24.3 0 0 24.8 3 

CommApp 1010 65 250.5 37.3 290.6 17.2 468.8 10.5 162 20.5 20.3 6.5 65.8 7.7 75.3 6.3 

TABLE XIII.  AVERAGE % OF COMPONENTS IN CYCLIC33 AND NON-CYCLIC GROUPS AND GROUPED BY DEFECT SEVERITY 

 Apache-ActiveMQ CommApp 

Metric CDPC NCDPC CD NCD CD-NCD NCD-CD CDPC NCDPC CD NCD CD-NCD NCD-CD 

Class-Files             

SDC (25%)* 90.4 9.6 96.1 10.2 90 4 88.6 11.4 94.7 34 66 5.3 

Critical* 90.3 9.7 95.1 14.3 86 4.8 82.2 17.8 100 55.6 44.4 Ø 

High 78.6 21.4 89.4 21.1 79 10.6 84.9 15.1 91.4 35.7 64.3 8.6 

Average 75.8 24.2 92.3 18 82.1 7.7 84.5 15.5 96.3 18.2 81.8 3.6 

Minor 100 0 100 0 100 Ø 90.6 9.4 100 9.1 91 Ø 

Package             

SDC (25%)* 97.7 2.3 95 5.2 94.8 5.2 65.6 34.4 80.8 61.5 38.5 19.2 

Critical* 100 0 100 0 100 Ø 75 25 100 50 50 Ø 

High 88.4 11.6 94 11 89 6 62.6 37.4 87 40 60 12.9 

Average 87.9 12.1 84 15.4 84.6 15.4 82 18 96.3 18.2 81.8 3.6 

Minor 100 0 100 0 100 Ø 89.5 10.5 91.1 18.2 81.8 9.1 

* Both categories that are focused in this study 

TABLE XIV.  1-TAILED TEST FOR COMPARING HIGHEST SEVERITY DEFECTS AND DEFECT-PRONE COMPONENTS IN CYCLIC AND NON-CYCLIC GROUPS 

System 

CLASS PACKAGE 
HA : Test of Number of critical defects in Cyclic vs. Non-Cyclic groups 
p-value (C) p-value (C) 

ActiveMQ 0.0113* 0.0012* 
CommApp 0.0214* 0.0299* 
 HB1 : Test of Number of Defect-prone components with critical defects in Cyclic vs. Non-Cyclic groups 

p-value (C) p-value (C) 
ActiveMQ 0.0337* 0.0052* 
CommApp 0.0295* 0.0125* 
 HB2 : Test of SDC (Top 25%) in Cyclic vs. Non-Cyclic groups 

p-value (C) p-value (C) 
ActiveMQ 0.0051* 0.0001* 
CommApp 0.0003* 0.0586 

* Significant at ∝ = 0.05 

                                                
32 It is important to note that defects can overlap in both categories since a defect can spread to many components 
33 Note that CDPC = (ICDPC U DCDPC) and CD = (ICD U DCD) 
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software systems suggest that cycles are inherent 
in real-life systems and appear like a menace we 
have to live with. We confirm our conjecture in 
these two systems that dependency cycles contain 
the highest severity defects. We rush to say that 
we make no claim to this pattern in all systems, 
however, we believe this is a step forward to 
encourage further studies and to understanding 
dependency cycles, defect-prone components and 
defect severity. 

6. Threats to Validity 
We have performed analysis and evaluation of an 
industrial Smart Grid system and a messaging and 
enterprise integration pattern server. Therefore, 
we cannot claim that this kind of pattern or 
related will be visible in other systems and other 
domains. As it is with most case studies, we 
cannot generalize these results across all systems. 
Further studies will be necessary to compare 
results across several systems. 

Our study is based on static coupling 
measurements and not dynamic coupling 
measurements [41]; as such actual coupling 
among classes at runtime may not be completely 
captured. This imprecision can occur due to 
polymorphism, dynamic binding and dead code in 
the software. This as it may, static code analysis 
has been found to be practically useful and less 
expensive to collect [5, 6, 21, 23, 42-44]. In 
addition, we collect coupling types that are not 
only based on method invocation. We do not 
think the data collected based on static code 
analysis can bias our result in any significant 
manner. 

For this study, we have relied on the defects 
logged in the defect tracking systems of each 
application. Our approach of defect data 
extraction is similar to what other researchers 
have used in the past [37-39]. Nevertheless, 
common threats are whether defects logged in the 
DTS are accurately tagged in the respective code 
changes in the version systems. In addition, we 
cannot be sure if all defects are logged in the 
DTS. Also, there could be cases that the message 
log of the file that consists a change is not tagged 
with the bug numbers of the resolved defect. 

Furthermore, there could be cases of 
typographical error in the recording of the bug 
number in the version systems [39] and lastly, it is 
still possible that duplication will occur.  
The recording of defect severity in many defect-
tracking systems has been argued to be subjective 
[45]. We cannot exclude the possibilities of 
subjective severity records in the DTSs that we 
have used. However being critical applications 
and from our investigation of the repositories, 
most records that impact on reliability, 
performance and/or security point to the highest 
severity values (blocker/critical). These are, 
essentially, the focus in our analysis and 
therefore, we can rely on the quality of the data to 
a great degree. 

7. Conclusions 
We have empirically investigated if defects with 
the highest criticality and the components 
impacted by such defects are mostly concentrated 
in cyclic dependent components. Our findings 
based on the two non-trivial systems we 
investigated revealed that DPC with critical 
defects are spread across the systems. 
Furthermore, we confirmed our conjecture that 
cyclic dependent components account for almost 
all of the critical severity defects and most severe 
defect-prone components.  

Empirical analysis shows that in three out of four 
cases, all the highest severity defects are found in 
components that are involved directly or 
indirectly in cyclic relationships and in the 4th 
case, over 95% of the highest severity defects  are 
discovered in the cyclic related group. The results 
in this study have practical use in allocating 
testing resources to a subset of systems with the 
highest likelihood of containing the most critical 
defects. Furthermore, it provides reasoning for 
refactoring and/or reengineering of especially 
defect-prone cyclic dependent components with 
critical defects. 
Lastly, it shows a subset of software systems that 
can be further explored for improved prediction 
models based on defect severity. As future 
studies, we aim to conduct a large empirical study 
of critical systems with well-maintained 
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repositories to understand if the findings in this 
study relate to a general pattern in systems with 
cyclic relationships. Furthermore, dataset 
imbalance as discussed in Hall et al. [45] is a 
threat to prediction models’ performance. We 
speculate that we can explore the results of 
dividing the datasets into these categories to build 
better models that can predict defect-proneness of 
components based on defect severity. 
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Abstract—Previous studies have shown that dependency 
cycles contain significant number of defects, defect-
prone components and account for the most critical 
defects. Thereby, demonstrating the impacts of cycles on 
software reliability. This preliminary study investigates 
the variables in a cyclic dependency graph that relate 
most with the number of defect-prone components in 
such graphs so as to motivate and guide decisions for 
possible system refactoring. By using network analysis 
and statistical methods on cyclic graphs of Eclipse and 
Apache-ActiveMQ, we have examined the relationships 
between the size and distance measures of cyclic 
dependency graphs. The size of the cyclic graphs 
consistently correlates more with the defect-proneness of 
components in these systems than other measures. 
Showing that adding new components to and/or creating 
new dependencies within an existing cyclic dependency 
structures are stronger in increasing the likelihood of 
defect-proneness. Our next study will investigate 
whether there is a cause and effect between refactoring 
(breaking) cyclic dependencies and defect-proneness of 
affected components. 

Keywords— cyclic dependency graphs; defect-proneness; 
graph complexities; refactoring 

1. Introduction 
Maintaining software systems is a non-trivial task 
since these systems grow both in size and 
complexity over time [1]. Thus, it is not 
surprising that the cost of software maintenance is 
estimated to be the highest in the overall software 
budget [2]. Despite high maintenance costs and 
continuous research efforts to improve software 
quality, there are still evidence of system and 
business failures due to software defects [3, 4]. 
The structural complexity of software systems has 
been associated with defects [5]. The more 
complex a system is, the higher the risk of defects 
and failures. One area of such complexity is 
cyclic dependencies among software components, 
yet evidence confirms that they are wide spread in 
software systems [6]. Recently, we have 

demonstrated that components in dependency 
cycles account for most number and severity of 
defects [7, 8] both at the class file and package 
levels. Our findings show that, about 65% of 
defect-prone 34  class files are in cyclic graphs. 
Where cyclic class files are approximately 44%35 
of the total number of class files. Furthermore, the 
cyclic components account for an additional 11-
17% of defect-prone components from the 
“depend-on-cycle 36 ” group. In total, an 
approximate 80% of defect-prone class files are 
cyclic-related. Similarly, an approximate 90% of 
defect-prone packages are cyclic-related with 
cyclic packages accounting for about 58% of the 
total number of packages. We do not consider 
these figures to be trivial and based on the 
significance of the results; we are motivated to 
believe that further understanding of cyclic 
dependent components will be useful to guide 
decisions and provide reasoning for refactoring 
activities on cycles.  

In relation to refactoring and software defects, 
Weissgerber and Diehl [9] found no correlation in 
particular between refactoring and defects opened 
in the subsequent days. Their results showed that 
there are periods where high refactoring was 
followed by increase in the number of defects as 
well as phases where refactoring led to no defects, 
although, the latter type were more prevalent. 
Ratzinger et al. [10] demonstrated that the number 
of software defects decreases when the number of 
refactoring increases in the preceding time period. 
Bavota et al. [11] showed that some kinds of 
refactoring are unlikely to be harmful but certain 
                                                
34 A defect-prone component as used in this study is defined as components 
with one or several defects 
35 This figure is an average of cyclic data from six different applications 
36 We define a “depend-on-cycle” component as component that is not in 
cycle but depends on component that is in cycle 
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kinds such as refactoring involving hierarchies 
(e.g. pull up method) are likely to induce defects. 
These studies have not considered refactoring 
cyclic dependent components in relation to 
defect-proneness. Thus they differ from our work.  

There have been previous studies on network 
analysis of dependency graphs in relation to 
defect proneness of components [12-14]. 
Zimmermann and Nagappan [15] analyzed three 
different types of dependency sub-graphs 
(INTRA, OUT and DEP) at three separate levels 
of granularity. Using graph complexity measures, 
they obtained correlation between these measures 
and defects in each of the three sub-graphs and 
built regression models across the sub-graphs. 
One significant difference between our work and 
theirs is in the type of sub-graphs. We have 
focused on cyclic dependency graphs, which are 
missed in their study. Furthermore, our focus is to 
obtain variables to guide decision making during 
refactoring activities. 

This paper extends our previous studies [7, 8] by 
investigating the correlation between the number 
of defect-prone components and cyclic graphs 
complexities. Consequently, we want to use these 
findings to motivate the refactoring (breaking) of 
defect-prone cyclic dependent components. This 
paper reports the preliminary results of this 
investigation and presents the direction for future 
work. 
We are aware that correlation does not necessarily 
imply causality [16] because of the possibilities of 
hidden variables that may explain this higher 
number and severity of defects in the cyclic 
groups of these systems. Hence, our approach is 
to perform an experiment based on these 
preliminary findings in an industrial setup 
whereby we control for as many factors that could 
explain these effects and thus allow us to draw a 
reasonable conclusion on the effect of refactoring 
cyclic dependent components in relation to 
defect-proneness. We provide the details in 
Section IVa. 

The rest of the work is structured as follows; in 
Section II, we lay the background to this study. 
Section III details our preliminary study. We 
report the results in Section IV and discuss the 

case study for our next study. Lastly, we conclude 
this study in Section V.

2. Background 
In a software system, a component X is said to 
have dependency on another component Y if X 
requires Y to compile or function correctly [17]. 
Formally, a dependency graph of an object-
oriented (OO) program, is defined as follows 
[18]: 
Definition 1. An edge labeled digraph G = (V, L, 
E) is a directed graph, where V = {V1, ...,Vn} is a 
finite set of nodes, L = {L1, ..., Lk} is a finite set 
of labels, and ! ! !!!!! is the set of labeled 
edges.

Definition 2. The object relation diagram (ORD) 
for an OO program P is an edge-labeled directed 
graph (digraph) ORD = (V, L, E), where V is the 
set of nodes representing the object classes in P, L 
= {I, Ag, As} is the set of edge labels representing 
the relationships (Inheritance, Aggregation, 
Association) between the classes and E = E1 # 
EAg # EAS ! ! !! ! !!" ! !!"is the set of edges. 

Furthermore, we define the various measures of a 
graph that are important for our study [19]. 

i. Geodesic is the shortest path between two 
nodes in a graph 

ii. The eccentricity of a node is its longest 
geodesic. 

iii. The diameter of a graph is the maximum 
eccentricity of the nodes. 

iv. The radius of a graph is the minimum 
eccentricity of the nodes.

v. The density of a graph is the ratio of the 
number of edges in the graph to the 
maximum possible edges in the graph. 

 

 
Fig. 9. Cyclic dependencies and defect propagation effect in a software 
network [8] 
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Cyclic dependencies and the hypothesis of 
defect propagation 
In graph theory [20], a cyclic dependency graph 
also known as strongly connected components 
(SCC) in a directed graph G = (V, E) is a maximal 
set of vertices C ⊆ V such that for every pair of 
vertices u and v in C, both are reachable from 
each other. An example is depicted in Figure 1a 
of a hypothetical cyclic graph. In this graph, all 
the six components in two cycles (A, D, C, B, F, 
E) are mutually reachable from one another.  
A related concept is the notion of dependency on 
components that are in cyclic relationships. We 
termed this as “depend-on-cycle” components [8]. 
Such “depend-on-cycle” components (e.g. G and 
H in Fig. 1a) obviously share the same 
complexity as the “in-Cycle” components that 
they depend on since they can reach all other 
components that are in these cyclic paths. 
Cyclic dependency increases coupling 
complexities and thus has the potential to 
propagate defects in a software network [21]. 
Consider the hypothetical example in Fig. 1a, a 
defect in component I has the potential to 
propagate to components C, B, A, D, G, F, E and 
H. Let us say these cyclic components are 
refactored such that a new component J is 
introduced as depicted in Fig. 1b. The possible 
propagation of defects from I is significantly 
reduced to only C and G. 

3. Preliminary Study 
In this initial study, our goal is to find variables in 
cyclic dependency graphs that correlate with 
defect and thus motivate for refactoring 
possibilities. The research questions we want to 
investigate in this study and subsequent study are:  
RQ1. What variables within a cyclic 

dependency graph correlate most with the 
number of defects and defect-prone 
components? 

RQ2. Can the refactoring of factors in RQ1 
correspond to a decrease in the number of 
defects and defect-prone components? 

Data Computation 
Dependency and defect data: We have used the 
dependency data of two (Eclipse and ActiveMQ) 

of the systems collected in one of our previous 
papers [8] for this analysis. We subsequently 
compute the SCCs from this dependency data. 
Previous studies (e.g. [6]) already show that most 
systems have very long cycles such that hundreds 
of components are tangled in one large 
dependency cycle. In our analysis, the largest 
SCC in release 5.7.0 of ActiveMQ contains 414 
class files while the largest SCC in Eclipse r3.0 
has 690 classes. Our approach here is to break the 
long cycles into several smaller cyclic sub-graphs 
in such a way that all cyclic components are 
covered (Example of such sub-graphs is shown in 
Fig. 2). Using this approach allows us to verify 
whether an increase or decrease in size-based and 
distance-based cyclic graph measures correlate 
with defects. Similarly, we used the popular 
Eclipse defect data reported in [22] and the defect 
data collected for ActiveMQ in our previous 
study [8]. 
Network Measures: As summarized in Table I, 
we have computed size and distance based 
measures. For size measures, we aggregate the 
number of nodes and number of edges in each 

TABLE XV.  NETWORK METRICS USED IN THE STUDY 

Metric Formula 

Size-based  

#Nodes 𝑉  

#Edges 𝐸  

Distance-based  

Diameter 𝑀𝑎𝑥(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑖𝑒𝑠) 

Radius 𝑀𝑖𝑛(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑖𝑒𝑠) 

Other complexity  

Density 𝐸
𝑉 . 𝑉  

 
graph. To compute the distance measures, we 
used the Floyd-Warshall algorithm [20] to 
calculate the  geodesics i.e. “all-pairs shortest 
distance” between the nodes of each of the 
generated sub-graphs. We then compute the 
eccentricity (i.e. the maximum of the shortest 
distance) for each node. Subsequently, we 
calculate the diameter and the radius for each 
graph and sub-graphs from the values of the 
nodes’ eccentricities. 
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4. Preliminary results and future 
study 

Concerning RQ1, the results (Table II) show that 
the size-based measures (number of nodes and 
edges) correlate strongly and better than distance 
based measures with the number of defects and 
defect-prone components in these systems and at 
both levels (class and packages) of granularity. In 
other words, the higher the number of 
components and dependency relationships in 
cycle, the higher the probability of defects and 
defect-proneness of components. Furthermore, as 
displayed in Fig. 3, the R-squared value shows a 
good linear fit that suggests that we can predict 
the number of defect-prone components in a 
cyclic dependency graph using the graph size 
measures.  

We can further interpret these results to mean that 
adding a new class/package (node) or dependency 
relationships (edge) to an existing cycle strongly 
increases the number of defect-prone components 
and defects in the cycle. In addition, size 
measures (i.e. node/edge) increase defect-
proneness more than the strength of connection 
(diameter). These results agree with previous 
studies [12-14] that graph complexities correlate 
with defect-proneness of components and in 
comparison to [15] at the same granularity levels, 
the correlation is higher and stronger for cyclic 
graphs as against other types of graph. 
Until now, we have not seen a systematic 
measurement of the impact of refactoring cyclic 
dependent components in relationship to defect-
proneness. This has therefore motivated us to 
verify this in our next study. Our speculation is 
that if this hypothesis is not rejected such 
knowledge can strengthen the refactoring of 
highly defect-prone cyclic related components at 
both class and package hierarchies for existing 
systems and dissuade developers from writing 
cyclically connected programs.  

 

 
Fig. 10. A cyclic dependency graph with many inner cycles from Eclipse 
3.0 (Generated with Gephi: http://gephi.org/) 

TABLE XVI.  CORRELATION BETWEEN NETWORK METRICS AND 
NUMBER OF DEFECT-PRONE COMPONENTS IN CYCLIC GRAPHS 

 Eclipse ActiveMQ 

 Class Package Class Package 

Metric S P S P S P S P 

Nodes 0.79 0.89 0.89 0.98 0.74 0.71 0.81 0.91 

Edges 0.80 0.85 0.89 0.97 0.75 0.73 0.80 0.92 

Diameter 0.41 0.19* 0.72 0.64 0.50 0.52 0.13* 0.26* 

Radius 0.38 0.13* 0.61 0.61 0.38 0.45 0.51 0.59 

Density -
0.52 

-0.52 -
0.78 

-
0.78 

-
0.38 

-
0.63 

-0.77 -0.77 

S - Spearman; P – Pearson (All non-asterisked results are significant at " = 
0.01) 

Proposed Experiment 
Regarding RQ2, we want to investigate whether 
breaking (refactoring) defect-prone cyclic 
dependent components would have effect on such 
components. There are several tools 37  and 
approaches that we can take advantage of to 
dissuade developers from writing cyclic codes or 
to refactor existing cyclic codes. Since a high 
correlation does not necessarily imply causality 
and there could be other hidden variables [16] (e.g. 
other design measures and complexities) that 
account for the defect-proneness of those 
components in the cyclic graphs, we have taken a 
practical approach to verify this conjecture. 

                                         
37 JDepend, NDepend, Dependometer, Dependency Structural Matrix 
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Fig. 11. Scatter plot between size of cyclic graph vs. #DPCs in Eclipse 3.0 

The case study for this experiment is an industrial 
Smart Grid system. The application is a 
distribution management system that provides 
real-time operational support by continuously 
receiving status data from the power grid. The 
system has been in development for about six 
years and we have analyzed six post releases data 
of this application. It is mostly developed with C# 
programming language Furthermore, it has a size 
of about 380KLOC and contains 1459 class files 
and 2484 classes as of release 4.2.4 (Release date: 
Nov. 14, 2012). Our analysis of this application 
gave similar results with those presented in this 
paper. 

Since the software undergo frequent releases by 
the company, we consider a six to nine months 
post refactoring data (after release) to be 
appropriate for our analysis. In order to eliminate 
unwanted factors that could possibly explain the 
difference between refactored cyclic groups and 
the rest of the groups, we decide to take 
measurements of well known object-oriented 
(OO) metrics and complexities in addition to the 
defect measures for three groups: (1) Refactored 
cyclic groups (2) Non-refactored cyclic groups 
and (3) Non-cyclic groups. We are particularly 
interested in post release defect data and 
therefore, our approach for the case study is as 
follows: 
1. Select N sample of most defect-prone cyclic 

dependent graphs (class and package) 
2. For each graph, record all measurement for 

the various metrics (number of defects, type 
of defects, severity of defects, correction 
efforts, lines of code, defect densities, OO 
metrics and complexities) for all components 
in these cyclic graphs (i.e. six/nine months 
pre-refactoring data) 

3. Similarly, take measurements for the 
remaining cyclic groups and non-cyclic 
groups 

4. Perform refactoring 
5. From six/nine months after the next release, 

take new measurements detailed in steps 2 
and 3 (post-refactoring)  

6. Compare the new measures with the previous 
measures for each of the components in the 
groups 

We admit that it is difficult to control and 
randomize all relevant factors in this experiment. 
For instance, the system may evolve and increase 
further in complexity as a result of dynamic 
changes in business requirements within the 
experiment phase. However, by going through 
these steps, whereby the measurements for the 
fixed sets of pre-refactoring data of components 
are compared against their post-refactoring data, 
we can, at least, move a step further to 
understanding the effect of refactoring defect-
prone cyclic components and verify whether such 
activity can reduce the defect-proneness of 
affected components.  

5. Conclusions 
We have considered dependency cycles as an 
important area of dependency graph with very 
high complexities. We show that cyclic graphs 
complexities certainly have very strong 
correlation to defect-proneness of components. 
An increase in the size and strength of 
connections in a software cyclic dependency 
graphs correspond to an increase in the number of 
defect-prone components.  Our next study is 
therefore focused on verifying the hypothesis that 
refactoring highly defect-prone cyclic dependency 
graphs will reduce the defect-proneness of the 
affected components in these graph structures. 
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Abstract—The challenge to break existing cyclically 
connected components of running software is not trivial. 
Since it involves planning and human resources to 
ensure that the software behavior is preserved after 
refactoring activity. Therefore, to motivate refactoring it 
is essential to obtain evidence of the benefits to the 
product quality. This study investigates the defect-
proneness patterns of cyclically connected components 
vs. non-cyclic ones when they transition across software 
releases. We have mined and classified software 
components into two groups and two transition states– 
the cyclic and the non-cyclic ones. Next, we have 
performed an empirical study of four software systems 
from evolutionary perspective. Using standard statistical 
tests on formulated hypotheses, we have determined the 
significance of the defect profiles and complexities of 
each group. The results show that during software 
evolution, components that transition between 
dependency cycles have higher probability to be defect-
prone than those that transition outside of cycles. 
Furthermore, out of the three complexity variables 
investigated, we found that an increase in the class 
reachability set size tends to be more associated with 
components that turn defective when they transition 
between dependency cycles. Lastly, we found no evidence 
of any systematic “cycle-breaking” refactoring between 
releases of the software systems. Thus, these findings 
motivate for refactoring of components in dependency 
cycle taking into account the minimization of metrics 
such as the class reachability set size. 

Index Terms—dependency cycle, defect-proneness, 
refactoring 

1. Introduction 
Today, virtually all aspects of systems (critical 
and non-critical) and businesses depend on 
software programs in order to perform their 
functions. This dependence implies that a failure 
within a software program is likely to result into a 

system or business failure38. Therefore, locating 
and improving potential locations of defects39 will 
continue to be important for software systems. 
Despite continuous research efforts to improve 
software quality there are still evidence of system 
and business failures due to defects [1, 2]. 

Software engineers apply refactoring as a way to 
improve problematic locations in software 
systems. Refactoring is a process that improves 
the internal structure of a software system without 
changing its external behavior [3]. It is believed 
that refactoring improves software quality and 
increase productivity by making it easier to 
understand and maintain software codes [4].  

However, in relation to refactoring and software 
defects there are conflicting evidence of the 
benefits of refactoring. Weissgerber and Diehl [5] 
found no correlation in particular between 
refactoring and defects opened in the subsequent 
days. Their results showed that there are periods 
where high refactoring was followed by increase 
in the number of defects as well as phases where 
refactoring led to no defects, although, the latter 
type were more prevalent. Ratzinger et al. [6] 
demonstrated that the number of software defects 
decreases when the number of refactoring 
increases in the preceding time period. Bavota et 
al. [7] showed that some kinds of refactoring are 
unlikely to be harmful but certain kinds such as 
refactoring involving hierarchies (e.g. pull up 
method) are likely to induce defects. Kim et al. [8] 

                                                
38 Failure: The inability of a system or system component to perform a required 
function within specified limits  
39 Defect/Fault: An anomaly in a software code unit or product that can be the 
cause of one or more failures 
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found that refactoring edits have a strong temporal 
and spatial correlation with bug fixes. In another 
study, Kim et al. [4] discovered that refactored 
binary modules of Windows 7 experienced 
significant reduction in the number of inter-
module dependencies and post-release defects. 
In recent studies [9, 10], we established that 
components in dependency cycles account for 
both the majority of defects and the most number 
of critical defects in the systems investigated. 
Although dependency cycle is known to be a sign 
of design decay [11, 12], evidence shows that it 
pervades software at different granularity levels. 
The results of these studies [9, 10] prompt further 
investigation of components in dependency 
cycles. 
Specifically, we want to investigate if there is a 
pattern of increasing or decreasing defect-
proneness for defective components that transition 
between dependency cycles across releases. Also, 
we want to know whether there is a systematic 
cycle-breaking refactoring between software 
releases. We distinguish between the word 
defective and the word defect-prone. A 
component is defective if it contains one or more 
defects in a release. While we define a component 
to be defect-prone if it persists as being defective 
in one or more future releases. Keeping existing 
programs acylic or breaking cyclic programs is 
not a trivial task since it involves behavior 
preservation of the original state of the software. 
Thus the fundamental question is whether 
companies would want to invest resources to 
refactor cyclically connected programs without 
empirical evidence of its benefits to the product 
quality. 
Therefore, this study aims to investigate the 
evolution patterns of components in dependency 
cycle in order to understand: 

i.Whether there is a pattern of increasing or 
decreasing defect-proneness of components 
that transition between dependency cycles. 
Is the probability of defect higher for 
components that move between 
dependency cycles than for those that move 
between out of cycle structure?  

ii.Whether components in dependency cycle 
undergo any systematic “cycle-breaking” 
refactoring between releases. 

iii.Whether factors such as coupling and size 
complexities provide further explanation to 
understanding the defect-proneness of 
components that transition between cycles. 

The rest of this work is structured as follows; 
Section II provides the background to this study 
and reports on previous work. In Section III, we 
detail our empirical design for this study. Section 
IV presents the results and the discussion. In 
Section V, the threats to the validity of our results 
are discussed. Lastly, Section VI provides the 
conclusion of this study and the future work. 

2. Background 
In a software system, a component X is said to 
have dependency on another component Y if X 
requires Y to compile or function correctly [13]. 
Formally, a dependency graph of an object-
oriented (OO) program, is defined as follows [14]: 
Definition 1. An edge labeled digraph G = (V, L, 
E) is a directed graph, where V = {V1, ...,Vn} is a 
finite set of nodes, L = {L1, ..., Lk} is a finite set 
of labels, and E ⊆ VXVXL is the set of labeled 
edges. 

Definition 2. The object relation diagram (ORD) 
for an OO program P is an edge-labeled directed 
graph (digraph) ORD = (V, L, E), where V is the 
set of nodes representing the object classes in P, L 
= {I, Ag, As} is the set of edge labels representing 
the relationships (Inheritance, Aggregation, 
Association) between the classes and E = E1 ∪ 
EAg ∪ EAS E = E! ∪ E!" ∪ E!"is the set of edges. 

Cyclic Dependencies and the Hypothesis of 
Defect Propagation [15] 
In graph theory [16], a cyclic dependency graph 
also known as strongly connected components 
(SCC) in a directed graph G = (V, E) is a maximal 
set of vertices C ⊆ V such that for every pair of 
vertices u and v in C, both are reachable from 
each other. An example is depicted in Figure 1a of 
a hypothetical cyclic graph. In this graph, all the 
six components in two cycles (A, D, C, B, F, E) 
are mutually reachable from one another. A 
related concept is the notion of dependency on  
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Fig. 12. Cyclic dependencies and defect propagation effect in a software 

network [10] 

components that are in cyclic relationships. We 
termed this as “depend-on-cycle” components 
[10]. Such “depend-on-cycle” components (e.g. G 
and H in Fig. 1a) obviously share the same 
complexity as the “in-cycle” components that they 
depend on since they can reach all other 
components that are in these cyclic paths. 

Cyclic dependency increases coupling 
complexities and thus has the potential to 
propagate defects in a software network [17]. 
Consider the hypothetical example in Fig. 1a, a 
defect in component I has the potential to 
propagate to components C, B, A, D, G, F, E and 
H. Let us say these cyclic components are 
refactored such that a new component J is 
introduced as depicted in Fig. 1b. The possible 
propagation of defects from I is significantly 
reduced to only C and G. 
Cycles and software quality: Cycles among 
components have been claimed to be detrimental 
to understandability [18], production [11, 19], 
marketing [11], development [11, 19], usability 
[11, 19], testability [11], integration testing [13, 
14, 20-22], reusability [19], extensibility [12] and 
reliability [11]. 

In relation to empirical findings of dependency 
cycle, it appears that only one study [23] has 
performed an elaborate empirical study of cycles 
on many software systems. The result shows that 
almost all the 78 Java applications they analyzed 
contain large and complex cyclic structures 
among their classes.  
Dependence clusters: Existing studies [24, 25] 
have also shown that dependency cycles are not 
limited to classes or packages. They are also 
pervasive among program statements in software 
systems.  This type is termed “dependence 
clusters” and they are formed when a set of 
program statements are mutually inter-dependent. 
Dependence clusters have been demonstrated to 

be detrimental to software maintenance activities 
[24, 25]. 
Cycles and defects: Zimmermann and Nagappan 
[26] performed a study on Windows Server 2003 
to build a defect prediction model by using graph 
complexities. In this system, they found that 
binaries in dependency cycles have on average 
twice as many defects as those binaries not in 
cycles. In a recent study [10], we established that 
components in cyclic relationships, either directly 
or indirectly, have significantly more defect-prone 
components than those not in any cyclic 
relationships. The four hypotheses we tested on 
multiple systems confirm that: 
1) Components in cycles have higher likelihood of 

defect-proneness than those not in cyclic 
relationships. 

2) The higher number of defective components is 
concentrated in cyclic dependent components. 

3) Defective components in cyclic relationships 
account for the clear majority of defects in the 
systems investigated.

4) The defect density of cyclic related components 
is sometimes higher than those in non-cyclic 
relationships. 

Similarly, we established that components in 
dependency cycles account for the most number of 
highest severity defects in the software systems we 
investigated [9]. 

Refactoring, coupling and defects: In relation to 
refactoring, the studies in [4-8] have investigated 
the connections between refactoring and defect-
proneness of components after refactoring. In 
general, refactoring focuses on rewriting code to 
make it easier to maintain and are mostly 
performed while adding features or fixing bugs 
[4]. In some cases, refactoring is aimed at 
reducing inter-component dependencies [4]. We 
distinguish between refactoring that reduce inter-
component dependencies and a “cycle-breaking” 
refactoring. We show using Fig. 1b and Fig. 2 that 
breaking cycle does not necessarily reduce inter-
component dependencies. Hence, the refactoring 
context we consider in this study relates only to 
breaking dependency cycles. 
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3. Empirical Setup 
This study investigates the transition and 
evolution patterns of cyclic dependent class-files 
(we refer to these as components in the rest of the 
paper) over releases. We want to know if there is 
evidence of cycle-breaking refactoring and if there 
is evidence of increase or decrease in defect-
proneness of components that transition in and out 
of dependency cycles. As shown in Fig. 1(a-e), we 
identify four transition states of a cyclic dependent 
component between releases. Thus, such 
component can: 
1) Transition from in-cycle to out-of-cycle 

between releases 
2) Transition from in-cycle to depend-on-cycle 

between releases 
3) Remain in-cycle between releases 
4) Be refactored (e.g. renamed) or deleted as it 

transition from one state to another between 
releases 

We focus on states 1 and 3 and ignore state 4 for 
the reason that we could not accurately associate a 
renamed/deleted component between releases and 
we ignore state 2 because we assume similar 
complexity as state 3. 

A. Research Questions 
We formulate our research questions to address 
this goal as follows: 
RQ1. Do components in dependency cycles 

persist as defective in the “in-cycle” state 
more than components that persist in the out-
of-cycle state? 

This research question allows us to compare the 
rate of defect-proneness of components that 
transition between in-cycle states across releases 
and components that transition between out-of-
cycle states across releases. We formulate two null 
hypotheses to investigate this question as follows: 
H01a: There is no significant difference between 
the proportions of defective components that 
remain defective as they transition between in-
cycle states and the proportion of defective 
components that remain defective as they 
transition between out-of-cycle states. 

H01b: There is no significant difference between 
the proportions of non-defective components that 

 

 
Fig. 13.  (a-e). A simplistic example of transitions of in-cycle components 

between releases 

become defective as they transition between in-
cycle states and the proportion of non-defective 
components that become defective as they 
transition between out-of-cycle states. 

RQ2. Is there evidence of cycle-breaking 
refactoring between releases? 

Our assumption is that while other refactoring 
activities may be taking place between releases it 
does not typically include a systematic “cycle-
breaking” refactoring. 
RQ3. Does the transition of defective 

components from in-cycle to out-of-cycle 
reduce the defect-proneness of such 
components?  

This research question corroborates RQ1. By 
investigating this question, we can verify whether 
there is a significant difference 
(increased/decreased) in defect-proneness of 
cyclic dependent components when they move out 
of dependency cycle in subsequent release(s).  
The null hypothesis for this question is: 

H03: There is no significant difference between the 
proportions of defective components that 
transition as defective from in-cycle to out-of-
cycle state and the proportion of defective “in-
cycle” components in the previous release. 
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RQ4. Does coupling or size complexity of 

components that transition as defective 
between in-cycle states increase at a 
significantly higher rate than those that 
transition between out-of-cycle states? 

This question allows investigating whether the 
coupling/size variables are factors that may well 
explain the differences between the two groups as 
it relates to their defect-proneness. Our null 
hypothesis for this question is: 

H04: There is no significant difference between the 
coupling/size density of components that become 
defective as they transition between in-cycle states 
and the coupling/size density of components that 
become defective as they transition between out-
of-cycle states. 

B. Analysis Method 
To answer the research questions, we categorize 
the transitions of components across releases as a 
Cartesian product between the current state (𝑠!) 
and the future state (𝑠!). That is 𝑠!   ×  𝑠! where 𝑠! 
and   𝑠! can take on values in-cycle or out-of-cycle. 
By using the resulting four transition categories it 
should then be possible to understand the 
movement patterns of components both in-cycle 
and out-of-cycle across releases. 

Furthermore, we identify the transition of a 
component between the current and the future 
states regardless of its defect status in the future 
release by computing the set: 
𝐶!!→!!! = 𝐶!!!   ∩   𝐶!!!              
𝑤ℎ𝑒𝑟𝑒: 
𝐶 = 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

𝑠! =     𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑠𝑡𝑎𝑡𝑒,   𝑠! = 𝑓𝑢𝑡𝑢𝑟𝑒  𝑠𝑡𝑎𝑡𝑒,𝑛
= 𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑟𝑒𝑙𝑒𝑎𝑠𝑒 

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑘 ∈ 1:𝑛 − 1  

𝑟 = 𝑓𝑢𝑡𝑢𝑟𝑒  𝑟𝑒𝑙𝑒𝑎𝑠𝑒,                        𝑟   ∈ 𝑘 + 1:𝑛  

To identify components that turn defective in the 
next release, we compute for each release the 
forward intersection of components in the current 
release at the current state with defective 
components in the future release at the future 
state. In set form, we compute: 

𝐶!!→!!(!"#"$%)! = 𝐶!!!   ∩ 𝐷𝐶!!!   ,𝑤ℎ𝑒𝑟𝑒:  𝐷𝐶
= 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒  𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 

The number of components that persist as 
defective or become defective in the next release 
and between the two states is calculated as the 
cardinality of the set: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 =    𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘  

In summary; 
1) 𝐶!!→!!! : Is a set of components in release k at 

current state (𝑠!) that transition to future state 
(𝑠!) as defective or not defective in the future 
release. 

2) 𝐶!!→!!(!"#"$%)! : Is a set of components in release k 
at current state (𝑠!) that persist to be defective 
or become defective in future state (𝑠!) in the 
future release. 

3) 𝐶!!→!!  ! −   𝐶!!→!!(!"#"$%)! : Is a set of components in 
release k at current state (𝑠!) that transition to 
future state (𝑠!) in the future release as not 
defective. 

Finally, we compute the percentage of defect-
prone and non defect-prone components between 
two transition states and across releases as: 

1) %  𝐷𝑒𝑓𝑒𝑐𝑡 − 𝑝𝑟𝑜𝑛𝑒!!→!! =   
𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)
𝑘

!!!→!!
!

  ×  100 

2) %  𝑁𝑜𝑛 − 𝐷𝑒𝑓𝑒𝑐𝑡 − 𝑝𝑟𝑜𝑛𝑒!!→!! =

  
𝐶𝑠𝑐→𝑠𝑓  
𝑘 −  𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)

𝑘

!!!→!!
!

  ×  100 

 
1) Computing Coupling and Size 

Complexity 
To answer RQ4, we first calculate our coupling 
complexity in the form of the degree of coupling 
for each node (component) in the graph [27]. Such 
that: 

𝐷𝑒𝑔𝑟𝑒𝑒  (𝐶)   =   𝐹𝑎𝑛 − 𝑖𝑛  (𝐶) +   𝐹𝑎𝑛 − 𝑜𝑢𝑡  (𝐶) 

Where Fan-in represents incoming connections to 
C and Fan-out represents outgoing connections 
from C. Then, we compute the coupling density 
(i.e. the difference in the degree between the two 
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releases divided by the number of components 
involved in the transition) as: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐷𝑒𝑔𝑟𝑒𝑒)

=   
𝐷𝑒𝑔𝑟𝑒𝑒   𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 − 𝐷𝑒𝑔𝑟𝑒𝑒   𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

!!

𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘
 

Furthermore, we obtain the class reachability set 
size40 (crss) metric [28] and compute crss density 
for the whole set as: 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐶𝑅𝑆𝑆)

=   
𝐶𝑅𝑆𝑆   𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 − 𝐶𝑅𝑆𝑆   𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

!!

𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘
 

Similarly, we compute the size density using the 
lines of code (LOC) metric (i.e. the difference in 
LOC between the two releases divided by the 
number of components involved in the transition)  

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐿𝑂𝐶)

=   
𝐿𝑂𝐶   𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 − 𝐿𝑂𝐶   𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

!!

𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘
 

By comparing the coupling difference per 
component and the size difference per component, 
we can understand whether the complexities 
increase significantly more in one group than the 
other. 

2) Testing the Hypotheses 

For testing the hypotheses, we use the t-test when 
our data is normally distributed and a non-
parametric test (e.g. Wilcoxon signed rank) when 
it is not [29]. In addition, we employ a proportion 
test for system with fewer numbers of releases. In 
all cases the data is unpaired and so the “paired” 
variable is set to FALSE in the r-statistical 
package41 that is used. Table I summarizes the 
design and the hypotheses we test for each of the 
research questions. 

For RQ3:  

 𝑝𝑟𝑜𝑝1 𝑅𝑖 = #!"#   !"#"$%
#!"#

 

                                                
40 This metric counts, for a given class, all the other classes in the system’s 
source code that it transitively depends-on for its compilation (Melton and 
Tempero 2006) 

41 http://www.R-project.org 

𝑝𝑟𝑜𝑝2 𝑅𝑖 + 1 =
#inc → oinc  (defect)

#𝑖𝑛𝑐  

C. Method of Data Collection 

We have performed a study on a commercial 
Smart Grid application (commApp) developed 
with C#.  In addition, we choose an integrated 
development environment (Eclipse) 42 , a 
messaging and integration pattern server (Apache-
ActiveMQ)43, 

TABLE XVII.  SUMMARY OF RESEARCH DESIGN AND HYPOTHESES 

Research 
Question 

Data H0 H1 Prop1 Prop2 

RQ1, RQ4 inc→inc oinc→oinc Prop1≤Prop2 Prop1>Prop2 

RQ3 inc inc→oinc  Prop1≤Prop2 Prop1>Prop2 
a. inc: in-cycle, oinc: out-of-cycle 

and a service framework (Apache-CXF) 44  all 
developed with Java. We have purposefully 
selected very active projects from the open source 
community and we also considered projects that 
have different functionalities with different 
development languages and variations in release 
dates (see Table II and Table III). The variation in 
the release dates especially allows us to 
understand whether observed patterns in the data 
are similar irrespective of the time-span between 
the releases. The commercial application 
commApp, is a distribution management system 
designed to allow for monitoring and planning of 
Grid operations. It provides real-time operational 
support by continuously receiving status data from 
the power grid. Eclipse is a popular open source 
integrated development environment (IDE) while 
ActiveMQ is a messaging server with the 
capability to handle various integration patterns. 
Lastly, Apache-CXF is a service framework that 
helps to build and develop services using 
frontend-programming APIs, like JAX-WS and 
JAX-RS. 

                                                
42 http://archive.eclipse.org/eclipse/downloads/index.php 
43 http://activemq.apache.org/index.html 
44 http://cxf.apache.org/ 
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TABLE XVIII.  PROPERTIES OF SELECTED APPLICATIONS 

System	
   Language	
   Domain	
   License	
   Bug	
  Tracker	
   Age	
   Versions	
  Analyzed	
  
Apache-

ActiveMQ 
Java Messaging and Enterprise Integration 

Pattern Server 
Open JIRA 6 5.7.0, 5.6.0, 5.5.1, 5.5.0, 5.4.2, 

5.4.1 
Eclipse Java IDE Open Bugzilla   3.0, 2.1, 2.0 

commApp C# Smart Grid Commercial HP-Quality 
Center 

6 4.2.4, 4.2.2, 4.1, 4.0.1SP4, 
4.0.1SP2, 4.0 

Apache-CXF Java Service framework Open JIRA 6 2.6.0, 2.5.0, 2.4.0, 2.3.0, 2.2.0, 
2.1.0 

TABLE XIX.  SUMMARY OF SOFTWARE SOURCE CODE AND DEFECT DATA 

Release/Version	
   Date	
   #Class-­‐Files	
   KLOC	
   #Defective	
  Class-­‐Files	
   #Defects	
  
Apache-ActiveMQ      

5.7.0 Nov 22 2012 1517 136.22 35 68 
5.6.0 Jun 15 2012 1505 133.25 88 102 
5.5.1 Oct 16 2011 1331 118.27 54 76 
5.5.0 Apr 01 2011 1331 118.27 115 105 
5.4.2 Dec 02 2010 1258 113.01 80 66 
5.4.1 Sept 21 2010 1256 112.20 79 63 

Eclipse      
3.0 Jun 25 2004 10635 1308.66 1566 - 
2.1 Mar 27 2003 7909 988.45 845 - 
2.0 Jun 27 2002 6751 797.93 968 - 

commApp      
4.2.4 Nov 14 2012 1203 341.83 29 14 
4.2.2 Oct 12 2012 1199 339.78 49 18 

4.1 Aug 17 2012 1002 316.22 60 42 
4.0.1SP4 Apr 11 2012 904 286.99 69 29 
4.0.1SP2 Mar 26 2012 903 285.89 46 28 

4.0 Oct 14 2011 849 266.11 137 143 
Apache-CXF      

2.6.0 Apr 17 2012 2874 268.1 60 45 
2.5.0 Nov 11 2011 2726 252.8 50 41 
2.4.0 Apr 11 2011 2542 233.1 84 74 
2.3.0 Oct 11 2010 2335 219 86 91 
2.2.0 Mar 18 2009 2096 185.3 96 74 
2.1.0 Jul 03 2007 1797 153.3 96 88 

TABLE XX.  AVERAGE OF MIN AND MAX VALUES PER CLASS-FILE OF COLLECTED METRICS  

System CRSS  LOC  Fan-out  Fan-in  SCC 
Min Max Min Max Min Max Min Max Min Max 

Eclipse  1 5914  3 5102  0 220  0 1497  0 687 

CommApp 1 618  7 6873  0 157  0 182  0 130 

Active-MQ 1 632  3 1995  0 76  0 482  0 358 

Apache-CXF 1 601  3 6663  0 67  0 378  0 58 

 

1) Defect Data Collection 
We have collected defect data from two different 
defect-tracking systems (DTSs). Defect repository 
gives typically a high level overview of a problem 
report. For example, typical attributes of the HP-
QC defect tracking system (QC-DTS) are the 
Defect ID, severity of the defect, the type of 
defect, date defect is detected, the modules 
containing the defect, the version where defect is 
detected, and the date the defect is fixed. These 
fields are similar to the Apache JIRA DTS. Our 
first step is to determine the bugs that affect each 
version of the system. In Apache JIRA DTS, we 

use the “Affects Version” field to filter all bugs 
that affect a particular version of the system. For 
HP-QC, we use “Detected in Version(s)”. A 
certain defect may affect multiple versions of a 
system. By this we mean “hotspot” defects [30] 
that keep re-occurring and span several versions 
of a system. We keep only to defects that are 
marked “fixed” in the “resolution” field for JIRA 
and those that are marked “closed”, “fixed” or 
“tested-ok” in the “status” field for HP-QC. In 
HP-QC, the status field is used as the resolution 
field. Thus the status of a resolved defect can 
change from tested-ok to fixed and finally to 



P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution 

 

 176 

closed. The Eclipse dataset that we use in this 
paper has been mapped in previous study [31]. 
Mapping defects to class-files: A common way to 
figure out what operation is performed on the 
source file is to look at the message field of the 
SVN commit. When developers provide this 
information with the bug number and/or useful 
keywords (e.g. bug or fix), it is possible to map 
the reported defect with the actual source file that 
is modified to fix it. In our case, we have used the 
bug number in the commit message to map the 
defects from the DTS to the actual class-files that 
are changed. It is important to state that the 
defects that affect each version as previously 
collected from the DTS provide the boundaries for 
the class-files that are mapped for each version of 
the systems. Table III reports the defect data for 
each of the systems. 

1) Dependency Data Collection 

 We have used the same tool as in our previous 
work [10] and reused some algorithms 
implemented in the tool by Melton and Tempero 
[23] to collect dependency data and measurement 
values for the number of strongly connected 
components (SCC), CRSS, LOC, Fan-in and Fan-
out metrics for each class-file. Table IV lists the 
average values over the releases for each of the 
software systems analyzed.  

4. Results and Discussion 
RQ1: Do components in dependency cycles 
persist as defective in cyclic state in the future 
release more than non-cyclic components that 
persist in non-cyclic state? 
 

TABLE XXI.  TRANSITION OF DEFECTIVE COMPONENTS FROM RI TO RI+1 

Systems (Ri→Ri+1) # of Defective components involved in transition from Ri→Ri+1  % (Defective→Defective) components from 
Ri→Ri+1 

inc→ inc oinc→oinc inc→oinc oinc→ inc inc→ inc oinc→oinc inc→oinc oinc→ inc 

Eclipse           

2.0 → 2.1 619 25 7 5  27.6 16 14.3 0 

2.1 → 3.0 387 24 0 8  41.6 33.3 0 50 

CommApp          

4.0 → 4.0.1SP2 78 20 0 1  27 0 0 0 

4.0.1SP2 → 
4.0.1.SP4 

29 2 0 0  55.2 0 0 0 

4.0.1SP4 → 4.1 39 12 0 0  66.7 8.3 0 0 

4.1 → 4.2.2 40 4 0 2  35 50 0 100 

4.2.2 → 4.2.4 21 11 0 0  52.4 9.1 0 0 

Active-MQ          

5.4.1 → 5.4.2 62 10 0 0  42 50 0 0 

5.4.2 → 5.5.0 51 14 0 0  45.1 28.6 0 0 

5.5.0 → 5.5.1 67 26 0 0  47.8 15.4 0 0 

5.5.1 → 5.6.0 42 6 0 0  59.3 50 0 0 

5.6.0 → 5.7.0 61 7 0 1  19.7 0 0 0 

Apache-CXF          

2.1.0 → 2.2.0 27 30 0 0  26 20 0 0 

2.2.0 → 2.3.0 43 18 0 2  28 11 0 0 

2.3.0 → 2.4.0 30 17 0 0  26.7 23.5 0 0 

2.4.0 → 2.5.0 37 12 0 3  16 0 0 0 

2.5.0 → 2.6.0 19 3 0 0  15.8 0 0 0 
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TABLE XXII.  TRANSITION OF NON-DEFECTIVE COMPONENTS FROM RI TO RI+1 

Systems 
(Ri→Ri+1) 

# of Non-Defective components involved in transition from 
Ri→Ri+1 

 % (Non-Defective→Defective) components from 
Ri→Ri+1 

inc→inc oinc→oinc inc→oinc oinc→inc inc→inc oinc→oinc inc→oinc oinc→inc 

Eclipse           

2.0 → 2.1 1934 1115 4 72  8.1 1.9 0 0 

2.1 → 3.0 2508 1128 8 38  16.9 4.5 12.5 13.2 

CommApp          

4.0 → 4.0.1SP2 174 604 0 0  2.9 0.3 0 0 

4.0.1SP2 → 
4.0.1.SP4 

234 688 0 0  9.8 1.7 0 0 

4.0.1SP4 → 4.1 225 672 0 1  5.8 0.9 0 0 

4.1 → 4.2.2 236 737 8 1  2.1 1.2 0 0 

4.2.2 → 4.2.4 277 912 0 0  4.3 0 0 0 

Active-MQ          

5.4.1 → 5.4.2 365 263 0 0  6.8 3.8 0 0 

5.4.2 → 5.5.0 377 259 0 0  11.4 8.5 0 0 

5.5.0 → 5.5.1 362 255 0 0  2.8 0.8 0 0 

5.5.1 → 5.6.0 387 265 0 4  8 1.9 0 25 

5.6.0 → 5.7.0 410 271 0 2  0.7 0.7 0 0 

Apache-CXF          

2.1.0 → 2.2.0 271 869 2 8  6.6 1.7 0 0 

2.2.0 → 2.3.0 321 980 1 8  4.4 1.0 0 12.5 

2.3.0 → 2.4.0 377 1112 3 2  6.1 0.9 0 0 

2.4.0 → 2.5.0 419 942 0 5  3.1 0.4 0 0 

2.5.0 → 2.6.0 428 987 0 4  1.9 0.2 0 0 

TABLE XXIII.  TEST OF DIFFERENCE IN MEAN VALUES BETWEEN THE GROUP PROPORTIONS FOR RQ1 

System Defective →Defective (H1a)  Non-Defective →Defective (H1b) 
inc→ inc oinc→oinc p-value inc→ inc oinc→oinc p-value 

Eclipse † 34.6 24.6 0.26  12.5 3.2 0.001* 

CommApp◊ 47.3 13.5 0.01*  4.98 0.82 0.018* 

Active-MQ◊ 42.8 29 0.14  5.94 3.14 0.138 

Apache-CXF◊ 22.5 10.9 0.04*  4.42 0.84 0.006* 
b. †:proportion test ◊:t-test *:significant at α = 0.05 

On the average, we found that components that 
transition in the in-cycle state are more defect-
prone at a higher rate than components that 
transition in out-of-cycle state (see Table VII). For 
the first hypothesis that focuses on defective → 
defective transitions between the two groups; we 
found that two (commApp and Apache-CXF) out 
of the four systems we analyzed have significantly 
higher rate of defect-proneness for components 
that transition between in-cycle state than those 
that transition between out-of-cycle state (Table 
VII). While for the hypothesis that investigates 

non-defective → defective transitions between the 
groups, we found that all the systems except 
ActiveMQ have significantly higher rate of 
defect-proneness for components that transition 
between in-cycle states than between out-of-cycle 
states. We can therefore infer that a non-
defective/defective component that is in-cycle and 
remains in-cycle in the next release has a higher 
probability to become defective than a non-
defective/defective component that is out-of-cycle 
and remains in out-of-cycle state in the next 
release. 
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RQ2: Is there evidence of systematic breaking of 
dependency cycles between releases? 
We observe for all the systems that in-cycle 
components transition mostly in the in-cycle state 
(see Table VIII inc→inc vs. inc→oinc). Results 
show that for all the systems we analyzed over 
99% of both defective and not-defective 
components that are in-cycle persist in the in-cycle 
state in the next release. Therefore suggesting that 
there is no intentional cycle-breaking refactoring. 
By using Ref-Finder45, we further investigated the 
refactoring between the Eclipse versions. Our 
findings show that many micro refactoring were 
carried out such as “Move method”, “Remove 
control flag”, “Inline method”, “Extract method” 
and so on between those versions. In addition, we 
investigated one out of the few class-files 
(org.eclipse.debug.internal.ui.views.console. 
ConsoleDocument.java), that transitioned between 
in-cycle (in version 2.0) to out-of-cycle (in 
version 2.1).  The class-file, 
ConsoleDocument.java was originally contained 
in a strongly connected components (SCC) with 
thirty-six other class-files in version 2.0. We 
found that, refactoring such as move field and 
move method were performed on one of the 
neighbors that involved moving out a method with 
a reference to the class 
“org.eclipse.debug.internal.ui.launchConfiguratio
ns. LaunchConfigurationHistoryElement.java” 
that was in the same cycle. Resulting into the in-
cycle to out-of-cycle transition of 
ConsoleDocument.java. However, the number of 
SCC for other components in the same cycle 
increased from thirty-seven in version 2.0 to fifty-
eight in version 2.1 and to fifty-nine in version 
3.0.  
It therefore indicates that while there are possible 
many other refactoring activities prior to release, 
those refactoring do not automatically translate to 
cycle-breaking refactoring. The few components 
that transition from in-cycle to out-of-cycle appear 
to be accidental movements. Hence corroborating 
previous results on the pervasiveness of 
dependency cycles across releases of software 
components [23]. This seems so because cycle 
breaking is more of an architectural refactoring 
                                                

45 https://webspace.utexas.edu/kp9746/www/reffinder/ 

[32] which is not trivial because such activity 
needs planning and would need to take advantage 
of tools and methods [32-35] for detecting and 
breaking those dependency cycles.  
Empirical evidence of cycles [9, 10, 23] shows 
that object-oriented concepts such as abstraction 
and design guidelines are violated due to unguided 
design decisions as the system evolves. We 
submit therefore that software engineers need to 
purposely take advantage of existing cycle 
detecting tools (e.g. [33, 35]) and approaches to 
prevent dependency cycles in their software 
systems.  

RQ3: Does the transition of defective components 
from in-cycle to out-of-cycle reduce the defect-
proneness of such components? 
As listed in Tables V and VI, there is not 
sufficient data to answer this research question. 
We show previously (in RQ2), that the most 
components in cycle transition to the same state 
they were in the previous release. 

TABLE XXIV.  % OF COMPONENTS THAT MOVE FROM IN-CYCLE TO OUT-
OF-CYCLE 

System # inc→ inc % inc→oinc 
Eclipse 2733.5 0.35 

CommApp  272.2 0.59 
Active-MQ 436.8 0 

Apache-CXF 395.6 0 

Showing that RQ1 provides so far the only 
evidence of possible benefits that breaking cycles 
and moving the affected components to out-of-
cycle state may result into lower defect-proneness 
of these components. We would focus on RQ3 in 
our future work. 
RQ4: Does coupling or size complexity of 
components that transition between in-cycle state 
increase at a significantly higher rate than those 
that transition between out-of-cycle state? 
Table IX shows the mean data and the p-values of 
the statistical test for both coupling density and 
size density. On the average, the size density of 
components that transition between in-cycle state 
increased at a higher rate than those components 
that transition between out-of-cycle state. In all the 
systems, the code size measured by lines of code 
(LOC) increased more in the in-cycle group but 
not significant in about half of the cases. The 
coupling density of in-cycle components inreased 
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at a different rate as those in the out-of-cycle 
group. For instance, consider the “defective → 
defective” transition in Eclipse; result shows that 
the average coupling density for in-cycle group 
(i.e. 17.8 dependencies per class-file) increased 
significantly more than that of the out-of-cycle 
group (9.25 dependencies per class-file). While 
for “non-defective → defective” transition in 
Apache-CXF and CommApp; results show that 
the average coupling density increased more in the 
out-of-cycle group than the in-cycle group. 
While we observe a pattern of higher code 
increase (LOC) for in-cycle group than the out-of-
cycle group. Which may be a pointer to the 
complexity of the components in cycle. There is 
no general pattern of increase/decrease in the 
degree of coupling (Fan-out + Fan-in) between in-
cycle and out-of-cycle groups. We can thus infer 
that the degree of coupling may or may not 
increase as a result of transition between in-cycle 
state. In addition, our observations regarding the 
complexity of in-cycle components that turn 
defective is the increase in the reachability set 
density of these components. As listed in  

Table X, the reachability density of the in-cycle 
group for all the systems increase significantly at 
a higher rate than the out-of-cycle group. To 
substantiate this finding, we inspect the 
reachability set of in-cycle → out-of-cycle and 
out-of-cycle → in-cycle groups of Eclipse (v2.1 → 
v3.0). We found that the reachability set of class-
files in the “in-cycle → out-of-cycle” transition 
reduced by 1137 class-files while the out-of-cycle 
→ in-cycle increased by 1351 class-files. 

In conclusion, reachability set and code size 
appear to be two variables that associate more 
with the complexities of in-cycle components and 
their defect-proneness. Melton and Tempero [28], 
presented this metric named class reachability set 
size (CRSS) and demonstrated that a refactoring 
that reduces the crss of software components can 
potentially improve the quality of the software. 
Our results extends their findings to show the 
association between the defect-proneness of in-
cycle components during evolution and their 
complexities as demonstrated by their crss values. 
The results of this study support pivotal metrics 
such as CRSS as a metric that can be focused for 
optimization during cycle-breaking refactoring of 
defect-prone components. By minimizing the 
CRSS values of problematic (defect-prone) 
components that are in cycles, it might be possible 
to effectively reduce the probability of defect 
propagation to other components. 
Implications: Does breaking dependency cycles 
imply reduction in defect-proneness of 
components? The results of our study do not have 
a direct connection to this question but do have an 
indirect one. The observed pattern in the data we 
analyzed show that the rate of defect-proneness is 
higher for components that move between 
dependency cycles. Moreso, there is a pattern of 
increased class reachability set size and code size 
for those defect-prone components involved in 
transition between dependency cycles. 

 

TABLE XXV.  COUPLING AND SIZE DENSITIES FOR RQ4 

Systems 

Coupling density (Mean)  Size density (Mean) 
Defective →  Defective  Non-Defective →  Defective Defective →  Defective  Non-Defective →  Defective 

inc→in
c 

oinc→oin
c 

p inc→in
c 

oinc→oin
c 

p inc→in
c 

oinc→oin
c 

p inc→in
c 

oinc→oin
c 

p 

Eclipse  17.8 9.25 0.009
* 

 9.18 5.91 0.05
5 

 86.92 80.83 0.418  30.44 7.2 0.004
* 

CommAp
p 

1.47 0.67 0.062  -0.03 0.35 0.28
7 

 97.8 13.2 0.009
* 

 39.13 1.61 0.028
* 

Active-
MQ 

0.58 0.42 0.500  1.51 0.32 0.16
6 

 18.75 2.53 0.086  7.6 5.75 0.393 

Apache-
CXF 

2.49 6.52 0.164  2.06 2.81 0.57
6 

 45.37 13.5 0.121  38.26 15.2 0.123 

c. *: Significant at α = 0.05 
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TABLE XXVI.  REACHABILITY DENSITY FOR RQ4 

Systems 
Reachability density (Mean) 

Defective #  Defective 
 

Non-Defective #  Defective 
inc# inc oinc#oinc p-value inc# inc oinc#oinc p-value 

Eclipse  349 77 0.043*  348 61.3 0.018* 
CommApp 8.5 0.7 0.039*  11.2 0.42 0.016* 
Active-MQ 30 0.4 0.037*  33.4 12.7 0.377 

Apache-CXF 40.3 0.54 0.015* 31.5 1.53 0.036*
d. *: Significant at . = 0.05

 
Fig. 14. Optimal vs. non-optimal cycle-breaking refactoring 

We are quick to state that other factors may 
indeed be explanatory factors in the defect-
proneness of in-cycle components. For instance, 
requirement changes, developers experience, 
change proneness of the components and so on. 
However, the results in this study uncovers a 
pattern that makes us better understand the 
association between defect-proneness of in-cycle 
components and their complexities during system 
evolution. Thus, software engineers can employ 
these results as a motivation and use the 
investigated variables as decision variables when 
performing a cycle-breaking refactoring. Such 
decision should therefore consider an optimal 
solution from the point of view of problematic 
components. Take for instance the cycles in 
Figure 1a., we present two solutions to create an 
acyclic graph in Figure 3. If we assume that 
component I is highly defect-prone (or reduces 
other quality factors), then the solution in Figure 
3a is not optimal since all the other components 
can still reach I transitively. However, the solution 
in Figure 3b is optimal because only two 
components (C and G) can reach I transitively. 

5. Threats to Validity 
We have analyzed and evaluated a Smart Grid 
system, an integrated development environment, a 
service framework application and a messaging 
and integration pattern server. Although, these 
four systems vary in terms of properties such as 
domain, functionality, programming language, 
size, usage, context and study period, we cannot 
claim that the observed defect patterns or related 
will hold for other systems. As it is with most case 

studies, we cannot generalize these results across 
all systems. Replicated and/or further studies will 
be necessary to compare results across several 
systems and domains. 

We have used density measure in our analysis that 
penalizes all components equally. In some cases, 
size, coupling and reachability measures may be 
skewed in the dataset resulting in few components 
having high number or low number of these 
measures. However, we do not think this approach 
can affect our result in a significant way or its 
interpretation since we have limited the analysis to 
the defective subset of the whole dataset. 
Furthermore, we have ignored the transitions 
between the “depend-on-cycle” states. This group 
may also contain some measurement data in some 
cases. However, we consider the results to be 
valid since our focus is the transition that concerns 
in-cycle structure vs. out-of-cycle structure. 
For this study, we have relied on the defects 
logged in the defect tracking systems of each 
application. Our approach of extracting defect 
data is similar to what other researchers have used 
in the past [36-38]. Nevertheless, common threats 
are whether defects logged in the DTS are 
accurately tagged in the respective code changes 
in the version systems. In addition, we cannot be 
sure if all defects are logged in the DTS. Also, 
there could be cases that the message log of the 
file that consists a change is not tagged with the 
bug numbers of the resolved defect. Furthermore, 
there could be cases of typographical error in the 
recording of the bug number in the version 
systems [36] and it is still possible that duplication 
will occur. Lastly, since we have not eliminated 
the effect of tangled class files as discussed in [39] 
when analyzing the repository, it is thus possible 
that some class-files are incorrectly associated 
with bug reports. 
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6. Conclusions and Future Work 
In this study, we have examined whether 
components (defective/non-defective) undergo 
any systematic cycle-breaking refactoring before 
the next release. Our findings show that even 
though other types of refactoring might be taking 
place before the next releases of these software 
systems. They do not automatically translate to 
cycle-breaking refactoring. Furthermore, we 
investigated whether components that move 
between dependency cycles have higher 
tendencies of being defective in the future releases 
of these software systems than components that 
move outside of dependency cycles. The results of 
our analysis demonstrate that averagely, 
movement of components between dependency 
cycles across releases increase their defect-
proneness more than movement of components 
outside of dependency cycles.  
Lastly, we found that between releases, inter-
component dependencies do not increase 
differently in components that transition as 
defective between dependency cycles to those that 
move outside of dependency cycles. However, we 
found a consistent pattern of increased class 
reachability set size (CRSS) and increased lines of 
code for the in-cycle group. Thus suggesting that a 
“cycle-breaking” refactoring that minimizes the 
CRSS value of defect-prone components in 
dependency cycles has tendency to reduce the 
defect-proneness of these components in the next 
release. 

In conclusion, this study shows a pattern that 
suggests a possibility that we can gain the benefit 
of reduced defect-proneness by performing a 
cycle-breaking refactoring. Most especially when 
such cycle-breaking activity considers the 
minimization of important metrics such as the 
CRSS value. 
As future work, we aim to investigate whether the 
movements of components from dependency 
cycle to outside of cycle could reduce their defect-
proneness. We found that there is currently not 
sufficient empirical data to answer this question. 
Thus, to answer RQ3, we have proposed an 
experiment in [15] whereby a set of defective 
cyclically connected components are purposely 
moved to out-of-cycle state. This experiment takes 

a number of factors into consideration in order to 
understand their effects on the refactoring activity 
of the components. Details of the experiment are 
contained in the paper [15]. Currently, we are at 
the execution stage of this experiment in an 
industrial setup. 
In addition, our work would focus on developing 
optimization methods to effectively reduce 
transitive dependencies (CRSS values) of 
identified (user/automated) problematic 
components during cycle-breaking refactoring. 
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Abstract—Advice that circular dependencies between 
programming artefacts should be avoided goes back to the 
earliest work on software design, and is well-established 
and rarely ques- tioned. However, empirical studies have 
shown that real-world (Java) programs are riddled with 
circular dependencies between artefacts on different levels 
of abstraction and aggregation. It has been suggested that 
additional heuristics could be used to distinguish between 
bad and harmless cycles, for instances by relating them to 
the hierarchical structure of the packages within a 
program, or to violations of additional design principles. 

In this study, we try to explore this question further by 
analysing the relationship between different kinds of 
circular dependencies between Java classes, and their 
change frequency. 

We find that (1) the presence of cycles can have a 
significant impact on the change proneness of the classes 
near these cycles and (2) neither subtype knowledge nor 
the location of the cycle within the package containment 
tree are suitable criteria to distinguish between critical 
and harmless cycles. 

Keywords—Circular dependency, maintainability, patterns 

I. INTRODUCTION 
Avoiding circular dependencies between software 
artefacts is a classic software design principle that 
can be traced back to Parnas’ advise that modules 
should be organised in a hierarchy with respect to 
dependency relationships, thereby keeping 
dependencies “loop free” [31]. In the context of 
modern object- oriented languages, this is known as 
the Acyclic Dependencies Principle (ADP): The 
dependencies between packages must not form 
cycles [24]. 
The justification for this principle has often been 
related to maintenance. For instance, Parnas pointed 
out that it is unde- sirable to have systems where 
“nothing runs unless everything runs” [31]. Later 
work has related this to testing, where the presence 

of cycles prevents unit testing and requires the use 
of expensive methods such as the use of stubs [29]. 
Empirical studies on a large set of real-world Java 
programs have shown that these programs are 
riddled with circular dependencies [25], [8]. This 
applies to both simple circular dependencies [25] as 
well as to more sophisticated antipatterns like 
subtype knowledge [36], [8]. 

This seems to indicate that not all cycles are as 
critical for the quality of software as previously 
thought, and that the notion of cyclic dependencies 
in software must be re- evaluated. One possible 
approach taken by Falleri et al [11] is to distinguish 
between “bad” and “harmless” cycles based on the 
topology of dependency graph. In a nutshell, the 
authors argue that cycles forming in branches of the 
package containment tree evolve when packages 
grow, and are harmless, while cycles that span 
across the entire package containment tree are 
undesirable. Mutawa et al [1] studied the topology 
of cycles on a large set of real-world Java programs 
and found that (1) most cycles do form in branches 
of the package containment tree (and are therefore 
not critical according to [11]), and (2) that the 
parent packages are the “hubs” within these circular 
structures – indicating that cycles grow around 
these parent packages. This offers an explanation of 
why circular dependencies are common, and do not 
necessarily compromise the quality of programs. 
However, the question how cycles in general and 
certain types of cycles in particular relate to the 
maintainability of programs remains open. In this 
paper, we present a study that investigates this issue 
for Java programs. We use the qualitas corpus [40] 
data set in our study. Maintainability is difficult to 
measure directly. According to IEEE 610.12, 
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maintenance is “the process of modifying a 
software system or component after delivery to 
correct faults, improve performance or other 
attributes, or adapt to a changed environment” [35]. 
Following this definition, we use change (frequency 
of modifications) to approximate maintainability, 
and therefore set out to answer the following 
question: Is there a co-relation between the fact 
that a Java class is in a (certain kind of) cycle, and 
the change frequency of this class. In other terms, 
do cycles incur a maintenance penalty that can be 
measured? We will investigate both general circular 
dependencies between classes and special kinds of 
circular dependencies that have been portrayed as 
particularly undesirable in previous research. 
This study extends our previous work on 
dependency cycles where we have investigated the 
relationship between cycles and defects [30]. The 
result of this study revealed that classes within and 
near cycles account for the most defects in 
programs. This study did not investigate particular 
types of cycles and their relationship with change 
proneness. It used a smaller data set, and did not 
study the classes directly, but mined the comments 
in the issue tracking and subversion systems 
instead. 
The rest of this paper is organised as follows: we 
first present the core concepts used in this paper in 
Section II. We then discuss related work in Section 
III. We describe our methodology in Section IV. 
We present our results in Section V and discuss 
them in Section VI. Finally we conclude and 
present the future work in Section VII. 

II. BACKGROUND 

A. Cycles and Dependency Graphs 
The notion of cyclic dependency corresponds to 
strongly connected components (SCCs) in 
dependency graphs. SCCs can be effectively 
computed with Tarjan’s algorithm in linear time 
[38]. 
A dependency graph is a simple model representing 
soft- ware artefacts and their relationships. Such a 
graph can be built on several levels of abstraction 
and aggregation. For instance, in the case of Java 
programs, we can consider methods and fields and 
their invoke and access relationships, classes and 
interfaces and their uses, extends and implements 

relationships, packages and their dependencies, and 
containers (jar files) and their dependencies. Low-
level cycles have been associated with potential 
problems for comprehension, testing, and 
maintenance [3], [4]. However, to the best of our 
knowledge no empirical studies on larger sets of 
real-world programs exist to support this claim, and 
at least some of the cycles are created by widely-
used programming techniques like recursion. 

Higher-level dependency graphs are typically 
obtained from lower-level graphs by means of 
aggregation. For instance, a package-level 
dependency graph is built from the dependency 
graph of the classes contained in these packages. 
Cyclic dependencies between classes in different 
packages induce cyclic dependencies in the package 
graph. Therefore, we focus our attention on SCCs 
in the class graph. The vertices in this graph 
represent the classes of a Java program, while the 
edges represent the relationships between these 
vertices. Classes here refers to compiled classes, 
and also include other Java types like annotations, 
interfaces and enums. Edges are labelled with either 
uses, extends or implements. The extends and 
implements labels are used according to the 
meaning of the respective keywords defined in the 
Java Language Specification [15], uses covers all 
other dependencies. We also use the label inherits 
defined as the union of extends and implements. 

Several empirical studies on real-world programs 
suggest that the number of SCCs found in both the 
class-level and package-level dependency graphs is 
large [25], [8]. The fact that many of these systems 
are regarded as functional and widely used suggests 
that not all cycles are as detrimental to the quality 
of systems as previously thought. This seems to 
indicate that it is not sufficient to only study general 
cycles. Instead, certain types of cycles must be 
studied as well in order to distinguish between 
critical and harmless cycles. 
B. Subtype Knowledge 

Subtype knowledge (STK) is an “antipattern” first 
studied by Riel [36]. An instance of STK is 
basically a cycle that has at least one extends or 
implements edge, and a back- reference path 
connecting the target of this edge with its source. 
Because the Java compiler (as well as most other 
compilers) enforces that there are no cycles in the 
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supertype (inherits) graph, this path must contain at 
least one uses edge. Situations producing 
inheritance cycles still exist when classes are 
compiled separately, but they are rare and can be 
caught by the Java Virtual Machine by means of 
static analysis during linking. 
The intention behind this pattern is that in a well 
designed program, abstraction and implementation 
artefacts are separated, and implementation 
artefacts depend on abstractions, but not vice versa. 
This is also known as the dependency inversion 
principle (DIP) [22]. STK cycles directly violate 
this principle. Surprisingly, STK cycles are still 
common in real- world programs [8]. 
Figure 1 depicts a STK cycle found in the Java 
Run- time Environment, version 1.7.0. This is a 
class-level cy- cle, but it also induces a package 
level cycle between java.awt and javax.swing. The 
documentation of LegacyGlueFocusTraversalPolicy 
indicates that this is a FocusTraversalPolicy 
implementation that pro- vides support for legacy 
applications. Yet, every other imple- mentation of 
FocusTraversalPolicy depends on it as there is a 
dependency from the abstract type to this particular 
implementation. This is clearly an undesirable 
constraint for a modular design. 

 
Fig. 1. A STK cycle in the Java Runtime Environment, 

version 1.7.0 

Note that not all STK instances are equally critical. 
An example is discussed below in section II-D 
where a STK is a side-effect of using the visitor 
design pattern. This might still have negative 
consequences, however, they are outweighed by the 
benefits of using the design pattern. 
C. Cycles and the Package Containment Tree 

One possibility to distinguish between critical and 
harmless cycles is to consider their location within 
the package containment tree (PCT) [11]. The PCT 

of a Java program is formed by the hierarchical 
structure of package names. The Java language 
specification stipulates that “The hierarchical 
naming structure for packages is intended to be 
convenient for organizing related packages in a 
conventional manner, but has no significance in 
itself ... ” [15, ch 7.1]. However, developers seem to 
use some sub-package semantics when organising 
code. For instance, the package javax.swing has 
circular de- pendencies with its “child packages” 
javax.swing.tree and javax.swing.table. It appears 
that these cycles forming in branches of the PCT 
are the result of splitting large packages to facilitate 
maintainability, but the respec- tive packages retain 
a high level of cohesion. AWT features a similar 
structure. However, the core Java interface libraries 
also provide an example of a critical cyclic de- 
pendency spanning across branches of the PCT: 
AWT and Swing mutually depend on each other. 
Figure 1 also shows this. The critical dependency is 
caused by references to javax.swing.JComponent in 
several AWT classes, in- cluding java.awt.Window 
and java.awt.Component. On the other hand, 
javax.swing.JComponent is a sub- class of 
java.awt.Component. This design flaw had a 
significant impact on early versions of the Java 
platform, and there is evidence that it can be 
removed without impacting on the functionality of 
the respective libraries. This is discussed in more 
detail in [9]. 
D. Inadvertent Cycles 

There are situations where cycles are a direct result 
of the features and limitations of technologies and 
methods used in projects. The most simple example 
in this category are the cycles formed between non-
static nested classes and their outer classes in Java 
byte code. In particular, the compiler generates 
access fields to reach inner class from outer one and 
vice-versa. 

A more complex case that is common originates 
from the use of certain design patterns that induce 
cycles. An example is the use of Visitor, one of the 
classic gang of four patterns [14]. The pattern 
consists of abstract and concrete visitors, and 
abstract and concrete visited “elements”. The 
visitors reference all concrete element types as 
parameters in the (overloaded) visit methods, while 
the element types (both abstract and concrete) use 

cycles where we have investigated the relationship between
cycles and defects [30]. The result of this study revealed that
classes within and near cycles account for the most defects
in programs. This study did not investigate particular types of
cycles and their relationship with change proneness. It used
a smaller data set, and did not study the classes directly,
but mined the comments in the issue tracking and subversion
systems instead.

The rest of this paper is organised as follows: we first
present the core concepts used in this paper in Section II.
We then discuss related work in Section III. We describe our
methodology in Section IV. We present our results in Section V
and discuss them in Section VI. Finally we conclude and
present the future work in Section VII.

II. BACKGROUND

A. Cycles and Dependency Graphs

The notion of cyclic dependency corresponds to strongly
connected components (SCCs) in dependency graphs. SCCs
can be effectively computed with Tarjan’s algorithm in linear
time [38].

A dependency graph is a simple model representing soft-
ware artefacts and their relationships. Such a graph can be built
on several levels of abstraction and aggregation. For instance,
in the case of Java programs, we can consider methods and
fields and their invoke and access relationships, classes and
interfaces and their uses, extends and implements relationships,
packages and their dependencies, and containers (jar files)
and their dependencies. Low-level cycles have been associ-
ated with potential problems for comprehension, testing, and
maintenance [3], [4]. However, to the best of our knowledge no
empirical studies on larger sets of real-world programs exist to
support this claim, and at least some of the cycles are created
by widely-used programming techniques like recursion.

Higher-level dependency graphs are typically obtained
from lower-level graphs by means of aggregation. For instance,
a package-level dependency graph is built from the dependency
graph of the classes contained in this packages. Cyclic depen-
dencies between classes in different packages induce cyclic
dependencies in the package graph. Therefore, we focus our
attention on SCCs in the class graph. The vertices in this
graph represent the classes of a Java program, while the edges
represent the relationships between these vertices. Classes here
refers to compiled classes, and also include other Java types
like annotations, interfaces and enums. Edges are labelled with
either uses, extends or implements. The extends and implements
labels are used according to the meaning of the respective
keywords defined in the Java Language Specification [15], uses
covers all other dependencies. We also use the label inherits
defined as the union of extends and implements.

Several empirical studies on real-world programs suggest
that the number of SCCs found in both the class-level and
package-level dependency graphs is large [25], [8]. The fact
that many of these systems are regarded as functional and
widely used suggests that not all cycles are as detrimental to
the quality of systems as previously thought. This seems to
indicate that it is not sufficient to only study general cycles.
Instead, certain types of cycles must be studied as well in order
to distinguish between critical and harmless cycles.

B. Subtype Knowledge

Subtype knowledge (STK) is an “antipattern” first studied
by Riel [36]. An instance of STK is basically a cycle that
has at least one extends or implements edge, and a back-
reference path connecting the target of this edge with its
source. Because the Java compiler (as well as most other
compilers) enforces that there are no cycles in the supertype
(inherits) graph, this path must contain at least one uses edge.
Situations producing inheritance cycles still exist when classes
are compiled separately, but they are rare and can be caught
by the Java Virtual Machine by means of static analysis during
linking.

The intention behind this pattern is that in a well designed
program, abstraction and implementation artefacts are sepa-
rated, and implementation artefacts depend on abstractions,
but not vice versa. This is also known as the dependency
inversion principle (DIP) [22]. STK cycles directly violate this
principle. Surprisingly, STK cycles are still common in real-
world programs [8].

Figure 1 depicts a STK cycle found in the Java Run-
time Environment, version 1.7.0. This is a class-level cy-
cle, but it also induces a package level cycle between
java.awt and javax.swing. The documentation of
LegacyGlueFocusTraversalPolicy indicates that this
is a FocusTraversalPolicy implementation that pro-
vides support for legacy applications. Yet, every other imple-
mentation of FocusTraversalPolicy depends on it as
there is a dependency from the abstract type to this particular
implementation. This is clearly an undesirable constraint for a
modular design.

MDYD[�VZLQJ

MDYD�DZW

)RFXV7UDYHUVDO3ROLF\

/HJDF\*OXH)RFXV�
7UDYHUVDO3ROLF\ -&RPSRQHQW

:LQGRZ

�XVHV

XVHV

XVHV

�H[WHQGV

Fig. 1. A STK cycle in the Java Runtime Environment, version 1.7.0

Note that not all STK instances are equally critical. An
example is discussed below in section II-D where a STK is a
side-effect of using the visitor design pattern. This might still
have negative consequences, however, they are outweighed by
the benefits of using the design pattern.

C. Cycles and the Package Containment Tree

One possibility to distinguish between critical and harmless
cycles is to consider their location within the package contain-
ment tree (PCT) [11]. The PCT of a Java program is formed by
the hierarchical structure of package names. The Java language
specification stipulates that “The hierarchical naming structure
for packages is intended to be convenient for organizing
related packages in a conventional manner, but has no signif-
icance in itself ... ” [15, ch 7.1]. However, developers seem
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the abstract visitor type as parameter type in the 
accept methods. Visitor is a very popular pattern, in 
particular in programs that use hierarchical data 
structures such as parsers for domain specific 
languages (DSLs). Such an example is depicted in 
figure 2. The cycle is even an instance of STK, 
caused by the inherits relationship between the 
concrete elements (such as ASTIdentifier) and the 
abstract element (Node). Note that the number of 
concrete elements is typically large, in this 
example, there are 33 such classes each 
representing a particular AST node type. This can 
result in large SCCs. 

These cycles can hardly be interpreted as signs of 
bad design, on the contrary, the use of Visitor is 
widely seen as good design as it allows developers 
to “plug-in” functionality into complex object 
structures. This is also a case of choosing a 
particular design to overcome limitations of the 
programming language, in this case the lack of 
support for multiple dispatch in Java [26]. Acyclic 
versions of Visitor have been proposed [23]. 
However, acyclic visitors are even more complex 
than visitors as additional abstract visitor types are 
required, and it appears that they are not widely 
used. 
In the velocity example used in figure 2, the Visitor 
has been manually implemented. However, in many 
cases parser code is generated by parser generators 
from abstract grammar specifications. This is 
becoming more and more common with the 
availability of good tools (such as ANTLR), and the 
popularity of DSLs. Code with generated cycles can 
have interesting change characteristics, for instance, 
if the code is regenerated during each iteration as 
part of automated builds. 

 
Fig. 2. A cycle caused by the use of the Visitor pattern in 

Apache Velocity version 1.6.2 

III. RELATED WORK 

Several authors have investigated the relationship 
between anti-patterns and the change-proneness of 
software artefacts. Khomh et al. [20] examined 
classes involved in anti- patterns and code smells 
and their change and fault proneness. The study 
investigated four systems and thirteen anti-patterns. 
The claims from this study are that classes 
participating in anti-patterns are more change- and 
fault-prone than others and that structural changes 
affect more classes with anti-patterns than others. 
Romano et al. [37] investigated the impact of anti-
patterns on change-proneness using change data 
from source code analysis. The results of this study 
is consistent with [20]. In addition, they showed 
that certain anti-patterns are prone to certain types 
of changes such as API changes. Olbrich et al. [28] 
performed a study on two open source applications 
to study the impact of code smells. Their results 
show that different phases could be identified 
during the evolution of code smells and in 
particular, components infected with code smells 
display a higher change frequency than others. 
Fontana et al. [13] investigated the correlations 
between different smells and antipatterns. 

In our study, we have investigated one particular 
antipattern on the structural/architectural level, and 
this is different from these studies. 
On the other hand, while anti-patterns are claimed 
to be poor design choices, design patterns are 
recurring solutions to design problems. A plethora 
of studies have also investigated the relationships 
between design patterns and class change- 
proneness. Bieman et al. [2] investigated the impact 
of design patterns on the change proneness of 
classes by using five systems, four small ones and 
one large system. They have mined the change data 
from a configuration management system. They 
concluded that classes participating in design 
patterns are rather more change-prone. A recent 
study on mining repository [16], however showed 
that multiple tangled code changes could result into 
an incorrect classification of change/fault data. 

Di Penta et al. [6] investigated whether certain 
design pattern roles are more change-prone in 
general, and whether certain roles are prone to 
particular types of changes. Their results confirmed 
that many design pattern roles do undergo changes 

to use some sub-package semantics when organising code.
For instance, the package javax.swing has circular de-
pendencies with its “child packages” javax.swing.tree

and javax.swing.table. It appears that these cycles
forming in branches of the PCT are the result of splitting
large packages to facilitate maintainability, but the respec-
tive packages retain a high level of cohesion. AWT fea-
tures a similar structure. However, the core Java interface
libraries also provide an example of a critical cyclic de-
pendency spanning across branches of the PCT: AWT and
Swing mutually depend on each other. Figure 1 also shows
this. The critical dependency is caused by references to
javax.swing.JComponent in several AWT classes, in-
cluding java.awt.Window and java.awt.Component.
On the other hand, javax.swing.JComponent is a sub-
class of java.awt.Component. This design flaw had a
significant impact on early versions of the Java platform, and
there is evidence that it can be removed without impacting on
the functionality of the respective libraries. This is discussed
in more detail in [9].

D. Inadvertent Cycles

There are situations where cycles are a direct result of the
features and limitations of technologies and methods used in
projects. The most simple example in this category are the
cycles formed between non-static nested classes and their outer
classes in Java byte code. In particular, the compiler generates
access fields to reach inner class from outer one and vice-versa.

A more complex case that is common originates from the
use of certain design patterns that induce cycles. An example
is the use of Visitor, one of the classic gang of four patterns
[14]. The pattern consists of abstract and concrete visitors, and
abstract and concrete visited “elements”. The visitors reference
all concrete element types as parameters in the (overloaded)
visit methods, while the element types (both abstract and
concrete) use the abstract visitor type as parameter type in
the accept methods. Visitor is a very popular pattern, in
particular in programs that use hierarchical data structures
such as parsers for domain specific languages (DSLs). Such
an example is depicted in figure 2. The cycle is even an
instance of STK, caused by the inherits relationship between
the concrete elements (such as ASTIdentifier) and the
abstract element (Node). Note that the number of concrete
elements is typically large, in this example, there are 33 such
classes each representing a particular AST node type. This can
result in large SCCs.

These cycles can hardly be interpreted as signs of bad
design, on the contrary, the use of Visitor is widely seen as
good design as it allows developers to “plug-in” functionality
into complex object structures. This is also a case of choosing
a particular design to overcome limitations of the programming
language, in this case the lack of support for multiple dispatch
in Java [26]. Acyclic versions of Visitor have been proposed
[23]. However, acyclic visitors are even more complex than
visitors as additional abstract visitor types are required, and it
appears that they are not widely used.

In the velocity example used in figure 2, the Visitor has
been manually implemented. However, in many cases parser
code is generated by parser generators from abstract grammar
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Fig. 2. A cycle caused by the use of the Visitor pattern in Apache Velocity,
version 1.6.2

specifications. This is becoming more and more common with
the availability of good tools (such as ANTLR), and the
popularity of DSLs. Code with generated cycles can have
interesting change characteristics, for instance, if the code is
regenerated during each iteration as part of automated builds.

III. RELATED WORK

Several authors have investigated the relationship between
anti-patterns and the change-proneness of software artefacts.

Khomh et al. [20] examined classes involved in anti-
patterns and code smells and their change and fault proneness.
The study investigated four systems and thirteen anti-patterns.
The claims from this study are that classes participating in
anti-patterns are more change- and fault-prone than others and
that structural changes affect more classes with anti-patterns
than others. Romano et al. [37] investigated the impact of anti-
patterns on change-proneness using change data from source
code analysis. The results of this study is consistent with [20].
In addition, they showed that certain anti-patterns are prone
to certain types of changes such as API changes. Olbrich et
al. [28] performed a study on two open source applications
to study the impact of code smells. Their results show that
different phases could be identified during the evolution of
code smells and in particular, components infected with code
smells display a higher change frequency than others. Fontana
et al. [13] investigated the correlations between different smells
and antipatterns.

In our study, we have investigated one particular antipattern
on the structural/architectural level, and this is different from
these studies.

On the other hand, while anti-patterns are claimed to be
poor design choices, design patterns are recurring solutions to
design problems. A plethora of studies have also investigated
the relationships between design patterns and class change-
proneness. Bieman et al. [2] investigated the impact of design
patterns on the change proneness of classes by using five
systems, four small ones and one large system. They have
mined the change data from a configuration management
system. They concluded that classes participating in design
patterns are rather more change-prone. A recent study on
mining repository [16], however showed that multiple tangled
code changes could result into an incorrect classification of
change/fault data.
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within the pattern. Vokac [41] analyzed the defect 
rates of classes that participated in selected design 
patterns of a large commercial product. The study 
concluded that Observer and Singleton patterns are 
correlated with large code structures and can thus 
serve as indicators for special attention. On the 
other hand, Factory pattern instances tend to have 
lower defect counts. Prechelt et al. [33] reported a 
controlled experiments that showed Observer and 
Decorator patterns to result in less maintenance 
time while the results for Visitor pattern were 
inconclusive. Vokac et al. [42] replicated the 
experiment by [33]. Their results confirmed the 
previous results that Observer, Decorator and 
Abstract Factory patterns favour ease of 
maintenance. However, the Visitor and Composite 
patterns had strongly negative results on 
maintenance. On the contrary, Jeanmart et al. [19] 
reported a positive relationship between the use of 
Visitor pattern and maintenance efforts. 
In our study we investigate the impact of one 
particular anti-pattern on maintenance using change 
data as a proxy. We do not focus on the impact of 
design patterns in general, however, we discuss the 
impact of one particular pattern, Visitor, as it results 
in dependency cycles. To the best of our 
knowledge, there is no study that has systematically 
explored the relationship between change proneness 
and cycles. The key papers of research on cycles in 
dependency graphs are discussed in the previous 
section. 

IV. METHODOLOGY 
A. Data Set 

We have conducted the study using the Qualitas 
Corpus dataset [40]. This is a curated dataset of 
open source real world systems that has been 
widely used in empirical studies on software quality 
issues. Using a standard dataset facilitates the 
replication of our study. The Qualitas Corpus 
version 20120401 contains 111 programs. The full 
release (20120401f) combines the standard release 
(20120401r) with the evolution release (20120401e) 
which contains multiple versions of pro- grams, a 
total of 661 versions. We chose programs that had 
at least 10 versions in the corpus in order to observe 
evolution over a longer period of time. This means 
that the following programs were included in this 
study: ant (21 versions), antlr (20), argouml (16), 

freecol (28), freemind (16), hibernate (100), jgraph 
(39), jmeter (20), jung (23), junit (23), lucene (28) 
and weka (55). 

The scripts we have used and developed for this 
study can be found here: 
https://bitbucket.org/ootos/scc-project. Table I 
provides some statistics of the dataset used. A total 
of twelve (12) systems are analyzed consisting of 
389 versions. 

B. Experiment Setup 
The experiments consist of the following steps to 
extract, process and analyse data: 
1) Graph Extraction: Dependency data is extracted 
from Java byte code with scripts using the Apache 
BCEL library [5]. Since the units of maintenance 
are compilation units, we merge nested classes with 
their outer, top-level classes. The dependencies of 
nested classes are aggregated to their top- level 
classes. These aggregated classes form the vertices 
of the dependency graph. Extends and inherits 
edges are created when the respective constructs are 
encountered in byte code, all other occurrences of a 
class in the byte code of another class result in the 
creation of a uses edge. 

2) Graph Pre-processing: We sanitise the 
dependency graphs by removing test classes and 
generated code. Test cases are removed as tests (1) 
tend to be more stable46 due to the fact that in many 
projects they are used as specification artefacts as 
suggested by the test-driven development (TDD) 
methodology, (2) it is unusual to have cross-
references between tests, and references from core 
functional code to tests, making it very unlikely to 
encounter tests that participate in cycles. We 
therefore believe that including tests would have 
skewed the results. We have also tried to remove 
generated code. In particular, parser APIs generated 
by ANTLR and similar parser generators are 
removed. Even minor changes in grammar 
definitions can produce a large amount of changes 
as many generated artefacts are regenerated and 
renamed. But this has nothing to do with whether 
these artefacts are in cycles or not, this is only 
                                                
46 In the context of this study, stability relates to whether a class is 
frequently changed or not 
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caused by the fact that they are generated together. 
On the other hand, the process of regenerating these 
classes often does not incur any maintenance effort, 
as code generation is completely automated. Note 
that generated parser APIs often use the Visitor 
pattern and therefore often contain SCCs, as 
discussed in section II-D. 

We use simple naming pattern filters to remove 
tests (looking for the “Test” token in class names). 
To remove generated code, we have manually 
inspected the (ANT, Maven and Gradle) build 
scripts of the projects for references to code 
generators and the target packages names used by 
them. We found two projects where parser 
generators are used: (1) hibernate uses ANTLR and 
JAXB, and we excluded the following packages: 
org.hibernate.hql.internal.antlr.*,org.hibernate.sql.o
rdering.antlr and org.hibernate.internal.jaxb.*. (2) 
Weka uses JFlex and CUP, and we excluded the 
following packages:   
weka.core.mathematicalexpression, 
weka.filters.unsupervised.instance.subset- 
byexpression and weka.core.json. 

3) SCC Detection and Classification: Once the 
dependency graph is built, we use an 
implementation of Tarjan’s algorithm [38] to detect 
the strongly connected components (SCCs). The 
detected SCCs are classified in categories (STK vs 
non-STK, Visitor vs non-Visitor), and associated 
with their PCT diameter relative to the diameter of 
the entire dependency graph. STK is approximated 
by the presence of inherits edges in a SCC as 
discussed in section II-B. Visitor instances are 
detected based on naming patterns. 
4) SCC Membership: Finally, we establish the 
association of a class with a cycle. The most 
obvious option is to look for whether the vertex 
representing the class is an element of the 
respective SCC . However, we are also interested in 
assessing the impact SCCs have on their direct 
neighbourhood, i.e., classes that are not in a 
cycle, but depend directly on a class within the 
cycle (in-neighbours), or a class in a cycle that 
directly depends on such a class (out-
neighbours). A neighbour is either an in-
neighbour or an out-neighbour. 
5) Extracting Change Data: We use the change 

data set also used in [7]. This data contains fine-
grained, per-class information of change classified 
by a change category. Details on how this is done 
can be found in this paper. 
C. Research Questions 

The general problem we are interested in is the 
correlation between the presence of certain types of 
cycles in programs, and the maintainability of these 
program measured in terms of change frequency, as 
discussed above. We break this down into the 
following research questions: 

Firstly, we want to investigate whether a class 
within or near a cycle is more prone to change than 
a class outside a cycle. Our hypothesis is that the 
structural complexity associated with cycles could 
make it easier for change to spread to other classes 
within the cycle, and classes either directly 
referencing classes in the cycle, or being directly 
referenced by classes from within the cycle. 

RQ1. Are classes within or near cycles more prone 
to change than other classes? 

Secondly, we want to investigate whether classes 
that are in or near STK cycles are more prone to 
change than classes in non-STK cycles as these 
cycles violate a second principle of object-oriented 
design (the dependency inversion principle (DIP) 
[22]). This leads to the following question: 

RQ2. Are classes in or near cycles with STK more 
change prone than classes in cycles without STK? 

Finally, we want to investigate whether the PCT − 
diameter of a cycle is correlated with the change 
proneness of the classes within this cycle, following 
the argument made by Falleri et al that PCT-local 
cycles are less critical than cycles that span across 
different branches of the PCT [11]. We thus 
hypothesize that cycles with a large PCT-diameter 
would be more change-prone than those with a 
smaller PCT-diameter. 
RQ3. Is there a correlation between the P C T − 
diameter of a cycle and the change frequency of the 
classes in or near this cycle? 

D. Metrics and Measurement 
For statistical analysis, we compute data series with 
data points for each version. The values are change 
probabilities, and each data series corresponds to a 
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set of classes resulting from a classification, such as 
whether a class is in or near a particular type of 
SCC. 

1) Computing the change probability of a set of 
classes: 

Given a program P, let C be the set of classes in P, 
and V be the set of versions of P such that for each 
version v ! V a successor version succ(v) exists. 
For a given set of classes S " C and a version v ! 
V we use changed(S,v) to denote the set of classes 
in S that have changed from v to succ(v). We then 
define the change probability of a class in S as a 
function pchange : 2C % V & [0, 1] defined as: 

 

 
Fig. 3. The PCT-diameter of an SCC 

2) Measuring the PCT diameter of an SCC: Given a 
set of packages P and the package containment tree 
(PCT) they form (see Section II-C), we compute the 
PCT-diameter of a set of classes as the diameter of 
the packages of these classes in the PCT. The PCT-
diameter is computed by first computing the 
shortest distance between each pair of packages in 
the PCT and then finding the longest of the 
computed shortest distances. This is referred as the 
longest shortest path in network analysis [43]. We 
can normalise this value to [0,1] by dividing this 
number by the diameter of the set of all packages 
within the program. 
For instance, consider the example depicted in 
figure 3. We have discussed the same cycle earlier. 
The longest shortest path between the respective 

packages has a length of 4 (java.awt & java & 
<root> & javax & javax.swing). Note that the PCT 
shown in this figure is incomplete, there are several 
core Java packages with 5 tokens, such as 
javax.swing.text.html.parser. Therefore, the 
diameter of the entire program is 10, and the PCT-
diameter of the SCC in figure 3 is 0.4 (4/10). The 
normalised PCT computation just described defines 
a PCT function pct : 2C % V & [0,1]. 

3) Detecting SCCs with STK: Finding instances of 
STK is computationally expensive as the NP-
complete subgraph isomorphism problem must be 
solved. However, STK can be easily approximated 
by computing SCCs that contain at least one 
inherits edge. The drawback of this approach is that 
these SCCs may contain both STK and non-STK 
sub-cycles. 

This defines a STK membership function stk : 2C % 
V & {false, true}, where stk(SCCi, v) = true iff 
SCCi is a STK in version v. 
4) Measuring Nearness of a Cycle: We also want to 
find out whether classes that are in the 
neighbourhood of a cycle of a certain type are 
penalized by increased change-proneness. We 
differentiate between outward nearness (fan-outs of 
the classes in cycles) and inward nearness (fan-ins 
of the classes in cycles). In many cases, multiple 
cycles can have the same 
 

 
Fig. 4. Neighborhood to an SCC 

 

neighbours. For instance, figure 4 shows an 
example where two cycles scc1 and scc2 share the 
same outward neighbour. In order to avoid 
assigning a class to multiple cycles, we use the 
following set of rules when a class is near multiple 

i.e., classes that are not in a cycle, but depend directly on a
class within the cycle (in-neighbours), or a class in a cycle that
directly depends on such a class (out-neighbours). A neighbour
is either an in-neighbour or an out-neighbour.

5) Extracting Change Data: We use the change data set
also used in [7]. This data contains fine-grained, per-class
information of change classified by a change category. Details
on how this is done can be found in this paper.

C. Research Questions

The general problem we are interested in is the correlation
between the presence of certain types of cycles in programs,
and the maintainability of these program measured in terms
of change frequency, as discussed above. We break this down
into the following research questions:

Firstly, we want to investigate whether a class within or
near a cycle is more prone to change than a class outside a
cycle. Our hypothesis is that the structural complexity asso-
ciated with cycles could make it easier for change to spread
to other classes within the cycle, and classes either directly
referencing classes in the cycle, or being directly referenced
by classes from within the cycle.

RQ1. Are classes within or near cycles more prone to
change than other classes?

Secondly, we want to investigate whether classes that are
in or near STK cycles are more prone to change than classes
in non-STK cycles as these cycles violate a second principle
of object-oriented design (the dependency inversion principle
(DIP) [22]). This leads to the following question:

RQ2. Are classes in or near cycles with STK more
change prone than classes in cycles without STK?

Finally, we want to investigate whether the PCT �
diameter of a cycle is correlated with the change proneness of
the classes within this cycle, following the argument made by
Falleri et al that PCT-local cycles are less critical than cycles
that span across different branches of the PCT [11]. We thus
hypothesize that cycles with a large PCT-diameter would be
more change-prone than those with a smaller PCT-diameter.

RQ3. Is there a correlation between the PCT �
diameter of a cycle and the change frequency
of the classes in or near this cycle?

D. Metrics and Measurement

For statistical analysis, we compute data series with data
points for each version. The values are change probabilities,
and each data series corresponds to a set of classes resulting
from a classification, such as whether a class is in or near a
particular type of SCC.

1) Computing the change probability of a set of classes:
Given a program P , let C be the set of classes in P , and V
be the set of versions of P such that for each version v 2 V
a successor version succ(v) exists. For a given set of classes
S ✓ C and a version v 2 V we use changed(S, v) to denote
the set of classes in S that have changed from v to succ(v).
We then define the change probability of a class in S as a
function pchange : 2C ⇥ V ! [0, 1] defined as:

Fig. 3. The PCT-diameter of an SCC

pchange(S, v) =
|changed(S,v)|

|S| .

2) Measuring the PCT diameter of an SCC: Given a set
of packages P and the package containment tree (PCT) they
form (see Section II-C), we compute the PCT-diameter of a
set of classes as the diameter of the packages of these classes
in the PCT. The PCT-diameter is computed by first computing
the shortest distance between each pair of packages in the PCT
and then finding the longest of the computed shortest distances.
This is referred as the longest shortest path in network analysis
[43] We can normalise this value to [0, 1] by dividing this
number by the diameter of the set of all packages within the
program.

For instance, consider the example depicted in figure
3. We have discussed the same cycle earlier. The longest
shortest path between the respective packages has a length
of 4 (java.awt ! java ! <root> ! javax !
javax.swing). Note that the PCT shown in this figure
is incomplete, there are several core Java packages with
5 tokens, such as javax.swing.text.html.parser.
Therefore, the diameter of the entire program is 10, and
the PCT-diameter of the SCC in figure 3 is 0.4 (4/10). The
normalised PCT computation just described defines a PCT
function pct : 2C ⇥ V ! [0, 1].

3) Detecting SCCs with STK: Finding instances of STK
is computationally expensive as the NP-complete subgraph
isomorphism problem must be solved. However, STK can be
easily approximated by computing SCCs that contain at least
one inherits edge. The drawback of this approach is that these
SCCs may contain both STK and non-STK sub-cycles.

This defines a STK membership function stk : 2C ⇥ V !
{false, true}, where stk(SCCi, v) = true iff SCCi is a STK
in version v.

4) Measuring Nearness of a Cycle: We also want to find
out whether classes that are in the neighbourhood of a cycle
of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same

i.e., classes that are not in a cycle, but depend directly on a
class within the cycle (in-neighbours), or a class in a cycle that
directly depends on such a class (out-neighbours). A neighbour
is either an in-neighbour or an out-neighbour.

5) Extracting Change Data: We use the change data set
also used in [7]. This data contains fine-grained, per-class
information of change classified by a change category. Details
on how this is done can be found in this paper.

C. Research Questions

The general problem we are interested in is the correlation
between the presence of certain types of cycles in programs,
and the maintainability of these program measured in terms
of change frequency, as discussed above. We break this down
into the following research questions:

Firstly, we want to investigate whether a class within or
near a cycle is more prone to change than a class outside a
cycle. Our hypothesis is that the structural complexity asso-
ciated with cycles could make it easier for change to spread
to other classes within the cycle, and classes either directly
referencing classes in the cycle, or being directly referenced
by classes from within the cycle.

RQ1. Are classes within or near cycles more prone to
change than other classes?

Secondly, we want to investigate whether classes that are
in or near STK cycles are more prone to change than classes
in non-STK cycles as these cycles violate a second principle
of object-oriented design (the dependency inversion principle
(DIP) [22]). This leads to the following question:

RQ2. Are classes in or near cycles with STK more
change prone than classes in cycles without STK?

Finally, we want to investigate whether the PCT �
diameter of a cycle is correlated with the change proneness of
the classes within this cycle, following the argument made by
Falleri et al that PCT-local cycles are less critical than cycles
that span across different branches of the PCT [11]. We thus
hypothesize that cycles with a large PCT-diameter would be
more change-prone than those with a smaller PCT-diameter.

RQ3. Is there a correlation between the PCT �
diameter of a cycle and the change frequency
of the classes in or near this cycle?

D. Metrics and Measurement

For statistical analysis, we compute data series with data
points for each version. The values are change probabilities,
and each data series corresponds to a set of classes resulting
from a classification, such as whether a class is in or near a
particular type of SCC.

1) Computing the change probability of a set of classes:
Given a program P , let C be the set of classes in P , and V
be the set of versions of P such that for each version v 2 V
a successor version succ(v) exists. For a given set of classes
S ✓ C and a version v 2 V we use changed(S, v) to denote
the set of classes in S that have changed from v to succ(v).
We then define the change probability of a class in S as a
function pchange : 2C ⇥ V ! [0, 1] defined as:
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pchange(S, v) =
|changed(S,v)|

|S| .

2) Measuring the PCT diameter of an SCC: Given a set
of packages P and the package containment tree (PCT) they
form (see Section II-C), we compute the PCT-diameter of a
set of classes as the diameter of the packages of these classes
in the PCT. The PCT-diameter is computed by first computing
the shortest distance between each pair of packages in the PCT
and then finding the longest of the computed shortest distances.
This is referred as the longest shortest path in network analysis
[43] We can normalise this value to [0, 1] by dividing this
number by the diameter of the set of all packages within the
program.

For instance, consider the example depicted in figure
3. We have discussed the same cycle earlier. The longest
shortest path between the respective packages has a length
of 4 (java.awt ! java ! <root> ! javax !
javax.swing). Note that the PCT shown in this figure
is incomplete, there are several core Java packages with
5 tokens, such as javax.swing.text.html.parser.
Therefore, the diameter of the entire program is 10, and
the PCT-diameter of the SCC in figure 3 is 0.4 (4/10). The
normalised PCT computation just described defines a PCT
function pct : 2C ⇥ V ! [0, 1].

3) Detecting SCCs with STK: Finding instances of STK
is computationally expensive as the NP-complete subgraph
isomorphism problem must be solved. However, STK can be
easily approximated by computing SCCs that contain at least
one inherits edge. The drawback of this approach is that these
SCCs may contain both STK and non-STK sub-cycles.

This defines a STK membership function stk : 2C ⇥ V !
{false, true}, where stk(SCCi, v) = true iff SCCi is a STK
in version v.

4) Measuring Nearness of a Cycle: We also want to find
out whether classes that are in the neighbourhood of a cycle
of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same
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neighbours. For instance, figure 4 shows an example where
two cycles scc1 and scc2 share the same outward neighbour.
In order to avoid assigning a class to multiple cycles, we use
the following set of rules when a class is near multiple cycles:

1) If the class changes, prioritize cycles with change.
If there are multiple cycles that change, pick one
randomly.

2) If the class does not change, prioritize cycles without
change. If there are multiple cycles that change, pick
one randomly.

3) Otherwise randomly select a cycle.

E. Statistical analysis

1) Analysis Method: The input data for the statistical
analysis are provided by the three functions pchange, stk
and pct that associate SCCs version pairs with information
representing change probability, STK classifications and PCT
values.

We want to investigate (1) the change proneness of SCCs
against non-SCCs, (2) the change proneness of SCCs with
STK over SCCs without STK and (3) whether the PCT
diameters of SCCs are correlated with change proneness.

a) Analyzing Change Proneness of SCCs vs. Non SCCs:
We analyse two data series for the two sets of classes:
the classes in SCCs, and the classes not in SCCs. The
hypothesis here is that classes in SCC are more change-
prone and they propagate change more to their neighbourhoods
because of their structural complexity. It is easy to expand
this investigation to include neighbourhoods of an SCC, by
also considering neighbours (in-neighbours out-neighbours) as
elements of SCCs as described above.

b) Analyzing Change Proneness of STK vs Non-STK :
Here we analyse two data series: the classes within STKs,
and the classes in non-STK SCCs. Note that we do not
directly compare STK instances with non-SCCs, however, this
relationship can be inferred by combining the results of this
and the previous experiment.

c) Analysing the Correlation between PCT Diameter
and Change Proneness: To answer this question, we use a
slightly different method. The input data are not just two data
series, but consist of two matrices where we map pairs consist-
ing of versions and individual SCCs to a change probability

TABLE II. AVERAGE PERCENTAGE OF CLASSES IN SCCs

Systems % of Classes
SCCs In-Neighbor(incl) In/Out-Neighbor(incl)

ant 35.2% 76.3% 83.6%
antlr 34.0% 56.9% 75.9%

argouml 31.8% 55.7% 74.5%
freecol 80.7% 82.9% 92.9%

freemind 55.3% 80.3% 92.6%
hibernate 62.8% 76.1% 93.6%

jgraph 77.0% 79.5% 98.0%
jmeter 23.0% 73.3% 83.7%
jung 10.3% 75.0% 80.4%
junit 19.7% 46.1% 64.4%

lucene 29.5% 51.3% 73.5%
weka 13.4% 66.9% 77.9%

using the formula defined above, and to the PCT diameter
value, respectively.

2) Testing of the Hypotheses: We have employed two
different statistical analysis methods to test our hypotheses.
The choice of either one depends on the measurement type of
the variables under investigation. To analyse the correlation
between two data series (RQ1 and RQ2), we used a non-
parametric test. To test the hypotheses in this category, the
data is first tested for normality using the Shapiro test. It
turned out that each dataset deviates strongly from normality.
Subsequently, we use a non-parametric test (Wilcoxon rank-
sum)[12] for analysis.

For interval variables used in the experiment for RQ3, we
have used Pearson and Spearman correlation.

3) Measuring interactions among experimental factors: It
is the goal to also understand if there are interactions among
the two factors being investigated in this study. We suspect
that classes with high PCT-diameter could also be prone to
STK anti-pattern. It is thus appropriate to treat the two factors
as a competing treatments and use one factor as a blocking
factor in the experiment [12]. A nested design is chosen where
the factor STK is selected as a blocking factor, since it is
nominal in its scale whereas PCT-Diameter is interval. Next,
the sccs are grouped into hasSTK -True or False groups and
a statistical analysis is performed between PCT-Diameter and
change-probability (dependent variable) in each group.

V. RESULTS

A. System Properties

Table I shows the average values for several system proper-
ties while Table II reports the (average) percentage of classes in
and near cycles. Averages are computed over all versions of the
respective program in the data set. The distribution of classes
within SCC range from 10.3% to 80.7%. For some of the
systems, a surprisingly high number of classes is within cycles,
including freecol (80.7%), jgraph (77%), hibernate (62.8%)
and freemind (55.3%). Two systems, jgraph and freecol, have
relatively large PCT-diameter values. Freemind has the largest
percentage of changed classes (53.6%) as shown in pchange
column, while the rest of the systems have change probabilities
between 10.8% (jung) to 35.3% (freecol).
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cycles: 
1) If the class changes, prioritize cycles with 

change. If there are multiple cycles that 
change, pick one randomly.  

2) If the class does not change, prioritize cycles 
without change. If there are multiple cycles 
that change, pick one randomly.  

3) Otherwise randomly select a cycle.  

E. Statistical analysis 
1) Analysis Method: The input data for the 
statistical analysis are provided by the three 
functions pchange, stk and pct that associate SCCs 
version pairs with information representing change 
probability, STK classifications and PCT values. 

We want to investigate (1) the change 
proneness of SCCs against non-SCCs, (2) the 
change proneness of SCCs with STK over 
SCCs without STK and (3) whether the PCT 
diameters of SCCs are correlated with change 
proneness. 

a) Analyzing Change Proneness of SCCs vs. Non 
SCCs: 
We analyse two data series for the two sets of 
classes: the classes in SCCs, and the classes not in 
SCCs. The hypothesis here is that classes in SCC 
are more change- prone and they propagate change 
more to their neighbourhoods because of their 
structural complexity. It is easy to expand this 
investigation to include neighbourhoods of an SCC, 
by also considering neighbours (in-neighbours out-
neighbours) as elements of SCCs as described 
above. 
b) Analyzing Change Proneness of STK vs Non-STK 
: Here we analyse two data series: the classes within 
STKs, and the classes in non-STK SCCs. Note that 
we do not directly compare STK instances with 
non-SCCs, however, this relationship can be 
inferred by combining the results of this and the 
previous experiment. 

c) Analysing the Correlation between PCT 
Diameter and Change Proneness: To answer this 
question, we use a slightly different method. The 
input data are not just two data series, but consist of 
two matrices where we map pairs consist- ing of 
versions and individual SCCs to a change 

probability using the formula defined above, and to 
the PCT diameter value, respectively. 

2) Testing of the Hypotheses: We have employed 
two different statistical analysis methods to test our 
hypotheses. The choice of either one depends on the 
measurement type of the variables under 
investigation. To analyse the correlation between 
two data series (RQ1 and RQ2), we used a non- 
parametric test. To test the hypotheses in this 
category, the data is first tested for normality using 
the Shapiro test. It turned out that each dataset 
deviates strongly from normality. Subsequently, we 
use a non-parametric test (Wilcoxon rank- sum)[12] 
for analysis. 
For interval variables used in the experiment for 
RQ3, we have used Pearson and Spearman 
correlation. 

3) Measuring interactions among experimental 
factors: It is the goal to also understand if there are 
interactions among the two factors being 
investigated in this study. We suspect that classes 
with high PCT-diameter could also be prone to 
STK anti-pattern. It is thus appropriate to treat the 
two factors as a competing treatments and use one 
factor as a blocking factor in the experiment [12]. A 
nested design is chosen where the factor STK is 
selected as a blocking factor, since it is nominal in 
its scale whereas PCT-Diameter is interval. Next, 
the sccs are grouped into hasSTK -True or False 
groups and a statistical analysis is performed 
between PCT-Diameter and change-probability 
(dependent variable) in each group. 

V. RESULTS 

A. System Properties 
Table I shows the average values for several system 
properties while Table II reports the (average) 
percentage of classes in and near cycles. Averages 
are computed over all versions of the respective 
program in the data set. The distribution of classes 
within SCC range from 10.3% to 80.7%. For some 
of the systems, a surprisingly high number of 
classes is within cycles, including freecol (80.7%), 
jgraph (77%), hibernate (62.8%) and freemind 
(55.3%). Two systems, jgraph and freecol, have 
relatively large PCT-diameter values. Freemind has 
the largest percentage of changed classes (53.6%) 
as shown in pchange column, while the rest of the 
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systems have change probabilities between 10.8% 
(jung) to 35.3% (freecol). 
B. RQ1 Are classes within or near cycles more 
prone to change than other classes? 
The results for RQ1 are presented in Table III. In 
column 2, the significance test results for classes 
within SCC against those outside SCC are listed. 
While columns 3 and 4 show the results when we 
investigated the neighborhood of the SCCs. Only 
two systems (freecol and jgraph) have significant 
change proneness for the SCC group. However, 
when we considered the SCC direct neighbourhood, 
75% of the systems showed significant change 
proneness. As shown in the results, the change 
frequencies of the classes increase as the size of the 
neighbourhood expands. This is not surprising 
giving that the size of the class set increases as 
shown in Table II. However, what is surprising is 
the big impact of SCCs on their neighbourhood. 
Investigation of the actual changes revealed that in 
many cases, SCCs and their direct (in-) neighbours 
account for more than 90 % of the total change. For 
instance, Ant has the average of 76.3% classes in 
SCCs and its direct in-neighbours, but these classes 
account for 94% of the total change volume. We 
can therefore confirm the hypothesis that the 
presence of SCCs could have a significant impact 
on the stability of the classes near those SCCs 
(Table VII column 3). 

This may indicate a significant increase in 
maintenance costs, in particular as many test cases 
would be required to achieve sufficient coverage of 
the many unstable classes in the neighbourhood of 
cycles. 
C. RQ2:Are classes in or near cycles with STK 
more change prone than classes in cycles without 
STK? 

Table IV presents the results of testing this 
hypothesis. Column 2 of the table presents the p-
values of testing SCCs with STK against SCCs 
without STK. The 3rd column presents the results 
when the in-neighbours are included in the S C C 
graph and the 4th column presents the results when 
both in-neighbours and out-neighbours are included 
in the S C C graph. 

Out of the 12 systems we have studied, only 3 

systems have SCCs with STK that show significant 
change proneness over SCCs without STK (see 
Table VII for summary of the results of the 
hypothesis). 
Hibernate presents an interesting case because we 
detected instances of the Visitor pattern in many of 
its cycles. The Visitor cycles all have the STK 
property and the results show that in hibernate the 
STK cycles are more change prone than non STK 
cycles. To understand the role of cycles with Visitor 
pattern in this category, we removed the Visitor 
SCCs and ob- served that the mean values of the 
change probability increased from 17.9% to 19.6%. 
That means that the Visitor SCCs are relatively 
stable and as a result, removing them produces an 
increased change ratio. For us, this is an interesting 
result in the sense that, although using the Visitor 
pattern produces instances of an ”anti-pattern” in 
the sense that it violates certain object-oriented 
design principle, nevertheless, it is stable. 

A study of trade-offs between design patterns 
and the anti- patterns is an interesting topic for 
future studies. 

D. RQ3:Is there a correlation between the PCT 
−diameter of a cycle and the change frequency of 
the classes in or near this cycle? 
The results of testing this hypothesis is presented in 
table V. All values in asterisks have a correlation of 
0.5 or greater and are significant at α = 0.05. We 
report both the Pearson and Spearman correlation 
results. Only one (freecol) of the systems has a fair 
correlation between the PCT-diameter and the 
change probability. As earlier reported in Table I, 
freecol has a very large relative PCT-diameter. We 
have no result for jgraph because it only contains 
one SCC and as a result, one data point. We detect 
no consistent pattern in the relationship between the 
PCT-diameter of class cycles and their change 
proneness (see Table VII). This result is also 
surprising as we expected that cycles spanning 
across branches of the PCT would be more prone to 
change. 
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E. Interaction between STK and PCT-diameter 
The results in table VI shows the correlation 
between PCT-diameter and change when grouped 
in the STK category and non STK category. The 
STK category is represented in columns 2 and 3, 
while the non-STK category is represented in 
columns 4 and 5. The results indicate that there are 
just two systems (freemind and hibernate) with fair 
correlation (see table VI). This result is different 
from the correlation results in Table V that reports 
only freecol with a relatively high and significant 
correlation. We therefore conclude that there is no 
relationship between the STK property of a cycle 
and the PCT- diameter of the cycle in this dataset. 

 

TABLE I. SUMMARY OF SYSTEM PROPERTIES, AGGREGATED VALUES ARE OBTAINED BY AGGREGATING OVER THE VALUES FOR EACH SCC AND EACH
VERSION v

Systems Versions Num of classes PCT-diameter Size of STK-SCCs Size of Non-STK SCCs Size of SCCs Size of Non-SCCs avg(pchange(C, v))

Mean Max Mean Max Mean Max Mean Max Mean Max Mean
ant 21 162.7 1 0.17 5 3.79 6 3.21 205 113.95 357 211.47 0.285

antlr 20 120.9 1 0.05 6 3.22 10 5.06 166 81.89 328 159.83 0.184
argouml 16 891.6 1 0.09 4 2.92 17 11.46 855 568.92 1705 1214.31 0.325
freecol 28 189.1 1 0.67 2 1.04 2 0.46 473 305.12 90 73.12 0.353

freemind 16 45.1 1 0.33 3 1.14 9 1.79 162 49.86 333 40.29 0.536
hibernate 100 513.2 1 0.19 21 5.06 11 4.12 1406 653.65 1191 372.66 0.160

jgraph 39 25.3 1 1 1 1.00 0 0.00 39 39.00 14 11.67 0.107
jmeter 20 286.5 0.71 0.21 4 2.79 8 6.21 188 132.16 576 440.89 0.283
jung 23 152.7 0.6 0.07 4 1.91 8 6.95 48 31.82 415 273.55 0.108
junit 23 39.6 1 0.09 3 0.76 8 4.62 27 15.52 152 63.62 0.233

lucene 28 163.4 0.75 0.07 6 2.96 9 6.00 143 95.85 339 230.92 0.211
weka 55 325.3 0.875 0.05 13 5.23 26 14.53 263 86.83 969 563.87 0.139

TABLE III. WILCOXON TEST: P-VALUES OF SCCS VS. NON-SCCS
(↵ = 0.05)

Systems SCCs + In-Neighbor + In/Out-Neighbor
ant 0.5 0.035* 0.037*

antlr 0.665 0.233 0.238
argouml 0.147 0.075 0.178
freecol 0.004* 0.001* 5.27E-05*

freemind 0.198 0.009* 8.81E-04*
hibernate 0.052 4.70E-05* 0.021*

jgraph 3.39E-10* 9.18E-10* 2.24E-11*
jung 0.742 0.038* 0.041*
junit 0.435 0.003* 0.010*

lucene 0.142 0.108 0.078
weka 0.511 0.005* 0.005*
jmeter 0.420 0.007* 0.022*

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in Table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size
of the neighbourhood expands. This is not surprising giving
that the size of the class set increases as shown in Table II.
However, what is surprising is the big impact of SCCs on their
neighbourhood. Investigation of the actual changes revealed
that in many cases, SCCs and their direct (in-) neighbours
account for more than 90 % of the total change. For instance,
Ant has the average of 76.3% classes in SCCs and its direct
in-neighbours, but these classes account for 94% of the total
change volume. We can therefore confirm the hypothesis that
the presence of SCCs could have a significant impact on the
stability of the classes near those SCCs (Table VII column 3).

This may indicate a significant increase in maintenance
costs, in particular as many test cases would be required to
achieve sufficient coverage of the many unstable classes in the
neighbourhood of cycles.

C. RQ2:Are classes in or near cycles with STK more change
prone than classes in cycles without STK?

Table IV presents the results of testing this hypothesis.
Column 2 of the table presents the p-values of testing SCCs
with STK against SCCs without STK. The 3rd column
presents the results when the in-neighbours are included in the
SCC graph and the 4th column presents the results when both
in-neighbours and out-neighbours are included in the SCC
graph.

Out of the 12 systems we have studied, only 3 systems
have SCCs with STK that show significant change proneness
over SCCs without STK (see Table VII for summary of the
results of the hypothesis).

Hibernate presents an interesting case because we detected
instances of the Visitor pattern in many of its cycles. The
Visitor cycles all have the STK property and the results show
that in hibernate the STK cycles are more change prone than
non STK cycles. To understand the role of cycles with Visitor
pattern in this category, we removed the Visitor SCCs and ob-
served that the mean values of the change probability increased
from 17.9% to 19.6%. That means that the Visitor SCCs are
relatively stable and as a result, removing them produces an
increased change ratio. For us, this is an interesting result
in the sense that, although using the Visitor pattern produces
instances of an ”anti-pattern” in the sense that it violates certain
object-oriented design principle, nevertheless, it is stable.

A study of trade-offs between design patterns and the anti-
patterns is an interesting topic for future studies.

D. RQ3:Is there a correlation between the PCT � diameter
of a cycle and the change frequency of the classes in or near
this cycle?

The results of testing this hypothesis is presented in table
V. All values in asterisks have a correlation of 0.5 or greater
and are significant at ↵ = 0.05. We report both the Pearson
and Spearman correlation results. Only one (freecol) of the
systems has a fair correlation between the PCT-diameter and
the change probability. As earlier reported in Table I, freecol
has a very large relative PCT-diameter. We have no result for
jgraph because it only contains one SCC and as a result, one
data point. We detect no consistent pattern in the relationship
between the PCT-diameter of class cycles and their change

TABLE I. SUMMARY OF SYSTEM PROPERTIES, AGGREGATED VALUES ARE OBTAINED BY AGGREGATING OVER THE VALUES FOR EACH SCC AND EACH
VERSION v

Systems Versions Num of classes PCT-diameter Size of STK-SCCs Size of Non-STK SCCs Size of SCCs Size of Non-SCCs avg(pchange(C, v))

Mean Max Mean Max Mean Max Mean Max Mean Max Mean
ant 21 162.7 1 0.17 5 3.79 6 3.21 205 113.95 357 211.47 0.285

antlr 20 120.9 1 0.05 6 3.22 10 5.06 166 81.89 328 159.83 0.184
argouml 16 891.6 1 0.09 4 2.92 17 11.46 855 568.92 1705 1214.31 0.325
freecol 28 189.1 1 0.67 2 1.04 2 0.46 473 305.12 90 73.12 0.353

freemind 16 45.1 1 0.33 3 1.14 9 1.79 162 49.86 333 40.29 0.536
hibernate 100 513.2 1 0.19 21 5.06 11 4.12 1406 653.65 1191 372.66 0.160

jgraph 39 25.3 1 1 1 1.00 0 0.00 39 39.00 14 11.67 0.107
jmeter 20 286.5 0.71 0.21 4 2.79 8 6.21 188 132.16 576 440.89 0.283
jung 23 152.7 0.6 0.07 4 1.91 8 6.95 48 31.82 415 273.55 0.108
junit 23 39.6 1 0.09 3 0.76 8 4.62 27 15.52 152 63.62 0.233

lucene 28 163.4 0.75 0.07 6 2.96 9 6.00 143 95.85 339 230.92 0.211
weka 55 325.3 0.875 0.05 13 5.23 26 14.53 263 86.83 969 563.87 0.139

TABLE III. WILCOXON TEST: P-VALUES OF SCCS VS. NON-SCCS
(↵ = 0.05)

Systems SCCs + In-Neighbor + In/Out-Neighbor
ant 0.5 0.035* 0.037*

antlr 0.665 0.233 0.238
argouml 0.147 0.075 0.178
freecol 0.004* 0.001* 5.27E-05*

freemind 0.198 0.009* 8.81E-04*
hibernate 0.052 4.70E-05* 0.021*

jgraph 3.39E-10* 9.18E-10* 2.24E-11*
jung 0.742 0.038* 0.041*
junit 0.435 0.003* 0.010*

lucene 0.142 0.108 0.078
weka 0.511 0.005* 0.005*
jmeter 0.420 0.007* 0.022*

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in Table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size
of the neighbourhood expands. This is not surprising giving
that the size of the class set increases as shown in Table II.
However, what is surprising is the big impact of SCCs on their
neighbourhood. Investigation of the actual changes revealed
that in many cases, SCCs and their direct (in-) neighbours
account for more than 90 % of the total change. For instance,
Ant has the average of 76.3% classes in SCCs and its direct
in-neighbours, but these classes account for 94% of the total
change volume. We can therefore confirm the hypothesis that
the presence of SCCs could have a significant impact on the
stability of the classes near those SCCs (Table VII column 3).

This may indicate a significant increase in maintenance
costs, in particular as many test cases would be required to
achieve sufficient coverage of the many unstable classes in the
neighbourhood of cycles.

C. RQ2:Are classes in or near cycles with STK more change
prone than classes in cycles without STK?

Table IV presents the results of testing this hypothesis.
Column 2 of the table presents the p-values of testing SCCs
with STK against SCCs without STK. The 3rd column
presents the results when the in-neighbours are included in the
SCC graph and the 4th column presents the results when both
in-neighbours and out-neighbours are included in the SCC
graph.

Out of the 12 systems we have studied, only 3 systems
have SCCs with STK that show significant change proneness
over SCCs without STK (see Table VII for summary of the
results of the hypothesis).

Hibernate presents an interesting case because we detected
instances of the Visitor pattern in many of its cycles. The
Visitor cycles all have the STK property and the results show
that in hibernate the STK cycles are more change prone than
non STK cycles. To understand the role of cycles with Visitor
pattern in this category, we removed the Visitor SCCs and ob-
served that the mean values of the change probability increased
from 17.9% to 19.6%. That means that the Visitor SCCs are
relatively stable and as a result, removing them produces an
increased change ratio. For us, this is an interesting result
in the sense that, although using the Visitor pattern produces
instances of an ”anti-pattern” in the sense that it violates certain
object-oriented design principle, nevertheless, it is stable.

A study of trade-offs between design patterns and the anti-
patterns is an interesting topic for future studies.

D. RQ3:Is there a correlation between the PCT � diameter
of a cycle and the change frequency of the classes in or near
this cycle?

The results of testing this hypothesis is presented in table
V. All values in asterisks have a correlation of 0.5 or greater
and are significant at ↵ = 0.05. We report both the Pearson
and Spearman correlation results. Only one (freecol) of the
systems has a fair correlation between the PCT-diameter and
the change probability. As earlier reported in Table I, freecol
has a very large relative PCT-diameter. We have no result for
jgraph because it only contains one SCC and as a result, one
data point. We detect no consistent pattern in the relationship
between the PCT-diameter of class cycles and their change

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (↵ = 0.05)

Systems SCC + in-neighbor + in/out-neighbor
ant 0.009* 0.013* 0.008*

antlr 0.550 0.210 0.196
argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes
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A. Cycles and the Shape of Java Programs 
Overall, the results are somehow surprising, and we 
do not have an ultimate explanation for all the 
findings. However, the results seem to be consistent 
with some other recent research on the shape of 
software. Several authors have studied the networks 
formed by software artefacts and their relationships 
and found that they are scale-free, and have a heavy 
tail distribution with a very few nodes with high 
connectivity [44], [17], [18], [32]. 

A commonly used model to explain how scale-free 
net- works come to exist is preferential attachment 
[34] – in a nutshell, this model stipulates that nodes 
that are added to the network have a higher 
probability to link to nodes with an already high 
degree. In particular, in the case of software that 
would mean that there are classes with a high in-
degree based on their popularity (because they 
provide useful utilities, or because they are widely 
known by developers), and the in- degree of these 

classes increases further as new classes are added to 
the program that use these utilities. On the other 
hand, classes with a lot of incoming dependencies 
have a high responsibility, and therefore tend to be 
more stable. It has been demonstrated that such a 
model can explain the network topology found in 
Java programs [39]. Conversely, this model 
suggests that high coupling is unavoidable [39]. 
This is in a way similar to the finding we made 
here: we found evidence that software evolution 
follows a pattern that leads to properties that are 
traditionally regarded as indicators of a bad design. 
The results we obtained could therefore be 
explained by a model where cycles form in the 
heavy tail of the distribution. In particular, this 
would explain the results for RQ1: classes in cycles 
are relatively stable, but not the classes that 
reference the cycles (we called them “in-
neighbours”). This could also offer an explanation 
for RQ2: developers may abstract from classes 
providing useful utilities, but eventually these 
abstractions themselves reference these utilities as 
they are useful, for instance, in order to provide 
defaults for certain services. An example where this 
happens is the combination of abstraction and the 
Singleton design pattern [14], where an abstract 
service class references a single instance of one of 
its subclasses. There are several case of this kind in 
the Java Runtime Environment, all with a high in-
degree, including java.lang.Runtime and 
java.awt.Toolkit. 

Note that this model is supported by the results of 
earlier research that many cycles form around hubs 
(nodes with betweenness centrality, usually 
corresponding to a high degree) [1], and that there 
are a few dependencies that support a large 
percentage of cycles and other antipattern instances, 
and therefore present high-impact refactoring 
opportunities [9]. 

However, this model does not offer an explanation 
for the results for RQ3. But we notice that package 
naming is sometimes influenced by considerations 
not related to the semantics of the actual code. 
Examples are the use of different package branches 
in the Java Developer Kit (such as java.*, javax.*, 
sun.*, org.w3c.*, ..) based on intellectual property 
rights, and the use of org.junit and junit branches in 
junit to provide older versions for backward 

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (↵ = 0.05)

Systems SCC + in-neighbor + in/out-neighbor
ant 0.009* 0.013* 0.008*

antlr 0.550 0.210 0.196
argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (↵ = 0.05)

Systems SCC + in-neighbor + in/out-neighbor
ant 0.009* 0.013* 0.008*

antlr 0.550 0.210 0.196
argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes
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compatibility. 

But at this stage, this is only one model that could 
be used to explain the observations we have made. 
Further research is needed to assess the validity of 
this explanation. 

B. Threats to Validity 
Graph extraction: Our tools cannot recognise 
weak uses relationships created by reflection. This 
is a common limitation for tools based on static 
analysis. 
Graph pre-processing: Our method to recognise 
and remove tests is prone to both false positives and 
false negatives. We expect that it may make non-
SCCs to appear slightly more stable for the reasons 
discussed in section IV-B. Our method to detect 
generated code may be incomplete as other scripts 
and tools could have been used in some projects. 
We think that this is unlikely as most successful 
open source projects automate routine tasks using 
build scripts. 
SCC Membership: The mechanism to assign 
vertices to the neighbourhood of cycles is not 
deterministic, and this could influence the outcome 
of the respective experiments. However, we 
executed these experiments at least 10 times, and 
found that the impact of this on the outcome of the 
experiments is negligible. In addition, we did not 
detect any siginificant difference by using a 
different mechanism (e.g. random assignment of 
neighborhood). 
Detecting STK: As described above in section IV-
D3, we use an approximation to detect STK mainly 
for performance reasons. The result of this is that 
we may classify some larger STKs cycles as STK 
even though they are predominantly non- STK. 

Detecting Visitors: Instances of the visitor design 
pattern are detected using naming patterns. This 
might yield both false positives and false negatives. 
However, in our experience the accuracy of this 
method is very high. 
Controlling for size and dependencies: We have 
not con- trolled for the size of classes and the size 
of their dependencies within each group. Both 
metrics have been shown to correlate with the 
change/fault-proneness of components [45], [27], 
[21]. By investigating the size/dependencies of 

classes in cycle and their neighborhood, we can 
further understand the association between the fact 
that classes in and near cycles are more change-
prone as reflected in the results (Table VII, column 
3) and whether those classes account for the 
significant size and dependencies in the systems. 

VII. CONCLUSION 

We have investigated whether classes in and near 
dependency cycles are more likely to change than 
other classes. We did this in order to investigate 
whether cycles are related to poorer maintainability 
as change ripple effects propagate easier through 
cycles. We used change frequency as an indicator 
for maintainability. We found no evidence that 
classes in cycles are more change prone. However, 
classes in and near cycles have an increased change 
probability. 

We also investigated two heuristics that had been 
proposed to distinguish between critical and 
harmless cycles: subtype knowledge and location of 
the cycle within the package containment tree 
(PCT). We found no strong correlation between 
these criteria and change proneness. 

We believe that our findings indicate the need for 
more research to describe and detect cycles as well 
as other types of anti-patterns that are truly 
detrimental to the maintainability of a program. A 
particularly interesting open problem is the 
relationship between cycles and the scale-free 
property of class dependency graphs. 
In addition, it would be interesting to control for the 
size of classes and their dependencies as it has been 
shown to have a confounding effect on the validity 
of metrics [10]. We plan to investigate this in future 
work. 
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Abstract—Many studies show that real-world systems 
are riddled with large dependency cycles among 
software classes. Dependency cycles are claimed to affect 
quality factors such as testability, extensibility, 
modifiability, and reusability. Recent studies reveal that 
most defects are concentrated in classes that are in and 
near cycles. In this paper, we (1) propose a new metric: 
IRCRSS based on the Class Reachability Set Size 
(CRSS) to identify the reduction ratio between the CRSS 
of a class and its interfaces, and (2) presents a cycle-
breaking decision support system (CB-DSS) that 
implements existing design approaches in combination 
with class edge contextual data. Evaluations of multiple 
systems show that (1) the IRCRSS metric can be used to 
identify fewer classes as candidates for breaking large 
cycles, thus reducing refactoring effort, and (2) the CB-
DSS can assist software engineers to plan restructuring 
of classes involved in complex dependency cycles. 

Index Terms—Dependency cycle, CRSS, refactoring, software 
quality, decision support system. 

1. Introduction 
Best design practice advocates to avoid 

dependency cycles between software artifacts [1-
4]. Dependency cycles are claimed to increase 
structural complexity among software artifacts 
such as classes or packages, and to inhibit 
software qualities like understandability, 
modifiability, testability, reusability and 
extensibility [1, 2, 4-6]. Testing a class in isolation 
is practically impossible when in a cycle with 
other classes [2]. A class that is tied to a large 
chunk of unnecessary classes cannot be reused 
effectively [2]. In integration testing, cycles 
prevent the topological ordering of classes that 
can be used as a test order [7-9], thereby 
inhibiting the testability. Recent studies have 
investigated the relationship between dependency 
cycles and defects [10-12], and found that most of 
the defects are concentrated within components in 
and near cycles.  

Application development frameworks have 
considered binding dependencies at runtime to 
better manage dependencies and provide loose 
coupling among modules, e.g., dependency 
injection frameworks (e.g. Spring framework 

[13]) and dynamic component models (e.g. OSGi 
framework [14]) 

Despite these advances, empirical evidence 
shows that dependency cycles are pervasive in 
modern software systems [15, 16], at different 
granularity levels. Time-to-market often forces 
developers to accumulate technical debt, e.g., by 
focusing more on “functional code” rather than 
“maintainable code” [17]. This suggests a need for 
approaches and tools to deal with accumulated 
technical debt through refactoring of large and 
complex cycles. 

A major motivation for developing a cycle 
breaking decision support system is based on 
dialog with an industrial partner seeking to 
refactor class cycles, but who found no support in 
the C# development environment (Visual Studio). 
The developers do not envision an automated 
approach or tool where they loose control of the 
code structure and organization after refactoring. 
One respondent says: “When you have a complex 
part of code, it seems more like you are losing 
control when you just press a button and it does 
everything for you: which is not ideal. Especially 
when there is complex code and you want to know 
what’s going on when you are debugging”. 

Against this background, we have implemented 
a decision support system (DSS) for refactoring 
class cycles. It is called DSS because it proposes 
architectural refactoring actions to maintenance 
engineers, and indicates code locations where 
actions can be manually implemented. The 
problem of breaking dependency cycles at the 
class granularity level is not trivial. Class cycles 
are large and much more complex than cycles at 
higher abstraction layers. 

Breaking large cycles requires heuristics to 
suggest the minimum edges that should be treated 
(e.g. greedy cycle removal) [18]. Such heuristics 
have been applied to dependency cycle problems 
among software artifacts (e.g. in [19]). However, 
there are challenges with cycle removal heuristics 
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when applied to software artifacts, e.g., there are 
edges suggested that are impractical to refactor 
[19]. They do not take into account the effect each 
edge removal/reversal has on the current structure 
of the system. For large and complex cycles, the 
minimum number of edges to break the cycles is 
usually large, and translates to creating a large 
number of new components. Lastly, breaking the 
suggested edges does not guarantee that the cycles 
would be removed. Approaches and tools are 
therefore needed to simulate refactoring in an 
adaptive and dynamic way. 

  In this context, we have investigated metrics 
to support cycle removal heuristics. This paper 
proposes a new metric named interface-CRSS 
reduction rate (IRCRSS), based on the class 
reachability set size (CRSS) metric proposed in 
[20]. The CRSS metric counts for a given class, 
all other classes in the system’s source code it 
requires for its compilation. The CRSS metric was 
chosen because it provides possibility to limit the 
number of components to be introduced during 
cycle breaking refactoring. This discussion is 
elaborated in Section II. The proposed IRCRSS 
metric and approach are evaluated using the cycle-
breaking decision support system (CB-DSS). 

Three research questions are stated to 
determine the performance of the new metric and 
the usefulness of the CB-DSS. 
RQ1 Is the system restructuring better with 

IRCRSS metric? Will tuning with IRCRSS 
produce a refactoring fitness that is better than 
refactoring without? 

RQ2 Will tuning with IRCRSS always improve 
software structure? Is it a common property that 
tuning with IRCRSS finds better fitness in every 
system? How many applications exhibit this 
opportunity? 

RQ3 Can the use of IRCRSS metric reduce the 
restructuring effort? We want to find out 
whether tuning with IRCRSS reduces the 
number of refactoring edges.  

Lastly, we performed a qualitative evaluation of 
the CB-DSS in an industrial setup. 

This paper is structured to partly follow the 
design science research methodology [21]. The 
problem identification is discussed in this section. 
Section II provides the background of this work. 
Section III presents the implementation of CB-

DSS. Section IV presents the results of validating 
the approach. Section V provides the evaluation of 
the metric and the system on different cases. 
Section VI draws out the threats and limitations of 
the system. Lastly, the conclusion is in Section 
VII. 

2. Background 
A. Class Reachability Set Size 

(CRSS) metric 
Melton and Tempero [20] present a metric 

named “class reachability set size” (CRSS) to 
detect package partitioning problems in software 
systems, and propose a refactoring strategy that 
uses CRSS to improve the package design quality. 
By investigating the distribution of CRSS values 
for all classes in a system, it is possible to identify 
whether the relationships among the classes 
preclude them from a “good partitioning”. The 
notion of “good partitioning” is measured by how 
package design affects software quality attributes, 
like deployability, understandability, reusability, 
and testability. A good package design can be 
quantified by the manageable size, stand-alone, 
cohesion, and encapsulation principles. Two of 
these properties (manageable size and stand-
alone) are focused in [20]. 

Package dependencies are aggregated at the 
class (compilation) abstraction level. Thus, the 
distribution of the class reachability set size 
values of the classes in the whole system can be 
effectively used to understand its package 
formation problems. The CRSS metric is 
computed from the Class Dependency Graph 
(CDG). The shape of the CRSS distribution 
provides information about the underlying 
Package Dependency Graph (PDG). A situation 
where there are many classes with large CRSS 
values shows a symptom of tall or cyclic PDGs 
and cannot be easily separated to stand-alone and 
of manageable sizes unless the class 
relationships are refactored. An example is the 
case of Azureus application (Vuze in later 
versions) in Fig. 1. It has approximately 1900 top-
level class files. About 1000 of these class files 
transitively depend on 1300-1500 other classes, 
while approximately 900 of the classes 
transitively depend on 1-100 classes.   
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A refactoring strategy based on the dependency 
inversion principle [22] and a registry of 
singletons [23], is proposed to decouple classes 
and reduce CRSS values for systems with large 
CRSS values. This strategy is applied by 
extracting interfaces from 10 identified 
candidates. The candidates are classes widely 
referenced and have high CRSS values. The result 
after the 10th refactoring showed only 400 classes 
to have CRSS value of 1300+, and nearly 1300 
classes transitively depended on less than 100 
other classes. 

B. Minimum Feedback Edge Set 
(mFES) and CRSS metrics

In graph theory [24], strongly connected 
components (SCC) also known as a cyclic 
dependency graph in a directed graph G = (V, E) 
is a maximal set of vertices C "  V such that for 
every pair of vertices u and v in C, both are 
reachable from each other. An SCC can consist of 
several directed cyclic graphs as shown in Fig. 2 
with one SCC containing two different cyclic sub 
graphs (A, D, C, B and A, D, C, F, E). The 
problem to solve is to eliminate undesirable SCCs 
among system classes and obtain a directed 
acyclic graph (DAG). Finding the smallest 
number of edges (minimum feedback arc/edge 
set) whose reversal or removal can turn a SCC 
into a DAG is an NP-complete problem [18]. It is 
therefore common to employ heuristics (e.g. 
greedy cycle removal) [18]. 

Sometimes, the minimum feedback edge set 
(mFES) is not ‘small’ in many software systems. 
To implement mFES for cycle breaking, would 
involve creating several new classes. For instance, 
to turn the SCC in Fig. 2a would require creating a 
new component J (as in Fig. 2b) to break the edge 
between D and C (mFES). Arguably, this edge (D 
0 C) can be reversed. In reality, however, edges 
(relationships) between classes cannot just be 
reversed as they involve much more complex 
interactions. The mFES for Azureus 2.3.0.2 using 
the “greedy cycle removal” algorithm [18], gave 
211 edges that should be treated 
(removed/reversed) to turn the SCC with 804 
classes and 4275 edges to a DAG. A challenge is 
the need to create many new classes or interfaces 
to break the SCC. More challenging is the fact 
that not all the suggested edges in the mFES could 

be treated, as they represent relationships 
considered as strong coupling (e.g., an edge 
between a class and its abstract type). 

In the example of Azureus 2.3.0.2 above, by 
utilizing the interfaces of 10 identified classes as 
candidates (with high CRSS and incoming 
dependencies), the SCC with 804 classes could be 
reduced to 253 (nearly 68% reduction).  

 
Fig. 1.  CRSS distribution of Azureus (Vuze) 

 

Fig. 2.  (a) an SCC with 2 inner cycles and (b) The refactored SCC [11] 

This motivated us to consider the CRSS metric 
before the mFES metric, when seeking to perform 
cycle breaking. Classes with high CRSS are 
typically in a large SCC or in the neighborhood of 
SCC (see an example of components H and G that 
depend on the SCC in Fig. 2a). By using the 
CRSS metric as an objective function, we do not 
only refactor classes in complex SCCs and their 
neighborhoods, but we also create a decoupled 
system that fits the discussions of manageable 
sizes and standalone properties of package 
design. 

C. A new metric based on CRSS 
Following the discussion above, when an 

interface is introduced for decoupling, the extent 
that the CRSS values of the clients can be 
reduced, may be based on the CRSS values of the 
utilized interfaces of the candidates. The reason is 
that the interface would only depend on the types 
declared in the published method’s signatures of 
its implementation. We establish that one 
candidate might be better than the other because 
their methods’ signatures are not tightly coupled 
to different concrete classes. This can be done by 
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inspecting the CRSS values of both the extracted 
interface and the implementation of the candidate. 
If the CRSS values of the implementation and its 
interface are pretty much the same, we say that 
this may be a non-optimal refactoring point. 
Essentially, we may not have any reduction 
immediately in the transitive coupling but rather 
an increase in coupling because of this 
refactoring. We demonstrate this concept with the 
following examples: Consider classes A and B 
(Listing 1): Class A depends on class C as the 
parameter type of method ma1, on class D as a 
return type of method ma2, and on class G as an 
exception type. Similarly, class B depends 

________________________________________ 
public class A {  

public void ma1(C c) {/*…*/} 
public List<D> ma2() { return new ArrayList<D>();} 
public void ma3() throws G{/*…*/} 

} 
public class B { 

private double fb; 
public void mb1(String s) { D.md1(s)} 
public double mb2(int n) { return n*fb;} 
public int mb3(){return -1*C.fc } 

}________________________________________ 
Listing 1.  Opportunities in relation to the CRSS metric 

________________________________________ 
public interface IA {  

public abstract void ma1(C c); 
public abstract List<D> ma2(); 
public abstract void ma3() throws G; 

} 
public interface IB { 

public abstract void mb1(String s); 
public abstract double mb2(int n); 
public abstract int mb3(); 

}________________________________________ 
Listing 2.  Default extracted interfaces of A and B 

on C in the method body mb3 and on D in the 
method body mb1. If we assume that class C can 
transitively reach 100 other classes, D can reach 
200 other classes, and G can reach 2 other classes 
to compile. An Extract interface performed on A 
and B would produce interfaces, IA and IB as 
shown in Listing 2. A close observation of the two 
interfaces shows that IA still has dependencies on 
C and D and therefore would have at least a 
transitive dependency of 200. This value is the 
same as the maximum CRSS (200) of its actual 
implementation class A. Whereas, the interface IB 
contains no dependencies on the concrete 
implementations in class B and therefore has a 
maximum CRSS of 0 while the implementation 
class B has at least a CRSS of 200. 

Using this background, we determine a new 
metric named interface-CRSS reduction rate that 
is based on the difference between the CRSS 
value of a class and its interface. Formally, we 
define the interface-CRSS reduction rate for a 
class X as: 

 
Where: 

IRCRSS (X) is the class reachability set size 
(CRSS) reduction rate for the interface of X 
CRSS (X) is the class reachability set size of X 
CRSS (IX) is the class reachability set size of 
the interface of X (IX) 

The IRCRSS of X gives the likely rate at which 
the CRSS value of a client Y that depends on X 
would be reduced if it depends on the interface of 
X (i.e. IX). The value of IRCRSS ranges from 0 to 
1. A value of zero implies no reduction in the 
CRSS value when the dependency of Y is 
changed from X to IX, while a value of 1 implies 
a possible 100% reduction.  

D. Strategies for edge breaking 
between a source and a target type 

The dependency between two program classes 
can be represented as:  source depends on target 
(source → target), where the target class is used 
within the source class. We have used these 
notations “source” and “target” in the following 
presentation. In addition, we have used standard 
refactoring notations [25] such as Extract 
interface, Move method, Move field, Encapsulate 
field and so on in our presentation. 

1) Type generalization 
Type generalization involves declaring a 

variable with its abstraction (interface or abstract 
class). This is considered a good programming 
practice [25]. In general, when an interface of an 
implementation type is introduced, it should be 
utilized by all of its clients wherever possible [26]. 
However, studies show that interface types are 
sparingly used in software development despite its 
several potentials [26, 27]. Type generalization 
can be used to break dependency between a 
source type and a target type when it is a case of 
aggregation (has-a) and not composition (part-of). 
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2) Registry (Service Locator) 
Two cases are considered here. First, the 

target’s constructor is explicitly invoked through a 
“new” keyword in the source class (part-of). This 
type requires that the source use a new object of 
the target class. To break this dependency, the 
target class needs to be cloned each time a new 
object is requested by the source classes. The 
pattern is referred as the Registry of Prototypes 
[23].  

Second, when a utility class (that contains only 
static members) has high incoming dependencies 
and it is a hub for big and complex SCCs. It might 
be needful to refactor the utility class into a 
singleton and its static methods to instance-side 
methods to break such complex SCCs. This case 
is dealt with in [20] using the Registry of 
Singletons/Service Locator pattern [23] [28]. 

The instantiation of the target classes for Java 
applications can be done with the ServiceLoader47 
or in the entry class of the application [20]. For C# 
applications, the lightweight injection container 
called Unity48 can be used to configure target 
classes. The refactoring may sometimes require 
some extra modifications to the target’s class. An 
example is when the target class uses parameters 
in its constructor(s). It is not possible to pre assign 
these parameters when configuring the instance of 
the target class. One solution is to modify the 
target as shown in Listing 3. A new empty 
constructor and a new public setter method are 
created in Class A. The public setter method takes 
the parameters of the first constructor. The body 
of the constructor with parameters is moved to the 
setter method and replaced with a reference to the 
method. This way, the code is not broken and 
refactored clients can request the instance of the 
target and pass the parameters through the setter 
method. 

3) Static final (read-only) field (Copy field) 

High coupling between the source and a target 
class could occur because of static final field 
invocation or static field that is used as read-only 
(final). An example is a case in Azureus v2.3.0.2, 
where “BackGroundGraphic” class depends on 
“MainWindow” class because it uses a static 
Color white. The bizarre decision here is that 
                                                
47https://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html 
48 http://msdn.microsoft.com/en-us/library/ff649614.aspx 

while other color types were defined and used in 
the BackGroundGraphic class, the developer 
simply referenced the color field “white” from the 
MainWindow class rather than defining it in the 
BackGroundGraphic class. This has been 
refactored in the latest version by moving “Color 
white” to the BackGroundGraphic class. The 
refactoring approach here is to Copy field from 
the target to the source class. This makes sense 
because the value of such final field would not 
change or become updated. 
________________________________________ 
/* Before refactoring */ 
public class A { 

public A (B b) { run(b);} 
} 
/* After refactoring */ 
public class A { 

public A () {/*…*/}               /*new empty constructor*/ 
public A (B b) { setB(b);}       /*keep to not break the code*/ 
public void setB(B b) { run(b);} 

}________________________________________ 
Listing 3.  Refactoring target with parameters in its constructor 

4) Encapsulate static field 
A source class can use a target class through 

static field invocation. Listing 4 presents an 
example where class A is coupled to class B 
through a static field. Encapsulate field [25] and 
Extract interface with Registry refactoring can be 
applied to break this dependency. The static field 
(fb) is declared private in B and assigned to an 
auxiliary instance field49 id. A getter method is  

________________________________________ 
/* Before refactoring */ 
public class A { 

public void m() { B.fb; } 
} 
public class B { 

public static int fb; 
} 
/* After refactoring */ 
public class A { 

public void m() { IB b = Registry.getBImpl(); 
b.getFbFromID();} 

} 
public class B implements IB{ 

private static int fb; 
private int id; 
public B () { id = fb;} 
public int getFbFromID() { return id;} 

} 
public interface IB { 

public abstract int getFbFromID(); 
}____________________________________________________________ 

Listing 4.  Encapsulation and Extract Interface + Registry 
refactoring for static field dependency 

                                                
49 https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html 
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declared for id and declared in interface IB. Class 
A can then access fb through the instance field id. 

5) Inline Static Method 
A source can depend on a target through the 

invocation of the target’s static method. To inline 
a static method would imply moving the method 
from the target to the source and creating a 
delegate in the target’s method to the moved 
method in the source [29]. Essentially, the 
dependency is reversed. This is similar to a 
situation where Move method [25] is applied to 
break a dependency, however, this does not 
involve reversing the dependency. Moving 
method body can create some recursive actions 
and higher reachability size. We therefore propose 
an Extract Interface with Registry of singletons 
refactoring when a target class has incoming 
dependencies that is more than one and static 
method inline when it has only one. 
________________________________________ 
public class A extends B implements C { 

private D d;  
private static E e = new E(); 
public F meth(G g, D d) throws H { 

this.d = d; 
P.log(Q.Status, R.ID);   /*Assume ID is a final variable in class 
R*/ 
return (F) g.typeOfF(); 

} 
}________________________________________ 

Listing 5.  Example of dependency types 

E. Dependency types and refactoring 
strategy 

Dependency can be formed in different ways 
between a source class and a target class [30]. We 
illustrate this with the following example code 
snippet in Listing 5. In this snippet, class A 
depends on classes B, C, D, E, F, G, H, P, Q, and 
R. Table 1 lists the default strategy for the 
dependency types. 
TABLE I.  DEPENDENCY TYPES AND DEFAULT REFACTORING STRATEGY 

Dependency type Example Default Refactoring Strategy 

Variable declaration A uses D, 
E 

Extract interface 

Variable declaration 
with initialization 

A uses E Extract interface + Registry of 
prototype 

Method return type A uses F Extract interface 

Method parameter type A uses G, 
D 

Extract interface 

Method exception type A uses H Extract interface (abstract class) 

Static method invocation A uses P Inline Method or Extract 
interface + Registry of singleton 

Static field invocation A uses Q Encapsulate + Extract interface + 
Registry 

Static final field 
invocation 

A uses R Copy field or Move field to 
Interface (Extract interface) 

Constructor invocation A uses E Extract interface + Registry of 
prototype 

Super type A uses B None 

Interface type A uses C None 

Others (e.g. casting) A uses F Extract interface 

F. Related cycle-breaking studies 
and tools 

Graph transformation has been extensively 
applied in software engineering and notably in 
code-level refactoring activities [31, 32]. The type 
of graph manipulation we have employed in this 
study does not demand detailed graph formalism 
since we are only interested in removing or adding 
single edges in a graph. We therefore limit our 
discussion to other studies devoted in this manner 
to cycle-breaking refactoring. 

Dietrich and McCartin [30] identified high 
impact edges from the program dependency graph 
by assigning weights to edges based on the 
number of anti-patterns they are involved with. 
Their results on the graph model demonstrated 
that many anti-patterns (e.g., dependency cycles at 
the package level) could be removed by removing 
such high impact edges. [29] implemented an 
automated refactoring on these edges using 
various refactoring techniques. Their results show 
that certain edges are removable, while removing 
certain edges would introduce errors.  

 Laval and Ducasse [33] implemented an 
enriched dependency structural matrix (eDSM) to 
detect dependency cycles between packages. They 
use contextual information, e.g. types of 
relationships between the coupled components 
and the proportion of referencing classes in the 
client package. The tool reports actions to be 
performed to remove detected dependency cycles.  
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Several other tools have been proposed to 
detect cycles. For instance, JDepend 50 , 
NDepend 51 , JooJ [19], Dependometer 52 , 
Classycle53, STAN54, Jepends [34], PASTA [35], 
Lattix 55 , and Structure101 56 . Of the 
aforementioned approaches and tools, only the 
work of [33] has close similarity to ours in the 
sense that they used context data to propose 
refactoring actions. However, it differs in focus 
because we have considered breaking dependency 
cycles at the class granularity level. 

3. Implementation 
We have built a CB-DSS in Java (publicly 

accessible at: https://bitbucket.org/ootos/j-
guirestructurer and used the Jepends-bcel by 
Melton 57  to collect dependency data. The 
dependency data is collected from the bytecode of 
Java classes using the Apache Byte Code 
Engineering Library58 (BCEL). We are interested 
in top-level classes (compilation units), since they 
represent maintenance units. Therefore, the 
dependencies of nested classes are aggregated to 
their top-level classes. An MSc student has 
integrated the CB-DSS into a Visual Studio plugin 
(Accessible at https://bitbucket.org/ootos/c-
sharprestructurer). The simple model diagram for 
the CB-DSS is shown in Fig 3. There are seven 
major components of the model: (1) decision 
support table 1 - DSTable1,  (2) decision support 
table 2 – DSTable2,  (3) the dependency types – 
UsageType, (4) refactoring strategy - Strategy, 
and (5) RefactoringSimulation, (6) System 
Restructuring, and (7) Cycle breaking. 

A. DSTable 1 
This table implements the IRCRSS metric for 

each class in the application. IRCRSS value 
ranges between 0 and 1. The table is used as a 
look up table to decide the choice of the best class 
as candidate for refactoring. The selection 
mechanism from DSTable-1 is driven by IRCRSS, 
high incoming dependencies (FAN-IN), high 

                                                
50 http://clarkware.com/software/JDepend.html 
51 http://www.ndepend.com 
52 http://source.valtech.com/display/dpm/Dependometer 
53 http://classycle.sourceforge.net 
54 http://stan4j.com 
55 http://lattix.com 
56 http://structure101.com/products 
57 https://www.cs.auckland.ac.nz/~hayden/software.htm 
58 http://commons.apache.org/proper/commons-bcel/ 

CRSS and high SCC values. The list of candidates 
is selected using the following rules: 

1. The candidate must fall within the specified 
topKs positions for all the three measures 
(FAN-IN, CRSS, SCC) 

2. The IRCRSS value of the candidate must be 
equal or greater than the specified value by the 
user 

3. The candidate must not be an interface or an 
abstract class (since these types cannot be 
instantiated) 

Next, the selected topK classes are sorted by using 
four attributes FAN-IN, CRSS, SCC and STATIC. 
The STATIC variable implies that all the class 
members are static. In some applications, static 
members are usually widely referenced and are 
potential hub for large SCCs. The sorting is 
implemented by selecting the principal attribute. 
The algorithm then sorts on the principal attribute 
and two other attributes. The possible combination 
of sorting is as follows (the bold and underlined 
attribute denotes the principal sort attribute): 

1) STATIC, FAN-IN, CRSS 
2) CRSS, FAN-IN, SCC 
3) FAN-IN, CRSS, SCC 
4) SCC, FAN-IN, CRSS 

We have decided on these sorting combinations 
based on the results of several experiments. The 
sorting combination orders produced the best 
refactoring results on different systems. 

 
Fig. 3.  Class model for the CB-DSS 

B. DSTable 2 
This table stores context data and computed 

refactoring decisions for each edge (source → 
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target). The DSTable-2 is computed by using the 
UsageType and the default refactoring Strategy as 
described in Table I. The DSTable-2 serves as a 
look up directory to select the refactoring decision 
for each suggested edge during refactoring. 

C. System restructuring 
The approach is to begin every refactoring with 

System restructuring with fitness function as 
CRSS and SCC. This refactoring focuses on 
decoupling the entire software structure and it 
uses the DSTable-1 to determine the classes that 
are candidates for refactoring. A pre-selected 
number (N) of refactoring iteration and a 
combination of tuning and sorting parameters are 
presented to the RefactoringSimulation module. 
For each refactoring, the system selects the best 
class as candidate from DSTable-1 and then 
simulates the refactoring of all classes that depend 
on the candidate. The refactoring strategy to break 
each edge (class → candidate) is selected from 
DSTable-2. At the end of each refactoring, the 
fitness values are computed and a list of 
refactoring actions are generated (e.g. see Fig 4). 
The general refactoring is performed as follows: 

a Create the interface (or abstract class) for the 
selected candidate (Class) 

b Create an edge between the candidate and its 
interface 

c Move all published dependencies of the 
candidate to its newly created interface 

d Create the registry class and the respective 
edges from the candidate and the main class 

e Update all relevant relationships and edges 
f Determine the refactoring strategy 
g Compute the SCC and fitness values 
h Update decision tables 

D. Cycle-breaking refactoring 
This is used to further resolve SCCs that are 

not refactored during the “System restructuring”. 
It is driven by selecting the SCC of interest and 
then activating a “greedy cycle removal” 
algorithm [18] to determine the minimum 
feedback edge set (mFES). The mFES is passed to 
the RefactoringSimulation module. The 
refactoring strategies for each edge are looked up 
from DSTable-2. The refactoring for this edge is 

then simulated based on the returned refactoring 
strategy. 

4. Validation 
We report on four case studies to evaluate the 

accuracy of the CB-DSS. In the first case study, 
we performed refactoring on Azurues 2.3.0.2 
using ten candidates. Next, we refactored JStock 
using five candidates. The refactoring for the 
above two case studies were performed by one of 
the authors.  The third case study is VidCoder, an 
open source application, developed in C#. An 
MSc student has performed the refactoring of six 
candidates for this case study. The fourth case 
study (commApp) is an industrial Smart Grid 
application developed with C#. The company’s 
software maintenance engineer has performed the 
actual refactoring of three candidates. For space 
reason, the properties of the selected applications 
can be found here: 
http://www.idi.ntnu.no/~tosindo/resources/system
s.pdf  
We summarized the results of the validations, 
performed on the different case studies in Table II. 
As shown in the Table, the fitness values, mean 
(CRSS), and max (SCC) for manual refactoring 
are close to the fitness values of the CB-DSS. For 
both Azureus and JStock, the results of the CB-
DSS and the actual refactoring are nearly the 
same. For both VidCoder and commApp, the 
results of manual refactoring are modest and are 
reasonably comparable to the result of the CB-
DSS.  In the case of VidCoder, the differences 
could be due to the fact that 5 edges out of the 9 
proposed were not refactored. The reason is that 
the developer used the lightweight injection 
container (Unity) in Visual Studio instead of 
defining a custom registry class. This is a positive 
contribution as the developers have control during 
the refactoring activities. For commApp, some of 
the changes made by the maintenance engineer 
involved additional refactoring such as splitting a 
class into two and thereby increasing both the 
number of nodes (classes) and edges 
(relationships). These would affect the fitness 
values.  Overall, the validation’s results show that 
it is possible to use the CB-DSS as a decision 
support tool for planning refactoring activities. 
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Fig. 4.    Example of proposed refactoring actions for manual execution 

 

TABLE II.  RESULTS OF VALIDATION 
 Azureus (N=10)  JStock (N=5)  VidCoder (N=6)  commApp (N=3) 
Fitness BR AR 

(CB-
DSS) 

AR 
(Actual) 

 BR AR 
(CB-
DSS) 

AR 
(Actual) 

 BR AR 
(CB-
DSS) 

AR 
(Actual) 

 BR AR 
(CB-
DSS) 

AR 
(Actual) 

Mean 
(CRSS) 703.67 295.46 295.66  155.01 108.57 108.57  17.22 10.87 11.32  115.06 115.88 115.08 

Std.Dev 
(CRSS) 684.88 525.28 525.53  133.47 128.84 128.84  37.63 21.07 24.91  285.82 286.36 284.61 

Mean 
(SCC) 22.82 7.36 7.30  41.0 21.0 21.0  6 4 3.86  10.03 9.63 9.57 

Max (SCC) 804 253 253  153 110 110  14 8 8  115 111 109 

N = number of selected classes; BR = Before Refactoring; AR = After Refactoring

5. Evaluation and Discussion 
We have used 15 software applications to 

answer the research questions. These are: 
commApp, Azureus (Vuze), Jstock, VidCoder, 
Hibernate, Openproj, Jxplorer, Megamek, Weka, 
SomToolBox, GanttProject, Squirrel-sql, 
OpenRocket, ermaster, and Logisim. Apart from 
commApp (industrial application) and VidCoder 
developed in C#, the criteria for selecting the 
remaining applications on SourceForge is that the 
application must be driven through a user 
interface, it must be popular (four to five stars 
rating), must have at least 500 downloads per 
week and must be developed in Java. For 
properties of selected applications, see the link in 
Section IV. 

A. RQ1: Is the system restructuring 
better when IRCRSS exists? 

Case Study: Azureus 2.3.0.2 

Our goal here is to find out whether using the 
CB-DSS with the IRCRSS metric would improve 
the result when compared to the manually selected 
candidates used for refactoring in [20]. We found 
that Azureus 2.3.0.2 fits the version analyzed in 
[20] because it has approximately the same value 
of CRSS (just a difference of 4 which could be 
due to exclusion or inclusion of test classes). Both 
the versions before and after this version have a 
wide CRSS range gap to the reported value.  

 

1) Approach:  
We have simulated the refactoring with the 

manually selected candidates by [20]. In this 
simulation, we turned off the adaptive selection 
algorithm and allow the CB-DSS to iterate 
through the selected candidates as presented by 
the authors. In the second simulation, we turned 
on the adaptive selection algorithm and allow the 
CB-DSS to automatically select candidates for 
refactoring. This is determined by a combination 
of tuning and sorting parameters. We performed 
different simulations by varying the percentiles 
(topKs) of the sorting parameters (SCC, CRSS 
and FAN-IN) and the value of the IRCRSS metric. 

2) Results and discussion 
Table III lists the candidates selected by our 

approach vs. the ones reported in [20]. The last 
candidate 
(org.gudy.azureus2.pluginsimpl.local.torrent.Torr
entImpl) is a multi-ton. Fig. 5 shows that at the 7th 
refactoring, the selection made by the CB-DSS 
has better results than the 10th refactoring with the 
manual mode. It indicates that using a CB-DSS 
with IRCRSS metric can significantly improve the 
refactoring results. The result from Table IV 
shows there is more reduction in the CRSS and 
SCC values when IRCRSS is used and optimal 
values for CRSS, FANIN, and SCC are chosen. 
As listed in Table IV, the max SCC after 
refactoring drops from 804 to 253 while for the 
selection by [20], it drops to 333. Furthermore, 
The reported number from [20] for frequency of 
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classes with CRSS of 1000 or more is 400, which 
is modestly comparable to the simulated number 
of 427. Using automatic selection produced a 
better result of 348 classes (18.5% reduction). 

In all cases, the results from using the selection 
parameters from the CB-DSS produced better 
results but notably, with the IRCRSS metric.  

We performed a statistical test using Wilcoxon 
rank sum test [36] to determine whether the 
fitness values (CRSS) by using the IRCRSS 
metric is statistically and significantly lower than 
the fitness values without(i.e. H0 = The fitness of 
refactoring with IRCRSS is significantly higher 
than the fitness without IRCRSS). 

TABLE III.  CB-DSS VS MANUAL CANDIDATES SELECTION 
Order Candidates by [20] Candidates (CB-DSS) 

1 org.gudy.azureus2.core3.logging.LGLogger org.gudy.azureus2.core3.util.Debug 

2 org.gudy.azureus2.core3.config.COConfigurationManager org.gudy.azureus2.core3.config.COConfigurationManager 

3 org.gudy.azureus2.core3.util.Debug org.gudy.azureus2.core3.internat.MessageText 

4 org.gudy.azureus2.core3.util.FileUtil org.gudy.azureus2.ui.swt.Messages 

5 org.gudy.azureus2.platform.PlatformManager org.gudy.azureus2.core3.util.FileUtil 

6 org.gudy.azureus2.core3.internat.MessageText org.gudy.azureus2.ui.swt.Utils 

7 org.gudy.azureus2.core3.util.TorrentUtils org.gudy.azureus2.core3.util.TorrentUtils 

8 org.gudy.azureus2.core3.internat.LocaleUtil org.gudy.azureus2.ui.swt.components.shell.ShellFactory 

9 org.gudy.azureus2.core3.util.DisplayFormatters org.gudy.azureus2.ui.swt.mainwindow.Colors 

10 org.gudy.azureus2.core3.util.DirectByteBufferPool org.gudy.azureus2.pluginsimpl.local.torrent.TorrentImpl 

 

TABLE IV.  FITNESS VALUES FOR AZAREUS 2.3.0.2 USING THE CB-DSS 

Fitness Before refactoring After Refactoring (N=10)  p-value (!=0.05) 

Selection by [20]  IRCRSS=False IRCRSS=True  N=15 (IRCRSS=True vs. IRCRSS=False) 

Mean (CRSS) 703.67 341.11 326.51 295.46  0.011 

Std. Dev (CRSS) 684.88 566.55 554.58 525.28   

Max (SCC) 804 333 306 253   

 
Fig. 5.  Simulation steps and corresponding fitness values  

We performed 15 refactoring (see column 6 of 
Table IV). The mean CRSS from both options are 
recorded separately and are then tested for 
significant difference. The result of the test is 
statistically significant at alpha = 0.05 (with p-
value=0.011). We thus reject the null hypothesis 
and conclude that applying the IRCRSS metric 
gives a significantly lower (better) result for this 
application.  

3) Manual refactoring:  
The CB-DSS proposed nine singleton classes 

and one multi-ton class as candidates. We then 
manually refactored the code by using the actions 
reported from the system. The entire refactoring 
was completed in approximately 24 hours and was
done by one of the authors. There are instances 
where an interface already exists for the 
candidate. This case occurs for the non-singleton 
class, TorrentImpl class that implements Torrent 
(an interface). To refactor the proposed edges, 
some new methods must be declared in the old 
interface or in the proposed interface. A standard 
maintenance practice is to introduce a new 
interface that extends Torrent and add those 
methods in the new interface. This is a kind of 
interface upgrade. By doing so, we maintain a 
downward compatibility of the old interface 
(Torrent) and do not break the code. Otherwise, 
declaring new methods in the interface, would 
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force other children of Torrent to implement 
them.  

The new Java SDK59 version 8, however makes 
it possible to declare such new methods with 
empty or default implementations in Torrent. 
This produces the same results, as the old classes 
are not forced to implement the new methods. 
This is significant because it simplifies 
maintenance and refactoring activities. Rather 
than defining a new interface because of 
additional functions, it is now possible to define 
new contracts as default methods and without the 
burden of forceful implementation of new 
methods by all children. Arguably, this feature can 
also be a shortfall. First, it would be hard for 
children to be aware of declared methods in the 
interface because it is not required anymore. 
Second, in terms of maintenance and upgrade, it 
would be hard to keep track of changes 
(extensions, etc.) that have been made as the 
system evolves. 

B. RQ2: Does tuning with IRCRSS 
always improve the system’s 
structure? 

To answer this question, we simulate 
refactoring on the fifteen applications. The results 
in Table V demonstrate that it is possible to take 
advantage of the IRCRSS metric in several 
applications. There are cases such as Logisim, 
JXplorer, Azureus, OpenRocket, and Hibernate, 
where relatively high SCC reductions exist when 
the measurement from IRCRSS metric is applied. 
However, in a few applications (e.g. Megamek, 
VidCoder and Squirrel-sql), there is no difference 
in the results with the IRCRSS metric. In total, 
there are improvements in the fitness values of 12 
out of the 15 applications. We can conclude that 
the IRCRSS metric can improve the code structure 
in the majority of the cases. The metric (IRCRSS) 
provides tangible and useful information to 
clients/services that are being coupled. The 
IRCRSS value is zero or nearly zero when the 
published types of a class are tightly coupled with 
other classes (in most cases, concrete classes and 
not interfaces). This has implications for 
maintenance and testing. A class/service that is 

                                                
59 http://docs.oracle.com/javase/tutorial/java/IandI/defaultmetho

ds.html  

heavily reused and is tightly coupled in its 
published members would be difficult to reuse, 
maintain and test. 

C. RQ3: Can the use of IRCRSS 
metric reduce restructuring and 
refactoring effort? 

During code restructuring, new 
edges/relationships are created and some 
edges/relationships are removed. To answer this 
question, we have categorized the restructuring 
effort by the number of edges (source → target) 
that the CB-DSS proposes for refactoring. In 
addition, we complement it by inspecting the 
reported number of edges created by the system 
after refactoring. We compare the fitness when 
IRCRSS metric is applied to the fitness when it is 
not. As shown in the column “%Reduction-
Refactoring Edges” in Table V, when IRCRSS 
metric is used, the CB-DSS is able to reduce the 
refactoring efforts. In six cases, there are 
significant reductions in the refactoring edges. For 
instance in Logisim and Hibernate; the refactoring 
edges are reduced by 63.2% and 66% respectively 
when IRCRSS metric is used. This is noteworthy 
in the sense that refactoring fewer edges would 
translate to a reduction in refactoring efforts.  

We complement this result by reporting the rate 
of reduction (%Edge Reduction) in the class edges 
created in the applications when IRCRSS is 
applied. As shown in this table, the total number 
of edges after refactoring with IRCRSS reduced 
reasonably in some applications (e.g. Logisim, 
OpenRocket, Hibernate and JStock). In other 
words, fewer relationships are created in the code 
when IRCRSS is applied. This is related to the 
explanation given above (RQ2). When the 
signatures of published methods of a class are 
tightly coupled to other concrete classes, it would 
result in more relationships/edges being created 
during decoupling/restructuring. 
It is positive to have fewer classes and 
relationships/edges during restructuring. The 
fewer the number of edges that exist in an 
application, the better it would be to reason about 
the coupling situation in the application. 

A. Qualitative Evaluation 
We have carried out an interview with the 

software maintenance engineer of our industrial 



P7: A Decision Support System to Refactor Class Cycles 

 212 

partner to determine the usefulness and usability 
of the CB-DSS. We drafted questions that covered 
four areas namely; user experience, compatibility, 
impact and functionalities. For user experience, 
we asked whether the CB-DSS is easy to use, 
whether it is easy to learn quickly, whether the 
system’s functionalities are clear and 
understandable and whether it will be used in the 
future. Under compatibility we asked whether the 
CB-DSS fits well with the work practices. In 
terms of impact, we asked whether the approach is 
useful for refactoring complex structural part of 

the code, whether the approach is able to identify 
good candidates for refactoring and whether the 
actual code structure improved after refactoring. 
Summary of Respondent’s views 

User experience: The respondent views are 
that the tool is easy to use and can be learned 
quickly and individually with a proper help file. It 
does not take time to learn how to use it. The 
functionalities are clear and understandable and  

 

TABLE V.  REFACTORING BY TUNNING WITH AND WITHOUT IRCRSS METRIC 
System Before Refactoring  After Refactoring   

 
IRCRSS=False, N=10  IRCRSS =True, N=10 

  

Mean 
(CRSS) 

Mean 
(SCC) 

Max 
(SCC) 

 Mean 
(CRSS) 

 Mean 
(SCC) 

Max 
(SCC) 

 Mean 
(CRSS) 

Mean 
(SCC) 

Max 
(SCC) 

%Reduction- 
Refactoring 

Edges  

%Edge 
(Reduction) 

Logisim 363.31 16.15 437  341.92 14.22 406  245.89 9.6 272 63.2 40.1 

JXplorer 48.69 11 35  51.14 11.4 37  43.24 9.2 29 18.45 4.0 

Azureus 703.67 22.82 804  326.51 8.51 306  295.46 7.37 253 3.12 4.1 

OpenRocket 206.35 10.64 213  203.64 10.03 190  200.96 9.65 165 36.2 32.7 

Hibernate 756.87 19.64 1442  756.9 19.62 1439  701.35 18.39 1254 66.0 57.7 

Somtoolbox 252.1 21.23 229  206.26 14.71 185  201.85 15.06 178 48.1 2.9 

ermaster 577.78 580 580  424.63 89.8 411  405.3 85.2 388 -1.7 -3.4 

JStock 154.64 41 153  108.7 21 110  106.26 20.5 107 22.1 13.9 

commApp 115.06 10.03 115  112.78 8.48 83  112.07 8.45 82 5.2 4.6 

GanttProject 171.82 12.85 247  169.56 12.28 210  160.76 12.24 208 -10.9 5.2 

Weka 255.31 11.76 232  54.85 3.63 13  54.76 3.61 12 1.63 0.4 

Openproj 274.49 12.57 269  247.71 11.62 177  247.32 11.61 176 1.53 0.9 

Megamek 1450.96 246.5 1464  1146.66 163.88 1205  1146.66 163.88 1205 0.0 0.0 

VidCoder 17.22 6 14  5.60 2.17 3  5.51 2.2 3 5.2 5.1 

Squirrel-sql 402.53 29.14 457  359.06 22.83 366  359.06 22.83 366 0.3 0.4 

 

can motivate maintenance practices in the 
company. The only challenging part is how to 
choose the parameters for the algorithm.  

Compatibility: The tool will fit maintenance 
work practices and using the tool regularly can 
help developers to have a picture of the code’s 
structure and keep an eye on maintainability. 

Impact: Respondent states that at present, 
large parts of their code are not that maintainable, 
looking at the code you can spot some areas that 
should be changed (e.g. excessively large and 
coupled classes), some bad coding practices and 
so on. The tool will stimulate actions to correct 
some of these problems. In addition, code reuse 
would be easier.  
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Functionalities: The approach is able to 
identify good targets for refactoring and the code 
structure improved after refactoring. The 
respondent prefers a simulation tool rather than an 
automated tool for this large scale restructuring. 
This agrees with the feedback we got from three 
other developers in the same company during our 
presentation sessions. 

6. Threats and Limitations 
The CB-DSS is implemented on top of the 

Jepend tool that uses BCEL to collect class 
dependency data. Java’s specification uses type 
erasure, therefore, information about type 
parameters of generic types are not available in 
the Java bytecode. In addition, we cannot identify 
dependencies created by the use of reflection. 
This is a common limitation of static analysis. 
The accuracy of the CB-DSS depends on the 
accuracy of the parser tool that generate the 
dependency data. 

The refactoring result by CB-DSS is 
sometimes an approximation due to the use of a 
new and generic interface. A candidate may have 
an existing interface that only needs to be 
upgraded during refactoring. The CB-DSS does 
not take this into consideration during its 
computation and simulation. 

7. Conclusion 
We have implemented a new metric, IRCRSS 

and a cycle breaking decision support system 
(CB-DSS) to resolve class dependency cycles and 
improve the overall code structure. The evaluation 
of the CB-DSS proved that it is useful and 
implementable in many cases in real life systems. 

Our contributions in this work are therefore as 
follows: 

1. Significant improvement on the strategy 
employed in [20] by introducing a new metric 
IRCRSS, to identify CRSS reduction between 
an interface and its implementation. In this way, 
it is possible to improve the structural quality of 
the code and reduce the refactoring efforts  

2. A cycle breaking system that proposes 
executable refactoring actions. These actions are 
fine-tuned for each proposed edge (source → 
target), with details such as the strategy and 
action to break the edge, and the actual code 

location (method or field) where the strategy 
should be applied in the source class 

3. We demonstrate the validity of the CB-
DSS by the manual refactoring on industrial and 
open source systems. 
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Appendix B contains three other papers produced during this PhD research. P8 is 
contained in the discussion part of the study. P9 and P10 contains discussions that are 
related to Smart Grid systems  
 
P8. Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2012. Can Reused Components 

Provide Lead to Future Defective Components in Smart Grid Applications?, 
Parallel and Distributed Computing and Systems : Software Engineering and 
Applications (PDCS 2012). ACTA Press 

P9. Oyetoyan, T.D., Conradi, R., Sand, K., 2012. Initial survey of Smart Grid 
activities in the Norwegian energy sector - use cases, industrial challenges and 
implications for research, ICSE 2012 International Workshop on Software 
Engineering for the Smart Grid (SE4SG), Zurich, Switzerland, pp. 34-37. 

P10. Oyetoyan, T.D., Conradi, R., Cruzes, D.S., 2011. Open Source Software for the 
Smartgrid: Challenges for Software Safety and Evolution. NIK: Norsk 
Informatikkonferanse 2011, Tromsø¸, Norway, pp. 239-243 
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Components In Smart Grid Applications? 

Published: In Proc. Parallel and Distributed Computing and Systems: Software Engineering and 
Applications (PDCS 2012). ACTA Press 
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ABSTRACT 
Smart Grid systems are kind of System of Systems with distributed and highly heterogeneous software 
connected to provide various services. Early knowledge of defect prone parts is useful for improving the 
safety and maintenance of these kinds of systems. We report the results of an empirical study of using 
reused components to predict future defective components in a type of open source Smart Grid application 
(transmission and operation domain of Smart Grid). Our results showed that reused components of this 
Smart Grid application are strong predictors of future defective components. The model’s best predictors 
gave an average recall of 0.92 (average precision of 0.406) when tested across three future releases. Which 
implied that 92% of predicted defective components in the next release turned out to be defective. This 
model can be employed to tailor quality assurance (QA) efforts in a way that blind spots are avoided in such 
critical system and QA effectiveness significantly improved. 
KEY WORDS 
Component; Smart Grid; prediction model; empirical study; Component defect-proneness; Import types; System of 
Systems. 
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P9: Initial Survey of Smartgrid Activities in the Norwegian Energy 
Sector: Use Cases, Industrial Challenges and Implications for 

Research 
(Position paper) 

Published: ICSE 2012 International Workshop on Software Engineering for the Smart Grid (SE4SG), 
Zurich, Switzerland, pp. 34-37 
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Abstract—Motivation: Understanding user requirements and technological challenges for smartgrid is 
important to deliver competitive and visionary products and services, and thus to shape the direction of 
research and development. Since smartgrid is still in the formation stage with many stakeholders, we should 
quickly develop consensual and pragmatic international standards and strategies. Goals: To assess the 
feasibility of proposed smartgrid requirements, formulated as 16 generic use-cases by an EU working group, 
and to identify attitudes, products, services and future technologies. Subsequently, we want to provide 
information on identified gaps between technologies, functionalities and stakeholders` views, and future 
direction. Approach: We have designed and carried out an initial industrial survey in Norway on how 
generic use-cases for smartgrid activities are interpreted by 6 representative stakeholders in the Norwegian 
energy sector. To achieve this goal, we designed a survey with metrics built on and around these use-cases. 
Results: The users’ work experience and views on the functionality expressed in the use-cases revealed a 
gap in focus and culture. Also, there was no agreement on what the term “smartgrid” stood for. In addition, 
the relevance of smartgrid functionalities is shown to vary over time and with different stakeholders. 
Discussion: The pre-study results indicated that there is potential for using information from future data 
collected from over 270 actors to bridge gaps and focus on smartgrid research and development. 

Keywords: smartgrid usage; stakeholders, requirements; use- case; pre-study; survey; Norwegian energy 
industry. 
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Published: Norsk Informatikkonferanse 2011, Tromsø¸, Norway, pp. 239-243 

 
Tosin Daniel Oyetoyan, Reidar Conradi, Daniela Soares Cruzes 
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Abstract 
The growing Smartgrid behind today’s electricity supply introduces many challenges. One 
aspect is the management of various software that drive these new systems at different domains 
(generation, transmission, distribution and consumption) and nodes of the Smartgrid network. 
Managing such concerted, distributed, evolving and heterogenous System of Systems requires 
a methodical approach to support more standardized processes and products to reach the 
Smartgrid vision. This paper presents a recent research project focusing on assessing the 
adoption of OSS for the Smartgrid by investigating its safety and evolution criteria. 
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