
Doctoral theses at NTNU, 2015:84

Doctoral theses at N
TN

U, 2015:84
Tosin Daniel Oyetoyan

Tosin Daniel Oyetoyan
Dependency Cycles in Software
Systems: Quality
Issues and Opportunities for
Refactoring

ISBN 978-82-326-0824-9 (printed version)
ISBN 978-82-326-0825-6 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

,
M

at
he

m
at

ic
s

an
d

El
ec

tr
ic

al
 E

ng
in

ee
rin

g
De

pa
rt

m
en

t o
f C

om
pu

te
r a

nd
In

fo
rm

at
io

n
Sc

ie
nc

e

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Tosin Daniel Oyetoyan

Dependency Cycles in Software
Systems: Quality
Issues and Opportunities for
Refactoring

Trondheim, April 2015

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-0824-9 (printed version)
ISBN 978-82-326-0825-6 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2015:84

Printed by Skipnes Kommunikasjon as

I	 have	 peace	 following	 Jesus	

 i

Abstract
Society, systems and related businesses are increasingly dependent on software applications,
which are integrated and interoperate with other systems. This dependency has implications for
the dependability of both the systems and the businesses. There have been reported cases over
the years of both systems and business failures due to software defects. However, the work and
effort needed to correct defects is not trivial. This involves changing existing applications,
which may be overly complex in their structure. Software undergoes constant evolution due to
changes in the business environment such as introduction of new technology or new
requirements. It is therefore not surprising that the cost of software maintenance is normally
estimated to be the highest in the overall software budget. As the software evolves, so does its
size and complexity.

One aspect of software complexity is dependency cycles that are formed among software classes
and packages. Many design guidelines advocate to avoid dependency cycles and argue that they
inhibit software quality. Despite this conventional wisdom, empirical evidence shows that
modern software indeed is riddled with this anti-pattern. The question remains that if cyclic
property is known to be complex and is pervasive in software applications, how does it relate to
defects and change in general, and what can be done to improve efforts to mitigate it?

This thesis investigates dependency cycles among software components; an aspect of software
structural complexity, to find how such properties correlate with defect measures and change
rates, and how this knowledge can motivate to refactor and improve these possible defects
hotspots in affected systems. The two main research questions to achieve these objectives are
stated as follows:

RQ1. What is the effect of dependency cycles on external quality measures of software
systems?

RQ2. How to refactor dependency cycle to impact the structural quality and reduce
refactoring efforts?

This work contributes mainly to improvement in software quality (maintainability and
indirectly, reliability) and software metrics. The following are the three major contributions of
this thesis:
C1. Better understanding of how to utilize different defect metrics to improve software quality
C2. Identification of the impact of dependency cycles on software quality

C2-1: Identification of dependency cycles and neighbourhood as defect hotspots in software
systems
C2-2: Better understanding of the change impact of dependency cycles

C3. Tool and metrics to refactor defect- and change-prone hotspots in dependency cycles
C3-1: Added metrics to understand the complexity of components and improve the
refactoring of cyclically dependent components
C3-2: A cycle breaking decision support system to refactor cyclically connected
components

 ii

 iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) for partial fulfilment of the requirements for the degree of philosophiae doctor.

This doctoral work has been performed at the Department of Computer and Information
Science, NTNU, Trondheim, with Professor Reidar Conradi as the main supervisor and
co-supervised by Dr. Daniela S. Cruzes and Professor Letizia Jaccheri. Dr. Carl-Fredrik
Sørensen was co-supervisor in the last months.

This work is financed under the IME Smart Grid initiative 2011 – 2015. It also included
a 25% teaching duty at the department of Computer and Information Science.

 iv

 v

Acknowledgements
This doctoral study was made possible by many people and I would like to express my
profound gratitude to them. Thanks to my main supervisor Professor Reidar Conradi for
his advice and support and for the freedom he gave me to pursue the research within my
area of interest. My sincere thanks to Dr. Daniela Cruzes for providing extraordinary
guidance and support from the beginning to the end of my doctoral study. My thanks to
Professor Letizia Jaccheri for stepping in at the right time to support my doctoral study.
My warm appreciation to Dr. Carl-Fredrik Sørensen who came in the last phase and
provided immense and necessary support to finish this thesis. Thanks to Associate
Professor Jens Dietrich for the warm reception and supervision during my three-month
stay at Massey University, New Zealand.

Many thanks to my parents and parents-in-law who have always called and prayed for
the success of this work. My appreciation to my wife, Oludamilola for her support
through this journey. To my sons, IfeOluwa and Eni-IbukunOluwa, I say thank you for
being so understandingly and awesomely supportive.

 vi

 vii

Table of Contents
ABSTRACT .. I
PREFACE .. III
ACKNOWLEDGEMENTS ... V
LIST OF FIGURES .. IX
LIST OF TABLES .. IX
ABBREVIATIONS ... XI
1 INTRODUCTION ... 1

1.1 PROBLEM OUTLINE .. 1
1.2 RESEARCH CONTEXT ... 3
1.3 RESEARCH QUESTIONS AND DESIGN ... 4
1.4 PAPERS ... 6
1.5 CONTRIBUTIONS ... 9
1.6 THESIS STRUCTURE .. 12

2 STATE-OF-THE-ART ... 13
2.1 SOFTWARE ENGINEERING: DEFINITION AND CHALLENGES .. 13
2.2 SOFTWARE QUALITY .. 14
2.3 SOFTWARE TESTING ... 15
2.4 OBJECT-ORIENTED METRICS ... 18
2.5 SOFTWARE EVOLUTION AND MAINTENANCE .. 18
2.6 SOFTWARE PATTERNS AND ANTI-PATTERNS ... 20
2.7 REFACTORING .. 25
2.8 SUMMARY OF RESEARCH CHALLENGES .. 26

3 RESEARCH CONTEXT AND DESIGN .. 29
3.1 RESEARCH FOCUS .. 29
3.2 SUMMARY OF SOFTWARE SYSTEMS .. 32
3.3 METRICS AND MEASUREMENT .. 33
3.4 DATA COLLECTION FOR EMPIRICAL STUDIES .. 36
3.5 RESEARCH METHODS IN SOFTWARE ENGINEERING .. 36
3.6 RESEARCH DESIGN ... 38
3.7 SCOPE, CONCEPTS AND LIMITATIONS .. 42

4 RESULTS ... 45
4.1 EMPIRICAL INVESTIGATION OF DIFFERENT DEFECT METRICS TO CLASSIFY CRITICAL

COMPONENTS .. 45
4.2 INVESTIGATION OF DEFECT AND CHANGE PRONENESS OF CYCLICALLY DEPENDENT

COMPONENTS .. 48
4.3 INVESTIGATING THE EFFECT THAT REFACTORING DEPENDENCY CYCLES HAVE ON

DEFECTS .. 51
4.4 IMPROVING THE STRUCTURAL QUALITY OF CYCLICALLY DEPENDENT COMPONENTS

USING TOOLS AND METRICS ... 52
5 EVALUATION AND DISCUSSION ... 55

5.1 OVERVIEW OF THESIS CONTRIBUTIONS .. 56
5.2 EVALUATION OF THE CONTRIBUTIONS AGAINST THE RESEARCH GOAL 58
5.3 DISCUSSION OF CONTRIBUTIONS RELATED TO THE STATE-OF-THE-ART 59
5.4 RECOMMENDATIONS TO PRACTITIONERS .. 60

 viii

5.5 DISCUSSION OF VALIDITY THREATS .. 62
5.6 REFLECTIONS ON THE RESEARCH CONTEXT ... 63

6 CONCLUSION AND FUTURE WORK .. 65
6.1 OVERALL SUMMARY OF FINDINGS .. 65
6.2 DIRECTIONS FOR FUTURE WORK ... 66

GLOSSARY .. 69
REFERENCES ... 73
APPENDIX A: SELECTED PAPERS ... 85
P1: Comparison Of Different Defect Measures To Identify Defect-Prone Components 87
P2: A Study Of Cyclic Dependencies On Defect Profile Of Software Components 105
P3: Criticality Of Defects In Cyclic Dependent Components ... 141
P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness? 159
P5: Transition And Defect Patterns Of Components In Dependency Cycles During Software
Evolution .. 167
P6: Circular Dependencies And Change-Proneness: An Empirical Study 183
P7: A Decision Support System To Refactor Class Cycles ... 199
APPENDIX B: SECONDARY PAPERS ... 215
P8: Can Reused Components Provide Lead To Future Defective Components In Smart
Grid Applications? ... 217
P9: Initial Survey Of Smartgrid Activities In The Norwegian Energy Sector: Use Cases,
Industrial Challenges And Implications For Research .. 219
P10: Open Source Software For The Smartgrid: Challenges For Software Safety And
Evolution .. 221

 ix

List of Figures
Figure 1	 	 Relationships between structural properties, cognitive complexity, and

external quality attributes ... 2
Figure 2	 	 	 Application structure in relation to internal vs. external dependencies 3	
Figure 3	 	 	 Connection between research questions, publications and contributions 6	
Figure 4	 	 	 State-of-the-art and area of contributions from PhD Study 12	
Figure 5	 	 	 A cycle in Apache Velocity v1.6.2 .. 21	
Figure 6	 	 	 An STK in the JRE v1.7.0 ... 22	
Figure 7	 	 	 Abstraction Without Decoupling ... 23	
Figure 8	 	 	 A case of degenerated/multiple inheritance ... 23	
Figure 9	 	 	 PCT of package cycles ... 24	
Figure 10	 The software development process with relationships to research

contributions .. 30	
Figure 11	 Data collection from different repositories .. 37	
Figure 12	 Components in and near dependency cycles ... 40	
Figure 13	 A simple example of transitions of in-cycle components between

releases ... 41	
Figure 14	 % of DPC with critical defects identified at the top k% of the class-files

DPC over six releases .. 47	
Figure 15	 Class Model for the Cycle breaking decision support system 54	
Figure 16	 Overall relationships between the studies and contributions to software

engineering field .. 57	

List of Tables
Table 1	 Research questions vs. contributions and papers .. 11	
Table 2	 Software quality attributes, criteria and measures (ISO/IEC 25010:2011) 16	
Table 3	 Properties of systems used in the thesis .. 33	
Table 4	 Defect metrics ... 34	
Table 5	 Cyclic dependency Metrics ... 35	
Table 6	 Summary of research design ... 39	
Table 7	 Studies and their relation to research questions, methods, and

contributions ... 46	
Table 8	 Connection between contributions, research questions, papers, and

specific software quality attributes ... 58	

 x

 xi

Abbreviations
API Application Programming Interface
AWD Abstraction Without Decoupling
CBO Coupling Between Objects
CB-DSS Cycle Breaking Decision Support System
CCD Cumulative Component Dependency
CMS Configuration Management System
COTS Commercial-Off-The-Shelf
CRSS Class Reachability Set Size
DDC Defect-Dense Component
DIH Degenerated Inheritance
DIT Depth of Inheritance Tree
DPC Defect-Prone Component
DSS Decision Support System
DTS Defect Tracking System
HFC Hard-to-Fix Defective Component
ICT Information Communication and Technology
IRCRSS Interface-CRSS Reduction Rate
LCOM Lack of Cohesion Of Method
LOC Lines Of Code
NOC Number of Children
ODC Orthogonal Defect Classification
OO Object-Oriented
OSS Open Source Software
PCT Package Containment Tree
RFC Response For a Class
RC Research Challenges
RQ Research Questions
SCC Strongly Connected Component
SDC Severe Defective Component
SoS System of Systems
STK Subtype Knowledge
UML Universal Modeling Language
WMC Weighted Methods of a Class

Introduction

 1

1 Introduction

1.1 Problem Outline
Today, virtually all aspects of systems (critical and non-critical) and businesses are
dependent on software programs to execute their functions and operate successfully.
This dependency implies that a failure1 within a software program has the likelihood to
result in a system or business failure. A system or business failure may be the result of a
software fault/defect2. As noted by Lilley (2012), software does not “wear out” after
some period of proper operation as hardware components do. In addition, defects in
software systems may not be apparent over time but when they are exposed, they act
like a hidden bomb (Lilley, 2012). There are numerous evidence of system and business
failures due to software defects (Leo, 2013; Lilley, 2012). Therefore, early knowledge
of probable locations of software defects is useful to improve the dependability of these
systems.
Removing a large number of defects may have a trivial effect on reliability as pointed
out by Adams (Adams, 1984). The study of Adam shows that most of the latent defects
lead to very few failures in practice, while the vast majority of observed failures are
caused by a relatively tiny number of defects. In addition to this observation, both Ebert
et al. (2005) and Boehm and Basili (2001), argue that 60-80% of the correction effort
and 80% of avoidable rework are due to 20% of the defects. This shows that it is not the
number of defects, but rather their severity that matters. A high severity defect usually
points to a fatal error resulting in a system failure, whereas low severity defects mostly
points to some cosmetic issues. Thus, there is a pressing need for more studies both to
identify and remove critical defects in software systems, and to find their probable
locations within the software.

The structural connections among components in a software system have been
demonstrated to relate to defects (Abreu and Melo, 1996). Figure 1 shows that structural
properties in software impact the human cognitive ability, which in turn affects the

1 Failure: The inability of a system or system component to perform a required function within specified limits
2 Defect/Fault: An anomaly in a software code unit or product that can be the cause of one or more failures

Introduction

 2

external quality attributes of a system. Conversely, quality attributes, when improved
can reduce structural complexities and other software properties. Many of the current
software systems are overly complex and indeed highly interconnected. The higher the
complexity of a system, the more difficult it is to maintain, and the higher is the risk of
accidental and unexpected failures (Fenton and Pfleeger, 1997). One area of software
complexity is dependency cycles that are formed by direct or indirect decisions during
software development and evolution. Dependency cycles among components are
notorious for extremely increasing the coupling complexity among interconnected
components (Briand et al., 1998; Briand et al., 2001b).

Figure 1 Relationships between structural properties, cognitive complexity,

and external quality attributes (Genero et al., 2007)

There are numerous claims that cycles inhibit external software quality attributes such
as extendability, understandability, testability, reusability, buildability, maintainability
and reliability (Fowler, 2001; Lakos, 1996; Parnas, 1979). Evidence shows that they are
widespread in real-life software systems (Briand et al., 2001a; Hanh et al., 2001; Kung
et al., 1996; Melton and Tempero, 2007b; Parnas, 1979). Intuitively, since cycles
increase coupling complexity, it can be expected that it should correlate with defect-
proneness. However, there is no empirical evidence to support this intuition. Thus, it
remains a gap in research open for thorough empirical studies.

In studying dependency cycles of object-oriented systems, it can be argued that
internally (source) declared types within a software application are of particularly
interest. We can exclude externally declared types (libraries) from our discussion for
the following reasons3 (see Figure 2):
1. Internally declared types usually depend on the externally declared types (e.g.

standard APIs) and not vice versa. Thus, it is practically impossible for externally
declared types to form cycles with internal application types.

2. Developers can easily modify types declared in available software source files and
alter the dependencies they have to one another and to externally declared types.
However, it is not feasible (easy nor sensible) to alter the dependencies that
externally declared types (e.g., 3rd party libraries) have to one another. In many
cases, the source code of externally declared types is not available.

3. Externally defined types are often more stable than internally defined types in the
source files of the software applications. By making a decision to reuse externally
declared types, we can assume that these types are thoroughly tested, and in general

3 http://www.cs.auckland.ac.nz/~hayden/research.htm

the structural properties (such as structural complexity and size) of a UML class diagram
have an effect on its cognitive complexity. Cognitive complexity can be defined as the
mental burden placed by the artefact on the people who have to deal with it (e.g.
developers, testers, maintainers). High cognitive complexity will result in the production of
an artifact that has reduced understandability, which will, in turn, produce undesirable
external qualities, such as decreased maintainability.

We proposed a set of eight measures for the structural complexity of UML class
diagrams (Genero et al. 2000, 2005; Genero 2002). The proposed measures were based on
(1) a theoretical analysis of the ontological structure of UML class diagrams and (2) a
review of the literature about the existing measures that can be used to measure the
structural complexity and size of UML class diagrams in the initial phases of an OO
software development life cycle (Li and Henry 1993; Brito e Abreu and Carapuça 1994;
Chidamber and Kemerer 1994; Briand et al. 1997; Marchesi 1998; Bansiya and Davis
2002) The proposed measures are related to the usage of UML relationships, such as
associations, dependencies, aggregations and generalizations.2 In the study reported herein,
we also considered traditional OO measures, such as size measures (see Table 1). In what
follows, the abbreviations for the measure names will be used.

These measures were validated theoretically according to the DISTANCE framework
(Poels and Dedene 2000), in order to guarantee the construct validity of the empirical
studies in which these measures were used.

1.1 Objectives of this Research

The proposal of measures is of no value if their practical use is not shown empirically
(Basili et al. 1999; Kitchenham et al. 1995; Schneidewind 1992; Cantone and Donzelli
2000). Hence, our main motivation was to investigate, through experimentation, whether
the measures we proposed for UML class diagram structural complexity and size could be
good predictors of two class diagram characteristics that are related to maintainability:
understandability and modifiability. If the predictive power of the proposed measures were
to be corroborated by several empirical studies, we really would have identified early
indicators of class diagram understandability and modifiability. These indicators would
allow OO software designers to make better decisions early in the software development
life cycle, thus contributing to the development of better quality OO software. From a

External Quality Attributes - ISO 9126

Structural
Properties

(size and
structural

complexity)

Cognitive
Complexity Understandability

Analysability
Modifiability

affect affect
Functionality Reliability

Usability

PortabilityEfficiency

Maintainability

affects

Fig. 1 Relationship between structural properties, cognitive complexity, and external quality attributes,
based on Briand et al. (1999) and ISO (2001)

2 These measures have been defined in a methodological way following a method proposed by Calero et al.
(2001), which consists of three main tasks: metric definition, theoretical and empirical validation. However,
in this paper, we focus only on empirical validation. Work related to the definition of measures and to
theoretical validation can be found in Genero (2002).

Empir Software Eng (2007) 12:517–549 519

Introduction

 3

of excellent quality. Therefore, it is not very likely that these data types will change
or that the interfaces to the types will change.

The above reasons do not preclude dependency cycles from being formed with reused
libraries in a large software organisation, or where source code to the libraries is
available. An example is the Eclipse project where cycles are formed between the AWT
package and SWING package. These are interesting cases for future study.

The goal of this research is twofold: Firstly, to collect empirical evidence of the effect
of dependency cycles among internally declared types on defects and change rate. This
can consequently motivate for refactoring of defect-prone cyclic components. Secondly,
to realize a cycle-breaking decision support system that could assist developers and
maintenance engineers to refactor dependency cycles and improve the structure of the
software.

Figure 2 Application structure in relation to internal vs. external

dependencies

1.2 Research Context
This PhD research has been done within the context of the Smart Grid Research
Initiative of IME, NTNU. The main goal as defined within the software engineering
project 4 is: Improved Management of Software Evolution for Smart Grid
Applications. The main case study is Smart Grid software systems. This work has been
done in collaboration with Powel AS, a major Smart Grid software vendor in Norway
with more than 80% market share, and with the main office in Trondheim. We have
performed a longitudinal study of one of the company`s Smart Grid software for three
and half years. The study explored the source code, change set, and defect repositories
for the selected application. The study included participation by an MSc student in the
last phase of the thesis to implement a refactoring plugin for the development
environment used by the company. The justification for analysing defects in relation to
the structural design of the software driving the Smart Grid, is very strong. As a system

4 http://www.ntnu.edu/ime/research/smartgrid/project-f

Introduction

 4

of systems (SoS), Smart Grid faces risks and challenges typical to SoS environment
(Creel and Ellison, 2008), such as:
1. Potential for change in the system(s) from any direction: stakeholders, constituent

systems as well as evolving business requirements.
2. Less predictability regarding stakeholders’ needs, technology advances and

component behavior typical in an environment with no central control.
3. Failures with cause or impact (cascade) beyond the individual system boundary.
4. Constraints in terms of new development and evolution because of existing

collection of design choices.
5. Limited knowledge of individual system state and behaviour.
Smart Grids are still in the formation stage, and represents a shift from a relatively
closed grid structure to more complex and highly interconnected systems. It thus faces
practical challenges from the many requirements that are needed to accomplish its
vision. It is therefore an important goal that defects and especially critical defects are
located and reduced, and that the defect locations are improved within the structures of
the software systems. In addition, reducing the complexity of these hot spots to reduce
the effort to make changes would be important in these applications.

1.3 Research Questions and Design
The aims of this work are to (1) investigate how dependency cycles affect non-
functional requirements (quality attributes) of software systems, and (2) propose tools
and methods to refactor dependency cycles. In particular, the thesis investigates the
effect of dependency cycles on maintainability, and indirectly reliability attributes of
software systems. Direct measurement of maintainability and reliability is not the goal
of this thesis. Therefore, in this thesis, defect and change rates have been used as proxy
metrics to quantify the aforementioned quality attributes. Ultimately, this work is aimed
to improve the structural quality and the management of the software applications
during evolution.

1.3.1 Research questions
The main research questions and the sub-questions investigated in this thesis are:

RQ1. What is the effect of dependency cycles on external quality measures of software
systems?
RQ1-1 What is the effect of using different defect metrics to identify critical

software components?
RQ1-2 What is the effect of dependency cycles on software defect?
RQ1-3 What is the effect of refactoring cycles on defect-proneness?
RQ1-4 What is the effect of dependency cycles on change rate?

RQ2. How to refactor dependency cycles to impact the structural quality and reduce
the refactoring efforts?

Introduction

 5

1.3.2 Research methodology
The research methodologies that are mostly relevant in software engineering can be (a)
controlled experiments, (b) case studies, (c) survey, (d) ethnographies, and (e) action
research (Easterbrook et al., 2008). In this study, literature review (pre-study), case
studies, survey, and design science research methodologies have been used. Design
science is a methodology commonly used in information systems research (Peffers et
al., 2007). Case studies are empirical methods aimed to offer in-depth understanding
about how and why a certain phenomenon occurs. It can use both quantitative and
qualitative methods. Whereas, design science is aimed at creating artefacts that could
change existing situations to a more preferred ones (Hevner et al., 2004). Design
science research should address unsolved problems in a unique and innovative way, or
an already solved problem in a more effective or efficient way to distinguish them from
routine design, (Hevner et al., 2004). Design science research methodology (DSRM) is
made up of six activities (Peffers et al., 2007), they are: problem identification and
motivation, defining the objectives of a solution, design and development,
demonstration, evaluation, and communication.

Studies 1, 2 and 3 in this research were empirical in nature (see Figure 3). Study 1 used
case study and survey, while studies 2 and 3 used literature review and several case
studies to understand the relationships between (1) dependency cycles and defects, and
(2) dependency cycles and change frequency. The outcome of the previous studies
motivated for refactoring of cyclically connected components. Thus, in Study 4, a cycle-
breaking decision support system was implemented by using design science research
methodology.
In relation to the research goals and research questions, the research methods used in
this thesis are discussed below:
RQ1: Case studies (Quantitative and Qualitative methods) are used to answer the
research question. Firstly, to investigate how several defect measures can be used to
identify critical components in software systems. Secondly, to investigate the
relationships between dependency cycles and defects, and dependency cycles and
change frequency

RQ2: This RQ is addressed by using design science methodology in the construction of
a cycle-breaking decision support system using an improved metric to refactor
dependency cycles. We then used a case study approach and interview for evaluation.
The details of the research design are depicted in Figure 3. It shows the connections
between the research questions, the methodology, and the contributions. There are
challenges particularly when conducting an empirical study with industrial companies.
Some of these are:
1) Unmanageable challenges and scope arising from the challenges of the Smart Grid

companies.
2) Smart Grid is not yet mature; hence, it could be difficult to obtain sufficient

empirical data necessary for the study
3) Lack of effort on the part of industrial partners.

Introduction

 6

Figure 3 Connection between research questions, publications and

contributions

The above risks have been minimized because of the good collaboration with Powel
AS. The company has also provided all support needed at the different stages of the
research work. In addition, there is a regular feedback of the research findings to the
company, which have triggered further studies, and an implementation of approaches
and tool to improve the system’s structures.

1.4 Papers
P1 Oyetoyan, T.D., Conradi, R., Cruzes, D.S., 2013. A Comparison of Different Defect

Measures to Identify Defect-Prone Components, Joint Conference of the 23rd
International Workshop on Software Measurement and the 2013 8th International
Conference on Software Process and Product Measurement (IWSM-MENSURA),
2013, Ankara, Turkey. pp. 181-190

The main goal of this paper was to evaluate the usefulness of several defect measures
such as number of defects, defect density, defect correction effort, and severity of
defects, to define defect-prone components. The study aims to find out whether there
are significant variations between different defect measures in identifying defect-prone
components and architectural hotspots. Results demonstrated that employing several
defect metrics is an important and useful approach to model construction, testing
activities, and for performing defect analysis of software components. This publication
contributes to RQ1-1

Own contribution: I was the leading author in this study. I performed the data
collection, design and implementation of the experiment, and wrote the paper. The two
co-authors reviewed the paper.

Introduction

 7

P2 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013. A study of cyclic dependencies
on defect profile of software components. Journal of Systems and Software 86
(12), pp. 3162-3182.

This paper explores the relationships between cyclic dependent components and defects.
By testing four different hypotheses on six non-trivial systems we established that:

1) Components in and near cycles have higher likelihood of defect-proneness than those
not in cyclic relationships.

2) The higher number of defective components is concentrated in components in and
near cycles.

3) Defective components in and near cycles account for the clear majority of defects in
the systems investigated.

4) The defect density of components in and near cycles is sometimes higher than those
in non-cyclic relationships.

This paper contributes significantly to addressing RQ1-2.
Own contribution: I was the leading author in this study. I performed the data
collection, design and implementation of the experiment and wrote the paper. The
remaining two authors reviewed the paper.

P3 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013. Criticality of Defects in Cyclic

Dependent Components, 13th IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM), Eindhoven, Netherlands, pp. 21-30

This paper investigates the criticality of defects in cyclic dependent components.
Removing a large number of defects may have trivial effect on system reliability. The
most number of latent defects lead to very rare failures in practice, while the vast
majority of observed failures are caused by a relatively small number of defects. This
shows that it is not the number of defects, rather their severity that matters. Thus, we are
compelled to find out if this majority of defects and defect-prone components in cyclic-
related components are also the majority in both critical defects and severe defective
components. In the two applications that are empirically investigated, results
demonstrated that components in and near cycles account for almost all the critical
defects. This publication addresses RQ1-2.

Own contribution: I was the leading author in this study. I performed the data
collection, design and implementation of the experiment, and wrote the paper. The two
co-authors reviewed the paper.

P4 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013. Can Refactoring Cyclic
Dependent Components Reduce Defect-Proneness?, 29th IEEE International
Conference on Software Maintenance (ICSM), 2013 pp. 420-423

The results from P2 and P3 indicate that components with cyclic relationships are
responsible for the largest number and severity of defects and defect-prone components.
Therefore, the goal of this paper is to investigate the variables within cyclic dependency

Introduction

 8

graphs that correlate with number of defect-prone components. By using network and
statistical analysis, the results demonstrate that adding new components or creating new
dependency relationships correspond strongly to an increase in the number of defect
prone components. We can therefore hypothesize that refactoring dependency cycle can
reduce the defect-proneness of components. This publication contributes to RQ1-3.

Own contribution: I was the leading author in this study. I performed the data
collection, design and implementation of the experiment, and wrote the paper. The two
co-authors reviewed the paper.

P5 Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2014. Transition and Defect Patterns
of Components in Dependency Cycles During Software Evolution, IEEE
Conference on Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week, Antwerp, Belgium, pp. 283-
292

This study investigates the defect-proneness patterns of cyclically connected
components vs. non- cyclic ones when they transition across software releases. By using
empirical studies on many applications and releases, it is established that cyclically
connected components remain in defective states during evolution more than non-cyclic
components. In addition, the class reachability set size (CRSS) metric is found to
increase more among cyclically connected components that turn defective in future
releases. We conclude that (1) refactoring cyclically connected components may yield
benefits in terms of reduction in defect-proneness in future releases (2) such refactoring
should focus on minimizing the class reachability set size (CRSS) metric. This
publication contributes to RQ1-3
Own contribution: I was the leading author in this study. I performed the data
collection, design and implementation of the experiment, and wrote the paper. The two
co-authors reviewed the paper.

P6 Oyetoyan Tosin. D, Dietrich Jens, Falleri Jean-Remy and Jezek Kamil, 2015,

Circular Dependencies and Change-Proneness: An Empirical Study, 22nd IEEE
International Conference on Software Analysis, Evolution, and Reengineering,
École Polytechnique de Montréal, Québec, Canada, pp. 238-247

Recent studies have proposed new heuristics and approaches to distinguish between
“bad” and “harmless” cycles. In this study, we have investigated (1) whether cycles are
generally change-prone more than non-cycles, (2) whether cycles that have high
diameters within their package containment tree (PCT-diameter) are more change
prone, and (3) whether cycles that contain subtype knowledge (STK) in their structure
are more change-prone. We found that (1) dependency cycles have big change impact
on their direct in-neighbours, (2) neither the PCT-diameter nor the STK properties can
identify “harmless” or “critical” cycles, and (3) certain design patterns do contain cycles
(e.g. Visitor pattern) and may be “harmless” in terms of their change-proneness. This
paper contributes to RQ1-4

Introduction

 9

Own contribution: I was the leading author in this study and contributed about 60%. I
wrote the code for the experiment, collected the data and performed the experiment. I
also wrote about 40% of the paper.

P7 Oyetoyan, T.D., Cruzes, D., Thurmann-Nielsen, C., 2015, A Decision Support

System to Refactor Class Cycles. Accepted at the 31st International Conference on
Software Maintenance and Evolution ICSME, Bremen, Germany

In this study, we have proposed and developed a cycle breaking decision support system
(CBDSS) that implements existing design approaches in combination with the class
edge contextual data to refactor class dependency cycles. Furthermore, we have
implemented a new metric called IRCRSS that identifies the reduction rate of class
reachability set size (CRSS) from a class interface to improve the overall refactoring
efforts. The results of the evaluations on multiple systems show that (1) the IRCRSS
metric could identify fewer classes for cycle breaking and thus reduce the refactoring
efforts reasonably, and (2) the CBDSS could assist software engineers to plan the
restructuring and refactoring of large and complex dependency cycles in classes. This
publication contributes to RQ2.

Own contribution: I was the leading author in this study. I performed the design and
implementation of the Java tool and the underlying algorithm and wrote the paper. The
second co-author reviewed the work and paper. The last co-author implemented the
Java algorithm in a C# plugin.

1.5 Contributions
This work has contributed both to the theory and practice in software quality
(maintainability and indirectly, reliability) and software metrics (See Figure 4 and
Table 1). The following have been identified as the main contributions with sub-
contributions related to the research objectives.

C1 Better understanding of how to utilize different defect metrics to improve
software quality.

C1-1: Identification of the usefulness of using different defect metrics to classify
critical software components.

C2 Identification of the impact of dependency cycles on software quality.
C2-1: Identification of dependency cycles and neighbourhood as defect hotspots in
software systems.
C2-2: Better understanding of the change impact of dependency cycles.

C3 Tool and metrics to refactor defect- and change-prone hotspots in dependency
cycles.

C3-1: Added metrics to improve the refactoring of cyclically dependent components.
C3-2: A cycle breaking decision support system to refactor cyclically connected
components.

Introduction

 10

1.5.1 Contribution to software quality
C1-1 Identification of the usefulness of different defect metrics to classify critical
software components (RQ1-1, P1).
A quantitative and qualitative analysis of defects and source code data of an industrial
Smart Grid application, shows that several defect measures such as defect counts, defect
density, defect correction effort, and defect severity have variations in their
identification of defect-prone components that are critical to the application. By using
the four metrics, it was possible to identify a significant number of components
classified as critical by developers. The result contrasts with using the popular defect
counts and defect density. The study grows the knowledge about the need to include
several defect measures during component-defect analysis.

C2-1 Identification of dependency cycles and neighbourhood as defect hotspots in
software systems.

(1). Empirical evidence of dependency cycles as defect hotspots (RQ1-2, P2).
A quantitative analysis of defects and source code of a commercial Smart Grid and open
source applications show that components in and near dependency cycles have more
defects and are more defect-prone than those not in cycles

(2). Empirical evidence of dependency cycles as hotspots for critical defects (RQ1-2,
P3).

A quantitative analysis of defects and source code of a commercial Smart Grid and open
source applications show that the majority of critical defects are concentrated in
components in and near dependency cycles. This links to C1, that critical components
are located in cycles or near cycles.

(3). Better understanding of the relationship between refactoring dependency cycles and
defects (RQ1-3, P4 & P5).

A quantitative analysis of defects and source code of a commercial Smart Grid and open
source applications show that components in cycles that turn defective in future releases
distinctly and significantly have higher class reachability set size than non-cyclic ones.

C2-2 Better understanding of the change impact of dependency cycles (RQ1-4, P6)
A quantitative analysis of change proneness of cyclically connected components shows
that dependency cycles could have significant change impact on its neighbourhood and
less change within its structure especially for some special cycle types (e.g. cycles
formed by the Visitor pattern). Furthermore, some special types of cycles (cycles with
STK and cycles with high PCT-diameter) do not show higher correlation with change-
proneness than cycles without these properties.
Summary: C1 and C2 have contributed greatly to understand the location of defect
hotspots in software structure. It has motivated the refactoring of cyclically connected
components to create maintainable, testable, and reusable components. It has improved
the understanding of the relationship between refactoring cyclically connected

Introduction

 11

components and defect-proneness. In addition, it has provided insight into the presence
of high coupling and change-proneness in dependency cycles and neighbourhoods of
cycles.

C3-2 A cycle breaking decision support system for refactoring of cyclically dependent
components (RQ2, P7)
Currently, there is little advice on how to refactor dependency cycles at the class
granularity level. The decision support system contributes to improving existing
software structure by providing approaches and implementable actions to decouple
classes that are in dependency cycles.
Summary: C3-2 has contributed to performing the actual restructuring task to achieve a
maintainable system

1.5.2 Contribution to software metrics
C3-1 Added metrics to understand the complexity of component and improve the
refactoring of cyclically dependent components (RQ1-2, RQ1-4 & RQ2, P2, P3, P6 &
P7).

First, the research presents additional metrics that help to better understand cyclically
connected components. It introduce a metric termed “depend-on-cycle” that shows that
components with this property share some similarities with those directly in cycles.
Second, it extends the metric (class reachability set size) proposed in (Melton and
Tempero, 2007a), which is a variant of the CCD metric by Lakos (Lakos, 1996). The
new metric, named the “Interface Reduction rate for class reachability set size
(IRCRSS)”, identifies the reduction rate in the reachability set size between a class and
its interface. The results from empirical validation shows that the application of the
metric provides better results and is a useful indicator of a reduction in software
complexity and refactoring efforts on existing systems. It is able to select fewer
candidates when applied as compared to refactoring without using the metric.

Table 1 Research questions vs. contributions and papers
Research Questions Contribution Papers Area of contribution

RQ1-1 C1 P1 Software quality

RQ1-2 C2-1, C3-1 P2, P3 Software quality and metrics

RQ1-3 C2-1 P4, P5 Software quality

RQ1-4 C2-2, C3-1 P6 Software quality and metrics

RQ2 C3 P2, P3, P6, P7 Software quality and metrics

Introduction

 12

Figure 4 State-of-the-art and area of contributions from PhD Study

1.6 Thesis Structure
This thesis is structured into two parts. The first part contains six chapters to introduce
the thesis, put the research into context, evaluate the research design, integrate the
results and discuss the contributions of this thesis. The second part is a collection of the
selected papers for the thesis.

Chapter 2: State-of-the-Art discusses the state-of-the-art in software engineering,
software quality, software testing, object-oriented metrics, software patterns and anti-
patterns, software evolution, maintenance and software refactoring.
Chapter 3: Context and Research Design explores the research context and design of
the thesis. We discuss and describe the research focus, the software we have used for
the studies, the metrics and the approach for measurement and data collection. The
research designs for the studies are then described and lastly, the threats to the validity
of our results are discussed.

Chapter 4: Results presents the results of the studies.
Chapter 5: Evaluation and Discussion of Results evaluates and discusses the
contributions of this thesis.
Chapter 6: Conclusion and Future Work provides the conclusion and a direction for
future studies.
Appendix A: (enclosed, selected papers) presents the seven primary papers selected for
this thesis.
Appendix B: presents abstracts of three secondary papers, which are partly related to
this thesis.

State-of-the-Art

 13

2 State-of-the-Art

This chapter presents state-of-the-art topics relevant to this thesis. Section 2.1 presents
software engineering with definition, concepts, and challenges. Section 2.2 looks into
the topic of software quality and discusses related quality attributes. Section 2.3
presents software testing. Section 2.4 presents object-oriented metrics. Section 2.5
presents software evolution and maintenance. In Section 2.6, software patterns and anti-
patterns are presented. Section 2.7 presents related studies in software refactoring.
Lastly, in Section 2.8, we summarize and discuss the challenges of this thesis.

2.1 Software Engineering: Definition and Challenges
According to IEEE Computer Science (SWEBOK) (Bourque and Fairley, 2014),
Software engineering is defined as:
“(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of
engineering to software. (2) The study of approaches as in (1)”

In ISO/IEC/IEEE Systems and Software Engineering Vocabulary (ISO/IEC/IEEE
24765:2010), Software engineering is defined as:

“(1) The systematic application of scientific and technological knowledge, methods, and
experience to the design, implementation, testing, and documentation of software (2)
the application of a systematic, disciplined, quantifiable approach to the development,
operation, and maintenance of software; that is, the application of engineering to
software”
The term “software engineering” was first coined at a NATO conference in 1968 (Naur
and Randell, 1969) to discuss the prevalent software crisis at this time (Sommerville,
2011; van Vliet, 2000). Software problems such as late delivery, unfulfilled
functionality, large post-release errors, and adaptability challenges were common at this
time. These challenges stem from individual approaches and lack of a systematic or an
engineering approach to the development of large and complex software systems
(Sommerville, 2011). Following the 1969 conference, substantial effort in the 70s and
80s, has been invested into creating new software engineering techniques and methods

State-of-the-Art

 14

such as structured programming, information hiding, object-oriented development,
tools, and standard notations (Sommerville, 2011). Software engineering has thus
evolved into a discipline where development and the development process are
standardized and supported with several approaches and tools (Mohagheghi, 2004).
Despite the improvements in the way software is produced, software projects and
development still face many problems. There is still evidence of system failures due to
software failure (Leo, 2013; Lilley, 2012). Due to the nature and role of software, there
are some key challenges that affect them and they are briefly discussed below:
1. Heterogeneity/interoperability (Pfleeger, 2001; Sommerville, 2011): More and

more, systems must talk to each other, they need to run on different platforms, and
interfacing new systems with legacy systems are all common challenges.

2. Change (Pfleeger, 2001; Sommerville, 2011): The dynamic nature of our
environment forces change in technologies. This necessitates the need for adaptable
software processes and products that are fulfilled within budget and on time.

3. Security and trust (Sommerville, 2011): Software is increasingly interconnected
with every aspect of people’s lives. Thus issues about confidentiality and integrity
are critical subjects in software.

To limit the impact of change within a software structure, several design guidelines (e.g.
Acyclic Dependencies Principle) and approaches (e.g. component-based software
engineering (CBSE)) have been proposed. Nevertheless, recent empirical evidence
show that internal software structures that usually are the first target of change, have
structural complexity problems (Dietrich et al., 2010; Melton and Tempero, 2007b).

2.2 Software Quality
According to (ISO/IEC 25000:2014; ISO/IEC 25010:2011), software quality is defined
as the:
“(1) Capability of a software product to satisfy stated and implied needs when used
under specified conditions (2) degree to which a software product satisfies stated and
implied needs when used under specified conditions”

Software quality can be viewed from many different perspectives as it relates to the
stated and implied needs. Such views can be transcendental, user, manufacturing,
product, and value-added (Naik and Tripathy, 2011; Pfleeger, 2001). A transcendental
view says that quality is something that can be recognized but not defined in any
tractable form. The user view sees quality as the extent to which a product meets user
needs and expectations. The manufacturing view is concerned with whether the product
meets the stated requirements. This view suggests two characteristics to measure: the
defect count and the rework cost. The product view sees quality by assessing the
internal qualities with the hypothesis that products with good internal quality would
have good external quality. Lastly, the value-based view looks at quality from the
viewpoints of excellence and worth. The product and manufacturer views are the centre
of the investigation in this thesis. Essentially, the structural characteristics of software
product are investigated to find correlation with the external quality metric, which is
quantified by various defect metrics.

State-of-the-Art

 15

ISO/IEC/IEEE defines internal measure of software quality as: “the measure of the
degree to which a set of static attributes of a software product satisfies stated and
implied needs for the software product to be used under specified conditions”.

As noted by (Franch, 1998), non-functional requirements need a comprehensive and
formally defined languages to state the quality requirements in the software itself. This
approach can improve the evaluation of a product to determine whether it falls within
the stated non-functional requirements. The lack of this formality has had negative
impact on many software development tasks. To measure software quality, different
models have been described in earlier work. McCall et al. (1977) classified the software
quality model using eleven factors (correctness, reliability, efficiency, integrity,
usability, maintainability, testability, flexibility, portability, reusability, and
interoperability). ISO 9126, now replaced with ISO/IEC 25010:2011, categorize the
product quality model into eight main quality characteristics (functionality, suitability,
reliability, performance, efficiency, usability, security, compatibility, maintainability,
and portability). Bass et al. (2003) have described these characteristics as software
quality attributes.
The quality attributes at the higher level can only be measured indirectly. By defining
lower level criteria for each attribute and combined with the ratings it is possible to have
measurement of the extent that the quality factor is satisfied (van Vliet, 2000). This
thesis investigates two quality attributes (maintainability and indirectly reliability) by
using indirect measures. Quality is a difficult concept to define or measure, and it is also
about acceptable compromises (Gillies, 1997). Notwithstanding, to assess and improve
software quality would require imposing some degree of control (Kitchenham and
Pfleeger, 1996), and to assert control would require defining measurable attributes
(DeMarco, 1982).

Table 2 describes the ISO/IEC 25010:2011 product quality model, the quality attributes,
and their criteria (sub-characteristics). Emphasis is given to the two attributes
(reliability and maintainability) most relevant to this thesis. The defect metrics are
employed as the indirect measure for reliability. Measuring actual reliability by using
for example, the “Mean-Time-To-Failure (MTTF)”, is not the major focus of this
thesis. It is therefore not possible to conclude on the actual impact the defect metrics
used have towards measuring reliability of the systems. In terms of the maintainability
attribute, (Roger, 2005) has indicated using a simple time-oriented metric, “Mean-Time-
To-Change (MTTC)”. There are of course challenges with this metric. For example, an
accurate “change time” should include the time it takes a developer to reason about the
task. However, this may not be possible as such cognitive task could be accomplished
anywhere and anytime. In this thesis, we have used the cycle metrics and change-
probability metrics as indirect indicators. Section 3.3 describes the details of these
metrics.

2.3 Software Testing
According to SWEBOK (Bourque and Fairley, 2014), software testing is defined as:

“the dynamic verification of the behaviour of a program on a finite set of test cases,
suitably selected from the usually infinite executions domain, against the expected
behaviour”

State-of-the-Art

 16

Table 2 Software quality attributes, criteria and measures (ISO/IEC
25010:2011)

Quality
Attributes

Criteria Description Indirect
measure (own
addition)

Functionality
suitability

Completeness
Correctness
Appropriateness

Reliability Maturity
Availability
Fault tolerance
Recoverability

Fault tolerance: degree to which a
system, product or component operates as
intended despite the presence of hardware
or software faults

Defect severity,
Defect density,
defect count and
defect probability

Performance
efficiency

Time behaviour
Resource utilization
Capacity

Usability Appropriateness
Recognizability
Learnability
Operability
User error
protection
User interface
aesthetics
Accessibility

Security Confidentiality
Integrity
Non-repudiation
Accountability
Authenticity

Compatibility Co-existence
Interoperability

Maintainability Modularity
Reusability
Analyzability
Modifiability
Testability

Modularity: degree to which a system or
computer program is composed of discrete
components such that a change to one
component has minimal impact on other
components

Modifiability: degree to which a product
or system can be effectively and
efficiently modified without introducing
defects or degrading existing product
quality.

Modifiability is a combination of
changeability and stability

Cycle metrics and
change-
probability metric

Portability Adaptability
Installability
Replaceability

One key aim of software testing is to discover defects in software and expose failures
(van Vliet, 2000). Defects can be present at various phases of software development;
requirements, design, and implementation (Pfleeger, 2001) and during its operational
usage, i.e., maintenance phase (van Vliet, 2000). For instance, during initial
development, a requirement specification may be defective because of a missing or un-

State-of-the-Art

 17

implementable requirement. Undiscovered defects at previous phases thus have
potential to spread to other stages in the software life cycle. The type of defect to be
treated can be categorized using the orthogonal defect classification (ODC) (Chillarege
et al., 1992). The ODC classifies defects into function, interface, checking, assignment,
timing/serialization, build/package/merge, documentation, and algorithm. The
orthogonal feature of ODC enables defects to belong to only one category. It is thus
effective to discover the part of the development phase that requires attention (Pfleeger,
2001).
Van Vliet (2000) states that testing a requirement specification should be aimed at
testing its completeness, consistency, feasibility, and testability. (Poston, 1987) grouped
the common errors in a requirement specification as missing information, wrong
information, and extra information.
In the design phase, a high-level conceptual model of the system is developed from the
requirement specification. This model shows how the system is decomposed into
subsystems, components, and modules, and the interactions among them (van Vliet,
2000). This decomposition allows the architecture to be tested against specific quality
attributes (Bass et al., 2003). Designing a system for testability requires that the design
is not too complex and the states of the system are controllable and observable (Bass et
al., 2003)

The implementation phase involves translating the design to executable source code. A
number of testing techniques are applied such as code-inspection and code-walkthrough
(van Vliet, 2000). Different test stages are involved such as unit testing, integration
testing, system testing, function/acceptance testing, and installation testing (Pfleeger,
2001; van Vliet, 2000).
The maintenance phase is the post-release stage of the system. At this stage, changes
can be introduced in the system due to defects, new/changed requirements, or changes
in technology. These changes are captured using different maintenance terminologies;
corrective, preventive, adaptive, and perfective (van Vliet, 2000). When changes are
made to the system, it would need to be retested to ensure its correctness. The testing
performed at this stage is termed regression testing (van Vliet, 2000).
To successfully manage software development and testing activities, a configuration
management system (CMS) is required. A CMS allows the management of versions and
releases of software, and enables coordination among testers and developers (Pfleeger,
2001).
Bertolino (2007) argued that the term “software testing” is used for a variety of aims
and scopes, thus giving rise to multiple of meanings. However, the common
denominator for the different testing goals is that testing always consists of observing a
sample of executions, and giving a verdict over them. The author provided a unifying
classification using six questions underlying any test approach. The questions why,
how, how much, what, where, and when, can be used to distinguish the specific aspects
that characterize the sample of observations. The “why” deals with test objective: why
is it that we make the observation? The “how” deals with test selection: which sample
do we observe, and how do we choose it? The “how much” deals with test adequacy, or
stopping rule: how big of a sample? The “what” addresses levels of testing (unit test,

State-of-the-Art

 18

component/subsystem test, and integration test) otherwise described as testing stages by
(van Vliet, 2000): what is it that we execute? The “where” asks: where is the
observation performed (in-house, simulated environment, or the final target context)?
Lastly, the “when” asks: when is it in the product lifecycle that we perform the
observations?

This thesis has investigated defects exposed in the operational stage of the software.

2.4 Object-Oriented Metrics
Object-oriented (OO) metrics have been proposed as a quality indicator for software
components. The pioneering work in software metrics: Halstead’s software science
metrics (Halstead, 1977), McCabe cyclomatic complexity metric (McCabe, 1976), and
Henry and Kafura’s information flow metric (Henry and Kafura, 1981) have
concentrated on complexity measures in the procedural paradigm. However, the OO
paradigm expresses certain different programming philosophies such as inheritance,
class or message passing that are not expressed in the procedural paradigm (Li and
Henry, 1993).
Chidamber and Kemerer (1994) proposed a suite of OO metrics to indicate the quality
of a component (class). These metrics are; Weighted Methods for a Class (WMC),
Depth of class in Inheritance Tree (DIT), Number of Children (NOC), Coupling
Between Object Classes (CBO), Response For a Class (RFC) and Lack of Cohesion of a
Method (LCOM). Li and Henry (1993) used the six metrics in addition to others to
predict maintenance effort in OO systems. They concluded that the OO metrics are able
to predict maintenance effort more than what size metrics can predict. Basili et al.
(1996) validated the six OO metrics and claimed that CBO and RFC significantly
correlate to defects than the rest four metrics. Briand et al. (Briand et al., 1998; Briand
et al., 2001b) have investigated the set of metrics by Chidamber and Kemerer with
several other derived metrics. They claim that CBO and especially import and method
invocation coupling are important when building an OO quality model.
Challenges with software metrics for building software quality models are addressed in
(Fenton and Neil, 1999a; Fenton and Neil, 1999b). The author argues that:
1) Complexity and/or size measures alone cannot provide accurate predictions of

software defects
2) Information about software defects (discovered pre-release) on its own provides no

information about likely defects post-release.
3) Traditional statistical (regression-based) methods are inappropriate for defects

prediction

Fenton propose that the way forward is to construct prediction models that account for
explanatory factors, most notable testing effort and operational usage.

2.5 Software Evolution and Maintenance
Evolution is a natural phenomenon for software system that is used. According to
Lehman (1980), software that is used undergoes continual change or it becomes
progressively less useful. Arguably, the terms evolution and maintenance are used
interchangeably (Sommerville, 2011). Software systems undergo changes in many

State-of-the-Art

 19

ways. They have to adapt to new environments or technologies, or undergo change
because of defect fixes. The activity of changing a software system after its release is
termed maintenance. Maintenance can be classified into four types; corrective, adaptive,
perfective and preventive (van Vliet, 2000). However, these types of maintenance (with
the exception of corrective maintenance) have no distinct difference in practice
(Sommerville, 2011). According to (van Vliet, 2000), the ‘real’ maintenance activity is
corrective maintenance and it accounts for about 21% of the total maintenance effort
only. While perfective consumes 50%, adaptive 25%, and preventive 4%.
Each of the maintenance types is defined as follows (ISO/IEC/IEEE 24765:2010):

Corrective maintenance: the reactive modification of a software product performed
after delivery to correct discovered problems.

Adaptive maintenance: modification of a software product, performed after delivery,
to keep a software product usable in a changed or changing environment.

Perfective maintenance: software maintenance performed to improve the performance,
maintainability, or other attributes of a computer program.

Preventive maintenance: the modification of a software product after delivery to detect
and correct latent faults in the software product before they become operational faults.

The more a system is changed, the more it grows in complexity (Lehman and Ramil,
2001) and the more it ages (Parnas, 1994). Parnas states that the key to control software
aging is to design it for change (Parnas, 1994). This is consistent with Lehman’s
Seventh Law – Declining Quality (Lehman and Ramil, 2001). Systems should be
adapted to account for changes in the operational environment to prevent a decline in
quality. It presupposes that the advice to reduce maintenance problems for systems
during evolution is relevant during the initial system development (van Vliet, 2000).
Some of the possible solutions to reduce maintenance problems as stated by (van Vliet,
2000) are:

• Higher-quality code, better test procedures, better documentation and adherence
to standards and convention, can pay off for corrective maintenance;

• Evaluation of software architecture with respect to ease of change can make
future perfective and adaptive maintenance to be realized more easily;

• Finer tuning to user needs may lead to savings in perfective maintenance;

• Code size is correlated to maintenance. Less code means less maintenance.
Reusing a bulky code has a maintenance penalty.

In conclusion, we can assume that maintenance challenges may be unavoidable but they
can be controlled and minimized with adequate adherence to design guidelines during
initial development. In the evolution phase, it is then necessary to implement an
iterative improvement program for refactoring and improving the code quality (see
Figure 5).

State-of-the-Art

 20

2.6 Software Patterns and Anti-patterns

2.6.1 Software patterns and empirical investigation on software
maintenance

Design pattern was first formulated by (Alexander et al., 1977). Patterns are known to
be recurring solutions to recurrent design problems. They capture existing, well-proven
designs (Rising, 1998). Gamma et al. (1995) catalogued twenty-three design patterns
widely used in software development and classified them into three broad types; these
are creational, structural, and behavioural patterns. Creational patterns include patterns
such as Factory Method, Abstract Factory, Builder, Prototype and Singleton. Structural
patterns include, e.g., Adapter, Bridge, Composite, Decorator, Façade, Flyweight, and
Proxy. Lastly, behavioural patterns include, e.g., Interpreter, Template Method, Chain
of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy,
and Visitor.

According to Prechelt et al. (2002), the following are the advantages being claimed for
design patterns:

1. Using patterns improves programmer productivity and program quality.
2. Novices can increase their design skills significantly by studying and applying

patterns.
3. Patterns encourage best practices, even for experienced designers.
4. Design patterns improve communication, both among developers and from

developers to maintainers.

Thus, one of the claimed benefits of design patterns is that it reduces the effort and cost
of software maintenance.

2.6.2 Empirical validation of design patterns on software maintenance
A plethora of studies have investigated the role of design patterns on software
maintenance and change-proneness. Bieman et al. (2003) investigated the impact of
design patterns on the change proneness of classes by using five systems, four small
ones and one large system. They have mined the change data from a configuration
management system. They concluded that classes participating in design patterns are
rather more change-prone. A recent study on mining software repository (Herzig and
Zeller, 2013) shows, however, that multiple tangled code changes could result into an
incorrect classification of change/fault data.

Di Penta et al. (2008) investigated whether certain design pattern roles are more change-
prone in general, and whether certain roles are prone to particular types of changes.
Their results confirm that many design pattern roles do undergo changes within the
pattern. Vokac (2004) analysed the defect rates of classes that participated in selected
design patterns of a large commercial product. The study concluded that the Observer
and Singleton patterns are correlated with large code structures and can thus serve as
indicators for special attention. On the other hand, the Factory pattern instances tend to
have lower defect counts. (Prechelt et al., 2002) reported a controlled experiment that
showed Observer and Decorator patterns to result in less maintenance time while the
results for the Visitor pattern were inconclusive. (Vokáč et al., 2004) replicated the

State-of-the-Art

 21

experiment by (Prechelt et al., 2002). Their results confirmed the previous results that
the Observer, Decorator, and Abstract Factory patterns favour ease of maintenance.
However, the Visitor and Composite patterns had strongly negative results on
maintenance.
Jeanmart et al. (2009), however, reported a positive relationship between the use of
Visitor pattern and maintenance efforts. Wendorff (2001) reported on a large
commercial software project where the uncontrolled use of design patterns has
contributed to a severe maintenance problem.

2.6.3 Software Anti-patterns
Conversely, software anti-patterns are recognized as poor design choices and can exist
at the code, design, and architectural levels (Koenig, 1998; Lippert and Roock, 2006).
(Lippert and Roock, 2006) have catalogued a number of anti-patterns at the architectural
level termed as “architectural smell”. In the next sections, selected anti-patterns at both
the code and architectural levels are discussed. Furthermore, the section discusses
empirical studies that have related anti-patterns to software quality.

Figure 5 A cycle in Apache Velocity v1.6.2 (Oyetoyan et al., 2015b)

2.6.3.1 Dependency cycles
As illustrated in a concrete example in Figure 5, a cyclic dependency is formed when
components depend on one another in a circular manner. The cycle in this figure is
caused by the Visitor pattern that involves the abstract visitor, the abstract element, and
the concrete element. This relationship covers both direct and indirect connection
between those components. Formally, in graph theory (Cormen et al., 2001), a cyclic
dependency graph, also known as strongly connected components (SCC) in a directed
graph G = (V, E), is a maximal set of vertices C ! V such that for every pair of vertices
u and v in C, both are reachable from each other. Cyclic relationships increase coupling
complexities and thus have the potential to propagate defects in a network (Abreu and
Melo, 1996).
In terms of classes, Parnas (1979) identified “Uses relation” between two components
and argues that the loops in the “Uses Relation” are detrimental to extensibility of a
software system. Lakos (1996) provided extensive discussion concerning cyclic
dependencies among C++ classes. Lakos claimed that cyclic physical dependencies
among classes in C++ programs inhibit understanding, testing, and reuse. Other authors

to use some sub-package semantics when organising code.
For instance, the package javax.swing has circular de-
pendencies with its “child packages” javax.swing.tree

and javax.swing.table. It appears that these cycles
forming in branches of the PCT are the result of splitting
large packages to facilitate maintainability, but the respec-
tive packages retain a high level of cohesion. AWT fea-
tures a similar structure. However, the core Java interface
libraries also provide an example of a critical cyclic de-
pendency spanning across branches of the PCT: AWT and
Swing mutually depend on each other. Figure 1 also shows
this. The critical dependency is caused by references to
javax.swing.JComponent in several AWT classes, in-
cluding java.awt.Window and java.awt.Component.
On the other hand, javax.swing.JComponent is a sub-
class of java.awt.Component. This design flaw had a
significant impact on early versions of the Java platform, and
there is evidence that it can be removed without impacting on
the functionality of the respective libraries. This is discussed
in more detail in [9].

D. Inadvertent Cycles

There are situations where cycles are a direct result of the
features and limitations of technologies and methods used in
projects. The most simple example in this category are the
cycles formed between non-static nested classes and their outer
classes in Java byte code. In particular, the compiler generates
access fields to reach inner class from outer one and vice-versa.

A more complex case that is common originates from the
use of certain design patterns that induce cycles. An example
is the use of Visitor, one of the classic gang of four patterns
[13]. The pattern consists of abstract and concrete visitors, and
abstract and concrete visited “elements”. The visitors reference
all concrete element types as parameters in the (overloaded)
visit methods, while the element types (both abstract and
concrete) use the abstract visitor type as parameter type in
the accept methods. Visitor is a very popular pattern, in
particular in programs that use hierarchical data structures
such as parsers for domain specific languages (DSLs). Such
an example is depicted in figure 2. The cycle is even an
instance of STK, caused by the inherits relationship between
the concrete elements (such as ASTIdentifier) and the
abstract element (Node). Note that the number of concrete
elements is typically large, in this example, there are 33 such
classes each representing a particular AST node type. This can
result in large SCCs.

These cycles can hardly be interpreted as signs of bad
design, on the contrary, the use of Visitor is widely seen as
good design as it allows developers to “plug-in” functionality
into complex object structures. This is also a case of choosing
a particular design to overcome limitations of the programming
language, in this case the lack of support for multiple dispatch
in Java [24]. Acyclic versions of Visitor have been proposed
[21]. However, acyclic visitors are even more complex than
visitors as additional abstract visitor types are required, and it
appears that they are not widely used.

In the velocity example used in figure 2, the Visitor has
been manually implemented. However, in many cases parser
code is generated by parser generators from abstract grammar

RUJ�DSDFKH�YHORFLW\�UXQWLPH�SDUVHU�QRGH

��DEVWUDFW�YLVLWRU!!
3DUVHU9LVLWRU

��FRQFUHWH�HOHPHQW!!
$67,GHQWLILHU

��DEVWUDFW�HOHPHQW!!
1RGH

XVHV

XVHV

�H[WHQGV

��FRQFUHWH�YLVLWRU!!�

��FRQFUHWH�HOHPHQW!!
$67,GHQWLILHU

XVHV

�H[WHQGV

XVHV

Fig. 2. A cycle caused by the use of the Visitor pattern in Apache Velocity,
version 1.6.2

specifications. This is becoming more and more common with
the availability of good tools (such as ANTLR), and the
popularity of DSLs. Code with generated cycles can have
interesting change characteristics, for instance, if the code is
regenerated during each iteration as part of automated builds.

III. RELATED WORK

Several authors have investigated the relationship between
anti-patterns and the change-proneness of software artefacts.

Foutse et al. [19] examined classes involved in anti-patterns
and code smells and their change and fault proneness. The
study investigated four systems and thirteen anti-patterns. The
claims from this study are that classes participating in anti-
patterns are more change- and fault-prone than others and that
structural changes affect more classes with anti-patterns than
others. Romano et al. [34] investigated the impact of anti-
patterns on change-proneness using change data from source
code analysis. The results of this study is consistent with [19].
In addition, they showed that certain anti-patterns are prone
to certain types of changes such as API changes. Olbrich et
al. [25] performed a study on two open source applications
to study the impact of code smells. Their results show that
different phases could be identified during the evolution of
code smells and in particular, components infected with code
smells display a higher change frequency than others. Fontana
et al. [12] investigated the correlations between different smells
and antipatterns.

In our study, we have investigated one particular antipattern
on the structural/architectural level, and this is different from
these studies.

On the other hand, while anti-patterns are claimed to be
poor design choices, design patterns are recurring solutions to
design problems. A plethora of studies have also investigated
the relationships between design patterns and class change-
proneness. Bieman et al. [2] investigated the impact of design
patterns on the change proneness of classes by using five sys-
tems, four small ones and one large system. They have mined
the change data from a configuration management system.
They concluded that classes participating in design patterns are
rather more change-prone. Recent study on mining repository
[15], however showed that multiple tangled code changes could
result into an incorrect classification of change/fault data.

State-of-the-Art

 22

also claimed that cycles inhibit system understanding (Fowler, 2001), testing in
isolation, integration testing (Briand et al., 2001a; Hanh et al., 2001; Hashim et al.,
2005; Kung et al., 1996), and reuse (Martin, 1996). Cyclically connected components
are mutually dependent, thus in terms of understanding any of the classes; it is
necessary to understand all other classes in the cycle. Furthermore, to test a class in
isolation is practically impossible when it is involved in a cycle with other classes
(Lakos, 1996). In integration testing, cycles prevent the topological ordering of classes
that can be used as a test order (Briand et al., 2001a, 2003; Hanh et al., 2001; Jungmayr,
2002; Kung et al., 1996; Melton and Tempero, 2007b), thereby inhibiting the testability
of a system.
In many OO systems developed with programming languages such as Java or C++, a
package represents a physical organization of software components (Knoernschild,
2012; Lakos, 1996). Packages are used to group classes that perform similar functions.
They focus on manpower and they represent the granule of release (Martin, 1996).
Applications are usually a network of interrelated packages and the work to manage,
test, build, and release those packages is non-trivial (Martin, 1996). When cycles are
formed at the package level, it seriously affects manpower since software engineers
working on individual packages need to build with every other dependent package
before they can release their package. Cycles among packages have thus been claimed
to be detrimental to understandability (Fowler, 2001), production (Lakos, 1996; Martin,
1996), marketing (Lakos, 1996), development (Lakos, 1996; Martin, 1996), usability
(Lakos, 1996; Martin, 1996), and reliability (Lakos, 1996).
It has been stated (Briand et al., 2001a; Hashim et al., 2005; Kung et al., 1996; Lakos,
1996) and implied (Jungmayr, 2002; Martin, 1996) that cycles are pervasive in real-life
software systems. However, it appears that only Melton and Tempero (2007b) have
performed an elaborate empirical study of cycles in many software systems at the class
level. Melton and Tempero carried out an empirical study of 78 Java applications. The
result shows that almost all the 78 Java applications contain large and complex cyclic
structures among their classes.

Figure 6 An STK in the JRE v1.7.0 (Oyetoyan et al., 2015b)

2.6.3.2 Subtype knowledge
Subtype knowledge (STK) is an instance of a cycle and was first studied by (Riel,
1996). It occurs in a cycle that contains at least one inheritance (extends) or realization

classes within and near cycles account for the most defects
in programs. This study did not investigate particular types of
cycles and their relationship with change proneness. It used
a smaller data set, and did not study the classes directly,
but mined the comments in the issue tracking and subversion
systems instead.

The rest of this paper is organised as follows: we first
discuss the core concepts used in this paper in a background
section. We provide several real-world examples of the differ-
ent types of cycles we are interested in. We then discuss related
work and describe the methodology used in detail, followed
by a result section and a discussion that includes threats to
validity. We finish the paper with a conclusion.

II. BACKGROUND

A. Cycles and Dependency Graphs

The notion of cyclic dependency corresponds to strongly
connected components (SCCs) in dependency graphs. SCCs
can be effectively computed with Tarjan’s algorithm in linear
time [35].

A dependency graph is a simple model representing soft-
ware artefacts and their relationships. Such a graph can be built
on several levels of abstraction and aggregation. For instance,
in the case of Java programs, we can consider methods and
fields and their invoke and access relationships, classes and
interfaces and their uses, extends and implements relationships,
packages and their dependencies, and containers (jar files)
and their dependencies. Low-level cycles have been associ-
ated with potential problems for comprehension, testing, and
maintenance [3], [4]. However, to the best of our knowledge no
empirical studies on larger sets of real-world programs exist to
support this claim, and at least some of the cycles are created
by widely-used programming techniques like recursion.

Higher-level dependency graphs are typically obtained
from lower-level graphs by means of aggregation. For instance,
a package-level dependency graph is built from the dependency
graph of the classes contained in this packages. Cyclic depen-
dencies between classes in different packages induce cyclic
dependencies in the package graph. Therefore, we focus our
attention on SCCs in the class graph. The vertices in this
graph represent the classes of a Java program, while the edges
represent the relationships between these vertices. Classes here
refers to compiled classes, and also include other Java types
like annotations, interfaces and enums. Edges are labelled with
either uses, extends or implements. The extends and implements
labels are used according to the meaning of the respective
keywords defined in the Java Language Specification [14], uses
covers all other dependencies. We also use the label inherits
defined as the union of extends and implements.

Several empirical studies on real-world programs suggest
that the number of SCCs found in both the class-level and
package-level dependency graphs is large [23], [8]. The fact
that many of these systems are regarded as functional and
widely used suggests that not all cycles are as detrimental to
the quality of systems as previously thought. This seems to
indicate that it is not sufficient to only study general cycles.
Instead, certain types of cycles must be studied as well in order
to distinguish between critical and harmless cycles.

B. Subtype Knowledge

Subtype knowledge (STK) is an “antipattern” first studied
by Riel [33]. An instance of STK is basically a cycle that
has at least one extends or implements edge, and a back-
reference path connecting the target of this edge with its
source. Because the Java compiler (as well as most other
compilers) enforces that there are no cycles in the supertype
(inherits) graph, this path must contain at least one uses edge.
Situations producing inheritance cycles still exist when classes
are compiled separately, but they are rare and can be caught
by the Java Virtual Machine by means of static analysis during
linking.

The intention behind this pattern is that in a well designed
program, abstraction and implementation artefacts are sepa-
rated, and implementation artefacts depend on abstractions,
but not vice versa. This is also known as the dependency
inversion principle (DIP) [20]. STK cycles directly violate this
principle. Surprisingly, STK cycles are still common in real-
world programs [8].

Figure 1 depicts a STK cycle found in the Java Run-
time Environment, version 1.7.0. This is a class-level cy-
cle, but it also induces a package level cycle between
java.awt and javax.swing. The documentation of
LegacyGlueFocusTraversalPolicy indicates that this
is a FocusTraversalPolicy implementation that pro-
vides support for legacy applications. Yet, every other imple-
mentation of FocusTraversalPolicy depends on it as
there is a dependency from the abstract type to this particular
implementation. This is clearly an undesirable constraint for a
modular design.

MDYD[�VZLQJ

MDYD�DZW

)RFXV7UDYHUVDO3ROLF\

/HJDF*OXH)RFXV�
7UDYHUVDO3ROLF\ -&RPSRQHQW

:LQGRZ

�XVHV

XVHV

XVHV

�H[WHQGV

Fig. 1. A STK cycle in the Java Runtime Environment, version 1.7.0

Note that not all STK instances are equally critical. An
example is discussed below in section II-D where a STK is a
side-effect of using the visitor design pattern. This might still
have negative consequences, however, they are outweighed by
the benefits of using the design pattern.

C. Cycles and the Package Containment Tree

One possibility to distinguish between critical and harmless
cycles is to consider their location within the package contain-
ment tree (PCT) [10]. The PCT of a Java program is formed by
the hierarchical structure of package names. The Java language
specification stipulates that “The hierarchical naming structure
for packages is intended to be convenient for organizing
related packages in a conventional manner, but has no signif-
icance in itself ... ” [14, ch 7.1]. However, developers seem

State-of-the-Art

 23

(implements) edge, and a back reference path connecting the target of the edge to its
source. This type of anti-pattern violates the principle that base/super types should not
know anything about their derived/sub types. Empirical studies have shown that the
subtype knowledge anti-pattern is common in real world programs (Dietrich et al.,
2010). An example of STK anti-pattern is shown in Figure 6 where javax.swing is in an
STK type of cycle with java.awt.

2.6.3.3 Abstraction without decoupling
The Abstraction Without Decoupling (AWD) anti-pattern occurs when a client depends
on an abstract type and at the same time uses the concrete implementation of this
abstract type (Dietrich et al., 2012). The drawback is that it would be difficult to
dynamically upgrade or replace the concrete implementation without touching the client
code. This case is depicted in Figure 7 where class B depends on both the abstract class
A and the implementation of A (Impl-A). It is possible to use dependency injection to
refactor this anti-pattern (Dietrich et al., 2012; Fowler, 2004).

Figure 7 Abstraction Without Decoupling

2.6.3.4 Degenerated Inheritance
A Degenerated Inheritance (DIH) anti-pattern is caused by cases of multiple inheritance
paths from a subtype to a supertype (Dietrich et al., 2012; Sakkinen, 1989; Singh,
1994). In object-oriented programming languages such as Java this is caused by using
multiple interfaces. An example is depicted in Figure 8 where class D indirectly inherits
from class A through two other classes B and C.

Figure 8 A case of degenerated/multiple inheritance

��DEVWUDFW!!
$

��FODVV!!
,PSO�$

��FODVV!!
%

$

&%

'

H[W
HQG

V H[WHQGV

LP
SOH
PH
QWV

LPS
OHP

HQW
V

State-of-the-Art

 24

2.6.3.5 Cycles in package containment tree
Recent studies have also investigated new heuristics to classify “bad” and “harmless”
package cycles (Falleri et al., 2011). The motivation behind this is that most cycles are
formed within the package containment tree (PCT) hierarchies. By computing the
diameter of a package cycle, it is possible to detect package cycles that cross module
hierarchies, as a high diameter would be an indicator of “harmful” package cycles. The
example in Figure 9 shows the two packages “java.awt” and “javax.swing” to have
circular reference between them.

Figure 9 PCT of package cycles (Oyetoyan et al., 2015b)

2.6.3.6 Code smells
Beck and Fowler (1999) introduced the term code-smells and argued that code smells
are indication of deeper problems in the source code. For instance, “Duplicated Code” is
a case where similar code structures exist in different parts of the program. This type is
also referred as code clone (Baxter et al., 1998) and can be refactored by extract method
approach, e.g., the approach described in (Tsantalis and Chatzigeorgiou, 2011). Wake
(2004) discussed Fowler’s code smells under six categories; “Duplication”, “Data”,
“Interfaces”, “Responsibility”, “Unnecessary complexity”, and “Message calls”.
Similarly, Mäntylä and Lassenius (2006); (Wake, 2004) provided a taxonomy for the
code smells described by Beck and Fowler. The authors specified five categories for the
twenty-four code smells as: “The Bloaters”, “The Object-Orientation Abusers”, The
Change Preventers”, “The Dispensables”, and “The Couplers”. Wake states that not all
code smells indicate a problem, but most are worthy of a look and a decision (Wake,
2004).
Several authors have investigated the relationship between code smells and the change-
proneness of software artefacts. Khomh et al. (2012) examined classes involved in code
smells, and their change and fault proneness. The study investigated four systems and
thirteen code smells. The claims from this study are that classes participating in anti-
patterns are more change- and defect-prone than others, and that structural changes

MDYD MDYD[

��URRW!!

MDYD�DZW

)RFXV7UDYHUVDO3ROLF\

:LQGRZ -&RPSRQHQW

MDYD[�DZW

-&RPSRQHQW

/HJDF*OXH)RFXV�
7UDYHUVDO3ROLF\

�

� �

�

State-of-the-Art

 25

affect more classes with code smells than others. Romano et al. (2012) investigated the
impact of code smells on change-proneness. The result of this study is consistent with
(Khomh et al., 2012). In addition, they showed that certain code smells are prone to
certain types of changes such as API changes. Olbrich et al. (2010) performed a study
on two open source applications to study the impact of code smells. Their results
showed that different phases during the evolution of code smells could be identified,
and in particular, components infected with code smells display a higher change
frequency than others.

2.7 Refactoring
Fowler refers to refactoring as a disciplined way to clean up code in such a way that the
chances of defects is reduced (Fowler, 1999). Refactoring is an act of safely improving
the design of existing program (Wake, 2004). It is a process that improves the internal
structure of a software system without changing its external behaviour (Fowler, 1999;
Mens and Tourwe, 2004). It is believed that refactoring improves software quality and
increases productivity by making it easier to understand and maintain software codes
(Kim et al., 2012). It is considered an important part of a software lifecycle or else the
program design will decay (Fowler, 1999). Refactoring can be applied to smells at the
code or at an architectural level (Lippert and Roock, 2006).

The targets of refactoring are software artefacts that could be program source code,
design artefacts, and/or requirement specifications (Mens and Tourwe, 2004).
Finkelstein et al. (1994) and Hunter and Nuseibeh (1998) have used classical logic and
quasi-classical logic to identify inconsistencies in requirements specification, and
proposed approaches to support continued action. Russo et al. (1998) reported their
work on restructuring of multi-perspective requirements specification from a NASA
project. They identified inconsistencies in the requirements by decomposing the
specifications into “viewpoints”, and identifying the relationships and inter-
dependencies among the “viewpoints”. The restructuring facilitates better requirements
understanding, maintenance and evolution.

Design level refactoring concerns the restructuring of design artefacts and most notably
in the form of Universal Modelling Language (UML) models (Correa and Werner,
2004; Sunyé et al., 2001). Van Gorp et al. (2003) proposed an extension to the UML
metamodel to maintain consistency between a refactored design and its underlying
source code. Boger et al. (2003) developed a refactoring browser integrated in a UML
modelling tool. Van Der Straeten and D'Hondt (2006) implemented a rule-based
approach for resolving inconsistencies in or between models.
Refactoring at the source code or program level has been largely addressed (Beck and
Fowler, 1999; Fowler, 1999; Opdyke, 1992; Wake, 2004). These refactoring make use
of a number of approaches e.g. Extract class, Move method, Encapsulate field, Extract
method, Pull-up method, Extract Interface, (Fowler, 1999) and are implemented on
development environments (e.g. Eclipse, NetBeans, Visual Studio).

Graph transformation has been extensively applied to model code-level refactoring
activities (Mens, 2006; Mens et al., 2007; Van Der Straeten et al., 2004; Zhang et al.,
2005). The type of graph manipulation we have employed in this thesis does not

State-of-the-Art

 26

demand detailed graph formalism since we are only interested in removing or adding
single edges in a graph during refactoring.
Dietrich et al. (2012) identified high impact edges from the program dependency graph
by assigning weights to each edge based on the number of anti-patterns it is involved
with. Their results on the graph model demonstrated that it is possible to remove many
anti-patterns (e.g., dependency cycles at the package level) by removing such high
impact edges. Shah et al. (2013) implemented an automated refactoring on these edges.
Their results from applying several refactoring approaches, show that certain edges are
removable, while removing certain edges would introduce errors.

 Laval and Ducasse (2014) implemented an enriched dependency structural matrix
(eDSM) to detect dependency cycles between packages. They use contextual
information such as the types of relationships between the coupled components, the
proportion of referencing classes in the client package, and the proportion of referenced
classes in the provider package. In addition, the matrix table uses different colour
annotations to differentiate between direct cycles, indirect cycles, and other types of
dependencies. Finally, the tool reports actions and propositions to be performed to
remove detected dependency cycles.

In relation to refactoring and software defects there are conflicting evidence of the
benefits of refactoring. Weissgerber and Diehl (2006) found no correlation between
refactoring and defects opened in the subsequent days. Their results show that there are
periods where high refactoring was followed by an increase in the number of defects as
well as phases where refactoring led to no defects, although, the latter type were more
prevalent. Ratzinger et al. (2008) demonstrate that the number of software defects
decreases in the preceding time period when the number of refactoring activities
increases. Bavota et al. (2012) show that some kinds of refactoring are unlikely to be
harmful, but certain kinds such as refactoring involving hierarchies (e.g. pull up
method) are likely to induce defects. Kim et al. (2011) found that refactoring edits have
a strong temporal and spatial correlation with bug fixes. In another study, Kim et al.
(2012) discovered that refactored binary modules of Windows 7 experienced significant
reduction in the number of inter-module dependencies and post-release defects.

2.8 Summary of Research Challenges
This chapter has presented software quality, software testing, software evolution and
maintenance, software patterns, anti-patterns, and refactoring. In this section, the
challenges that are relevant to this thesis are presented. These challenges are within the
context of the presented topics in this chapter. We define the research challenges (RC)
as follows:

RC1: Metrics to identify critical software components: Several studies have focused
on building software quality models by using software metrics as predictor variables,
and defect counts or defect density as response variables: a comprehensive survey of
studies can be found in (Hall et al., 2011). One challenge is that other important defect
metrics such as correction effort and defect severity are not included. We can relate this
to the challenges discussed in (Fenton and Neil, 1999a; Fenton and Neil, 1999b). We
consider the correction effort and defect severity metrics as crucial to understand the
maintainability and reliability attributes of software systems. Another challenge is that

State-of-the-Art

 27

software components differ in the degree of their criticality to the system. We have not
found any study that investigates how metrics can be used to identify such critical
components in software. In the context of our study, criticality of defects and criticality
of components are important concepts that we want to investigate.

RC2: Empirical evidence of defect- and change-proneness of dependency cycles:
Existing studies have claimed that dependency cycles can be harmful for software
quality, e.g. (Lakos, 1996; Parnas, 1979). We need to understand the impact of
dependency cycles on external quality metrics such as defect and change metrics. This
understanding can help us to identify defect hotspots and guide refactoring efforts. To
the best of our knowledge we have not found any systematic study of anti-patterns at
the architectural level and their relationships to defect and/or change-proneness.

RC3: Refactoring of dependency cycles: Refactoring of dependency cycles have been
largely focused at the package granularity level (Dietrich et al., 2012; Falleri et al.,
2011; Laval and Ducasse, 2014) while there has been little focus for this activity at the
class granularity level (Melton and Tempero, 2007c). Since class files represent
maintenance units in systems developed with OO languages (e.g., Java and C#), it is
important to consider refactoring at this granularity level. An approach and tool for
refactoring dependency cycles would be important to improve the structural quality of
the identified hotspots in software systems.

RC4: Software Testing and Quality Assurance: Challenges related to software testing
can be grouped into the “why”, “how”, “how much”, “what”, “where”, and “when”
questions raised in (Bertolino, 2007). How to focus testing in the right sample of
observation is important to reduce the possibility of software failure. In practice, it is
impossible to achieve 100% test coverage (Roger, 2005), because quality assurance
resources are limited and there is pressure of time-to-market. Efforts are therefore
needed to identify specific code locations that should be focused for thorough testing.
RC5: Software maintenance and evolution: Software grows in complexity during
evolution. This complexity leads to a declining quality (Lehman, 1980). The main
challenge is the “technical debt” (Brown et al., 2010) that is not paid by the software
organization during the software life cycle. Technical debt describes a state of software
where its future is negatively affected by the past decisions. For example, early software
release versus maintainability. There is a need to develop approaches and tools to help
manage technical debt during software evolution.

RC6: Software patterns and anti-patterns: Patterns are claimed to be good solutions
to design problems while anti-patterns are recurrent problems in software design.
However, conflicting evidence exists as to the impact of patterns on software
maintenance (see (Jeanmart et al., 2009; Prechelt et al., 2002)). There are also cases of
patterns with instances of anti-patterns. A thorough empirical study of patterns with
anti-patterns in relation to maintenance would be useful to guide software design
decisions.

 28

Research Context and Design

 29

3 Research Context and Design

This chapter presents the research context and design of this thesis. In Section 3.1, the
research focus and questions are presented. Section 3.2 presents the software systems
that have been used to investigate the research questions in this thesis. Section 3.3
presents the metrics that are used in the studies. In Section 3.4, the approach of data
collection is presented. Section 3.5 discusses research methods commonly used in
software engineering. Section 3.6 presents the research design and lastly, Section 3.7
presents the scope, concepts, and limitation of this thesis.

3.1 Research Focus
The main goal of this thesis, as stated in Section 1.2, is to Improve the Management
of Software Evolution for Smart Grid Applications. A Smart Grid represents the
injection of Information and Communication Technology (ICT) infrastructure to the
electricity grid to allow for bi-directional flow of energy and information (NIST, 2010).
A Smart Grid is a system-of-systems (SoS) where heterogeneous systems must
interconnect and interoperate together (NIST, 2010). Continuous changes in the open-
world settings for heterogeneous systems need approaches to make them dependable
(Bertolino et al., 2011). One key challenge of SoS is the ripple effect of change (Creel
and Ellison, 2008). A change or failure in one system can cascade to some other
systems in a SoS. Such effects can threaten the reliability of the SoS. Understanding
defect/change-prone locations in individual systems of a SoS is thus a step in the right
direction. Such knowledge can guide quality assurance and motivate for improvements
in the different locations.

A consistent approach taken in this thesis is to investigate whether the individual
systems have design structures that lend themselves to modifiability and ultimately
maintainability. To achieve this, we have quantitatively analysed a structural anti-
pattern called “dependency cycle” against maintainability and indirectly reliability.
Maintainability and reliability are hard concepts to measure, however, it is possible to
use proxy metrics such as defect metrics and change metrics to indirectly quantify
maintenance and reliability. In pursuance of the research goals, we have performed an
analysis of the defect repository and source code of a distribution management system
of Powel AS in Trondheim.

Research Context and Design

 30

This thesis focuses on the maintenance and evolution of software systems. We are
interested to know how dependency cycles among software components affects the non-
functional requirements of software systems. In particular, we focus on maintainability
and reliability quality attributes. We investigated this goal by performing empirical
studies on released software systems. Figure 10 shows a summarized software
development process model, the area of the investigation, and the contributions of this
thesis. We show in this figure (see a - e) how an improvement program can be initiated
by the findings from the empirical studies of released software systems as follows:

Figure 10 The software development process with relationships to research

contributions

We can identify the locations for code restructuring through measurements of the
structural quality of the system and analysis (a) against external quality metrics (defect
and change frequency). The refactoring (b) could aim at improving the quality attributes
(c) (e.g. maintainability and reliability that are focused in this thesis). During the
refactoring to improve the software quality (non-functional requirements), it is possible
to introduce new design patterns and implement best design practice (d). Regression
testing (e) would have to be performed to ensure the system’s behaviour is preserved
(van Vliet, 2000). This iteration is possible for the entire life cycle of the software.

Analysing the internal quality metrics against the external quality metrics (defect and
change frequency) provide opportunities to pinpoint specific locations (components)
that should be focused for improvement. This will reduce the probability of false
positives and false negatives. This is the approach we have taken in this thesis to
achieve the research goal. This is rather different from using internal quality metrics as
the only decision variables for performing refactoring. The shortfall of the latter
approach is that many code locations have to be improved based on the results from
applying the metrics. However, quality assurance resources are indeed limited and in
many cases it would be impossible to improve all the suggested area. In addition, we
cannot really tell whether the locations we have refactored are more defect-prone or
change-prone than the untouched ones.

Research Context and Design

 31

We have discussed the two quality attributes (i.e., maintainability and reliability) in this
thesis because we are able to quantify them using external quality metrics (defect and
change rate) as indirect metrics.

We have outlined and investigated two main research questions in this thesis. The
motivation for the questions are discussed below:

RQ1. What is the effect of dependency cycles on external quality of software
components?

The sub-questions to explore RQ1 are motivated as follows:
RQ.1.1 What is the effect of using different defect metrics to identify critical

software components?

Defect distribution in software systems has been shown to follow the Pareto rule of 20-
80. This motivates the prioritization of components with the majority of defects for
testing activities. Several studies have also suggested that smaller components have
higher likelihood of defects when compared to the larger ones (Basili and Perricone,
1984; Hatton, 1997; Moller and Paulish, 1993; Ostrand and Weyuker, 2002). These
studies have used defect density measured as number of defects per thousand lines of
code (LOC). It has been demonstrated that most complexity metrics (e.g. McCabe
complexity metrics) correlate with a component’s size (Fenton and Pfleeger, 1998). It
then means that more complex components and invariably larger components are given
higher priority in prediction models that use defect count approach (largest-first
prioritization).
However, removing a large number of defects may have little effect on the reliability of
the system, since most failures are caused by a tiny number of defects (Adams, 1984).
This demonstrates the significance of a defect severity metric.

The question we seek to investigate is whether there are significant variations between
defective components and architectural hotspots identified by multiple defect measures.
In addition, we seek to investigate whether defect metrics classify differently the
defective components that developers consider critical in terms of their functionality to
the system.

RQ1.1 forms a basis for the remaining empirical studies in this thesis that explore
component-defect analyses.

RQ.1.2 What is the effect of dependency cycles on software defects?

Best design practice advocates to avoid dependency cycles between software artifacts
(Bass et al., 2003; Lakos, 1996; Martin, 2000; Parnas, 1979). Many authors (Bass et al.,
2003; Parnas, 1979) have claimed that such complex structure inhibit software quality
(e.g. reliability testability, modifiability or reusability). Empirical evidence shows that
dependency cycles are common among software components (Melton and Tempero,
2007b). However, the question of how dependency cycles correlate with defects
remains open. Since a dependency cycle is structurally complex, we hypothesize that it
would contain the majority of defects and defect-prone components. The findings from
this question can assist developers, maintenance engineers, and software project
managers to effectively allocate resources during software quality assurance.

Research Context and Design

 32

RQ.1.3 What is the effect of refactoring cycles on defect-proneness?
This research question has been developed from the results of RQ1.2, to empirically
investigate whether cycle-breaking refactoring lowers defect-proneness of components.
The hypothesis is that transitioning a component from a dependency cycle to an out-of-
cycle structure would reduce its structural complexity and improve its testability. Thus,
it should result in a lowered defect-proneness. It is important to explore and understand
whether any empirical evidence exists to support cycle refactoring in relation to defect
proneness.

RQ.1.4 What is the effect of dependency cycles on change rate?
The research questions above have focused on corrective maintenance. Lientz et al.
(1978) showed that correction efforts consume about 17.4% of the total maintenance
effort. Van Vliet (2000) stated that correction efforts account for about a quarter (25%)
of the total maintenance effort. We have thus dealt with a subset of normal software
maintenance activity. However, how dependency cycles relate to other types of changes
(perfective, preventive and adaptive) has not been explored. Our conjecture is that since
dependency cycles have strong and complex structures, they would have potential for
higher change propagation and ripple effects.

We also conjecture that certain types of cycles could be more change-prone because of
their properties. Cycles with inheritance relationships (defined by the STK metric),
cycles that spread across a large package structure (defined by the PCT-diameter
metric) and cycles formed by patterns (e.g. Visitor) are of particular interest. Our
hypothesis is that it is possible to use these properties to classify “critical” or “harmless”
cycles.

RQ2. How to refactor dependency cycles to impact the structural quality and
reduce the refactoring efforts?

This research question is formulated based on the results from the previous research
questions. The goal is to improve the structural quality of components in dependency
cycles. Dependency cycles are detrimental to many software quality attributes such as
modifiability, reusability, testability and reliability (Lakos, 1996; Parnas, 1979). It
inhibits the formation of components to have manageable size and stand-alone
properties (Melton and Tempero, 2007a). It is thus crucial to refactor those locations
that are particularly defect and change prone. Performing a cycle breaking refactoring
on existing systems at the class granularity level is not a trivial activity. It is therefore
necessary to provide a decision support tool that could assist a developer or
maintenance engineer to perform such refactoring activities. We seek to provide and
implement approaches that could be used for cycle-breaking refactoring and at the same
time would reduce the refactoring effort.

3.2 Summary of Software Systems
We have investigated 30 systems in the various studies in this thesis. These systems are
different in functionality, age, domain, programming language, usage, and context.
Table 3 provides a summary of the properties of the systems, and the papers where they
have been studied and reported. One of the systems is a commercial Smart Grid
application (with the pseudonym “CommApp”), which has been both quantitatively and

Research Context and Design

 33

qualitatively studied. Twelve systems from the list are selected from the Qualitas corpus
(Tempero et al., 2010). Using this standard dataset facilitates the replication of studies.
The rest of the systems are selected based on common criteria such as popularity, age,
support base, and programming language.

3.3 Metrics and Measurement
Software processes and products need measurements to characterize, evaluate, predict,
and identify areas of improvements (Park et al., 1996). Naik and Tripathy (2011) stated
three reasons for quantitative measurements of software quality: (1) Measurements
allow an establishment of baselines for quality, (2) Measurements are a key to process
improvement, and (3) the needs for improvement can be investigated after performing
measurements. Similarly, Fenton and Pfleeger (1998) indicated that measurements
make concepts more visible and as a consequence they are more understandable and
controllable. Fenton and Pfleeger (1998) defines a measurement as:
“the process by which numbers or symbols are assigned to attributes of entities in the
real world in such a way as to describe them according to clearly defined rules”
A software metric is a measurable property, which indicates the software quality criteria
to be measured (Gillies, 1997). In this thesis, various metrics have been defined and
employed to study software product quality with respect to reliability and
maintainability. In the subsequent sections, the different definitions of metrics used, are
presented and linked to the specific quality attribute they indirectly measure.

Table 3 Properties of systems used in the thesis
System Description Language License Papers

CommApp An industrial Smart Grid system C# Commercial P1, P2, P3,
P5, P7

Eclipse Integrated development environment (IDE) Java Open P2, P4, P5

Apache-Camel Routing and Mediation Engine Java Open P2

Apache-
ActiveMQ

Messaging and Enterprise Integration Pattern Server Java Open P2, P3, P4,
P5

Apache-Lucene Search Engine Java Open P2, P6

Apache-CXF Service framework Java Open P5

openPDC Smart Grid C# Open P2

Azureus (Vuze) File Streaming tool Java Open P7

JStock Stock market application Java Open P7

VidCoder Ripping and video transcoding application for
Windows

C# Open P7

Hibernate Object/Relational Mapper tool Java Open P6, P7

Openproj Desktop project management application similar to
Microsoft Project

Java Open P7

JXplorer Mature LDAP, LDIF and DSML client with i18n
support

Java Open P7

Megamek A networked Java clone of BattleTech, a turn-based
sci-fi boardgame for 2+ players

Java Open P7

Research Context and Design

 34

System Description Language License Papers

Weka A collection of machine learning algorithms for
solving real-world data mining problems

Java Open P6, P7

SomToolBox Open-source implementation in Java, that allows
you to easily train self-organizing maps, and
analyze them

Java Open P7

GanttProject A project scheduling application Java Open P7

Squirrel-sql A graphical SQL client Java Open P7

OpenRocket An Open Source model rocket simulator Java Open P7

ermaster Eclipse plug-in to make ER diagram Java Open P7

Logisim Educational tool for designing and simulating
digital logic circuits

Java Open P7

Ant Parsers/generators/make Java Open P6

Antlr Parsers/generators/make Java Open P6

Argouml Diagram generator/data visualization Java Open P6

Freecol Game Java Open P6

Freemind Diagram generator/data visualization Java Open P6

Jgraph Graph components Java Open P6

Jmeter Testing tool Java Open P6

Jung Diagram generator/data visualization Java Open P6

Junit Testing Java Open P6

Table 4 Defect metrics
Metrics Definition Measurement

scale
Papers

Defect counts Number of post release defects recorded for a component Interval P1, P2,
P3, P4,
P5

Defect severity The severity of recorded defect ranked on a scale
(critical/blocker, high, medium or low)

Ordinal P1, P3

Defect
correction
effort

The absolute number of hours for fixing a post-release
defect

Interval P1

Defect density Number of defects per lines of code Interval P1, P2

Defect
probability

The ratio of defective component to all components Ratio P2

3.3.1 Defect metrics as proxy for reliability
Measuring actual reliability (e.g., Mean-Time-To-Failure) is not the major focus of this
thesis. It is therefore not possible to conclude on the actual impact of the defect metrics
we have used with respect to the reliability of the systems. As discussed in Section 1.1,
a study by Adams (1984) shows that most of the latent defects lead to very few failures
in practice, while the vast majority of observed failures are caused by a relatively tiny
number of defects. In this sense, it is important to consider defect metrics that could be

Research Context and Design

 35

closely related to reliability. In Table 4, five defect metrics used in this study are
defined and described.

3.3.2 Change as a proxy for maintainability
According to IEEE 610.12, maintenance is “the process of modifying a software system
or component after delivery to correct faults, improve performance or other attributes,
or adapt to a changed environment” (Radatz et al., 1990). Following this definition, we
can use change (frequency of modifications) to only approximate maintainability. At a
lower granularity level, the change metric has been defined as a probability measure for
change in a component. A component may refer to a class or a package in object-
oriented system. The probability of change for a component is defined as (Oyetoyan et
al., 2015b):

 “Given a program P, let C be the set of classes in P, and V be the set of versions of
P such that for each version v ∈ V, a successor version succ(v) exists. For a given set of
classes S ⊆ C and a version v ∈ V we use changed(S,v) to denote the set of classes in S
that have changed from v to succ(v). The change probability of a class in S is then
defined as a function pchange : 2C × V → [0, 1] defined as:”

𝑃!!!"#$ 𝑆, 𝑣 =
𝑐ℎ𝑎𝑛𝑔𝑒𝑑(𝑆, 𝑣)

𝑆

Table 5 Cyclic dependency Metrics
Metric Definition Measurement

scale
Papers

in-SCC A component is in a strongly connected relationship to
other components (circular dependency)

Nominal P2, P3, P4,
P5, P6, P7

near-SCC A component (not in-SCC) but directly depends on in-
SCC component (Oyetoyan et al., 2013b; Oyetoyan et al.,
2015b)

Nominal P2, P3, P4,
P6

out-of-
SCC

A component that is not in-SCC and not near-SCC Nominal P2, P3, P5,
P6

isSTK An SCC that have a sub-type knowledge (Dietrich et al.,
2010)

Nominal P6

isVisitor An SCC that is formed by Visitor pattern Nominal P6

PCT-
Diameter

The normalized diameter of package tree for an SCC
(Falleri et al., 2011; Oyetoyan et al., 2015b)

Interval P6

CRSS The set of classes that a class can reach transitively
(Melton and Tempero, 2007a)

Interval P5, P7

IRCRSS The difference between the CRSS of a component and
CRSS of its interface normalized by the CRSS of the
component (Oyetoyan et al., 2015a)

Interval P7

Research Context and Design

 36

3.3.3 Cyclic metrics as proxy for maintainability
Modularity is a sub-characteristic of maintainability. A system where modules are in
circular dependencies violate the acyclic dependency principle (Martin, 2000) and
would be difficult to maintain (Bass et al., 2003). Table 5 describes the metrics that
have been used and defined in connection to the studies presented in this thesis.

3.4 Data collection for Empirical Studies
The studies in this thesis have used data from configuration management systems,
defect tracking systems (DTS), program source files, and binary files. Figure 11 shows
the different sources of data for this study and their mapping. We have extracted
dependencies using both byte code analysis (binary files) and text analysis (for source
files). From these dependencies, a simple graph model of components (classes or
packages) and their relationships is built. The higher level of abstraction (e.g. packages)
is computed by aggregating the dependencies at the class level. Strongly connected
components (SCCs) are then computed based on Tarjan’s algorithm, which is suitable
for this purpose and completes in linear time (Tarjan, 1972).

Defect data is collected from DTS and mapped to the source files that are changed
because of corrective maintenance action. This mapping is usually done through a
defectID logged against the changed class. The defectID is used as a key to map the
class files to other defect metrics (e.g. defect severity and correction effort). Indirect
defect metrics such as the defect density are computed from the aggregated defect count
for each class by dividing with the lines of code (LOC).

The change data comes from differing two releases of a class using byte code analysis.
Essentially, the members of a class in release i are compared to its members in release
i+1 to detect a change (e.g., change in the return type or parameters of a method).
The members considered are those that are API elements (public, protected or package-
private) and could be methods, fields or constructors. These elements are the source
through which change can ripple through the system.

In the final step, the graph model and the defect or change data are mapped. The data is
presented for analysis. The kind of analysis to be performed depends on the
measurement scale of the dependent and independent variables (Fenton and Pfleeger,
1998). We have used both the Wilcoxon rank sum and Spearman/Pearson correlation
tests in R statistical package for our analyses.

3.5 Research Methods in Software Engineering
Empirical research follows three types of research paradigms; the qualitative,
quantitative and mixed-methods research (Robson, 2011; Wohlin et al., 2003).
Qualitative research is about studying objects in their natural setting (Wohlin et al.,
2003). The goal of using this method is to explore and understand the meaning
individuals or groups ascribe to social or human problems (Creswell, 2013).
Quantitative research is concerned with quantifying a relationship between variables or
comparing groups (Creswell, 2013; Robson, 2011; Wohlin et al., 2003). The variables
are measurable and data generated is statistically analysed (Creswell, 2013). Mixed-
methods research combines both quantitative and qualitative methods (Robson, 2011).

Research Context and Design

 37

Figure 11 Data collection from different repositories

The approach integrates both qualitative and quantitative data to better understand the
research problem (Creswell, 2013). It allows for triangulating results to enhance the
validity of findings (Robson, 2011).
Empirical studies can be exploratory (i.e., investigating parameters), prescriptive (i.e.
finding distributions of certain characteristics), or explanatory (investigating why
certain phenomena occur). Different strategies can be used in an empirical study;
experiment, case study, survey, ethnography, or action research (Easterbrook et al.,
2008). We briefly discuss these strategies. In addition, we discuss another method;
design science that is popular in information science but is as well applied in software
engineering.

Experiment: Experiment is a rigorous, controlled investigation where one or more
independent variables are manipulated to measure their effects on one or more
dependent variables (Easterbrook et al., 2008; Fenton and Pfleeger, 1998). A controlled
experiment is useful to determine cause-effect relationship between variables.
Experiments are normally performed in the laboratory and are thus referred as research-
in-the-small (Fenton and Pfleeger, 1998; Wohlin et al., 2003).

Case study: A case study is used to investigate how and why certain phenomena occur
and it is sometimes referred to as research-in-the-typical (Easterbrook et al., 2008;
Fenton and Pfleeger, 1998). In a case study research, key factors that may affect an
outcome of an activity are identified; then the inputs, constraints, resources and outputs
of the activity are documented (Fenton and Pfleeger, 1998). A case study is an
observational study in contrast to an experiment that is a controlled study. It is usually

0DS�GDWD�	
$QDO\]H

([WUDFW�*UDSKV

SURJUDP
-DUV

'HWHFW�6&&V

&KDQJH�0HWD�GDWD

FODVV1DPH
PHWKRG&KJ
)LHOG&KJ
&RQVWUXFWRU&KJ
«

6RXUFH�
ILOHV

691�
5HSRVLWRU\

'HIHFW�
7UDFNLQJ�
6\VWHP

0HWD�GDWD

GHIHFW,'
&ODVV1DPH
��

SURJUDP
-DUV

Research Context and Design

 38

aimed at tracking a specific attribute or establishing relationships between different
attributes (Wohlin et al., 2003).
Survey: A survey is referred as a research-in-the-large and it is often an investigation
performed in retrospect (Wohlin et al., 2003). For example, it can be used to investigate
the impact of a tool that has been in use for a while. A survey uses questionnaires or
interviews as instruments to collect qualitative or quantitative data. In a survey, a
representative sample must be drawn from a well-defined population (Easterbrook et
al., 2008). The results are analysed to derive descriptive and explanatory conclusions
(Wohlin et al., 2003) and can be generalized to the population (Easterbrook et al.,
2008).
Ethnography: (Robson, 2011) defines ethnography as “an approach to the description
and understanding of the life and customs of people living in various culture”. For
software engineering, ethnography can be useful to understand how technical
communities build a culture of practices and communication strategies that help them to
perform technical jobs collaboratively (Easterbrook et al., 2008). Ethnographic studies
are typically long term studies in their natural settings (Robson, 2011). Central to
ethnographic study is a research question that is focused on the cultural tradition of the
community and accessibility to the community (Easterbrook et al., 2008).
Action research: In action research, researchers are interested to solve a real-world
problem while simultaneously studying the experience (Easterbrook et al., 2008).
Improvement and involvement are central goals of action research (Robson, 2011).
Action researchers get involved in the studied situation with the central goal of
improving it (Easterbrook et al., 2008; Robson, 2011). Central to action research is the
collaboration between the researchers and the problem owner who must be willing to
engage in an effort to solve an identified problem (Easterbrook et al., 2008; Robson,
2011).
Design science: Design science is an engineering approach to creating and evaluating
software artefacts (Peffers et al., 2007). The artefact may extend the knowledge base or
apply existing knowledge in new and innovative ways (Hevner et al., 2004). Design
science research methodology (DSRM) is made up of six activities (Peffers et al.,
2007), these are: (1) problem identification and motivation, (2) defining the objectives
of a solution, (3) design and development, (4) demonstration, (5) evaluation, and (6)
communication. The research must produce an artefact to address a problem. The utility,
quality and efficacy of the artefact must then be rigorously evaluated. Its contribution
should be verifiable and it must be effectively communicated to the right audience
(Hevner et al., 2004).

3.6 Research Design
The study was divided into four studies as shown in Figure 3 in Section 1.3. Table 6
provides the summary of the research design.
Study 1: In this study, the impact of using different defect metrics on software
components is investigated. The study uses both case study and survey methodologies.
It forms a background for the remaining studies that focused on defect analysis of
software components.

Research Context and Design

 39

Study 2: explores dependency cycles among software components and their relation to
defects and change. The data comes from both defect tracking systems, configuration
management systems, and the source/byte code. A case study methodology is used.
Study 3: investigates the effect that refactoring dependency cycles have on the defect-
proneness of the components. A case study methodology is used.
Study 4: The last study has used design science as an approach to improve the
refactoring of components in dependency cycles and evaluated using case study and
interview.

3.6.1 S1: Empirical investigation of using different defect metrics to
classify critical components

The goal for Study 1 was to investigate identification patterns of multiple different
metrics to identify critical components. Study 1 addressed the research question RQ1-
1. We investigated four different defect metrics using the post release defects of an

Table 6 Summary of research design
Study Study

description
Research
methods

RQ
1-1

RQ
1-2

RQ
1-3

RQ
1-4

RQ
2

Paper Contri-
bution

S1 Empirical
investigation of
using multiple
defect metrics
to classify
critical
components

Case study &
Survey
(Quantitative &
Qualitative)

X P1 C1

S2 Investigation of
defect and
change
proneness of
cyclically
dependent
components

Case study
(Quantitative)

 X X P2,
P3,
P6

C2-1, C2-
2, C3-1

S3 Investigating
the effect that
refactoring
dependency
cycles have on
defects

Case study
(Quantitative)

 X P4,
P5

C2-1

S4 Improving the
structural
quality of
cyclically
dependent
components
using tools and
metrics

Design Science,
Case study &
Survey
(Quantitative&
Qualitative)

 X P7 C3

Research Context and Design

 40

industrial Smart Grid system. The four defect metrics are defect counts, defect density,
defect severity, and defect correction effort. These metrics were quantified on software
components by using four related measures. These measures are:

1) Defect-Prone Components (DPC), classified as the top 25% of components with the
highest number of defects

2) Defect-Dense Components (DDC), classified as the top 25% of components with
the highest defect density

3) Severe-Defective Component (SDC), classified as the top 25% of components with
the highest number of critical defects

4) Hard-to-fix Defective Components (HFC), classified as the top 25% of components
with the highest correction effort

We have used a case study to answer the research question since the data we sought
could be gathered from the system’s repositories. In addition to a case study method, we
have used survey to collect the data about the criticality of the components to the system
from the developers. We did this by asking the developers to rank a set of identified
components by the metrics using a defined scale. We then quantitatively analysed the
results.

Figure 12 Components in and near dependency cycles

3.6.2 S2: Investigation of defect and change proneness of cyclically
dependent components

The goal of Study 2 was to assess the impact of dependency cycles on the defect
proneness and change proneness of components. Study 2 addressed the research
questions RQ1-2 and RQ1-4. The study is divided into three sub studies. Since the data
needed for these studies could be mined from the various systems’ repositories, we have
therefore used a case study methodology. We selected six systems with different
properties in the first sub-study and two out of the six systems for the second sub-study.
Furthermore, we mined the defect data from the defect tracking system and associate
them against the components that are changed in the subversion repository (see Section
3.4 for details). We defined a set of metrics to classify components into three groups,
“in-SCC”, “near-SCC” and “out-of-SCC”. Where “near-SCC” refer to components that

QRQ�6&&

6&&�

6&&�

Fig. 4. Neighborhood to an SCC

of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same
neighbours. For instance, figure 4 shows an example where
two cycles scc1 and scc2 share the same outward neighbour.
In order to avoid assigning a class to multiple cycles, we use
the following set of rules when a class is near multiple cycles:

1) If the class changes, prioritize cycles with change.
If there are multiple cycles that change, pick one
randomly.

2) If the class does not change, prioritize cycles without
change. If there are multiple cycles that change, pick
one randomly.

3) Otherwise randomly select a cycle.

E. Statistical analysis

1) Analysis Method: The input data for the statistical
analysis are provided by the three functions pchange, stk
and pct that associate SCCs version pairs with information
representing change probability, STK classifications and PCT
values.

We want to investigate (1) the change proneness of SCCs
against non-SCCs, (2) the change proneness of SCCs with
STK over SCCs without STK and (3) whether the pct
diameters of SCCs are correlated with change proneness.

a) Analyzing Change Proneness of SCCs vs. Non SCCs:
We analyse two data series for the two sets of classes:
the classes in SCCs, and the classes not in SCCs. The
hypothesis here is that classes in SCC are more change-
prone and they propagate change more to their neighbourhoods
because of their structural complexity. It is easy to expand
this investigation to include neighbourhoods of an SCC, by
also considering neighbours (in-neighbours out-neighbours) as
elements of SCCs as described above.

b) Analyzing Change Proneness of STK vs Non-STK :
Here we analyse two data series: the classes within STKs,
and the classes in non-STK SCCs. Note that we do not
directly compare STK instances with non-SCCs, however, this
relationship can be inferred by combining the results of this
and the previous experiment.

c) Analysing the Correlation between PCT Diameter
and Change Proneness: To answer this question, we use a
slightly different method. The input data are not just two
data series, but consist that two matrices where we map
pairs consisting of versions and individual SCCs to a change
probability using the formula defined above, and to the PCT
diameter value, respectively.

2) Testing of the Hypotheses: We have employed two
different statistical analysis methods to test our hypotheses.
The choice of either one depends on the measurement type of
the variables under investigation. To analyse the correlation
between two data series (RQ1 and RQ2), we used a non-
parametric test. To test the hypotheses in this category, the
data is first tested for normality using the Shapiro test. It
turned out that each dataset deviates strongly from normality.
Subsequently, we use a non-parametric test (Wilcoxon rank-
sum)[11] for analysis.

For interval variables used in the experiment for RQ3, we
have used Pearson and Spearman correlation.

3) Measuring interactions among experimental factors: It
is the goal to also understand if there are interactions among
the two factors being investigated in this study. We suspect
that classes with high pct diameter could also be prone to
STK anti-pattern. It is thus appropriate to treat the two factors
as a competing treatments and use one factor as a blocking
factor in the experiment [11]. A nested design is chosen where
the factor STK is selected as a blocking factor, since it is
nominal in its scale whereas PCT-Diameter is interval. Next,
the sccs are grouped into hasSTK -True or False groups and
a statistical analysis is performed between PCT-Diameter and
change-probability (dependent variable) in each group.

V. RESULTS

A. System Properties

Table I shows the average values for several systems prop-
erties while table II reports the (average) percentage of classes
in and near cycles. Averages are computed over all versions
of the respective program in the data set. The distribution of
classes within SCC range from 10.3% to 80.7%. For some of
the systems, a surprisingly high number of classes is within
cycles, including freecol (80.7%), jgraph (77%), hibernate
(62.8%) and freemind (55.3%). Two systems, jgraph and
freecol, have relatively large pct-diameter values. Freemind has
the largest percentage of changed classes (53.6%) as shown in
pchange column, while the rest of the systems have change
probabilities between 10.8% (jung) to 35.3% (freecol).

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size

Research Context and Design

 41

are not in cycles but directly depend on components in cycles (see Section 3.3.3 and
Figure 12).
In the third sub-study, we chose twelve systems from a standard curated dataset
(Qualitas Corpus, see Section 3.2 for details). We then collect the change frequency
data by extracting changed meta-data between two successive releases. We defined
three new metrics (isSTK, isVisitor and PCT-diameter) in addition to the metrics in the
first two sub-studies, to classify various SCCs.

Lastly, we apply Wilcoxon rank sum test, Spearman, and Pearson correlation test for the
analyses.

Figure 13 A simple example of transitions of in-cycle components between

releases

3.6.3 S3: Investigating the effect that refactoring dependency cycles
have on defects

The goal of Study 3 was to empirically investigate whether refactoring components in
dependency cycles could reduce their defect-proneness. Study 3 addressed the research
question RQ1-3. We divided the study into two sub studies. The first part studied the
correlation between graph properties of a cycle (such as its diameter, density, vertex
size and edge size) and the number of defect-prone components in each cycle graph.
The second part studied the transition and evolution patterns of cyclically dependent
components. We chose a case study methodology in order to answer the research
questions in both studies.

Research Context and Design

 42

In the first sub-study, we defined two-transition states as in-cycle and out-of-cycle and
formed a Cartesian product between the two states as shown in Figure 13. The resulting
four states made it possible to investigate whether:
1. Components in dependency cycles persist as defective in the “in-cycle” state more

than components that persist in the out-of-cycle state
2. There evidence of cycle-breaking refactoring between releases
3. The transition of defective components from in-cycle to out-of-cycle reduce the

defect-proneness of such components
4. The coupling or size complexity of components that transition as defective between

in-cycle states increase at a significantly higher rate than those that transition
between out-of-cycle states

We applied Spearman and Pearson correlation tests to determine the relationship
between the cycle graph properties and defects in the first sub-study. For second sub-
study, we applied proportion and t-tests.

3.6.4 S4: Improving the structural quality of cyclically dependent
components using tools and metrics

The goal of Study 4 was to improve the refactoring of classes in dependency cycles
while reducing refactoring effort. Study 4 addressed the research question RQ2. We
implemented a metric (IRCRSS) to identify candidates for cycle breaking refactoring
(see Section 3.3.3). This is computed by finding the reduction between the CRSS value
of a candidate and the CRSS of its abstraction (interfaces or abstract classes). This study
aimed to improve an existing metric in addition to developing a refactoring tool.
Therefore, a design science methodology was selected. In addition, we used case study
and interview methods to evaluate the metric and tool. We investigated the following:
1. Whether the system restructuring is better when IRCRSS reduction exists and it is

used.
2. Whether tuning with IRCRSS metric would produce refactoring fitness that is better

than candidates’ selection without tuning with IRCRSS.
3. Whether tuning with IRCRSS metric always improve the software structure Is it a

common property that tuning with IRCRSS results to better fitness in every system
or not? We want to find out empirically whether many applications exhibit this
opportunity.

4. Whether using IRCRSS metric would reduce the restructuring effort
We then evaluated the improved approach on fifteen applications and used statistical
test to determine the significance of the improvements. Finally, we performed a
qualitative evaluation of the tool and approach.

3.7 Scope, Concepts and Limitations
Type of systems: In this thesis, object-oriented systems have been used for the
analyses. Specifically, the systems are written with either Java or C# programming
languages as shown in Table 3. This can be a limitation regarding the application of the
findings in other programming language domain.

Research Context and Design

 43

Size measure: There are two common approaches to define size or length of a source
code; (1) as the number of lines of code (LOC) or (2) as a measure of functionality in
software (Fenton and Pfleeger, 1998). LOC is more commonly used and can be defined
as (Fenton and Pfleeger, 1998); non-commented source statements (NCLOC) or a
combination of NCLOC and comment lines (CLOC). The studies in this thesis have
used non-commented lines of code (NCLOC) as the size measure. Critics of LOC, e.g.
(Jones, 1985) have argued that it is technology-dependent and therefore difficult to use
for comparing software across different programming languages. The systems we have
investigated are written in object-oriented languages (Java and C#). Both languages
share similar properties and therefore simplify the possibility to use LOC as a size
measure for the systems.
Type and phase of defects: The analyses that have been performed in this thesis are
based on post-release defects. These are defects reported during the operational period
of the software and are different from pre-release defects that are captured during initial
software development. The various types of defect, for instance, based on Orthogonal
Defect Classification (ODC) (Chillarege et al., 1992), are not the focus of this study.
Therefore, the defect metrics are used as described in Table 4. It will be an interesting
future study to use the ODC for investigating defect-proneness in dependency cycles.
Type of analysis: The studies in this thesis are based on static coupling measurements
and not dynamic coupling measurements (Arisholm et al., 2004). It is thus possible that
actual coupling among classes at runtime are not completely captured. This imprecision
can occur due to polymorphism, dynamic binding and dead code in the software. For
instance, the use of reflection in Java cannot be detected during static analysis as the
coupling occurs at runtime. However, static code analysis has been found to be
practically useful and less expensive to collect (Basili et al., 1996; Briand et al., 1998;
Chidamber and Kemerer, 1994; Zimmerman et al., 2011). Additionally, static coupling
measures reflects to a very high degree the coupling among classes at runtime.
Therefore, the imprecision cannot bias the results obtained in the studies.

 44

Results

 45

4 Results

This chapter summarizes the results obtained in this thesis. The results are synthesized
with the research questions, the papers containing the results and the main contribution
from the research.

Overview of Results and Contributions
A summary of the studies, the research questions, its contributions and the papers for
each study is given in Table 7. In Study 2, three sub-studies are reported. Similarly, in
Study 3, two sub-studies are presented.

4.1 Empirical Investigation of different Defect Metrics to
classify Critical Components

In Study 1, we evaluated the usefulness of several defect measures such as the number
of defects, defect density, defect correction effort, and severity of defect, to identify
defect-prone components that are critical to the system. The research question addressed
in this study is:

RQ1-1: What is the effect of using different defect metrics to identify critical software
components? This is answered by paper P1 and led to contribution C1-1, i.e.,
“Identification of the usefulness of multiple defect metrics to classify critical software
components”.

The study aims to find out whether there are significant variations between the different
defect measures to identify defect-prone components and architectural hotspots. We
analysed the post-release data of an industrial Smart Grid application with a well-
maintained defect tracking system. Using the Pareto principle, we identify and compare
defect-prone and hotspots components based on four defect metrics. Furthermore, we
validated the quantitative results against qualitative data from the developers. The
results from the study show that at the top 25% of the measures: (1) significant
variations exist between the defective components identified by the different defect
metrics and that some of the components persist as defective across releases. (2) The top
defective components based on number of defects could only identify about 40% of
critical components in this system. (3) Other defect metrics identify about 30%
additional critical components and (4) by considering the pairwise intersection of the

Results

 46

Table 7 Studies and their relation to research questions, methods, and
contributions

Study S1 S2 S3 S4

Research
Questions

RQ1 RQ1-2, RQ1-4 RQ1-3 RQ2

Papers P1 P2, P3, and P6 P4, P5 P7

Contributions C1. Identified
the usefulness
of using
different defect
metrics to
classify critical
software
components
and the need to
incorporate
different defect
metrics during
defect analysis
of software
components

C2: (1) Observed
a higher defect-
proneness for
components in
dependency
cycles and near
cycles. (2)
Observed a
significant change
impact for
components
in/near
dependency
cycles

C3. Added new
metrics to
understand cycle
neighbourhoods
and to improve
the refactoring of
cyclically
dependent
components

C2: (1) Observed a
strong correlation
between the size of
a cycle graph
(nodes and edges)
and defect-prone
components. (2)
Observed a higher
defect-proneness
for components
that transition
between
dependency cycles
than those that
transition between
out-of-cycles.
Observed no
systematic cycle-
breaking
refactoring
between releases

C3: (1) Inclusion
of new metric that
improved the
refactoring of
cyclically
dependent
components and
reduced
refactoring efforts
over previous
approach. (2)
Constructed and
validated a cycle
breaking decision
support system for
refactoring
cyclically
connected
components

Area of
contribution
to software
quality

Reliability Reliability &
Maintainability

Reliability &
Maintainability

Maintainability

Research
Methods

 Case study &
Survey
(Quantitative
& Qualitative)

Case study
(Quantitative)

Case study
(Quantitative)

Design Science,
Case study &
Survey

defect metrics, additional quality challenges of a component could be identified.
Critical defects spread across components in systems: Defect distribution in systems
has been shown to follow the Pareto rule of 20-80 where a few components account for
the majority of the defects in the systems. However, Figure 14 shows the percentage of
defect-prone components with critical defects when ordered by defect counts. It shows
that critical defects spread across all the components and using the 20-80 rule for
prioritizing testing could be a major limitation as many defect-prone components with
critical defects might be missed.

Results

 47

Critical components and defect-proneness: It is observed by analysing several defect
metrics and grouping them against the rankings by developers that:
1. Critical components in a system are sometimes missed during testing when quality

assurance (QA) is focused on a percentage of the components. The criticality of
component to a system is determined by the role such component plays in the
system and to other systems (e.g. a connector may be a critical component).
Unfortunately, QA resources are limited; therefore, it is often impossible to
thoroughly test every component in a system.

2. The two metrics; defect severity and defect correction effort identified additional
components that were ranked critical by developers and these were neither
identified by the defect count nor the defect density metrics.

3. Using multiple defect metrics can provide more insight about critical and defective
components and guide the allocation of resources for testing. For example, by
finding the pairwise intersections between the set of components identified by the
different defect metrics, additional quality challenges of components are exposed. It
will, however, require that developers exhibit a disciplined approach to recording
defect data and that the development organization take advantage of the data for
improvement purposes.

Largest vs. smallest first prioritization approach: Proponents of “largest-first
prioritization” typically focus testing efforts to components with the highest number of
defects. On the other hand, “smallest-first prioritization” proponents focus testing
efforts to components with the highest defect density. Interestingly, findings showed
both approaches to miss a significant number of defective components that are ranked
critical by the developers.

Figure 14 % of DPC with critical defects identified at the top k% of the class-

files DPC over six releases (Oyetoyan et al., 2013a)

Contribution: The findings in S1 exposed the usefulness and need to include different
defect metrics when performing defect analysis of software components. Since quality
assurance effort is limited, we have proposed including several defect metrics to
identify significant number of critical components during defects analysis and to
discover additional quality challenges of defective components.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" $'" '!")'" #!!"

!
"#

$%
$&

'(
)*

+,
$"

-+
.

/+
,$

,'
0"1

2'3
"&

*24
&5

6"
0$

7$
*2'

8"
9$

%$
&'

"

-:..:6547$";'+/"<!="#$%$&'()*+,$"-+./+,$,'0"+*9$*$9">8"9$%$&'"&+:,'"
;?5*@$0'(A2*0'"B//*+5&3="

,-../00"

/012345/267489"

Results

 48

4.2 Investigation of Defect and Change Proneness of Cyclically
Dependent Components

In Study 2, we investigated the relationships between cyclically dependent components
and (1) defects, and (2) change rates. The research questions addressed in Study 2 were:

RQ1-2: What is the effect of dependency cycles on software defect? The results are
reported in papers P2 and P3 and presented in sections 4.3.1 and 4.3.2 respectively.

RQ1-4: What is the effect of dependency cycles on change rate? The results are
reported in paper P6 and presented in Section 4.3.3.

Study 2 supports the main contributions stated in C2 and partly C3, i.e.,
C2.1: Identification of dependency cycles and neighborhood as defect hotspots in
software systems
C2.2: Better understanding of the change impact of dependency cycles

C3.1: Added metrics to understand the complexity of components and improve the
refactoring of cyclically dependent components

4.2.1 Empirical evidence of dependency cycles as defect hotspots in
software components

An investigation of the correlation between cycle components and defects was carried
out. This is explored by using cycle metrics to mine and classify software components
into two groups - the cyclic and the non-cyclic ones. Next, we have performed an
empirical study of six software applications. Using standard statistical tests on four
different hypotheses, we have determined the significance of the defect profiles of both
groups.

The results show that:
1. Components in and near dependency cycles have higher likelihood of defect-

proneness than those not in cyclic relationships.
2. The higher number of defective components is concentrated in components in and

near dependency cycles.
3. Defective components in and near dependency cycles account for the clear majority

of defects in the systems investigated.
4. The defect density of components in and near dependency cycles is sometimes higher

than those in non-cyclic relationships.
Dependency cycles and defect counts: We have identified that a clear majority of
defects and defective components are contained within the cyclically dependent
components and their direct neighbourhood. This follows that the majority of the
components that account for most of the defects are concentrated in dependency cycles.
We found this to be interesting in the discussion of the “20-80” defect distribution rule
in software systems (discussed in Study 1). It presupposes then that the majority of the
“20%” components are in dependency cycles. Some cycles are also found to have large
components and many incoming references (dependencies) in comparison to others. An
example concerns utility components that are largely referenced because they provide

Results

 49

services to other components. In certain systems, they are found to be a major hub for
large dependency cycles.
Dependency cycles and defect density: Components in dependency cycles and the
immediate neighbourhood showed lower defect densities in some systems as against
those not in cycles. We observed that components not in dependency cycles have
smaller size and thus higher defect densities. This is interesting in relation to the
previous discussions about “smallest-first prioritization”. The findings in S1 confirmed
that defect density metric for “classes” could only identify “average” and “minor”
components in the studied system, whereas, other metrics could identify largely,
“critical” and “major” components of the system. It reinforced the fact that dependency
cycles and its neighbourhood accounted for very complex components in the systems
studied and should be focused for refactoring and testing.

4.2.2 Empirical evidence of the criticality of defects in cyclic
dependent components

We investigate the criticality of defects in cyclically dependent components. Removing
a large number of defects may have trivial effect on system reliability. The most number
of latent defects lead to very rare failure in practice, while the vast majority of observed
failures are caused by a relatively tiny number of defects. This shows that it is not the
number of defects, rather their severity that matters. Thus, we are compelled to find out
if this majority of defects and defect-prone components in cyclically related components
are also the majority in both critical defects and severe defective components.

In the two applications that are empirically investigated, the main findings are that
cyclically related components and their neighborhood components account for almost
all of the critical defects and defect-prone components affected by these critical defects.
Dependency cycles and critical defect: The vast majority of critical defects that could
result into a system failure and the components affected by the defects are concentrated
in cycles and the immediate cycle neighbourhood. Most of the critical defects are
associated with the system’s reliability and are therefore very important. Defects mined
in this category are for example; “Database running at 100% CPU and “Network
bridges can deadlock when memory limit exceeded”. We found that approximately 50%
of the in-cycle and neighbourhood components in the systems investigated accounted
for almost all of the critical defects in the systems. It is thus more efficient to focus
testing effort to about half of the components than all of the components.
Dependency cycles and neighbourhood components: We have proposed a metric
termed “depend-on-cycle” to show the complexity of components that depend on other
in-cycle components. The results we have obtained showed that these components share
similar complexity as those components in cycles and are therefore of specific interest.
In summary, the case studies showed results that displayed a correlation between in-
cycle/near-cycle components and defects. We thus proposed a refactoring of the
components in dependency cycles and hypothesized that such refactoring can reduce the
defect-proneness of the components “in” and “near” cycles over time.

Results

 50

4.2.3 Empirical study of dependency cycles and change rate
Two key issues are open with respect to the pervasiveness of cycles among software
components. (1) It is probable that components in cycles incur maintenance penalty and
(2) It could suggest that not all cycles are bad. Recent studies have proposed new
heuristics and approaches to distinguish between “bad” and “harmless” cycles. In this
study, we have investigated (1) whether classes in cycles are generally change-prone
more than those not in cycles (2) whether cycles that have high diameters within their
package containment tree are more change prone and (3) whether cycles that contain
subtype knowledge in their structure are more change-prone.
We find that (1) the presence of cycles can have a significant impact on the change
proneness of the classes near these cycles and (2) neither subtype knowledge nor the
location of the cycle within the package containment tree are suitable criteria to
distinguish between critical and harmless cycles.
Dependency cycles and change rate: We have found that dependency cycles have big
impact on the change proneness of their direct neighbourhood. However, in the majority
of the systems we investigated, components in dependency cycles undergo less change
than those not in cycles. One explanation for this observation could be that certain
utility components that are heavily referenced and turned back to become a major hub
for big cycles. An example that fits this explanation is the case where abstraction is
combined with the Singleton design pattern (Gamma et al. 1994). Components that are
heavily reused have a high responsibility and therefore tend to be more stable.
However, components around the cycles (i.e. depend-on-cycle components) are
unstable. In relation to our previous studies that used only defect data, we found
consistency with the impact of cycles on the neighbourhood components. However,
there are differences with the results we obtained from the studies that investigated
cycles and defects. Cycles tend to be more correlated to defects (corrective
maintenance) in the majority of the applications than the remaining types of change
(perfective, preventive and adaptive). Replicated studies would be useful to consolidate
the findings in these studies.
Harmless and critical cycles: We attempted to distinguish between “critical” and
“harmless” cycles by using certain cycle properties and heuristics. We found that certain
cycles (e.g. cycles formed by the use of the Visitor pattern) may be stable. We call this
inadvertent cycles formed as a result of limitations in technology. In the case of Visitor,
this pattern is chosen to overcome the lack of support for multiple dispatch in Java
(Muschevici et al., 2008). For other cycle properties investigated, such as those with
subtype knowledge (STK) or high PCT-diameters, there was no difference in their
change-proneness to the cycles without these properties. In particular, neither STK nor
PCT-diameter is useful to classify “bad” or “harmless” cycles. We thus propose a study
of a trade-offs between patterns and anti-patterns.
Contribution: One main contribution of Study 2 was the identification of components
in and near dependency cycles as hotspots for most defects and critical defects. Another
contribution was the understanding of the impact of cycle neighbourhood on change
rate. Lastly, there was better understanding about whether certain cycle properties could
be used to classify harmless or critical cycles by considering their change rates.

Results

 51

4.3 Investigating the effect that Refactoring Dependency
Cycles have on Defects

The results from Study 2 indicate that components with cyclic relationships are
responsible for the largest number and severity of defects and defect-prone components.
Therefore, the goal in Study 3 was to investigate the variables within cyclic dependency
graphs that correlate with number of defect-prone components. Furthermore, we wanted
to investigate whether there are systematic cycle-breaking refactoring between releases,
and whether the transitions of components between dependency cycles to out-of-cycle
states, have effect on their defect-proneness. The research question investigated in
Study 3 is:
RQ1-3: What is the effect of refactoring cycles on defect-proneness? The results are
reported in papers P4 and P5 and presented in sections 4.4.1 and 4.4.2 respectively.
The study supports the main contribution C2-1: Identification of dependency cycles and
neighbourhood as defect hotspots in software systems

4.3.1 Empirical investigation of whether refactoring cyclic dependent
components can reduce defect-proneness

We have examined the relationships between the size and distance measures of cyclic
dependency graphs and defect-prone components. The goal was to determine variables
within dependency cycle structures that could be the focus for refactoring activity.
Results demonstrated that the size of the cyclic graphs consistently correlates more with
the defect-proneness of components in these systems than other measures. This implies
that adding new components to and/or creating new dependencies within an existing
cyclic dependency structures are stronger in increasing the likelihood of defect-
proneness. Since causality is evaluated, at least initially with data that describe
correlation, we could hypothesize that refactoring (breaking) cyclic dependencies can
reduce defect-proneness of components.

Size of cycle and defective components: We observed that the size of a cycle correlate
strongly with the number of defect-prone components. Increasing the number of
components in cycles or forming new dependencies within cycles correlates with an
increased number of defect-prone components.

4.3.2 Empirical investigation of defect patterns of components in
dependency cycles during software evolution

We investigated the defect-proneness patterns of cyclically connected components vs.
non- cyclic ones when they transition across software releases. In addition, we
investigated whether cycle-breaking refactoring are performed between software
releases and whether they have impact on the defect-proneness of affected components.
The study also examined the coupling and size complexity of the components to
determine their effect on the components defect-proneness during transition.

The study found that most movements of classes occurred in the same state. For
instance, the transitions between releases are mostly from “in-cycle” to “in-cycle” or
from “out-of-cycle” to “out-of-cycle”. In other words, we found no evidence of any

Results

 52

systematic “cycle-breaking” refactoring between releases of the software systems.
Furthermore, the results show that during software evolution, components that
transitions between dependency cycles have higher probability to be defect-prone than
those that transition outside of cycles. This case holds when the direct cycle
neighbourhoods are not considered. In relation to defects, out of the three independent
variables (LOC5, CBO6 and CRSS7) investigated, the study found that the CRSS metric
tends to be more associated with classes that move between “in-cycle” states.

Evidence of cycle-breaking refactoring: Among the software systems (including the
industrial Smart Grid system), we found no systematic cycle-breaking refactoring
between software releases of these systems. The few components that transitioned
outside of cycles in their next releases appeared to be an accidental transition. This may
explain why dependency cycles are so pervasive among software components and
across releases.

Transitions of components between cycles and defects: We found that components that
transition between dependency cycles across releases persist as defective than those that
transition outside of dependency cycles. This pattern occurred when we excluded the
depend-on-cycle category. It can therefore be hypothesized that refactoring of
components in cycles could reduce their defect-proneness.
Transitive coupling of cycles and defects: Among the three variables (LOC, fan-in and
fan-out, and CRSS) that were investigated, we found that CRSS and LOC increased
significantly for components that persist as defective across releases when they
transition between cycles.
Refactoring of dependency cycles and defects: we could not directly answer the
question of whether the refactoring of components in dependency cycles could reduce
their defect proneness in future releases. This is due to the lack of evidence to support
cycle breaking refactoring as discussed above. The evidence we have obtained is
indirect and concerns the transitions of components between dependency cycles and
their defect-proneness. To have a direct answer to this hypothesis, we have thus
formulated an experiment and discussed it in paper P4.

Contribution: In Study 3, one of the major contributions was the identification of
variables that could be focused for cycle-breaking refactoring. Another major
contribution was a better understanding of defect-proneness of components when they
transited from “in-cycle” to “out-of-cycle”. In addition, it provided more evidence of
whether cycle-breaking activities occur between software releases.

4.4 Improving the Structural Quality of Cyclically Dependent
Components using Tools and Metrics

In Study 4, we have implemented a cycle breaking decision support system and a new
metric called IRCRSS. The IRCRSS identifies the reduction rate of class reachability
set size (CRSS) from a class interface to reduce the number of components in
dependency cycles. The research question investigated in Study 4 is:

5 Lines of code
6 Coupling between objects
7 Class reachability set size

Results

 53

RQ2: How to refactor dependency cycles to impact the structural quality and reduce
the refactoring efforts? The results are presented in paper P7 and it supports
contribution C3: Tool and metrics to refactor defect- and change-prone hotspots in
dependency cycle
We have implemented a metric to identify the reduction ratio in the Class Reachability
Set Size (CRSS) between a class and its interface. This is a new metric based on the
CRSS metric by (Melton and Tempero, 2007a). The metric named “Interface-CRSS
Reduction Rate (IRCRSS), in combination with an enhanced parameter selection
method, aimed to reduce the number of classes in dependency cycles and the overall
refactoring efforts. To evaluate the approach, we have constructed a cycle breaking
decision support system that implements existing design approaches in combination
with the class edge contextual data.
The evaluations on multiple systems show that (1) the improved CRSS metric could
identify fewer classes as candidates for breaking large cycles, and reduce the refactoring
efforts reasonably, and (2) the model could assist software engineers to plan the
restructuring of classes in complex dependency cycles.
Added metric: We have identified the interface reduction ratio for the CRSS of a class
and its interface (the IRCRSS metric). This metric is an improvement over the CRSS
metric. By using this metric, we recorded a significant improvement in the “cycle-
breaking” refactoring results and the overall refactoring efforts in some systems.
Cycle breaking decision support system: We have constructed a cycle breaking
decision support system that could aid developers and software maintenance engineers
to refactor class dependency cycles (see Figure 15 for the system’s class diagram). The
system integrates the improved metric to determine candidates for high impact
refactoring. The system leverages the class contextual data (such as relationship and
class type data) to provide practical and implementable actions for developers and
maintenance engineers. The tool and approach have been evaluated using several
applications to show that it could provide decision support for planning cycle-breaking
refactoring activities at the class granularity level. The tool is useful to improve the
structural quality of software systems that are riddled with defect-prone cycles.
The decision support system is publically accessible at: https://bitbucket.org/ootos/j-
guirestructurer and https://bitbucket.org/ootos/c-sharprestructurer
The C# version, developed by an MSc student, has integrated the refactoring module
and algorithms from the decision support system written in Java.

Results

 54

Figure 15 Class Model for the Cycle breaking decision support system

(Oyetoyan et al., 2015a)
Contribution: The main contribution of this study was to (1) improve the structure of
software systems with dependency cycles by constructing a cycle breaking decision
support system and (2) reduce refactoring efforts during this process.

Evaluation and Discussion

 55

5 Evaluation and Discussion

This thesis has investigated dependency cycles among software artefacts with respect to
maintainability and indirectly to reliability. For maintainability, we have used change
and defect metrics and for reliability, we have used defect severity as an indirect metric.
We have performed several empirical studies to investigate the relationship between (1)
cycles and defects and (2) cycles and change rate in general. In response to the results
from the empirical studies, a decision support system to refactor class cycles has been
developed and a new metric proposed to improve the structural quality of software
systems.

The thesis mainly contributes to improvement in the areas of software quality and
software metrics. In the following, we discuss the contributions under each topic. The
main contributions and the sub-contributions of this thesis are:
C1. Better understanding of how to utilize different defect metrics to improve software

quality
C1-1: Identification of the usefulness of different defect metrics to classify critical
software components

C2. Identification of the impact of dependency cycles on software quality
C2-1: Identification of dependency cycles and neighbourhood as defect hotspots in
software systems
C2-2: Better understanding of the change impact of dependency cycles

C3. Tool and metrics to refactor defect- and change-prone hotspots in dependency cycle
C3-1: Added metrics to understand the complexity of components and improve the
refactoring of cyclically dependent components
C3-2: A cycle breaking decision support system to refactor cyclically connected
components

The rest of this chapter is organized as follows: Section 5.1 provides the overall view of
the thesis contributions in relation to the software engineering topic. Section 5.2
evaluates the contributions of this thesis. Section 5.3 discusses the contribution against
the state of the art. In Section 5.4, we provide overall recommendations. Section 5.5

Evaluation and Discussion

 56

briefly evaluates the validity threats to the study while Section 5.6 provides a reflection
on the research context.

5.1 Overview of Thesis Contributions
Figure 16 shows how the studies and the contributions are related to software quality
attributes. The summary is listed in Table 8. The effects of the different studies on
specific quality attributes are discussed.

Reliability: The contribution of this thesis affects the reliability of software systems
indirectly. We have identified critical defect hotspots (Contributions C1-1 and C2-1).
Critical defects as discussed, impact on the reliability of software. By improving the
structural quality in such hotspots through refactoring (Contribution C3), the overall
reliability of the system can be improved.
Modifiability: Dependency cycles are known to be detrimental to modifiability (Bass et
al., 2003). Refactoring them is important to facilitate ease of change during software
maintenance and evolution. The extent of the impact of dependency cycles is shown by
the structural complexity of components that depend on them (in-neighbours). What is
particularly useful here is that software evolution data can be used to identify specific
cycles that could be recommended for refactoring (Contribution C2). Refactoring such
defect and change-prone cycles can reduce ripple effect of change (Contribution C3).

Reusability: During software development, code reuse is a standard practice and it can
occur at different granularity levels. We are concerned with code reuse at the class
granularity level and among internally declared types (see Section 1.1). A component
that reuses another component in a dependency cycle has to depend on all the
components contained in the cycle including the in-neighbours of the cycle. It has been
shown that usage relationships among components can be used to predict their defect-
proneness (Oyetoyan et al., 2012; Schroeter et al., 2006). Breaking defect-prone
(Contribution C3) and change-prone cycles (Contribution C2) can reduce the
probability of defect-proneness since unnecessary code would not be copied during
reuse.

Testability: Dependency cycles are known to be detrimental to testability. Components
in cycles are expensive to test, as it is impossible to test them in isolation. As (Lakos,
1996) states, “Testing a component in isolation is an effective way to ensure reliability”.
Effective testing would require components to be decomposed to become stand-alone
and of manageable size. The acyclic dependency principle (Martin, 1996) is important
to decompose components to become stand-alone and be of manageable size. It is
advisable and necessary to refactor (Contribution C3) defect- and change-prone
locations (Contributions C1 and C2) in dependency cycles to make the different
components testable. In addition, selecting test sample that is adequate and
representative enough is a challenge (Bertolino, 2007). Contributions C1 and C2 point
to aspects of the software where test samples can be drawn to make it more efficient.

Evaluation and Discussion

 57

Figure 16 Overall relationships between the studies and contributions to

software engineering field

!
!
!

!"#$%&'#
"#$%&'()*+,!-#&*.*(+!

./00()'!.1.'#2!

!"#$%()#%&'#
3--#-!2#')*&.

!(#$%('#
4*,!&5%+,#!*20%&'!(+!

+6+#,57().

!(#$%()#%"'#
8#$#&'.9&)*'*&%:!
-#$#&'.!5('.0('!

!*#$%*'#
;-#+'*$1!&)*'*&%:!

.($'<%)#!&(20(+#+'.!

-#$#&'.!5('.0('
"#$%&'()*+,!

!(#$%('
+,-,./,.01#

0102,3#
4##

5.6.,5789:;3#

!:.<;59=<5:.3#

>??,0<#:.#%:?<@A;,#B=A25<1#

C:/5?5A9525<1#
!"#$%&'(")*%+%,"-*,".)*

&/"0-",1"-*&'*"$-"*'#*%/$.2"*#'(*
%'03'.".&-*4.*5*."$(*%+%,"-*

!")6%"*(433,"*"##"%&-*

D,=3A9525<1#
7.."%"--$(+*%')"*&/$&*%$.*4.%("$-"*
)"#"%&8%/$.2"93('."."--*.'&*%'34")*

)6(4.2*("6-"*

E,3<A9525<1#
!"#$%&'(")*%+%,"-*

403('1"*&"-&$:4,4&+;*
!")6%")*("$%/$:4,4&+*
$.)*:"&&"(*&($%"$:4,4&+*

CA5.<A5.A9525<1#
$!()#!"'#

D,25A9525<1#
<(4&4%$,*)"#"%&*/'&-3'&-*
4)".&4#4")*#'(*4.%("$-")*
&"-&4.2*$.)*("#$%&'(4.2**

=!"#$!%>*

C:/5?5A9525<1
!"#$%&'(")*%+%,"-*,".)*

&/"0-",1"-*&'*"$-"*'#*%/$.2" #'(*
%'03'.".&-*4.*5*."$(*%+%,"-

!")6%"*(433,"*"##"%&-

D,=3A9525<1
7.."%"--$(+*%')" &/$&*%$.*4.%("$-"*
)"#"%&8%/$.2"93('."."-- .'&*%'34")*

)6(4.2*("6-"

E,3<A9525<1
!"#$%&'(")*%+%,"-*

403('1"*&"-&$:4,4&+;*
!")6%")*("$%/$:4,4&+*
$.)*:"&&"(*&($%"$:4,4&+

CA5.<A5.A9525<1
$!()#!"'!

+,?,0<#
=?"#"%&*-"1"(4&+@*%'(("%&4'.*"##'(&@*

)"#"%&*%'6.&-@*)"#"%&*)".-4&+>!
!8A.7,#

=</$.2"*3(':$:4,4&+>!
%:=;0,#0:/,#

=A&(6%&6($,*0"&(4%->!

>F:2=<5:.#/A<A#

%&#
;20)(?*+,!'5#!.')/&'/)%:!
@/%:*'1!($!&1&:*&%::1!
-#0#+-#+'!&(20(+#+'.!
/.*+,!'((:.!%+-!2#')*&.!

%"#
;+?#.'*,%'*+,!'5#!#$$#&'!'5%'!
)#$%&'()*+,!-#0#+-#+&1!&1&:#.!
5%?#!(+!-#$#&'.!

%(#
;+?#.'*,%'*(+!($!-#$#&'!
%+-!&5%+,#!0)(+#+#..!($!
&1&:*&%::1!-#0#+-#+'!
&(20(+#+'.!

%*#
A20*)*&%:!*+?#.'*,%'*(+!($!
/.*+,!2/:'*0:#!-#$#&'!
2#')*&.!'(!*-#+'*$1!&)*'*&%:!
&(20(+#+'.!

;+?#.'*,%'*(+!($!-#$#&'!
%+-!&5%+,#!0)(+#+#..!($!
&1&:*&%::1!-#0#+-#+'!
&(20(+#+'.

;+?#.'*,%'*+,!'5#!#$$#&'!'5%'!
)#$%&'()*+,!-#0#+-#+&1!&1&:#.!
5%?#!(+!-#$#&'.

;20)(?*+,!'5#!.')/&'/)%:!
@/%:*'1!($!&1&:*&%::1!
-#0#+-#+'!&(20(+#+'.!
/.*+,!'((:.!%+-!2#')*&.

%<=/5,3#

DB*6*# &(20(+#+'.
DB*6(#G#DB*6&# DB*6"# /.*+,!'((:.!%+-!2#')*&. DB(#

%<=/5,3

!:.<;59=<5:.3

>??,0<#:.#%:?<@A;,#B=A25<1

Evaluation and Discussion

 58

Table 8 Connection between contributions, research questions, papers, and
specific software quality attributes

Contributions Description Study Research
Questions

Papers Effect on
software quality

C1 Better understanding of how
to utilize different defect
metrics to improve software
quality

S1 RQ1 P1 Reliability

C2 Identification of the impact of
dependency cycles on
software quality

S2,
S3

RQ1-2,
RQ1-3,
RQ1-4

P2, P3,
P4, P5,
P6

Reliability &
Maintainability

C3 Tool and metrics to refactor
defect- and change-prone
hotspots in dependency cycle

S2,
S4

RQ1-2,
RQ1-4, RQ2

P2, P3,
P6, P7

Maintainability

5.2 Evaluation of the Contributions against the Research Goal
The main goal of the IME research initiative for Smart Grid within software engineering
is: Improved Management of Software Evolution for Smart Grid Applications. We
discuss in the following how the contributions in this thesis are related to the research
goal.

C1: Identification of the usefulness of different defect metrics to identify critical
software components

The analysis of the defect and source code repositories of an industrial Smart Grid
system resulted into contribution C1. Software evolution is a constant phenomenon in
the software lifecycle. As software evolves, so does its complexity (Lehman, 1980).
Software complexity has been correlated with defects. The contribution shows that it is
possible to identify significant number of software components that are critical to a
system when multiple defect metrics exist and are used. This contrast with using
popular defect metrics, i.e. only defect counts and defect density. Such critical
components can then be focused for improved quality assurance. The higher the test
coverage that could be achieved for key software components during development and
maintenance, the lower the risk for defects and system failure. The contribution can be
considered to be significant for critical applications where sufficient test coverage is
vital, but this remains a goal that equally competes with other goals for scarce quality
assurance resources.
C2-1: Identification of dependency cycles and neighbourhood as defect hotspots

Contribution C2 showed a subset of the software components (i.e. dependency cycle
and neighbourhood components) that should be focused for increased testing and
refactoring. From empirical study of Smart Grid and other open source systems, we
showed that dependency cycles and their neighbourhood are the major hub for defects
and even critical defects that could result into a system failure. A system failure is
critical in a system of systems and could have a cascading effect. This contribution
improved the understanding of defect location in software systems. This knowledge is
useful and provides new opportunities to identify refactorable locations in the system.

Evaluation and Discussion

 59

C2-2: Better understanding of the change impact of dependency cycles

We found that dependency cycles have significant impact on the direct neighbourhoods.
These are the components that depend on cycles. Additionally, we discussed the
stability of Visitor pattern as interesting because it also contains anti-patterns. The
usefulness of this result affects the design of software systems. Understanding “critical”
and “harmless” cycles is important knowledge that could guide refactoring effort. It is
more useful to refactor candidate cycles that are harmful as such refactoring would
translate to improving the external quality of the system.
C3-1: Added metrics to improve the refactoring of cyclically dependent
components
Metrics provide measurement that could be used for evaluating the quality of a system.
In contribution C3-1, the two metrics that are proposed provide measurement that (1)
increase the knowledge of defect location and component complexity in relation to
dependency cycles (depend-on-cycle) and (2) improve the refactoring of components in
dependency cycles in terms of refactoring effort and reduction of cycles (IRCRSS).
Measurements of the software structural quality are important during evolution. We
need to use the measurements as a feedback to assess the direction of the structural
evolution of the system and the opportunity for restructuring and refactoring.
C3-2: A cycle breaking decision support system for refactoring cyclically
connected components
Architectural erosion is common during software evolution. To mitigate the effect of
structural decay as the software evolves, there is a need for “agile” refactoring practices
to monitor and regularly improve the structure of the system. Without adequate tool
support, this is a challenging and difficult task for developers and maintenance
engineers. Dependency cycles are signs of structural decay in many systems. A cycle
breaking decision support system has been proposed and developed that can be used to
discover and thus improve the structural quality of the system. The tool monitors the
structure of a system and identifies undesirable cycles in the system that can be
refactored. This tool has been implemented in a commercial Smart Grid company to
assist the developers and maintenance engineers in their maintenance tasks. There is
currently little advice about how to refactor dependency cycles at the class granularity
level. We believe this contribution is filling an important gap in the area of software
evolution, maintenance, and refactoring. This is strongly connected to the research goal
as the tool and approach would be useful to improve the structural quality of the Smart
Grid systems (and other systems) during their evolution. Such improvement would
result in a better testable and maintainable system during their lifecycle.

5.3 Discussion of Contributions related to the State-of-the-Art
This section discusses how each of the contributions is related to the state-of-the-art in
software engineering research and practice.
Contribution C1: Several studies have shown that the defect distribution in software
systems follows the Pareto rule of 20-80 (Andersson and Runeson, 2007; Basili and
Perricone, 1984; Boehm and Basili, 2001; Ebert et al., 2005; Fenton and Ohlsson, 2000;
Ostrand and Weyuker, 2002; Tihana Galinac et al., 2012). Among these studies only

Evaluation and Discussion

 60

Ostrand and Weyuker (2002) reported the distribution of defective components based
on the severity of their defects. The contribution C1 is novel because (1) it uses multiple
defect dimensions (2) it identifies gaps and synergy between the defect metrics and (3)
it investigates the effect and coverage the defect metrics have on critical software
components. To the best of our knowledge, we have found no reported studies with this
contribution.
Contribution C2-1: The study by Zimmermann and Nagappan (2007) has observed a
similar pattern in one of several hypotheses we explored in this thesis. Precisely,
hypothesis P2.HA1: The number of defective components in cyclic relationships is
significantly higher than non-cyclic defective components (in Paper P2). Our
contribution C2, however, provides an in-depth study of the topic “dependency cycles
versus defects” by exploring several defect metrics and a number of case studies. For
instance, we have found no study that reports on dependency cycles and the criticality
of defects.
Contribution C2-2: In relation to dependency cycles versus change, we have found no
studies that have explored this relationship.
Contribution C3-1: In relation to the topic of dependency cycles, it appears that only
our studies have discussed “depend-on-cycle” metric. However, this concept and metric
has been used in other contexts in previous studies e.g. (Zimmermann and Nagappan,
2008) and it is popular in network analysis (Wasserman and Faust, 1994). The second
metric “IRCRSS” that we introduced is a novel contribution. It is a derivation of the
metric CRSS by (Melton and Tempero, 2007a). The CRSS is synonymous to the
cumulative component dependency8 (CCD) and its variants by Lakos (1996). In
comparison to object-oriented metrics, the CRSS metric is related to the Response For
Class (RFC) metric. We can assume that there is a linear relationship between CRSS
and RFC metrics. The more classes a class can reach, the more its tendency to have a
high RFC coupling since RFC considers the transitive method coupling closure of a
class.
Contribution C3-2: There are studies and approaches devoted to breaking dependency
cycles albeit at the package granularity level (Dietrich et al., 2012; Falleri et al., 2011;
Laval et al., 2009; Laval and Ducasse, 2014). Existing tools such as; JDepend
(http://clarkware.com/software/JDepend.html), NDepend (http://www.ndepend.com),
Dependometer (http://source.valtech.com/display/dpm/Dependometer), PASTA
(Hautus, 2002), Classycle (http://classycle.sourceforge.net), CARE (Shah et al., 2013),
STAN (http://stan4j.com/), LDM (Sangal et al., 2005), have also primarily focused on
refactoring cycles at the package level. Apart from JooJ by (Melton and Tempero,
2007c), there is currently little focus at the class granularity level. Our contribution is
focused on refactoring cycles at the class granularity level by providing implementable
actions and opportunities for assessing the structure of the code.

5.4 Recommendations to Practitioners
The results we have obtained in this study are interesting and useful for improving the
structural quality of object-oriented software applications. In this section, various

8 CCD of a subsystem is the sum of the components’ dependencies for each component in this subsystem

Evaluation and Discussion

 61

recommendations for stakeholders of software projects are suggested. These
recommendations are drawn from the results that we have obtained in all the studies
presented in this thesis. Some of the recommendations are conventional wisdoms that
are reinforced from the empirical results obtained in this thesis; however, some are new
knowledge that would require some follow-up studies.

Make measurement more reliable
In our experience with mining defects data from repositories, we found that in some
cases there are missing data points. An example is reporting defects in defect tracking
systems and logging the defects fixed against the actual source files that are modified or
created in the configuration management system. The reliability of the analysis results
depends on the quality of the data. We recommend that defect data be accurately logged
and consistently associated in the configuration management system to allow for quality
measurement, analysis and feedback.

Make measurement of work products and design
Measurements provide the means for assessment and improvement. Our experience
shows that the structural quality of work products is not usually measured. Some of the
findings from the Smart Grid application of our industrial partner were surprising. It
thus indicates that the data logged have not been used optimally for quality
improvement programs. It is hard to know the structural quality and the extent of
erosion unless a conscious measurement is made. We recommend that structural
analysis of software be performed to determine refactoring possibilities/opportunities.

Incorporate refactoring practices
Architectural refactoring practices are many times overlooked in the software
development process. The results we have obtained and interactions with the industrial
partner confirmed this statement. The class cycles in the systems grow during evolution
and we did not detect any major cycle refactoring practices. This can be due to the
unavailability of tools that are practical and usable for such level of refactoring. Some
of the tools available on the development environments are not for major code
restructuring. During an evaluation phase performed with the industrial partner, it was
obvious that the developers only perform low-level code refactoring. This is consistent
with the results of the study in (Murphy-Hill et al., 2009). Another reason is that such
refactoring is not prioritized during the software development process.
A “functional” code does not mean that all is well. Erosion of code structure incurs
change penalty and can drive maintenance cost to a much higher level. After all, this
may not be surprising because software maintenance cost is claimed to be the highest in
the software life cycle (van Vliet, 2000). We recommend a top-driven refactoring
practice to be introduced. Why top-driven? Most times, managers are driven by time-to-
market at the expense of code quality (e.g. maintainability). Such attitude has impact on
the developers who only work to produce “functional” code as against maintainable
code. Theoretically, this is called a technical debt (Brown et al., 2010). Managers need
to realize the need to avoid architectural erosion as the system evolves.

Evaluation and Discussion

 62

Take advantage of tools to avoid architectural erosion

To achieve an “agile” refactoring practice, there is a need for tool support. Tools make
the possibility of continuous refactoring a reality. Without tool support, it is not feasible
for the work product and code structure to be easily controlled in terms of measurement,
feedback, and improvement. We have in this study implemented a useful refactoring
tool that could be leveraged by developers and maintenance engineers to monitor and
restructure their existing code structure.

Identify “critical” and “harmless” cycles
Applications vary in many ways and generalization of results across systems may not be
plausible. Organizations need to perform their own analysis to identify what roles
dependency cycles play in their systems. We have found in certain systems that
dependency cycles and their neighbourhood components do not incur change more than
other components. Some systems have used patterns that have a cycle property, for
example, the case of Visitor pattern. One of our findings showed the Visitor pattern to
have less change than other types of cycles. There are also instances where cycles are
formed because of references to utility components. Utility components usually have
high in-degree (incoming connections). As Wake puts it, not all code smells are
indicative of problems but they are certainly worthy of a look and decision (Wake,
2004). Individual evaluation would thus be necessary to identify what is critical and
harmless.

5.5 Discussion of Validity Threats
This section evaluates the threats to the validity of the studies we have performed. The
threats to the validity of the studies are discussed in details in each paper (see
Appendix-A).

Conclusion validity: This is about “right analysis”. This concerns the ability to draw
correct conclusions from the relationships between the treatment and the outcome
(Wohlin et al., 2003). Issues such as effect size or statistical power in data analysis are
important test that should be performed to increase confidence in the conclusion.

We believe we have used the right statistical analysis during our studies. One common
challenge with defect data is that it is skewed; as such it is usually not normally
distributed. It would therefore be inappropriate to use standard t-test when the data has
not been tested for normality. In our studies, we have performed normality test to
determine whether to use parametric (e.g. standard t-test) or non-parametric test (e.g.
Wilcoxon ranked sum test). We have also considered the measurement types (interval,
ordinal, nominal or ratio) of the variables to determine the appropriate analysis
technique. We have also performed effect-size test to judge whether the conclusions
drawn from the hypotheses testing are meaningful or not.
Internal validity: This concerns “right data”. If the outcome is caused by the treatment
and not by other factors not measured, we can conclude that the result has internal
validity (Robson, 2011). It focuses mainly on the study design and whether the results
follow from the data (Easterbrook et al., 2008).
The defect data we have used in our studies have been mined from defect tracking
repositories. A common threat is missing data points that occurred when not all defects

Evaluation and Discussion

 63

are logged in the repository. This threat is minimal in our studies as we were able to
have good sample size for our analysis. Another challenge is the tagging of defect ids in
the commit log of changed source files in the configuration management systems. In
some cases, a source file that is changed because of defect fixes may not be associated
with the defect ids in the commit messages. There are also cases of erroneous tagging.
All these are known threats in these kinds of studies. In our studies, the mapped data we
have mined is large enough for statistical analysis. In the case of source code data, our
tool could not identify weak relationships caused by the use of reflection. This is a
common challenge for static analysis tools.

Construct validity: This is about “right metrics”. The main question asked here is
whether the metrics measure what we think it measures (Robson, 2011). Are concepts
clearly defined including interactions of different treatments in a way that right
measurements can be taken? (Wohlin et al., 2003). We have addressed the threats to
construct validity by identifying balanced hypotheses and research questions. We have
considered different defect dimensions and used well-established metrics from the
research literature.
External validity: This concerns “right context”. Can the results be generalized outside
the scope of the study? Issues such as selection (sampling), context of study, constructs
that are specific to the study are threats to generalization and should be considered
(Robson, 2011). This thesis has used thirty applications with different functionality,
domains, age, size, context, programming language and usage. Nevertheless, we cannot
generalize the results to all software systems. In addition, only one of the systems was a
commercial application. We therefore cannot conclude that the results from the studies
of the commercial application reflect a general trend. The diversity between commercial
application and open source applications (e.g. development practices) also shows that
we cannot generalize across the systems. More studies will be necessary to compare
with the results we have obtained in our studies.

5.6 Reflections on the Research Context
The research context is industry oriented and focused on Smart Grid software and its
evolution. As mentioned previously in Section 1.2, we established cooperation with a
relevant and large software company that develops applications for the power grid. This
has enabled us to pursue the studies in this thesis within the research context. We were
lucky to have a good partnership with the industrial partner. The company has provided
all support needed at the different stages of the research work. As such, our work did
not suffer from the challenges that are common when conducting an empirical study
with industrial companies (see Section 1.3).

We have conducted several presentations to provide feedback of our findings to the
industrial partner. The results of the several empirical studies have triggered the
implementation of a new tool. A decision support tool was developed to assist the
developers and maintenance engineers to perform continuous refactoring of their code
structure. We have also evaluated our proposed refactoring approach and tool using the
industrial application as one of the major case studies.

A common threat to deal with is a follow-up of the results and the applications of the
tool and approach that we have proposed and developed. We have had one maintenance

Evaluation and Discussion

 64

engineer assigned to us for the whole duration of the tool evaluation and refactoring.
This lasted for about 3 weeks (40 man-hours). However, we believe the knowledge
should be disseminated to other developers on the project and in the company. In this
way, the company can take full advantage of the results and tool that resulted from this
thesis.

In conclusion, the studies in this thesis have contributed to the improvement of the
quality of Smart Grid systems during evolution. The results are not only relevant to the
Smart Grid systems we have studied; they are also relevant to other open source
systems that share similar context and domains as those we have used in this thesis.

Conclusion and Future Work

 65

6 Conclusion and Future Work

This thesis presents results of several empirical studies that have investigated defect
distribution and change rate of software components in dependency cycles and near
dependency cycles. A new metric has been introduced and investigated which can
improve refactoring of undesirable dependency cycles and reduce refactoring efforts.
Case studies have been drawn from an industrial Smart Grid software company and
several open source projects. The thesis presents valuable insights into how defect
metrics can be utilized to identify important and critical software components.
Furthermore, the research has led to increased knowledge about defect locations in
relation to components in cycles and those that reference cycles. Lastly, a cycle
breaking decision support tool has been proposed, implemented, and evaluated, which
can assist software developers and maintenance engineers to improve the structural
quality of their software artefacts and code.
This chapter sums up the findings and contributions of this work and outlines directions
for future studies.

6.1 Overall Summary of Findings
We summarize the four key findings in this thesis as follows:

Multiple defects and critical components: In the Smart Grid application that was
investigated, we found that defect counts and defect density are not sufficient to identify
and classify critical components in the system. Indeed, other metrics such as defect
severity and defect correction effort classified a significant number of key components
that developers considered critical to this application. Since quality assurance resources
are limited, we propose to consider multiple metrics to identify critical components that
should be focused for increased testing. As a critical infrastructure, it is essential to limit
the risk of failure by focusing the testing efforts in the right direction.

Observed patterns with respect to defects and dependency cycles: The results of
several empirical studies in our research confirm that defects and critical defects are
concentrated within dependency cycles and in components that have reference to cycles

Conclusion and Future Work

 66

(we call them in-neighbours). We found that in some systems about 50% of the
components are in cycles and near cycles and these account for a clear majority of the
defects, defective components, and critical defects. The findings provide important
information about the subsets of the systems that should be focused for increased testing
and possible refactoring.

Observed patterns with respect to change and dependency cycles: Dependency
cycles do have significant change impact on their neighbourhood (in-neighbours).
However, the majority of the components in cycles have a lower change rate than those
outside cycles. We attempt to distinguish between “critical” and “harmless” cycles by
using some cycle properties. Our findings show that: (1) No significant difference exist
between the change rate of cycles with subtype knowledge (STK) and those without (2)
no correlation exists between change rate and high PCT-diameter and (3) the cycles
with the Visitor pattern are stable within the application where they exist. Overall, the
results are interesting and open up possibilities for further studies. We discuss this in
Section 6.2

Opportunities for refactoring class cycles: The focus here are two areas; metrics and
tools. First, we propose an improved metric named IRCRSS derived from the CRSS
metric. By using this metric, it is possible to improve cycle-breaking refactoring and
reduce refactoring efforts. Second, we have implemented a cycle breaking decision
support system to improve the structural quality of software systems. The tool has
integrated the improved metric and other enhanced selection parameters. It then makes
propositions that developers or maintenance engineers can manually implement. There
is little attention given to refactoring of class cycles. We therefore believe that our tool
and approach are filling an important gap.
Impact on software quality: The results reported in this thesis contribute to
maintainability and indirectly to reliability of software systems. We have identified that
dependency cycles and their immediate neighbourhoods are hotspots for critical defect
in software applications. We show the need to apply multiple defect metrics to identify
critical component that should be specifically in focus for more thorough testing efforts.
We have developed a cycle breaking decision support system that could assist
developers to improve the structural quality of their software. These contributions affect
testability, reusability, modifiability, and reliability of the systems.

6.2 Directions for Future Work
Based on the results from this thesis, we outline different proposals for future study as
follows:
Distinguishing between “critical” and “harmless” cycles: More work is needed to
identify cycle metrics and properties that can help to distinguish between a “critical”
and a “harmless” cycle. Some cycles are stable and not defect-prone while some
undergo high change and are defect-prone. Some cycles are formed by certain design
patterns, for example the case of Visitor discussed earlier. In some cases, these kinds of
patterns are code automatically generated by parser tools (e.g. ANTLR). We believe
that context information would be necessary during cycle classification. If we are able
to classify cycles into “critical” and “harmless” categories, we could save refactoring
efforts by focusing on the critical ones.

Conclusion and Future Work

 67

A study of trade-off between patterns and anti-patterns: Cycles are pervasive in
real-life software systems and certain design patterns are also known to contain this
anti-pattern, which is traditionally known as an indicator of bad design (e.g. Visitor
pattern). It presupposes that certain cycles may be justified because of the role that the
involved artefacts play in the system. The question remains as to what extent a pattern
should harbour an anti-pattern. Should a pattern be refactored? For instance the Acyclic
Visitor proposed by Martin (1997). It is more complex than the Visitor pattern itself and
seems not to be widely used. Are patterns with anti-patterns penalized by
changes/defects more than those without anti-patterns? An extensive study of the trade-
off would be an interesting topic and a step to provide better design advice for future
systems.

Utilization of abstraction: Interfaces need to be better utilized during development to
achieve loose coupling. Many times, cycles are formed because the Dependency
Inversion Principle (DIP) is not applied and existing studies already showed that even
when the abstraction exist, they are under-utilized (Gobner et al., 2004; Mayer, 2003;
Steimann et al., 2003). One way to optimize interface utilization for the purpose of
decoupling is to create a plugin in the development environment (e.g. Eclipse) that can
provide a real-time feedback of the IRCRSS value of a dependent component. This
solution can assist developers to implement dependency inversion with interface when
they are reusing (importing) an exisiting class implementation. The idea is to base this
feedback on the normalized CRSS values of the imported class and a real-time feedback
of IRCRSS value when an interface is used instead. In this way, a developer can quickly
decide for an abstraction of this class type rather than its implementation.

Automation of propositions from the cycle-breaking decision support system: One
aspect that would be beneficial for practitioners and researchers is to automate the
manual propositions from the decision support system on the graph model to the actual
source code. This is possible as such automated implementation can be applied on the
abstract syntax tree (AST) model in many development environment (e.g. Eclipse). One
way to achieve this is to create a plugin that passes the class binaries from an IDE as
input to the CB-DSS, while the output (proposed actions) from CB-DSS is fed back to
the plugin. The actions can now be applied on the AST model with an appropriate pre-
and post-condition checks.
Study of dependency cycles in Service-oriented systems: Applications based on
service oriented architecture (SOA) are ubiqutous. Development for reuse (Sindre et al.,
1995) has in particular made organizations to transform software components into
services that can be discovered for reuse. It will be interesting to study dependencies
between services that are composed for reuse. Whether dependency cycles occur at this
layer both from static and dynamic dependency viewpoints, would be useful to
understand the maintenance cost.

 68

Glossary

 69

Glossary

Anti-Pattern: Poor design choices and can exist at the code, design and architectural

levels

Anomaly: Anything observed in the documentation or operation of software that

deviates from expectations based on previously verified software products or reference

documents (IEEE Std 1012-1986)

Component: A component may refer to a class, a package or a jar file

Defect: Imperfection or deficiency in a work product where that work product does not

meet its requirements or specifications and needs to be either repaired or replaced (IEEE

Std 1044-2009)

Defect-density: The number of defects per unit of product size (ISO/IEC/IEEE

24765:2010)

Dependability: Trustworthiness of a computer system such that reliance can be

justifiably placed on the service it delivers (IEEE Std 982.1-2005)

Dependency: A relationship that defines that a component needs another component to

function

Dependency Cycle: A cyclic dependency graph also known as strongly connected

components (SCC) in a directed graph G = (V, E) is a maximal set of vertices C ⊆ V

such that for every pair of vertices u and v in C, both are reachable from each other

(Cormen et al. 2001)

Design Pattern: Patterns are recurring solutions to design problems. They capture

existing, well-proven designs

Glossary

 70

Fault: Manifestation of an error in software (ISO/IEC/IEEE 24765:2010)

Defect Tracking System: A system for recording a reported defect and for capturing

the attributes of the defect such as its severity, date reported, priority and so on

Error: The difference between a computed, observed, or measured value or condition

and the true, specified, or theoretically correct value or condition (ISO/IEC/IEEE

24765:2010)

External measure of Software Quality: measure of the degree to which a software

product enables the behaviour of a system under specified conditions to satisfy stated

and implied needs for the system (ISO/IEC 25010:2011)

Failure: The inability of a system or system component to perform a required function

within specified limits

Fan-in: The number of components that reference a component (in-coming connections

to a component)

Fan-out: The number of components that is referenced by a component (out-going

connections from a component)

In-Neighbours: Component that is not in dependency cycle but references

component(s) in dependency cycles.

Internal measure of Software Quality: the measure of the degree to which a set of

static attributes of a software product satisfies stated and implied needs for the software

product to be used under specified conditions (ISO/IEC 25010:2011)

Maintainability: The ease with which a software system or component can be modified

to change or add capabilities, correct faults or defects, improve performance or other

attributes, or adapt to a changed environment (ISO/IEC/IEEE 24765:2010)

Measurement: The process by which numbers or symbols are assigned to attributes of

entities in the real world in such a way as to describe them according to clearly defined

rules (Fenton and Pfleeger, 1998)

Reliability: The ability of a system or component to perform its required functions

under stated conditions for a specified period of time (IEEE Std 610.12-1990)

Glossary

 71

Smart Grid: A modernized grid that enables bidirectional flows of energy and uses

two-way communication and control capabilities that will lead to an array of new

functionalities and applications (NIST, 2010)

Software Engineering: (1) The systematic application of scientific and technological

knowledge, methods, and experience to the design, implementation, testing, and

documentation of software (2) the application of a systematic, disciplined, quantifiable

approach to the development, operation, and maintenance of software; that is, the

application of engineering to software (ISO/IEC/IEEE 24765:2010)

Software Quality: (1) capability of a software product to satisfy stated and implied

needs when used under specified conditions (2) degree to which a software product

satisfies stated and implied needs when used under specified conditions”

(ISO/IEC/IEEE)

Software Maintenance: the process of modifying a software system or component

after delivery to correct faults, improve performance or other attributes, or adapt to a

changed environment (IEEE 610.12)

Software Evolution: The stage in a software system’s life cycle where it is in

operational use and is evolving as new requirements are proposed and implemented in

the system

Software Metric: A software metric is a measurable property, which indicates the

software quality criteria to be measured (Gillies, 1997)

Subversion system: A version control system for managing files and directories, and

the changes made to them over time (SVNBOOK: www.svnbook.red-bean.com)

System: Combination of interacting elements organized to achieve one or more stated

purposes (ISO/IEC 25000:2014)

 72

References

 73

References

Abreu, F.B.E., Melo, W., 1996. Evaluating the impact of Object-Oriented design on
software quality. Proceedings of the 3rd International Software Metrics Symposium, 90-
99.

Adams, E.N., 1984. Optimizing Preventive Service of Software Products. Ibm J Res
Dev 28, 2-14.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel, S.,
1977. A Pattern Language: Oxford University Press. New York.

Andersson, C., Runeson, P., 2007. A replicated quantitative analysis of fault
distributions in complex software systems. IEEE T Software Eng 33, 273-286.

Arisholm, E., Briand, L.C., Foyen, A., 2004. Dynamic coupling measurement for
object-oriented software. IEEE T Software Eng 30, 491-506.

Basili, V.R., Briand, L.C., Melo, W.L., 1996. A validation of object-oriented design
metrics as quality indicators. IEEE T Software Eng 22, 751-761.

Basili, V.R., Perricone, B.T., 1984. Software Errors and Complexity - an Empirical-
Investigation. Commun Acm 27, 42-52.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice. Addison-
Wesley Longman Publishing Co., Inc.

Bavota, G., De Carluccio, B., De Lucia, A., Di Penta, M., Oliveto, R., Strollo, O., 2012.
When Does a Refactoring Induce Bugs? An Empirical Study, IEEE 12th International
Working Conference onSource Code Analysis and Manipulation (SCAM), 2012, pp.
104-113.

Baxter, I.D., Yahin, A., Moura, L., Sant'Anna, M., Bier, L., 1998. Clone detection using
abstract syntax trees, Software Maintenance, 1998. Proceedings., International
Conference on. IEEE, pp. 368-377.
Beck, K., Fowler, M., 1999. Bad smells in code, Refactoring: Improving the design of
existing code. Addison-Wesley, pp. 75-88.

References

 74

Bertolino, A., 2007. Software testing research: Achievements, challenges, dreams, 2007
Future of Software Engineering. IEEE Computer Society, pp. 85-103.
Bertolino, A., Calabró, A., Di Giandomenico, F., Nostro, N., 2011. Dependability and
Performance Assessment of Dynamic CONNECTed Systems, in: Bernardo, M., Issarny,
V. (Eds.), Formal Methods for Eternal Networked Software Systems. Springer Berlin
Heidelberg, pp. 350-392.
Bieman, J.M., Straw, G., Wang, H., Munger, P.W., Alexander, R.T., 2003. Design
patterns and change proneness: An examination of five evolving systems, Software
metrics symposium, 2003. Proceedings. Ninth international. IEEE, pp. 40-49.

Boehm, B., Basili, V.R., 2001. Software Defect Reduction Top 10 List. Computer 34,
135-137.

Boger, M., Sturm, T., Fragemann, P., 2003. Refactoring browser for UML, Objects,
components, architectures, services, and applications for a networked world. Springer,
pp. 366-377.
Bourque, P., Fairley, R.E., 2014. Guide to the Software Engineering Body of
Knowledge. IEEE Computer Society.
Briand, L.C., Daly, J., Porter, V., Wust, J., 1998. Predicting fault-prone classes with
design measures in object-oriented systems. Ninth International Symposium on
Software Reliability Engineering, Proceedings, 334-343.

Briand, L.C., Labiche, Y., Yihong, W., 2001a. Revisiting strategies for ordering class
integration testing in the presence of dependency cycles, Proc. 12th International
Symposium on Software Reliability Engineering, (ISSRE 2001) pp. 287-296.
Briand, L.C., Labiche, Y., Yihong, W., 2003. An investigation of graph-based class
integration test order strategies. IEEE Transactions on Software Engineering. 29, 594-
607.

Briand, L.C., Wuest, J., Lounis, H., 2001b. Replicated Case Studies for Investigating
Quality Factorsin Object-Oriented Designs. Empirical Softw. Engg. 6, 11-58.

Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P., Lim, E.,
MacCormack, A., Nord, R., Ozkaya, I., 2010. Managing technical debt in software-
reliant systems, Proceedings of the FSE/SDP workshop on Future of software
engineering research. ACM, pp. 47-52.

Chidamber, S.R., Kemerer, C.F., 1994. A Metrics Suite for Object-Oriented Design.
IEEE Transactions on Software Engineering 20, 476-493.

Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.,
Wong, M.-Y., 1992. Orthogonal defect classification - a concept for in-process
measurements. IEEE Transactions on Software Engineering, 18, 943-956.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduction to algorithms,
2nd ed. MIT Press, Cambridge, Mass.
Correa, A., Werner, C., 2004. Applying refactoring techniques to UML/OCL models,
«UML» 2004—The Unified Modeling Language. Modeling Languages and
Applications. Springer, pp. 173-187.

References

 75

Creel, R., Ellison, B., 2008. System-of-Systems Influences on Acquisition Strategy
Development. Carnegie Mellon University, Carnegie Mellon University.
Creswell, J.W., 2013. Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches. SAGE Publications.
DeMarco, T., 1982. Controlling software projects. Prentice Hall PTR.

Di Penta, M., Cerulo, L., Guéhéneuc, Y.-G., Antoniol, G., 2008. An empirical study of
the relationships between design pattern roles and class change proneness, IEEE
International Conference on Software Maintenance, 2008. ICSM 2008. IEEE, pp. 217-
226.

Dietrich, J., McCartin, C., Tempero, E., Shah, S.M.A., 2010. Barriers to Modularity-An
Empirical Study to Assess the Potential for Modularisation of Java Programs, Research
into Practice–Reality and Gaps. Springer, pp. 135-150.
Dietrich, J., McCartin, C., Tempero, E., Shah, S.M.A., 2012. On the existence of high-
impact refactoring opportunities in programs, Proceedings of the Thirty-fifth
Australasian Computer Science Conference - Volume 122. Australian Computer
Society, Inc., Melbourne, Australia, pp. 37-48.
Easterbrook, S., Singer, J., Storey, M.-A., Damian, D., 2008. Selecting Empirical
Methods for Software Engineering Research, in: Shull, F., Singer, J., Sjøberg, D.K.
(Eds.), Guide to Advanced Empirical Software Engineering. Springer London, pp. 285-
311.
Ebert, C., Dumke, R., Bundschuh, M., Schimietendorf, A., 2005. Defect Detection and
Quality Improvement, Best Practices in Software Measurement. Springer Berlin
Heidelberg, pp. 133-156.

Falleri, J.-R., Denier, S., Laval, J., Vismara, P., Ducasse, S., 2011. Efficient retrieval
and ranking of undesired package cycles in large software systems, Proceedings of the
49th international conference on Objects, models, components, patterns. Springer-
Verlag, Zurich, Switzerland, pp. 260-275.

Fenton, N.E., Neil, M., 1999a. A critique of software defect prediction models. IEEE
Transactions on Software Engineering 25, 675-689.

Fenton, N.E., Neil, M., 1999b. Software metrics: successes, failures and new directions.
Journal of Systems and Software 47, 149-157.

Fenton, N.E., Ohlsson, N., 2000. Quantitative analysis of faults and failures in a
complex software system. IEEE Transactions on Software Engineering 26, 797-814.

Fenton, N.E., Pfleeger, S.L., 1997. Software Metrics: A Rigorous & Practical
Approach, 2nd ed. PWS Publishing Press, Boston.

Fenton, N.E., Pfleeger, S.L., 1998. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing Co.

Finkelstein, A.C., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B., 1994.
Inconsistency handling in multiperspective specifications. IEEE Transactions on
Software Engineering, 20, 569-578.

References

 76

Fowler, M., 1999. Refactoring: improving the design of existing code. Pearson
Education India.
Fowler, M., 2001. Reducing coupling. IEEE Software, 18, 102-104.

Fowler, M., 2004. Inversion of control containers and the dependency injection pattern,
http://martinfowler.com/articles/injection.html.

Franch, X., 1998. Systematic formulation of non-functional characteristics of software,
Proceedings. 1998 Third IEEE International Conference on Requirements Engineering,
pp. 174-181.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.
Genero, M., Manso, E., Visaggio, A., Canfora, G., Piattini, M., 2007. Building measure-
based prediction models for UML class diagram maintainability. Empir Softw Eng 12,
517-549.

Gillies, A., 1997. Software Quality: Theory and Management. International Thomson
Computer Press.

Gobner, J., Mayer, P., Steimann, F., 2004. Interface utilization in the Java Development
Kit, Proceedings of the 2004 ACM symposium on Applied computing. ACM, Nicosia,
Cyprus, pp. 1310-1315.
Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2011. A Systematic Review of
Fault Prediction Performance in Software Engineering. IEEE Transactions on Software
Engineering 99.

Halstead, M.H., 1977. Elements of Software Science (Operating and programming
systems series). Elsevier Science Inc.

Hanh, V.L., Akif, K., Le Traon, Y., Jezequel, J.M., 2001. Selecting an Efficient OO
Integration Testing Strategy: An Experimental Comparison of Actual Strategies. Proc.
15th European Conf. Object-Oriented Programming (ECOOP), 381-401.
Hashim, N.L., Schmidt, H.W., Ramakrishnan, S., 2005. Test order for class-based
integration testing of Java applications, Fifth International Conference on Quality
Software, 2005. (QSIC 2005). , pp. 11-18.

Hatton, L., 1997. Reexamining the fault density - Component size connection. IEEE
Software 14, 89-97.

Hautus, E., 2002. Improving Java Software Through Package Structure Analysis, The
6th IASTED International Conference Software Engineering and Applications,
Cambridge, MA, USA.
Henry, S., Kafura, D., 1981. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, 510-518.
Herzig, K., Zeller, A., 2013. The impact of tangled code changes, Proceedings of the
10th Working Conference on Mining Software Repositories. IEEE Press, San
Francisco, CA, USA, pp. 121-130.

References

 77

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in information
systems research. MIS Q. 28, 75-105.
Hunter, A., Nuseibeh, B., 1998. Managing inconsistent specifications: reasoning,
analysis, and action. ACM Transactions on Software Engineering and Methodology
(TOSEM) 7, 335-367.

IEEE Std 982.1-2005. IEEE Standard Dictionary of Measures of the Software Aspects
of Dependability. IEEE Std 982.1-2005 (Revision of IEEE Std 982.1-1988), 0_1-34.

IEEE Std 1012-1986. IEEE Standard for Software Verification and Validation Plans.
IEEE Std 1012-1986, I.

IEEE Std 1044-2009. IEEE Standard Classification for Software Anomalies. IEEE Std
1044-2009 (Revision of IEEE Std 1044-1993), 1-23.

ISO/IEC 25000:2014. Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - Guide to SQuaRE.

ISO/IEC 25010:2011. Systems and software engineering - Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software quality models.

ISO/IEC/IEEE 24765:2010. Systems and software engineering—Vocabulary.
Jeanmart, S., Gueheneuc, Y.-G., Sahraoui, H., Habra, N., 2009. Impact of the visitor
pattern on program comprehension and maintenance, Proceedings of the 2009 3rd
International Symposium on Empirical Software Engineering and Measurement. IEEE
Computer Society, pp. 69-78.
Jones, C., 1985. Programming productivity. McGraw-Hill, Inc.

Jungmayr, S., 2002. Identifying test-critical dependencies, Software Maintenance, pp.
404-413.

Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., Antoniol, G., 2012. An exploratory study
of the impact of antipatterns on class change-and fault-proneness. Empir Softw Eng 17,
243-275.
Kim, M., Cai, D., Kim, S., 2011. An empirical investigation into the role of API-level
refactorings during software evolution, Proceedings of the 33rd International
Conference on Software Engineering. ACM, Waikiki, Honolulu, HI, USA, pp. 151-160.

Kim, M., Zimmermann, T., Nagappan, N., 2012. A field study of refactoring challenges
and benefits, Proceedings of the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering. ACM, Cary, North Carolina, pp. 1-11.
Kitchenham, B., Pfleeger, S.L., 1996. Software quality: The elusive target. IEEE
Software 13, 12-21.
Knoernschild, K., 2012. Java Application Architecture: Modularity Patterns with
Examples Using OSGi, 1st ed. Prentice Hall.
Koenig, A., 1998. Patterns and antipatterns, in: Linda, R. (Ed.), The patterns
handbooks. Cambridge University Press, pp. 383-389.
Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., 1996. On Regression Testing of
Object-Oriented Programs. Journal of Systems and Software 32, 21-40.

References

 78

Lakos, J., 1996. Large-scale C++ software design. Addison-Wesley Longman,
Redwood City, CA.
Laval, J., Denier, S., Ducasse, S., Bergel, A., 2009. Identifying Cycle Causes with
Enriched Dependency Structural Matrix, Proceedings of the 2009 16th Working
Conference on Reverse Engineering. IEEE Computer Society, pp. 113-122.

Laval, J., Ducasse, S., 2014. Resolving cyclic dependencies between packages with
enriched dependency structural matrix. Software Pract Exper 44, 235-257.

Lehman, M.M., 1980. Programs, Life-Cycles, and Laws of Software Evolution.
Proceedings of the Special Issue Software Engineering 68, 1060-1076.

Lehman, M.M., Ramil, J.F., 2001. Rules and tools for software evolution planning and
management. Annals of software engineering 11, 15-44.

Leo, K., 2013. Why banks are likely to face more software glitches in 2013., BBC.
http://www.bbc.com/news/technology-21280943 (Accessed April 24, 2013)

Li, W., Henry, S., 1993. Object-Oriented Metrics That Predict Maintainability. Journal
of Systems and Software 23, 111-122.

Lientz, B.P., Swanson, E.B., Tompkins, G.E., 1978. Characteristics of application
software maintenance. Commun Acm 21, 466-471.

Lilley, S., 2012. Critical Software: Good Design Built Right. NASA System Failure
Case Studies 6.

Lippert, M., Roock, S., 2006. Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. John Wiley & Sons.

Mäntylä, M.V., Lassenius, C., 2006. Subjective evaluation of software evolvability
using code smells: An empirical study. Empir Softw Eng 11, 395-431.

Martin, R.C., 1996. Granularity, C++ Report, pp. 57-62.
Martin, R.C., 1997. Acyclic visitor, Pattern languages of program design 3. Addison-
Wesley Longman Publishing Co., Inc., pp. 93-103.
Martin, R.C., 2000. Design principles and design patterns. Object Mentor 1, 34.

Mayer, P., 2003. Analyzing the use of interfaces in large OO projects, Companion of
the 18th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. ACM, Anaheim, CA, USA, pp. 382-383.
McCabe, T.J., 1976. A complexity measure. IEEE Transactions on Software
Engineering, 308-320.
McCall, J.A., Richards, P.K., Walters, G.F., 1977. Factors in software quality. General
Electric, National Technical Information Service.
Melton, H., Tempero, E., 2007a. The CRSS metric for package design quality,
Proceedings of the thirtieth Australasian conference on Computer science - Volume 62.
Australian Computer Society, Inc., Ballarat, Victoria, Australia, pp. 201-210.

Melton, H., Tempero, E., 2007b. An empirical study of cycles among classes in Java.
Empir Softw Eng 12, 389-415.

References

 79

Melton, H., Tempero, E., 2007c. JooJ: real-time support for avoiding cyclic
dependencies. Proceedings of the thirtieth Australasian conference on Computer science
62, 87-95.

Mens, T., 2006. On the use of graph transformations for model refactoring,
Proceedings of the 2005 international conference on Generative and Transformational
Techniques in Software Engineering. Springer-Verlag, Braga, Portugal, pp. 219-257.
Mens, T., Taentzer, G., Runge, O., 2007. Analysing refactoring dependencies using
graph transformation. Softw Syst Model 6, 269-285.
Mens, T., Tourwe, T., 2004. A survey of software refactoring. IEEE Transactions on
Software Engineering, 30, 126-139.
Mohagheghi, P., 2004. The Impact of Software Reuse and Incremental Development on
the Quality of Large Systems, Computer and Information Science. NTNU, NTNU, p.
272.

Moller, K.H., Paulish, D.J., 1993. An empirical investigation of software fault
distribution, Software Metrics Symposium, 1993. Proceedings., First International, pp.
82-90.
Murphy-Hill, E., Parnin, C., Black, A.P., 2009. How we refactor, and how we know it,
Proceedings of the 31st International Conference on Software Engineering. IEEE
Computer Society, pp. 287-297.

Muschevici, R., Potanin, A., Tempero, E., Noble, J., 2008. Multiple dispatch in
practice, Acm Sigplan Notices. ACM, pp. 563-582.

Naik, K., Tripathy, P., 2011. Software Testing and Quality Assurance: Theory and
Practice. Wiley.

Naur, P., Randell, B., 1969. Software Engineering: Report of a conference sponsored by
the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968, Brussels, Scientific
Affairs Division, NATO.
NIST, 2010. NIST Framework and Roadmap for Smart Grid Interoperability Standards
Release 1.0. NIST Special Publication 1108.
Olbrich, S.M., Cruzes, D.S., Sjoberg, D.I., 2010. Are all code smells harmful? A study
of God Classes and Brain Classes in the evolution of three open source systems,
Software Maintenance (ICSM), 2010 IEEE International Conference on. IEEE, pp. 1-
10.
Opdyke, W.F., 1992. Refactoring object-oriented frameworks. University of Illinois at
Urbana-Champaign.
Ostrand, T., Weyuker, E., 2002. The distribution of faults in a large industrial software
system. ISSTA '02: Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis 27, 55-64.

Oyetoyan, T.D., Cruzes, D., Thurmann-Nielsen, C., 2015a. A Decision Support System
for breaking Class Cycles, 31st IEEE International Conference on Software
Maintenance and Evolution, Bremen, Germany (Submitted).

References

 80

Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2012. Can Reused Components Provide
Lead to Future Defective Components in Smart Grid Applications?, Parallel and
Distributed Computing and Systems : Software Engineering and Applications (PDCS
2012). ACTA Press.
Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013a. Criticality of Defects in Cyclic
Dependent Components, 13th IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM), Eindhoven, Netherlands, pp. 21-30.

Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2013b. A study of cyclic dependencies on
defect profile of software components. Journal of Systems and Software 86, 3162-3182.

Oyetoyan, T.D., Jens, D., Jezek, K., Falleri, J.-R., 2015b. Circular Dependencies and
Change-proneness: An Empirical Study, 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering, École Polytechnique de Montréal,
Québec, Canada, pp. 238-247.

Park, R.E., Goethert, W.B., Florac, W.A., 1996. Goal-Driven Software Measurement. A
Guidebook. DTIC Document.

Parnas, D.L., 1979. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering SE-5, 128-138.

Parnas, D.L., 1994. Software aging, Proceedings of the 16th international conference on
Software engineering. IEEE Computer Society Press, pp. 279-287.

Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S., 2007. A Design Science
Research Methodology for Information Systems Research. J. Manage. Inf. Syst. 24, 45-
77.
Pfleeger, S.L., 2001. Software Engineering: Theory and Practice. Prentice Hall.

Poston, R., 1987. Preventing Most-Probable Errors in Requirements. IEEE Software 4,
81-83.

Prechelt, L., Unger-Lamprecht, B., Philippsen, M., Tichy, W.F., 2002. Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. IEEE Transactions on Software Engineering, 28, 595-606.
Radatz, J., Geraci, A., Katki, F., 1990. IEEE standard glossary of software engineering
terminology. IEEE Std 610121990, 121990.
Ratzinger, J., Sigmund, T., Gall, H.C., 2008. On the relation of refactorings and
software defect prediction, Proceedings of the 2008 international working conference on
Mining software repositories. ACM, Leipzig, Germany, pp. 35-38.

Riel, A.J., 1996. Object-oriented Design Heuristics. Addison-Wesley Publishing
Company.

Rising, L., 1998. The Patterns Handbook: Techniques, Strategies, and Applications.
SIGS.

Robson, C., 2011. Real world research : a resource for users of social research
methods in applied settings, 3rd ed. Wiley-Blackwell, Chichester, West Sussex ;
Hoboken, N.J.

References

 81

Roger, S.P., 2005. Software engineering: a practitioner’s approach. McGrow-Hill
International Edition.
Romano, D., Raila, P., Pinzger, M., Khomh, F., 2012. Analyzing the impact of
antipatterns on change-proneness using fine-grained source code changes, Reverse
Engineering (WCRE), 2012 19th Working Conference on. IEEE, pp. 437-446.

Russo, A., Nuseibeh, B., Kramer, J., 1998. Restructuring requirements specifications
for managing inconsistency and change: A case study, Proceedings of the Third IEEE
International Conference on Requirements Engineering, pp. 51-60.
Sakkinen, M., 1989. Disciplined Inheritance, ECOOP, pp. 39-56.

Sangal, N., Jordan, E., Sinha, V., Jackson, D., 2005. Using dependency models to
manage complex software architecture. SIGPLAN Not. 40, 167-176.

Schroeter, A., Zimmermann, T., Zeller, A., 2006. Predicting component failures at
design time, Proceedings of the 2006 ACM/IEEE international symposium on Empirical
software engineering. ACM, Rio de Janeiro, Brazil, pp. 18-27.
Shah, S.M.A., Dietrich, J., Mccartin, C., 2013. On the Automation of Dependency-
Breaking Refactorings in Java, 29th IEEE International Conference on Software
Maintenance (ICSM), Eindhoven, Netherlands, pp. 160 - 169.

Sindre, G., Conradi, R., Karlsson, E.A., 1995. The Reboot Approach to Software Reuse.
Journal of Systems and Software 30, 201-212.

Singh, G.B., 1994. Single versus multiple inheritance in object oriented programming.
ACM SIGPLAN OOPS Messenger 5, 34-43.

Sommerville, I., 2011. Software Engineering. Pearson Education.
Steimann, F., Siberski, W., Kuhne, T., 2003. Towards the systematic use of interfaces in
JAVA programming, Proceedings of the 2nd international conference on Principles and
practice of programming in Java. Computer Science Press, Inc., Kilkenny City, Ireland,
pp. 13-17.
Sunyé, G., Pollet, D., Le Traon, Y., Jézéquel, J.-M., 2001. Refactoring UML models, ≪
UML≫ 2001—The Unified Modeling Language. Modeling Languages, Concepts, and
Tools. Springer, pp. 134-148.
Tarjan, R., 1972. Depth-first search and linear graph algorithms. SIAM journal on
computing 1, 146-160.
Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H., Noble, J.,
2010. The Qualitas Corpus: A curated collection of Java code for empirical studies,
17th Asia Pacific Software Engineering Conference (APSEC), 2010 IEEE, pp. 336-345.

Tihana Galinac, G., Per, R., Darko, H., 2012. A Second Replicated Quantitative
Analysis of Fault Distributions in Complex Software Systems. IEEE Transactions on
Software Engineering 99, 1-1.
Tsantalis, N., Chatzigeorgiou, A., 2011. Identification of extract method refactoring
opportunities for the decomposition of methods. Journal of Systems and Software. 84,
1757-1782.

References

 82

Van Der Straeten, R., D'Hondt, M., 2006. Model refactorings through rule-based
inconsistency resolution, Proceedings of the 2006 ACM symposium on Applied
computing. ACM, pp. 1210-1217.

Van Der Straeten, R., Jonckers, V., Mens, T., 2004. Supporting Model Refactorings
Through Behaviour Inheritance Consistencies, in: Baar, T., Strohmeier, A., Moreira, A.,
Mellor, S. (Eds.), «UML» 2004 — The Unified Modeling Language. Modeling
Languages and Applications. Springer Berlin Heidelberg, pp. 305-319.

Van Gorp, P., Stenten, H., Mens, T., Demeyer, S., 2003. Towards automating source-
consistent UML refactorings, «UML» 2003-The Unified Modeling Language. Modeling
Languages and Applications. Springer, pp. 144-158.
van Vliet, H., 2000. Software Engineering: Principles and Practice. Wiley.

Vokac, M., 2004. Defect frequency and design patterns: An empirical study of
industrial code. IEEE Transactions on Software Engineering 30, 904-917.

Vokáč, M., Tichy, W., Sjøberg, D.I., Arisholm, E., Aldrin, M., 2004. A controlled
experiment comparing the maintainability of programs designed with and without
design patterns—a replication in a real programming environment. Empir Softw Eng 9,
149-195.

Wake, W.C., 2004. Refactoring workbook. Addison-Wesley Professional.
Wasserman, S., Faust, K., 1994. Social network analysis : methods and applications.
Cambridge University Press, Cambridge ; New York.
Weissgerber, P., Diehl, S., 2006. Are refactorings less error-prone than other changes?,
Proceedings of the 2006 international workshop on Mining software repositories. ACM,
Shanghai, China, pp. 112-118.

Wendorff, P., 2001. Assessment of design patterns during software reengineering:
Lessons learned from a large commercial project, Fifth European Conference on
Software Maintenance and Reengineering, 2001. IEEE, pp. 77-84.
Wohlin, C., Host, M., K, H., 2003. Empirical Research Methods in Software
Engineering, in: Conradi, R., Wang, A.I. (Eds.), In Lecture Notes in Empirical Methods
and Studies in Software Engineering: Experiences from ESERNET. Springer Verlag.

Zhang, J., Lin, Y., Gray, J., 2005. Generic and Domain-Specific Model Refactoring
using a Model Transformation Engine, in: Sami Beydeda, M.B., and Volker Gruhn, eds
(Ed.), Model-driven Software Development. Springer, pp. 199-218.
Zimmerman, T., Nagappan, N., Herzig, K., Premraj, R., Williams, L., 2011. An
Empirical Study on the Relation between Dependency Neighborhoods and Failures,
IEEE Fourth International Conference on Software Testing, Verification and Validation
(ICST), pp. 347 - 356.
Zimmermann, T., Nagappan, N., 2007. Predicting subsystem failures using dependency
graph complexities. ISSRE 2007: 18th IEEE International Symposium on Software
Reliability Engineering, Proceedings, 227-236.

References

 83

Zimmermann, T., Nagappan, N., 2008. Predicting Defects using Network Analysis on
Dependency Graphs. 2008 30th International Conference on Software Engineering:
(ICSE), Vols 1 and 2, 530-539.

 84

Appendix A

 85

Appendix A: Selected papers

This Appendix contains the seven papers that have contributed towards the work
presented in this thesis. They are presented in a chronological order.

P1. A Comparison of Different Defect Measures to Identify Defect-Prone
Components

P2. A study of cyclic dependencies on defect profile of software components
P3. Criticality of Defects in Cyclic Dependent Components
P4. Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

P5. Transition and Defect Patterns of Components in Dependency Cycles During
Software Evolution

P6. Circular Dependencies and Change-Proneness: An Empirical Study
P7. A Decision Support System to Refactor Class Cycles

 86

 87

P1: Comparison of Different Defect Measures to Identify
Defect-Prone Components

Published In Proc. Joint Conference of the 23rd International Workshop on Software
Measurement and the 2013 8th International Conference on Software Process and

Product Measurement (IWSM-MENSURA), Ankara, Turkey. pp. 181-190

 88

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 89

Comparison of Different Defect Measures to Identify Defect-Prone
Components

Tosin Daniel Oyetoyan1, Reidar Conradi1

1Department of Computer and Information
Science

Norwegian University of Science and
Technology, Trondheim, Norway

{tosindo, conradi}@idi.ntnu.no

Daniela Soares Cruzes1,2
2SINTEF

Trondheim, Norway
dcruzes@idi.ntnu.no

Abstract—(Background) Defect distribution in software systems
has been shown to follow the Pareto rule of 20-80. This motivates
the prioritization of components with the majority of defects for
testing activities. (Research goal) Are there significant variations
between defective components and architectural hotspots
identified by other defect measures? (Approach) We have
performed a study using post-release data of an industrial Smart
Grid application with a well-maintained defect tracking system.
Using the Pareto principle, we identify and compare defect-prone
and hotspots components based on four defect metrics.
Furthermore, we validated the quantitative results against
qualitative data from the developers. (Results) Our results show
that at the top 25% of the measures 1) significant variations exist
between the defective components identified by the different
defect metrics and that some of the components persist as
defective across releases 2) the top defective components based on
number of defects could only identify about 40% of critical
components in this system 3) other defect metrics identify about
30% additional critical components 4) additional quality
challenges of a component could be identified by considering the
pairwise intersection of the defect metrics. (Discussion and
Conclusion) Since a set of critical components in the system is
missed by using largest-first or smallest-first prioritization
approaches, this study, therefore, makes a case for an all-
inclusive metrics during defect model construction such as
number of defects, defect density, defect severity and defect
correction effort to make us better understand what comprises
defect-prone components and architectural hotspots, especially in
critical applications.

Keywords—defect distribution; defect measures; defect metrics;
defect severity; defect correction effort; defect density; defect-prone
component; Smart Grid; critical system; architectural hotspots

I. Introduction
Software testing is resource intensive in complex
industrial systems [1], as such; any information that
can help reduce testing effort is a step in the right
direction. This is mainly the motivation for
developing defect models to predict the part of the
system that has the highest likelihood to be defect
prone. The early knowledge of the components that

may turn defective in the future release of a system
is useful to focus code inspections, walkthroughs
and reviews activities to catch defects in such part
of the system.

However, existing defect models are largely
constructed to predict based on number of defects
(e.g. [2-9]). The study by Adams [10] showed that
removing large number of defects may have a
trivial effect on reliability. As pointed out in [10,
11], the most number of latent defects lead to very
rare failure in practice while the vast majority of
observed failures are caused by a relatively tiny
number of defects. In addition to this observation,
both Ebert et al. [9] and Boehm and Basili [8]
argued that 60-80% of the correction effort and
80% of avoidable rework are due to 20% of the
defects. Therefore, showing that it is not the number
of defects, rather their severity that matters. A high
severity defect usually points to a fatal error that
results into system failure whereas low severity
defects mostly point to some cosmetic issues. Few
studies have reported defect prediction models that
predict the defect-proneness of components using
defect severity (e.g. [12-14]).
Several studies have also suggested that smaller
components have higher likelihood of defects when
compared to the larger ones [7, 15-17]. These
studies have used defect density measured as
number of defects per thousand lines of code
(LOC). Since it has been demonstrated that most
complexity metrics correlate with a component’s
size [18], it supposes that more complex

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 90

components and invariably larger components are
given higher priority in prediction models that use
defect count approach. Results from literature [19]
show that few studies have reported models that are
based on defect density (e.g. [2, 20-22]) when
compared to using number of defects. Koru et al.
[23], by using the proposed theory of relative defect
proneness (RDP) argued that the largest-first
prioritization should lead to less effective defect
detection compared to the smallest-first approach.
Van Moll et al. [24] claimed that those components
that are defect-prone and difficult to maintain
should be the candidates for high priority inspection
and testing. Thus maintenance effort may be
pointing to structural complexity [25] in the
components or could be a case of changing business
requirements that is typical in critical system of
systems (SoS) [26]. For instance, implementing a
new technology (e.g. IPv6). The effort could be
more than predicted as told by one of the
stakeholders in the software company of the system
under study. Very few studies have focused on
predicting maintenance or development effort at the
class level [25, 27, 28].
Thus, on one hand, a plethora of studies have used
the largest-first prioritization, while on the other
hand, a number of studies have suggested that the
smallest-first approach would be more effective. In
the light of this, it becomes obvious that in a
software system, we can begin to focus on defective
components from different points of views using
both direct and indirect defect measures. Since there
is no synergy between the various defect measures
in a single defect prediction model environment, we
conjecture that some significant differences might
exist between what is identified by the top most
defective components based on number of defects
and those that are based on other measures.

We also hypothesize that defect distribution
based on defect count may not identify most of the
critical components to the application in spite of the
number of defects that the defective components
may account for. In a software system certain
components are more critical than the others. For
instance, a component (connector) that integrates

hardware and other subsystems is obviously critical
to the application. The performance and reliability
of the system will depend on such critical
components. It is in this context that we are
interested to know how much of such critical
components can be identified at the top region of
these defect measures and how this knowledge can
help in testing effort and improvement of the
components’ quality.

Therefore, the central goal of this study is to
examine and investigate the differences between
components identified by four defect measures,
namely; number of defects, defect density, severity
of defect and defect correction effort. We want to
know how significant or trivial these differences are
in terms of the criticality of the components to the
application under study. In addition, we want to
know, if those differences persist across releases in
this application. To the best of our knowledge, we
have not found any study that focused on
investigating the gap or the synergy between the
distributions of several defect measures on the
affected components at the same time.

Our hypothesis is that all the data should be seen in
tandem in order to not misplace critical defective
components and architectural hotspots in critical
systems. Architectural hotspots are defect-prone
components with interface defects [3, 29]. This
study complements other studies with focus on
defect distribution in large and complex industrial
systems. We conjecture that to be able to predict
and identify subtle but critical defective
components and architectural hotspots in critical
systems need more than only one defect measure
and one direction of prioritization.

The rest of the work is structured as follows; in
section II, we discuss related work to this study.
Section III describes the software application that is
under study. In section IV, we detail our empirical
set up, such as: the definitions, research questions to
be investigated and our approach of data collection.
The results and discussion are provided in section
V, while in section VI, we draw out the threats to
the validity of our results. Lastly, section VII

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 91

provides the conclusion to this study with a note on
future work.

II. Related work
Several empirical studies have shown the
distribution of defects in software components to
follow a 20-80 rule [7-9, 11, 15, 30, 31], that is, the
so-called Pareto distribution principle. Among these
studies only Ostrand and Weyuker [7] reported the
distribution of defective components based on the
severity of their defects.

Defect distribution has also explored the
relationship between size, measured as lines of code
(LOC) and defect proneness of components. Two
measures are focused in this relationship, the
absolute number of defects and defect density.
Studies in [7, 15-17] found trends between size and
defect density. Either the defect density increases as
the component size decreases [15] or that defect
density increases above a size threshold and
decreases below the size threshold [16, 17] or that
defect density decreases up to a certain size
threshold and then leveled up [7]. The findings in
these studies suggest (1) that smaller modules are
more defect-prone than the larger ones and (2) that
there is a medium size that indicates the optimal
size for a component. El Emam et al. [32] disputed
these studies and reported that plotting the size vs.
defect density can be misleading and that no such
thresholds of optimal component’s size exist in the
systems they analyzed. However, a study by Koru
et al. [33] that focused their analysis on size-defect
relationship solely arrived at the same conclusion of
previous studies that smaller components are more
defect-prone than larger components. Results from
Fenton and Ohlsson [11] supported neither claims,
their studies found no trend between size and defect
density.
Defect prediction models have taken advantage of
defect distribution in a system to build models that
can predict the defect proneness of software
components. For example, many novel approaches
have tested their models on the most defective parts
of the system. Ostrand et al. [2] validated their
prediction models using the top 20%. Schroeter et

al. [34] obtained their best model by testing with the
top 5% of the defective files in Eclipse. Zhang et al.
[4] used the statistical medium to define a defect
dense component for their model. Briand et al. [25]
supported the largest-first prioritization of
components during inspection and concluded that to
use model across several projects, the number of the
“largest-first” would in practice be driven by
available time and budget.

Maintenance effort prediction at a fine-grained level
such as class level has also been explored. Li and
Henry [35] built a regression model using object-
oriented (OO) metrics as independent variables and
class change frequency as dependent variable to
model maintenance effort. Bocco et al. [28]
reported that the number of methods and the
number of associations are good predictors of
maintenance effort of a UML class diagram.
Alshayeb and Li [27] concluded that OO metrics
could fairly predict error-fix effort of a class in an
XP-like process only when the system has sufficient
design structure. Briand et al. [25] showed that
fairly accurate prediction of class development
effort could be made based on the class interface
size alone.

These previous studies have mainly focused on
identifying defective components that can be
focused for quality assurance by using the metrics
independently. Furthermore, they have not
considered how much of critical defective
components to a system can be identified using any
or all of these metrics. Also, there is no report of
how the defect metrics can complement one another
when dealing with defective components that
should be given priority in testing activities. In this
study, we seek to empirically validate the quantity
of critical defective components that can be
identified using largest-first and smallest-first
prioritization approaches as used in previous
studies. In addition, we seek to understand if some
other defect metrics such as defect correction effort
and defect severity can identify different critical
defective components from the other defect metrics.
Lastly, we want to find out how by using several
measures we can prioritize testing activities.

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 92

III. System Description
In this study, we performed an empirical study of an
industrial Smart Grid application, a type of system
of systems (SoS) applications. Several domains of
Smart Grid exist such as the generation,
transmission, distribution, markets, operations,
service providers and consumers [36] with different
types of software running in these domains (legacy
systems and new applications). This software, in
addition, performs different functions and provides
different services.
Our motivation for the choice of this case study is
that, as a critical infrastructure, the availability and
reliability of the Smart Grid is crucial to its safety
and security. Smart Grid represents the injection of
Information and Communication Technology (ICT)
infrastructure to the electricity grid to allow for bi-
directional flow of energy and information [37].
Smart Grid is still in the formation stage, and
represents a shift from relatively closed grid to a
more complex and highly interconnected systems.
Although, efforts are in place to develop
interoperable standard, there is still substantial gap
identified as a results of evolving requirements and
different implemented software and hardware
products [38]. The fact that these systems have to
interoperate poses a quality challenge for the entire
system. For instance, if software for collecting data
from field devices that are designated for
monitoring the health or quality of the transmission
line fails as a result of software defect, the end
operator (human or automated device) is denied
real-time data for taking adequate control action.
Thus, defect analysis using realistic and useful
measurements is needed to support QA focus on
different and identified defective parts of the
various Smart Grid applications. A defect that
results into failure in one part of such critical
system can have cascading and serious effects on
the rest of the Smart Grid systems. Since different
software will drive different Smart Grid systems
and many of the system will interoperate and
integrate together, proper identification of critical
defect-prone components in these systems is

important for improving the overall quality of the
grid.
The system under study is a distribution
management system designed to monitor and plan
the Grid operations. It provides real-time
operational support by continuously receiving status
data from the power grid. By using this data,
automation processes can then provide improved
error handling, operational statistics, reporting and
automated customer notification that ensure that
customers are informed of power interruptions and
irregularities.
The system consists of three main parts:
• The design module that is used for designing the

single line diagrams based on input from
Network Information System (NIS).

• The operation center that monitors the
distribution grid (through real-time data from
the SCADA-system), where the operator
performers switching in case of power
interruptions or the execution of planned
maintenance/repair. In addition the operations
center simulates effects of changes to the grid
and plans grid operations. It can also notify
affected customers automatically.

• The call center that provides information about
the current grid status for customer center
representatives, and also sends customer
observations back to the distribution
management system.

The system has been in development for about six
years and we have analyzed six post releases (field
and operational) of this application. It is mostly
developed with C# programming language with
.NET framework. As listed in Table I, the system
consists about 380KLOC and contains 1459 class
files and 2484 classes as of version 4.2.4. In this
system, a reported defect goes through several
stages in its life cycle before it is finally closed.
First, it is reviewed to ascertain if it is a defect, then
it is assigned to a developer. Subsequently, the
defect is closed after it has been fixed and tested.
The actual fix effort (person-hours) therefore
comprises the time to code, test and provide
documentation. For copyright reason, we can only

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 93

provide the meta-data and the results of the study in
this paper.
Initial investigation of the defects data shows an
agreement with the Pareto distribution of 20-80 as
noted in [8, 9]. Figure- 1a shows the distribution of
defects against correction efforts. Between 20-40%
of defects are responsible for an average of about
80% of the correction efforts. Figure-1b displays
the distribution of defective class files against the
cumulative number of defects. In five of the
releases, 20% of the defective class files are
responsible for approximately 80% of the total
number of defects. We can therefore safely
conclude that the Pareto distribution of 20-80 holds
for this system. Figure 2 shows defect density
between 0.14 and 0.012 defects/LOC for the
smallest components (class-files) less than 90 LOC
and starting to flatten at 0.0002 defects/LOC for
class-files larger than 680 LOC. This trend agrees

with the results reported in [7] and is similar to the
rest of the releases.

IV. Empirical setup
Our goal is to investigate if there are significant
differences between the distributions of defect
measures over components and if they persist. In
order to adequately investigate our research goal, it
is appropriate to define some of the terms that are
relevant and used in the rest of this paper.

A. Definitions

Defect-prone component (DPC): A defect-prone
component is defined as a component in the top
25% of components with the most number of
defects.

TABLE I. SUMMARY OF SOFTWARE SOURCE CODE AND DEFECT DATA

Release Date #Pkg #Class-File #Class KLOC #Defective Class-File #Defect

4.2.4 Nov 14 2012 261 1459 2484 380.50 29 14

4.2.2 Oct 12 2012 261 1454 2475 378.25 49 18

4.1 Aug 17 2012 237 1246 2208 353.04 60 42

4.0.1SP4 Apr 11 2012 204 1141 1953 322.81 69 29

4.0.1SP2 Mar 26 2012 205 1139 1947 321.55 46 28

4.0 Oct 14 2011 187 1041 1791 296.00 137 143

Fig. 1. (a) Distribution of defect against correction effort (b) Distribution of defective component against defect

!"
#!"
$!"
%!"
&!"
'!"
(!"
)!"
*!"
+!"

#!!"

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

!
"#
$%
%&
'(
$)

"*
+$

%,
"

!"-&.&',"

&,$,&"

&,$,$"

&,#"

&,!,#-.&"

&,!,#-.$"

&,!"
!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" #!" $!" %!" &!" '!" (!")!" *!" +!" #!!"

!
"-
&.
&'
,"

!"-&.&'(/&"#01)&),"

&,$,&"

&,$,$"

&,#"

&,!,#-.&"

&,!,#-.$"

&,!"

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 94

Fig. 2. Defects/LOC vs. Size (LOC)

Defect-dense component (DDC): A defect-dense
component is defined as component in the top 25%
of components with the most number of defect
densities.
Severe defective component (SDC): A severe
defective component is defined as a component
within the top 25% with the most severe defects.

Hard-to-fix defective component (HFC): A hard-
to-fix defective component is defined as a
component within the top 25% with the highest
correction effort.

Architectural hotspots: An architectural hotspot is
defined as a component within the top 25% with the
highest number of multiple-component defects
(MCD). This definition is similar to Li et al. [3].

Multiple-component Defect (MCD): A MCD is a
defect that affects more than one component. For
detail discussions about MCD and interface defects
see [3] and [29] respectively.
Component: A component in our study represents a
class file in C#.
The decision to use the top 25% is based on the
distribution of the system’s defects data as shown in
Figure 1b. As observed in this plot, the top 25% of
defective components account for an average of
80% of the total defects. It is thus practical to use
this number for our definitions. Li et al. [3] used
20% to define the various measures in the study and
argued that the quality of the system has no bearing
on the top 20%. Irrespective of how defective the
system may be, the 20% will still identify about
80% of MCDs. We find this to be true in the system
under study. Since the goal of our study is to
investigate if differences occur between these
measures, we find it appropriate to use this uniform
figure (25%) across the various constructs.

In our system, the interface defects among the
source files account for an average of 78% of all the
reported defects. This seems to agree more with the
reported figure by Perry and Evangelist [29] than
the figures in Li et al. [3] Therefore, in our
subsequent analysis, we have treated both DPC and
hotspots in the same way and did not analyze
hotspots separately.

B. Research questions

In this study, we investigate three research
questions that can help us clarify our original
research goal.
RQ1. Are there differences between components

identified by DPC, DDC, SDC and HFC?
In order to quantify the significance of the
differences, we want to know if those identified
components persist in the top 25% of the measure.
Secondly and more importantly, we want to know
how critical these components are from the
system’s developers’ assessments. RQ2 and RQ3
address these goals:

RQ2. Do the identified defective components in
RQ1 persist across releases in the same top
25% region?

RQ3. How critical to the application are the
identified components in RQ1?

To answer RQ1:
a) We use DPC as a reference measure and

compute the set differences (1) DDC-DPC (2)
SDC-DPC and (3) HFC-DPC. By this, we show
how many defective components are identified
differently by other metrics from DPC.

b) We use DDC as a reference metric and compute
the set differences (1) SDC-DDC (2) HFC-
DDC. By this, we show how many defective

!"

!#!$"

!#!%"

!#!&"

!#!'"

!#!("

!#!)"

!#!*"

!#!+"

!#!,"

!#$"

!#$$"

!#$%"

!#$&"

!#$'"

!#$("

!" $!!!" %!!!" &!!!" '!!!" (!!!")!!!" *!!!" +!!!"

!"
#"
$%
&'
()

*+

,-."+/#+0-1"+2()*3+

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 95

components are identified differently by other
measures from DDC.

c) We use SDC as a reference metric and compute
the set difference (1) HFC-SDC. By this, we
show how many defective components are
identified differently by HFC metric from SDC.

In mathematical form, we compute the set
difference D between two sets containing
components measured by Mi and Mj as:

Figure 3 shows the region of interest between Mi
and Mj. The shaded portion captures components in
Mi but not in Mj.

Fig. 3. Region of set difference between Mi and Mj i.e. Mi – Mj

To address the persistence of identified defective
components, i.e. components in D (RQ2) across
releases, we compute for each release the forward
intersection of components in D in the current
release with the components measured by Mi in all
the future releases. In set form, we compute:

The number of defective components that persist
across future releases is calculated as the cardinality
of the set:

We discuss how we address RQ3 in the result
section under qualitative investigation.

C. Data collection

We have collected data for six releases of this
application by using an in-house automated tool.
We describe in each subsection the details of our

approach: (1) to collect the data from the defect
repository, (2) to map the class files to the defects,
(3) to aggregate the defect counts at the package
level (4) of computing the defect-fix effort for each
class file and (5) of ranking components by severity
of defect.

1) Defects collection from the defect
tracking system (DTS)

We have collected defect data from the HP-QC
DTS. A Defect repository gives typically a high
level overview of a problem report. For example,
typical attributes of the HP-QC defect tracking
system (DTS) are the Defect ID, severity of the
defect, the type of defect, date defect is detected,
the module containing the defect, the version where
defect is detected, and the date the defect is fixed.
Our first step is to determine the defects that affect
each version of the system. In the HP-QC, we use
“Detected in Version(s)”. A certain defect may
affect multiple versions of a system. By this we
mean persistent defects [3] that keep re-occurring
and span several versions of a system. We include
such defects in all the versions they affect. Next, we
filtered out “Enhancement” and “Task” cases from
the “Defect Type” field.

2) Method to map class files to defects
Version repository on the other hand is a
configuration management system used by the
developers to manage source code versions. The
version system provides historical data about the
actual class file that is changed and/or added as a
result of corrective action (defect fixes), adaptive,
preventive and perfective actions [39]. Thus, the
SVN/CVS provides a detailed granularity level to
know which source file(s) in the module(s) are
changed to fix a reported defect. A common way to
figure out what operation is performed on the
source file is to look at the message field of the
SVN commit. When developers provide this
information with the bug number and/or useful
keywords (e.g. bug or fix), it is possible to map the
reported defect with the actual source file(s) [34,
40]. In some cases, not all bug commits in the
version repository contain the bug number or useful

! ! !! !!! ! !! ! !!
!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !!!!

!
! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!
!
!

i j

!!"#$%$&! ! !! !! !!!
! !

!

!!!!!
!!!!!!!!

!!!"!!! ! !"#"$%"! ! ! !"#$%&!!"!!"#"$%"!
!"#!! ! !"##$%&!!"#"$%"! ! ! !!! ! ! !

!"#$%& !!"#$%$&! ! ! !!"#$%$&! !

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 96

keyword in the message field. In the past,
researchers have approached this situation by
mapping from defect repository to the version
repository [34, 41].
We have used both approaches to map defect from
the HP-QC DTSs to the code changes. The defect
fixed date allows us to map some of the untagged
commits in the version system to the resolved bugs.
Overall, we mapped an average of 71% for the six
releases used for this study (see Table II). Table II
lists in addition, the percentage of defect-fix efforts
(correction efforts) recorded for the mapped defects.

TABLE II. % OF DEFECTS MAPPED FROM DTS TO SVN AND % OF FIX-
EFFORTS RECORDED FOR THE MAPPED DATA

Version %Defects %Fix Efforts

4.2.4 71.4 80.0

4.2.2 83.3 100.0

4.1 85.7 97.2

4.0.1SP4 69.0 95.0

4.0.1SP2 64.0 100.0

4.0 51.7 75.7

3) Aggregating number of defects per class
file

In a release, it is possible that multiple reported
bugs be associated to one class file. The unique
defect ID is thus appropriate to compute the number
of defects fixes that affect a class file. From the
mapped change data, we look up each class file and
determine the total of defects per class file by
counting the number of unique defect ID in this
release.

4) Method of computing the defect-fix
efforts of class files

In this system, each corrected defect has a recorded
fix effort in person-hours in the DTS. The approach
of collecting defect-fix effort for a resolved defect
in this application has been discussed in section 2.
Now, consider component x with 2 resolved
defects, d1 and d2. Let us say that the recorded fix
effort for d1 is f1 and the recorded fix effort for d2 is
f2. If x shares d1 with n number of other
components and shares d2 with m number of other

components, what is the defect-fix effort for
component x? To answer this question, we have
used equal-blame approach where we assume that
the correction effort is equally distributed among
the components affected by a defect. This is similar
to the approach used by Rombach [42] to
characterized corrective maintainability effort.
Based on this assumption, we can compute the
defect-fix effort for x as:

We thus define the defect fix-effort for a component
x that shares defects d1, d2, d3, ..., dk with n1, n2, n3,
..., nk number of components respectively, where f1,
f2, f3, ..., fk represent the fix efforts as:

5) Ranking of components by severity

We want to be able to rank the components based
on their number of the most severe defects. Unlike
other studies [12-14] that have developed multiple
models to predict two or three categories of defect
severity, we can only devise an approach to have a
single ranking of component based on its most
severe defects. We describe this method [43] in this
section since we believe other researchers and
practitioners can find it useful.
The defect tracking system (DTS) of the system
under study uses four values (critical, major,
average or minor) to describe the severity of each
recorded defect. The severity is determined based
on the impact of the defect on the system and the
business. We keep in mind that a component can
have many defects and therefore contain different
severity values (i.e. different severities distributed
over a component). For instance, a component can
have 3 defects in this order {Critical=1, Major=1,
Average=0, Minor=1}. To rank according to
severity requires that we make some transformation
to give the highest weights to components
according to their most severe defect.

We describe the transformation process we use for
this purpose:

!"# − !""#$% ! =
!!
! +

!!
!!!

!"# − !""#$! ! = ! !!
!!

!

!!!
!

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 97

1. Given n number of components and m
number of defect severity, we form an mxn
matrix, where the column elements in the
matrix stand for the severity values of a
component in their order of severity.

2. We form a new matrix B as follows; for each

column element, starting from the first
element, replace all elements below with
zero if the element above is greater than zero.

3. Form a weight row vector W of 1xm

dimension containing the sum of the
maximum element of each row below the kth
row in B. The last column element in W is
kept as 0:

4. Form a new mxn matrix WD, where W is the

diagonal elements and all other elements are
zero

5. Form matrix C by dividing each element in B
by itself

6. Finally, compute D = WD*C + B

For example, with components; c1: {Critical=2,
Major=1, Average=0, Minor=1}, c2: {Critical=0,
Major=1, Average=3, Minor=0}, c3: {Critical=0,

Major=3, Average=0, Minor=0} and c4:
{Critical=0, Major=0, Average=0, Minor=1} gives
matrix:

Following the transformation steps II-VI yields
matrices:

From the matrix D’s result, c1 has the highest
weight of 6, followed by c3 with a weight 4, then c2
with a weight 2 and lastly c4 with a weight of 1.
Table III presents the grouping of the components
based on their most severe defects. Each component
in the groups is ranked according to the
transformation procedure (not shown in the table).
For example, release 4.2.4 contains components
with no critical defect but 20 defective components
contain at least 1 major severity defect, while 2
components contain at least 1 average severity
defect and possibly minor defects as well but no
critical or major severity defects. Lastly, 7 defective
components have at least 1 minor defect but contain
no critical, major or average severity defects. As we
proceed from left to right, we can identify
components purely on the scale of their highest
severity defects. For instance, in release 4.2.2, from
this table we identify 17 components with at least 1
critical defect and 20 components that contain
major defects but contain no critical defects. We
also know that 10 components contain average
severity defects but have neither critical nor major
defects. This is useful and beneficial and can
complement the other approach [12-14] of
classifying severe defects in software components.

!! = !!
!!! !!" !!" ⋯ !!!
!!" !!! !!" ⋯ !!!
⋮ ⋮ ⋮ ⋮ ⋮

!!! !!! !!! ⋯ !!"
!!

∀!!,!!!"!!!,! !> 0,!!,! = 0, !"#!! = ! + 1,… . ,!
!!!!!!!!!!!!! ∈ 1:! − 1 !∀!!,!!!"!!!!!,! !> 0,!!,! = 0 ∶ !!! = !,! − 1,… . ,1

! = !
!!! !!" !!" ⋯ !!!
!!" !!! !!" ⋯ !!!
⋮ ⋮ ⋮ ⋮ ⋮
!!! !!! !!! ⋯ !!"

!

!! = max
!!!,⋯,!

(!!,!)
!

!!!!!
, !"#!! = !1, 2,⋯ ,! − 1

! = !!,!!,⋯ ,!!!!, 0 !! = max
!!!,⋯,!

(!!,!)
!

!!!!!
, !"#!! = !1, 2,⋯ ,! − 1

! = !!,!!,⋯ ,!!!!, 0

!! = !
!! 0 0 ⋯ 0
0 !! 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 0

!

! = !

!!!
!!!

!!"
!!"

!!"
!!" ⋯ !!!

!!!
!!"
!!"

!!!
!!!

!!"
!!"

⋯ !!!
!!!

⋮ ⋮ ⋮ ⋮ ⋮
!!!
!!!

!!!
!!!

!!!
!!!

⋯ !!"
!!"

!

A=

2 0 0 0
1 1 3 0
0 3 0 0
1 0 0 1

! =
2 0 0 0
0 1 3 0
0 0 0 0
0 0 0 1

!!! =

4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

!! =
1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 0

!

D =

6 0 0 0
0 2 4 0
0 0 0 0
0 0 0 1

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 98

TABLE III. GROUPING OF COMPONENTS BY THEIR MOST NUMBER OF
SEVERE DEFECTS

Release Critical Major Average Minor

4.2.4 0 20 2 7

4.2.2 17 20 10 2

4.1 8 34 15 3

4.0.1SP4 16 35 18 0

4.0.1SP2 6 18 14 8

4.0 93 29 15 0

V. Results and Discussion
Table IV presents the results of the differences
between the defect measures described in RQ1.
Our goal is to measure the difference between the
most used measure (number of defects and defect
density) in defect model and other defect measures
(severity of defect and correction effort). In
columns 2 (DDC-DPC), 3 (SDC-DPC) and 4 (HFC-
DPC), we present the percentage of defective
components that are identified by DDC (density),
SDC (severity) and HFC (correction effort)
respectively and not by DPC (number of defects).
Similarly, columns 5 – 6 lists the percentage of
defective components identified by SDC and HFC
and not by DDC. Lastly, column 7 presents the
percentage of defective components identified by
HFC and not by SDC.

The results demonstrate clearly that other defect
measures such as severity and correction effort
could identify other defective components that
could neither be identified by number of defects nor
by defect density at the top 25% cut-off point. From
the results, DDC shows an average of 20.5%, SDC,
10.8% and HFC, 12.2% of defective components in
all the six releases that are not identified by DPC.
Furthermore, by using DDC as a reference measure,
we show that SDC and HFC identified 18.7% and
19.9% defective components that are not identified
by DDC respectively.
In Table V, we list the results of the persistence
(RQ2) of the identified components in RQ1 over
releases. As shown, an average of 36.9% of the
identified components by DDC persist across
releases in the top 25% region. In a similar way,

SDC and HFC show an average of 31.3% and
32.2% persistence respectively with DPC as a
reference measure. With DDC as a reference
measure, they show an average of 39.3% and 43.5%
persistence respectively. Finally, using SDC as a
reference measure, HFC gives an average of 29.4%
persistence over releases. The results reveal the
significance of the identified components by the
other measures. These components remain defective

TABLE IV. PERCENTAGE OF IDENTIFIED COMPONENTS BASED ON
DIFFERENCES BETWEEN DEFECT MEASURES

Release DDC-
DPC

SDC-
DPC

HFC-
DPC

SDC-
DDC

HFC-
DDC

HFC-
SDC

4.0 18.9 6.6 6.6 17.5 16.8 8.8

4.0.1SP2 21.7 10.9 17.4 21.7 23.9 21.7

4.0.1SP4 21.7 14.5 11.6 24.6 17.4 18.8

4.1 21.7 10.0 10.0 18.3 18.3 8.3

4.2.2 18.4 12.2 10.2 16.3 22.5 22.5

4.2.4 20.7 10.3 17.2 13.8 20.7 13.8

Average 20.5 10.8 12.2 18.7 19.9 15.7

in the top 25% region of the measure across
releases.
The results in Table VI demonstrate the possibility
to identify components that share other quality
challenges together. For instance, 17.5% of the top
most defective components also have very high
correction effort. 14.6% of the defective
components have high number of defects, high
correction efforts and high number of severe defects
(column- 4).

TABLE V. PERCENTAGE OF IDENTIFIED COMPONENTS THAT PERSIST
ACROSS RELEASES BASED ON DIFFERENCES BETWEEN DEFECT MEASURES

Release DDC-
DPC

SDC-
DPC

HFC-
DPC

SDC-
DDC

HFC-
DDC

HFC-
SDC

4.0 38.5 0.0 44.4 50.0 65.2 41.7

4.0.1SP2 40.0 40.0 75.0 40.0 81.8 70.0

4.0.1SP4 26.7 0.0 25.0 17.7 25.0 15.4

4.1 46.2 83.3 16.7 63.6 36.4 20.0

4.2.2 33.3 33.3 0.0 25.0 9.1 0.0

Average 36.9 31.3 32.2 39.3 43.5 29.4

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 99

TABLE VI. PERCENTAGE OF INTERSECTION OF DEFECT-PRONE
COMPONENTS AMONG THE MEASURES

Release HFC!
DPC

SDC!
DPC

HFC!SDC!
DPC

HFC!SDC!
DDC

All

4.0 17.5 18.2 14.6 3.6 2.9

4.0.1SP2 8.7 15.2 2.2 0.0 0.0

4.0.1SP4 11.6 10.1 4.3 0.0 0.0

4.1 15.0 15.0 10.0 6.7 3.3

4.2.2 14.3 12.2 2.0 0.0 0.0

4.2.4 6.9 13.8 6.9 3.4 0.0

A. Qualitative investigation

In order to address research question 3 (RQ3), we
investigated the criticality of the defective
components identified by the various measures
from the system’s developers. We devised a scale
from 1 to 5, where 1 indicates the least critical and
5 indicates the most critical component.
Subsequently, we asked the developers to rank each
defective component in the order of their criticality
to the system. We then formed four categorical
values Critical (4 + 5), Major (3), Average (2) and
Minor (1). Figure 4 shows the summary of the
ranking of 117 defective components by the
developers.

Among the defective components ranked by the
developers, 15% are the most critical to the
application, while 36% are of major importance,
39% are of average significance and 10% of the
components are minor to the system.
In Table VII, we list the results of grouping the
various components into the order of criticality as
provided by the developers. In column 2, we list the
average values of all identified defective
components in all the six releases for each scale
category. Column 3 lists the percentage of defective
components identified by all the four measures for
each scale category.

Fig. 4. Distribution of defective components ranked by developers

Columns 4-7 present the percentage of components
identified by each measure for each scale category.
Lastly, columns 8-13 present the percentage of the
differences between the measures for each scale
category.

As shown in the result, by using all the four
measures at the 25% top most cut-off point, we
could identify an average of 72% of components
that are critical to the application. Also, we could
identify 71% of major, 64% of average and all the
minor components to this application. By using
DPC, we could identify 43.4% of critical
components followed by HFC that identifies 41.6%
of critical components and then 37.7% by SDC and
lastly 9.4% by DDC. We observe that, DDC
identifies largely average and minor components to
this system, whereas, other metrics could identify
largely, critical and major components of the
system.

However, the differences in the measures show that
all the critical components identified by DDC are
not identified by DPC (column 8). This implies that,
although, measures based on defect density might
identify mostly non-critical components, it is still an
important measure in identifying critical
components in a system. In this application, HFC
gave the most result in identifying other critical
components not captured by the popular metrics
(DPC and DDC).

B. Findings
First, we show that the defect distribution of this
application behaves like other systems in previous
studies [7-9, 11, 15, 30, 31]. We discovered a 20-80
rule in the relationship between cumulative
defective components and total defects that they

!"#$%&
'()&

*+,%-.,&
/0)&!-1$%&

/2)&

3%"45-6&&
'7)&

!"#$%&

*+,%-.,&

!-1$%&

3%"45-6&&

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 100

account for. In addition, we found a 30-67 rule in
the relationship between cumulative defects and
total correction efforts. Secondly, in this
application, we found that other defect metrics HFC
and SDC can identify significant and critical
components in the application almost as much as
DPC and much more than DDC. In addition, these
metrics are able to identify other critical
components not covered by DPC. Although, from
the Pareto distribution plot (see Figure 1b), 25% of
the defective components with the most number of
defects in this system account for an average of
about 85% of the total defects. Nevertheless, they
could only identify 43.4% of critical components
and 41.4% of major components in this application.
The remaining 30% (approximate) of critical and
major components are identified by other defect
measures. In addition, the identified components by
the other defect metrics persist in the top 25%
region of these defect measures.
The results in this study support neither the largest-
first prioritization approach nor the smallest-first9
prioritization of components for testing activities.
Since, we could only identify less than half of the
critical defective components in this system by
using either of the methods. However, it makes a
strong case for an all-inclusive defect measures in
order to discover critical components that are
defect-prone in this system. For instance, focusing a
defect model based on defect counts (largest-first)
on the top 25% or 5% region could leave out quite
many critical components to the application.
Neither is it optimal to use defect density (smallest-
first) only at the class-file level. As observed, many
critical components of this system are not
identified. Using either or both number of defects
and defect density in defect prediction models is a
common practice, however, this study provides a
useful direction to identifying most important
components.
Furthermore, our findings show that using this
technique; it is possible to discover additional

9 Note that the smallest-first approach in this study is based on defect
density measure. In our study, this measure prioritized smallest components
(in the top 25%. See Fig. 2).

quality challenges of a component in a step-wise
manner. For example, the intersection between DPC
and HFC shows those components that share both
high number of defects and high correction efforts.
The intersection between HFC and DDC reveals
smallest components that are defect dense with hard
to fix defects. The intersection between DPC, HFC
and SDC reveal components with high number of
severe defects in addition to number of defects and
high correction efforts. Thus, we can use this
knowledge for effective decision support in
assigning testing effort and improving the
component’s quality.

In defect prediction models, it makes sense to
predict the number in addition to the severity, the
density and the correction effort of defective
components. Even if we have such defect prediction
model that achieves 100% accuracy, it is still very
useful and practical to group the predicted
components in such a way that testing effort is
appropriately focused. For instance, how severe is
the defect in this component? How defect dense is
the component? Will the correction effort to fix
defects in this component be high? And does the
component have many defects? A model based on
only one measure leaves us with no further
explanations about the predicted components.
However, a possible shortfall of model that is based
on multiple defect measures is the increase in the
size of the components to be inspected due to the
union of the models’ outputs. Nevertheless, the
intersections between the models’ outputs present
very useful outlook of the predicted components
and could also minimize the number of components
to be examined.

VI. Threats to validity
We have performed an analysis and evaluation of
an industrial Smart Grid system using data from a
single environment. Therefore, we cannot claim that
this kind of pattern or related will be visible in other
Smart Grid system or systems in other domains. As
it is with most case studies, we cannot generalize
these results across all systems. Further studies will
be necessary to compare results across several
systems.

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 101

TABLE VII. GROUPING OF IDENTIFIED COMPONENTS BY THEIR CRITICALITY TO THE SYSTEM

Scale Mean

% of Mean

All 4 DPC DDC SDC HFC DDC-DPC SDC-DPC HFC-DPC SDC-DDC HFC-DDC HFC-SDC

Critical 8.83 72 43.4 9.4 37.7 41.6 9.4 7.6 15.1 37.7 39.6 22.6

Major 21.33 71 41.4 14.9 32.8 36.7 10.2 8.6 14.9 28.1 32.0 21.9

Average 14.33 64 15.1 48.8 23.2 23.2 39.6 14.0 14.0 8.2 10.47 12.8

Minor 3.00 100 27.7 83.3 22.3 27.7 66.7 16.7 11.0 5.7 16.67 22.3

For this study, we have relied on the defects logged
in the defect tracking systems of each application.
Our approach of defect data extraction is similar to
what other researchers have used in the past [34, 40,
41]. Nevertheless, common threats are whether
defects logged in the DTS are accurately tagged in
the respective code changes in the version systems.
In addition, we cannot be sure if all defects are
logged in the DTS. Also, there could be cases that
the message log of the file that consists a change is
not tagged with the bug numbers of the resolved
defect. Furthermore, there could be cases of
typographical error in the recording of the bug
number in the version systems [41] and lastly, it is
still possible that duplication will occur.
We have used an approach that equally assigns
correction effort to a group of components that
share a fixed defect for the reason that the system’s
developers did not track correction effort per
component (class-file) and this is neither recorded
in the DTS repository. This assumption that each
component in the group has equal correction effort
may lead to imprecision. For instance, the effort
spent to fix a reported defect in two components
may vary. Greater effort may be spent on one
component than the other. We believe that the
possibility of such imprecision cannot bias the
result in a significant way.

The recording of defect severity in many defect-
tracking systems has been argued to be subjective
[19]. We cannot exclude the possibilities of
subjective severity records in the DTS that we have
used. However, most records point to the correct
severity of defects in this application, therefore, we
can rely on the quality of the data to a great degree.

VII. Conclusion
In this study, we have investigated the distribution
differences of four defect measures in a non-trivial
industrial Smart Grid system, namely; number of
defects, defect density, defect correction effort and
defect severity at the top 25% cut-off. We
subsequently validated the results against
developers’ assessment of the criticality of the
components to the under study system. At the 25%
top most region, we found significant differences
among the measures in identifying critical and very
important components to this application. We
discovered that the severity of defect and correction
effort could as well identify significant number of
critical components to the application. Also, the
defect density, although, identified mainly non-
critical components, nevertheless, could identify
few distinct critical components that are not covered
by the number of defects.
We found that focusing defect prediction models
using the largest-first approach leave out significant
number of critical and significant components to
this application. Also, using the smallest-first
approach is not optimal in the identification of
critical defective components in this system. Lastly,
we discovered that it is possible to identify
additional quality challenges of a component by
performing pairwise intersections of the measures.

This empirical study of a complex and industrial
smart grid system brought out a useful perspective
to our definition of component’s defect-proneness.
This study demonstrates the need for an all
inclusive defect measures in the construction of
defect prediction models for critical systems. It
further shows that using several measures

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 102

concurrently can assist to prioritize testing activities
for important and critical defective components in
critical systems.

As future work, we propose to use the four
measures in a single prediction model environment.
We are interested to see how the output of models
constructed with the four defect measures can
improve the results of defect prediction models in a
more useful and practical way, both in the industry
and the academia.

Acknowledgment
The authors would like to thank Powel AS where
this study is performed, for providing access to the
software data and also the qualitative data. This
study would not have been possible without the
support we received.

References
[1] Myers, G.J., et al., The art of software testing. 2nd ed.

2004, Hoboken, N.J.: John Wiley & Sons. xv, 234 p.
[2] Ostrand, T.J., E.J. Weyuker, and R.M. Bell, Predicting

the location and number of faults in large software
systems. IEEE Transactions on Software Engineering,
2005. 31(4): p. 340-355.

[3] Li, Z.D., et al., Characteristics of multiple-component
defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 2011. 16(5): p.
667-702.

[4] Zhang, H., A. Nelson, and T. Menzies, On the value of
learning from defect dense components for software
defect prediction, in Proceedings of the 6th International
Conference on Predictive Models in Software
Engineering 2010, ACM: Romania. p. 1-9.

[5] Ohlsson, M.C. and C. Wohlin, Identification of green,
yellow and red legacy components. International
Conference on Software Maintenance, Proceedings, 1998:
p. 6-15.

[6] Ostrand, T.J., E.J. Weyuker, and R.M. Bell, Where the
bugs are, in Proceedings of the 2004 ACM SIGSOFT
international symposium on Software testing and analysis
2004, ACM: Boston, Massachusetts, USA. p. 86-96.

[7] Ostrand, T. and E. Weyuker, The distribution of faults in
a large industrial software system. ISSTA '02:
Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, 2002. 27: p.
55-64.

[8] Boehm, B. and V.R. Basili, Software Defect Reduction
Top 10 List. Computer, 2001. 34(1): p. 135-137.

[9] Ebert, C., et al., Defect Detection and Quality
Improvement, in Best Practices in Software Measurement.
2005, Springer Berlin Heidelberg. p. 133-156.

[10] Adams, E.N., Optimizing Preventive Service of Software
Products. IBM Journal of Research and Development,
1984. 28(1): p. 2-14.

[11] Fenton, N.E. and N. Ohlsson, Quantitative analysis of
faults and failures in a complex software system. IEEE

Transactions on Software Engineering, 2000. 26(8): p.
797-814.

[12] Shatnawi, R. and W. Li, The effectiveness of software
metrics in identifying error-prone classes in post-release
software evolution process. Journal of Systems and
Software, 2008. 81(11): p. 1868-1882.

[13] Zhou, Y.M. and H.T. Leung, Empirical analysis of
object-oriented design metrics for predicting high and
low severity faults. IEEE Transactions on Software
Engineering, 2006. 32(10): p. 771-789.

[14] Singh, Y., A. Kaur, and R. Malhotra, Empirical validation
of object-oriented metrics for predicting fault proneness
models. Software Quality Journal, 2010. 18(1): p. 3-35.

[15] Basili, V.R. and B.T. Perricone, Software Errors and
Complexity - an Empirical-Investigation.
Communications of the ACM, 1984. 27(1): p. 42-52.

[16] Hatton, L., Reexamining the fault density - Component
size connection. IEEE Software, 1997. 14(2): p. 89-97.

[17] Moller, K.H. and D.J. Paulish. An empirical investigation
of software fault distribution. Proceedings., First
International Software Metrics Symposium. 1993.

[18] Fenton, N.E. and S.L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach. 1998: PWS Publishing
Co. 656.

[19] Hall, T., et al., A Systematic Review of Fault Prediction
Performance in Software Engineering. IEEE Transactions
on Software Engineering, 2011. 99(PrePrints).

[20] Zhang, H.Y., An Investigation of the Relationships
between Lines of Code and Defects. 2009 IEEE
International Conference on Software Maintenance,
Conference Proceedings, 2009: p. 274-283.

[21] Nagappan, N. and T. Ball, Use of relative code churn
measures to predict system defect density. ICSE 05: 27th
International Conference on Software Engineering,
Proceedings, 2005: p. 284-292.

[22] Knab, P., M. Pinzger, and A. Bernstein, Predicting defect
densities in source code files with decision tree learners,
in Proceedings of the 2006 international workshop on
Mining software repositories2006, ACM: Shanghai,
China. p. 119-125.

[23] Koru, G., et al., Testing the theory of relative defect
proneness for closed-source software. Empirical Software
Engineering, 2010. 15(6): p. 577-598.

[24] van Moll, J.H., et al., The importance of life cycle
modeling to defect detection and prevention. 10th
International Workshop on Software Technology and
Engineering Practice, Proceedings, 2003: p. 144-155.

[25] Briand, L.C. and J. Wust, Modeling development effort in
object-oriented systems using design properties. IEEE
Transactions on Software Engineering, 2001. 27(11): p.
963-986.

[26] Smith, J. and M. Phillips, Interoperable Acquisition for
Systems of Systems: The Challenges (CMU/SEI-2006-TN-
034), 2006, Software Engineering Institute, Carnegie
Mellon University: Pittsburgh, Pennsylvania.

[27] Alshayeb, M. and W. Li, An empirical validation of
object-oriented metrics in two different iterative software
processes. IEEE Transactions on Software Engineering,
2003. 29(11): p. 1043-1049.

[28] Bocco, M.G., D.L. Moody, and M. Piattini, Assessing the
capability of internal metrics as early indicators of
maintenance effort through experimentation. Journal of
Software Maintenance and Evolution-Research and
Practice, 2005. 17(3): p. 225-246.

[29] Perry, D.E. and W.M. Evangelist. An Empirical Study of
Software Interface Faults. in Proceedings of the

P1: Comparison of Different Defect Measures to Identify Defect-Prone Components

 103

Twentieth Annual Hawaii International Conference on
Systems Sciences, January 1987, Volume II. 1987.

[30] Andersson, C. and P. Runeson, A replicated quantitative
analysis of fault distributions in complex software
systems. IEEE Transactions on Software Engineering,
2007. 33(5): p. 273-286.

[31] Tihana Galinac, G., R. Per, and H. Darko, A Second
Replicated Quantitative Analysis of Fault Distributions in
Complex Software Systems. IEEE Transactions on
Software Engineering, 2012. 99(PrePrints): p. 1-1.

[32] El Emam, K., et al., The optimal class size for object-
oriented software. IEEE Transactions on Software
Engineering, 2002. 28(5): p. 494-509.

[33] Koru, A.G., et al., Theory of relative defect proneness.
Empirical Software Engineering, 2008. 13(5): p. 473-498.

[34] Schroeter, A., T. Zimmermann, and A. Zeller, Predicting
component failures at design time, in Proceedings of the
2006 ACM/IEEE international symposium on Empirical
software engineering2006, ACM: Rio de Janeiro, Brazil.
p. 18-27.

[35] Li, W. and S. Henry, Object-Oriented Metrics That
Predict Maintainability. Journal of Systems and Software,
1993. 23(2): p. 111-122.

[36] NIST, NIST Framework and Roadmap for Smart Grid
Interoperability Standards Release 1.0. NIST Special
Publication, 2010. 1108.

[37] Rahimi, F. and A. Ipakchi, Demand Response as a Market
Resource Under the Smart Grid Paradigm. Smart Grid,
IEEE Transactions on, 2010. 1(1): p. 82-88.

[38] Oyetoyan, T.D., R. Conradi, and K. Sand. Initial survey of
Smart Grid activities in the Norwegian energy sector -
use cases, industrial challenges and implications for
research. in International Workshop on Software
Engineering for the Smart Grid (SE4SG), 2012.p. 34-37

[39] Gupta, A., et al., An examination of change profiles in
reusable and non-reusable software systems. Journal of
Software Maintenance and Evolution-Research and
Practice, 2010. 22(5): p. 359-380.

[40] S'liwerski, J., T. Zimmermann, and A. Zeller, When do
changes induce fixes?, in Proceedings of the 2005
international workshop on Mining software repositories
2005, ACM: St. Louis, Missouri. p. 1-5.

[41] C'ubranic, D., Project History as a Group Memory:
Learning From the Past. , in PhD Thesis 2004, University
of British Columbia: Canada.

[42] Rombach, H.D., A Controlled Experiment on the Impact
of Software Structure on Maintainability. IEEE
Transactions on Software Engineering, 1987. 13(3): p.
344-354.

[43] Oyetoyan, T.D., R. Conradi, and D.S. Cruzes. Criticality
of Defects in Cyclic Dependent Components. in 13th
IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM) 22-23 September
2013 (Accepted).

 104

 105

P2: A Study of Cyclic Dependencies on Defect Profile of Software
Components

Published: In Journal of Systems and Software 86 (12), 2013, pp. 3162-3182.

 106

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 107

A Study of Cyclic Dependencies on Defect Profile of Software
Components

Tosin Daniel Oyetoyan1, Daniela S. Cruzes1,2, Reidar Conradi1
1Computer and Information Science Department, NTNU,

Trondheim, Norway
2SINTEF, Norway

tosindo@idi.ntnu.no, dcruzes@idi.ntnu.no, reidar.conradi@idi.ntnu.no
Abstract - (Background) Empirical evidence shows that dependency cycles among software components are pervasive in
real-life software systems, although such cycles are known to be detrimental to software quality attributes such as
understandability, testability, reusability, build-ability and maintainability. (Research Goals) Can the use of extended
object-oriented metrics make us better understand the relationships among cyclic related components and their defect-
proneness? (Approach) First, we extend such metrics to mine and classify software components into two groups - the cyclic
and the non-cyclic ones. Next, we have performed an empirical study of six software applications. Using standard
statistical tests on four different hypotheses, we have determined the significance of the defect profiles of both groups.
(Results) Our results show that most defects and defective components are concentrated in cyclic-dependent components,
either directly or indirectly. (Discussion and Conclusion) These results have important implications for software
maintenance and system testing. By identifying the most defect-prone set in a software system, it is possible to effectively
allocate testing resources in a cost efficient manner. Based on these results, we demonstrate how additional structural
properties could be collected to understand component’s defect proneness and aid decision process in refactoring defect-
prone cyclic related components.

Keywords-Cyclic Dependencies; Dependency cycle metrics; Software metrics; Empirical Study; Defect proneness;

Software components

1. Introduction
Dependency cycles among components have for long been regarded as symptoms of design decay that
should be avoided in software systems (Briand et al., 2001a; Fowler, 2001; Lakos, 1996; Martin, 2000;
Martin, 1996; Parnas, 1979). Lakos (1996) argues that cycles among components present a unique problem
in terms of understandability since there is no reasonably starting point and no single part of the system can
make sense on its own. For Parnas (1979), cycles, referred as “loops in the Uses Relation”, can lead to a
situation where nothing works in a system until everything works and that cycles prevent easy extension of
software components. Similarly, Fowler (2001) says that cycles are problematic and that it makes system
harder to understand “because you have to go around the cycle many times”. In addition, Fowler argues that
cycles inhibit the reusability of the class code. Martin (2000) states that cycles inhibit build-ability because
to release a module, it should be tested and this implies that all dependent components must compile and
build. In addition, many authors have proposed several strategies to optimize stubs in order to break cycles
during integration testing, showing that cycles are detrimental to testability (Briand et al., 2001a; Hanh et
al., 2001; Kung et al., 1996).
Despite numerous claims that cycles inhibit software quality attributes such as extensibility,
understandability, testability, reusability, build-ability and maintainability (Fowler, 2001; Lakos, 1996;
Martin, 2000; Parnas, 1979), evidence shows that cycles are widespread in real life software systems
(Briand et al., 2001a; Hanh et al., 2001; Kung et al., 1996; Le Traon et al., 2000; Melton and Tempero,
2007a; Parnas, 1979; Tai and Daniels, 1997). The extent to which cycles are pervasive in software systems
suggests that design advice (Fowler, 2001; Lakos, 1996; Martin, 2000; Parnas, 1979) regarding cyclic
dependencies has not been followed. Melton and Tempero (2007a) argues that, either we have a lot of bad
software out there, or the advice is not useful. Intuitively, we would expect that since cycles increase

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 108

coupling complexities among components (Briand et al., 1998; Briand et al., 2001b), then it should have a
positive correlation with defects.
Furthermore, special analysis tools have been developed to facilitate refactoring of code modules, to detect
and to warn developers about dependencies that are already cyclic or that could result into cycles. For
instance, tools like, JDepend (http://clarkware.com/software/JDepend.html), NDepend
(http://www.ndepend.com), JooJ (Melton and Tempero, 2007b), Dependometer
(http://source.valtech.com/display/dpm/Dependometer), Classycle (http://classycle.sourceforge.net),
Dependency Structural Matrix (Laval et al., 2009) are examples of existing tools and approaches that can be
leveraged to dissuade developers from cyclic dependencies. However, in terms of defect-proneness and
multiplicity of defects among components, are there undisclosed relationship between cycles and defect-
proneness? If yes, we speculate that such evidence can reinforce the need to seek the benefits of such tools,
if we want to further discourage dependency cycles among components.
The goal of the study presented in this paper is therefore to investigate the relationships between cyclic
dependencies and defect profiles of cyclically dependent components. Although research efforts have
focused on breaking cycles during integration testing (Briand et al., 2001a, 2003; Hanh et al., 2001; Kung et
al., 1996; Le Traon et al., 2000; Tai and Daniels, 1997) collecting empirical evidence of cycles in software
systems (Melton and Tempero, 2007a) and developing tools to break dependency cycles among components
(Hautus, 2002; Melton and Tempero, 2007b; Sangal et al., 2005), there exist gaps regarding empirical
evidence of defect proneness of cyclically related components.

We have performed an empirical study on six software systems to provide field evidence of actual cyclic
dependencies in object-oriented systems and how such interconnection can be used to discover patterns of
defect-prone components. We choose Apache Camel, Apache ActiveMQ, Apache Lucene, Eclipse and
openPDC because they are open source and to compare between systems with different development
technologies (i.e. Java and C#) and with different functionalities. Lastly, we choose a commercial
application to understand if the cyclic effects are the same or different from open source domain.

Thus, the main contribution of this work is an empirical study of cycles and defect proneness of components
caught in cycles. Furthermore, we propose metrics that identify cyclic dependency relations among
components and use this information to understand the components defect proneness. For instance, it is not
sufficient to only know components in cycle; we might be interested in the neighbors (Zimmerman et al.,
2011) that depend directly on these cyclically connected components. Our findings will be useful for both
practitioners and researchers in the collective effort to minimize defects in real life systems and minimize
effort and resource usage in system testing. Also, this study points out additional software structural
properties that can be focused for understanding components’ defect proneness. Lastly, this effort is aimed
to add significance to the need of collecting cycle metrics and focus on defect-prone cyclically dependent
components for refactoring possibilities.

The rest of the work is organized as follows; Section 2 explores related literature to our work. Section 3
describes relationships and dependency concepts among software components and explains cyclic
dependencies with examples. Furthermore, we define the terms used in the paper. In section 4, we detail our
empirical design setup; In addition, we define the proposed metrics that are used in this paper. Additionally,
we define our hypotheses and explain the statistical approaches that we employ. We likewise describe the
case studies for this study and explain how our data is collected. In section 5, we present the results of our
analysis and provide further discussions of the results and their implications. We draw out threats to the
validity of the results in section 6. Finally, in section 7, we conclude the paper with additional notes on
future work.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 109

2. Related Work
This study concerns cycles among inter-related components and understanding the defect proneness of
components in this cyclically related category by using extended object-oriented (OO) metrics. We thus
discuss related work in two areas; the first part covers related work in cyclic dependencies among
components and the second part covers related work in OO metrics and approach for determining
component’s defect proneness.

A. Cyclic dependencies
Over the years, researchers have conducted studies and provided design advice regarding cycles among
components. In this section, we review previous work in dependency cycles among classes and packages
and present empirical study of cyclic dependencies.

In terms of classes, Parnas (1979) identified “Uses relation” between two components and argues that the
loops in the “Uses Relation” are detrimental to extensibility of a software system. Lakos (1996) provided
extensive discussion about cyclic dependencies among C++ classes. The author claimed that cyclic physical
dependencies among classes of C++ program inhibit understanding, testing and reuse. Other authors also
claimed that cycles inhibit system understanding (Fowler, 2001), testing in isolation, integration testing
(Briand et al., 2001a; Hanh et al., 2001; Hashim et al., 2005; Kung et al., 1996) and reuse (Martin, 1996).
Cyclically connected components are mutually dependent, thus in terms of understanding any of the classes;
it is necessary to understand all other classes in the cycle. Furthermore, to test a class in isolation is
practically impossible when it is involved in a cycle with other classes (Lakos, 1996). In integration testing,
cycles prevent the topological ordering of classes that can be used as a test order (Briand et al., 2001a, 2003;
Hanh et al., 2001; Jungmayr, 2002; Kung et al., 1996; Melton and Tempero, 2007a), thereby inhibiting the
testability of a system.

From package point of view, in many OO systems developed with language such as Java or C++, package
represents a physical organization of software components (Knoernschild, 2012; Lakos, 1996). Packages are
used to group classes that perform similar functions. As such they focus on manpower and they represent
the granule of release (Martin, 1996). Applications are usually a network of interrelated packages and the
work to manage, test, build and release those packages is non-trivial (Martin, 1996). When cycles are
formed at the package level, it seriously affects manpower since software engineers working on individual
packages need to build with every other dependent package before they can release their package. Cycles
among packages have thus been claimed to be detrimental to understandability (Fowler, 2001), production
(Lakos, 1996; Martin, 1996), marketing (Lakos, 1996), development (Lakos, 1996; Martin, 1996), usability
(Lakos, 1996; Martin, 1996) and reliability (Lakos, 1996).

Although, it has been stated (Briand et al., 2001a; Hashim et al., 2005; Kung et al., 1996; Lakos, 1996) and
implied (Jungmayr, 2002; Martin, 1996) that cycles are pervasive in real-life software systems. However, it
appears that only Melton and Tempero (2007a) have performed an elaborate empirical study of cycles on
many software systems at the class level. Melton and Tempero carried out an empirical study of 78 Java
applications and employed three “Uses Relation” types; “USES”, “USES-IN-SIZE” and “USES-IN-THE-
INTERFACE” as stated in Lakos (1996) to describe cyclically connected components within the
applications. The result shows that almost all the 78 Java applications contain large and complex cyclic
structures among their classes. This study is conducted on open source Java applications showing that
further work is still needed to investigate other domains and programming languages before any
generalization can be made.

B. OO Metrics and defect proneness of components
Object Oriented metrics have been widely used to indicate defect proneness of components. Basili et al.
(1996) validated a set of OO metrics proposed by Chidamber and Kemerer (1994). Among these metrics,
coupling between object classes (CBO) and response for class (RFC), are shown to correlate significantly to

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 110

a component’s defect. Briand et al. (1998); (2001b) have also conducted several studies that showed CBO,
and especially import and method invocation coupling to be important properties when building an OO
quality model.

Additionally, Marinescu (2001) identified code smells (GodClass, ShortgunSurgery, GodPackage, etc.) by
defining threshold values and rules based on code metrics. The author showed that code smells violated
good design principles of low coupling, high cohesion, manageable complexity, proper data abstraction and
standard component reuse (Capretz and Capretz, 1996; Capretz and Lee, 1992; Coad and Yourdon, 1991).
Empirical study by Olbrich et al. (2009) on two open source applications further showed that different
phases could be identified during the evolution of code smells. In addition, they pointed out that code smell
infected components display a different change behavior.
Actual dependencies of a component have also been employed to indicate the defect proneness. For
instance, Schroeter et al. (2006) demonstrated that imported components in the eclipse software could
predict the defect proneness of their dependent components. Further, we have recently validated this
approach on a Smart Grid application (Oyetoyan et al., 2012).
Social network analysis has been explored for defect prediction. Zimmermann and Nagappan (2008)
showed that there is significant correlation between their proposed dependency graph metrics and the
number of defects in the graph related components. Their results from a study of Microsoft Windows Server
2003 demonstrated that a network-based model could predict the number of defects and could identify
critical binaries missed by complexity models. In fact, in their previous study of similar system
(Zimmermann and Nagappan, 2007) they made an implicit observation that binaries in dependency cycle
have on average twice as many defects as those binaries not in cycle. In another related study of Microsoft
Vista and Eclipse, Zimmerman et al. (2011) showed that the properties of a component’s neighbor such as
size, code churn; complexity, test coverage and organizational structure can influence the quality of the
component. However, Weyuker et al. (2008) disputed the effect of the number of developers’ impact on
defect-proneness of components. An elaborate empirical study by the authors concluded that the number of
developers is not a major factor that could contribute to a component’s defect-proneness.
Yutao et al. (2010) have proposed a multiple-dependency metric, m based on network analysis. The metric
measures the degree of reusability of a component (incoming dependencies) as well as its direct and indirect
coupling (reachable set). In the open source systems they analyzed, the authors found that fewer classes
have high m value and that correlations exist (though weak) with WMC and LCOM (Lack of Cohesion of
Method). Indicating that m may be used as a statistical indicator for defect-prone classes identified by WMC
or LCOM.
Related Metrics

The following metrics regarding coupling between objects in object-oriented systems are of interest for
our work:
• CBO: The coupling between object classes (CBO) shows the number of other classes that are directly

coupled to the class (Basili et al., 1996; Briand et al., 1998; Briand et al., 1999; Briand et al., 2001b;
Chidamber and Kemerer, 1994).

• RFC: Response for class (RFC) indicates the set of all methods that can potentially be invoked in
response to a message received by the object of the class (Basili et al., 1996; Briand et al., 1998; Briand
et al., 1999; Briand et al., 2001b; Chidamber and Kemerer, 1994). It considers both direct and indirect
connections. However, it does not show if the connection is cyclic or not.

• CyclicClassCoupling (Nagappan and Bhat, 2007; Zimmermann and Nagappan, 2008): This metric
counts the number of direct cyclic connections between two classes. For instance, C1 depends on C2 and
C2 depends on C1 (see Figure 3d). However, this metric only deal with direct cyclic coupling between
two classes and does not consider transitive relationship where components can become cyclic
indirectly (see Figure 3a).

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 111

• dwReach (Nagappan and Bhat, 2007; Zimmermann and Nagappan, 2008): This metric shows the
number of components that can reach another component with the distance weighted by the number of
steps.

The above metrics measure the number of connections between objects and cannot be used for our purpose.
Our proposed cyclic dependency metrics in section IV contains metrics that simply flag a component when
it has a cyclic relationship. Although our work extends these previous studies, it differs in focus. We provide
the first empirical study of defect proneness of cyclic dependent components. From this study, we are able
to point out additional structural complexities that can be focused for defect tracing and testing activities.
Additionally, our work indicates coupling property that can be useful and assessed for building quality
models.

3. Relationships and dependency concepts
In this section we focus on explaining various types of relationships that exist among components when
modeling with UML. Furthermore, we describe how a UML diagram is translated to an Object Relation
Diagram (ORD) when the analysis concerns a client to server or supplier relationships. In addition, we
present the definitions of an ORD that are appropriate for our study. In addition, we explain the component
relationship level at which dependency is stronger and how this influences our choice of analysis decision.
Lastly, we present and explain cyclic dependencies with examples and provide definitions that are necessary
for our metrics.

A. Relationships: From UML to Dependency Graph

In software designs, class interactions are modeled based on the various relationships that exist among them
(Bennett et al., 1999; Souza and Wills, 1999). If we concern ourselves with UML modeling, these
relationships among the various classes can be modeled in UML10 as association (uni-directional, bi-
directional or reflexive), aggregation, composition, generalization (inheritance) and realization. An
association relationship indicates a structural relationship between two class objects. The reasons for this
relationship and the rules that govern the relationship are specified in an association relationship.
Aggregation typifies a “whole-part” (has-a) relationship, where a class is modeled as a part of an aggregate
class (whole). The “part” can exist independently of the “whole” and is therefore not destroyed when the
lifecycle of the aggregate class ends. A composition relationship (part-of) is a special type of aggregation
where the “part” class can no longer exist once the “whole” class lifecycle ends. Generalization illustrates
an inheritance (is-a) relationship between a child class and its parent (super or base class). Realization
relationship exists when a class implements (realizes) the behavior of another class.

An Object Relation Diagram (ORD) has been widely used to describe components and their relationships
(Briand et al., 2001a, 2003; Hanh et al., 2001; Kung et al., 1996; Le Traon et al., 2000; Tai and Daniels,
1997). The term component in this study is used to represents a class or a package. A component X is said to
have dependency on another component Y if X requires Y to compile or function correctly (Jungmayr, 2002).
Three relationship types are described in ORD, that is: inheritance, I, association, As and aggregation, Ag.
Where I, is used for both inheritance and realization relationships, and Ag is used to represent both
composition and aggregation relationships11, while As maps to other cases of dependencies and associations.
When an ORD is represented as a dependency graph, the relationship labels are usually ignored. Figures 1b
and 1c show two design diagrams of the implemented code in Figure 1a. In Figure 1b, the UML relationship
diagram shows a reflexive association relationship between class B and itself. In other words, an instance of
class B can be related to another instance of B. A generalization relationship exists between classes A and

10 http://www.omg.org/spec/UML/2.3/Superstructure/
11 Briand et al. (2001a) maps only composition relationship to Ag with the claim that compositions have a lifetime constraints between the whole
and the parts and thus represent tight coupling. Whereas, As maps to simple aggregation (a type that is considered as a special type of
association in UML and does not denote strong coupling), dependencies and associations.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 112

B, since B is the super class of A. A Realization relationship exists between classes A and C since class A
implements the behavior or contracts specified in class C. An aggregation relationship is shown between
classes B and D and lastly, a composition relationship exist between classes D and E. Class E cannot exist
when D’s lifecycle ends.
For formal representation of an ORD, we borrow two definitions from Kung et al. (1996) and state these as
follows:
• Definition 1. An edge labeled digraph G = (V, L, E) is a directed graph, where V = {V1, ...,Vn} is a

finite set of nodes, L = {L1, ..., Lk} is a finite set of labels, and E " V ! V !!L is the set of labeled
edges.

• Definition 2. The ORD for an OO program P is an edge-labeled directed graph (digraph) ORD = (V, L,
E), where V is the set of nodes representing the object classes in P, L = {I, Ag, As} is the set of edge
labels, and E = E1 # EAg # EAS is the set of edges.

Applying these definitions to the ORD presented in Figure 1c gives V = {A, B, C, D, E}, L = {I, Ag, As} and
E = {EA-B, EA-C, EB-D, ED-E}, where EX-Y denotes an edge that connects node X to node Y in the direction of
Y. For the purpose of this paper, we ignore the edge labels L and concern ourselves with the set of nodes
and the set of edges. Furthermore, in the data collection section (Section 4.4.4), we describe how the set of
edges are determined for each class node and each package node.

Figure 1(a – c) – Representation of component relationships with UML and ORD

!
public class A extends B

implements C{

private Map<String, String> a1;

public void ma1(){}

@Override
public void mb1(){}

@Override
public void mc1(){}

@Override
public void mc2(){}

}

public class B {

private D b1; //Aggregation
List b2; //Reflexive

//constructor
public B(D b1) {
 this.b1 = b1;
}
private void mb1(){}
private int mb2(){}

}

interface C {

public void mc1(){}
public void mc2(){}

}

public class D {

private String d1;
E d2 = new E(); //Composition

public void md1(){}
private void md2(){}

//inner class
class E {

private double e1;

protected void me1(){}

}
}

(c) – Object Relation Diagram (ORD) (a) – Implemented code

> a1;

Aggregation

Reflexive

Composition

Realization Inheritance

(b) – UML relationships diagram

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 113

B. Physical or Logical Dependency

Lakos (1996) differentiated between logical relationships and physical dependencies and states that a
physical dependency concerns dependency of the physical entities of a software unit and for instance
requires the use of an “#include” directive in C++ in another components and that this type is
stronger. Physical design decisions impact on deploy-ability, reusability and maintainability. A
physical dependency implies that the dependent component12 requires the dependee component13 in
order to compile and link. In Java systems, we can imply that to mean relationships between a .java
and another .java files. In C#, this is equivalent to a .cs files relationships. Physical dependency thus
requires that a physical class file have knowledge of another physical class file. A file can enclose
multiple classes, including nested classes and we can define the logical relationships among these
classes, for example, the case of class D and E in Figure 1. A physical dependency relationship is
formed when there is dependency with classes in another physical file. However, we can infer or
imply physical dependencies from logical relationships among components (Lakos, 1996). We
concern ourselves in this study with dependency at physical level, that is, both files (top-level
classes) and packages as described above since we can infer strong dependencies from it.

C. Cyclic dependencies
In Figure 1a, let us say that during system evolution, class E for some reasons is required to pass a
message to class A. We introduce an instance variable of class A implemented locally in method
me1() of class E (see Figure 2a). Figure 2b shows the dependency relationship that now occurs as a
result of the new dependency of class E on class A. What we have is a cyclic dependency between
classes B, D, E and A. In graph theory, this type is referred as strongly connected component (SCC)
(Jungmayr, 2002). If we assume that class D resides in another package or another file, then a strong
physical cyclic dependency exist among the connected classes.

Figure 2 – Cycles and representation with Object Relation Diagram (ORD)

Hypothetical Example

As depicted in Figure 3a, cyclic dependency is formed when components depend on one another in a
circular manner. For example, B depends on A, C depends on B, D depends on C and A in turn
depends on D. In this network diagram, 2 cyclical paths exist: (i) A-D-C-B-A (ii) A-D-C-F-E-A.
This relationship covers both direct and indirect connection between components. Cyclic

12 A component that depends on another component is called a dependent component
13 A component that is dependent upon by other component is called dependee component

!
public class D {

private String d1;
E d2 = new E();

public void md1(){}
private void md2(){}

//inner class
class E {

private double e1;!

protected void me1(){

A instanceA = new A();
instanceA.ma1();

}
}

}

//MyObject.java
public class MyObject extends MyParent

implements MyInterface{

MyFastSetInterface set = new MyFastSet();
public List toList(MyName name){
 MyFastList my1 = new MyFastList();

my1.add(name);
Iterator it = set.iterator();
while(it.hasNext()) {

Object o = it.next();
my1.add(o);

}
return my1;

}
}

//MyObject.cs
public class MyObject : MyParent,
MyInterface{

MyFastSetInterface set = new MyFastSet();
public List toList(MyName name){
 MyFastList my1 = new MyFastList();

my1.add(name);
IEnumerable<object> e = set.iterator();
foreach(element in e) {

my1.add(element);
}
return my1;

}
}

USES(MyObject) = {MyParent, MyInterface, MyFastSetInterface, MyFastSet, MyName, MyFastList}

//Package USES
package p;

import p1.C1;
import p1.C2;
import p2.*;

public class C3
{

//
}

//
package p;

import p2.C1;
import p2.C3;
import p2.C4;

public class C5
{

//
}

(a) – Inner class E with instance of class A (b) – Cyclic dependency formed as a result of dependency of E on A

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 114

relationships increase coupling complexities and have the potential to propagate defects in a network
(Abreu and Melo, 1996). A hypothetical case as depicted in Figure 3a-b demonstrates such effect.
From Figure 3a, assume that component I contains some defects. We can further assume that the rest
of the components A – H will have a certain probability to inherit the defect from I, since they are
directly and indirectly dependent on I. To reduce the likelihood of defect propagation e.g. in Figure
3b, let us say that, a new component J is created so that components D and C depend on J directly
thereby breaking the cyclic effect. By performing such a refactoring, the effect of possible defect
propagation is reduced to only component G.

Figure 3(a - d) - Cyclic Dependencies and propagation effect on components in a software network

For the purpose of this paper, we define some of the terms used henceforth: Assume a component c
! System P then:

D1. Component’s Children: Components that are directly and transitively dependent on c. E.g.
in Figure 3(a), All the components except component I are directly or transitively dependent
on A. Components G, and H have no children. We use TChildren for both direct and
transitive children and DChildren for direct children. For example, DChildren(A) = {B, E}.

D2. Component’s Parent: All components that c is both directly and transitively dependent
upon. We use TParent for both direct and transitive parents and DParent for direct parents.
For instance, TParent(G) = {A, B, C, D, E, F, I} and DParent(G) = {C}.

D3. Component In-Cycle: Component c is said to be in cycle, if it has at least one parent that is
the same as one of its children. E.g. B is in cycle because its parent A is also one of its
children.

D4. Component Depend on In-Cycle Component: Component c is said to depend on another
in-cycle component if at least one of its direct parents is in cycle. G and H are examples of
components that depend on In-Cycle components C and E respectively.

D5. Component’s Minimum Number of Cycle: The minimum number of cycle that component
c is involved with is defined as the sum of the number of its direct children that are in-Cycle
and the number of its direct parents that are in-Cycle minus one. For instance, DChildren(A)
= {Bin-cycle, Ein-cycle}, and DParent(A) = {Din-cycle}. Therefore, minCycle(A) = 3-1 = 2.

D6. Associated Defect: Two components have associated defect if a specific defect affect both
components. We use defect ID to track associated defect between components.

D7. Cyclic Propagated Defect: Consider component M that directly depend on K (Figure 3c).
Let us say that L contains some defects. These defects from L cannot be propagated to M.
However, if M forms a cycle with L by depending on it (Figure 3d), we can thus infer that
the defect from L may be propagated to M.

4. Empirical Design
Our goal in this work is to explore the defect profiles of cyclic dependent components in a system.

As explained in (Fowler, 2001; Lakos, 1996; Martin, 2000; Martin, 1996), cyclic dependencies are

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 115

better studied at physical design levels such as the source file (compilation unit) and package levels,
since physical dependencies are formed at such levels. In addition, previous empirical studies
(Melton and Tempero, 2007a) on cyclic dependency have performed analysis at the file levels.
Furthermore, when developers resolve defects, they usually log the changes at the file level and thus
have file to defect mapping. Based on the above reasons, we identify relationships and dependencies
at the compilation units (top-level classes for Java) and at the package level. We perform our
evaluation in three ways: First, we propose a set of metrics built around cyclic dependency
relationships. Second, we use our proposed metrics to mine software components and classify them
into two groups, “Cyclic” and “Non-Cyclic”. Third, we statistically evaluate data from cyclic-related
components and non-cyclic related components to determine their defect profiles.

A. Proposed Metrics for our study

We describe as follows the cyclic metrics and notations for our study. Consider a set of components,
C in an object-oriented system. For each component c ∈ C:

1. Component In-Cycle:

inCycle: boolean
∃p : p ⊆ (TParent(c) ∧ TChildren(c))
{∀c.inCycle(c) ↔ p ≠ ∅}
Where inCycle(c) denotes c to be in a cyclic
dependency

Example 1. (Figure 3a):
if c = A
TParent(A) = {D, C, I, B, F, E} and
TChildren(A) = {B, C, D, E, F, G, H}
p = {B, C, D, E, F}
Since p ≠ ∅ ∴ inCycle(A) ⇒ True

2. Depend On Cycle:

depOnCycle: boolean
∃x : x ∈ DParent (c)
{∀c.depOnCycle(c) ↔ (¬inCycle(c) ∧
inCycle(x))}
Where depOnCycle(c) denotes c depends on
inCycle component x that is a direct parent of c.

Example 2. (Figure 3a):
if c = H
inCycle(H) = False,
But DParent(H) = {E} and inCycle(E) = True
∴ depOnCycle(A) = ¬inCycle(A) ∧ inCycle(E) =
True

3. Minimum Number of Cycles:

minCycle: Integer
∃p : p ⊆ (TParent(c) ∧ TChildren(c))
minCycle(c) = (|p ∧ DParent(c)| + |p ∧
DChildren(c)|) - 1

Example 3. (Figure 3a):
From Example 1, if c = A
p = {B, C, D, E, F}
DChildren(A) = {B, E}
DParent(A) = {D}
∴ minCycle(A) = (|{D}| + |{B, E}|) -1= 2

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 116

B. Hypotheses
The main goal of this study is to investigate the impact of cyclic dependencies among components
regarding their defect proneness. To verify the conjecture that the most defects are concentrated in
the components with cyclic dependencies, we define our hypotheses as follows:

HA: Cyclic dependent components are more defect-prone than non-cyclic dependent components.
To evaluate this hypothesis, we further define two sub hypotheses:
• HA1: The number of defective components in cyclic relationships is significantly higher than

non-cyclic defective components.
With this hypothesis, we seek to establish the group with the higher number of defective
components. In addition, the number of defective components in each group allows us to
measure the recall value that shows the ratio of defective components in each group to the total
number of defective components in the system.

• HA2: The proportion (ratio) of defective components in cyclic group is significantly higher than
the proportion of defective components in non-cyclic group.
Using this hypothesis, we aim to establish the group with higher defect propagation among
their components. It is not sufficient to know the number of defective components in each
group. We are also interested in knowing if defects spread in a group more than the other. The
proportion data gives us idea about the concentration of defects in each group. This measures
the ratio of defective components to non-defective components within each group and allows
us to identify the group with relatively higher number of defective components.

HB1: The actual number of defects in cyclic dependent components is higher than non-cyclic
dependent components.

HB2: Defect density in cyclic dependent group is higher than non-cyclic dependent components.
Defects can be associated in nature, that is, a defect may propagate to a number of components.
Therefore, in terms of number of defects, a component may have many defects and many
components may have very few defects. If HA is true, HB1, therefore, allows us to verify if the
components in cyclic group are defective due to more actual defects than the non-cyclic group. If this
hypothesis is not rejected, we can conjecture that cycles probably trigger more defects.

Defect density takes the size of the components into account. We compute defect density as the
number of defects in each group per the source line of code in the group. We seek to know if there is
an implicit relationship between size and defect in each group.

C. Statistical Analysis

For this study, we identify cyclic group and non-cyclic group from each system. In Table 1, we use
C to represent all cyclic-related group, inC for group with components that are only in-cycle and NC
for “Non-Cyclic” group. We have performed analysis both at the class and package levels. A cyclic
group consists of all components (classes or packages) that are flagged to be (1) in-cycle and (2)
cyclic-related, i.e. both in-cycle and also directly dependent on in-cycle components. If we use our
Figure 3a, then inC and C groups for this hypothetical example consists of components {A, B, C, D,
E, F} and {A, B, C, D, E, F, G, H} respectively, and non-cyclic (NC) group consists of only {I}. We
use Table 1 to present how the data for each category and for each hypothesis is computed. For each
system, we collect both cyclic dependency data and defect data for multiple versions (Table 2). For
each version and each group, we determine the number of components, the number of defects, the
number of defective components and the source line of code. Subsequently, we compute the
proportion data and the defect density per group as shown in Figure 4.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 117

Table 1 – Data computation for groups and hypotheses
Group #Component #Defect #Defective Component #Non-Defective Component SLOC
inC inCN DinC inCD inC-inCD inCSLOC
C CN DC CD C-CD CSLOC
NC NCN DNC NCD NC-NCD NCSLOC

Figure 4 – Computed data per group and for the hypotheses

The next step is to determine what statistical approach is appropriate to test our hypotheses, either a
t-test or non-parametric test. We initially perform statistical test to determine if our data sample is
from a normally distributed population. For this, we use the Shapiro-Wilk normality test. If the data
is normally distributed, we employ a t-test; otherwise we use a non-parametric statistical approach
(Fenton and Pfleeger, 1997) such as Wilcoxon signed rank test (see Appendix B).
Lastly, we test the difference in mean between both groups for significant difference that is greater
than zero. Four categories are identified for both groups based on our hypotheses:

I. Number of defective components in each group
II. Proportion of defective components in each group

III. Actual defect counts produced in each group
IV. Defect density for each group measured as actual defect in each group per source lines of

code in the group
For these four categories, we test the hypothesis (1-tailed significance test):
• H0: µC - µNC The mean of cyclic group is significantly less than or equal to the mean of non-

cyclic group
• H1: µC > µNC The mean of cyclic group is significantly higher than the mean of non-cyclic group

D. Data Collection

We have performed a study on two Smart Grid systems, an open sourced (openPDC) 14 and a
commercial application (commApp) developed with C#. In addition, we choose an integrated
development environment (Eclipse)15, a search engine (Apache Lucene)16, an integration framework
(Apache-Camel) 17 and a messaging and integration pattern server (Apache-ActiveMQ) 18 , all
developed with java. We have selected very active projects from the open source community and we
also considered projects that have different functionalities and different development languages.

Apache Camel is an integration framework that can serve as a routine and mediation engine between
applications. ActiveMQ is a messaging server with the capability to handle various integration
patterns. OpenPDC is a medium-sized Smart Grid open source software (OSS) named openPDC,
supported by the Tennessee Valley Authority (TVA). The solution is developed using the .NET

14 http://openpdc.codeplex.com/
15 http://archive.eclipse.org/eclipse/downloads/index.php
16 http://lucene.apache.org/core/index.html
17 http://camel.apache.org/index.html
18 http://activemq.apache.org/index.html

Significant = Y
Not Significant = N

Table 3 – % of defects mapped to SVN using bugnumber in commApp

For instance, for each version or period, we did a post processing of the extracted change data that
correspond to bug correction. We determine the percentage of the change log that includes the bug
number in the log message. Figure 5 shows the percentage of defects for commApp from the DTS that
are mapped to the commit log. There are other bug fixes that do not have the bug numbers in the
commit log. These bug fixes are also included in the change data. To compute the actual number of
defects per release, we use both the unique defect ID and the unique revision ID for those bug fixes
where the bug numbers are not tagged in the commit log.

Bennett, S., McRobb S. and Farmer R. (1999). Object-oriented systems analysis and design using
UML. Maidenhead, Berkshire England: McGraw Hill.

Souza, D. and Wills A. (1999). Objects, components, and frameworks with UML : the catalysis
approach. Reading, Mass: Addison-Wesley.

Hypothesis HA1: Number of defective components
NumDefective (X) = XD

Hypothesis HA2: Proportion of defective components
Proportion (X) = XD/X

Hypothesis HB1: Actual defect
ActualDefect (X) = DX

Where X can be inC, C or NC

Hypothesis HB2: Defect density
Defect Density (X) = DX/XSLOC

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 118

Framework and mainly with the C# programming language. The openPDC is a phasor data
concentrator software that is designed to process real time data for user-defined actions and for
archival purpose.
The commercial application shares the same Smart Grid domain with openPDC. It is a distribution
management system designed to allow for monitoring and planning of Grid operations. It provides
real-time operational support by continuously receiving status data from the power grid.

Eclipse is a popular open source integrated development environment (IDE), while Lucene is a high-
performance search engine. Table 2 details some properties of the applications we have used for this
study.

Table 2 – Properties of selected applications
System Language #Developers19 Domain License Bug Tracker Age Module Versions

Analyzed
Apache-
Camel

Java 34 Routing and
Mediation Engine

Open JIRA 5 CORE 2.10.2, 2.10.1,
2.10.0, 2.9.2,
2.9.1, 2.9.0

Apache-
ActiveMQ

Java 24 Messaging and
Enterprise
Integration
Pattern Server

Open JIRA 6 CORE 5.7.0, 5.6.0, 5.5.1,
5.5.0, 5.4.2, 5.4.1

Apache-
Lucene

Java 31 Search Engine Open JIRA 7 CORE 4.0, 3.6, 3.5, 3.4,
3.3, 3.2

Eclipse Java IDE Open Bugzilla All 3.0, 2.1, 2.0
commApp C# 28 Smart Grid Commercial HP-Quality

Center
6 All 4.2.4, 4.2.2, 4.1,

4.0.1SP4,
4.0.1SP2, 4.0

openPDC C# 13 Smart Grid Open CodePlex 3 All 1.5, 1.4SP2, 1.4

1) Defects collection from the defect tracking system (DTS)
We have collected defect data from three different DTSs. Some DTSs contain more details than the
others and some are more difficult to filter. Defect repository gives typically a high level overview of
a problem report. For example, typical attributes of the HP-QC defect tracking system (QC-DTS) are
the Defect ID, severity of the defect, the type of defect, date defect is detected, the module
containing the defect, the version where defect is detected, and the date the defect is fixed. These
fields are similar to the Apache JIRA and CodePlex DTSs.
Our first step is to determine the bugs that affect each version of the system. In Apache JIRA DTS,
we readily use the “Affects Version” field to filter all bugs that affect a particular version of the
system. For CodePlex, we use the “RELEASE” field and for HP-QC, we use “Detected in
Version(s)”. A certain defect may affect multiple versions of a system. By this we mean “hotspot”
defects (Li et al., 2011) that keep re-occurring and span several versions of a system. We include
these defects in all the versions they affect. Next, we filtered out “duplicate”, “Not a problem”, and
“Invalid” cases from the resolution field. The Eclipse dataset that we use in this paper has been
mapped in previous study (Zimmermann et al., 2007).

2) Method of mapping class files to defects
Version repository on the other hand is a configuration management system used by the developers
to manage source code versions. The version system provides historical data about the actual file that
is changed and/or added as a result of corrective action (defect fixes), adaptive, preventive and
perfective actions (Gupta et al., 2010). Thus, the SVN/CVS provides a detailed granularity level to
know which source file(s) in the module(s) are changed to fix a reported bug. A common way to
figure out what operation is performed on the source file is to look at the message field of the SVN

19 #Developers as used in this study represent all committers to the SVN

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 119

commit. When developers provide this information with the bug number and/or useful keywords
(e.g. bug or fix), it is possible to map the reported defect with the actual source file that is modified
to fix it (S'liwerski et al., 2005; Schroeter et al., 2006). In some cases, not all bug commits in the
version repository contain the bug number or useful keyword in the message field. In the past,
researchers have approached this situation by mapping from defect repository to the version
repository (C'ubranic, 2004; Schroeter et al., 2006).

We have used both approaches to map defect from JIRA and HP-QC DTSs to the code changes. The
resolution date allows us to map some of the untagged commits in the version system to the resolved
bugs. The second approach of mapping from defect repository to code repository is found suitable
for CodePlex DTS. None of the bug is tagged in the commit log of the openPDC application. The
observed style of developers in this community is to include the SVN revision number of the
corrected bug in the comment field of the defect repository (e.g. “resolved with change set 79160”).
We use the revision numbers from the comment field to identify class files that are changed because
of bug fix. Overall, we mapped an average of 89.5% for Apache-Lucene, 90.1% for Apache-Camel,
75.7% for Apache-ActiveMQ, 71.3% for commApp and 81.4% for openPDC.

Figure 5 – Aggregating defect count at package or file level

!
!

3) Aggregating number of defects per class file and per package

In a release, it is possible that multiple reported bugs can be associated to one class file. The unique
defect ID is thus appropriate to compute the number of defects fixes that affect a class file and a
package. From the mapped change data, we look up each file and determine the total of defects per
file by counting the number of unique defect ID in this release. At the package level, we aggregate
the unique defect IDs for each class file in the package. As demonstrated in Figure 5, File1, File2 and
File3 have 2 defects each, based on the defect ID and Pkg 1 has a total of 3 defects although it
contains 3 files with 2 defects each. The unique defect-ID shows that for pkg1, only 3 defects are
fixed.

4) Source code data collection

We have developed a small but very efficient java tool to extract source files meta-data. The source
files are downloaded from the version repository. Organizational rules in java source file are
substantially different from C# source file. As demonstrated in the relation diagram of a simple
F1.java and F1.cs (Figure 6), a java source file has a one-one mapping from file to top-level class
and it is not allowed to define another top-level class in a java file. In addition, the top-level class
must have the same name as its enclosing file. Also, there is a one-zero or one-one mapping from file

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! ! ! ! ! ! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$%#&'!

Defect ID/Revision ID File Changed Date ...
id1 File 1 date 1 ...
id2 File 2 date 2 ...

!

"%&!(!
!
!
!

"%&!)!
!
*!
*!

+,-'!(!
!
!
+,-'!)!
!
!
+,-'!.!

,/(!
,/)!

+,-'! 0'1'$2!30!

,/(!
,/)!

3/)!
3/4!

"%&!(+,-'!)

"%&!)

+,-'!)

+,-'!.

+,-'!(

numDefect(File 1) = 2

numDefect(Pkg 1) = 3

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 120

to package; a maximum of one package can be defined in a java file. Finally, a java class can contain
nested classes (one to many relation). In C#, multiple relations are possible. A file can contain many
top-level classes and many top-level namespaces can also be defined in a file. It is also possible that
a class contains nested classes and a namespace can equally contain nested namespaces. Unlike java
file, the file name does not need to match any of the classes defined in it, although, good practices
suggest to have filename as the same as a top-level class.

Since the compilation unit for both Java and C# is the source file and we are considering
dependencies at the physical level as explained in section III, we decide for the following:

1. A dependency on any class in a source file implies a dependency on the source file.
2. The cyclic metric for a class is computed using dependencies that cross compilation units

(source files). We skip cycles that are formed among classes within a source file.
3. The number of cycles for a compilation unit (source file) is the maximum cycle recorded for

any of its classes.
Melton and Tempero (2007a) adapts “USES” relations from Lakos (1996) to a set of Java software to
study cyclic dependency among the systems’ classes. These relations have been applied on static
code. Identifying coupling among classes using static code analysis has its drawback. As mentioned
by Arisholm et al. (2004), because of polymorphism and the common presence of unused code in
applications, coupling measures based on static code analysis loose precision, as they do not capture
the actual coupling among classes at runtime. This study uses static code analysis because we
consider various types of coupling that is not limited to message passing (method-method
interactions) only. Also, class-level coupling data is easier to collect when using static code analysis
and lastly, because ample evidence (Basili et al., 1996; Briand et al., 1998; Briand et al., 2001b;
Chidamber and Kemerer, 1994; Zimmerman et al., 2011; Zimmermann and Nagappan, 2008) shows
them to be useful predictors of defect-proneness of classes. We use the “USES” relations, which we
have defined earlier as DParent and apply them also to the six software applications. We ignore all
external library types (e.g., .NET and Java API) that developers have no access to their source codes
since it is practically impossible for these external classes to form cycles with internal application’s
classes.

Figure 7 shows an example of the actual dependencies for MyClass and mypackage components. In
order to collect other nodes (classes) to which MyClass is connected to requires that we scan the text
of MyClass. The edge between MyClass and other DParent(MyClass) nodes is a directed path
(without label, L) from MyClass to each node in the DParent set (Figure 7a-b). In the case of
mypackage (Figure 7c-d), the DParent(mypackage), is a set of unique imported packages and is
processed from the collected class data.

Figure 6 – (a) Java: File-Package-Class Relation (b) C#: File-Namespace-Class Relation

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 121

Figure 7 – (a) Class source data (b) Dependency Graph for Class (c) Package source data (d) Dependency Graph for package

5. Results and Discussions
We report the results of mining the software data with the Cycle metrics. In section 5.1, we present
the results of the analysis for both package and class mined with the proposed cycle metrics. Sections
5.2 and 5.3 discuss the effect size and sanity checks on the reported results. Lastly, section 5.4
provides further discussions of the results.
We present the results of the statistical analysis of the in-cycle and cyclic-related (both in-cycle and
depend-on-cycle) groups versus non-cyclic group. To simplify the replication of this study, we have
listed the full results in Appendix A, Tables A.1 (Summary of the systems’ data), A.2 and A.3.
Figures 8a-b, 9a-b, 10a-b and 11a-b show the number of defective packages and classes, their
proportions, the actual number of defects they produce and their defect densities for the cyclic-
related and non-cyclic groups. In addition, in Appendix A, Figures A.1 and A.2, we provide the plots
of the outgoing (efferent coupling) and incoming (afferent coupling) dependencies <V, Eout, Ein>
and vertex vs. edge <V, E> for the cyclic dependency graphs for the last release of each system. As
well, we show the diameters (Wasserman and Faust, 1994)20 and radius vs. number of cycles for
each system. We have used the Floyd-Warshall algorithm (Cormen et al., 2001) to calculate the “all-
pairs shortest distance” between the nodes. Also, Table 3 lists the results of data normality tests using
Shapiro and the t-tests or non-parametric Wilcoxon-test depending on the Shapiro p-value (see
Appendix B, Figure B.3). A very small shapiro-wilk p-value (of less than 0.05) suggests that the data
is significantly skewed (positively or negatively) or with significant kurtosis. The p-values of 1-tailed
test for in-cycle vs. non-cyclic group is reported in column 2 and the p-values for cyclic-related vs.
non-cyclic group are listed in column 3 of Table 3.

A. Distribution of defect and defect-prone components (DPCs) in cyclic and non-cyclic
groups

We provide a break down of the results on the four categories of our data using Figures 8, 9, 10, 11
and Table 3. Statistical results at the package level show that the number, proportion and actual
defect count of defective components in the cyclic-related group are consistently higher in most
cases than those in the non-cyclic. We use Figures 8 and 9 to present the package results as follows:
• For Camel: defective components in cyclic-related group are 4.75 times higher than those in the

non-cyclic group (Figure 8a). 31% of packages in the cyclic-related group are defective while
11% are defective in the non-cyclic group (Figure 8b). Furthermore, the cyclic-related group has
6.1 times the number of defect in the non-cyclic group (Figure 9a). Finally, the defect density in
cyclic-related group is 0.5 times lower than the non-cyclic group (Figure 9b).

20 The diameter of a graph is the length of the shortest path between the most distanced nodes. This is calculated as the maximum of the

eccentricities of the nodes or the maximum of the nodes’ geodesic distances in the graph. The eccentricity of a node is the longest geodesic distance
between the node and any other node in the graph. A geodesic represents the shortest path between two nodes.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 122

• In ActiveMQ, the defective components in the cyclic-related group are about 8.11 times higher
than those in the non-cyclic group (Figure 8a). 45% of the packages in cyclic-related group turn
defective while 12% are defective in non-cyclic group (Figure 8b). Defects produced by the
cyclic-related group are 8.8 times higher than those produced in the non-cyclic group (Figure
9a). Finally defects per a 1000-LOC in the cyclic-related group are 3.7 times higher than those
in the non-cyclic group (Figure 9b).

• In Lucene, the defective components in the cyclic-related group are 11 times higher than
defective components in the non-cyclic group (Figure 8a). Over 30% of the packages in cyclic-
related group turn defective while 6% of packages in non-cyclic group are defective (Figure 8b).
The cyclic-related group has 14 times more defects than the non-cyclic group (Figure 9a).
Finally, defects per a 1000-LOC in the cyclic-related group are twice as higher as those in the
non-cyclic group (Figure 9b).

• In commAPP, defective components in cyclic-related group are 2.15 times higher than those in
the non-cyclic group. In terms of proportion of defective components in each group, 34% of
components in in-cycle group are defective while 9% of components in non-cyclic are found
with defects. In addition, the total defects produced by the cyclic-related group are 2.9 times
higher than those in the non-cyclic group. The defect density in the in-cycle group is 1.72 times
higher than the non-cyclic group.

• For openPDC: defective components in cyclic-related group are 14.2 times higher than those in
the non-cyclic group. In terms of proportion, 15% of packages in cyclic-related are defective,
whereas, 1% of packages in non-cyclic group turn out to be defective. Also, the defects produced
by the cyclic-related group are 20.2 times higher than the non-cyclic group. The defect density
in cyclic-related group is 7.3 times higher than the non-cyclic group.

• For Eclipse, defective components in cyclic-related group are about 11 times higher than the
non-cyclic group. In terms of proportion, over 50% of components in cyclic-related group are
defective whereas 30% in non-cyclic are found with defects.

At the class-file level, Figures 10 and 11 reveal that for:
• Camel: defective components in the cyclic-related groups are 13.7 times more than defective

components in the non-cyclic group (Figure 10a). 5.5% of in-cycle classes are defective while
the non-cyclic group has 1.7% defective classes. (Figure 10b). The in-cycle classes have about
9.6 times more defects than the non-cyclic group classes (Figure 11a). Lastly, defects per a
1000-LOC in the in-cycle group are 1.4 times more than the non-cyclic group (Figure 11b).

• ActiveMQ: defective components in the cyclic-related group are about 3.6 times higher than
those in the non-cyclic group (Figure 10a). 12% of the classes in in-cycle group turn defective
while 2% of the classes in non-cyclic group are defective (Figure 10b). Defects produced by the
cyclic-related group are approximately 4.6 times higher than those in the non-cyclic group
(Figure 11a). Finally, defects per a 1000-LOC in the in-cycle group are about 2.74 times more
than the non-cyclic group (Figure 11b).

• Lucene: defective components in the cyclic-related group are 4.28 times higher than defective
components in the non-cyclic group (Figure 10a). 3% of the classes in cyclic-related group turn
defective while 1% of classes in non-cyclic group are defective (Figure 10b). The cyclic-related
group has 3.1 times more defects compare to the non-cyclic group (Figure 11a). Finally, defects
per a 1000-LOC in the cyclic-related group are the same as that of the non-cyclic group (Figure
11b).

• commAPP: defective components in cyclic-related are 5.2 times more than those in the non-
cyclic group. In terms of proportion of defective components in each group, 15% of components
in in-cycle are defective while 3% of components in non-cyclic are found with defects. In
addition, the total defects produced by the cyclic-related group are 3.2 times higher than those in

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 123

the non-cyclic group. The defect density in the in-cycle group is 1.5 times higher than those in
the non-cyclic group.

• openPDC: defective components in cyclic-related group are 1.43 times higher than the non-
cyclic group. In terms of proportion, 2.2% of classes in cyclic-related are defective, whereas,
1.4% of classes in non-cyclic turn out to be defective. Also, the defects produced by cyclic-
related group are approximately 0.86 times lower than the non-cyclic group. The defect density
in cyclic-related group is about 0.58 times lower than the non-cyclic group.

• Eclipse: defective components in cyclic-related group are about 4.3 times higher than the non-
cyclic group. In terms of proportion, 19% of components in the in-cycle group are defective
whereas 11% are found with defects in the non-cyclic group.

Figure 8 – (a) #Defective packages and (b) their proportions in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups

Figure 9 – (a) #Defects and (b) Defect Densities of Packages in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups

Figure 10 – (a) #Defective class-files and (b) their proportions in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 124

Figure 11 – (a) #Defects and (b) Defect Densities of class-files in in-cycle (inC), Cyclic (inC U DC) and non-cyclic (NC) groups

Table 3 – 1-tailed test for comparing cyclic and non-cyclic defective components

CLASS PACKAGE

System HA1 : Test of #defective components for Cyclic and Non-Cyclic defective components

Shapiro-wilk
p-value

p-value (inC) p-value (C) Shapiro-wilk
p-value

p-value (inC) p-value (C)

Camel 0.8389 0.0089* <0.0001* 0.8870 0.0008* 0.0012*
ActiveMQ 0.4773 0.0023* <0.0001* 0.3947 <0.0001* <0.0001*

Lucene 0.4928 0.0197* 0.0156* 0.4150 0.0005* 0.0005*
commApp 0.8429 0.0017* <0.0001* 0.5999 0.5000 0.0002*
openPDC 0.6369 0.0007* 0.7302 0.7804 0.0117* 0.0029*

Eclipse
0.9596 0.0307* 0.0008* 0.088 0.0136*

0.0129*

 HA2 : Test of Proportion data for Cyclic and Non-Cyclic defective components
Shapiro-wilk
p-value

p-value (inC) p-value (C) Shapiro-wilk
p-value

p-value (inC) p-value (C)

Camel 0.9451 0.0133* 0.0176* 0.9059 0.0016* 0.0021*
ActiveMQ 0.3805 0.0011* 0.0016* 0.3279 <0.0001* <0.0001*

Lucene 0.7329 0.0308* 0.0402* 0.8411 0.0007* 0.0008*
commApp 0.4661 0.0023* 0.0016* 0.9505 0.0006* 0.0002*
openPDC 0.4375 0.5703 0.3613 0.4375 0.1338 0.3613

Eclipse
0.2369 0.0669 0.1338 0.6548 0.0047* 0.0093*

 HB1 : Test of number of defect for Cyclic and Non-Cyclic defective components
Shapiro-wilk
p-value

p-value (inC) p-value (C) Shapiro-wilk
p-value

p-value (inC) p-value (C)

Camel 0.2265 0.0079* 0.0086* 0.063 0.0084* 0.0090*
ActiveMQ 0.1400 0.0019* 0.0022* 0.5220 0.0006* 0.0006*

Lucene 0.2151 0.1177 0.0184* 0.2543 0.0065* 0.0065*
commApp 0.0693 0.0156* 0.0078* 0.1368 0.0257* 0.0218*
openPDC 0.8998 0.7062 0.5733 0.6369 0.0530 0.0139*

 HB2 : Test of defect density for Cyclic and Non-Cyclic defective components
Shapiro-wilk
p-value

p-value (inC) p-value (C) Shapiro-wilk
p-value

p-value (inC) p-value (C)

Camel 0.1589 0.0727 0.0936 0.3373 0.9737 0.9746
ActiveMQ 0.0186 0.0313* 0.0313* 0.1142 0.0009* 0.0009*

Lucene 0.5237 0.6432 0.6275 0.2543 0.0433* 0.0433*
commApp 0.2357 0.0156* 0.2578 0.0930 0.0389* 0.8437
openPDC 0.6537 0.6911 0.7483 0.2983 0.0664 0.0606

*: Significant p-value at α = 0.05

Table 4 – Summary of hypotheses test

System

Summary of Hypotheses Test
Class Package
HA1 HA2 HB1 HB2 HA1 HA2 HB1 HB2

Camel Y Y Y N Y Y Y N
ActiveMQ Y Y Y Y Y Y Y Y

Lucene Y Y Y N Y Y Y Y
commApp Y Y Y Y Y Y Y Y
openPDC Y N N N Y Y Y N

Eclipse Y N - - Y Y - -

Significant = Y

Not Significant = N

B. Effect size
We discuss in this section the effect size check performed on the statistical data. As noted in
Kampenes et al. (2007), effect size quantifies the size of the difference between two groups and
allows us to judge whether the conclusions drawn from our hypotheses testing are meaningful or not.
It is possible that the effect is small even when the statistical test is significant and vice versa.
Therefore, for practical use of the results drawn from this study, we are compelled to carry out an
effect size check on our results. In this study, we are concerned with two groups; the cyclic and the

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 125

non-cyclic groups. We apply the Hedges, g standardized effect size measure. Hedges, g is calculated
as (Kampenes et al., 2007):

Where:
X1 and X2 represent the sample mean for each defect measure from cyclic and non-cyclic groups and
sp stands for the pooled standard deviation derived from the standard deviations s1 and s2 of cyclic
and non-cyclic groups respectively as:

(Kampenes et al., 2007)
With small samples, the correction factor for the Hedges, g, when multiplied with g, adjusts for small
sample bias. The correction factor (cf) is computed as (Kampenes et al., 2007):

Where:
n1 = Sample size for the cyclic group (equals the number of analyzed releases)
n2 = Sample size for the non-cyclic group (equals the number of analyzed releases)
N = n1 + n2
n1 = n2 = 6, for Camel, ActiveMQ, Lucene and commApp.
n1 = n2 = 3, for openPDC and Eclipse
For the effect size test, we are mostly concerned with the number of defect-prone components
(DPCs) and the percentage of DPCs (proportion of DPCs*100) in both cyclic and non-cyclic groups.
We therefore, in Table 5, report the Hedges, g for the two measures and for each system.
Interpretation

There are different ways to interpret effect size results as described in Kampenes et al. (2007). We
choose to compare our effect size results to the reported results in Software Engineering empirical
studies and categorized in Kampenes et al. (2007) under Table 9. In this Table, the size category for
284 estimated values for Hedges, g is given as: Small: 0.00 – 0.376, Medium: 0.378 – 1.000 and
Large: 1.002 – 3.40
As shown in Table 5, the effect sizes as measured by the Hedges, g for both number of DPC and
percentage of DPC for the package results are in the “large” category. At the class level, the effect
size for openPDC is in the “small” category while in Lucene, it ranges between “medium” (0.52) and
“large” (1.12) categories. For the remaining four systems, the effect size falls in the “large” category.
It can be explained that these two systems, openPDC and Lucene have very small number of DPCs
(see Table A.1). We speculate that if the number of analyzed releases is increased, the results for
these two might be somewhat different. Overall, the effect size test suggests that a random selection
of defect-prone components in these systems has a higher probability to originate from the cyclic
related group, either from in-cycle or both in-cycle and depend-on-cycle groups.

!"#$"%,! = !!! − !!!!

and

Y 2 ! Nðl2; r
2Þ

The population standardized mean difference effect size
measure, which we will call dpop, is defined as

dpop ¼
l1 % l2

r
ð1Þ

The population standardized mean difference takes positive
or negative values, depending on the choice of l1 and l2. It
is estimated by the difference between sample means (X 1,
X 2) divided by an estimate of population standard devia-
tion. Different estimators of the population standard devi-
ation give different effect size estimators. The three
estimators most often referred to in the literature are
Hedges’ g, Cohen’s d and Glass’ D [24,34]. Hedges’ g has
the pooled standard deviation, sp, as the standardizer:

Hedges’ g ¼ X 1 % X 2

sp
ð2Þ

The pooled standard deviation is based on the standard
deviations in both groups, s1, s2:

sp ¼

ffi
ðn1 % 1Þs2

1 þ ðn2 % 1Þs2
2

ðn1 % 1Þ þ ðn2 % 1Þ

s

ð3Þ

Cohen’s d also has the pooled standard deviation as its
standardizer, but with ni replacing (ni % 1) in Formula (3)
and in the estimators of the single si. Glass’ D applies the

standard deviation in one group only; the one considered
to be the control. According to [17], these three estimators
have the same properties in large samples (i.e., they are
equivalent in the limit (n1 + n2) fi1), but Hedges’ g has
the best properties for small samples when multiplied by
a correction factor that adjusts for small sample bias (For-
mula (4)). Hence, we applied Hedges’ g as the estimator for
dpop in our investigation and will not consider Cohen’s d
and Glass’ D further.

Correction factor for Hedges’ g ¼ 1% 3

4ðN % 2Þ % 1
; ð4Þ

where N is the total sample size.
Hedges’ g assumes homogeneity of variance in the two

experimental groups. Kline [24] suggests that if the ratio
of the largest standard deviation over the smallest standard
deviation is larger than four, the effect sizes should be cal-
culated twice using each standard deviation and the diverg-
ing results discussed. Other solutions are to replace sp with
an estimate of the standard deviation of whichever sample
is the reasonable baseline comparison group [14], or to use
the square root of the mean of s1, s2 [5].

Formulas (2) above are applicable for outcomes mea-
sured on the continuous scale. When aggregating study
results from several studies and the standardized mean dif-
ference is to be estimated, there is a need for estimators that
approximate a standardized mean difference effect size for
variables that are measured on scales other than the contin-

estimates

Effect size estimate
The observed effect of one experimental treatment condition (specific software engineering process,
method, technique, language or tool) compared with another treatment condition with regards to a
measured outcome. An example is the observed difference in comprehension of design documents

(measured outcome) presented in UML and natural language (the two treatment conditions).

Standardized effect size estimate
A scale-free effect size estimate

Unstandardized effect size estimate
Measure expressed in the original outcome
scale or in terms of percentages/proportions

r family
Correlations,

“variance accounted
for”

Population effect size
The effect of one software engineering process, method, technique, language or tool compared with

another one with regards to a measurable feature. An example is the difference in comparison of
comprehension of design documents presented in UML versus natural language.

• Point-
biserial
correlation

• Mean difference
• Median difference
• Difference in

percentage or
proportions

• Ratio of mean
values

• Other

other

• odds ratio
• log odds

ratio

d family
Variations of

“Standardized mean
difference”

• Hedges’ g
• Cohen’s d
• Glass’ ∆

Fig. 1. Population and estimated effect size as defined for software engineering and examples of types of effect size measures for the comparison of two
treatment conditions.

V.B. Kampenes et al. / Information and Software Technology xxx (2007) xxx–xxx 3

ARTICLE IN PRESS

Please cite this article in press as: V.B. Kampenes et al., A systematic review of effect size in software engineering experiments, In-
form. Softw. Technol. (2007), doi:10.1016/j.infsof.2007.02.015

and

Y 2 ! Nðl2; r
2Þ

The population standardized mean difference effect size
measure, which we will call dpop, is defined as

dpop ¼
l1 % l2

r
ð1Þ

The population standardized mean difference takes positive
or negative values, depending on the choice of l1 and l2. It
is estimated by the difference between sample means (X 1,
X 2) divided by an estimate of population standard devia-
tion. Different estimators of the population standard devi-
ation give different effect size estimators. The three
estimators most often referred to in the literature are
Hedges’ g, Cohen’s d and Glass’ D [24,34]. Hedges’ g has
the pooled standard deviation, sp, as the standardizer:

Hedges’ g ¼ X 1 % X 2

sp
ð2Þ

The pooled standard deviation is based on the standard
deviations in both groups, s1, s2:

sp ¼

ffi
ðn1 % 1Þs2

1 þ ðn2 % 1Þs2
2

ðn1 % 1Þ þ ðn2 % 1Þ

s

ð3Þ

Cohen’s d also has the pooled standard deviation as its
standardizer, but with ni replacing (ni % 1) in Formula (3)
and in the estimators of the single si. Glass’ D applies the

standard deviation in one group only; the one considered
to be the control. According to [17], these three estimators
have the same properties in large samples (i.e., they are
equivalent in the limit (n1 + n2) fi1), but Hedges’ g has
the best properties for small samples when multiplied by
a correction factor that adjusts for small sample bias (For-
mula (4)). Hence, we applied Hedges’ g as the estimator for
dpop in our investigation and will not consider Cohen’s d
and Glass’ D further.

Correction factor for Hedges’ g ¼ 1% 3

4ðN % 2Þ % 1
; ð4Þ

where N is the total sample size.
Hedges’ g assumes homogeneity of variance in the two

experimental groups. Kline [24] suggests that if the ratio
of the largest standard deviation over the smallest standard
deviation is larger than four, the effect sizes should be cal-
culated twice using each standard deviation and the diverg-
ing results discussed. Other solutions are to replace sp with
an estimate of the standard deviation of whichever sample
is the reasonable baseline comparison group [14], or to use
the square root of the mean of s1, s2 [5].

Formulas (2) above are applicable for outcomes mea-
sured on the continuous scale. When aggregating study
results from several studies and the standardized mean dif-
ference is to be estimated, there is a need for estimators that
approximate a standardized mean difference effect size for
variables that are measured on scales other than the contin-

estimates

Effect size estimate
The observed effect of one experimental treatment condition (specific software engineering process,
method, technique, language or tool) compared with another treatment condition with regards to a
measured outcome. An example is the observed difference in comprehension of design documents

(measured outcome) presented in UML and natural language (the two treatment conditions).

Standardized effect size estimate
A scale-free effect size estimate

Unstandardized effect size estimate
Measure expressed in the original outcome
scale or in terms of percentages/proportions

r family
Correlations,

“variance accounted
for”

Population effect size
The effect of one software engineering process, method, technique, language or tool compared with

another one with regards to a measurable feature. An example is the difference in comparison of
comprehension of design documents presented in UML versus natural language.

• Point-
biserial
correlation

• Mean difference
• Median difference
• Difference in

percentage or
proportions

• Ratio of mean
values

• Other

other

• odds ratio
• log odds

ratio

d family
Variations of

“Standardized mean
difference”

• Hedges’ g
• Cohen’s d
• Glass’ ∆

Fig. 1. Population and estimated effect size as defined for software engineering and examples of types of effect size measures for the comparison of two
treatment conditions.

V.B. Kampenes et al. / Information and Software Technology xxx (2007) xxx–xxx 3

ARTICLE IN PRESS

Please cite this article in press as: V.B. Kampenes et al., A systematic review of effect size in software engineering experiments, In-
form. Softw. Technol. (2007), doi:10.1016/j.infsof.2007.02.015

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 126

Table 5 – Hedges, g effect size measure (cyclic vs. non-cyclic group)

System
Package Class-File

X1 X2 S1 S2 cf Sp g X1 X2 S1 S2 cf Sp g

#DPC

Camel 12.5 2.67 4.64 1.37 0.923 3.42 2.65 35.17 2.67 24.52 2.16 0.923 17.41 1.72

ActiveMQ 24.33 3 5.75 1.67 0.923 4.23 4.65 58.83 16.33 22.25 10.13 0.923 17.29 2.27

Lucene 3.67 0.33 1.03 0.82 0.923 0.93 3.31 6.67 2.67 4.37 1.63 0.923 3.29 1.12

commApp 14 6.5 4 3.4 0.923 3.71 1.86 37.83 10.5 20.37 10.13 0.923 16.09 1.57

openPDC 4.67 0.33 1.15 0.58 0.8 0.91 3.81 6.67 4.67 7.02 4.16 0.8 5.77 0.28

Eclipse 199.33 19 57.74 6.56 0.8 41.09 3.51 729 208.7 265.6 58.4 0.8 192.29 2.16

Percentage of DPC

Camel 31 11 11.3 5.7 0.923 8.95 2.06 5.5 1.8 3.9 1.4 0.923 2.93 1.17

ActiveMQ 45 12 11 7 0.923 9.2 3.30 11.5 2.3 4.2 1.5 0.923 3.15 2.69

Lucene 35.7 4.8 12.8 11.7 0.923 12.3 2.33 2.2 1.5 1.5 0.9 0.923 1.24 0.52

commApp 17.3 9.1 6.6 6.2 0.923 6.4 1.18 15.2 2.6 9 3 0.923 6.71 1.73

openPDC 15.1 0.8 6.1 1.5 0.8 2.58 2.58 2.2 1.4 2.3 1.2 0.8 1.83 0.35

Eclipse 54 30.2 2.9 2.3 0.8 2.62 7.27 18.4 11.3 4.9 0.5 0.8 3.48 1.63

C. Sanity Check
We want to verify if the proportion of defect-prone components (DPCs) in the cyclic group is of
interest or not. Earlier, we demonstrated that the cyclic group contains the higher number of DPCs
than the non-cyclic group. However, this proportion can be a very small number since the
distribution of defects and DPCs in a software system is usually skewed (Fenton and Ohlsson, 2000)
and the proportion in each group (cyclic or non-cyclic) is relative to the proportion of DPCs in the
entire system. As listed in Table A.1, the systems we analyzed agree with this observation because
the DPCs are indeed few in number relative to the entire systems’ components.
What is therefore of interest is to see if a standard classifier can find precisions/recalls over (100 –
“actual percentage of DPCs in cyclic group”) or false alarm rates under “actual percentage of
DPCs in cyclic group”. If either of these conditions is fulfilled, we can conclude that the proportion
of DPCs in the cyclic group is important in this data set. To achieve this objective, we use Naïve
Bayes (http://www.cs.waikato.ac.nz/ml/weka/) classifier because of its simplicity (Hall et al., 2011)
and Random Forest because of its ability to generalize well on small dataset (Breiman, 2001). For the
classification task, we employ three independent variables; the source lines of code (SLOC), the
weighted method for a class (WMC) and coupling between class objects (CBO) (Efferent, ce and
afferent, ca couplings) metrics because our tool already measures them and because they are shown
to be good predictors of defect-proneness of components (Basili et al., 1996; Briand et al., 1998;
Chidamber and Kemerer, 1994; Zhang, 2009). We trained the models by using cross validation
method on the dataset for each group. In this approach, a training dataset is divided into 10-folds and
the model is trained on each fold with the result cross-validated on the rest folds in each iteration. By
doing this, we achieve both training of the model using each fold as training set and at the same time

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 127

testing the model’s performance on the entire dataset. For the purpose of the sanity check, we
consider that this approach of model training and testing suffices. Also, since we are not focused on
building a reusable model, we therefore do not concentrate on thorough training of each of the
models. For these reasons, we have used default classifier parameters for Naïve Bayes and have only
changed the default number of trees in Random Forest from 10 to 500.
Table 6 lists the precision, recall, false alarm rates and the actual percentage of defect-prone
components in the cyclic group averaged over the number of releases. As shown, in all the cases, the
false alarm rates are lower than the actual percentage of defect-prone components in the cyclic
group (i.e. Actual %CDPC). In addition, the precisions for Camel, ActiveMQ, Lucene and Eclipse are
over (100-Actual %CDPC) at the package level. Also, the recalls for Camel, ActiveMQ, Lucene and
Eclipse are over (100-Actual %CDPC). At the class-file level, the false alarm rates for Camel,
ActiveMQ, commApp and Eclipse are lower than the actual percentage of defect-prone components
in the cyclic group. But, for Lucene and openPDC, the classifiers could not divide between the DPCs
and non-DPCs in some of the releases in these dataset because of the few number of DPCs recorded
in these two systems. We therefore decided to exclude them from the results. As listed in Table A.2,
Lucene has an average of 9.3 DPCs out of 501 class-files and openPDC has an average of 11.3 DPCs
out of 616 class-files. Although, the small sample sizes of these two systems and the decision to
exclude them based on the above stated reason do not override/invalidate the claims in this study.
We however, learn a great deal that sanity checks can guide our decisions regarding where to focus
such expensive cyclic dependency analysis efforts in software systems both for research and for
industrial practices.

D. Discussion

Clearly, the results show interesting trends of significant higher defect profiles for cyclic dependent
components in the systems. As revealed in Table 4, at the package level the null hypotheses for HA1
and HA2 are rejected for all the systems indicating that the results are all significant. Similarly, the
null hypotheses for HB1 are rejected for all the 5 systems that we have their actual defect dataset. We
fail to reject the null hypotheses of HB2 for Camel and openPDC. At the class level the null
hypotheses for HA1, HA2 and HB1 are equally rejected for all the systems except for openPDC and
HA2 for Eclipse. However, for Eclipse, the effect size in Table 5 shows a large effect. This confirms
that, even though the statistical test is not significant which largely can be due to the small sample
size (number of releases). The effect size shows that the difference between the two groups for
Eclipse is not negligible. The null hypotheses for HB2 are rejected for 3 out of the 5 systems. In all
the cases where we fail to reject the null hypothesis for HB2, it is either there are higher number of
cyclic components than non-cyclic or that the cyclic group’s size (LOC) is higher than the non-cyclic
group. openPDC shows a contrasting result to the rest of the systems at the class level. It is hard to
imply any pattern from the C# applications’ results at the class level because of the sample size (i.e.
Number of systems analyzed) and also because of the number of defect-prone components available
for this study. Further studies will be necessary to observe patterns in this direction.

1) Multiplicity of Defect
A clear observation from the results is that the cyclic-related group has significantly more defective
components and accounts for higher number of defects than those in the non-cyclic group. In
addition, the proportion of defective components in cyclic group is higher than those in the non-
cyclic group except for openPDC (class-file level). It thus means that components in cyclic
relationships tend to be more defect-prone and that possibly, defects propagate more among
components in cyclic relationships. Cyclic dependencies increase the probability of defect
propagation and the tendency to make the system fragile, thus leading to possible increase in the
number of system’s defects. While we cannot claim exclusively that cyclic relationship is

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 128

unequivocally responsible for this behavior, the results from this study, however, lend support to this
pattern. This effect poses huge maintenance challenge as the system evolves. Defects become
difficult to trace and system become more strenuous to test, thus resulting into higher maintainability
cost.

Table 6 – Classification results averaged over the number of releases

System
Cyclic

Precision Recall FP Rate Actual %CDPC (100-Actual %CDPC)

Package

Camel* 69.6 51.1 8.8 30.5 69.5

ActiveMQ* 75.2 43.5 10.8 44.9 55.1

Lucene+ 77.1 57.9 8.3 32.4 67.6

commApp* 67.8 55.1 5.1 19.2 80.8

openPDC+ 55.6 19.4 3.8 15.1 84.9

Eclipse+ 67.9 71.2 34.1 50.0 50.0

Class-File

Camel* 25.2 26.2 3.6 4.5 95.5

ActiveMQ* 33.8 35.5 6.8 8.9 91.1

Lucene - - - 2.2 97.8

commApp* 42.3 45.7 6.4 10.1 89.9

openPDC - - - 2.2 97.8

Eclipse+ 55.7 26.1 3.3 13.8 86.2

* Naïve Bayes
+ Random Forest

2) Cycle-Size Relationship
We discover a positive correlation between LOC and minimum number of component’s cycle for
both the packages and the classes in all the 6 systems. In many cases, there is a correlation of more
than 0.5 between the size and the minimum number of component’s cycle.

A look at the cyclic-related group distribution against the size (KLOC) in each group (Appendix A,
Tables A.2 and A.3) reveals for example that:

• For ActiveMQ: the in-cycle group has about 32.5% (inC/N) of the total classes but accounts
for 55% of the total size (KLOCinC/(KLOCC+KLOCNC)).

• For commApp: Packages in the cyclic group are 12.6% of the total packages and this number
account for a total of 32% of the total size. Relatedly, the cyclic group at the class level
contains 25.2% of the total classes and contributes 46.8% of the total size.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 129

• For Lucene: Classes in the cyclic-related group are 38.8% of all the classes but account for
57.5% of the total size.

This effect accounts for the mixed results for hypothesis HB2. The correlation values also show that
some large classes have many cycles and thus seem to promote cyclic relationships among
interconnected components. (Melton and Tempero, 2007a) made similar observations about the
presence of cycles in some large classes. Lines of Code (LOC) and degree of coupling have long
been validated to correlate to defect-proneness (Basili et al., 1996; Briand et al., 2001b; Menzies et
al., 2007). The large components we found in the cyclic group contain many cycles and a high
number of incoming and outgoing couplings. A beneficial approach would then be the need to reduce
the cyclic connections. Performing such refactoring would invariably reduce both the size and tight
coupling in these large components.

3) Number of Defect Prone Components in cyclic vs non-cyclic group

In terms of number of defective components, cyclic relationships are convincingly important. As
observed in Figure 12, the number of defective classes located in the cyclic group is very high. For
instance, Apache Camel has 90% of all the defective classes (82% at the package level) in the in-
cycle group and 93% (83% at the package level) when combined with depend-on-cycle, that is, the
cyclic-related group. We observe however that both applications developed with C# (commApp and
openPDC) give the least results in the in-cycle group. Further investigation of many C# systems will
thus be necessary to study the defect patterns of components in the cyclic group. Overall, this is a
very useful finding that can be employed during system testing to effectively allocate testing
resources in a software development and maintenance project. Furthermore, we suggest that based on
these results, it is possible to investigate the cyclic metrics for improving existing quality models.
Finally, since cyclic related components account for the highest number of defects and defect-prone
components in these systems, we argue that focusing on defect-prone cyclically related components
for refactoring could be a positive step. Our speculation therefore is that since cycles increase
structural complexities (Briand et al., 1998; Briand et al., 2001b), performing such refactoring by
taking advantage of existing refactoring tools could reduce the defect-proneness of components and
consequently improve the reliability of the system.

4) Package vs Class
The burden of cyclic dependency is high as it increases the cost of software testing to trace or track a
defect. As noted in the results, package level results are more significant than class level. openPDC
has significant results for cyclic group at the package level even though at the class level the results
are mostly significant for the non-cyclic group. This reinforces the Acyclic Dependencies Principle
as proposed by Martin (2000). Package to package dependency also implies for instance, in Java that
an “import” directive is used. Additionally, it translates to a strong cyclic physical dependency as
mentioned by Lakos (1996). Cyclic dependencies among packages will result into strong structural
complexity by making the modules to be tightly coupled and thereby increasing the tendencies of
defect propagation. As Martin (2000) states, “a dependency upon a package is a dependency upon
everything within the package” The implication is increasing cost of testing and maintenance as the
system evolves. Is it then necessary to focus on this property? Our empirical results in this study
suggest an affirmative yes. Empirical evidence shows that cycles in real-life systems mostly grow as
these systems evolve (Melton and Tempero, 2007a), our results also agree with this pattern leaving
us with strong doubt that refactoring option hardly focus on breaking dependency cycles. This study
has very useful implications for maintenance engineers and system testers. The more information we
have about the groups or subsets within a software system with the most defect-prone components,
the better we can allocate quality assurance resources and efforts to trace and test components in the
system.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 130

Figure 12 - Number of defective components found in the cyclic group (a) Class and (b) Package

6. Threats to Validity
We have analysed and evaluated two Smart Grid systems, an integrated development environment, a
search engine application, a versatile routing and mediation engine and a messaging and integration
pattern server. Although, these six systems vary in terms of properties such as domain, functionality,
programming language, size, age, usage, context and study period, we cannot claim that the observed
defect patterns or related will hold for other systems. As it is with most case studies, we cannot
generalize these results across all systems. Further studies will be necessary to compare results
across several systems and domains.
Our study is based on static coupling measurements and not dynamic coupling measurements
(Arisholm et al., 2004); as such actual coupling among classes at runtime may not be completely
captured. This imprecision can occur due to polymorphism, dynamic binding and dead code in the
software. This as it may, static code analysis has been found to be practically useful and less
expensive to collect (Basili et al., 1996; Briand et al., 1998; Briand et al., 2001b; Chidamber and
Kemerer, 1994; Zimmerman et al., 2011; Zimmermann and Nagappan, 2008). Our study collects
coupling types that are not only based on method invocation. In addition, static coupling measures
reflects to a very high degree the coupling among classes at runtime. We do not think the data
collected based on static code analysis can bias our result in any significant manner.

For this study, we have relied on the defects logged in the defect tracking systems of each
application. Our approach of defect data extraction is similar to what other researchers have used in
the past (C'ubranic, 2004; S'liwerski et al., 2005; Schroeter et al., 2006). Nevertheless, a common
threat is whether defects logged in the DTS are accurately tagged in the respective code changes in
the version systems. In addition, we cannot be sure if all defects are logged in the DTS especially in
cases where the defects are discovered by the developers. Also, there could be cases that the message
log of the file that consists a change is not tagged with the bug numbers of the resolved defect.
Furthermore, there could be cases of typographical error in the recording of the bug number in the
version systems (C'ubranic, 2004) and lastly, it is still possible that duplication will occur. For
instance, in cases where the commits in the log is not tagged with the bug number from the defect
tracking system, we can never be sure that a commit with a particular bug fix is not “re-commit” in
the version control system with the same bug fix. All these are common threats to the internal
validity of studies that use mapped data from both the DTS and the version control system.
Comparably, independent defect dataset of Eclipse yield results in the same direction as the defect
dataset that we collected.
We address construct validity using four different hypotheses. These hypotheses measure in detail
the number, ratio and size of defect profiles of components in both groups. All dimensions to
establish which particular group has higher defect profile are adequately captured with the stated
hypotheses.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 131

7. Conclusions and Future Work
We have carried out, to the best of our knowledge the first and an extensive investigation into cyclic
properties of software components and their defect profiles. Using our proposed cycle metrics, we
divided the mined data into two groups; cyclic group and non-cyclic group. Statistical analysis
reveals that components in cyclic relationships are more defect-prone, having more number of
defects and containing more defective components. In addition, it shows that defect propagation in
the cyclic group is significantly higher than non-cyclic group. This study shows additional structural
component property that may impact on the defect proneness of software components.

Furthermore, it reinforces the results from previous studies on coupling complexity and the impacts
on system quality. A noteworthy observation is the presence of cycles in all the systems that we
analyzed. Evidence from previous studies supports our result that cycles are indeed pervasive in real-
life systems. This further supports our hypothesis that cyclic dependencies should be considered
when collecting structural properties of software components.
These results have implications for software maintenance. By focusing on the cyclic group, it is
possible to discover most defects and defective components in the system. Testing resources can
therefore be effectively allocated to trace defects and test components in a cost efficient manner.
As further study, we seek to analyze a large number of versions in each system we have analyzed so
as to understand the evolution behavior of dependency cycles and defect proneness. We seek to
know, if defective components increase in cyclic group as the system evolves and if certain factors
have some effect (such as refactoring) on the evolution of defect in the cyclic group.
In this study, we have used all types of dependency relationships that result in cycles. Some
dependencies are stronger than the other in terms of their coupling characteristics (Briand et al.,
1999; Kung et al., 1996). Can we identify which dependency relationship (Inheritance, Aggregation
or Composition) contribute most defects in a cyclically dependent components? Lakos (1996)
explained that intrinsic cyclic dependencies are those cycles that cannot be avoided giving example
of a Node and Edge in a graph, with node having information about the edge and vice-versa. Are
there cycles we may care less about regarding their tendencies to propagate defects among inter-
related components and thus prune the cyclic group to those with higher probability of defect
proneness? We would investigate these in our future work.

In addition, we plan to investigate the most common types and severity of defects involved in cyclic
dependencies and compare to non-cyclic group. Also, we will investigate how these results can be
used in combination with other approaches to improve defect prediction models. Based on the
current results, it is positive that we can employ the cycle variables as predictors of a component’s
defect-proneness.

References
Abreu, F.B.E., Melo, W., 1996. Evaluating the impact of Object-Oriented design on software quality. Proceedings of the
3rd International Software Metrics Symposium, 90-99.
Arisholm, E., Briand, L.C., Foyen, A., 2004. Dynamic coupling measurement for object-oriented software. IEEE T
Software Eng 30, 491-506.
Basili, V.R., Briand, L.C., Melo, W.L., 1996. A validation of object-oriented design metrics as quality indicators. IEEE T
Software Eng 22, 751-761.
Bennett, S., McRobb, S., Farmer, R., 1999. Object-Oriented systems analysis and design using UML. McGraw Hill,
Maidenhead, Berkshire England.
Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5-32.
Briand, L.C., Daly, J., Porter, V., Wust, J., 1998. Predicting fault-prone classes with design measures in object-oriented
systems. Ninth International Symposium on Software Reliability Engineering, Proceedings, 334-343.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 132

Briand, L.C., Daly, J.W., Wust, J.K., 1999. A unified framework for coupling measurement in object-oriented systems.
IEEE T Software Eng 25, 91-121.
Briand, L.C., Labiche, Y., Yihong, W., 2001a. Revisiting strategies for ordering class integration testing in the presence
of dependency cycles, Proc. 12th International Symposium on Software Reliability Engineering, (ISSRE 2001) pp. 287-
296.
Briand, L.C., Labiche, Y., Yihong, W., 2003. An investigation of graph-based class integration test order strategies.
Software Engineering, IEEE Transactions on 29, 594-607.
Briand, L.C., Wuest, J., Lounis, H., 2001b. Replicated Case Studies for Investigating Quality Factorsin Object-Oriented
Designs. Empirical Softw. Engg. 6, 11-58.
C'ubranic, D., 2004. Project History as a Group Memory: Learning From the Past. , PhD Thesis. University of British
Columbia, Canada.
Capretz, L.F., Capretz, M.A.M., 1996. Object-Oriented Software: Design and Maintenance. World Scientific, Singapore,
263 pages.
Capretz, L.F., Lee, P.A., 1992. Reusability and Life Cycle Issues within an Object-Oriented Design Methodology
(refereed), in: Ege, R., Singh, M., Meyer, B. (Eds.), Technology of Object-Oriented Languages and Systems. Prentice
Hall, Englewood Cliffs, USA, pp. 139-150.
Chidamber, S.R., Kemerer, C.F., 1994. A Metrics Suite for Object-Oriented Design. IEEE T Software Eng 20, 476-493.
Coad, P., Yourdon, E., 1991. Object-Oriented Design, 2nd ed. Prentice Hall, London.
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C., 2001. Introduction to algorithms, 2nd ed. MIT Press, Cambridge,
Mass.
Fenton, N.E., Ohlsson, N., 2000. Quantitative analysis of faults and failures in a complex software system. IEEE T
Software Eng 26, 797-814.
Fenton, N.E., Pfleeger, S.L., 1997. Software Metrics: A Rigorous & Practical Approach, 2nd ed. PWS Publishing Press,
Boston.
Fowler, M., 2001. Reducing coupling. Software, IEEE 18, 102-104.
Gupta, A., Li, J., Conradi, R., Ronneberg, H., Landre, E., 2010. Change profiles of a reused class framework vs. two of
its applications. Information and Software Technology 52, 110-125.
Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S., 2011. A Systematic Review of Fault Prediction Performance in
Software Engineering. IEEE T Software Eng 99.
Hanh, V.L., Akif, K., Le Traon, Y., Jezequel, J.M., 2001. Selecting an Efficient OO Integration Testing Strategy: An
Experimental Comparison of Actual Strategies. Proc. 15th European Conf. Object-Oriented Programming (ECOOP),
381-401.
Hashim, N.L., Schmidt, H.W., Ramakrishnan, S., 2005. Test order for class-based integration testing of Java
applications, Fifth International Conference on Quality Software, 2005. (QSIC 2005). , pp. 11-18.
Hautus, E., 2002. Improving Java software through package structure analysis., In The 6th IASTED International
Conference Software Engineering and Applications.
Jungmayr, S., 2002. Identifying test-critical dependencies, Software Maintenance, pp. 404-413.
Kampenes, V.B., Dyba, T., Hannay, J.E., Sjoberg, D.I.K., 2007. A systematic review of effect size in software
engineering experiments. Inform Software Tech 49, 1073-1086.
Knoernschild, K., 2012. Java Application Architecture: Modularity Patterns with Examples Using OSGi, 1st ed. Prentice
Hall.
Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., 1996. On Regression Testing of Object-Oriented Programs. Journal
of Systems Software 32, 21-40.
Lakos, J., 1996. Large-scale C++ software design. Addison-Wesley Longman, Redwood City, CA.
Laval, J., Denier, S., Ducasse, S., Bergel, A., 2009. Identifying cycle causes with Enriched Dependency Structural
Matrix. 16th Working Conference on Reverse Engineering (WCRE 2009), 113-122.
Le Traon, Y., Jeron, T., Jezequel, J.M., Morel, P., 2000. Efficient object-oriented integration and regression testing.
Reliability, IEEE Transactions on 49, 12-25.
Li, Z.D., Madhavji, N.H., Murtaza, S.S., Gittens, M., Miranskyy, A.V., Godwin, D., Cialini, E., 2011. Characteristics of

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 133

multiple-component defects and architectural hotspots: a large system case study. Empir Softw Eng 16, 667-702.
Marinescu, R., 2001. Detecting design flaws via metrics in object-oriented systems. Tools 39, 173-182.
Martin, R., 2000. Design Principles and Design Patterns, in: Mentor, O. (Ed.).
Martin, R.C., 1996. Granularity, C++, pp. 57-62.
Melton, H., Tempero, E., 2007a. An empirical study of cycles among classes in Java. Empir Softw Eng 12, 389-415.
Melton, H., Tempero, E., 2007b. JooJ: real-time support for avoiding cyclic dependencies. Proceedings of the thirtieth
Australasian conference on Computer science 62, 87-95.
Menzies, T., Greenwald, J., Frank, A., 2007. Data mining static code attributes to learn defect predictors. IEEE T
Software Eng 33, 2-13.
Nagappan, N., Bhat, T., 2007. Technologies for Code Failure Proneness Estimation. Microsoft Corporation, USA.
Olbrich, S., Cruzes, D.S., Basili, V., Zazworka, N., 2009. The Evolution and Impact of Code Smells: A Case Study of
Two Open Source Systems, Int Symp Emp Softwar, pp. 391-401.
Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2012. Can Reused Components Provide Lead to Future Defective
Components in Smart Grid Applications?, in: Gonzalez, T., Hamza, M.H. (Eds.), 16th IASTED International Conference
on Software Engineering And Applications, Las Vegas, USA.
Parnas, D.L., 1979. Designing Software for Ease of Extension and Contraction. Ieee T Software Eng SE-5, 128-138.
S'liwerski, J., Zimmermann, T., Zeller, A., 2005. When do changes induce fixes?, Proceedings of the 2005 international
workshop on Mining software repositories. ACM, St. Louis, Missouri, pp. 1-5.
Sangal, N., Jordan, E., Sinha, V., Jackson, D., 2005. Using dependency models to manage complex software architecture.
Acm Sigplan Notices 40, 167-176.
Schroeter, A., Zimmermann, T., Zeller, A., 2006. Predicting component failures at design time, Proceedings of the 2006
ACM/IEEE international symposium on Empirical software engineering. ACM, Rio de Janeiro, Brazil, pp. 18-27.
Souza, D., Wills, A., 1999. Objects, components, and frameworks with UML:The catalysis approach. Addison-Wesley,
Reading, Mass.
Tai, K.-C., Daniels, F.J., 1997. Test order for inter-class integration testing of object-oriented software. Computer
Software and Applications Conference, 1997. COMPSAC '97. Proceedings., The Twenty-First Annual International,
602-607.
Wasserman, S., Faust, K., 1994. Social network analysis : methods and applications. Cambridge University Press,
Cambridge ; New York.
Weyuker, E., Ostrand, T., Bell, R., 2008. Do too many cooks spoil the broth? Using the number of developers to enhance
defect prediction models. Empir Softw Eng 13, 539-559.
Yutao, M., Keqing, H., Bing, L., Xiaoyan, Z., 2010. How multiple-dependency structure of classes affects their functions
a statistical perspective, 2nd International Conference on Software Technology and Engineering (ICSTE), 2010, pp. V2-
60-V62-66.
Zhang, H.Y., 2009. An Investigation of the Relationships between Lines of Code and Defects. 2009 IEEE International
Conference on Software Maintenance, Conference Proceedings, 274-283.
Zimmerman, T., Nagappan, N., Herzig, K., Premraj, R., Williams, L., 2011. An Empirical Study on the Relation between
Dependency Neighborhoods and Failures, IEEE Fourth International Conference on Software Testing, Verification and
Validation (ICST), pp. 347 - 356.
Zimmermann, T., Nagappan, N., 2007. Predicting subsystem failures using dependency graph complexities. ISSRE 2007:
18th IEEE International Symposium on Software Reliability Engineering, Proceedings, 227-236.
Zimmermann, T., Nagappan, N., 2008. Predicting Defects using Network Analysis on Dependency Graphs. 2008 30th
International Conference on Software Engineering: (ICSE), Vols 1 and 2, 530-539.
Zimmermann, T., Premraj, R., Zeller, A., 2007. Predicting Defects for Eclipse, International Workshop on Predictor
Models in Software Engineering, pp. - 9.

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 134

Appendices
Appendix A - Software data

Table A.1 – Summary of software source code and defect data

Release/Version
Date #Pkg #Class-File #Class KLOC #Defective Class-File #Defect

Apache-Camel
2.10.2 Oct 15 2012 67 991 1108 78.91 16 11
2.10.1 Aug 28 2012 67 991 1108 78.55 20 9
2.10.0 Jul 01 2012 67 991 1108 78.23 59 30
2.9.2 Apr 17 2012 65 959 1074 74.97 31 12
2.9.1 Mar 05 2012 65 955 1068 74.32 23 17
2.9.0 Dec 31 2011 65 952 1063 73.43 86 49
Apache-ActiveMQ
5.7.0 Nov 22 2012 82 1517 1665 136.22 35 68
5.6.0 Jun 15 2012 83 1505 1649 133.25 88 102
5.5.1 Oct 16 2011 78 1331 1472 118.27 54 76
5.5.0 Apr 01 2011 78 1331 1472 118.27 115 105
5.4.2 Dec 02 2010 77 1258 1393 113.01 80 66
5.4.1 Sept 21 2010 77 1256 1386 112.20 79 63
Apache-Lucene
4.0 Oct 12 2012 20 620 1115 76.60 9 6
3.6 Apr 12 2012 18 503 810 73.78 2 2
3.5 Nov 27 2011 18 498 792 68.22 15 13
3.4 Sep 14 2011 17 478 752 65.44 3 3
3.3 Jul 01 2011 16 466 726 59.28 16 13
3.2 Jun 03 2011 15 441 683 56.04 11 13

Eclipse
3.0 Jun 25 2004 645 10635 12671 1308.66 1566 -
2.1 Mar 27 2003 429 7909 9258 988.45 845 -
2.0 Jun 27 2002 378 6751 7704 797.93 968 -
commApp
4.2.4 Nov 14 2012 191 1203 2142 341.83 29 14
4.2.2 Oct 12 2012 191 1199 2134 339.78 49 18
4.1 Aug 17 2012 171 1002 1884 316.22 60 42
4.0.1SP4 Apr 11 2012 141 904 1650 286.99 69 29
4.0.1SP2 Mar 26 2012 142 903 1645 285.89 46 28
4.0 Oct 14 2011 133 849 1546 266.11 137 143
openPDC
1.5 Oct 11 2012 73 637 798 105.69 6 6
1.4SP2 Dec 28 2011 75 623 794 103.03 14 10
1.4 March 12 2011 72 575 740 85.37 14 5

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 135

Table A.2 – Average of #defective components and their proportions for both Cycle and Not-In-Cycle groups21

System N Nd inC DC C NC inCd DCd Cd NCd P(inCd) P(Cd) P(NCd)

Class

Camel 973.17 39.17 641.00 181.17 822.17 151 35.17 1.33 36.5 2.67 0.06 0.05 0.02

ActiveMQ 1366.33 75.17 444.67 215.33 660.00 706.33 50.33 8.50 58.83 16.33 0.12 0.10 0.02

Lucene 501.00 9.33 194.33 122.33 316.66 184.33 5.00 1.67 6.67 2.67 0.03 0.02 0.01

commApp 1010.00 65.00 254.50 290.33 544.83 465.17 37.83 16.67 54.50 10.50 0.15 0.10 0.03

openPDC 611.67 11.33 202.33 96.33 298.67 313.00 2.33 4.33 6.67 4.67 0.01 0.02 0.01

Eclipse 8431.33 1126.33 3971.33 2610.00 6581.33 1850 729 188.67 917.67 208.67 0.18 0.14 0.11

Package

Camel 66.00 15.33 40.50 1.00 41.50 24.50 12.50 0.17 12.67 2.67 0.31 0.31 0.11

ActiveMQ 79.17 27.33 54.33 0.00 54.33 24.83 24.33 0.00 24.33 3.00 0.45 0.45 0.12

Lucene 17.33 4.00 10.83 1.00 11.83 5.50 3.67 0.00 3.67 0.33 0.36 0.32 0.05

commApp 161.50 20.50 20.33 63.33 83.67 77.83 6.50 7.50 14.00 6.50 0.34 0.17 0.09

openPDC 73.33 5.00 25.67 6.33 32.00 41.33 3.33 1.33 4.67 0.33 0.13 0.15 0.01

Eclipse 484.00 229.33 368.00 53.67 421.67 62.33 199.33 11.00 210.33 19.00 0.54 0.50 0.30

Table A.3 – Average of LOC, Actual defect and defect density for both Cycle and Not-In-Cycle groups

System KLOCinC KLOCC KLOCNC DinC DC DNC D DDinC DDC DDNC

Class

Camel 60.71 66.30 10.1 22.30 20.83 2.33 22.33 0.34 0.32 0.23

ActiveMQ 66.63 77.82 44.05 37.17 39.83 8.67 44.00 0.57 0.52 0.19

Lucene 38.29 46.08 20.48 4.33 5.50 3.00 8.33 0.13 0.13 0.14

commApp 143.26 224.94 81.20 20.83 24.33 7.67 25.67 0.15 0.12 0.10

openPDC 38.33 63.17 34.93 3.00 4.00 4.67 7.00 0.08 0.06 0.12

Eclipse 664.17 851.78 179.89 - - - - - - -

Package

Camel 69.95 70.62 5.79 20.00 20.17 3.33 22.33 0.29 0.29 0.59

ActiveMQ 86.70 86.70 35.17 41.00 41.00 4.67 44.00 0.48 0.48 0.13

Lucene 58.74 58.75 7.81 7.83 7.83 0.5 8.33 0.14 0.14 0.04

commApp 98.04 224.40 81.74 17.67 23.67 8.17 25.67 0.19 0.11 0.11

openPDC 58.05 70.16 27.94 5.33 6.67 0.33 7.00 0.09 0.10 0.01

Eclipse 936.59 997.25 47.96 - - - - - - -

21 inC = in-cycle; DC = depend-on-cycle; C = (inC ∪ DC); NC = non-cycle; N = Number of Components; Xd = Defective (X), where X can
represent inC, C, DC, or NC, D = Total defect in the system; DX = Total defect for X group; DDX = DX/KLOCX , Defect density of X group; P(Xd)
= Xd/X, proportion of defective X group

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 136

(a)

(b)

(c)

(d)

(e)

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 137

(f)

Figure A.1 - Scatter plots of <V, Eout, Ein>22 and <V, E>23 for cyclic dependency graphs for the last release of (a) Camel
(b) ActiveMQ (c) Lucene (d) commApp (e) openPDC (f) Eclipse

(a)

(b)

(c)

22 Eout: Outgoing edge from a component and Ein: Incoming edge from a component. Each dot in the chart represents a single component (class file)

and shows the number of Eout and the number of Ein at the same time
23 Each dot in the <V, E> graph represent a cyclic dependency graph with a number of nodes and edges

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 138

(d)

(e)

(f)

Figure A.2 – Diameter24 and Radius25 vs. number of Cycles for the last release of (a) Camel (b) ActiveMQ (c) Lucene
(d) commApp (e) openPDC (f) Eclipse

24 Diameter is the maximum eccentricities of the nodes in the graph
25 Radius is the minimum eccentricities of the nodes in the graph

P2: A Study of Cyclic Dependencies on Defect Profile of Software Components

 139

Appendix B – R Code

 140

 141

P3: Criticality of Defects in Cyclic Dependent Components
Published: In Proc. 13th IEEE International Working Conference on Source Code Analysis and

Manipulation (SCAM), Eindhoven, Netherlands, 2013, pp. 21-30

 142

P3: Criticality of Defects in Cyclic Dependent Components

 143

Criticality of Defects in Cyclic Dependent Components

Tosin Daniel Oyetoyan1, Daniela Soares Cruzes1,2 Reidar Conradi1
1Department of Computer and Information

Science
Norwegian University of Science and
Technology Trondheim, Norway

{tosindo, dcruzes, conradi}@idi.ntnu.no

2SINTEF
Trondheim, Norway

danielac@sintef.no

Abstract—(Background) Software defects that most likely
will turn into system and/or business failures are termed
critical by most stakeholders. Thus, having some
warnings of the most probable location of such critical
defects in a software system is crucial. Software
complexity (e.g. coupling) has long been established to be
associated with the number of defects. However, what is
really challenging is not in the number but identifying
the most severe defects that impact reliability. (Research
Goal) Do cyclic related components account for a clear
majority of the critical defects in software systems?
(Approach) We have empirically evaluated two non-
trivial systems. One commercial Smart Grid system
developed with C# and an open source messaging and
integrated pattern server developed with Java. By using
cycle metrics, we mined the components into cyclic-
related and non-cyclic related groups. Lastly, we
evaluated the statistical significance of critical defects
and severe defect-prone components (SDCs) in both
groups. (Results) In these two systems, results
demonstrated convincingly, that components in cyclic
relationships account for a significant and the most
critical defects and SDCs. (Discussion and Conclusion)
We further identified a segment of a system with cyclic
complexity that consist almost all of the critical defects
and SDCs that impact on system’s reliability. Such
critical defects and the affected components should be
focused for increased testing and refactoring
possibilities.

Keywords—defect severity; dependency cycles; defect
distribution; defect-prone components; software
reliability; empirical study

1. Introduction
According to [1], software reliability is the
probability that software will not cause a system
to fail (i.e. behave incorrectly) for a specified time
under specified conditions. A system failure may
be the result of a software fault/defect [1].
Moreover as noted by [2], software does not
“wear out” after some period of proper operation
as hardware components do. In addition, defects
in software systems may not be apparent over
time but when they are exposed, they act like a
hidden bomb [2].

There are many cases of system failures due to
software defects. For example [2]: The “STS-126
Shuttle Software Anomaly-2008”; The “Air
Traffic Control Communication Loss – Los
Angeles 2004”; The “Widespread Power Outage
in the Northeast in Northern Ohio – 2003”; the
“Ariane 5 Failure Forty Seconds After Lift-Off –
1996”. In all these cases, the failures were caused
by defects that we could classify to be of critical
severity because of their impact on these systems.
Critical defects are not limited to system and/or
hardware failures. They may also be associated
with many business failures. Many examples
exist, for instance [3]; recently, a “Faster Payment
System” at Lloyds bank, meant to speed up
payment, was hit by critical defects and ironically
delayed wage and bill payments and caused
duplicate charges for PayPal users. Similarly, a
trading software glitch was caused by critical
defects that resulted in a $461.1million loss for
Knight Capital last year [3].
Many of today’s software systems are overly
complex and indeed highly interconnected. The
higher the complexity of a system, the more
difficult it is to maintain and the higher the risk of
accidental and unexpected failures [4]. One area
of such software complexity is dependency cycles
that are formed by direct or indirect decisions
during software development and evolution.
Dependency cycles among components are
notorious for extremely increasing coupling
complexity among interconnected components [5,
6]. Despite numerous claims that cycles inhibit
software quality attributes such as extensibility,
understandability, testability, reusability, build-
ability, maintainability and reliability [7-9],
evidence shows that they are widespread in real
life software systems [9-13]. Intuitively, we
expect that since cycles increase coupling

P3: Criticality of Defects in Cyclic Dependent Components

 144

complexities among components [5, 6], then it
should have a positive correlation with the most
defects. In fact, by performing an empirical study
on six software systems, we confirmed this
conjecture of higher defect profiles for cyclic-
related components in all the six systems [14].
On the other hand, the study by Adams [15]
showed that removing large number of defects
may have a trivial effect on reliability. As pointed
out in [15, 16], the most number of latent defects
lead to very rare failure in practice while the vast
majority of observed failures are caused by a
relatively tiny number of defects [17, 18].
Therefore showing that it is not the number of
defects, rather their severity that matters. A
critical severity defect usually points to a fatal
error that results into system, hardware and/or

business failures whereas low severity defects
mostly points to some cosmetic issues.
Since cycles reduce our cognitive ability to reason
about interconnected components, we conjecture
that the most severe defects detected in such
systems may have an “undisclosed” relationship
with the cyclic complexity. Our hypothesis in this
study therefore, is that, components in cyclic
relationships have higher likelihood of containing
significant number of highest severity defects and
severe defective components than those not in any
cyclic relationships.
The remainder of the work is structured as
follows: In section II, we lay the background for
our study. In section III, we detail our empirical
setup. Section IV presents the

Fig. 5. (a - b) - Cyclic Dependencies and propagation effect on components in a software network [14]

results of this work while section V discusses our
findings. In section VI, we draw out the threats to
the validity of the results. Lastly, in section VII,
we give the conclusion with a note on future
studies.

2. Background
In a software system, a component X is said to
have dependency on another component Y if X
requires Y to compile or function correctly [19].
For formal representation of a dependency graph
for an object-oriented (OO) program, we borrow
two definitions from [12] and state these as
follows:

Definition 1. An edge labeled digraph G = (V,
L, E) is a directed graph, where V = {V1, ...,Vn} is
a finite set of nodes, L = {L1, ..., Lk} is a finite set
of labels, and ! ! !!!!! is the set of labeled
edges.

Definition 2. The object relation diagram
(ORD) for an OO program P is an edge-labeled
directed graph (digraph) ORD = (V, L, E), where
V is the set of nodes representing the object

classes in P, L = {I, Ag, As} is the set of edge
labels representing the relationships (Inheritance,
Aggregation and Association) between the classes
and E = E1 # EAg # EAS ! ! !! ! !!" ! !!"is the
set of edges.
We concern ourselves in this study with
dependency at the physical level, that is, both files
(top-level classes) and packages since we can
infer strong dependencies from physical
relationship [8]. As illustrated in Figure 1a, cyclic
dependency is formed when components depend
on one another in a circular manner. This
relationship covers both direct and indirect
connection between components. Cyclic
relationships increase coupling complexities and
thus have the potential to propagate defects in a
network [20].
A hypothetical case as depicted in Fig. 1 (a-b)
demonstrates such effect. From Fig. 1(a), assume
that component I contains some defects. We can
further assume that the rest of the components A –
H will have a certain probability to inherit the
defect from I, since they are directly and

P3: Criticality of Defects in Cyclic Dependent Components

 145

indirectly dependent on I. To reduce the
likelihood of defect propagation e.g. in Fig. 1(b),
let us say that, a new component J is created so
that components D and C depend on J directly
thereby breaking the cyclic effect. By performing
such a refactoring, the effect of possible defect
propagation is reduced to only component G.

For the purpose of this paper, we use some of the
terms defined in [14]: Assume a component c ∈
System P then:

Component’s Children: Components that are
directly and transitively dependent on c. E.g. in
Fig. 1(a), All the components except component I
are directly or transitively dependent on A.
Components G, and H have no children. We use
TChildren for both direct and transitive children
and DChildren for direct children. For example,
DChildren(A) = {B, E}.

Component’s Parent: All components that c
is both directly and transitively dependent upon.
We use TParent for both direct and transitive
parents and DParent for direct parents. For
instance, TParent(G) = {A, B, C, D, E, F, I} and
DParent(G) = {C}.

Component In-Cycle: Component c is said to
be in cycle, if it has at least one parent that is the
same as one of its children. E.g. B is in cycle
because its parent A is also one of its children.

Component Depend on In-Cycle
Component: Component c is said to depend on
another in-cycle component if at least one of its
direct parents is in cycle. G and H are examples
of components that depend on In-Cycle
components C and E respectively.

Associated Defect: Two components have
associated defect if a specific defect affect both
components. We use defect ID to track associated
defect between components.

Some metrics such as CBO, RFC [21],
CyclicClassCoupling26 and dwReach [22, 23] are
of interest but not useful for our purpose since
they cannot classify whether a component is
involved in cyclic components indirectly.
Therefore, we describe the cyclic metrics and

26 This metric counts the number of direct cyclic connections between
two classes. For instance, C1 depends on C2 and C2 depends on C1

notations [14] relevant for our study. Consider a
set of components, C in an object-oriented system.
For each component c ∈ C:
• Component In-Cycle:

inCycle: boolean

• Depend On Cycle:

depOnCycle: boolean

Cycles among components have been claimed to
be detrimental to understandability [7], production
[8, 24], marketing [8], development [8, 24],
usability [8, 24], testability [8], integration testing
[10-12, 19, 25], reusability [24], extensibility [9]
and reliability [8].
Although, it has been stated and implied, to date,
it appears that only one study [13] has performed
an elaborate empirical study of cycles on many
software systems at the class level. The result
shows that almost all the 78 Java applications they
analyzed contain large and complex cyclic
structures among their classes.

In a recent study [14], we established that
components in cyclic relationships, either directly
or indirectly, have significantly more defect-prone
components than those not in any cyclic
relationships. The four hypotheses we tested on
six different and non-trivial systems confirm that:

i.Components in cycles have higher likelihood of
defect-proneness than those not in cyclic
relationships.

ii.The higher number of defective components is
concentrated in cyclic dependent
components.

iii.Defective components in cyclic relationships
account for the clear majority of defects in
the systems investigated.

iv.The defect density of cyclic related components
is sometimes higher than those in non-
cyclic relationships.

∃! ∶ !! ⊆ (!"#$%&' ! !⋀!!"ℎ!"#$%& !)
∀!. !"#$%&' ! !!⟷ !!!! ≠ ∅ !
!ℎ!"!:

!"#$%&' ! !!"#$%"&!!!!"!!"!!"!!!!"!#$!!!"#"$!"$%&

∃! ∶ !! ∈ !"#$%&'(!)
∀!.!"#$%&'()"(!)⟷ (¬!"#$%&' ! !⋀!!"#$%&' ! !)
!ℎ!"!:!

!"#$%&'()" ! !!"#$%"&!!!!"#"!"#!!"!!"#$%&'!
!"#$"%&%'!!!!ℎ!"!!"!!!!"#$%&!!"#$%&!!"!!

P3: Criticality of Defects in Cyclic Dependent Components

 146

However, as found in [15, 16], this is not
sufficient to focus testing resources. We are
compelled to find out if this majority of defects
and defect-prone components are also the
majority in both critical defects and severe
defective components.
Zhou and Leung [26], Shatnawi and Li [27] and
Singh et al. [28] demonstrated that object-oriented
design metrics could predict defect-proneness of
classes based on defect severity. Bhattacharya et
al. [29] on the other hand, revealed that graph
based metrics are capable of predicting defect
severity, maintenance effort and number of
defects at both the function and module levels. In
similar direction like these studies but not
concerned with prediction of defect-proneness of
components, Menzies and Marcus [30], Lamkanfi
et al. [31], Iliev et al. [32] and Yang et al. [33]
have all focused efforts on models that could
assign severity levels to defect reports.
These studies focused on (a) predicting defect-
prone components based on their severity of
defects using both the OO design and graph
metrics and (b) predicting the severity of reported
defects and not the affected components. Our
work differs from these efforts in the sense that:
None of these studies analyzed defect severity
using cyclic complexity. In our study we
identified cyclic dependent components as a set
within software components that consists the
majority of critical defects and defect-prone
components with such critical defects.

This study extends our previous study [14] and
the findings are aimed to add significance to the
need to collect cycle metrics and focus on defect-
prone cyclic related components with critical
defects for increased testing activities and
refactoring possibilities.

3. Empirical Setup
Our goal in this work is to determine the severity
of defects in the cyclic dependent components of
the systems under study. As explained in [7, 8,
24], cyclic dependencies are better studied at
physical design levels such as the source file
(compilation unit) and package levels
(Organizational and deployable units), since this
type of dependencies is stronger than logical

dependencies [8]. In addition, previous empirical
studies [13] on cyclic dependency have performed
analysis at the file levels. Furthermore, when
developers resolve defects, they usually log the
changes at the file level and thus have file to
defect mapping. Based on the above reasons, we
identify relationships and dependencies at the
compilation units (top-level classes for Java) and
at the package level.

We perform our evaluation in two ways: First, we
use the set of metrics built around cyclic
dependency relationships proposed in our
previous study [14] to mine software components
and classify them into two groups, “Cyclic” and
“Non-Cyclic”. Second, we statistically evaluate
the severity of defects from cyclic related
components and non-cyclic related components.

A. Systems under study

We choose two systems primarily because of their
criticality to the environments where they operate.
First, we analyze an industrial Smart Grid
application, a type of system of systems (SoS)
applications. Our motivation for the choice of this
case study is that, as a critical infrastructure, the
availability and reliability of the Smart Grid is
crucial to its safety and security. Smart Grid
represents the injection of Information and
Communication Technology (ICT) infrastructure
to the electricity grid to allow for bi-directional
flow of energy and information [34].

The system under study is a distribution
management system designed to monitor and plan
the Grid operations. It provides real-time
operational support by continuously receiving
status data from the power grid. The system has
been in development for about six years and we
have analyzed six post releases (field and
operational) of this application. It is mostly
developed with C# programming language with
.NET framework. As listed in Table I, it has a size
of approximately 341KLOC and contains 1203
class files and 2142 classes as of version 4.2.4.

Furthermore, we choose Apache-ActiveMQ27, a
very powerful and open source messaging and

27 http://activemq.apache.org/

P3: Criticality of Defects in Cyclic Dependent Components

 147

enterprise integration pattern server. Our
motivation for this choice is that systems that
provide integration platform for other applications
are very critical and form the backbone for these
applications. The security and reliability of the
applications running on this platform depend
mostly on it. We consider this system to be non-
trivial. As listed in Table I, the CORE module we
analyzed as at release 5.7.0 (penultimate release)
has about 136.22KLOC, containing 1517 class
files and 1665 classes.

B. Research Hypotheses

The hypotheses investigated in this study are as
follows:

• HA: Cyclic dependent components have
significantly higher number of highest severity
defects than non-cyclic components.

• HB: Cyclic dependent components have
significantly higher severe defect-prone
components than non-cyclic components.

A severe defect-prone component (SDC) is
defined as a component within the top 25% with
the highest severity defects.
To test our hypotheses, either a t-test or non-
parametric test [4] such as Wilcoxon signed rank
test will be applicable depending on whether our
data sample is normally distributed or not. Lastly,
we test the difference in mean between both
groups for significant difference that is greater
than zero. Three categories are identified for both
groups based on our hypotheses:

i.Number of critical severity defects recorded in
each group

ii.Number of defect-prone components with
critical severity defects.

iii.Number of severe defect-prone components in
each group.

For these three categories, we test the hypothesis
(1-tailed significance test):

• H0: µC ≤ µNC (The mean of cyclic group is
significantly less than or equal to the non-
cyclic group)

• H1: µC > µNC (The mean of cyclic group is
significantly higher than the non-cyclic group)

A. Data collection

We have collected data for six releases of two
important applications. We describe in each
subsection the details of our approach: (1) to
collect the data from the defect repository, (2) to
map the class files to the defects, (3) to aggregate
the defect counts at the class-file and the package
level, (4) of ranking components by severity of
defect and (5) of dependency data collection

1) Defects collection from the defect

tracking system (DTS)
We have collected defect data from both the HP-
QC DTS and JIRA DTS. A Defect repository
gives typically a high level overview of a problem
report. For example, typical attributes of the HP-
QC defect tracking system (QC-DTS) are the
Defect ID, severity of the defect, the type of
defect, date defect is detected, the module
containing the defect, the version where defect is
detected, and the date the defect is fixed. Our first
step is to determine the defects that affect each
version of the system. In the HP-QC, we use
“Detected in Version(s)” and in Apache JIRA
DTS, we use the “Affects version” field to filter
all bugs that affect a particular version of the
system. A certain defect may keep re-occurring
and span several versions of a system (persistent
defects [35]). We include such defects in all the
versions they affect. Next, we filtered out
“duplicate”, “Not a problem”, “Invalid”,
“Enhancement” and “Task” cases from the
resolution/Defect Type field.

1) Method to map class files to defects

Version repository, on the other hand, is a
configuration management system used by the
developers to manage source code versions. The
version system provides historical data about the
actual class file that is changed and/or added as a
result of corrective action (defect fixes), adaptive,
preventive and perfective actions [36]. Thus, the
SVN/CVS provides a detailed granularity level to
know which source file(s) in the module(s) are

P3: Criticality of Defects in Cyclic Dependent Components

 148

TABLE VIII. SOFTWARE SOURCE CODE AND DEFECT DATA

Release
Date #Pkg #Class-File #Class KLOC #Defective Class-File #Defects

Apache-ActiveMQ
5.7.0 Nov 22 2012 82 1517 1665 136.22 35 68
5.6.0 Jun 15 2012 83 1505 1649 133.25 88 102
5.5.1 Oct 16 2011 78 1331 1472 118.27 54 76
5.5.0 Apr 01 2011 78 1331 1472 118.27 115 105
5.4.2 Dec 02 2010 77 1258 1393 113.01 80 66
5.4.1 Sept 21 2010 77 1256 1386 112.20 79 63

CommApp
4.2.4 Nov 14 2012 191 1203 2142 341.83 29 14
4.2.2 Oct 12 2012 191 1199 2134 339.78 49 18

4.1 Aug 17 2012 171 1002 1884 316.22 60 42
4.0.1SP4 Apr 11 2012 141 904 1650 286.99 69 29
4.0.1SP2 Mar 26 2012 142 903 1645 285.89 46 28

4.0 Oct 14 2011 133 849 1546 266.11 137 143

TABLE IX. % OF DEFECTS MAPPED FROM DTS TO SVN

Apache-ActiveMQ CommApp

Release %Bugs Release %Bugs

5.7.0 85.3 4.2.4 71.4

5.6.0 93.1 4.2.2 83.3

5.5.1 77.6 4.1 85.7

5.5.0 82.9 4.0.1SP4 69.0

5.4.2 80.3 4.0.1SP2 64.0

5.4.1 85.7 4.0 51.7

changed to fix a reported defect. A common way
to figure out what operation is performed on the
source file is to look at the message field of the
SVN commit. When developers provide this
information with the bug number and/or useful
keywords (e.g. bug or fix), it is possible to map
the reported defect with the actual source file(s)
[37, 38]. In some cases, not all bug commits in the
version repository contain the bug number or
useful keyword in the message field. In the past,
researchers have approached this situation by
mapping from defect repository to the version
repository [38, 39].
We have used both approaches to map defect
from the HP-QC and JIRA DTSs to the code
changes. The resolution date allows us to map
some of the untagged commits in the version
system to the resolved bugs. Overall, for the six
releases of each system, we mapped an average of
84.2% for Apache-ActiveMQ and 71% for
CommApp (see Table II). From these
percentages, we consider only defects that
are associated with source files of the
analyzed modules and ignore defects for
non-source files, test source files and source

files of other modules not analyzed.
Consequently, the reported defect figures in
the results section are fractions of the
mapped percentages.

2) Aggregating number of defects per class
file and per package

In a release, it is possible that multiple reported
bugs be associated to one class file. The unique
defect ID is thus appropriate to compute the
number of defects fixes that affect a class file and
a package. From the mapped change data, we look
up each file and determine the total of defects per
file by counting the number of unique defect ID in
this release. At the package level, we aggregate
the unique defect IDs for each class file in the
package. As demonstrated in Fig. 2, based on the
defect ID, File1, File2 and File3 have 2 defects
each and Pkg 1 has a total of 3 defects although it
contains 3 files with 2 defects each. The unique
defect-ID shows that for pkg1, only 3 defects are
fixed.

3) Ranking of components by defect
severity

The HP-QC DTS of CommApp uses four values
to describe the severity of each recorded defect
while in JIRA five values are used. The severity is
determined based on the impact of the defect on
the system and the business. From our observation
of the message logs in both DTSs, defect
severities with “blocker” and/or “critical” values
relate strongly to reliability, performance and/or
security issues in the system. For instance, in
CommApp, an example is: “Database running at
100% CPU”. An example in ActiveMQ is:

P3: Criticality of Defects in Cyclic Dependent Components

 149

“Network bridges can deadlock when memory
limit exceeded”. For HP-QC, a defect can be
critical, major, average or minor. In JIRA, a
defect can be blocker, critical, major, minor or
trivial. Because of the few numbers of blockers
and critical defects in the defect data for Apache-
ActiveMQ, we decided to merge these two to
form only critical category. We transform the
severity scales in both defect-tracking systems to
map critical, high, medium and low.
We want to be able to rank the components based
on their number of the highest severity defects.
This presents the possibility to be able to evaluate
severe defect-prone components (SDC). Unlike
other studies [26-28] that have developed multiple
models to predict two or three categories of defect
severity, we can only devise an approach to have
a single ranking of component based on its most
severe defects. We describe this method in this
section since we believe it can find practical use
by other researchers and practitioners.

We keep in mind that a component can have many
defects and therefore contain different severity
values (i.e. different severities distributed over a
component). For instance, a component can have
3 defects in this order {Critical=1, High=1,
Medium=0, Low=1}. To rank according to the
highest severity of defects requires that we make
some transformation to give the highest weights to
components according to their most severe
defects.
We describe the transformation process we use for
this purpose:
1. Given n number of components and m number

of defect severities, we form an mxn matrix,
where the column elements in the matrix stand
for the severity values of a component in their
order of severity.

2. We form a new matrix B as follows; for each

column element, starting from the first
element, replace all elements below with zero
iff the element above is greater than zero.

3. Form a weight row vector W of 1xm

dimension containing the sum of the
maximum element of each row below the kth
row in B. The last column element in W is
kept as 0:

4. Form a new mxn matrix WD, where W is the

diagonal elements and all other elements are
zero

5. Form matrix C by dividing each element in B
by itself

1.

6. Lastly, compute D = WD*C + B

For example, with components; c1: {Critical=2,
Major=1, Average=0, Minor=1}, c2: {Critical=0,
Major=1, Average=3, Minor=0}, c3: {Critical=0,
Major=3, Average=0, Minor=0} and c4:
{Critical=0, Major=0, Average=0, Minor=1}
gives matrix:

Following the transformation steps II-VI yields
matrices:

From the matrix D’s result, c1 has the highest
weight of 6, followed by c3 with a weight 4, then
c2 with a weight 2 and lastly c4 with a weight of 1.

!! = !!
!!! !!" !!" ⋯ !!!
!!" !!! !!" ⋯ !!!
⋮ ⋮ ⋮ ⋮ ⋮

!!! !!! !!! ⋯ !!"
!!

∀!!,!!!"!!!,! !> 0,!!,! = 0, !"#!! = ! + 1,… . ,!
!!!!!!!!!!!!! ∈ 1:! − 1 !

∀!!,!!!"!!!!!,! !> 0,!!,! = 0 ∶ !!! = !,! − 1,… . ,1

! = !
!!! !!" !!" ⋯ !!!
!!" !!! !!" ⋯ !!!
⋮ ⋮ ⋮ ⋮ ⋮
!!! !!! !!! ⋯ !!"

!

!! = max
!!!,⋯,!

(!!,!)
!

!!!!!
, !"#!! = !1, 2,⋯ ,! − 1

! = !!,!!,⋯ ,!!!!, 0 !! = max
!!!,⋯,!

(!!,!)
!

!!!!!
, !"#!! = !1, 2,⋯ ,! − 1

! = !!,!!,⋯ ,!!!!, 0

!! = !
!! 0 0 ⋯ 0
0 !! 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ 0

!

! = !

!!!
!!!

!!"
!!"

!!"
!!" ⋯ !!!

!!!
!!"
!!"

!!!
!!!

!!"
!!"

⋯ !!!
!!!

⋮ ⋮ ⋮ ⋮ ⋮
!!!
!!!

!!!
!!!

!!!
!!!

⋯ !!"
!!"

!

A=

2 0 0 0
1 1 3 0
0 3 0 0
1 0 0 1

! =
2 0 0 0
0 1 3 0
0 0 0 0
0 0 0 1

! !! =

4 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

! ! =
1 0 0 0
0 1 1 0
0 0 0 0
0 0 0 0

!

D =

6 0 0 0
0 2 4 0
0 0 0 0
0 0 0 1

P3: Criticality of Defects in Cyclic Dependent Components

 150

4) Dependency data collection

We have developed a small Java tool to extract
source files dependency data [14]. The source
files are downloaded from the version repository.
Organizational rules in Java source file are
substantially different from C# source file. A Java
source file has a one-one mapping from file to
top-level class and it is not allowed to define
another top-level class in a Java file. In addition,
the top-level class must have the same name as its
enclosing file. Also, there is a one-zero or one-one
mapping from file to package; a maximum of one
package can be defined in a Java file. Finally, a
Java class may contain nested classes (one to
many relation). In C#, multiple relations are
possible. A file can contain many top-level classes
and many top-level namespaces can also be
defined in a file. It is also possible that a class
contains nested classes and a namespace can
equally contain nested namespaces. Unlike Java
file, the file name does not need to match any of
the classes defined in it, although, good practices
suggest to have filename as the same as a top-
level class.

Since the compilation unit for both Java and C# is
the source file and we are considering
dependencies at the physical level [8], we decide
for the following:

1. A dependency on any class in a source file
implies a dependency on the source file.

2. The cyclic metric for a class is computed
using dependencies that cross compilation
units (source files). We skip cycles that are
formed among classes within a source file.

We use the “USES” relations [8], which we have
defined earlier as DParent and apply them to the
two systems. We ignore all external library types
(e.g., .NET and Java API) that developers have no
access to their source codes since it is practically
impossible for these external classes to form
cycles with internal application’s classes. Fig. 3
shows an example of the actual dependencies for
MyClass and mypackage components. In order
to collect other nodes (classes) to which MyClass

Fig. 6. Aggregating defect count at the package and file level [14]

Fig. 7. (a) Class source data (b) Dependency Graph for Class (c) Package source data (d) Dependency Graph for package [14]

is connected to requires that we scan the text of
MyClass. The edge between MyClass and other
DParent(MyClass) nodes is a directed path
(without label, L) from MyClass to each node in
the DParent set (Fig. 3a-b). In the case of
mypackage (Fig. 3c-d), the
DParent(mypackage), is a set of unique imported

packages and is processed from the collected class
data.

4. Results
Table III lists the distribution of defect severity
for the entire systems. Table IV lists the
distribution of defects in each group. The total
number of defects (ND), the number of defects in

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! ! ! ! ! ! !
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

"#$%#&'!

Defect ID/Revision ID File Changed Date ...
id1 File 1 date 1 ...
id2 File 2 date 2 ...

!

"%&!(!
!
!
!

"%&!)!
!
*!
*!

+,-'!(!
!
!
+,-'!)!
!
!
+,-'!.!

,/(!
,/)!

+,-'! 0'1'$2!30!

,/(!
,/)!

3/)!
3/4!

"%&!(+,-'!)

"%&!)

+,-'!)

+,-'!.

+,-'!(

numDefect(File 1) = 2

numDefect(Pkg 1) = 3

P3: Criticality of Defects in Cyclic Dependent Components

 151

in-cycle group (ICD), the number of defects in the
depend-on-cycle group (DCD), the total number of
defects in both groups (i.e. CD = ICD U DCD) and
the number of defects in the non-cyclic group
(NCD) for both class-files and packages. In Table
V, we report the results of mining the components
(class-files and packages) into in-cycle (IC),
depend-on-cycle (DC) and non-cyclic (NC)
categories. In Table VI, we list for each severity
value and SDC, the percentages of cyclic-related
defect-prone components (CDPC), non-cyclic
defect-prone components (NCDPC), the number of
defects in cyclic group accounted for by cyclic
defect-prone components (CD), the number of
defects in non-cyclic group accounted for by non-
cyclic defect-prone components (NCD), and the
difference between the defects in cyclic group and
non-cyclic group (i.e. CD-NCD and NCD-CD).
Table VII reports the hypotheses tests of SDC,
defect-prone components with critical severity
defects and the number of defects with critical
severity in cyclic and non-cyclic groups.

A. Distribution of Defect Severity
Table III lists the average distribution of defect
severity in the six releases of the two systems. In
Apache-ActiveMQ, 8% of defects are Critical
(Blocker + Critical) defects and are distributed in
8% of defect-prone components28 (DPC). 75% of
defects are High (Major) severity defects and are
spread across 78% of DPC, while 15% of total
defects are Medium (Minor) severity defects and
are distributed in 13% of DPC. Lastly, 2% of all
defects are Low (Trivial) severity defects and are
spread across 1% of DPC. In CommApp, 12% of
defects are Critical (critical) severity defects and
are distributed in 25% of DPC. 45% of defects are
High (high) severity defects and are spread across
42% of DPC. 36% of defects are Medium
(average) severity defects and are distributed in
27% of DPC and lastly, 7% of defects are Low
(low) severity defects and are distributed in 6% of
DPC.

Fig. 4 illustrates how much of defect-prone
components affected by critical severity defects

28 A defect-prone component as used in this study is defined as

components with one or several defects

are accounted for when using the largest-first or
the smallest-first29 prioritization approaches [40].
For both systems, this distribution shows critical
severity defects to spread across both DPC with
large size and number of defects and those with
small size and number of defects. At the top 25%,
we could only account for less than 45% of DPC
with critical severity defects. This number is, of
course, not desirable for critical applications.
Even at the top 75%, we are still unable to
account for all the DPC with critical severity
defects (since the percentage identified is
approximately 80%).

In conclusion of this section, we can caution that
models that target top k% may not uncover a
significant number of defect-prone components
affected by critical severity defects. At least this is
confirmed in these two applications. There is a
need for more studies in prediction methods that
focus further on the severity of defects rather than
number of defects. This is an additional
motivation for us to conduct an investigation into
how much of critical severity defects and defect-
prone components with critical severity defects
are contained in cyclic dependent components.

TABLE X. % (AVERAGE) OF DISTRIBUTION OF DEFECT SEVERITY

Severity Apache-ActiveMQ CommApp

DPC #Defect DPC #Defect

Critical 8 8 25 12

High 78 75 42 45

Medium 13 15 27 36

Low 1 2 6 7

B. Distribution of defect and DPC in cyclic

and non-cyclic groups

Tables IV and V list the average of cyclic data
and their defect profiles for the two systems we
investigated. On the average, in Apache-
ActiveMQ, there are 1366.3 class-files out of
which 75.2 are defective. 32.5% of class-files are
in-cycle (IC) while 15.8% of class-files are
dependent on other components in cycles (DC).

29 Largest-first approach assumes that larger components are more

defect-prone and therefore ranks components in the order of their highest
number of defects while the smallest-first approach, however, assumes that
smaller components are relatively more defect-prone

P3: Criticality of Defects in Cyclic Dependent Components

 152

51.7% are not involved in any cyclic relationships
(NC). Of the total defective class-files, both in-
cycle and depend-on-cycle components account
for 78.3%, while non-cyclic components account
for 21.7%. The system contains an average of 44
defects, of which the IC group accounts for
84.5%, the DC, 17% and the NC 19.8%.

At the package level, there are average of 79.2
packages with 27.3 defective ones. 68.6% of
packages are in-cycle while none is dependent on
any in-cycle components. 31.4% of packages are
not in any cyclic relationships. Furthermore,
packages in-cycle account for 89% of the total
defective components while non-cyclic packages
account for 11%. Out of the total average of 44
defects in the system, IC group accounts for
93.2% while NC group accounts for 10.7%. As
can be seen from these statistics, the cyclic related
components in Apache-ActiveMQ account for the
clear majority of defective components and
number of defects at both the class-file and
package levels.
For CommApp, the average class-files totaled
1010, out of which only 65 are defective from
25.7 defects. 24.8% of these class-files are in-
cycle and account for 57.4% of defect-prone
components and 80.5% of total defects. The DC
group contains 28.8% of the class-files and
account for 26.5% of defect-prone components
and 51.4% of the defects. Lastly, the NC group

Fig. 8. % of DPC with critical defects identified at the top k% of the

class-files DPC over six releases

has 46.4% of the total class-files and account for
16.2% of defect-prone components and 30% of
total defects.

At the package level, the CommApp contains an
average of 161.5 packages of which 20.5 turned

defective. 12.6% of these packages are in-cycle
and account for 31.7% of defect-prone
components and 68.9% of total defects. The DC
group contains 40.7% of the packages and
account for 37.6% of defect-prone components
and 57.6% of the defects. Lastly, the NC group
has 46.6% of the total packages and account for
30.7% of defect-prone components and 31.9% of
total defects. As observed from these statistics, the
cyclic related components in CommApp also
account for the clear majority of both defect-prone
components and the number of defects.

C. Distribution of critical defects and SDC
in cyclic and non-cyclic groups

We now investigate if this majority in both defect-
prone components and number of defects are also
the clear majority in the number of critical defects
and severe defect-prone components. As listed in
Table VI, in Apache-ActiveMQ, the cyclic group
of class-files contains 90.4% of SDC30, that is,
defect-prone components in the top 25% based on
their number of critical defects while the non-
cyclic group has 9.6%. Furthermore, the total
percentage of the SDC defects31 in cyclic group is
96.1% while that of NC group is 10.2%. Also, the
cyclic group accounts for 90.3% of the defect-
prone components with critical severity defects
while the non-cyclic group accounts for 9.7%. At
the package level, 97.7% of SDC are in cyclic
relationships while 2.3% of SDC are not in cyclic
relationships. SDC defects in the cyclic group
account for 95% while 5.2% are recorded for non-
cyclic group. In addition, all the defect-prone
packages with critical severity defects are in
cyclic relationships and they account for all the
critical severity defects in this system.
In the case of CommApp, the cyclic group of
class-files consist 88.6% of SDC and this number
accounts for 94.7% of SDC defects. Furthermore,
the cyclic group accounts for all (100%) the
critical severity defects and contains 82.2% of
defect-prone components affected by the critical
severity defects. At the package level, cyclic
group comprises 65.6% of SDC and accounts for

30 According to the ranking algorithm and the percentile figure used
(Top 25% = 75th percentile), SDC might contain high severity defects in
addition to critical severity defects.

31 Note that defects in SDC are ranked as the highest severity defects.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+!"

#!!"

!" $'" '!")'" #!!"

!
"#

$%
$&

'(
)*

+,
$"

-+
.

/+
,$

,'
0"1

2'3
"&

*24
&5

6"
0$

7$
*2'

8"
9$

%$
&'

"

-:..:6547$";'+/"<!="#$%$&'()*+,$"-+./+,$,'0"+*9$*$9">8"9$%$&'"&+:,'"
;?5*@$0'(A2*0'"B//*+5&3="

,-../00"

/012345/267489"

P3: Criticality of Defects in Cyclic Dependent Components

 153

80.8% of SDC defects. Also, the cyclic group
accounts for all (100%) of critical severity defects
and contains 75% of defect-prone packages
affected by critical severity defects.
Table VII lists the results of the hypotheses tests.
Regarding the first hypothesis HA, the p-values of
1-tailed test for the two systems and for both types
of components (class-files and packages) are less
than 0.05. Therefore, we reject the null hypothesis
and confirm that the number of critical severity
defects in the cyclic defect-prone components is
significantly higher than those in the non-cyclic
defect-prone components. Regarding HB, we
reject the null hypothesis for HB1 at both the class-
file and package levels and affirm that defect-
prone components with critical defects are
significantly higher in the cyclic group than non-
cyclic group. The null hypothesis HB2 is rejected
for all cases except for package-level result for
CommApp.

5. Findings and Discussion
First, as demonstrated in the distribution data of
Fig. 4, defect-prone components affected by
critical severity defects are spread across DPCs.
In other words, prioritizing testing activities using
the “largest-first” or “smallest-first” [40] approach
is not optimal to discover such “first class”
candidates that should be prioritized in critical
systems. Furthermore, we revealed that all critical
severity defects (100%) are located in the
packages that are in cyclic relationships.
Likewise, between 95% and 100% of critical
severity defects can be discovered in the class-
files that are in cyclic relationships.

When we look at the defect-prone components
affected by those critical defects, we discovered
that for cyclic related components, between
82.2% and 90.3% are class-files in cyclic
relationships and between 75% and 100% are
packages that have cyclic relationships. In
addition to these, when we rank components
according to the number of their highest severity
defects, we found that between 88.6% and 90.4%
of defect-prone components (class-files) with the
highest severity defects are in cyclic relationships.
Also, between 65.6% and 97.7% of packages that

are defect-prone and with the highest severity
defects are in cyclic relationships.
The set differences CD-NCD and NCD-CD present
useful perception into identifying defects that are
unique to each group. The findings in this study
show that with certainty, we can confirm that 86%
(class-files) and 100% (packages) of critical
severity defects originate from the cyclic group in
Apache-ActiveMQ while 4.8% (class-files) of
critical severity defects originate from the non-
cyclic group. For CommApp, we are sure that
44.4% (class-file) and 50% (packages) of critical
severity defects originate from the cyclic group
whereas no critical severity defect can be said
with certainty to originate from the non-cyclic
group (The set difference NCD-CD = null).
One major contribution of this work is that we are
able to partition a software dataset into sub sets
that allows a maintenance engineer and software
testers to look for defect and most especially
critical severity defects in the right places. For
instance, it is far more efficient to look for highest
severity defects in 50% or less of a system´s
components than the whole 100%. The cyclic
related components in our study range between
48.3% and 53.6% of the class-files and within this
range, we can discover between 95.1% and 100%
of critical severity defects. Several empirical
results already revealed that defect distribution in
software systems is skewed and followed the
Pareto rule (20-80) [16, 17]. The challenge is
higher when dealing with large and complex
systems with thousands of components but
extremely few defect-prone components. In such
situations, prediction models have lower chance
of good performance. It is even worse when fewer
of those components are associated with critical
severity defects, which is the case in many
software systems. Finding them can be analogous
to looking for a needle in a haystack (see Fig. 4).
To reinforce this point, the study in [26]
confirmed that prediction based on low severity
defect performed better than prediction on high
severity defects.
The results in this study are useful to employ for
focusing testing resources and refactoring
possibilities in both industry and the academia.
Many studies [9-13] of dependency cycle in

P3: Criticality of Defects in Cyclic Dependent Components

 154

TABLE XI. SUMMARY OF COMPONENTS #DEFECTS32 (AVERAGED OVER SIX RELEASES)

System
 Class-File Package

ND ICD DCD CD NCD ICD DCD CD NCD

ActiveMQ 44 37.2 7.5 39.8 8.7 41 0 41 4.7

CommApp 25.7 20.7 13.2 24.3 7.7 17.7 14.8 23.7 8.2

TABLE XII. SUMMARY OF CYCLIC DATA (AVERAGED OVER SIX RELEASES)

 Class-File Package

System N NDPC IC ICDPC DC DCDPC NC NCDPC N NDPC IC ICDPC DC DCDPC NC NC
DPC

ActiveMQ 1366 75.2 444.7 50.4 215.3 8.5 706.3 16.3 79.2 27.3 54.3 24.3 0 0 24.8 3

CommApp 1010 65 250.5 37.3 290.6 17.2 468.8 10.5 162 20.5 20.3 6.5 65.8 7.7 75.3 6.3

TABLE XIII. AVERAGE % OF COMPONENTS IN CYCLIC33 AND NON-CYCLIC GROUPS AND GROUPED BY DEFECT SEVERITY

 Apache-ActiveMQ CommApp

Metric CDPC NCDPC CD NCD CD-NCD NCD-CD CDPC NCDPC CD NCD CD-NCD NCD-CD

Class-Files

SDC (25%)* 90.4 9.6 96.1 10.2 90 4 88.6 11.4 94.7 34 66 5.3

Critical* 90.3 9.7 95.1 14.3 86 4.8 82.2 17.8 100 55.6 44.4 Ø

High 78.6 21.4 89.4 21.1 79 10.6 84.9 15.1 91.4 35.7 64.3 8.6

Average 75.8 24.2 92.3 18 82.1 7.7 84.5 15.5 96.3 18.2 81.8 3.6

Minor 100 0 100 0 100 Ø 90.6 9.4 100 9.1 91 Ø

Package

SDC (25%)* 97.7 2.3 95 5.2 94.8 5.2 65.6 34.4 80.8 61.5 38.5 19.2

Critical* 100 0 100 0 100 Ø 75 25 100 50 50 Ø

High 88.4 11.6 94 11 89 6 62.6 37.4 87 40 60 12.9

Average 87.9 12.1 84 15.4 84.6 15.4 82 18 96.3 18.2 81.8 3.6

Minor 100 0 100 0 100 Ø 89.5 10.5 91.1 18.2 81.8 9.1

* Both categories that are focused in this study

TABLE XIV. 1-TAILED TEST FOR COMPARING HIGHEST SEVERITY DEFECTS AND DEFECT-PRONE COMPONENTS IN CYCLIC AND NON-CYCLIC GROUPS

System

CLASS PACKAGE
HA : Test of Number of critical defects in Cyclic vs. Non-Cyclic groups
p-value (C) p-value (C)

ActiveMQ 0.0113* 0.0012*
CommApp 0.0214* 0.0299*
 HB1 : Test of Number of Defect-prone components with critical defects in Cyclic vs. Non-Cyclic groups

p-value (C) p-value (C)
ActiveMQ 0.0337* 0.0052*
CommApp 0.0295* 0.0125*
 HB2 : Test of SDC (Top 25%) in Cyclic vs. Non-Cyclic groups

p-value (C) p-value (C)
ActiveMQ 0.0051* 0.0001*
CommApp 0.0003* 0.0586

* Significant at ∝ = 0.05

32 It is important to note that defects can overlap in both categories since a defect can spread to many components
33 Note that CDPC = (ICDPC U DCDPC) and CD = (ICD U DCD)

P3: Criticality of Defects in Cyclic Dependent Components

 155

software systems suggest that cycles are inherent
in real-life systems and appear like a menace we
have to live with. We confirm our conjecture in
these two systems that dependency cycles contain
the highest severity defects. We rush to say that
we make no claim to this pattern in all systems,
however, we believe this is a step forward to
encourage further studies and to understanding
dependency cycles, defect-prone components and
defect severity.

6. Threats to Validity
We have performed analysis and evaluation of an
industrial Smart Grid system and a messaging and
enterprise integration pattern server. Therefore,
we cannot claim that this kind of pattern or
related will be visible in other systems and other
domains. As it is with most case studies, we
cannot generalize these results across all systems.
Further studies will be necessary to compare
results across several systems.

Our study is based on static coupling
measurements and not dynamic coupling
measurements [41]; as such actual coupling
among classes at runtime may not be completely
captured. This imprecision can occur due to
polymorphism, dynamic binding and dead code in
the software. This as it may, static code analysis
has been found to be practically useful and less
expensive to collect [5, 6, 21, 23, 42-44]. In
addition, we collect coupling types that are not
only based on method invocation. We do not
think the data collected based on static code
analysis can bias our result in any significant
manner.

For this study, we have relied on the defects
logged in the defect tracking systems of each
application. Our approach of defect data
extraction is similar to what other researchers
have used in the past [37-39]. Nevertheless,
common threats are whether defects logged in the
DTS are accurately tagged in the respective code
changes in the version systems. In addition, we
cannot be sure if all defects are logged in the
DTS. Also, there could be cases that the message
log of the file that consists a change is not tagged
with the bug numbers of the resolved defect.

Furthermore, there could be cases of
typographical error in the recording of the bug
number in the version systems [39] and lastly, it is
still possible that duplication will occur.
The recording of defect severity in many defect-
tracking systems has been argued to be subjective
[45]. We cannot exclude the possibilities of
subjective severity records in the DTSs that we
have used. However being critical applications
and from our investigation of the repositories,
most records that impact on reliability,
performance and/or security point to the highest
severity values (blocker/critical). These are,
essentially, the focus in our analysis and
therefore, we can rely on the quality of the data to
a great degree.

7. Conclusions
We have empirically investigated if defects with
the highest criticality and the components
impacted by such defects are mostly concentrated
in cyclic dependent components. Our findings
based on the two non-trivial systems we
investigated revealed that DPC with critical
defects are spread across the systems.
Furthermore, we confirmed our conjecture that
cyclic dependent components account for almost
all of the critical severity defects and most severe
defect-prone components.

Empirical analysis shows that in three out of four
cases, all the highest severity defects are found in
components that are involved directly or
indirectly in cyclic relationships and in the 4th
case, over 95% of the highest severity defects are
discovered in the cyclic related group. The results
in this study have practical use in allocating
testing resources to a subset of systems with the
highest likelihood of containing the most critical
defects. Furthermore, it provides reasoning for
refactoring and/or reengineering of especially
defect-prone cyclic dependent components with
critical defects.
Lastly, it shows a subset of software systems that
can be further explored for improved prediction
models based on defect severity. As future
studies, we aim to conduct a large empirical study
of critical systems with well-maintained

P3: Criticality of Defects in Cyclic Dependent Components

 156

repositories to understand if the findings in this
study relate to a general pattern in systems with
cyclic relationships. Furthermore, dataset
imbalance as discussed in Hall et al. [45] is a
threat to prediction models’ performance. We
speculate that we can explore the results of
dividing the datasets into these categories to build
better models that can predict defect-proneness of
components based on defect severity.

References
[1] IEEE Recommended Practice on Software Reliability.

IEEE STD 1633-2008, 2008: p. c1-72.
[2] Lilley, S., Critical Software: Good Design Built Right.

NASA System Failure Case Studies, 2012. 6(2).
[3] Leo, K. Why banks are likely to face more software

glitches in 2013. [Web] 2013 April 24, 2013];
Available from:
http://www.bbc.co.uk/news/technology-21280943.

[4] Fenton, N.E. and S.L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach. 2nd ed. 1997, Boston:
PWS Publishing Press.

[5] Briand, L.C., et al., Predicting fault-prone classes with
design measures in object-oriented systems. Ninth
International Symposium on Software Reliability
Engineering, Proceedings, 1998: p. 334-343.

[6] Briand, L.C., J. Wuest, and H. Lounis, Replicated Case
Studies for Investigating Quality Factorsin Object-
Oriented Designs. Empirical Softw. Engg., 2001. 6(1):
p. 11-58.

[7] Fowler, M., Reducing coupling. Software, IEEE, 2001.
18(4): p. 102-104.

[8] Lakos, J., Large-scale C++ software design. 1996,
Redwood City, CA: Addison-Wesley Longman.

[9] Parnas, D.L., Designing Software for Ease of Extension
and Contraction. IEEE Transactions on Software
Engineering, 1979. SE-5(2): p. 128-138.

[10] Briand, L.C., Y. Labiche, and W. Yihong. Revisiting
strategies for ordering class integration testing in the
presence of dependency cycles. in Proc. 12th
International Symposium on Software Reliability
Engineering, (ISSRE) 2001.

[11] Hanh, V.L., et al., Selecting an Efficient OO
Integration Testing Strategy: An Experimental
Comparison of Actual Strategies. Proc. 15th European
Conf. Object-Oriented Programming (ECOOP), 2001:
p. 381-401.

[12] Kung, D., et al., On Regression Testing of Object-
Oriented Programs. Journal of Systems Software,
1996. 32(1): p. 21-40.

[13] Melton, H. and E. Tempero, An empirical study of
cycles among classes in Java. Empirical Software
Engineering, 2007. 12(4): p. 389-415.

[14] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi, A Study
of Cyclic Dependencies on Defect Profile of Software
Components. Journal of Systems and Software, 2013.
(in press)

[15] Adams, E.N., Optimizing Preventive Service of
Software Products. IBM Journal of Research and
Development, 1984. 28(1): p. 2-14.

[16] Fenton, N.E. and N. Ohlsson, Quantitative analysis of
faults and failures in a complex software system. IEEE
Transactions on Software Engineering, 2000. 26(8): p.
797-814.

[17] Boehm, B. and V.R. Basili, Software Defect Reduction
Top 10 List. Computer, 2001. 34(1): p. 135-137.

[18] Ebert, C., et al., Defect Detection and Quality
Improvement, in Best Practices in Software
Measurement. 2005, Springer Berlin Heidelberg. p.
133-156.

[19] Jungmayr, S. Identifying test-critical dependencies. in
Software Maintenance. 2002.

[20] Abreu, F.B.E. and W. Melo, Evaluating the impact of
Object-Oriented design on software quality.
Proceedings of the 3rd International Software Metrics
Symposium, 1996: p. 90-99.

[21] Chidamber, S.R. and C.F. Kemerer, A Metrics Suite for
Object-Oriented Design. IEEE Transactions on
Software Engineering, 1994. 20(6): p. 476-493.

[22] Nagappan, N. and T. Bhat, Technologies for Code
Failure Proneness Estimation, 2007, Microsoft
Corporation: USA.

[23] Zimmermann, T. and N. Nagappan, Predicting Defects
using Network Analysis on Dependency Graphs. 2008
30th International Conference on Software
Engineering: (ICSE), Vols 1 and 2, 2008: p. 530-539.

[24] Martin, R.C., Granularity, C++ Report, 1996. p. 57-62.
[25] Briand, L.C., Y. Labiche, and W. Yihong, An

investigation of graph-based class integration test
order strategies. Software Engineering, IEEE
Transactions on, 2003. 29(7): p. 594-607.

[26] Zhou, Y.M. and H.T. Leung, Empirical analysis of
object-oriented design metrics for predicting high and
low severity faults. IEEE Transactions on Software
Engineering, 2006. 32(10): p. 771-789.

[27] Shatnawi, R. and W. Li, The effectiveness of software
metrics in identifying error-prone classes in post-
release software evolution process. Journal of Systems
and Software, 2008. 81(11): p. 1868-1882.

[28] Singh, Y., A. Kaur, and R. Malhotra, Empirical
validation of object-oriented metrics for predicting
fault proneness models. Software Quality Journal,
2010. 18(1): p. 3-35.

[29] Bhattacharya, P., et al., Graph-Based Analysis and
Prediction for Software Evolution. 2012 34th
International Conference on Software Engineering
(ICSE), 2012: p. 419-429.

[30] Menzies, T. and A. Marcus, Automated Severity
Assessment of Software Defect Reports. 2008 IEEE
International Conference on Software Maintenance,
2008: p. 346-355.

[31] Lamkanfi, A., et al., Comparing Mining Algorithms for
Predicting the Severity of a Reported Bug. 2011 15th
European Conference on Software Maintenance and
Reengineering (CSMR), 2011: p. 249-258.

[32] Iliev, M., et al. Automated prediction of defect severity
based on codifying design knowledge using ontologies.
in First International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering
(RAISE), 2012.

[33] Yang, C.-Z., et al. An Empirical Study on Improving
Severity Prediction of Defect Reports Using Feature
Selection. in Software Engineering Conference
(APSEC), 19th Asia-Pacific. 2012.

[34] Rahimi, F. and A. Ipakchi, Demand Response as a
Market Resource Under the Smart Grid Paradigm.
Smart Grid, IEEE Transactions on, 2010. 1(1): p. 82-
88.

[35] Li, Z.D., et al., Characteristics of multiple-component
defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 2011. 16(5): p.
667-702.

[36] Gupta, A., et al., An examination of change profiles in
reusable and non-reusable software systems. Journal of
Software Maintenance and Evolution-Research and
Practice, 2010. 22(5): p. 359-380.

P3: Criticality of Defects in Cyclic Dependent Components

 157

[37] S'liwerski, J., T. Zimmermann, and A. Zeller, When do
changes induce fixes?, in Proceedings of the 2005
International Workshop on Mining Software
Repositories 2005, ACM: St. Louis, Missouri. p.1-5.

[38] Schroeter, A., T. Zimmermann, and A. Zeller,
Predicting component failures at design time, in
Proceedings of the 2006 ACM/IEEE International
Symposium on Empirical Software Engineering 2006,
ACM: Rio de Janeiro, Brazil. p. 18-27.

[39] C'ubranic, D., Project History as a Group Memory:
Learning From the Past. , in PhD Thesis 2004,
University of British Columbia: Canada.

[40] Koru, A.G., et al., Theory of relative defect proneness.
Empirical Software Engineering, 2008. 13(5): p. 473-
498.

[41] Arisholm, E., L.C. Briand, and A. Foyen, Dynamic
coupling measurement for object-oriented software.
IEEE Transactions on Software Engineering, 2004.
30(8): p. 491-506.

[42] Basili, V.R., L.C. Briand, and W.L. Melo, A validation
of object-oriented design metrics as quality indicators.
IEEE Transactions on Software Engineering, 1996.
22(10): p. 751-761.

[43] Zimmerman, T., et al. An Empirical Study on the
Relation between Dependency Neighborhoods and
Failures. in IEEE Fourth International Conference on
Software Testing, Verification and Validation (ICST).
2011.

[44] Xu, J., D. Ho, and L.F. Capretz, An Empirical
Validation of Object-Oriented Design Metrics for Fault
Prediction. Journal of Computer Science, 2008. 4(7): p.
571- 577.

[45] Hall, T., et al., A Systematic Review of Fault Prediction
Performance in Software Engineering. IEEE
Transactions on Software Engineering, 2011.
99(PrePrints).

 158

 159

P4: Can Refactoring Cyclic Dependent Components Reduce
Defect-Proneness?

Published: In Proc. 29th IEEE International Conference on Software Maintenance (ICSM), 2013
pp. 420-423

 160

P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

 161

Can Refactoring Cyclic Dependent Components Reduce Defect-
Proneness?

Tosin Daniel Oyetoyan1, Daniela Soares Cruzes1,2 Reidar Conradi

1Department of Computer and Information Science
Norwegian University of Science and
Technology Trondheim, Norway

{tosindo, dcruzes, conradi}@idi.ntnu.no

2SINTEF
Trondheim, Norway

danielac@sintef.no

Abstract—Previous studies have shown that dependency
cycles contain significant number of defects, defect-
prone components and account for the most critical
defects. Thereby, demonstrating the impacts of cycles on
software reliability. This preliminary study investigates
the variables in a cyclic dependency graph that relate
most with the number of defect-prone components in
such graphs so as to motivate and guide decisions for
possible system refactoring. By using network analysis
and statistical methods on cyclic graphs of Eclipse and
Apache-ActiveMQ, we have examined the relationships
between the size and distance measures of cyclic
dependency graphs. The size of the cyclic graphs
consistently correlates more with the defect-proneness of
components in these systems than other measures.
Showing that adding new components to and/or creating
new dependencies within an existing cyclic dependency
structures are stronger in increasing the likelihood of
defect-proneness. Our next study will investigate
whether there is a cause and effect between refactoring
(breaking) cyclic dependencies and defect-proneness of
affected components.

Keywords— cyclic dependency graphs; defect-proneness;
graph complexities; refactoring

1. Introduction
Maintaining software systems is a non-trivial task
since these systems grow both in size and
complexity over time [1]. Thus, it is not
surprising that the cost of software maintenance is
estimated to be the highest in the overall software
budget [2]. Despite high maintenance costs and
continuous research efforts to improve software
quality, there are still evidence of system and
business failures due to software defects [3, 4].
The structural complexity of software systems has
been associated with defects [5]. The more
complex a system is, the higher the risk of defects
and failures. One area of such complexity is
cyclic dependencies among software components,
yet evidence confirms that they are wide spread in
software systems [6]. Recently, we have

demonstrated that components in dependency
cycles account for most number and severity of
defects [7, 8] both at the class file and package
levels. Our findings show that, about 65% of
defect-prone 34 class files are in cyclic graphs.
Where cyclic class files are approximately 44%35
of the total number of class files. Furthermore, the
cyclic components account for an additional 11-
17% of defect-prone components from the
“depend-on-cycle 36 ” group. In total, an
approximate 80% of defect-prone class files are
cyclic-related. Similarly, an approximate 90% of
defect-prone packages are cyclic-related with
cyclic packages accounting for about 58% of the
total number of packages. We do not consider
these figures to be trivial and based on the
significance of the results; we are motivated to
believe that further understanding of cyclic
dependent components will be useful to guide
decisions and provide reasoning for refactoring
activities on cycles.

In relation to refactoring and software defects,
Weissgerber and Diehl [9] found no correlation in
particular between refactoring and defects opened
in the subsequent days. Their results showed that
there are periods where high refactoring was
followed by increase in the number of defects as
well as phases where refactoring led to no defects,
although, the latter type were more prevalent.
Ratzinger et al. [10] demonstrated that the number
of software defects decreases when the number of
refactoring increases in the preceding time period.
Bavota et al. [11] showed that some kinds of
refactoring are unlikely to be harmful but certain

34 A defect-prone component as used in this study is defined as components
with one or several defects
35 This figure is an average of cyclic data from six different applications
36 We define a “depend-on-cycle” component as component that is not in
cycle but depends on component that is in cycle

P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

 162

kinds such as refactoring involving hierarchies
(e.g. pull up method) are likely to induce defects.
These studies have not considered refactoring
cyclic dependent components in relation to
defect-proneness. Thus they differ from our work.

There have been previous studies on network
analysis of dependency graphs in relation to
defect proneness of components [12-14].
Zimmermann and Nagappan [15] analyzed three
different types of dependency sub-graphs
(INTRA, OUT and DEP) at three separate levels
of granularity. Using graph complexity measures,
they obtained correlation between these measures
and defects in each of the three sub-graphs and
built regression models across the sub-graphs.
One significant difference between our work and
theirs is in the type of sub-graphs. We have
focused on cyclic dependency graphs, which are
missed in their study. Furthermore, our focus is to
obtain variables to guide decision making during
refactoring activities.

This paper extends our previous studies [7, 8] by
investigating the correlation between the number
of defect-prone components and cyclic graphs
complexities. Consequently, we want to use these
findings to motivate the refactoring (breaking) of
defect-prone cyclic dependent components. This
paper reports the preliminary results of this
investigation and presents the direction for future
work.
We are aware that correlation does not necessarily
imply causality [16] because of the possibilities of
hidden variables that may explain this higher
number and severity of defects in the cyclic
groups of these systems. Hence, our approach is
to perform an experiment based on these
preliminary findings in an industrial setup
whereby we control for as many factors that could
explain these effects and thus allow us to draw a
reasonable conclusion on the effect of refactoring
cyclic dependent components in relation to
defect-proneness. We provide the details in
Section IVa.

The rest of the work is structured as follows; in
Section II, we lay the background to this study.
Section III details our preliminary study. We
report the results in Section IV and discuss the

case study for our next study. Lastly, we conclude
this study in Section V.

2. Background
In a software system, a component X is said to
have dependency on another component Y if X
requires Y to compile or function correctly [17].
Formally, a dependency graph of an object-
oriented (OO) program, is defined as follows
[18]:
Definition 1. An edge labeled digraph G = (V, L,
E) is a directed graph, where V = {V1, ...,Vn} is a
finite set of nodes, L = {L1, ..., Lk} is a finite set
of labels, and ! ! !!!!! is the set of labeled
edges.

Definition 2. The object relation diagram (ORD)
for an OO program P is an edge-labeled directed
graph (digraph) ORD = (V, L, E), where V is the
set of nodes representing the object classes in P, L
= {I, Ag, As} is the set of edge labels representing
the relationships (Inheritance, Aggregation,
Association) between the classes and E = E1 #
EAg # EAS ! ! !! ! !!" ! !!"is the set of edges.

Furthermore, we define the various measures of a
graph that are important for our study [19].

i. Geodesic is the shortest path between two
nodes in a graph

ii. The eccentricity of a node is its longest
geodesic.

iii. The diameter of a graph is the maximum
eccentricity of the nodes.

iv. The radius of a graph is the minimum
eccentricity of the nodes.

v. The density of a graph is the ratio of the
number of edges in the graph to the
maximum possible edges in the graph.

Fig. 9. Cyclic dependencies and defect propagation effect in a software
network [8]

P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

 163

Cyclic dependencies and the hypothesis of
defect propagation
In graph theory [20], a cyclic dependency graph
also known as strongly connected components
(SCC) in a directed graph G = (V, E) is a maximal
set of vertices C ⊆ V such that for every pair of
vertices u and v in C, both are reachable from
each other. An example is depicted in Figure 1a
of a hypothetical cyclic graph. In this graph, all
the six components in two cycles (A, D, C, B, F,
E) are mutually reachable from one another.
A related concept is the notion of dependency on
components that are in cyclic relationships. We
termed this as “depend-on-cycle” components [8].
Such “depend-on-cycle” components (e.g. G and
H in Fig. 1a) obviously share the same
complexity as the “in-Cycle” components that
they depend on since they can reach all other
components that are in these cyclic paths.
Cyclic dependency increases coupling
complexities and thus has the potential to
propagate defects in a software network [21].
Consider the hypothetical example in Fig. 1a, a
defect in component I has the potential to
propagate to components C, B, A, D, G, F, E and
H. Let us say these cyclic components are
refactored such that a new component J is
introduced as depicted in Fig. 1b. The possible
propagation of defects from I is significantly
reduced to only C and G.

3. Preliminary Study
In this initial study, our goal is to find variables in
cyclic dependency graphs that correlate with
defect and thus motivate for refactoring
possibilities. The research questions we want to
investigate in this study and subsequent study are:
RQ1. What variables within a cyclic

dependency graph correlate most with the
number of defects and defect-prone
components?

RQ2. Can the refactoring of factors in RQ1
correspond to a decrease in the number of
defects and defect-prone components?

Data Computation
Dependency and defect data: We have used the
dependency data of two (Eclipse and ActiveMQ)

of the systems collected in one of our previous
papers [8] for this analysis. We subsequently
compute the SCCs from this dependency data.
Previous studies (e.g. [6]) already show that most
systems have very long cycles such that hundreds
of components are tangled in one large
dependency cycle. In our analysis, the largest
SCC in release 5.7.0 of ActiveMQ contains 414
class files while the largest SCC in Eclipse r3.0
has 690 classes. Our approach here is to break the
long cycles into several smaller cyclic sub-graphs
in such a way that all cyclic components are
covered (Example of such sub-graphs is shown in
Fig. 2). Using this approach allows us to verify
whether an increase or decrease in size-based and
distance-based cyclic graph measures correlate
with defects. Similarly, we used the popular
Eclipse defect data reported in [22] and the defect
data collected for ActiveMQ in our previous
study [8].
Network Measures: As summarized in Table I,
we have computed size and distance based
measures. For size measures, we aggregate the
number of nodes and number of edges in each

TABLE XV. NETWORK METRICS USED IN THE STUDY

Metric Formula

Size-based

#Nodes 𝑉

#Edges 𝐸

Distance-based

Diameter 𝑀𝑎𝑥(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑖𝑒𝑠)

Radius 𝑀𝑖𝑛(𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑖𝑒𝑠)

Other complexity

Density 𝐸
𝑉 . 𝑉

graph. To compute the distance measures, we
used the Floyd-Warshall algorithm [20] to
calculate the geodesics i.e. “all-pairs shortest
distance” between the nodes of each of the
generated sub-graphs. We then compute the
eccentricity (i.e. the maximum of the shortest
distance) for each node. Subsequently, we
calculate the diameter and the radius for each
graph and sub-graphs from the values of the
nodes’ eccentricities.

P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

 164

4. Preliminary results and future
study

Concerning RQ1, the results (Table II) show that
the size-based measures (number of nodes and
edges) correlate strongly and better than distance
based measures with the number of defects and
defect-prone components in these systems and at
both levels (class and packages) of granularity. In
other words, the higher the number of
components and dependency relationships in
cycle, the higher the probability of defects and
defect-proneness of components. Furthermore, as
displayed in Fig. 3, the R-squared value shows a
good linear fit that suggests that we can predict
the number of defect-prone components in a
cyclic dependency graph using the graph size
measures.

We can further interpret these results to mean that
adding a new class/package (node) or dependency
relationships (edge) to an existing cycle strongly
increases the number of defect-prone components
and defects in the cycle. In addition, size
measures (i.e. node/edge) increase defect-
proneness more than the strength of connection
(diameter). These results agree with previous
studies [12-14] that graph complexities correlate
with defect-proneness of components and in
comparison to [15] at the same granularity levels,
the correlation is higher and stronger for cyclic
graphs as against other types of graph.
Until now, we have not seen a systematic
measurement of the impact of refactoring cyclic
dependent components in relationship to defect-
proneness. This has therefore motivated us to
verify this in our next study. Our speculation is
that if this hypothesis is not rejected such
knowledge can strengthen the refactoring of
highly defect-prone cyclic related components at
both class and package hierarchies for existing
systems and dissuade developers from writing
cyclically connected programs.

Fig. 10. A cyclic dependency graph with many inner cycles from Eclipse
3.0 (Generated with Gephi: http://gephi.org/)

TABLE XVI. CORRELATION BETWEEN NETWORK METRICS AND
NUMBER OF DEFECT-PRONE COMPONENTS IN CYCLIC GRAPHS

 Eclipse ActiveMQ

 Class Package Class Package

Metric S P S P S P S P

Nodes 0.79 0.89 0.89 0.98 0.74 0.71 0.81 0.91

Edges 0.80 0.85 0.89 0.97 0.75 0.73 0.80 0.92

Diameter 0.41 0.19* 0.72 0.64 0.50 0.52 0.13* 0.26*

Radius 0.38 0.13* 0.61 0.61 0.38 0.45 0.51 0.59

Density -
0.52

-0.52 -
0.78

-
0.78

-
0.38

-
0.63

-0.77 -0.77

S - Spearman; P – Pearson (All non-asterisked results are significant at " =
0.01)

Proposed Experiment
Regarding RQ2, we want to investigate whether
breaking (refactoring) defect-prone cyclic
dependent components would have effect on such
components. There are several tools 37 and
approaches that we can take advantage of to
dissuade developers from writing cyclic codes or
to refactor existing cyclic codes. Since a high
correlation does not necessarily imply causality
and there could be other hidden variables [16] (e.g.
other design measures and complexities) that
account for the defect-proneness of those
components in the cyclic graphs, we have taken a
practical approach to verify this conjecture.

37 JDepend, NDepend, Dependometer, Dependency Structural Matrix

P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

 165

Fig. 11. Scatter plot between size of cyclic graph vs. #DPCs in Eclipse 3.0

The case study for this experiment is an industrial
Smart Grid system. The application is a
distribution management system that provides
real-time operational support by continuously
receiving status data from the power grid. The
system has been in development for about six
years and we have analyzed six post releases data
of this application. It is mostly developed with C#
programming language Furthermore, it has a size
of about 380KLOC and contains 1459 class files
and 2484 classes as of release 4.2.4 (Release date:
Nov. 14, 2012). Our analysis of this application
gave similar results with those presented in this
paper.

Since the software undergo frequent releases by
the company, we consider a six to nine months
post refactoring data (after release) to be
appropriate for our analysis. In order to eliminate
unwanted factors that could possibly explain the
difference between refactored cyclic groups and
the rest of the groups, we decide to take
measurements of well known object-oriented
(OO) metrics and complexities in addition to the
defect measures for three groups: (1) Refactored
cyclic groups (2) Non-refactored cyclic groups
and (3) Non-cyclic groups. We are particularly
interested in post release defect data and
therefore, our approach for the case study is as
follows:
1. Select N sample of most defect-prone cyclic

dependent graphs (class and package)
2. For each graph, record all measurement for

the various metrics (number of defects, type
of defects, severity of defects, correction
efforts, lines of code, defect densities, OO
metrics and complexities) for all components
in these cyclic graphs (i.e. six/nine months
pre-refactoring data)

3. Similarly, take measurements for the
remaining cyclic groups and non-cyclic
groups

4. Perform refactoring
5. From six/nine months after the next release,

take new measurements detailed in steps 2
and 3 (post-refactoring)

6. Compare the new measures with the previous
measures for each of the components in the
groups

We admit that it is difficult to control and
randomize all relevant factors in this experiment.
For instance, the system may evolve and increase
further in complexity as a result of dynamic
changes in business requirements within the
experiment phase. However, by going through
these steps, whereby the measurements for the
fixed sets of pre-refactoring data of components
are compared against their post-refactoring data,
we can, at least, move a step further to
understanding the effect of refactoring defect-
prone cyclic components and verify whether such
activity can reduce the defect-proneness of
affected components.

5. Conclusions
We have considered dependency cycles as an
important area of dependency graph with very
high complexities. We show that cyclic graphs
complexities certainly have very strong
correlation to defect-proneness of components.
An increase in the size and strength of
connections in a software cyclic dependency
graphs correspond to an increase in the number of
defect-prone components. Our next study is
therefore focused on verifying the hypothesis that
refactoring highly defect-prone cyclic dependency
graphs will reduce the defect-proneness of the
affected components in these graph structures.

References
[1] Lehman, M.M., Programs, Life-Cycles, and Laws of

Software Evolution. Proceedings of the Special Issue
Software Engineering, 1980. 68(9): p. 1060-1076.

[2] Erlikh, L., Leveraging Legacy System Dollars for E-
Business. IT Professional, 2000. 2(3): p. 17-23.

[3] Leo, K. Why banks are likely to face more software
glitches in 2013. [Web] 2013 April 24, 2013];
Available from:
http://www.bbc.co.uk/news/technology-21280943.

[4] Lilley, S., Critical Software: Good Design Built Right.
NASA System Failure Case Studies, 2012. 6(2).

[5] Basili, V.R., L.C. Briand, and W.L. Melo, A validation
of object-oriented design metrics as quality indicators.

!"#$#%&'()(*#

%#
+#
,%#
,+#
-%#
-+#
)%#
)+#
(%#

%# ,%# -%#)%# (%# +%#

!"
#$
#%
&'
()
*+

#,
%*
-
(*

+#
+&
.,

/01#,*$,23%40%,5)6(7.,

8%40(.#,9:;,',<6%=6>#,23%40%,5)6(7.,?.:,@A-B#),
$,"#$#%&'<)+#,<6%=6>#.,,

P4: Can Refactoring Cyclic Dependent Components Reduce Defect-Proneness?

 166

IEEE Transactions on Software Engineering, 1996.
22(10): p. 751-761.

[6] Melton, H. and E. Tempero, An empirical study of
cycles among classes in Java. Empirical Software
Engineering, 2007. 12(4): p. 389-415.

[7] Oyetoyan, T.D., D.S. Cruzes and R. Conradi.
Criticality of Defects in Cyclic Dependent Components.
in 13th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM) 22-23
September 2013 (Accepted).

[8] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi, A Study
of Cyclic Dependencies on Defect Profile of Software
Components. Journal of Systems and Software, 2013.
(in press).

[9] Weissgerber, P. and S. Diehl, Are refactorings less
error-prone than other changes?, in Proceedings of the
2006 International Workshop on Mining Software
Repositories 2006, ACM: Shanghai, China. p. 112-118.

[10] Ratzinger, J., T. Sigmund, and H.C. Gall, On the
relation of refactorings and software defect prediction,
in Proceedings of the 2008 International Working
Conference on Mining Software Repositories 2008,
ACM: Leipzig, Germany. p. 35-38.

[11] Bavota, G., De Carluccio, B., De Lucia, A., Di Penta,
M., Oliveto, R., & Strollo, O., When Does a
Refactoring Induce Bugs? An Empirical Study. in IEEE
12th International Working Conference on Source
Code Analysis and Manipulation (SCAM), 2012.

[12] Bhattacharya, P., Iliofotou, M., Neamtiu, I., &
Faloutsos, M., Graph-Based Analysis and Prediction
for Software Evolution. 2012 34th International
Conference on Software Engineering (ICSE), 2012: p.
419-429.

[13] Tosun, A., B. Turhan, and A. Bener, Validation of
network measures as indicators of defective modules in

software systems, in Proceedings of the 5th
International Conference on Predictor Models in
Software Engineering2009, ACM: Vancouver, British
Columbia, Canada. p. 1-9.

[14] Zimmermann, T. and N. Nagappan, Predicting Defects
using Network Analysis on Dependency Graphs. 2008
30th International Conference on Software
Engineering: (ICSE), Vols 1 and 2, 2008: p. 530-539.

[15] Zimmermann, T. and N. Nagappan, Predicting
subsystem failures using dependency graph
complexities. ISSRE 2007: 18th IEEE International
Symposium on Software Reliability Engineering,
Proceedings, 2007: p. 227-236.

[16] Pease, C.M. and J.J. Bull, Scientific Desicion-Making,
2000, Retrieved from
http://www.utexas.edu/courses/bio301d/index.html.

[17] Jungmayr, S. Identifying test-critical dependencies. in
Software Maintenance. 2002.

[18] Kung, D., Gao, J, Hsia, P, Toyoshima, Y, & Chen, C.,
On Regression Testing of Object-Oriented Programs.
Journal of Systems Software, 1996. 32(1): p. 21-40.

[19] Wasserman, S. and K. Faust, Social network analysis :
methods and applications. Structural analysis in the
social sciences. 1994, Cambridge ; New York:
Cambridge University Press. xxxi, 825 p.

[20] Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein,
C., Introduction to algorithms. 2nd ed. 2001,
Cambridge, Mass.: MIT Press. xxi, 1180.

[21] Briand, L.C., J.W. Daly, and J.K. Wust, A unified
framework for coupling measurement in object-
oriented systems. IEEE Transactions on Software
Engineering, 1999. 25(1): p. 91-121.

[22] Zimmermann, T., R. Premraj, and A. Zeller. Predicting
Defects for Eclipse. in International Workshop on
Predictor Models in Software Engineering 2007

 167

P5: Transition and Defect Patterns of Components in Dependency
Cycles during Software Evolution

Published: In Proc. IEEE Conference on Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolution Week, Antwerp, Belgium, pp. 283-292

 168

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 169

Transition and Defect Patterns of Components in Dependency
Cycles during Software Evolution

Tosin Daniel Oyetoyan1 Daniela Soares Cruzes1,2, Reidar Conradi1
1Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, Norway
2SINTEF, Trondheim, Norway

1{tosindo,conradi}@idi.ntnu.no 2danielac@sintef.no

Abstract—The challenge to break existing cyclically
connected components of running software is not trivial.
Since it involves planning and human resources to
ensure that the software behavior is preserved after
refactoring activity. Therefore, to motivate refactoring it
is essential to obtain evidence of the benefits to the
product quality. This study investigates the defect-
proneness patterns of cyclically connected components
vs. non-cyclic ones when they transition across software
releases. We have mined and classified software
components into two groups and two transition states–
the cyclic and the non-cyclic ones. Next, we have
performed an empirical study of four software systems
from evolutionary perspective. Using standard statistical
tests on formulated hypotheses, we have determined the
significance of the defect profiles and complexities of
each group. The results show that during software
evolution, components that transition between
dependency cycles have higher probability to be defect-
prone than those that transition outside of cycles.
Furthermore, out of the three complexity variables
investigated, we found that an increase in the class
reachability set size tends to be more associated with
components that turn defective when they transition
between dependency cycles. Lastly, we found no evidence
of any systematic “cycle-breaking” refactoring between
releases of the software systems. Thus, these findings
motivate for refactoring of components in dependency
cycle taking into account the minimization of metrics
such as the class reachability set size.

Index Terms—dependency cycle, defect-proneness,
refactoring

1. Introduction
Today, virtually all aspects of systems (critical
and non-critical) and businesses depend on
software programs in order to perform their
functions. This dependence implies that a failure
within a software program is likely to result into a

system or business failure38. Therefore, locating
and improving potential locations of defects39 will
continue to be important for software systems.
Despite continuous research efforts to improve
software quality there are still evidence of system
and business failures due to defects [1, 2].

Software engineers apply refactoring as a way to
improve problematic locations in software
systems. Refactoring is a process that improves
the internal structure of a software system without
changing its external behavior [3]. It is believed
that refactoring improves software quality and
increase productivity by making it easier to
understand and maintain software codes [4].

However, in relation to refactoring and software
defects there are conflicting evidence of the
benefits of refactoring. Weissgerber and Diehl [5]
found no correlation in particular between
refactoring and defects opened in the subsequent
days. Their results showed that there are periods
where high refactoring was followed by increase
in the number of defects as well as phases where
refactoring led to no defects, although, the latter
type were more prevalent. Ratzinger et al. [6]
demonstrated that the number of software defects
decreases when the number of refactoring
increases in the preceding time period. Bavota et
al. [7] showed that some kinds of refactoring are
unlikely to be harmful but certain kinds such as
refactoring involving hierarchies (e.g. pull up
method) are likely to induce defects. Kim et al. [8]

38 Failure: The inability of a system or system component to perform a required
function within specified limits
39 Defect/Fault: An anomaly in a software code unit or product that can be the
cause of one or more failures

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 170

found that refactoring edits have a strong temporal
and spatial correlation with bug fixes. In another
study, Kim et al. [4] discovered that refactored
binary modules of Windows 7 experienced
significant reduction in the number of inter-
module dependencies and post-release defects.
In recent studies [9, 10], we established that
components in dependency cycles account for
both the majority of defects and the most number
of critical defects in the systems investigated.
Although dependency cycle is known to be a sign
of design decay [11, 12], evidence shows that it
pervades software at different granularity levels.
The results of these studies [9, 10] prompt further
investigation of components in dependency
cycles.
Specifically, we want to investigate if there is a
pattern of increasing or decreasing defect-
proneness for defective components that transition
between dependency cycles across releases. Also,
we want to know whether there is a systematic
cycle-breaking refactoring between software
releases. We distinguish between the word
defective and the word defect-prone. A
component is defective if it contains one or more
defects in a release. While we define a component
to be defect-prone if it persists as being defective
in one or more future releases. Keeping existing
programs acylic or breaking cyclic programs is
not a trivial task since it involves behavior
preservation of the original state of the software.
Thus the fundamental question is whether
companies would want to invest resources to
refactor cyclically connected programs without
empirical evidence of its benefits to the product
quality.
Therefore, this study aims to investigate the
evolution patterns of components in dependency
cycle in order to understand:

i.Whether there is a pattern of increasing or
decreasing defect-proneness of components
that transition between dependency cycles.
Is the probability of defect higher for
components that move between
dependency cycles than for those that move
between out of cycle structure?

ii.Whether components in dependency cycle
undergo any systematic “cycle-breaking”
refactoring between releases.

iii.Whether factors such as coupling and size
complexities provide further explanation to
understanding the defect-proneness of
components that transition between cycles.

The rest of this work is structured as follows;
Section II provides the background to this study
and reports on previous work. In Section III, we
detail our empirical design for this study. Section
IV presents the results and the discussion. In
Section V, the threats to the validity of our results
are discussed. Lastly, Section VI provides the
conclusion of this study and the future work.

2. Background
In a software system, a component X is said to
have dependency on another component Y if X
requires Y to compile or function correctly [13].
Formally, a dependency graph of an object-
oriented (OO) program, is defined as follows [14]:
Definition 1. An edge labeled digraph G = (V, L,
E) is a directed graph, where V = {V1, ...,Vn} is a
finite set of nodes, L = {L1, ..., Lk} is a finite set
of labels, and E ⊆ VXVXL is the set of labeled
edges.

Definition 2. The object relation diagram (ORD)
for an OO program P is an edge-labeled directed
graph (digraph) ORD = (V, L, E), where V is the
set of nodes representing the object classes in P, L
= {I, Ag, As} is the set of edge labels representing
the relationships (Inheritance, Aggregation,
Association) between the classes and E = E1 ∪
EAg ∪ EAS E = E! ∪ E!" ∪ E!"is the set of edges.

Cyclic Dependencies and the Hypothesis of
Defect Propagation [15]
In graph theory [16], a cyclic dependency graph
also known as strongly connected components
(SCC) in a directed graph G = (V, E) is a maximal
set of vertices C ⊆ V such that for every pair of
vertices u and v in C, both are reachable from
each other. An example is depicted in Figure 1a of
a hypothetical cyclic graph. In this graph, all the
six components in two cycles (A, D, C, B, F, E)
are mutually reachable from one another. A
related concept is the notion of dependency on

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 171

Fig. 12. Cyclic dependencies and defect propagation effect in a software

network [10]

components that are in cyclic relationships. We
termed this as “depend-on-cycle” components
[10]. Such “depend-on-cycle” components (e.g. G
and H in Fig. 1a) obviously share the same
complexity as the “in-cycle” components that they
depend on since they can reach all other
components that are in these cyclic paths.

Cyclic dependency increases coupling
complexities and thus has the potential to
propagate defects in a software network [17].
Consider the hypothetical example in Fig. 1a, a
defect in component I has the potential to
propagate to components C, B, A, D, G, F, E and
H. Let us say these cyclic components are
refactored such that a new component J is
introduced as depicted in Fig. 1b. The possible
propagation of defects from I is significantly
reduced to only C and G.
Cycles and software quality: Cycles among
components have been claimed to be detrimental
to understandability [18], production [11, 19],
marketing [11], development [11, 19], usability
[11, 19], testability [11], integration testing [13,
14, 20-22], reusability [19], extensibility [12] and
reliability [11].

In relation to empirical findings of dependency
cycle, it appears that only one study [23] has
performed an elaborate empirical study of cycles
on many software systems. The result shows that
almost all the 78 Java applications they analyzed
contain large and complex cyclic structures
among their classes.
Dependence clusters: Existing studies [24, 25]
have also shown that dependency cycles are not
limited to classes or packages. They are also
pervasive among program statements in software
systems. This type is termed “dependence
clusters” and they are formed when a set of
program statements are mutually inter-dependent.
Dependence clusters have been demonstrated to

be detrimental to software maintenance activities
[24, 25].
Cycles and defects: Zimmermann and Nagappan
[26] performed a study on Windows Server 2003
to build a defect prediction model by using graph
complexities. In this system, they found that
binaries in dependency cycles have on average
twice as many defects as those binaries not in
cycles. In a recent study [10], we established that
components in cyclic relationships, either directly
or indirectly, have significantly more defect-prone
components than those not in any cyclic
relationships. The four hypotheses we tested on
multiple systems confirm that:
1) Components in cycles have higher likelihood of

defect-proneness than those not in cyclic
relationships.

2) The higher number of defective components is
concentrated in cyclic dependent components.

3) Defective components in cyclic relationships
account for the clear majority of defects in the
systems investigated.

4) The defect density of cyclic related components
is sometimes higher than those in non-cyclic
relationships.

Similarly, we established that components in
dependency cycles account for the most number of
highest severity defects in the software systems we
investigated [9].

Refactoring, coupling and defects: In relation to
refactoring, the studies in [4-8] have investigated
the connections between refactoring and defect-
proneness of components after refactoring. In
general, refactoring focuses on rewriting code to
make it easier to maintain and are mostly
performed while adding features or fixing bugs
[4]. In some cases, refactoring is aimed at
reducing inter-component dependencies [4]. We
distinguish between refactoring that reduce inter-
component dependencies and a “cycle-breaking”
refactoring. We show using Fig. 1b and Fig. 2 that
breaking cycle does not necessarily reduce inter-
component dependencies. Hence, the refactoring
context we consider in this study relates only to
breaking dependency cycles.

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 172

3. Empirical Setup
This study investigates the transition and
evolution patterns of cyclic dependent class-files
(we refer to these as components in the rest of the
paper) over releases. We want to know if there is
evidence of cycle-breaking refactoring and if there
is evidence of increase or decrease in defect-
proneness of components that transition in and out
of dependency cycles. As shown in Fig. 1(a-e), we
identify four transition states of a cyclic dependent
component between releases. Thus, such
component can:
1) Transition from in-cycle to out-of-cycle

between releases
2) Transition from in-cycle to depend-on-cycle

between releases
3) Remain in-cycle between releases
4) Be refactored (e.g. renamed) or deleted as it

transition from one state to another between
releases

We focus on states 1 and 3 and ignore state 4 for
the reason that we could not accurately associate a
renamed/deleted component between releases and
we ignore state 2 because we assume similar
complexity as state 3.

A. Research Questions
We formulate our research questions to address
this goal as follows:
RQ1. Do components in dependency cycles

persist as defective in the “in-cycle” state
more than components that persist in the out-
of-cycle state?

This research question allows us to compare the
rate of defect-proneness of components that
transition between in-cycle states across releases
and components that transition between out-of-
cycle states across releases. We formulate two null
hypotheses to investigate this question as follows:
H01a: There is no significant difference between
the proportions of defective components that
remain defective as they transition between in-
cycle states and the proportion of defective
components that remain defective as they
transition between out-of-cycle states.

H01b: There is no significant difference between
the proportions of non-defective components that

Fig. 13. (a-e). A simplistic example of transitions of in-cycle components

between releases

become defective as they transition between in-
cycle states and the proportion of non-defective
components that become defective as they
transition between out-of-cycle states.

RQ2. Is there evidence of cycle-breaking
refactoring between releases?

Our assumption is that while other refactoring
activities may be taking place between releases it
does not typically include a systematic “cycle-
breaking” refactoring.
RQ3. Does the transition of defective

components from in-cycle to out-of-cycle
reduce the defect-proneness of such
components?

This research question corroborates RQ1. By
investigating this question, we can verify whether
there is a significant difference
(increased/decreased) in defect-proneness of
cyclic dependent components when they move out
of dependency cycle in subsequent release(s).
The null hypothesis for this question is:

H03: There is no significant difference between the
proportions of defective components that
transition as defective from in-cycle to out-of-
cycle state and the proportion of defective “in-
cycle” components in the previous release.

!
!

(a) In-Cycle

(b) Out-Of-Cycle

(c) In-Cycle

(e) Refactored
(e.g. renamed) and
In-Cycle

Ri Ri+1 R

T
ra

ns
it

io
n

(d) Depend-on-Cycle

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

T
ra

ns
it

io
n

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 173

RQ4. Does coupling or size complexity of

components that transition as defective
between in-cycle states increase at a
significantly higher rate than those that
transition between out-of-cycle states?

This question allows investigating whether the
coupling/size variables are factors that may well
explain the differences between the two groups as
it relates to their defect-proneness. Our null
hypothesis for this question is:

H04: There is no significant difference between the
coupling/size density of components that become
defective as they transition between in-cycle states
and the coupling/size density of components that
become defective as they transition between out-
of-cycle states.

B. Analysis Method
To answer the research questions, we categorize
the transitions of components across releases as a
Cartesian product between the current state (𝑠!)
and the future state (𝑠!). That is 𝑠! × 𝑠! where 𝑠!
and 𝑠! can take on values in-cycle or out-of-cycle.
By using the resulting four transition categories it
should then be possible to understand the
movement patterns of components both in-cycle
and out-of-cycle across releases.

Furthermore, we identify the transition of a
component between the current and the future
states regardless of its defect status in the future
release by computing the set:
𝐶!!→!!! = 𝐶!!! ∩ 𝐶!!!
𝑤ℎ𝑒𝑟𝑒:
𝐶 = 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

𝑠! = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒, 𝑠! = 𝑓𝑢𝑡𝑢𝑟𝑒 𝑠𝑡𝑎𝑡𝑒,𝑛
= 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒

𝑘 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑘 ∈ 1:𝑛 − 1

𝑟 = 𝑓𝑢𝑡𝑢𝑟𝑒 𝑟𝑒𝑙𝑒𝑎𝑠𝑒, 𝑟 ∈ 𝑘 + 1:𝑛

To identify components that turn defective in the
next release, we compute for each release the
forward intersection of components in the current
release at the current state with defective
components in the future release at the future
state. In set form, we compute:

𝐶!!→!!(!"#"$%)! = 𝐶!!! ∩ 𝐷𝐶!!! ,𝑤ℎ𝑒𝑟𝑒: 𝐷𝐶
= 𝐷𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠

The number of components that persist as
defective or become defective in the next release
and between the two states is calculated as the
cardinality of the set:

𝑛𝑢𝑚𝑏𝑒𝑟 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 = 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

In summary;
1) 𝐶!!→!!! : Is a set of components in release k at

current state (𝑠!) that transition to future state
(𝑠!) as defective or not defective in the future
release.

2) 𝐶!!→!!(!"#"$%)! : Is a set of components in release k
at current state (𝑠!) that persist to be defective
or become defective in future state (𝑠!) in the
future release.

3) 𝐶!!→!! ! − 𝐶!!→!!(!"#"$%)! : Is a set of components in
release k at current state (𝑠!) that transition to
future state (𝑠!) in the future release as not
defective.

Finally, we compute the percentage of defect-
prone and non defect-prone components between
two transition states and across releases as:

1) % 𝐷𝑒𝑓𝑒𝑐𝑡 − 𝑝𝑟𝑜𝑛𝑒!!→!! =
𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)
𝑘

!!!→!!
!

 × 100

2) % 𝑁𝑜𝑛 − 𝐷𝑒𝑓𝑒𝑐𝑡 − 𝑝𝑟𝑜𝑛𝑒!!→!! =

𝐶𝑠𝑐→𝑠𝑓
𝑘 − 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)

𝑘

!!!→!!
!

 × 100

1) Computing Coupling and Size

Complexity
To answer RQ4, we first calculate our coupling
complexity in the form of the degree of coupling
for each node (component) in the graph [27]. Such
that:

𝐷𝑒𝑔𝑟𝑒𝑒 (𝐶) = 𝐹𝑎𝑛 − 𝑖𝑛 (𝐶) + 𝐹𝑎𝑛 − 𝑜𝑢𝑡 (𝐶)

Where Fan-in represents incoming connections to
C and Fan-out represents outgoing connections
from C. Then, we compute the coupling density
(i.e. the difference in the degree between the two

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 174

releases divided by the number of components
involved in the transition) as:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐷𝑒𝑔𝑟𝑒𝑒)

=
𝐷𝑒𝑔𝑟𝑒𝑒 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 − 𝐷𝑒𝑔𝑟𝑒𝑒 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

!!

𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

Furthermore, we obtain the class reachability set
size40 (crss) metric [28] and compute crss density
for the whole set as:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐶𝑅𝑆𝑆)

=
𝐶𝑅𝑆𝑆 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 − 𝐶𝑅𝑆𝑆 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

!!

𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

Similarly, we compute the size density using the
lines of code (LOC) metric (i.e. the difference in
LOC between the two releases divided by the
number of components involved in the transition)

𝐷𝑒𝑛𝑠𝑖𝑡𝑦(𝐿𝑂𝐶)

=
𝐿𝑂𝐶 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘 − 𝐿𝑂𝐶 𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

!!

𝐶𝑠𝑐→𝑠𝑓(𝑑𝑒𝑓𝑒𝑐𝑡)𝑘

By comparing the coupling difference per
component and the size difference per component,
we can understand whether the complexities
increase significantly more in one group than the
other.

2) Testing the Hypotheses

For testing the hypotheses, we use the t-test when
our data is normally distributed and a non-
parametric test (e.g. Wilcoxon signed rank) when
it is not [29]. In addition, we employ a proportion
test for system with fewer numbers of releases. In
all cases the data is unpaired and so the “paired”
variable is set to FALSE in the r-statistical
package41 that is used. Table I summarizes the
design and the hypotheses we test for each of the
research questions.

For RQ3:

 𝑝𝑟𝑜𝑝1 𝑅𝑖 = #!"# !"#"$%
#!"#

40 This metric counts, for a given class, all the other classes in the system’s
source code that it transitively depends-on for its compilation (Melton and
Tempero 2006)

41 http://www.R-project.org

𝑝𝑟𝑜𝑝2 𝑅𝑖 + 1 =
#inc → oinc (defect)

#𝑖𝑛𝑐

C. Method of Data Collection

We have performed a study on a commercial
Smart Grid application (commApp) developed
with C#. In addition, we choose an integrated
development environment (Eclipse) 42 , a
messaging and integration pattern server (Apache-
ActiveMQ)43,

TABLE XVII. SUMMARY OF RESEARCH DESIGN AND HYPOTHESES

Research
Question

Data H0 H1 Prop1 Prop2

RQ1, RQ4 inc→inc oinc→oinc Prop1≤Prop2 Prop1>Prop2

RQ3 inc inc→oinc Prop1≤Prop2 Prop1>Prop2
a. inc: in-cycle, oinc: out-of-cycle

and a service framework (Apache-CXF) 44 all
developed with Java. We have purposefully
selected very active projects from the open source
community and we also considered projects that
have different functionalities with different
development languages and variations in release
dates (see Table II and Table III). The variation in
the release dates especially allows us to
understand whether observed patterns in the data
are similar irrespective of the time-span between
the releases. The commercial application
commApp, is a distribution management system
designed to allow for monitoring and planning of
Grid operations. It provides real-time operational
support by continuously receiving status data from
the power grid. Eclipse is a popular open source
integrated development environment (IDE) while
ActiveMQ is a messaging server with the
capability to handle various integration patterns.
Lastly, Apache-CXF is a service framework that
helps to build and develop services using
frontend-programming APIs, like JAX-WS and
JAX-RS.

42 http://archive.eclipse.org/eclipse/downloads/index.php
43 http://activemq.apache.org/index.html
44 http://cxf.apache.org/

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 175

TABLE XVIII. PROPERTIES OF SELECTED APPLICATIONS

System	 Language	 Domain	 License	 Bug	 Tracker	 Age	 Versions	 Analyzed	
Apache-

ActiveMQ
Java Messaging and Enterprise Integration

Pattern Server
Open JIRA 6 5.7.0, 5.6.0, 5.5.1, 5.5.0, 5.4.2,

5.4.1
Eclipse Java IDE Open Bugzilla 3.0, 2.1, 2.0

commApp C# Smart Grid Commercial HP-Quality
Center

6 4.2.4, 4.2.2, 4.1, 4.0.1SP4,
4.0.1SP2, 4.0

Apache-CXF Java Service framework Open JIRA 6 2.6.0, 2.5.0, 2.4.0, 2.3.0, 2.2.0,
2.1.0

TABLE XIX. SUMMARY OF SOFTWARE SOURCE CODE AND DEFECT DATA

Release/Version	 Date	 #Class-‐Files	 KLOC	 #Defective	 Class-‐Files	 #Defects	
Apache-ActiveMQ

5.7.0 Nov 22 2012 1517 136.22 35 68
5.6.0 Jun 15 2012 1505 133.25 88 102
5.5.1 Oct 16 2011 1331 118.27 54 76
5.5.0 Apr 01 2011 1331 118.27 115 105
5.4.2 Dec 02 2010 1258 113.01 80 66
5.4.1 Sept 21 2010 1256 112.20 79 63

Eclipse
3.0 Jun 25 2004 10635 1308.66 1566 -
2.1 Mar 27 2003 7909 988.45 845 -
2.0 Jun 27 2002 6751 797.93 968 -

commApp
4.2.4 Nov 14 2012 1203 341.83 29 14
4.2.2 Oct 12 2012 1199 339.78 49 18

4.1 Aug 17 2012 1002 316.22 60 42
4.0.1SP4 Apr 11 2012 904 286.99 69 29
4.0.1SP2 Mar 26 2012 903 285.89 46 28

4.0 Oct 14 2011 849 266.11 137 143
Apache-CXF

2.6.0 Apr 17 2012 2874 268.1 60 45
2.5.0 Nov 11 2011 2726 252.8 50 41
2.4.0 Apr 11 2011 2542 233.1 84 74
2.3.0 Oct 11 2010 2335 219 86 91
2.2.0 Mar 18 2009 2096 185.3 96 74
2.1.0 Jul 03 2007 1797 153.3 96 88

TABLE XX. AVERAGE OF MIN AND MAX VALUES PER CLASS-FILE OF COLLECTED METRICS

System CRSS LOC Fan-out Fan-in SCC
Min Max Min Max Min Max Min Max Min Max

Eclipse 1 5914 3 5102 0 220 0 1497 0 687

CommApp 1 618 7 6873 0 157 0 182 0 130

Active-MQ 1 632 3 1995 0 76 0 482 0 358

Apache-CXF 1 601 3 6663 0 67 0 378 0 58

1) Defect Data Collection
We have collected defect data from two different
defect-tracking systems (DTSs). Defect repository
gives typically a high level overview of a problem
report. For example, typical attributes of the HP-
QC defect tracking system (QC-DTS) are the
Defect ID, severity of the defect, the type of
defect, date defect is detected, the modules
containing the defect, the version where defect is
detected, and the date the defect is fixed. These
fields are similar to the Apache JIRA DTS. Our
first step is to determine the bugs that affect each
version of the system. In Apache JIRA DTS, we

use the “Affects Version” field to filter all bugs
that affect a particular version of the system. For
HP-QC, we use “Detected in Version(s)”. A
certain defect may affect multiple versions of a
system. By this we mean “hotspot” defects [30]
that keep re-occurring and span several versions
of a system. We keep only to defects that are
marked “fixed” in the “resolution” field for JIRA
and those that are marked “closed”, “fixed” or
“tested-ok” in the “status” field for HP-QC. In
HP-QC, the status field is used as the resolution
field. Thus the status of a resolved defect can
change from tested-ok to fixed and finally to

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 176

closed. The Eclipse dataset that we use in this
paper has been mapped in previous study [31].
Mapping defects to class-files: A common way to
figure out what operation is performed on the
source file is to look at the message field of the
SVN commit. When developers provide this
information with the bug number and/or useful
keywords (e.g. bug or fix), it is possible to map
the reported defect with the actual source file that
is modified to fix it. In our case, we have used the
bug number in the commit message to map the
defects from the DTS to the actual class-files that
are changed. It is important to state that the
defects that affect each version as previously
collected from the DTS provide the boundaries for
the class-files that are mapped for each version of
the systems. Table III reports the defect data for
each of the systems.

1) Dependency Data Collection

 We have used the same tool as in our previous
work [10] and reused some algorithms
implemented in the tool by Melton and Tempero
[23] to collect dependency data and measurement
values for the number of strongly connected
components (SCC), CRSS, LOC, Fan-in and Fan-
out metrics for each class-file. Table IV lists the
average values over the releases for each of the
software systems analyzed.

4. Results and Discussion
RQ1: Do components in dependency cycles
persist as defective in cyclic state in the future
release more than non-cyclic components that
persist in non-cyclic state?

TABLE XXI. TRANSITION OF DEFECTIVE COMPONENTS FROM RI TO RI+1

Systems (Ri→Ri+1) # of Defective components involved in transition from Ri→Ri+1 % (Defective→Defective) components from
Ri→Ri+1

inc→ inc oinc→oinc inc→oinc oinc→ inc inc→ inc oinc→oinc inc→oinc oinc→ inc

Eclipse

2.0 → 2.1 619 25 7 5 27.6 16 14.3 0

2.1 → 3.0 387 24 0 8 41.6 33.3 0 50

CommApp

4.0 → 4.0.1SP2 78 20 0 1 27 0 0 0

4.0.1SP2 →
4.0.1.SP4

29 2 0 0 55.2 0 0 0

4.0.1SP4 → 4.1 39 12 0 0 66.7 8.3 0 0

4.1 → 4.2.2 40 4 0 2 35 50 0 100

4.2.2 → 4.2.4 21 11 0 0 52.4 9.1 0 0

Active-MQ

5.4.1 → 5.4.2 62 10 0 0 42 50 0 0

5.4.2 → 5.5.0 51 14 0 0 45.1 28.6 0 0

5.5.0 → 5.5.1 67 26 0 0 47.8 15.4 0 0

5.5.1 → 5.6.0 42 6 0 0 59.3 50 0 0

5.6.0 → 5.7.0 61 7 0 1 19.7 0 0 0

Apache-CXF

2.1.0 → 2.2.0 27 30 0 0 26 20 0 0

2.2.0 → 2.3.0 43 18 0 2 28 11 0 0

2.3.0 → 2.4.0 30 17 0 0 26.7 23.5 0 0

2.4.0 → 2.5.0 37 12 0 3 16 0 0 0

2.5.0 → 2.6.0 19 3 0 0 15.8 0 0 0

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 177

TABLE XXII. TRANSITION OF NON-DEFECTIVE COMPONENTS FROM RI TO RI+1

Systems
(Ri→Ri+1)

of Non-Defective components involved in transition from
Ri→Ri+1

 % (Non-Defective→Defective) components from
Ri→Ri+1

inc→inc oinc→oinc inc→oinc oinc→inc inc→inc oinc→oinc inc→oinc oinc→inc

Eclipse

2.0 → 2.1 1934 1115 4 72 8.1 1.9 0 0

2.1 → 3.0 2508 1128 8 38 16.9 4.5 12.5 13.2

CommApp

4.0 → 4.0.1SP2 174 604 0 0 2.9 0.3 0 0

4.0.1SP2 →
4.0.1.SP4

234 688 0 0 9.8 1.7 0 0

4.0.1SP4 → 4.1 225 672 0 1 5.8 0.9 0 0

4.1 → 4.2.2 236 737 8 1 2.1 1.2 0 0

4.2.2 → 4.2.4 277 912 0 0 4.3 0 0 0

Active-MQ

5.4.1 → 5.4.2 365 263 0 0 6.8 3.8 0 0

5.4.2 → 5.5.0 377 259 0 0 11.4 8.5 0 0

5.5.0 → 5.5.1 362 255 0 0 2.8 0.8 0 0

5.5.1 → 5.6.0 387 265 0 4 8 1.9 0 25

5.6.0 → 5.7.0 410 271 0 2 0.7 0.7 0 0

Apache-CXF

2.1.0 → 2.2.0 271 869 2 8 6.6 1.7 0 0

2.2.0 → 2.3.0 321 980 1 8 4.4 1.0 0 12.5

2.3.0 → 2.4.0 377 1112 3 2 6.1 0.9 0 0

2.4.0 → 2.5.0 419 942 0 5 3.1 0.4 0 0

2.5.0 → 2.6.0 428 987 0 4 1.9 0.2 0 0

TABLE XXIII. TEST OF DIFFERENCE IN MEAN VALUES BETWEEN THE GROUP PROPORTIONS FOR RQ1

System Defective →Defective (H1a) Non-Defective →Defective (H1b)
inc→ inc oinc→oinc p-value inc→ inc oinc→oinc p-value

Eclipse † 34.6 24.6 0.26 12.5 3.2 0.001*

CommApp◊ 47.3 13.5 0.01* 4.98 0.82 0.018*

Active-MQ◊ 42.8 29 0.14 5.94 3.14 0.138

Apache-CXF◊ 22.5 10.9 0.04* 4.42 0.84 0.006*
b. †:proportion test ◊:t-test *:significant at α = 0.05

On the average, we found that components that
transition in the in-cycle state are more defect-
prone at a higher rate than components that
transition in out-of-cycle state (see Table VII). For
the first hypothesis that focuses on defective →
defective transitions between the two groups; we
found that two (commApp and Apache-CXF) out
of the four systems we analyzed have significantly
higher rate of defect-proneness for components
that transition between in-cycle state than those
that transition between out-of-cycle state (Table
VII). While for the hypothesis that investigates

non-defective → defective transitions between the
groups, we found that all the systems except
ActiveMQ have significantly higher rate of
defect-proneness for components that transition
between in-cycle states than between out-of-cycle
states. We can therefore infer that a non-
defective/defective component that is in-cycle and
remains in-cycle in the next release has a higher
probability to become defective than a non-
defective/defective component that is out-of-cycle
and remains in out-of-cycle state in the next
release.

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 178

RQ2: Is there evidence of systematic breaking of
dependency cycles between releases?
We observe for all the systems that in-cycle
components transition mostly in the in-cycle state
(see Table VIII inc→inc vs. inc→oinc). Results
show that for all the systems we analyzed over
99% of both defective and not-defective
components that are in-cycle persist in the in-cycle
state in the next release. Therefore suggesting that
there is no intentional cycle-breaking refactoring.
By using Ref-Finder45, we further investigated the
refactoring between the Eclipse versions. Our
findings show that many micro refactoring were
carried out such as “Move method”, “Remove
control flag”, “Inline method”, “Extract method”
and so on between those versions. In addition, we
investigated one out of the few class-files
(org.eclipse.debug.internal.ui.views.console.
ConsoleDocument.java), that transitioned between
in-cycle (in version 2.0) to out-of-cycle (in
version 2.1). The class-file,
ConsoleDocument.java was originally contained
in a strongly connected components (SCC) with
thirty-six other class-files in version 2.0. We
found that, refactoring such as move field and
move method were performed on one of the
neighbors that involved moving out a method with
a reference to the class
“org.eclipse.debug.internal.ui.launchConfiguratio
ns. LaunchConfigurationHistoryElement.java”
that was in the same cycle. Resulting into the in-
cycle to out-of-cycle transition of
ConsoleDocument.java. However, the number of
SCC for other components in the same cycle
increased from thirty-seven in version 2.0 to fifty-
eight in version 2.1 and to fifty-nine in version
3.0.
It therefore indicates that while there are possible
many other refactoring activities prior to release,
those refactoring do not automatically translate to
cycle-breaking refactoring. The few components
that transition from in-cycle to out-of-cycle appear
to be accidental movements. Hence corroborating
previous results on the pervasiveness of
dependency cycles across releases of software
components [23]. This seems so because cycle
breaking is more of an architectural refactoring

45 https://webspace.utexas.edu/kp9746/www/reffinder/

[32] which is not trivial because such activity
needs planning and would need to take advantage
of tools and methods [32-35] for detecting and
breaking those dependency cycles.
Empirical evidence of cycles [9, 10, 23] shows
that object-oriented concepts such as abstraction
and design guidelines are violated due to unguided
design decisions as the system evolves. We
submit therefore that software engineers need to
purposely take advantage of existing cycle
detecting tools (e.g. [33, 35]) and approaches to
prevent dependency cycles in their software
systems.

RQ3: Does the transition of defective components
from in-cycle to out-of-cycle reduce the defect-
proneness of such components?
As listed in Tables V and VI, there is not
sufficient data to answer this research question.
We show previously (in RQ2), that the most
components in cycle transition to the same state
they were in the previous release.

TABLE XXIV. % OF COMPONENTS THAT MOVE FROM IN-CYCLE TO OUT-
OF-CYCLE

System # inc→ inc % inc→oinc
Eclipse 2733.5 0.35

CommApp 272.2 0.59
Active-MQ 436.8 0

Apache-CXF 395.6 0

Showing that RQ1 provides so far the only
evidence of possible benefits that breaking cycles
and moving the affected components to out-of-
cycle state may result into lower defect-proneness
of these components. We would focus on RQ3 in
our future work.
RQ4: Does coupling or size complexity of
components that transition between in-cycle state
increase at a significantly higher rate than those
that transition between out-of-cycle state?
Table IX shows the mean data and the p-values of
the statistical test for both coupling density and
size density. On the average, the size density of
components that transition between in-cycle state
increased at a higher rate than those components
that transition between out-of-cycle state. In all the
systems, the code size measured by lines of code
(LOC) increased more in the in-cycle group but
not significant in about half of the cases. The
coupling density of in-cycle components inreased

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 179

at a different rate as those in the out-of-cycle
group. For instance, consider the “defective →
defective” transition in Eclipse; result shows that
the average coupling density for in-cycle group
(i.e. 17.8 dependencies per class-file) increased
significantly more than that of the out-of-cycle
group (9.25 dependencies per class-file). While
for “non-defective → defective” transition in
Apache-CXF and CommApp; results show that
the average coupling density increased more in the
out-of-cycle group than the in-cycle group.
While we observe a pattern of higher code
increase (LOC) for in-cycle group than the out-of-
cycle group. Which may be a pointer to the
complexity of the components in cycle. There is
no general pattern of increase/decrease in the
degree of coupling (Fan-out + Fan-in) between in-
cycle and out-of-cycle groups. We can thus infer
that the degree of coupling may or may not
increase as a result of transition between in-cycle
state. In addition, our observations regarding the
complexity of in-cycle components that turn
defective is the increase in the reachability set
density of these components. As listed in

Table X, the reachability density of the in-cycle
group for all the systems increase significantly at
a higher rate than the out-of-cycle group. To
substantiate this finding, we inspect the
reachability set of in-cycle → out-of-cycle and
out-of-cycle → in-cycle groups of Eclipse (v2.1 →
v3.0). We found that the reachability set of class-
files in the “in-cycle → out-of-cycle” transition
reduced by 1137 class-files while the out-of-cycle
→ in-cycle increased by 1351 class-files.

In conclusion, reachability set and code size
appear to be two variables that associate more
with the complexities of in-cycle components and
their defect-proneness. Melton and Tempero [28],
presented this metric named class reachability set
size (CRSS) and demonstrated that a refactoring
that reduces the crss of software components can
potentially improve the quality of the software.
Our results extends their findings to show the
association between the defect-proneness of in-
cycle components during evolution and their
complexities as demonstrated by their crss values.
The results of this study support pivotal metrics
such as CRSS as a metric that can be focused for
optimization during cycle-breaking refactoring of
defect-prone components. By minimizing the
CRSS values of problematic (defect-prone)
components that are in cycles, it might be possible
to effectively reduce the probability of defect
propagation to other components.
Implications: Does breaking dependency cycles
imply reduction in defect-proneness of
components? The results of our study do not have
a direct connection to this question but do have an
indirect one. The observed pattern in the data we
analyzed show that the rate of defect-proneness is
higher for components that move between
dependency cycles. Moreso, there is a pattern of
increased class reachability set size and code size
for those defect-prone components involved in
transition between dependency cycles.

TABLE XXV. COUPLING AND SIZE DENSITIES FOR RQ4

Systems

Coupling density (Mean) Size density (Mean)
Defective → Defective Non-Defective → Defective Defective → Defective Non-Defective → Defective

inc→in
c

oinc→oin
c

p inc→in
c

oinc→oin
c

p inc→in
c

oinc→oin
c

p inc→in
c

oinc→oin
c

p

Eclipse 17.8 9.25 0.009
*

 9.18 5.91 0.05
5

 86.92 80.83 0.418 30.44 7.2 0.004
*

CommAp
p

1.47 0.67 0.062 -0.03 0.35 0.28
7

 97.8 13.2 0.009
*

 39.13 1.61 0.028
*

Active-
MQ

0.58 0.42 0.500 1.51 0.32 0.16
6

 18.75 2.53 0.086 7.6 5.75 0.393

Apache-
CXF

2.49 6.52 0.164 2.06 2.81 0.57
6

 45.37 13.5 0.121 38.26 15.2 0.123

c. *: Significant at α = 0.05

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 180

TABLE XXVI. REACHABILITY DENSITY FOR RQ4

Systems
Reachability density (Mean)

Defective # Defective

Non-Defective # Defective
inc# inc oinc#oinc p-value inc# inc oinc#oinc p-value

Eclipse 349 77 0.043* 348 61.3 0.018*
CommApp 8.5 0.7 0.039* 11.2 0.42 0.016*
Active-MQ 30 0.4 0.037* 33.4 12.7 0.377

Apache-CXF 40.3 0.54 0.015* 31.5 1.53 0.036*
d. *: Significant at . = 0.05

Fig. 14. Optimal vs. non-optimal cycle-breaking refactoring

We are quick to state that other factors may
indeed be explanatory factors in the defect-
proneness of in-cycle components. For instance,
requirement changes, developers experience,
change proneness of the components and so on.
However, the results in this study uncovers a
pattern that makes us better understand the
association between defect-proneness of in-cycle
components and their complexities during system
evolution. Thus, software engineers can employ
these results as a motivation and use the
investigated variables as decision variables when
performing a cycle-breaking refactoring. Such
decision should therefore consider an optimal
solution from the point of view of problematic
components. Take for instance the cycles in
Figure 1a., we present two solutions to create an
acyclic graph in Figure 3. If we assume that
component I is highly defect-prone (or reduces
other quality factors), then the solution in Figure
3a is not optimal since all the other components
can still reach I transitively. However, the solution
in Figure 3b is optimal because only two
components (C and G) can reach I transitively.

5. Threats to Validity
We have analyzed and evaluated a Smart Grid
system, an integrated development environment, a
service framework application and a messaging
and integration pattern server. Although, these
four systems vary in terms of properties such as
domain, functionality, programming language,
size, usage, context and study period, we cannot
claim that the observed defect patterns or related
will hold for other systems. As it is with most case

studies, we cannot generalize these results across
all systems. Replicated and/or further studies will
be necessary to compare results across several
systems and domains.

We have used density measure in our analysis that
penalizes all components equally. In some cases,
size, coupling and reachability measures may be
skewed in the dataset resulting in few components
having high number or low number of these
measures. However, we do not think this approach
can affect our result in a significant way or its
interpretation since we have limited the analysis to
the defective subset of the whole dataset.
Furthermore, we have ignored the transitions
between the “depend-on-cycle” states. This group
may also contain some measurement data in some
cases. However, we consider the results to be
valid since our focus is the transition that concerns
in-cycle structure vs. out-of-cycle structure.
For this study, we have relied on the defects
logged in the defect tracking systems of each
application. Our approach of extracting defect
data is similar to what other researchers have used
in the past [36-38]. Nevertheless, common threats
are whether defects logged in the DTS are
accurately tagged in the respective code changes
in the version systems. In addition, we cannot be
sure if all defects are logged in the DTS. Also,
there could be cases that the message log of the
file that consists a change is not tagged with the
bug numbers of the resolved defect. Furthermore,
there could be cases of typographical error in the
recording of the bug number in the version
systems [36] and it is still possible that duplication
will occur. Lastly, since we have not eliminated
the effect of tangled class files as discussed in [39]
when analyzing the repository, it is thus possible
that some class-files are incorrectly associated
with bug reports.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
! ! ! ! ! ! !
!
!
!
!
!

!
!
!
!
!
!

(a)! ! ! ! (b)!
!
!

!
!
!

!
!
!
!
!

!
!

!
!
!
!
!
!

"%&!(!
!
!
!

"%&!)!
!
*!

!
!
+,-'!)!
!
!

G

E

F

B

A

D D

C

A

B

F

C

E

AA
H

EE

I I

J J
D

II

J

G

E

F

B

A

D D

C

A

B

F

C

E

AA
H

EE

I III

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 181

6. Conclusions and Future Work
In this study, we have examined whether
components (defective/non-defective) undergo
any systematic cycle-breaking refactoring before
the next release. Our findings show that even
though other types of refactoring might be taking
place before the next releases of these software
systems. They do not automatically translate to
cycle-breaking refactoring. Furthermore, we
investigated whether components that move
between dependency cycles have higher
tendencies of being defective in the future releases
of these software systems than components that
move outside of dependency cycles. The results of
our analysis demonstrate that averagely,
movement of components between dependency
cycles across releases increase their defect-
proneness more than movement of components
outside of dependency cycles.
Lastly, we found that between releases, inter-
component dependencies do not increase
differently in components that transition as
defective between dependency cycles to those that
move outside of dependency cycles. However, we
found a consistent pattern of increased class
reachability set size (CRSS) and increased lines of
code for the in-cycle group. Thus suggesting that a
“cycle-breaking” refactoring that minimizes the
CRSS value of defect-prone components in
dependency cycles has tendency to reduce the
defect-proneness of these components in the next
release.

In conclusion, this study shows a pattern that
suggests a possibility that we can gain the benefit
of reduced defect-proneness by performing a
cycle-breaking refactoring. Most especially when
such cycle-breaking activity considers the
minimization of important metrics such as the
CRSS value.
As future work, we aim to investigate whether the
movements of components from dependency
cycle to outside of cycle could reduce their defect-
proneness. We found that there is currently not
sufficient empirical data to answer this question.
Thus, to answer RQ3, we have proposed an
experiment in [15] whereby a set of defective
cyclically connected components are purposely
moved to out-of-cycle state. This experiment takes

a number of factors into consideration in order to
understand their effects on the refactoring activity
of the components. Details of the experiment are
contained in the paper [15]. Currently, we are at
the execution stage of this experiment in an
industrial setup.
In addition, our work would focus on developing
optimization methods to effectively reduce
transitive dependencies (CRSS values) of
identified (user/automated) problematic
components during cycle-breaking refactoring.

References
[1] Leo,	 K.	 Why	 banks	 are	 likely	 to	 face	 more	 software	 glitches	

in	 2013.	 [Web]	 2013	 April	 24,	 2013];	 Available	 from:	
http://www.bbc.co.uk/news/technology-‐21280943.	

[2] Lilley, S., Critical Software: Good Design Built Right.
NASA System Failure Case Studies, 2012. 6(2).

[3] Mens, T. and T. Tourwe, A survey of software
refactoring. Software Engineering, IEEE Transactions
on, 2004. 30(2): p. 126-139.

[4] Kim, M., T. Zimmermann, and N. Nagappan, A field
study of refactoring challenges and benefits, in
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering2012, ACM: Cary, North Carolina. p. 1-11.

[5] Weissgerber, P. and S. Diehl, Are refactorings less
error-prone than other changes?, in Proceedings of the
2006 International workshop on Mining software
repositories 2006, ACM: Shanghai, China. p. 112-118.

[6] Ratzinger, J., T. Sigmund, and H.C. Gall, On the
relation of refactorings and software defect prediction,
in Proceedings of the 2008 International working
conference on Mining software repositories 2008,
ACM: Leipzig, Germany. p. 35-38.

[7] Bavota, G., et al. When Does a Refactoring Induce
Bugs? An Empirical Study. in IEEE 12th International
Working Conference onSource Code Analysis and
Manipulation (SCAM), 2012.

[8] Kim, M., D. Cai, and S. Kim, An empirical
investigation into the role of API-level refactorings
during software evolution, in Proceedings of the 33rd
International Conference on Software Engineering
2011, ACM: Waikiki, Honolulu, HI, USA. p. 151-160.

[9] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi.
Criticality of Defects in Cyclic Dependent Components.
in 13th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM). 2013.
Eindhoven, Netherlands. p. 21-30.

[10] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi, A Study
of Cyclic Dependencies on Defect Profile of Software
Components. Journal of Systems and Software, 2013.
86(12): p. 3162-3182.

[11] Lakos, J., Large-scale C++ software design. 1996,
Redwood City, CA: Addison-Wesley Longman.

[12] Parnas, D.L., Designing Software for Ease of Extension
and Contraction. IEEE Transactions on Software
Engineering, 1979. SE-5(2): p. 128-138.

[13] Jungmayr, S. Identifying test-critical dependencies. in
Software Maintenance. 2002.

[14] Kung, D., Gao, J, Hsia, P, Toyoshima, Y, & Chen, C.,
On Regression Testing of Object-Oriented Programs.
Journal of Systems Software, 1996. 32(1): p. 21-40.

[15] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi, Can
Refactoring Cyclic Dependent Components Reduce

P5: Transition and Defect Patterns of Components in Dependency Cycles during Software Evolution

 182

Defect-Proneness? 29th IEEE International Conference
on Software Maintenance 22 - 28 September 2013 -
Eindhoven, The Netherlands, 2013. in press.

[16] Cormen, T.H., et al., Introduction to algorithms. 2nd ed.
2001, Cambridge, Mass.: MIT Press. xxi, 1180.

[17] Briand, L.C., J.W. Daly, and J.K. Wust, A unified
framework for coupling measurement in object-oriented
systems. IEEE Transactions on Software Engineering,
1999. 25(1): p. 91-121.

[18] Fowler, M., Reducing coupling. Software, IEEE, 2001.
18(4): p. 102-104.

[19] Martin, R.C., Granularity, C++ Report, 1996. p. 57-62.
[20] Briand, L.C., Y. Labiche, and W. Yihong. Revisiting

strategies for ordering class integration testing in the
presence of dependency cycles. in Proc. 12th
International Symposium on Software Reliability
Engineering, (ISSRE 2001) 2001.

[21] Hanh, V.L., et al., Selecting an Efficient OO Integration
Testing Strategy: An Experimental Comparison of
Actual Strategies. Proc. 15th European Conf. Object-
Oriented Programming (ECOOP), 2001: p. 381-401.

[22] Briand, L.C., Y. Labiche, and W. Yihong, An
investigation of graph-based class integration test order
strategies. Software Engineering, IEEE Transactions
on, 2003. 29(7): p. 594-607.

[23] Melton, H. and E. Tempero, An empirical study of
cycles among classes in Java. Empirical Software
Engineering, 2007. 12(4): p. 389-415.

[24] Binkley, D. and M. Harman. Locating dependence
clusters and dependence pollution. In Proceedings of
the 21st IEEE International Conference on Software
Maintenance, 2005 (ICSM'05) 2005.

[25] Binkley, D. and M. Harman. Identifying 'Linchpin
Vertices' That Cause Large Dependence Clusters. 9th
IEEE International Working Conference on Source
Code Analysis and Manipulation, 2009. SCAM '09.
2009.

[26] Zimmermann, T. and N. Nagappan, Predicting
subsystem failures using dependency graph
complexities. ISSRE 2007: 18th IEEE International
Symposium on Software Reliability Engineering,
Proceedings, 2007: p. 227-236.

[27] Wasserman, S. and K. Faust, Social network analysis :
methods and applications. Structural analysis in the
social sciences. 1994, Cambridge ; New York:
Cambridge University Press. xxxi, 825 p.

[28] Melton, H. and E. Tempero, The CRSS metric for
package design quality, in Proceedings of the thirtieth

Australasian conference on Computer science - Volume
622007, Australian Computer Society, Inc.: Ballarat,
Victoria, Australia. p. 201-210.

[29] Fenton, N.E. and S.L. Pfleeger, Software Metrics: A
Rigorous & Practical Approach. 2nd ed. 1997, Boston:
PWS Publishing Press.

[30] Li, Z.D., et al., Characteristics of multiple-component
defects and architectural hotspots: a large system case
study. Empirical Software Engineering, 2011. 16(5): p.
667-702.

[31] Zimmermann, T., R. Premraj, and A. Zeller. Predicting
Defects for Eclipse. in International Workshop on
Predictor Models in Software Engineering. 2007.

[32] Dietrich, J., et al., On the existence of high-impact
refactoring opportunities in programs, in Proceedings
of the Thirty-fifth Australasian Computer Science
Conference - Volume 1222012, Australian Computer
Society, Inc.: Melbourne, Australia. p. 37-48.

[33] Melton, H. and E. Tempero, JooJ: real-time support for
avoiding cyclic dependencies. Proceedings of the
thirtieth Australasian conference on Computer science,
2007. 62: p. 87-95.

[34] Shah, S.M.A., J. Dietrich, and C. McCartin, Making
Smart Moves to Untangle Programs, in Proceedings of
the 2012 16th European Conference on Software
Maintenance and Reengineering2012, IEEE Computer
Society. p. 359-364.

[35] Shah, S.M.A., J. Dietrich, and C. Mccartin. On the
Automation of Dependency-Breaking Refactorings in
Java. in 29th IEEE International Conference on
Software Maintenance (ICSM). 2013. Eindhoven,
Netherlands.

[36] C'ubranic, D., Project History as a Group Memory:
Learning From the Past. , in PhD Thesis 2004,
University of British Columbia: Canada.

[37] S'liwerski, J., T. Zimmermann, and A. Zeller, When do
changes induce fixes?, in Proceedings of the 2005
international workshop on Mining software repositories
2005, ACM: St. Louis, Missouri. p. 1-5.

[38] Schroeter, A., T. Zimmermann, and A. Zeller,
Predicting component failures at design time, in
Proceedings of the 2006 ACM/IEEE international
symposium on Empirical software engineering 2006,
ACM: Rio de Janeiro, Brazil. p. 18-27.

[39] Herzig, K. and A. Zeller, The impact of tangled code
changes, in Proceedings of the 10th Working
Conference on Mining Software Repositories 2013,
IEEE Press: San Francisco, CA, USA. p. 121-130.

 183

P6: Circular Dependencies and Change-Proneness: An Empirical
Study

Published: In Proc. 22nd IEEE International Conference on Software Analysis, Evolution, and
Reengineering 2015, École Polytechnique de Montréal, Québec, Canada, pp. 238-247

 184

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 185

Circular Dependencies and Change-Proneness: An Empirical Study

Tosin Daniel Oyetoyan
Department of Computer and Information Systems
Norwegian University of Science and Technology

Trondheim, Norway
tosindo@idi.ntnu.no

Jean-Rémy Falleri LaBRI,

University of Bordeaux
Bordeaux, France

jr.falleri@gmail.com

Jens Dietrich
School of Engineering and Advanced Technology

Massey University Palmerston
North, New Zealand

J.B.Dietrich@massey.ac.nz

Kamil Jezek
Department of Computer Science and Engineering

University of West Bohemia Pilsen, Czech Republic
kjezek@kiv.zcu.cz

Abstract—Advice that circular dependencies between
programming artefacts should be avoided goes back to the
earliest work on software design, and is well-established
and rarely ques- tioned. However, empirical studies have
shown that real-world (Java) programs are riddled with
circular dependencies between artefacts on different levels
of abstraction and aggregation. It has been suggested that
additional heuristics could be used to distinguish between
bad and harmless cycles, for instances by relating them to
the hierarchical structure of the packages within a
program, or to violations of additional design principles.

In this study, we try to explore this question further by
analysing the relationship between different kinds of
circular dependencies between Java classes, and their
change frequency.

We find that (1) the presence of cycles can have a
significant impact on the change proneness of the classes
near these cycles and (2) neither subtype knowledge nor
the location of the cycle within the package containment
tree are suitable criteria to distinguish between critical
and harmless cycles.

Keywords—Circular dependency, maintainability, patterns

I. INTRODUCTION
Avoiding circular dependencies between software
artefacts is a classic software design principle that
can be traced back to Parnas’ advise that modules
should be organised in a hierarchy with respect to
dependency relationships, thereby keeping
dependencies “loop free” [31]. In the context of
modern object- oriented languages, this is known as
the Acyclic Dependencies Principle (ADP): The
dependencies between packages must not form
cycles [24].
The justification for this principle has often been
related to maintenance. For instance, Parnas pointed
out that it is unde- sirable to have systems where
“nothing runs unless everything runs” [31]. Later
work has related this to testing, where the presence

of cycles prevents unit testing and requires the use
of expensive methods such as the use of stubs [29].
Empirical studies on a large set of real-world Java
programs have shown that these programs are
riddled with circular dependencies [25], [8]. This
applies to both simple circular dependencies [25] as
well as to more sophisticated antipatterns like
subtype knowledge [36], [8].

This seems to indicate that not all cycles are as
critical for the quality of software as previously
thought, and that the notion of cyclic dependencies
in software must be re- evaluated. One possible
approach taken by Falleri et al [11] is to distinguish
between “bad” and “harmless” cycles based on the
topology of dependency graph. In a nutshell, the
authors argue that cycles forming in branches of the
package containment tree evolve when packages
grow, and are harmless, while cycles that span
across the entire package containment tree are
undesirable. Mutawa et al [1] studied the topology
of cycles on a large set of real-world Java programs
and found that (1) most cycles do form in branches
of the package containment tree (and are therefore
not critical according to [11]), and (2) that the
parent packages are the “hubs” within these circular
structures – indicating that cycles grow around
these parent packages. This offers an explanation of
why circular dependencies are common, and do not
necessarily compromise the quality of programs.
However, the question how cycles in general and
certain types of cycles in particular relate to the
maintainability of programs remains open. In this
paper, we present a study that investigates this issue
for Java programs. We use the qualitas corpus [40]
data set in our study. Maintainability is difficult to
measure directly. According to IEEE 610.12,

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 186

maintenance is “the process of modifying a
software system or component after delivery to
correct faults, improve performance or other
attributes, or adapt to a changed environment” [35].
Following this definition, we use change (frequency
of modifications) to approximate maintainability,
and therefore set out to answer the following
question: Is there a co-relation between the fact
that a Java class is in a (certain kind of) cycle, and
the change frequency of this class. In other terms,
do cycles incur a maintenance penalty that can be
measured? We will investigate both general circular
dependencies between classes and special kinds of
circular dependencies that have been portrayed as
particularly undesirable in previous research.
This study extends our previous work on
dependency cycles where we have investigated the
relationship between cycles and defects [30]. The
result of this study revealed that classes within and
near cycles account for the most defects in
programs. This study did not investigate particular
types of cycles and their relationship with change
proneness. It used a smaller data set, and did not
study the classes directly, but mined the comments
in the issue tracking and subversion systems
instead.
The rest of this paper is organised as follows: we
first present the core concepts used in this paper in
Section II. We then discuss related work in Section
III. We describe our methodology in Section IV.
We present our results in Section V and discuss
them in Section VI. Finally we conclude and
present the future work in Section VII.

II. BACKGROUND

A. Cycles and Dependency Graphs
The notion of cyclic dependency corresponds to
strongly connected components (SCCs) in
dependency graphs. SCCs can be effectively
computed with Tarjan’s algorithm in linear time
[38].
A dependency graph is a simple model representing
soft- ware artefacts and their relationships. Such a
graph can be built on several levels of abstraction
and aggregation. For instance, in the case of Java
programs, we can consider methods and fields and
their invoke and access relationships, classes and
interfaces and their uses, extends and implements

relationships, packages and their dependencies, and
containers (jar files) and their dependencies. Low-
level cycles have been associated with potential
problems for comprehension, testing, and
maintenance [3], [4]. However, to the best of our
knowledge no empirical studies on larger sets of
real-world programs exist to support this claim, and
at least some of the cycles are created by widely-
used programming techniques like recursion.

Higher-level dependency graphs are typically
obtained from lower-level graphs by means of
aggregation. For instance, a package-level
dependency graph is built from the dependency
graph of the classes contained in these packages.
Cyclic dependencies between classes in different
packages induce cyclic dependencies in the package
graph. Therefore, we focus our attention on SCCs
in the class graph. The vertices in this graph
represent the classes of a Java program, while the
edges represent the relationships between these
vertices. Classes here refers to compiled classes,
and also include other Java types like annotations,
interfaces and enums. Edges are labelled with either
uses, extends or implements. The extends and
implements labels are used according to the
meaning of the respective keywords defined in the
Java Language Specification [15], uses covers all
other dependencies. We also use the label inherits
defined as the union of extends and implements.

Several empirical studies on real-world programs
suggest that the number of SCCs found in both the
class-level and package-level dependency graphs is
large [25], [8]. The fact that many of these systems
are regarded as functional and widely used suggests
that not all cycles are as detrimental to the quality
of systems as previously thought. This seems to
indicate that it is not sufficient to only study general
cycles. Instead, certain types of cycles must be
studied as well in order to distinguish between
critical and harmless cycles.
B. Subtype Knowledge

Subtype knowledge (STK) is an “antipattern” first
studied by Riel [36]. An instance of STK is
basically a cycle that has at least one extends or
implements edge, and a back- reference path
connecting the target of this edge with its source.
Because the Java compiler (as well as most other
compilers) enforces that there are no cycles in the

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 187

supertype (inherits) graph, this path must contain at
least one uses edge. Situations producing
inheritance cycles still exist when classes are
compiled separately, but they are rare and can be
caught by the Java Virtual Machine by means of
static analysis during linking.
The intention behind this pattern is that in a well
designed program, abstraction and implementation
artefacts are separated, and implementation
artefacts depend on abstractions, but not vice versa.
This is also known as the dependency inversion
principle (DIP) [22]. STK cycles directly violate
this principle. Surprisingly, STK cycles are still
common in real- world programs [8].
Figure 1 depicts a STK cycle found in the Java
Run- time Environment, version 1.7.0. This is a
class-level cy- cle, but it also induces a package
level cycle between java.awt and javax.swing. The
documentation of LegacyGlueFocusTraversalPolicy
indicates that this is a FocusTraversalPolicy
implementation that pro- vides support for legacy
applications. Yet, every other imple- mentation of
FocusTraversalPolicy depends on it as there is a
dependency from the abstract type to this particular
implementation. This is clearly an undesirable
constraint for a modular design.

Fig. 1. A STK cycle in the Java Runtime Environment,

version 1.7.0

Note that not all STK instances are equally critical.
An example is discussed below in section II-D
where a STK is a side-effect of using the visitor
design pattern. This might still have negative
consequences, however, they are outweighed by the
benefits of using the design pattern.
C. Cycles and the Package Containment Tree

One possibility to distinguish between critical and
harmless cycles is to consider their location within
the package containment tree (PCT) [11]. The PCT

of a Java program is formed by the hierarchical
structure of package names. The Java language
specification stipulates that “The hierarchical
naming structure for packages is intended to be
convenient for organizing related packages in a
conventional manner, but has no significance in
itself ... ” [15, ch 7.1]. However, developers seem to
use some sub-package semantics when organising
code. For instance, the package javax.swing has
circular de- pendencies with its “child packages”
javax.swing.tree and javax.swing.table. It appears
that these cycles forming in branches of the PCT
are the result of splitting large packages to facilitate
maintainability, but the respec- tive packages retain
a high level of cohesion. AWT features a similar
structure. However, the core Java interface libraries
also provide an example of a critical cyclic de-
pendency spanning across branches of the PCT:
AWT and Swing mutually depend on each other.
Figure 1 also shows this. The critical dependency is
caused by references to javax.swing.JComponent in
several AWT classes, in- cluding java.awt.Window
and java.awt.Component. On the other hand,
javax.swing.JComponent is a sub- class of
java.awt.Component. This design flaw had a
significant impact on early versions of the Java
platform, and there is evidence that it can be
removed without impacting on the functionality of
the respective libraries. This is discussed in more
detail in [9].
D. Inadvertent Cycles

There are situations where cycles are a direct result
of the features and limitations of technologies and
methods used in projects. The most simple example
in this category are the cycles formed between non-
static nested classes and their outer classes in Java
byte code. In particular, the compiler generates
access fields to reach inner class from outer one and
vice-versa.

A more complex case that is common originates
from the use of certain design patterns that induce
cycles. An example is the use of Visitor, one of the
classic gang of four patterns [14]. The pattern
consists of abstract and concrete visitors, and
abstract and concrete visited “elements”. The
visitors reference all concrete element types as
parameters in the (overloaded) visit methods, while
the element types (both abstract and concrete) use

cycles where we have investigated the relationship between
cycles and defects [30]. The result of this study revealed that
classes within and near cycles account for the most defects
in programs. This study did not investigate particular types of
cycles and their relationship with change proneness. It used
a smaller data set, and did not study the classes directly,
but mined the comments in the issue tracking and subversion
systems instead.

The rest of this paper is organised as follows: we first
present the core concepts used in this paper in Section II.
We then discuss related work in Section III. We describe our
methodology in Section IV. We present our results in Section V
and discuss them in Section VI. Finally we conclude and
present the future work in Section VII.

II. BACKGROUND

A. Cycles and Dependency Graphs

The notion of cyclic dependency corresponds to strongly
connected components (SCCs) in dependency graphs. SCCs
can be effectively computed with Tarjan’s algorithm in linear
time [38].

A dependency graph is a simple model representing soft-
ware artefacts and their relationships. Such a graph can be built
on several levels of abstraction and aggregation. For instance,
in the case of Java programs, we can consider methods and
fields and their invoke and access relationships, classes and
interfaces and their uses, extends and implements relationships,
packages and their dependencies, and containers (jar files)
and their dependencies. Low-level cycles have been associ-
ated with potential problems for comprehension, testing, and
maintenance [3], [4]. However, to the best of our knowledge no
empirical studies on larger sets of real-world programs exist to
support this claim, and at least some of the cycles are created
by widely-used programming techniques like recursion.

Higher-level dependency graphs are typically obtained
from lower-level graphs by means of aggregation. For instance,
a package-level dependency graph is built from the dependency
graph of the classes contained in this packages. Cyclic depen-
dencies between classes in different packages induce cyclic
dependencies in the package graph. Therefore, we focus our
attention on SCCs in the class graph. The vertices in this
graph represent the classes of a Java program, while the edges
represent the relationships between these vertices. Classes here
refers to compiled classes, and also include other Java types
like annotations, interfaces and enums. Edges are labelled with
either uses, extends or implements. The extends and implements
labels are used according to the meaning of the respective
keywords defined in the Java Language Specification [15], uses
covers all other dependencies. We also use the label inherits
defined as the union of extends and implements.

Several empirical studies on real-world programs suggest
that the number of SCCs found in both the class-level and
package-level dependency graphs is large [25], [8]. The fact
that many of these systems are regarded as functional and
widely used suggests that not all cycles are as detrimental to
the quality of systems as previously thought. This seems to
indicate that it is not sufficient to only study general cycles.
Instead, certain types of cycles must be studied as well in order
to distinguish between critical and harmless cycles.

B. Subtype Knowledge

Subtype knowledge (STK) is an “antipattern” first studied
by Riel [36]. An instance of STK is basically a cycle that
has at least one extends or implements edge, and a back-
reference path connecting the target of this edge with its
source. Because the Java compiler (as well as most other
compilers) enforces that there are no cycles in the supertype
(inherits) graph, this path must contain at least one uses edge.
Situations producing inheritance cycles still exist when classes
are compiled separately, but they are rare and can be caught
by the Java Virtual Machine by means of static analysis during
linking.

The intention behind this pattern is that in a well designed
program, abstraction and implementation artefacts are sepa-
rated, and implementation artefacts depend on abstractions,
but not vice versa. This is also known as the dependency
inversion principle (DIP) [22]. STK cycles directly violate this
principle. Surprisingly, STK cycles are still common in real-
world programs [8].

Figure 1 depicts a STK cycle found in the Java Run-
time Environment, version 1.7.0. This is a class-level cy-
cle, but it also induces a package level cycle between
java.awt and javax.swing. The documentation of
LegacyGlueFocusTraversalPolicy indicates that this
is a FocusTraversalPolicy implementation that pro-
vides support for legacy applications. Yet, every other imple-
mentation of FocusTraversalPolicy depends on it as
there is a dependency from the abstract type to this particular
implementation. This is clearly an undesirable constraint for a
modular design.

MDYD[�VZLQJ

MDYD�DZW

)RFXV7UDYHUVDO3ROLF\

/HJDF*OXH)RFXV�
7UDYHUVDO3ROLF\ -&RPSRQHQW

:LQGRZ

�XVHV

XVHV

XVHV

�H[WHQGV

Fig. 1. A STK cycle in the Java Runtime Environment, version 1.7.0

Note that not all STK instances are equally critical. An
example is discussed below in section II-D where a STK is a
side-effect of using the visitor design pattern. This might still
have negative consequences, however, they are outweighed by
the benefits of using the design pattern.

C. Cycles and the Package Containment Tree

One possibility to distinguish between critical and harmless
cycles is to consider their location within the package contain-
ment tree (PCT) [11]. The PCT of a Java program is formed by
the hierarchical structure of package names. The Java language
specification stipulates that “The hierarchical naming structure
for packages is intended to be convenient for organizing
related packages in a conventional manner, but has no signif-
icance in itself ... ” [15, ch 7.1]. However, developers seem

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 188

the abstract visitor type as parameter type in the
accept methods. Visitor is a very popular pattern, in
particular in programs that use hierarchical data
structures such as parsers for domain specific
languages (DSLs). Such an example is depicted in
figure 2. The cycle is even an instance of STK,
caused by the inherits relationship between the
concrete elements (such as ASTIdentifier) and the
abstract element (Node). Note that the number of
concrete elements is typically large, in this
example, there are 33 such classes each
representing a particular AST node type. This can
result in large SCCs.

These cycles can hardly be interpreted as signs of
bad design, on the contrary, the use of Visitor is
widely seen as good design as it allows developers
to “plug-in” functionality into complex object
structures. This is also a case of choosing a
particular design to overcome limitations of the
programming language, in this case the lack of
support for multiple dispatch in Java [26]. Acyclic
versions of Visitor have been proposed [23].
However, acyclic visitors are even more complex
than visitors as additional abstract visitor types are
required, and it appears that they are not widely
used.
In the velocity example used in figure 2, the Visitor
has been manually implemented. However, in many
cases parser code is generated by parser generators
from abstract grammar specifications. This is
becoming more and more common with the
availability of good tools (such as ANTLR), and the
popularity of DSLs. Code with generated cycles can
have interesting change characteristics, for instance,
if the code is regenerated during each iteration as
part of automated builds.

Fig. 2. A cycle caused by the use of the Visitor pattern in

Apache Velocity version 1.6.2

III. RELATED WORK

Several authors have investigated the relationship
between anti-patterns and the change-proneness of
software artefacts. Khomh et al. [20] examined
classes involved in anti- patterns and code smells
and their change and fault proneness. The study
investigated four systems and thirteen anti-patterns.
The claims from this study are that classes
participating in anti-patterns are more change- and
fault-prone than others and that structural changes
affect more classes with anti-patterns than others.
Romano et al. [37] investigated the impact of anti-
patterns on change-proneness using change data
from source code analysis. The results of this study
is consistent with [20]. In addition, they showed
that certain anti-patterns are prone to certain types
of changes such as API changes. Olbrich et al. [28]
performed a study on two open source applications
to study the impact of code smells. Their results
show that different phases could be identified
during the evolution of code smells and in
particular, components infected with code smells
display a higher change frequency than others.
Fontana et al. [13] investigated the correlations
between different smells and antipatterns.

In our study, we have investigated one particular
antipattern on the structural/architectural level, and
this is different from these studies.
On the other hand, while anti-patterns are claimed
to be poor design choices, design patterns are
recurring solutions to design problems. A plethora
of studies have also investigated the relationships
between design patterns and class change-
proneness. Bieman et al. [2] investigated the impact
of design patterns on the change proneness of
classes by using five systems, four small ones and
one large system. They have mined the change data
from a configuration management system. They
concluded that classes participating in design
patterns are rather more change-prone. A recent
study on mining repository [16], however showed
that multiple tangled code changes could result into
an incorrect classification of change/fault data.

Di Penta et al. [6] investigated whether certain
design pattern roles are more change-prone in
general, and whether certain roles are prone to
particular types of changes. Their results confirmed
that many design pattern roles do undergo changes

to use some sub-package semantics when organising code.
For instance, the package javax.swing has circular de-
pendencies with its “child packages” javax.swing.tree

and javax.swing.table. It appears that these cycles
forming in branches of the PCT are the result of splitting
large packages to facilitate maintainability, but the respec-
tive packages retain a high level of cohesion. AWT fea-
tures a similar structure. However, the core Java interface
libraries also provide an example of a critical cyclic de-
pendency spanning across branches of the PCT: AWT and
Swing mutually depend on each other. Figure 1 also shows
this. The critical dependency is caused by references to
javax.swing.JComponent in several AWT classes, in-
cluding java.awt.Window and java.awt.Component.
On the other hand, javax.swing.JComponent is a sub-
class of java.awt.Component. This design flaw had a
significant impact on early versions of the Java platform, and
there is evidence that it can be removed without impacting on
the functionality of the respective libraries. This is discussed
in more detail in [9].

D. Inadvertent Cycles

There are situations where cycles are a direct result of the
features and limitations of technologies and methods used in
projects. The most simple example in this category are the
cycles formed between non-static nested classes and their outer
classes in Java byte code. In particular, the compiler generates
access fields to reach inner class from outer one and vice-versa.

A more complex case that is common originates from the
use of certain design patterns that induce cycles. An example
is the use of Visitor, one of the classic gang of four patterns
[14]. The pattern consists of abstract and concrete visitors, and
abstract and concrete visited “elements”. The visitors reference
all concrete element types as parameters in the (overloaded)
visit methods, while the element types (both abstract and
concrete) use the abstract visitor type as parameter type in
the accept methods. Visitor is a very popular pattern, in
particular in programs that use hierarchical data structures
such as parsers for domain specific languages (DSLs). Such
an example is depicted in figure 2. The cycle is even an
instance of STK, caused by the inherits relationship between
the concrete elements (such as ASTIdentifier) and the
abstract element (Node). Note that the number of concrete
elements is typically large, in this example, there are 33 such
classes each representing a particular AST node type. This can
result in large SCCs.

These cycles can hardly be interpreted as signs of bad
design, on the contrary, the use of Visitor is widely seen as
good design as it allows developers to “plug-in” functionality
into complex object structures. This is also a case of choosing
a particular design to overcome limitations of the programming
language, in this case the lack of support for multiple dispatch
in Java [26]. Acyclic versions of Visitor have been proposed
[23]. However, acyclic visitors are even more complex than
visitors as additional abstract visitor types are required, and it
appears that they are not widely used.

In the velocity example used in figure 2, the Visitor has
been manually implemented. However, in many cases parser
code is generated by parser generators from abstract grammar

RUJ�DSDFKH�YHORFLW\�UXQWLPH�SDUVHU�QRGH

��DEVWUDFW�YLVLWRU!!
3DUVHU9LVLWRU

��FRQFUHWH�HOHPHQW!!
$67,GHQWLILHU

��DEVWUDFW�HOHPHQW!!
1RGH

XVHV

XVHV

�H[WHQGV

��FRQFUHWH�YLVLWRU!!�

��FRQFUHWH�HOHPHQW!!
$67,GHQWLILHU

XVHV

�H[WHQGV

XVHV

Fig. 2. A cycle caused by the use of the Visitor pattern in Apache Velocity,
version 1.6.2

specifications. This is becoming more and more common with
the availability of good tools (such as ANTLR), and the
popularity of DSLs. Code with generated cycles can have
interesting change characteristics, for instance, if the code is
regenerated during each iteration as part of automated builds.

III. RELATED WORK

Several authors have investigated the relationship between
anti-patterns and the change-proneness of software artefacts.

Khomh et al. [20] examined classes involved in anti-
patterns and code smells and their change and fault proneness.
The study investigated four systems and thirteen anti-patterns.
The claims from this study are that classes participating in
anti-patterns are more change- and fault-prone than others and
that structural changes affect more classes with anti-patterns
than others. Romano et al. [37] investigated the impact of anti-
patterns on change-proneness using change data from source
code analysis. The results of this study is consistent with [20].
In addition, they showed that certain anti-patterns are prone
to certain types of changes such as API changes. Olbrich et
al. [28] performed a study on two open source applications
to study the impact of code smells. Their results show that
different phases could be identified during the evolution of
code smells and in particular, components infected with code
smells display a higher change frequency than others. Fontana
et al. [13] investigated the correlations between different smells
and antipatterns.

In our study, we have investigated one particular antipattern
on the structural/architectural level, and this is different from
these studies.

On the other hand, while anti-patterns are claimed to be
poor design choices, design patterns are recurring solutions to
design problems. A plethora of studies have also investigated
the relationships between design patterns and class change-
proneness. Bieman et al. [2] investigated the impact of design
patterns on the change proneness of classes by using five
systems, four small ones and one large system. They have
mined the change data from a configuration management
system. They concluded that classes participating in design
patterns are rather more change-prone. A recent study on
mining repository [16], however showed that multiple tangled
code changes could result into an incorrect classification of
change/fault data.

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 189

within the pattern. Vokac [41] analyzed the defect
rates of classes that participated in selected design
patterns of a large commercial product. The study
concluded that Observer and Singleton patterns are
correlated with large code structures and can thus
serve as indicators for special attention. On the
other hand, Factory pattern instances tend to have
lower defect counts. Prechelt et al. [33] reported a
controlled experiments that showed Observer and
Decorator patterns to result in less maintenance
time while the results for Visitor pattern were
inconclusive. Vokac et al. [42] replicated the
experiment by [33]. Their results confirmed the
previous results that Observer, Decorator and
Abstract Factory patterns favour ease of
maintenance. However, the Visitor and Composite
patterns had strongly negative results on
maintenance. On the contrary, Jeanmart et al. [19]
reported a positive relationship between the use of
Visitor pattern and maintenance efforts.
In our study we investigate the impact of one
particular anti-pattern on maintenance using change
data as a proxy. We do not focus on the impact of
design patterns in general, however, we discuss the
impact of one particular pattern, Visitor, as it results
in dependency cycles. To the best of our
knowledge, there is no study that has systematically
explored the relationship between change proneness
and cycles. The key papers of research on cycles in
dependency graphs are discussed in the previous
section.

IV. METHODOLOGY
A. Data Set

We have conducted the study using the Qualitas
Corpus dataset [40]. This is a curated dataset of
open source real world systems that has been
widely used in empirical studies on software quality
issues. Using a standard dataset facilitates the
replication of our study. The Qualitas Corpus
version 20120401 contains 111 programs. The full
release (20120401f) combines the standard release
(20120401r) with the evolution release (20120401e)
which contains multiple versions of pro- grams, a
total of 661 versions. We chose programs that had
at least 10 versions in the corpus in order to observe
evolution over a longer period of time. This means
that the following programs were included in this
study: ant (21 versions), antlr (20), argouml (16),

freecol (28), freemind (16), hibernate (100), jgraph
(39), jmeter (20), jung (23), junit (23), lucene (28)
and weka (55).

The scripts we have used and developed for this
study can be found here:
https://bitbucket.org/ootos/scc-project. Table I
provides some statistics of the dataset used. A total
of twelve (12) systems are analyzed consisting of
389 versions.

B. Experiment Setup
The experiments consist of the following steps to
extract, process and analyse data:
1) Graph Extraction: Dependency data is extracted
from Java byte code with scripts using the Apache
BCEL library [5]. Since the units of maintenance
are compilation units, we merge nested classes with
their outer, top-level classes. The dependencies of
nested classes are aggregated to their top- level
classes. These aggregated classes form the vertices
of the dependency graph. Extends and inherits
edges are created when the respective constructs are
encountered in byte code, all other occurrences of a
class in the byte code of another class result in the
creation of a uses edge.

2) Graph Pre-processing: We sanitise the
dependency graphs by removing test classes and
generated code. Test cases are removed as tests (1)
tend to be more stable46 due to the fact that in many
projects they are used as specification artefacts as
suggested by the test-driven development (TDD)
methodology, (2) it is unusual to have cross-
references between tests, and references from core
functional code to tests, making it very unlikely to
encounter tests that participate in cycles. We
therefore believe that including tests would have
skewed the results. We have also tried to remove
generated code. In particular, parser APIs generated
by ANTLR and similar parser generators are
removed. Even minor changes in grammar
definitions can produce a large amount of changes
as many generated artefacts are regenerated and
renamed. But this has nothing to do with whether
these artefacts are in cycles or not, this is only

46 In the context of this study, stability relates to whether a class is
frequently changed or not

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 190

caused by the fact that they are generated together.
On the other hand, the process of regenerating these
classes often does not incur any maintenance effort,
as code generation is completely automated. Note
that generated parser APIs often use the Visitor
pattern and therefore often contain SCCs, as
discussed in section II-D.

We use simple naming pattern filters to remove
tests (looking for the “Test” token in class names).
To remove generated code, we have manually
inspected the (ANT, Maven and Gradle) build
scripts of the projects for references to code
generators and the target packages names used by
them. We found two projects where parser
generators are used: (1) hibernate uses ANTLR and
JAXB, and we excluded the following packages:
org.hibernate.hql.internal.antlr.*,org.hibernate.sql.o
rdering.antlr and org.hibernate.internal.jaxb.*. (2)
Weka uses JFlex and CUP, and we excluded the
following packages:
weka.core.mathematicalexpression,
weka.filters.unsupervised.instance.subset-
byexpression and weka.core.json.

3) SCC Detection and Classification: Once the
dependency graph is built, we use an
implementation of Tarjan’s algorithm [38] to detect
the strongly connected components (SCCs). The
detected SCCs are classified in categories (STK vs
non-STK, Visitor vs non-Visitor), and associated
with their PCT diameter relative to the diameter of
the entire dependency graph. STK is approximated
by the presence of inherits edges in a SCC as
discussed in section II-B. Visitor instances are
detected based on naming patterns.
4) SCC Membership: Finally, we establish the
association of a class with a cycle. The most
obvious option is to look for whether the vertex
representing the class is an element of the
respective SCC . However, we are also interested in
assessing the impact SCCs have on their direct
neighbourhood, i.e., classes that are not in a
cycle, but depend directly on a class within the
cycle (in-neighbours), or a class in a cycle that
directly depends on such a class (out-
neighbours). A neighbour is either an in-
neighbour or an out-neighbour.
5) Extracting Change Data: We use the change

data set also used in [7]. This data contains fine-
grained, per-class information of change classified
by a change category. Details on how this is done
can be found in this paper.
C. Research Questions

The general problem we are interested in is the
correlation between the presence of certain types of
cycles in programs, and the maintainability of these
program measured in terms of change frequency, as
discussed above. We break this down into the
following research questions:

Firstly, we want to investigate whether a class
within or near a cycle is more prone to change than
a class outside a cycle. Our hypothesis is that the
structural complexity associated with cycles could
make it easier for change to spread to other classes
within the cycle, and classes either directly
referencing classes in the cycle, or being directly
referenced by classes from within the cycle.

RQ1. Are classes within or near cycles more prone
to change than other classes?

Secondly, we want to investigate whether classes
that are in or near STK cycles are more prone to
change than classes in non-STK cycles as these
cycles violate a second principle of object-oriented
design (the dependency inversion principle (DIP)
[22]). This leads to the following question:

RQ2. Are classes in or near cycles with STK more
change prone than classes in cycles without STK?

Finally, we want to investigate whether the PCT −
diameter of a cycle is correlated with the change
proneness of the classes within this cycle, following
the argument made by Falleri et al that PCT-local
cycles are less critical than cycles that span across
different branches of the PCT [11]. We thus
hypothesize that cycles with a large PCT-diameter
would be more change-prone than those with a
smaller PCT-diameter.
RQ3. Is there a correlation between the P C T −
diameter of a cycle and the change frequency of the
classes in or near this cycle?

D. Metrics and Measurement
For statistical analysis, we compute data series with
data points for each version. The values are change
probabilities, and each data series corresponds to a

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 191

set of classes resulting from a classification, such as
whether a class is in or near a particular type of
SCC.

1) Computing the change probability of a set of
classes:

Given a program P, let C be the set of classes in P,
and V be the set of versions of P such that for each
version v ! V a successor version succ(v) exists.
For a given set of classes S " C and a version v !
V we use changed(S,v) to denote the set of classes
in S that have changed from v to succ(v). We then
define the change probability of a class in S as a
function pchange : 2C % V & [0, 1] defined as:

Fig. 3. The PCT-diameter of an SCC

2) Measuring the PCT diameter of an SCC: Given a
set of packages P and the package containment tree
(PCT) they form (see Section II-C), we compute the
PCT-diameter of a set of classes as the diameter of
the packages of these classes in the PCT. The PCT-
diameter is computed by first computing the
shortest distance between each pair of packages in
the PCT and then finding the longest of the
computed shortest distances. This is referred as the
longest shortest path in network analysis [43]. We
can normalise this value to [0,1] by dividing this
number by the diameter of the set of all packages
within the program.
For instance, consider the example depicted in
figure 3. We have discussed the same cycle earlier.
The longest shortest path between the respective

packages has a length of 4 (java.awt & java &
<root> & javax & javax.swing). Note that the PCT
shown in this figure is incomplete, there are several
core Java packages with 5 tokens, such as
javax.swing.text.html.parser. Therefore, the
diameter of the entire program is 10, and the PCT-
diameter of the SCC in figure 3 is 0.4 (4/10). The
normalised PCT computation just described defines
a PCT function pct : 2C % V & [0,1].

3) Detecting SCCs with STK: Finding instances of
STK is computationally expensive as the NP-
complete subgraph isomorphism problem must be
solved. However, STK can be easily approximated
by computing SCCs that contain at least one
inherits edge. The drawback of this approach is that
these SCCs may contain both STK and non-STK
sub-cycles.

This defines a STK membership function stk : 2C %
V & {false, true}, where stk(SCCi, v) = true iff
SCCi is a STK in version v.
4) Measuring Nearness of a Cycle: We also want to
find out whether classes that are in the
neighbourhood of a cycle of a certain type are
penalized by increased change-proneness. We
differentiate between outward nearness (fan-outs of
the classes in cycles) and inward nearness (fan-ins
of the classes in cycles). In many cases, multiple
cycles can have the same

Fig. 4. Neighborhood to an SCC

neighbours. For instance, figure 4 shows an
example where two cycles scc1 and scc2 share the
same outward neighbour. In order to avoid
assigning a class to multiple cycles, we use the
following set of rules when a class is near multiple

i.e., classes that are not in a cycle, but depend directly on a
class within the cycle (in-neighbours), or a class in a cycle that
directly depends on such a class (out-neighbours). A neighbour
is either an in-neighbour or an out-neighbour.

5) Extracting Change Data: We use the change data set
also used in [7]. This data contains fine-grained, per-class
information of change classified by a change category. Details
on how this is done can be found in this paper.

C. Research Questions

The general problem we are interested in is the correlation
between the presence of certain types of cycles in programs,
and the maintainability of these program measured in terms
of change frequency, as discussed above. We break this down
into the following research questions:

Firstly, we want to investigate whether a class within or
near a cycle is more prone to change than a class outside a
cycle. Our hypothesis is that the structural complexity asso-
ciated with cycles could make it easier for change to spread
to other classes within the cycle, and classes either directly
referencing classes in the cycle, or being directly referenced
by classes from within the cycle.

RQ1. Are classes within or near cycles more prone to
change than other classes?

Secondly, we want to investigate whether classes that are
in or near STK cycles are more prone to change than classes
in non-STK cycles as these cycles violate a second principle
of object-oriented design (the dependency inversion principle
(DIP) [22]). This leads to the following question:

RQ2. Are classes in or near cycles with STK more
change prone than classes in cycles without STK?

Finally, we want to investigate whether the PCT �
diameter of a cycle is correlated with the change proneness of
the classes within this cycle, following the argument made by
Falleri et al that PCT-local cycles are less critical than cycles
that span across different branches of the PCT [11]. We thus
hypothesize that cycles with a large PCT-diameter would be
more change-prone than those with a smaller PCT-diameter.

RQ3. Is there a correlation between the PCT �
diameter of a cycle and the change frequency
of the classes in or near this cycle?

D. Metrics and Measurement

For statistical analysis, we compute data series with data
points for each version. The values are change probabilities,
and each data series corresponds to a set of classes resulting
from a classification, such as whether a class is in or near a
particular type of SCC.

1) Computing the change probability of a set of classes:
Given a program P , let C be the set of classes in P , and V
be the set of versions of P such that for each version v 2 V
a successor version succ(v) exists. For a given set of classes
S ✓ C and a version v 2 V we use changed(S, v) to denote
the set of classes in S that have changed from v to succ(v).
We then define the change probability of a class in S as a
function pchange : 2C ⇥ V ! [0, 1] defined as:

Fig. 3. The PCT-diameter of an SCC

pchange(S, v) =
|changed(S,v)|

|S| .

2) Measuring the PCT diameter of an SCC: Given a set
of packages P and the package containment tree (PCT) they
form (see Section II-C), we compute the PCT-diameter of a
set of classes as the diameter of the packages of these classes
in the PCT. The PCT-diameter is computed by first computing
the shortest distance between each pair of packages in the PCT
and then finding the longest of the computed shortest distances.
This is referred as the longest shortest path in network analysis
[43] We can normalise this value to [0, 1] by dividing this
number by the diameter of the set of all packages within the
program.

For instance, consider the example depicted in figure
3. We have discussed the same cycle earlier. The longest
shortest path between the respective packages has a length
of 4 (java.awt ! java ! <root> ! javax !
javax.swing). Note that the PCT shown in this figure
is incomplete, there are several core Java packages with
5 tokens, such as javax.swing.text.html.parser.
Therefore, the diameter of the entire program is 10, and
the PCT-diameter of the SCC in figure 3 is 0.4 (4/10). The
normalised PCT computation just described defines a PCT
function pct : 2C ⇥ V ! [0, 1].

3) Detecting SCCs with STK: Finding instances of STK
is computationally expensive as the NP-complete subgraph
isomorphism problem must be solved. However, STK can be
easily approximated by computing SCCs that contain at least
one inherits edge. The drawback of this approach is that these
SCCs may contain both STK and non-STK sub-cycles.

This defines a STK membership function stk : 2C ⇥ V !
{false, true}, where stk(SCCi, v) = true iff SCCi is a STK
in version v.

4) Measuring Nearness of a Cycle: We also want to find
out whether classes that are in the neighbourhood of a cycle
of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same

i.e., classes that are not in a cycle, but depend directly on a
class within the cycle (in-neighbours), or a class in a cycle that
directly depends on such a class (out-neighbours). A neighbour
is either an in-neighbour or an out-neighbour.

5) Extracting Change Data: We use the change data set
also used in [7]. This data contains fine-grained, per-class
information of change classified by a change category. Details
on how this is done can be found in this paper.

C. Research Questions

The general problem we are interested in is the correlation
between the presence of certain types of cycles in programs,
and the maintainability of these program measured in terms
of change frequency, as discussed above. We break this down
into the following research questions:

Firstly, we want to investigate whether a class within or
near a cycle is more prone to change than a class outside a
cycle. Our hypothesis is that the structural complexity asso-
ciated with cycles could make it easier for change to spread
to other classes within the cycle, and classes either directly
referencing classes in the cycle, or being directly referenced
by classes from within the cycle.

RQ1. Are classes within or near cycles more prone to
change than other classes?

Secondly, we want to investigate whether classes that are
in or near STK cycles are more prone to change than classes
in non-STK cycles as these cycles violate a second principle
of object-oriented design (the dependency inversion principle
(DIP) [22]). This leads to the following question:

RQ2. Are classes in or near cycles with STK more
change prone than classes in cycles without STK?

Finally, we want to investigate whether the PCT �
diameter of a cycle is correlated with the change proneness of
the classes within this cycle, following the argument made by
Falleri et al that PCT-local cycles are less critical than cycles
that span across different branches of the PCT [11]. We thus
hypothesize that cycles with a large PCT-diameter would be
more change-prone than those with a smaller PCT-diameter.

RQ3. Is there a correlation between the PCT �
diameter of a cycle and the change frequency
of the classes in or near this cycle?

D. Metrics and Measurement

For statistical analysis, we compute data series with data
points for each version. The values are change probabilities,
and each data series corresponds to a set of classes resulting
from a classification, such as whether a class is in or near a
particular type of SCC.

1) Computing the change probability of a set of classes:
Given a program P , let C be the set of classes in P , and V
be the set of versions of P such that for each version v 2 V
a successor version succ(v) exists. For a given set of classes
S ✓ C and a version v 2 V we use changed(S, v) to denote
the set of classes in S that have changed from v to succ(v).
We then define the change probability of a class in S as a
function pchange : 2C ⇥ V ! [0, 1] defined as:

��URRW!!

MDYD MDYD[

MDYD�DZW MDYD[�VZLQJ

/HJDF*OXH)RFXV�
7UDYHUVDO3ROLF\

-&RPSRQHQW

)RFXV7UDYHUVDO3ROLF\

:LQGRZ

�

� �

�

Fig. 3. The PCT-diameter of an SCC

pchange(S, v) =
|changed(S,v)|

|S| .

2) Measuring the PCT diameter of an SCC: Given a set
of packages P and the package containment tree (PCT) they
form (see Section II-C), we compute the PCT-diameter of a
set of classes as the diameter of the packages of these classes
in the PCT. The PCT-diameter is computed by first computing
the shortest distance between each pair of packages in the PCT
and then finding the longest of the computed shortest distances.
This is referred as the longest shortest path in network analysis
[43] We can normalise this value to [0, 1] by dividing this
number by the diameter of the set of all packages within the
program.

For instance, consider the example depicted in figure
3. We have discussed the same cycle earlier. The longest
shortest path between the respective packages has a length
of 4 (java.awt ! java ! <root> ! javax !
javax.swing). Note that the PCT shown in this figure
is incomplete, there are several core Java packages with
5 tokens, such as javax.swing.text.html.parser.
Therefore, the diameter of the entire program is 10, and
the PCT-diameter of the SCC in figure 3 is 0.4 (4/10). The
normalised PCT computation just described defines a PCT
function pct : 2C ⇥ V ! [0, 1].

3) Detecting SCCs with STK: Finding instances of STK
is computationally expensive as the NP-complete subgraph
isomorphism problem must be solved. However, STK can be
easily approximated by computing SCCs that contain at least
one inherits edge. The drawback of this approach is that these
SCCs may contain both STK and non-STK sub-cycles.

This defines a STK membership function stk : 2C ⇥ V !
{false, true}, where stk(SCCi, v) = true iff SCCi is a STK
in version v.

4) Measuring Nearness of a Cycle: We also want to find
out whether classes that are in the neighbourhood of a cycle
of a certain type are penalized by increased change-proneness.
We differentiate between outward nearness (fan-outs of the
classes in cycles) and inward nearness (fan-ins of the classes
in cycles). In many cases, multiple cycles can have the same

QRQ�6&&

6&&�

6&&�

Fig. 4. Neighborhood to an SCC

neighbours. For instance, figure 4 shows an example where
two cycles scc1 and scc2 share the same outward neighbour.
In order to avoid assigning a class to multiple cycles, we use
the following set of rules when a class is near multiple cycles:

1) If the class changes, prioritize cycles with change.
If there are multiple cycles that change, pick one
randomly.

2) If the class does not change, prioritize cycles without
change. If there are multiple cycles that change, pick
one randomly.

3) Otherwise randomly select a cycle.

E. Statistical analysis

1) Analysis Method: The input data for the statistical
analysis are provided by the three functions pchange, stk
and pct that associate SCCs version pairs with information
representing change probability, STK classifications and PCT
values.

We want to investigate (1) the change proneness of SCCs
against non-SCCs, (2) the change proneness of SCCs with
STK over SCCs without STK and (3) whether the PCT
diameters of SCCs are correlated with change proneness.

a) Analyzing Change Proneness of SCCs vs. Non SCCs:
We analyse two data series for the two sets of classes:
the classes in SCCs, and the classes not in SCCs. The
hypothesis here is that classes in SCC are more change-
prone and they propagate change more to their neighbourhoods
because of their structural complexity. It is easy to expand
this investigation to include neighbourhoods of an SCC, by
also considering neighbours (in-neighbours out-neighbours) as
elements of SCCs as described above.

b) Analyzing Change Proneness of STK vs Non-STK :
Here we analyse two data series: the classes within STKs,
and the classes in non-STK SCCs. Note that we do not
directly compare STK instances with non-SCCs, however, this
relationship can be inferred by combining the results of this
and the previous experiment.

c) Analysing the Correlation between PCT Diameter
and Change Proneness: To answer this question, we use a
slightly different method. The input data are not just two data
series, but consist of two matrices where we map pairs consist-
ing of versions and individual SCCs to a change probability

TABLE II. AVERAGE PERCENTAGE OF CLASSES IN SCCs

Systems % of Classes
SCCs In-Neighbor(incl) In/Out-Neighbor(incl)

ant 35.2% 76.3% 83.6%
antlr 34.0% 56.9% 75.9%

argouml 31.8% 55.7% 74.5%
freecol 80.7% 82.9% 92.9%

freemind 55.3% 80.3% 92.6%
hibernate 62.8% 76.1% 93.6%

jgraph 77.0% 79.5% 98.0%
jmeter 23.0% 73.3% 83.7%
jung 10.3% 75.0% 80.4%
junit 19.7% 46.1% 64.4%

lucene 29.5% 51.3% 73.5%
weka 13.4% 66.9% 77.9%

using the formula defined above, and to the PCT diameter
value, respectively.

2) Testing of the Hypotheses: We have employed two
different statistical analysis methods to test our hypotheses.
The choice of either one depends on the measurement type of
the variables under investigation. To analyse the correlation
between two data series (RQ1 and RQ2), we used a non-
parametric test. To test the hypotheses in this category, the
data is first tested for normality using the Shapiro test. It
turned out that each dataset deviates strongly from normality.
Subsequently, we use a non-parametric test (Wilcoxon rank-
sum)[12] for analysis.

For interval variables used in the experiment for RQ3, we
have used Pearson and Spearman correlation.

3) Measuring interactions among experimental factors: It
is the goal to also understand if there are interactions among
the two factors being investigated in this study. We suspect
that classes with high PCT-diameter could also be prone to
STK anti-pattern. It is thus appropriate to treat the two factors
as a competing treatments and use one factor as a blocking
factor in the experiment [12]. A nested design is chosen where
the factor STK is selected as a blocking factor, since it is
nominal in its scale whereas PCT-Diameter is interval. Next,
the sccs are grouped into hasSTK -True or False groups and
a statistical analysis is performed between PCT-Diameter and
change-probability (dependent variable) in each group.

V. RESULTS

A. System Properties

Table I shows the average values for several system proper-
ties while Table II reports the (average) percentage of classes in
and near cycles. Averages are computed over all versions of the
respective program in the data set. The distribution of classes
within SCC range from 10.3% to 80.7%. For some of the
systems, a surprisingly high number of classes is within cycles,
including freecol (80.7%), jgraph (77%), hibernate (62.8%)
and freemind (55.3%). Two systems, jgraph and freecol, have
relatively large PCT-diameter values. Freemind has the largest
percentage of changed classes (53.6%) as shown in pchange
column, while the rest of the systems have change probabilities
between 10.8% (jung) to 35.3% (freecol).

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 192

cycles:
1) If the class changes, prioritize cycles with

change. If there are multiple cycles that
change, pick one randomly.

2) If the class does not change, prioritize cycles
without change. If there are multiple cycles
that change, pick one randomly.

3) Otherwise randomly select a cycle.

E. Statistical analysis
1) Analysis Method: The input data for the
statistical analysis are provided by the three
functions pchange, stk and pct that associate SCCs
version pairs with information representing change
probability, STK classifications and PCT values.

We want to investigate (1) the change
proneness of SCCs against non-SCCs, (2) the
change proneness of SCCs with STK over
SCCs without STK and (3) whether the PCT
diameters of SCCs are correlated with change
proneness.

a) Analyzing Change Proneness of SCCs vs. Non
SCCs:
We analyse two data series for the two sets of
classes: the classes in SCCs, and the classes not in
SCCs. The hypothesis here is that classes in SCC
are more change- prone and they propagate change
more to their neighbourhoods because of their
structural complexity. It is easy to expand this
investigation to include neighbourhoods of an SCC,
by also considering neighbours (in-neighbours out-
neighbours) as elements of SCCs as described
above.
b) Analyzing Change Proneness of STK vs Non-STK
: Here we analyse two data series: the classes within
STKs, and the classes in non-STK SCCs. Note that
we do not directly compare STK instances with
non-SCCs, however, this relationship can be
inferred by combining the results of this and the
previous experiment.

c) Analysing the Correlation between PCT
Diameter and Change Proneness: To answer this
question, we use a slightly different method. The
input data are not just two data series, but consist of
two matrices where we map pairs consist- ing of
versions and individual SCCs to a change

probability using the formula defined above, and to
the PCT diameter value, respectively.

2) Testing of the Hypotheses: We have employed
two different statistical analysis methods to test our
hypotheses. The choice of either one depends on the
measurement type of the variables under
investigation. To analyse the correlation between
two data series (RQ1 and RQ2), we used a non-
parametric test. To test the hypotheses in this
category, the data is first tested for normality using
the Shapiro test. It turned out that each dataset
deviates strongly from normality. Subsequently, we
use a non-parametric test (Wilcoxon rank- sum)[12]
for analysis.
For interval variables used in the experiment for
RQ3, we have used Pearson and Spearman
correlation.

3) Measuring interactions among experimental
factors: It is the goal to also understand if there are
interactions among the two factors being
investigated in this study. We suspect that classes
with high PCT-diameter could also be prone to
STK anti-pattern. It is thus appropriate to treat the
two factors as a competing treatments and use one
factor as a blocking factor in the experiment [12]. A
nested design is chosen where the factor STK is
selected as a blocking factor, since it is nominal in
its scale whereas PCT-Diameter is interval. Next,
the sccs are grouped into hasSTK -True or False
groups and a statistical analysis is performed
between PCT-Diameter and change-probability
(dependent variable) in each group.

V. RESULTS

A. System Properties
Table I shows the average values for several system
properties while Table II reports the (average)
percentage of classes in and near cycles. Averages
are computed over all versions of the respective
program in the data set. The distribution of classes
within SCC range from 10.3% to 80.7%. For some
of the systems, a surprisingly high number of
classes is within cycles, including freecol (80.7%),
jgraph (77%), hibernate (62.8%) and freemind
(55.3%). Two systems, jgraph and freecol, have
relatively large PCT-diameter values. Freemind has
the largest percentage of changed classes (53.6%)
as shown in pchange column, while the rest of the

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 193

systems have change probabilities between 10.8%
(jung) to 35.3% (freecol).
B. RQ1 Are classes within or near cycles more
prone to change than other classes?
The results for RQ1 are presented in Table III. In
column 2, the significance test results for classes
within SCC against those outside SCC are listed.
While columns 3 and 4 show the results when we
investigated the neighborhood of the SCCs. Only
two systems (freecol and jgraph) have significant
change proneness for the SCC group. However,
when we considered the SCC direct neighbourhood,
75% of the systems showed significant change
proneness. As shown in the results, the change
frequencies of the classes increase as the size of the
neighbourhood expands. This is not surprising
giving that the size of the class set increases as
shown in Table II. However, what is surprising is
the big impact of SCCs on their neighbourhood.
Investigation of the actual changes revealed that in
many cases, SCCs and their direct (in-) neighbours
account for more than 90 % of the total change. For
instance, Ant has the average of 76.3% classes in
SCCs and its direct in-neighbours, but these classes
account for 94% of the total change volume. We
can therefore confirm the hypothesis that the
presence of SCCs could have a significant impact
on the stability of the classes near those SCCs
(Table VII column 3).

This may indicate a significant increase in
maintenance costs, in particular as many test cases
would be required to achieve sufficient coverage of
the many unstable classes in the neighbourhood of
cycles.
C. RQ2:Are classes in or near cycles with STK
more change prone than classes in cycles without
STK?

Table IV presents the results of testing this
hypothesis. Column 2 of the table presents the p-
values of testing SCCs with STK against SCCs
without STK. The 3rd column presents the results
when the in-neighbours are included in the S C C
graph and the 4th column presents the results when
both in-neighbours and out-neighbours are included
in the S C C graph.

Out of the 12 systems we have studied, only 3

systems have SCCs with STK that show significant
change proneness over SCCs without STK (see
Table VII for summary of the results of the
hypothesis).
Hibernate presents an interesting case because we
detected instances of the Visitor pattern in many of
its cycles. The Visitor cycles all have the STK
property and the results show that in hibernate the
STK cycles are more change prone than non STK
cycles. To understand the role of cycles with Visitor
pattern in this category, we removed the Visitor
SCCs and ob- served that the mean values of the
change probability increased from 17.9% to 19.6%.
That means that the Visitor SCCs are relatively
stable and as a result, removing them produces an
increased change ratio. For us, this is an interesting
result in the sense that, although using the Visitor
pattern produces instances of an ”anti-pattern” in
the sense that it violates certain object-oriented
design principle, nevertheless, it is stable.

A study of trade-offs between design patterns
and the anti- patterns is an interesting topic for
future studies.

D. RQ3:Is there a correlation between the PCT
−diameter of a cycle and the change frequency of
the classes in or near this cycle?
The results of testing this hypothesis is presented in
table V. All values in asterisks have a correlation of
0.5 or greater and are significant at α = 0.05. We
report both the Pearson and Spearman correlation
results. Only one (freecol) of the systems has a fair
correlation between the PCT-diameter and the
change probability. As earlier reported in Table I,
freecol has a very large relative PCT-diameter. We
have no result for jgraph because it only contains
one SCC and as a result, one data point. We detect
no consistent pattern in the relationship between the
PCT-diameter of class cycles and their change
proneness (see Table VII). This result is also
surprising as we expected that cycles spanning
across branches of the PCT would be more prone to
change.

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 194

E. Interaction between STK and PCT-diameter
The results in table VI shows the correlation
between PCT-diameter and change when grouped
in the STK category and non STK category. The
STK category is represented in columns 2 and 3,
while the non-STK category is represented in
columns 4 and 5. The results indicate that there are
just two systems (freemind and hibernate) with fair
correlation (see table VI). This result is different
from the correlation results in Table V that reports
only freecol with a relatively high and significant
correlation. We therefore conclude that there is no
relationship between the STK property of a cycle
and the PCT- diameter of the cycle in this dataset.

TABLE I. SUMMARY OF SYSTEM PROPERTIES, AGGREGATED VALUES ARE OBTAINED BY AGGREGATING OVER THE VALUES FOR EACH SCC AND EACH
VERSION v

Systems Versions Num of classes PCT-diameter Size of STK-SCCs Size of Non-STK SCCs Size of SCCs Size of Non-SCCs avg(pchange(C, v))

Mean Max Mean Max Mean Max Mean Max Mean Max Mean
ant 21 162.7 1 0.17 5 3.79 6 3.21 205 113.95 357 211.47 0.285

antlr 20 120.9 1 0.05 6 3.22 10 5.06 166 81.89 328 159.83 0.184
argouml 16 891.6 1 0.09 4 2.92 17 11.46 855 568.92 1705 1214.31 0.325
freecol 28 189.1 1 0.67 2 1.04 2 0.46 473 305.12 90 73.12 0.353

freemind 16 45.1 1 0.33 3 1.14 9 1.79 162 49.86 333 40.29 0.536
hibernate 100 513.2 1 0.19 21 5.06 11 4.12 1406 653.65 1191 372.66 0.160

jgraph 39 25.3 1 1 1 1.00 0 0.00 39 39.00 14 11.67 0.107
jmeter 20 286.5 0.71 0.21 4 2.79 8 6.21 188 132.16 576 440.89 0.283
jung 23 152.7 0.6 0.07 4 1.91 8 6.95 48 31.82 415 273.55 0.108
junit 23 39.6 1 0.09 3 0.76 8 4.62 27 15.52 152 63.62 0.233

lucene 28 163.4 0.75 0.07 6 2.96 9 6.00 143 95.85 339 230.92 0.211
weka 55 325.3 0.875 0.05 13 5.23 26 14.53 263 86.83 969 563.87 0.139

TABLE III. WILCOXON TEST: P-VALUES OF SCCS VS. NON-SCCS
(↵ = 0.05)

Systems SCCs + In-Neighbor + In/Out-Neighbor
ant 0.5 0.035* 0.037*

antlr 0.665 0.233 0.238
argouml 0.147 0.075 0.178
freecol 0.004* 0.001* 5.27E-05*

freemind 0.198 0.009* 8.81E-04*
hibernate 0.052 4.70E-05* 0.021*

jgraph 3.39E-10* 9.18E-10* 2.24E-11*
jung 0.742 0.038* 0.041*
junit 0.435 0.003* 0.010*

lucene 0.142 0.108 0.078
weka 0.511 0.005* 0.005*
jmeter 0.420 0.007* 0.022*

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in Table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size
of the neighbourhood expands. This is not surprising giving
that the size of the class set increases as shown in Table II.
However, what is surprising is the big impact of SCCs on their
neighbourhood. Investigation of the actual changes revealed
that in many cases, SCCs and their direct (in-) neighbours
account for more than 90 % of the total change. For instance,
Ant has the average of 76.3% classes in SCCs and its direct
in-neighbours, but these classes account for 94% of the total
change volume. We can therefore confirm the hypothesis that
the presence of SCCs could have a significant impact on the
stability of the classes near those SCCs (Table VII column 3).

This may indicate a significant increase in maintenance
costs, in particular as many test cases would be required to
achieve sufficient coverage of the many unstable classes in the
neighbourhood of cycles.

C. RQ2:Are classes in or near cycles with STK more change
prone than classes in cycles without STK?

Table IV presents the results of testing this hypothesis.
Column 2 of the table presents the p-values of testing SCCs
with STK against SCCs without STK. The 3rd column
presents the results when the in-neighbours are included in the
SCC graph and the 4th column presents the results when both
in-neighbours and out-neighbours are included in the SCC
graph.

Out of the 12 systems we have studied, only 3 systems
have SCCs with STK that show significant change proneness
over SCCs without STK (see Table VII for summary of the
results of the hypothesis).

Hibernate presents an interesting case because we detected
instances of the Visitor pattern in many of its cycles. The
Visitor cycles all have the STK property and the results show
that in hibernate the STK cycles are more change prone than
non STK cycles. To understand the role of cycles with Visitor
pattern in this category, we removed the Visitor SCCs and ob-
served that the mean values of the change probability increased
from 17.9% to 19.6%. That means that the Visitor SCCs are
relatively stable and as a result, removing them produces an
increased change ratio. For us, this is an interesting result
in the sense that, although using the Visitor pattern produces
instances of an ”anti-pattern” in the sense that it violates certain
object-oriented design principle, nevertheless, it is stable.

A study of trade-offs between design patterns and the anti-
patterns is an interesting topic for future studies.

D. RQ3:Is there a correlation between the PCT � diameter
of a cycle and the change frequency of the classes in or near
this cycle?

The results of testing this hypothesis is presented in table
V. All values in asterisks have a correlation of 0.5 or greater
and are significant at ↵ = 0.05. We report both the Pearson
and Spearman correlation results. Only one (freecol) of the
systems has a fair correlation between the PCT-diameter and
the change probability. As earlier reported in Table I, freecol
has a very large relative PCT-diameter. We have no result for
jgraph because it only contains one SCC and as a result, one
data point. We detect no consistent pattern in the relationship
between the PCT-diameter of class cycles and their change

TABLE I. SUMMARY OF SYSTEM PROPERTIES, AGGREGATED VALUES ARE OBTAINED BY AGGREGATING OVER THE VALUES FOR EACH SCC AND EACH
VERSION v

Systems Versions Num of classes PCT-diameter Size of STK-SCCs Size of Non-STK SCCs Size of SCCs Size of Non-SCCs avg(pchange(C, v))

Mean Max Mean Max Mean Max Mean Max Mean Max Mean
ant 21 162.7 1 0.17 5 3.79 6 3.21 205 113.95 357 211.47 0.285

antlr 20 120.9 1 0.05 6 3.22 10 5.06 166 81.89 328 159.83 0.184
argouml 16 891.6 1 0.09 4 2.92 17 11.46 855 568.92 1705 1214.31 0.325
freecol 28 189.1 1 0.67 2 1.04 2 0.46 473 305.12 90 73.12 0.353

freemind 16 45.1 1 0.33 3 1.14 9 1.79 162 49.86 333 40.29 0.536
hibernate 100 513.2 1 0.19 21 5.06 11 4.12 1406 653.65 1191 372.66 0.160

jgraph 39 25.3 1 1 1 1.00 0 0.00 39 39.00 14 11.67 0.107
jmeter 20 286.5 0.71 0.21 4 2.79 8 6.21 188 132.16 576 440.89 0.283
jung 23 152.7 0.6 0.07 4 1.91 8 6.95 48 31.82 415 273.55 0.108
junit 23 39.6 1 0.09 3 0.76 8 4.62 27 15.52 152 63.62 0.233

lucene 28 163.4 0.75 0.07 6 2.96 9 6.00 143 95.85 339 230.92 0.211
weka 55 325.3 0.875 0.05 13 5.23 26 14.53 263 86.83 969 563.87 0.139

TABLE III. WILCOXON TEST: P-VALUES OF SCCS VS. NON-SCCS
(↵ = 0.05)

Systems SCCs + In-Neighbor + In/Out-Neighbor
ant 0.5 0.035* 0.037*

antlr 0.665 0.233 0.238
argouml 0.147 0.075 0.178
freecol 0.004* 0.001* 5.27E-05*

freemind 0.198 0.009* 8.81E-04*
hibernate 0.052 4.70E-05* 0.021*

jgraph 3.39E-10* 9.18E-10* 2.24E-11*
jung 0.742 0.038* 0.041*
junit 0.435 0.003* 0.010*

lucene 0.142 0.108 0.078
weka 0.511 0.005* 0.005*
jmeter 0.420 0.007* 0.022*

B. RQ1 Are classes within or near cycles more prone to
change than other classes?

The results for RQ1 are presented in Table III. In column
2, the significance test results for classes within SCC against
those outside SCC are listed. While columns 3 and 4 show
the results when we investigated the neighborhood of the
SCCs. Only two systems (freecol and jgraph) have significant
change proneness for the SCC group. However, when we
considered the SCC direct neighbourhood, 75% of the systems
showed significant change proneness. As shown in the results,
the change frequencies of the classes increase as the size
of the neighbourhood expands. This is not surprising giving
that the size of the class set increases as shown in Table II.
However, what is surprising is the big impact of SCCs on their
neighbourhood. Investigation of the actual changes revealed
that in many cases, SCCs and their direct (in-) neighbours
account for more than 90 % of the total change. For instance,
Ant has the average of 76.3% classes in SCCs and its direct
in-neighbours, but these classes account for 94% of the total
change volume. We can therefore confirm the hypothesis that
the presence of SCCs could have a significant impact on the
stability of the classes near those SCCs (Table VII column 3).

This may indicate a significant increase in maintenance
costs, in particular as many test cases would be required to
achieve sufficient coverage of the many unstable classes in the
neighbourhood of cycles.

C. RQ2:Are classes in or near cycles with STK more change
prone than classes in cycles without STK?

Table IV presents the results of testing this hypothesis.
Column 2 of the table presents the p-values of testing SCCs
with STK against SCCs without STK. The 3rd column
presents the results when the in-neighbours are included in the
SCC graph and the 4th column presents the results when both
in-neighbours and out-neighbours are included in the SCC
graph.

Out of the 12 systems we have studied, only 3 systems
have SCCs with STK that show significant change proneness
over SCCs without STK (see Table VII for summary of the
results of the hypothesis).

Hibernate presents an interesting case because we detected
instances of the Visitor pattern in many of its cycles. The
Visitor cycles all have the STK property and the results show
that in hibernate the STK cycles are more change prone than
non STK cycles. To understand the role of cycles with Visitor
pattern in this category, we removed the Visitor SCCs and ob-
served that the mean values of the change probability increased
from 17.9% to 19.6%. That means that the Visitor SCCs are
relatively stable and as a result, removing them produces an
increased change ratio. For us, this is an interesting result
in the sense that, although using the Visitor pattern produces
instances of an ”anti-pattern” in the sense that it violates certain
object-oriented design principle, nevertheless, it is stable.

A study of trade-offs between design patterns and the anti-
patterns is an interesting topic for future studies.

D. RQ3:Is there a correlation between the PCT � diameter
of a cycle and the change frequency of the classes in or near
this cycle?

The results of testing this hypothesis is presented in table
V. All values in asterisks have a correlation of 0.5 or greater
and are significant at ↵ = 0.05. We report both the Pearson
and Spearman correlation results. Only one (freecol) of the
systems has a fair correlation between the PCT-diameter and
the change probability. As earlier reported in Table I, freecol
has a very large relative PCT-diameter. We have no result for
jgraph because it only contains one SCC and as a result, one
data point. We detect no consistent pattern in the relationship
between the PCT-diameter of class cycles and their change

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (↵ = 0.05)

Systems SCC + in-neighbor + in/out-neighbor
ant 0.009* 0.013* 0.008*

antlr 0.550 0.210 0.196
argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 195

VI. DISCUSSION

A. Cycles and the Shape of Java Programs
Overall, the results are somehow surprising, and we
do not have an ultimate explanation for all the
findings. However, the results seem to be consistent
with some other recent research on the shape of
software. Several authors have studied the networks
formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy
tail distribution with a very few nodes with high
connectivity [44], [17], [18], [32].

A commonly used model to explain how scale-free
net- works come to exist is preferential attachment
[34] – in a nutshell, this model stipulates that nodes
that are added to the network have a higher
probability to link to nodes with an already high
degree. In particular, in the case of software that
would mean that there are classes with a high in-
degree based on their popularity (because they
provide useful utilities, or because they are widely
known by developers), and the in- degree of these

classes increases further as new classes are added to
the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies
have a high responsibility, and therefore tend to be
more stable. It has been demonstrated that such a
model can explain the network topology found in
Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39].
This is in a way similar to the finding we made
here: we found evidence that software evolution
follows a pattern that leads to properties that are
traditionally regarded as indicators of a bad design.
The results we obtained could therefore be
explained by a model where cycles form in the
heavy tail of the distribution. In particular, this
would explain the results for RQ1: classes in cycles
are relatively stable, but not the classes that
reference the cycles (we called them “in-
neighbours”). This could also offer an explanation
for RQ2: developers may abstract from classes
providing useful utilities, but eventually these
abstractions themselves reference these utilities as
they are useful, for instance, in order to provide
defaults for certain services. An example where this
happens is the combination of abstraction and the
Singleton design pattern [14], where an abstract
service class references a single instance of one of
its subclasses. There are several case of this kind in
the Java Runtime Environment, all with a high in-
degree, including java.lang.Runtime and
java.awt.Toolkit.

Note that this model is supported by the results of
earlier research that many cycles form around hubs
(nodes with betweenness centrality, usually
corresponding to a high degree) [1], and that there
are a few dependencies that support a large
percentage of cycles and other antipattern instances,
and therefore present high-impact refactoring
opportunities [9].

However, this model does not offer an explanation
for the results for RQ3. But we notice that package
naming is sometimes influenced by considerations
not related to the semantics of the actual code.
Examples are the use of different package branches
in the Java Developer Kit (such as java.*, javax.*,
sun.*, org.w3c.*, ..) based on intellectual property
rights, and the use of org.junit and junit branches in
junit to provide older versions for backward

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (↵ = 0.05)

Systems SCC + in-neighbor + in/out-neighbor
ant 0.009* 0.013* 0.008*

antlr 0.550 0.210 0.196
argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes

TABLE IV. WILCOXON TEST: P-VALUES OF CHANGE PRONENESS OF
STK-SCCS VS. NON-STK SCCS (↵ = 0.05)

Systems SCC + in-neighbor + in/out-neighbor
ant 0.009* 0.013* 0.008*

antlr 0.550 0.210 0.196
argouml 0.171 0.185 0.229
freecol 9.08E-11* 5.45E-11* 4.80E-11*

freemind 0.224 0.111 0.080
hibernate 8.68E-08* 1.38E-08* 2.44E-09*

jgraph - - -
jung 0.627 0.837 0.843
junit 0.994 0.996 0.992

lucene 0.374 0.354 0.371
weka 0.733 0.304 0.247
jmeter 0.648 0.453 0.121

TABLE V. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY

SCC groups + in-neighbor + in/out-neighbor
Systems Pearson Spearman Pearson Spearman Pearson Spearman

ant 0.01 0.28 0.04 0.20 0.03 0.20
antlr -0.02 0.16 -0.16 -0.08 -0.09 -0.01

argouml 0.20 0.22 0.13 0.11 0.24 0.28
freecol 0.46 0.64* 0.54* 0.78* 0.50* 0.69*

freemind -0.08 -0.10 0.04 -0.08 0.10 0.04
hibernate 0.21 0.48 0.19 0.44 0.26 0.49

jgraph - - - - - -
jung -0.04 -0.01 0.00 0.29 0.00 0.32
junit 0.07 0.00 0.24 0.29 0.22 0.30

lucene -0.02 0.18 0.08 0.21 0.07 0.17
weka 0.08 0.19 0.08 0.21 0.11 0.22
jmeter -0.02 0.08 0.06 0.17 0.25 0.32

proneness (see Table VII). This result is also surprising as
we expected that cycles spanning across branches of the PCT
would be more prone to change.

E. Interaction between STK and PCT-diameter

The results in table VI shows the correlation between
PCT-diameter and change when grouped in the STK category

TABLE VI. CORRELATION TEST BETWEEN PCT-DIAMETER AND
CHANGE-PROBABILITY BLOCKED BY STK/NON-STK

Systems STK Non-STK
Pearson Spearman Pearson Spearman

ant -0.05 0.24 - -
antlr -0.09 0.17 0.04 0.09

argouml 0.22 0.31 0.12 0.07
freecol -0.23 -0.23 - -

freemind 0.60* 0.56* - -
hibernate 0.26 0.61* 0.12 0.02

jgraph - - 0.00 0.00
jung 0.10 0.18 -0.16 -0.12
junit 0.33 0.40 -0.05 -0.04

lucene -0.09 0.18 - -
weka 0.07 0.17 0.13 0.20
jmeter 0.08 0.18 0.05 0.05

TABLE VII. SUMMARY OF HYPOTHESES TEST: Y DENOTES H0 IS
REJECTED

RQ1 RQ2 RQ3
Systems in-SCC in/near SCC in-SCC in/near SCC in-SCC in/near SCC

ant N Y Y Y N N
antlr N N N N N N

argouml N N N N N N
freecol Y Y Y Y Y Y

freemind N Y N N N N
hibernate N Y Y Y N N

jgraph Y Y - - N N
jung N Y N N N N
junit N Y N N N N

lucene N N N N N N
weka N Y N N N N
jmeter N Y N N N N

and non STK category. The STK category is represented in
columns 2 and 3, while the non-STK category is represented
in columns 4 and 5. The results indicate that there are just
two systems (freemind and hibernate) with fair correlation (see
table VI). This result is different from the correlation results
in Table V that reports only freecol with a relatively high and
significant correlation. We therefore conclude that there is no
relationship between the STK property of a cycle and the PCT-
diameter of the cycle in this dataset.

VI. DISCUSSION

A. Cycles and the Shape of Java Programs

Overall, the results are somehow surprising, and we do not
have an ultimate explanation for all the findings. However, the
results seem to be consistent with some other recent research
on the shape of software. Several authors have studied the
networks formed by software artefacts and their relationships
and found that they are scale-free, and have a heavy tail
distribution with a very few nodes with high connectivity [44],
[17], [18], [32].

A commonly used model to explain how scale-free net-
works come to exist is preferential attachment [34] – in a
nutshell, this model stipulates that nodes that are added to
the network have a higher probability to link to nodes with
an already high degree. In particular, in the case of software
that would mean that there are classes with a high in-degree
based on their popularity (because they provide useful utilities,
or because they are widely known by developers), and the in-
degree of these classes increases further as new classes are
added to the program that use these utilities. On the other
hand, classes with a lot of incoming dependencies have a high
responsibility, and therefore tend to be more stable. It has
been demonstrated that such a model can explain the network
topology found in Java programs [39]. Conversely, this model
suggests that high coupling is unavoidable [39]. This is in a
way similar to the finding we made here: we found evidence
that software evolution follows a pattern that leads to properties
that are traditionally regarded as indicators of a bad design.

The results we obtained could therefore be explained by a
model where cycles form in the heavy tail of the distribution.
In particular, this would explain the results for RQ1: classes in
cycles are relatively stable, but not the classes that reference the
cycles (we called them “in-neighbours”). This could also offer
an explanation for RQ2: developers may abstract from classes

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 196

compatibility.

But at this stage, this is only one model that could
be used to explain the observations we have made.
Further research is needed to assess the validity of
this explanation.

B. Threats to Validity
Graph extraction: Our tools cannot recognise
weak uses relationships created by reflection. This
is a common limitation for tools based on static
analysis.
Graph pre-processing: Our method to recognise
and remove tests is prone to both false positives and
false negatives. We expect that it may make non-
SCCs to appear slightly more stable for the reasons
discussed in section IV-B. Our method to detect
generated code may be incomplete as other scripts
and tools could have been used in some projects.
We think that this is unlikely as most successful
open source projects automate routine tasks using
build scripts.
SCC Membership: The mechanism to assign
vertices to the neighbourhood of cycles is not
deterministic, and this could influence the outcome
of the respective experiments. However, we
executed these experiments at least 10 times, and
found that the impact of this on the outcome of the
experiments is negligible. In addition, we did not
detect any siginificant difference by using a
different mechanism (e.g. random assignment of
neighborhood).
Detecting STK: As described above in section IV-
D3, we use an approximation to detect STK mainly
for performance reasons. The result of this is that
we may classify some larger STKs cycles as STK
even though they are predominantly non- STK.

Detecting Visitors: Instances of the visitor design
pattern are detected using naming patterns. This
might yield both false positives and false negatives.
However, in our experience the accuracy of this
method is very high.
Controlling for size and dependencies: We have
not con- trolled for the size of classes and the size
of their dependencies within each group. Both
metrics have been shown to correlate with the
change/fault-proneness of components [45], [27],
[21]. By investigating the size/dependencies of

classes in cycle and their neighborhood, we can
further understand the association between the fact
that classes in and near cycles are more change-
prone as reflected in the results (Table VII, column
3) and whether those classes account for the
significant size and dependencies in the systems.

VII. CONCLUSION

We have investigated whether classes in and near
dependency cycles are more likely to change than
other classes. We did this in order to investigate
whether cycles are related to poorer maintainability
as change ripple effects propagate easier through
cycles. We used change frequency as an indicator
for maintainability. We found no evidence that
classes in cycles are more change prone. However,
classes in and near cycles have an increased change
probability.

We also investigated two heuristics that had been
proposed to distinguish between critical and
harmless cycles: subtype knowledge and location of
the cycle within the package containment tree
(PCT). We found no strong correlation between
these criteria and change proneness.

We believe that our findings indicate the need for
more research to describe and detect cycles as well
as other types of anti-patterns that are truly
detrimental to the maintainability of a program. A
particularly interesting open problem is the
relationship between cycles and the scale-free
property of class dependency graphs.
In addition, it would be interesting to control for the
size of classes and their dependencies as it has been
shown to have a confounding effect on the validity
of metrics [10]. We plan to investigate this in future
work.

REFERENCES
[1] Hussain A Al-Mutawa, Jens Dietrich, Stephen Marsland,

and Catherine McCartin. On the shape of circular
dependencies in java programs. In Software Engineering
Conference (ASWEC), 2014 23rd Australian, pages 48–
57. IEEE, 2014.

[2] James M Bieman, Greg Straw, Huxia Wang, P Willard
Munger, and Roger T Alexander. Design patterns and
change proneness: An examination of five evolving
systems. In Software metrics symposium, 2003.
Proceedings. Ninth international, pages 40–49. IEEE,
2003.

[3] David Binkley and Mark Harman. Locating dependence
clusters and dependence pollution. In Software

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 197

Maintenance, 2005. ICSM’05. Proceedings of the 21st
IEEE International Conference on, pages 177– 186.
IEEE, 2005.

[4] David Binkley and Mark Harman. Identifying’linchpin
vertices’ that cause large dependence clusters. In Source
Code Analysis and Manipu- lation, 2009. SCAM’09.
Ninth IEEE International Working Conference on, pages
89–98. IEEE, 2009.

[5] [5] Markus Dahm. The Apache bytecode engineering
library (BCEL). URL: http://jakarta.apache.org/bcel,
2010.

[6] Massimiliano Di Penta, Luigi Cerulo, Yann-Gae ̈l
Gue ́he ́neuc, and Giu- liano Antoniol. An empirical study
of the relationships between design pattern roles and class
change proneness. In Software Maintenance, 2008. ICSM
2008. IEEE International Conference on, pages 217–226.
IEEE, 2008.

[7] Jens Dietrich, Kamil Jezek, and Premek Brada. Broken
promises: An empirical study into evolution problems in
java programs caused by library upgrades. In Software
Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), 2014 Software Evolution Week- IEEE
Conference on, pages 64–73. IEEE, 2014.

[8] Jens Dietrich, Catherine McCartin, Ewan Tempero, and
Syed M Ali Shah. Barriers to modularity-an empirical
study to assess the potential for modularisation of java
programs. In Research into Practice–Reality and Gaps,
pages 135–150. Springer, 2010.

[9] Jens Dietrich, Catherine McCartin, Ewan Tempero, and
Syed M Ali Shah. On the existence of high-impact
refactoring opportunities in programs. In Proceedings of
the Thirty-fifth Australasian Computer Science
Conference-Volume 122, pages 37–48. Australian
Computer Society, Inc., 2012.

[10] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai. The
confounding effect of class size on the validity of object-
oriented metrics. IEEE Transactions on Software
Engineering, 27(7):630–650, July 2001.

[11] Jean-Re ́my Falleri, Simon Denier, Jannik Laval, Philippe
Vismara, and Ste ́phane Ducasse. Efficient retrieval and
ranking of undesired package cycles in large software
systems. In Objects, Models, Components, Patterns,
pages 260–275. Springer, 2011.

[12] Norman E. Fenton and Shari Lawrence Pfleeger. Software
Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston, MA, USA, 2nd edition, 1998.

[13] Francesca Arcelli Fontana, Vincenzo Ferme, Alessandro
Marino, Bar- tosz Walter, and Pawel Martenka.
Investigating the impact of code smells on system’s
quality: An empirical study on systems of different
application domains. In Software Maintenance (ICSM),
2013 29th IEEE International Conference on, pages 260–
269. IEEE, 2013.

[14] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design patterns: elements of reusable object-
oriented software. Pearson Education, 1994.

[15] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and
Alex Buckley. The Java TMLanguage Specification 7th
Edition. Oracle, Inc., California, USA, 2012.

[16] Kim Herzig and Andreas Zeller. The impact of tangled
code changes. In Mining Software Repositories (MSR),
2013 10th IEEE Working Conference on, pages 121–130.
IEEE, 2013.

[17] David Hyland-Wood, David Carrington, and Simon
Kaplan. Scale- free nature of java software package, class
and method collaboration graphs. In Proceedings of the
5th International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brasil. Citeseer, 2006.

[18] Makoto Ichii, Makoto Matsushita, and Katsuro Inoue. An
exploration of power-law in use-relation of java software
systems. In Software Engineering, 2008. ASWEC 2008.
19th Australian Conference on, pages 422–431. IEEE,
2008.

[19] Sebastien Jeanmart, Yann-Gael Gueheneuc, Houari
Sahraoui, and Naji Habra. Impact of the visitor pattern on
program comprehension and maintenance. In
Proceedings of the 2009 3rd International Symposium on
Empirical Software Engineering and Measurement,
ESEM ’09, pages 69–78, Washington, DC, USA, 2009.
IEEE Computer Society.

[20] Foutse Khomh, MassimilianoDi Penta, Yann-Gal
Guhneuc, and Giu- liano Antoniol. An exploratory study
of the impact of antipatterns on class change- and fault-
proneness. Empirical Software Engineering, 17(3):243–
275, 2012.

[21] Miryung Kim, Thomas Zimmermann, and Nachiappan
Nagappan. A field study of refactoring challenges and
benefits. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, page 50. ACM, 2012.

[22] Robert C Martin. The dependency inversion principle.
C++ Report, 8(6):61–66, 1996.

[23] Robert C Martin. Acyclic visitor. In Pattern languages of
program design 3, pages 93–103. Addison-Wesley
Longman Publishing Co., Inc., 1997.

[24] Robert C Martin. Design principles and design patterns.
Object Mentor, 1:34, 2000.

[25] Hayden Melton and Ewan Tempero. An empirical study
of cycles among classes in java. Empirical Software
Engineering, 12(4):389– 415, 2007.

[26] Radu Muschevici, Alex Potanin, Ewan Tempero, and
James Noble. Multiple dispatch in practice. In Acm
sigplan notices, volume 43, pages 563–582. ACM, 2008.

[27] Nachiappan Nagappan and Thomas Ball. Use of relative
code churn measures to predict system defect density. In
Software Engineering, 2005. ICSE 2005. Proceedings.
27th International Conference on, pages 284–292. IEEE,
2005.

[28] Steffen M Olbrich, Daniela S Cruzes, and Dag IK
Sjoberg. Are all code smells harmful? a study of god
classes and brain classes in the evolution of three open
source systems. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1–10. IEEE,
2010.

[29] Jan Overbeck. Integration testing for object-oriented
software. PhD thesis, Vienna University of Technology,
Vienna, Austria, 1994.

[30] Tosin Daniel Oyetoyan, Daniela S Cruzes, and Reidar

P6: Circular Dependencies and Change-Proneness: An Empirical Study

 198

Conradi. A study of cyclic dependencies on defect profile
of software components. Journal of Systems and
Software, 86(12):3162–3182, 2013.

[31] David Parnas. Designing software for ease of extension
and contraction. Software Engineering, IEEE
Transactions on, (2):128–138, 1979.

[32] Alex Potanin, James Noble, Marcus Frean, and Robert
Biddle. Scale- free geometry in oo programs.
Communications of the ACM, 48(5):99– 103, 2005.

[33] Lutz Prechelt, Barbara Unger, Walter F. Tichy, Peter
Brossler, and Lawrence G. Votta. A controlled
experiment in maintenance: comparing design patterns to
simpler solutions. Software Engineering, IEEE
Transactions on, 27(12):1134–1144, 2001.

[34] Derek de Solla Price. A general theory of bibliometric
and other cumulative advantage processes. Journal of the
American Society for Information Science, 27(5):292–
306, 1976.

[35] Jane Radatz, Anne Geraci, and Freny Katki. IEEE
standard glossary of software engineering terminology.
IEEE Std, 610121990:121990, 1990.

[36] Arthur J Riel. Object-oriented design heuristics. Addison-
Wesley Publishing Company, 1996.

[37] Daniele Romano, Paulius Raila, Martin Pinzger, and
Foutse Khomh. Analyzing the impact of antipatterns on
change-proneness using fine- grained source code
changes. In Reverse Engineering (WCRE), 2012 19th
Working Conference on, pages 437–446. IEEE, 2012.

[38] Robert Tarjan. Depth-first search and linear graph
algorithms. SIAM journal on computing, 1(2):146–160,
1972.

[39] Craig Taube-Schock, Robert J Walker, and Ian H Witten.

Can we avoid high coupling? In ECOOP 2011–Object-
Oriented Programming, pages 204–228. Springer, 2011.

[40] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han,
Jing Li, Markus Lumpe, Hayden Melton, and James
Noble. Qualitas corpus: A curated collection of java code
for empirical studies. In 2010 Asia Pacific Soft- ware
Engineering Conference (APSEC2010), pages 336–345,
December 2010.

[41] Marek Vokac. Defect frequency and design patterns: An
empirical study of industrial code. Software Engineering,
IEEE Transactions on, 30(12):904–917, 2004.

[42] Marek Voka ́cˇ, Walter Tichy, Dag IK Sjøberg, Erik
Arisholm, and Magne Aldrin. A controlled experiment
comparing the maintainability of programs designed with
and without design patternsa replication in a real
programming environment. Empirical Software
Engineering, 9(3):149–195, 2004.

[43] S. Wasserman and K Faust. Social network analysis :
methods and applications. Structural analysis in the
social sciences. Cambridge University Press, 1994.

[44] Richard Wheeldon and Steve Counsell. Power law
distributions in class relationships. In Source Code
Analysis and Manipulation, 2003. Proceedings. Third
IEEE International Workshop on, pages 45–54. IEEE,
2003.

[45] Thomas Zimmermann and Nachiappan Nagappan.
Predicting defects using network analysis on dependency
graphs. In Proceedings of the 30th international
conference on Software engineering, pages 531–540.
ACM, 2008.

 199

P7: A Decision Support System to Refactor Class Cycles
Accepted at the: 31st International Conference on Software Maintenance and Evolution ICSME2015,

Bremen, Germany

 200

P7: A Decision Support System to Refactor Class Cycles

 201

A Decision Support System to Refactor Class Cycles

Tosin Daniel Oyetoyan
Computer and Information Science

Norwegian University of Science and
Technology, Trondheim, Norway

tosindo@idi.ntnu.no

Daniela Soares Cruzes
Software Engineering, Safety and

Security
SINTEF, Trondheim, Norway

daniela.s.cruzes@sintef.no

Christian Thurmann-Nielsen
EVRY ASA,
Oslo, Norway

christian.thurmann-
nielsen@evry.com

Abstract—Many studies show that real-world systems
are riddled with large dependency cycles among
software classes. Dependency cycles are claimed to affect
quality factors such as testability, extensibility,
modifiability, and reusability. Recent studies reveal that
most defects are concentrated in classes that are in and
near cycles. In this paper, we (1) propose a new metric:
IRCRSS based on the Class Reachability Set Size
(CRSS) to identify the reduction ratio between the CRSS
of a class and its interfaces, and (2) presents a cycle-
breaking decision support system (CB-DSS) that
implements existing design approaches in combination
with class edge contextual data. Evaluations of multiple
systems show that (1) the IRCRSS metric can be used to
identify fewer classes as candidates for breaking large
cycles, thus reducing refactoring effort, and (2) the CB-
DSS can assist software engineers to plan restructuring
of classes involved in complex dependency cycles.

Index Terms—Dependency cycle, CRSS, refactoring, software
quality, decision support system.

1. Introduction
Best design practice advocates to avoid

dependency cycles between software artifacts [1-
4]. Dependency cycles are claimed to increase
structural complexity among software artifacts
such as classes or packages, and to inhibit
software qualities like understandability,
modifiability, testability, reusability and
extensibility [1, 2, 4-6]. Testing a class in isolation
is practically impossible when in a cycle with
other classes [2]. A class that is tied to a large
chunk of unnecessary classes cannot be reused
effectively [2]. In integration testing, cycles
prevent the topological ordering of classes that
can be used as a test order [7-9], thereby
inhibiting the testability. Recent studies have
investigated the relationship between dependency
cycles and defects [10-12], and found that most of
the defects are concentrated within components in
and near cycles.

Application development frameworks have
considered binding dependencies at runtime to
better manage dependencies and provide loose
coupling among modules, e.g., dependency
injection frameworks (e.g. Spring framework

[13]) and dynamic component models (e.g. OSGi
framework [14])

Despite these advances, empirical evidence
shows that dependency cycles are pervasive in
modern software systems [15, 16], at different
granularity levels. Time-to-market often forces
developers to accumulate technical debt, e.g., by
focusing more on “functional code” rather than
“maintainable code” [17]. This suggests a need for
approaches and tools to deal with accumulated
technical debt through refactoring of large and
complex cycles.

A major motivation for developing a cycle
breaking decision support system is based on
dialog with an industrial partner seeking to
refactor class cycles, but who found no support in
the C# development environment (Visual Studio).
The developers do not envision an automated
approach or tool where they loose control of the
code structure and organization after refactoring.
One respondent says: “When you have a complex
part of code, it seems more like you are losing
control when you just press a button and it does
everything for you: which is not ideal. Especially
when there is complex code and you want to know
what’s going on when you are debugging”.

Against this background, we have implemented
a decision support system (DSS) for refactoring
class cycles. It is called DSS because it proposes
architectural refactoring actions to maintenance
engineers, and indicates code locations where
actions can be manually implemented. The
problem of breaking dependency cycles at the
class granularity level is not trivial. Class cycles
are large and much more complex than cycles at
higher abstraction layers.

Breaking large cycles requires heuristics to
suggest the minimum edges that should be treated
(e.g. greedy cycle removal) [18]. Such heuristics
have been applied to dependency cycle problems
among software artifacts (e.g. in [19]). However,
there are challenges with cycle removal heuristics

P7: A Decision Support System to Refactor Class Cycles

 202

when applied to software artifacts, e.g., there are
edges suggested that are impractical to refactor
[19]. They do not take into account the effect each
edge removal/reversal has on the current structure
of the system. For large and complex cycles, the
minimum number of edges to break the cycles is
usually large, and translates to creating a large
number of new components. Lastly, breaking the
suggested edges does not guarantee that the cycles
would be removed. Approaches and tools are
therefore needed to simulate refactoring in an
adaptive and dynamic way.

 In this context, we have investigated metrics
to support cycle removal heuristics. This paper
proposes a new metric named interface-CRSS
reduction rate (IRCRSS), based on the class
reachability set size (CRSS) metric proposed in
[20]. The CRSS metric counts for a given class,
all other classes in the system’s source code it
requires for its compilation. The CRSS metric was
chosen because it provides possibility to limit the
number of components to be introduced during
cycle breaking refactoring. This discussion is
elaborated in Section II. The proposed IRCRSS
metric and approach are evaluated using the cycle-
breaking decision support system (CB-DSS).

Three research questions are stated to
determine the performance of the new metric and
the usefulness of the CB-DSS.
RQ1 Is the system restructuring better with

IRCRSS metric? Will tuning with IRCRSS
produce a refactoring fitness that is better than
refactoring without?

RQ2 Will tuning with IRCRSS always improve
software structure? Is it a common property that
tuning with IRCRSS finds better fitness in every
system? How many applications exhibit this
opportunity?

RQ3 Can the use of IRCRSS metric reduce the
restructuring effort? We want to find out
whether tuning with IRCRSS reduces the
number of refactoring edges.

Lastly, we performed a qualitative evaluation of
the CB-DSS in an industrial setup.

This paper is structured to partly follow the
design science research methodology [21]. The
problem identification is discussed in this section.
Section II provides the background of this work.
Section III presents the implementation of CB-

DSS. Section IV presents the results of validating
the approach. Section V provides the evaluation of
the metric and the system on different cases.
Section VI draws out the threats and limitations of
the system. Lastly, the conclusion is in Section
VII.

2. Background
A. Class Reachability Set Size

(CRSS) metric
Melton and Tempero [20] present a metric

named “class reachability set size” (CRSS) to
detect package partitioning problems in software
systems, and propose a refactoring strategy that
uses CRSS to improve the package design quality.
By investigating the distribution of CRSS values
for all classes in a system, it is possible to identify
whether the relationships among the classes
preclude them from a “good partitioning”. The
notion of “good partitioning” is measured by how
package design affects software quality attributes,
like deployability, understandability, reusability,
and testability. A good package design can be
quantified by the manageable size, stand-alone,
cohesion, and encapsulation principles. Two of
these properties (manageable size and stand-
alone) are focused in [20].

Package dependencies are aggregated at the
class (compilation) abstraction level. Thus, the
distribution of the class reachability set size
values of the classes in the whole system can be
effectively used to understand its package
formation problems. The CRSS metric is
computed from the Class Dependency Graph
(CDG). The shape of the CRSS distribution
provides information about the underlying
Package Dependency Graph (PDG). A situation
where there are many classes with large CRSS
values shows a symptom of tall or cyclic PDGs
and cannot be easily separated to stand-alone and
of manageable sizes unless the class
relationships are refactored. An example is the
case of Azureus application (Vuze in later
versions) in Fig. 1. It has approximately 1900 top-
level class files. About 1000 of these class files
transitively depend on 1300-1500 other classes,
while approximately 900 of the classes
transitively depend on 1-100 classes.

P7: A Decision Support System to Refactor Class Cycles

 203

A refactoring strategy based on the dependency
inversion principle [22] and a registry of
singletons [23], is proposed to decouple classes
and reduce CRSS values for systems with large
CRSS values. This strategy is applied by
extracting interfaces from 10 identified
candidates. The candidates are classes widely
referenced and have high CRSS values. The result
after the 10th refactoring showed only 400 classes
to have CRSS value of 1300+, and nearly 1300
classes transitively depended on less than 100
other classes.

B. Minimum Feedback Edge Set
(mFES) and CRSS metrics

In graph theory [24], strongly connected
components (SCC) also known as a cyclic
dependency graph in a directed graph G = (V, E)
is a maximal set of vertices C " V such that for
every pair of vertices u and v in C, both are
reachable from each other. An SCC can consist of
several directed cyclic graphs as shown in Fig. 2
with one SCC containing two different cyclic sub
graphs (A, D, C, B and A, D, C, F, E). The
problem to solve is to eliminate undesirable SCCs
among system classes and obtain a directed
acyclic graph (DAG). Finding the smallest
number of edges (minimum feedback arc/edge
set) whose reversal or removal can turn a SCC
into a DAG is an NP-complete problem [18]. It is
therefore common to employ heuristics (e.g.
greedy cycle removal) [18].

Sometimes, the minimum feedback edge set
(mFES) is not ‘small’ in many software systems.
To implement mFES for cycle breaking, would
involve creating several new classes. For instance,
to turn the SCC in Fig. 2a would require creating a
new component J (as in Fig. 2b) to break the edge
between D and C (mFES). Arguably, this edge (D
0 C) can be reversed. In reality, however, edges
(relationships) between classes cannot just be
reversed as they involve much more complex
interactions. The mFES for Azureus 2.3.0.2 using
the “greedy cycle removal” algorithm [18], gave
211 edges that should be treated
(removed/reversed) to turn the SCC with 804
classes and 4275 edges to a DAG. A challenge is
the need to create many new classes or interfaces
to break the SCC. More challenging is the fact
that not all the suggested edges in the mFES could

be treated, as they represent relationships
considered as strong coupling (e.g., an edge
between a class and its abstract type).

In the example of Azureus 2.3.0.2 above, by
utilizing the interfaces of 10 identified classes as
candidates (with high CRSS and incoming
dependencies), the SCC with 804 classes could be
reduced to 253 (nearly 68% reduction).

Fig. 1. CRSS distribution of Azureus (Vuze)

Fig. 2. (a) an SCC with 2 inner cycles and (b) The refactored SCC [11]

This motivated us to consider the CRSS metric
before the mFES metric, when seeking to perform
cycle breaking. Classes with high CRSS are
typically in a large SCC or in the neighborhood of
SCC (see an example of components H and G that
depend on the SCC in Fig. 2a). By using the
CRSS metric as an objective function, we do not
only refactor classes in complex SCCs and their
neighborhoods, but we also create a decoupled
system that fits the discussions of manageable
sizes and standalone properties of package
design.

C. A new metric based on CRSS
Following the discussion above, when an

interface is introduced for decoupling, the extent
that the CRSS values of the clients can be
reduced, may be based on the CRSS values of the
utilized interfaces of the candidates. The reason is
that the interface would only depend on the types
declared in the published method’s signatures of
its implementation. We establish that one
candidate might be better than the other because
their methods’ signatures are not tightly coupled
to different concrete classes. This can be done by

!"
#!!"
$!!"
%!!"
&!!"
'!!"
(!!"
)!!"
*!!"
+!!"

#!!!"

#,
'!

"
'#

,#
!!

"
#!

#,
#'

!"
#'

#,
$!

!"
$!

#,
$'

!"
$'

#,
%!

!"
%!

#,
%'

!"
%'

#,
&!

!"
&!

#,
&'

!"
&'

#,
'!

!"
'!

#,
''

!"
''

#,
(!

!"
(!

#,
('

!"
('

#,
)!

!"
)!

#,
)'

!"
)'

#,
*!

!"
*!

#,
*'

!"
*'

#,
+!

!"
+!

#,
+'

!"
+'

#,
#!

!!
"

#!
!#

,#
!'

!"
#!

'#
,#
#!

!"
##

!#
,#
#'

!"
##

'#
,#
$!

!"
#$

!#
,#
$'

!"
#$

'#
,#
%!

!"
#%

!#
,#
%'

!"
#%

'#
,#
&!

!"
#&

!#
,#
&'

!"
#&

'#
,#
'!

!"

!"
#$

%#
&'
()
*+
,-
./
/#
/0
)

,122)3.-%#/)

P7: A Decision Support System to Refactor Class Cycles

 204

inspecting the CRSS values of both the extracted
interface and the implementation of the candidate.
If the CRSS values of the implementation and its
interface are pretty much the same, we say that
this may be a non-optimal refactoring point.
Essentially, we may not have any reduction
immediately in the transitive coupling but rather
an increase in coupling because of this
refactoring. We demonstrate this concept with the
following examples: Consider classes A and B
(Listing 1): Class A depends on class C as the
parameter type of method ma1, on class D as a
return type of method ma2, and on class G as an
exception type. Similarly, class B depends

__
public class A {

public void ma1(C c) {/*…*/}
public List<D> ma2() { return new ArrayList<D>();}
public void ma3() throws G{/*…*/}

}
public class B {

private double fb;
public void mb1(String s) { D.md1(s)}
public double mb2(int n) { return n*fb;}
public int mb3(){return -1*C.fc }

}__
Listing 1. Opportunities in relation to the CRSS metric

__
public interface IA {

public abstract void ma1(C c);
public abstract List<D> ma2();
public abstract void ma3() throws G;

}
public interface IB {

public abstract void mb1(String s);
public abstract double mb2(int n);
public abstract int mb3();

}__
Listing 2. Default extracted interfaces of A and B

on C in the method body mb3 and on D in the
method body mb1. If we assume that class C can
transitively reach 100 other classes, D can reach
200 other classes, and G can reach 2 other classes
to compile. An Extract interface performed on A
and B would produce interfaces, IA and IB as
shown in Listing 2. A close observation of the two
interfaces shows that IA still has dependencies on
C and D and therefore would have at least a
transitive dependency of 200. This value is the
same as the maximum CRSS (200) of its actual
implementation class A. Whereas, the interface IB
contains no dependencies on the concrete
implementations in class B and therefore has a
maximum CRSS of 0 while the implementation
class B has at least a CRSS of 200.

Using this background, we determine a new
metric named interface-CRSS reduction rate that
is based on the difference between the CRSS
value of a class and its interface. Formally, we
define the interface-CRSS reduction rate for a
class X as:

Where:

IRCRSS (X) is the class reachability set size
(CRSS) reduction rate for the interface of X
CRSS (X) is the class reachability set size of X
CRSS (IX) is the class reachability set size of
the interface of X (IX)

The IRCRSS of X gives the likely rate at which
the CRSS value of a client Y that depends on X
would be reduced if it depends on the interface of
X (i.e. IX). The value of IRCRSS ranges from 0 to
1. A value of zero implies no reduction in the
CRSS value when the dependency of Y is
changed from X to IX, while a value of 1 implies
a possible 100% reduction.

D. Strategies for edge breaking
between a source and a target type

The dependency between two program classes
can be represented as: source depends on target
(source → target), where the target class is used
within the source class. We have used these
notations “source” and “target” in the following
presentation. In addition, we have used standard
refactoring notations [25] such as Extract
interface, Move method, Move field, Encapsulate
field and so on in our presentation.

1) Type generalization
Type generalization involves declaring a

variable with its abstraction (interface or abstract
class). This is considered a good programming
practice [25]. In general, when an interface of an
implementation type is introduced, it should be
utilized by all of its clients wherever possible [26].
However, studies show that interface types are
sparingly used in software development despite its
several potentials [26, 27]. Type generalization
can be used to break dependency between a
source type and a target type when it is a case of
aggregation (has-a) and not composition (part-of).

!
!"#"$$! =

!"## ! − !"##(!")
!"##(!) !

P7: A Decision Support System to Refactor Class Cycles

 205

2) Registry (Service Locator)
Two cases are considered here. First, the

target’s constructor is explicitly invoked through a
“new” keyword in the source class (part-of). This
type requires that the source use a new object of
the target class. To break this dependency, the
target class needs to be cloned each time a new
object is requested by the source classes. The
pattern is referred as the Registry of Prototypes
[23].

Second, when a utility class (that contains only
static members) has high incoming dependencies
and it is a hub for big and complex SCCs. It might
be needful to refactor the utility class into a
singleton and its static methods to instance-side
methods to break such complex SCCs. This case
is dealt with in [20] using the Registry of
Singletons/Service Locator pattern [23] [28].

The instantiation of the target classes for Java
applications can be done with the ServiceLoader47
or in the entry class of the application [20]. For C#
applications, the lightweight injection container
called Unity48 can be used to configure target
classes. The refactoring may sometimes require
some extra modifications to the target’s class. An
example is when the target class uses parameters
in its constructor(s). It is not possible to pre assign
these parameters when configuring the instance of
the target class. One solution is to modify the
target as shown in Listing 3. A new empty
constructor and a new public setter method are
created in Class A. The public setter method takes
the parameters of the first constructor. The body
of the constructor with parameters is moved to the
setter method and replaced with a reference to the
method. This way, the code is not broken and
refactored clients can request the instance of the
target and pass the parameters through the setter
method.

3) Static final (read-only) field (Copy field)

High coupling between the source and a target
class could occur because of static final field
invocation or static field that is used as read-only
(final). An example is a case in Azureus v2.3.0.2,
where “BackGroundGraphic” class depends on
“MainWindow” class because it uses a static
Color white. The bizarre decision here is that

47https://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html
48 http://msdn.microsoft.com/en-us/library/ff649614.aspx

while other color types were defined and used in
the BackGroundGraphic class, the developer
simply referenced the color field “white” from the
MainWindow class rather than defining it in the
BackGroundGraphic class. This has been
refactored in the latest version by moving “Color
white” to the BackGroundGraphic class. The
refactoring approach here is to Copy field from
the target to the source class. This makes sense
because the value of such final field would not
change or become updated.
__
/* Before refactoring */
public class A {

public A (B b) { run(b);}
}
/* After refactoring */
public class A {

public A () {/*…*/} /*new empty constructor*/
public A (B b) { setB(b);} /*keep to not break the code*/
public void setB(B b) { run(b);}

}__
Listing 3. Refactoring target with parameters in its constructor

4) Encapsulate static field
A source class can use a target class through

static field invocation. Listing 4 presents an
example where class A is coupled to class B
through a static field. Encapsulate field [25] and
Extract interface with Registry refactoring can be
applied to break this dependency. The static field
(fb) is declared private in B and assigned to an
auxiliary instance field49 id. A getter method is

__
/* Before refactoring */
public class A {

public void m() { B.fb; }
}
public class B {

public static int fb;
}
/* After refactoring */
public class A {

public void m() { IB b = Registry.getBImpl();
b.getFbFromID();}

}
public class B implements IB{

private static int fb;
private int id;
public B () { id = fb;}
public int getFbFromID() { return id;}

}
public interface IB {

public abstract int getFbFromID();
}__

Listing 4. Encapsulation and Extract Interface + Registry
refactoring for static field dependency

49 https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html

P7: A Decision Support System to Refactor Class Cycles

 206

declared for id and declared in interface IB. Class
A can then access fb through the instance field id.

5) Inline Static Method
A source can depend on a target through the

invocation of the target’s static method. To inline
a static method would imply moving the method
from the target to the source and creating a
delegate in the target’s method to the moved
method in the source [29]. Essentially, the
dependency is reversed. This is similar to a
situation where Move method [25] is applied to
break a dependency, however, this does not
involve reversing the dependency. Moving
method body can create some recursive actions
and higher reachability size. We therefore propose
an Extract Interface with Registry of singletons
refactoring when a target class has incoming
dependencies that is more than one and static
method inline when it has only one.
__
public class A extends B implements C {

private D d;
private static E e = new E();
public F meth(G g, D d) throws H {

this.d = d;
P.log(Q.Status, R.ID); /*Assume ID is a final variable in class
R*/
return (F) g.typeOfF();

}
}__

Listing 5. Example of dependency types

E. Dependency types and refactoring
strategy

Dependency can be formed in different ways
between a source class and a target class [30]. We
illustrate this with the following example code
snippet in Listing 5. In this snippet, class A
depends on classes B, C, D, E, F, G, H, P, Q, and
R. Table 1 lists the default strategy for the
dependency types.
TABLE I. DEPENDENCY TYPES AND DEFAULT REFACTORING STRATEGY

Dependency type Example Default Refactoring Strategy

Variable declaration A uses D,
E

Extract interface

Variable declaration
with initialization

A uses E Extract interface + Registry of
prototype

Method return type A uses F Extract interface

Method parameter type A uses G,
D

Extract interface

Method exception type A uses H Extract interface (abstract class)

Static method invocation A uses P Inline Method or Extract
interface + Registry of singleton

Static field invocation A uses Q Encapsulate + Extract interface +
Registry

Static final field
invocation

A uses R Copy field or Move field to
Interface (Extract interface)

Constructor invocation A uses E Extract interface + Registry of
prototype

Super type A uses B None

Interface type A uses C None

Others (e.g. casting) A uses F Extract interface

F. Related cycle-breaking studies
and tools

Graph transformation has been extensively
applied in software engineering and notably in
code-level refactoring activities [31, 32]. The type
of graph manipulation we have employed in this
study does not demand detailed graph formalism
since we are only interested in removing or adding
single edges in a graph. We therefore limit our
discussion to other studies devoted in this manner
to cycle-breaking refactoring.

Dietrich and McCartin [30] identified high
impact edges from the program dependency graph
by assigning weights to edges based on the
number of anti-patterns they are involved with.
Their results on the graph model demonstrated
that many anti-patterns (e.g., dependency cycles at
the package level) could be removed by removing
such high impact edges. [29] implemented an
automated refactoring on these edges using
various refactoring techniques. Their results show
that certain edges are removable, while removing
certain edges would introduce errors.

 Laval and Ducasse [33] implemented an
enriched dependency structural matrix (eDSM) to
detect dependency cycles between packages. They
use contextual information, e.g. types of
relationships between the coupled components
and the proportion of referencing classes in the
client package. The tool reports actions to be
performed to remove detected dependency cycles.

P7: A Decision Support System to Refactor Class Cycles

 207

Several other tools have been proposed to
detect cycles. For instance, JDepend 50 ,
NDepend 51 , JooJ [19], Dependometer 52 ,
Classycle53, STAN54, Jepends [34], PASTA [35],
Lattix 55 , and Structure101 56 . Of the
aforementioned approaches and tools, only the
work of [33] has close similarity to ours in the
sense that they used context data to propose
refactoring actions. However, it differs in focus
because we have considered breaking dependency
cycles at the class granularity level.

3. Implementation
We have built a CB-DSS in Java (publicly

accessible at: https://bitbucket.org/ootos/j-
guirestructurer and used the Jepends-bcel by
Melton 57 to collect dependency data. The
dependency data is collected from the bytecode of
Java classes using the Apache Byte Code
Engineering Library58 (BCEL). We are interested
in top-level classes (compilation units), since they
represent maintenance units. Therefore, the
dependencies of nested classes are aggregated to
their top-level classes. An MSc student has
integrated the CB-DSS into a Visual Studio plugin
(Accessible at https://bitbucket.org/ootos/c-
sharprestructurer). The simple model diagram for
the CB-DSS is shown in Fig 3. There are seven
major components of the model: (1) decision
support table 1 - DSTable1, (2) decision support
table 2 – DSTable2, (3) the dependency types –
UsageType, (4) refactoring strategy - Strategy,
and (5) RefactoringSimulation, (6) System
Restructuring, and (7) Cycle breaking.

A. DSTable 1
This table implements the IRCRSS metric for

each class in the application. IRCRSS value
ranges between 0 and 1. The table is used as a
look up table to decide the choice of the best class
as candidate for refactoring. The selection
mechanism from DSTable-1 is driven by IRCRSS,
high incoming dependencies (FAN-IN), high

50 http://clarkware.com/software/JDepend.html
51 http://www.ndepend.com
52 http://source.valtech.com/display/dpm/Dependometer
53 http://classycle.sourceforge.net
54 http://stan4j.com
55 http://lattix.com
56 http://structure101.com/products
57 https://www.cs.auckland.ac.nz/~hayden/software.htm
58 http://commons.apache.org/proper/commons-bcel/

CRSS and high SCC values. The list of candidates
is selected using the following rules:

1. The candidate must fall within the specified
topKs positions for all the three measures
(FAN-IN, CRSS, SCC)

2. The IRCRSS value of the candidate must be
equal or greater than the specified value by the
user

3. The candidate must not be an interface or an
abstract class (since these types cannot be
instantiated)

Next, the selected topK classes are sorted by using
four attributes FAN-IN, CRSS, SCC and STATIC.
The STATIC variable implies that all the class
members are static. In some applications, static
members are usually widely referenced and are
potential hub for large SCCs. The sorting is
implemented by selecting the principal attribute.
The algorithm then sorts on the principal attribute
and two other attributes. The possible combination
of sorting is as follows (the bold and underlined
attribute denotes the principal sort attribute):

1) STATIC, FAN-IN, CRSS
2) CRSS, FAN-IN, SCC
3) FAN-IN, CRSS, SCC
4) SCC, FAN-IN, CRSS

We have decided on these sorting combinations
based on the results of several experiments. The
sorting combination orders produced the best
refactoring results on different systems.

Fig. 3. Class model for the CB-DSS

B. DSTable 2
This table stores context data and computed

refactoring decisions for each edge (source →

P7: A Decision Support System to Refactor Class Cycles

 208

target). The DSTable-2 is computed by using the
UsageType and the default refactoring Strategy as
described in Table I. The DSTable-2 serves as a
look up directory to select the refactoring decision
for each suggested edge during refactoring.

C. System restructuring
The approach is to begin every refactoring with

System restructuring with fitness function as
CRSS and SCC. This refactoring focuses on
decoupling the entire software structure and it
uses the DSTable-1 to determine the classes that
are candidates for refactoring. A pre-selected
number (N) of refactoring iteration and a
combination of tuning and sorting parameters are
presented to the RefactoringSimulation module.
For each refactoring, the system selects the best
class as candidate from DSTable-1 and then
simulates the refactoring of all classes that depend
on the candidate. The refactoring strategy to break
each edge (class → candidate) is selected from
DSTable-2. At the end of each refactoring, the
fitness values are computed and a list of
refactoring actions are generated (e.g. see Fig 4).
The general refactoring is performed as follows:

a Create the interface (or abstract class) for the
selected candidate (Class)

b Create an edge between the candidate and its
interface

c Move all published dependencies of the
candidate to its newly created interface

d Create the registry class and the respective
edges from the candidate and the main class

e Update all relevant relationships and edges
f Determine the refactoring strategy
g Compute the SCC and fitness values
h Update decision tables

D. Cycle-breaking refactoring
This is used to further resolve SCCs that are

not refactored during the “System restructuring”.
It is driven by selecting the SCC of interest and
then activating a “greedy cycle removal”
algorithm [18] to determine the minimum
feedback edge set (mFES). The mFES is passed to
the RefactoringSimulation module. The
refactoring strategies for each edge are looked up
from DSTable-2. The refactoring for this edge is

then simulated based on the returned refactoring
strategy.

4. Validation
We report on four case studies to evaluate the

accuracy of the CB-DSS. In the first case study,
we performed refactoring on Azurues 2.3.0.2
using ten candidates. Next, we refactored JStock
using five candidates. The refactoring for the
above two case studies were performed by one of
the authors. The third case study is VidCoder, an
open source application, developed in C#. An
MSc student has performed the refactoring of six
candidates for this case study. The fourth case
study (commApp) is an industrial Smart Grid
application developed with C#. The company’s
software maintenance engineer has performed the
actual refactoring of three candidates. For space
reason, the properties of the selected applications
can be found here:
http://www.idi.ntnu.no/~tosindo/resources/system
s.pdf
We summarized the results of the validations,
performed on the different case studies in Table II.
As shown in the Table, the fitness values, mean
(CRSS), and max (SCC) for manual refactoring
are close to the fitness values of the CB-DSS. For
both Azureus and JStock, the results of the CB-
DSS and the actual refactoring are nearly the
same. For both VidCoder and commApp, the
results of manual refactoring are modest and are
reasonably comparable to the result of the CB-
DSS. In the case of VidCoder, the differences
could be due to the fact that 5 edges out of the 9
proposed were not refactored. The reason is that
the developer used the lightweight injection
container (Unity) in Visual Studio instead of
defining a custom registry class. This is a positive
contribution as the developers have control during
the refactoring activities. For commApp, some of
the changes made by the maintenance engineer
involved additional refactoring such as splitting a
class into two and thereby increasing both the
number of nodes (classes) and edges
(relationships). These would affect the fitness
values. Overall, the validation’s results show that
it is possible to use the CB-DSS as a decision
support tool for planning refactoring activities.

P7: A Decision Support System to Refactor Class Cycles

 209

Fig. 4. Example of proposed refactoring actions for manual execution

TABLE II. RESULTS OF VALIDATION
 Azureus (N=10) JStock (N=5) VidCoder (N=6) commApp (N=3)
Fitness BR AR

(CB-
DSS)

AR
(Actual)

 BR AR
(CB-
DSS)

AR
(Actual)

 BR AR
(CB-
DSS)

AR
(Actual)

 BR AR
(CB-
DSS)

AR
(Actual)

Mean
(CRSS) 703.67 295.46 295.66 155.01 108.57 108.57 17.22 10.87 11.32 115.06 115.88 115.08

Std.Dev
(CRSS) 684.88 525.28 525.53 133.47 128.84 128.84 37.63 21.07 24.91 285.82 286.36 284.61

Mean
(SCC) 22.82 7.36 7.30 41.0 21.0 21.0 6 4 3.86 10.03 9.63 9.57

Max (SCC) 804 253 253 153 110 110 14 8 8 115 111 109

N = number of selected classes; BR = Before Refactoring; AR = After Refactoring

5. Evaluation and Discussion
We have used 15 software applications to

answer the research questions. These are:
commApp, Azureus (Vuze), Jstock, VidCoder,
Hibernate, Openproj, Jxplorer, Megamek, Weka,
SomToolBox, GanttProject, Squirrel-sql,
OpenRocket, ermaster, and Logisim. Apart from
commApp (industrial application) and VidCoder
developed in C#, the criteria for selecting the
remaining applications on SourceForge is that the
application must be driven through a user
interface, it must be popular (four to five stars
rating), must have at least 500 downloads per
week and must be developed in Java. For
properties of selected applications, see the link in
Section IV.

A. RQ1: Is the system restructuring
better when IRCRSS exists?

Case Study: Azureus 2.3.0.2

Our goal here is to find out whether using the
CB-DSS with the IRCRSS metric would improve
the result when compared to the manually selected
candidates used for refactoring in [20]. We found
that Azureus 2.3.0.2 fits the version analyzed in
[20] because it has approximately the same value
of CRSS (just a difference of 4 which could be
due to exclusion or inclusion of test classes). Both
the versions before and after this version have a
wide CRSS range gap to the reported value.

1) Approach:
We have simulated the refactoring with the

manually selected candidates by [20]. In this
simulation, we turned off the adaptive selection
algorithm and allow the CB-DSS to iterate
through the selected candidates as presented by
the authors. In the second simulation, we turned
on the adaptive selection algorithm and allow the
CB-DSS to automatically select candidates for
refactoring. This is determined by a combination
of tuning and sorting parameters. We performed
different simulations by varying the percentiles
(topKs) of the sorting parameters (SCC, CRSS
and FAN-IN) and the value of the IRCRSS metric.

2) Results and discussion
Table III lists the candidates selected by our

approach vs. the ones reported in [20]. The last
candidate
(org.gudy.azureus2.pluginsimpl.local.torrent.Torr
entImpl) is a multi-ton. Fig. 5 shows that at the 7th
refactoring, the selection made by the CB-DSS
has better results than the 10th refactoring with the
manual mode. It indicates that using a CB-DSS
with IRCRSS metric can significantly improve the
refactoring results. The result from Table IV
shows there is more reduction in the CRSS and
SCC values when IRCRSS is used and optimal
values for CRSS, FANIN, and SCC are chosen.
As listed in Table IV, the max SCC after
refactoring drops from 804 to 253 while for the
selection by [20], it drops to 333. Furthermore,
The reported number from [20] for frequency of

P7: A Decision Support System to Refactor Class Cycles

 210

classes with CRSS of 1000 or more is 400, which
is modestly comparable to the simulated number
of 427. Using automatic selection produced a
better result of 348 classes (18.5% reduction).

In all cases, the results from using the selection
parameters from the CB-DSS produced better
results but notably, with the IRCRSS metric.

We performed a statistical test using Wilcoxon
rank sum test [36] to determine whether the
fitness values (CRSS) by using the IRCRSS
metric is statistically and significantly lower than
the fitness values without(i.e. H0 = The fitness of
refactoring with IRCRSS is significantly higher
than the fitness without IRCRSS).

TABLE III. CB-DSS VS MANUAL CANDIDATES SELECTION
Order Candidates by [20] Candidates (CB-DSS)

1 org.gudy.azureus2.core3.logging.LGLogger org.gudy.azureus2.core3.util.Debug

2 org.gudy.azureus2.core3.config.COConfigurationManager org.gudy.azureus2.core3.config.COConfigurationManager

3 org.gudy.azureus2.core3.util.Debug org.gudy.azureus2.core3.internat.MessageText

4 org.gudy.azureus2.core3.util.FileUtil org.gudy.azureus2.ui.swt.Messages

5 org.gudy.azureus2.platform.PlatformManager org.gudy.azureus2.core3.util.FileUtil

6 org.gudy.azureus2.core3.internat.MessageText org.gudy.azureus2.ui.swt.Utils

7 org.gudy.azureus2.core3.util.TorrentUtils org.gudy.azureus2.core3.util.TorrentUtils

8 org.gudy.azureus2.core3.internat.LocaleUtil org.gudy.azureus2.ui.swt.components.shell.ShellFactory

9 org.gudy.azureus2.core3.util.DisplayFormatters org.gudy.azureus2.ui.swt.mainwindow.Colors

10 org.gudy.azureus2.core3.util.DirectByteBufferPool org.gudy.azureus2.pluginsimpl.local.torrent.TorrentImpl

TABLE IV. FITNESS VALUES FOR AZAREUS 2.3.0.2 USING THE CB-DSS

Fitness Before refactoring After Refactoring (N=10) p-value (!=0.05)

Selection by [20] IRCRSS=False IRCRSS=True N=15 (IRCRSS=True vs. IRCRSS=False)

Mean (CRSS) 703.67 341.11 326.51 295.46 0.011

Std. Dev (CRSS) 684.88 566.55 554.58 525.28

Max (SCC) 804 333 306 253

Fig. 5. Simulation steps and corresponding fitness values

We performed 15 refactoring (see column 6 of
Table IV). The mean CRSS from both options are
recorded separately and are then tested for
significant difference. The result of the test is
statistically significant at alpha = 0.05 (with p-
value=0.011). We thus reject the null hypothesis
and conclude that applying the IRCRSS metric
gives a significantly lower (better) result for this
application.

3) Manual refactoring:
The CB-DSS proposed nine singleton classes

and one multi-ton class as candidates. We then
manually refactored the code by using the actions
reported from the system. The entire refactoring
was completed in approximately 24 hours and was
done by one of the authors. There are instances
where an interface already exists for the
candidate. This case occurs for the non-singleton
class, TorrentImpl class that implements Torrent
(an interface). To refactor the proposed edges,
some new methods must be declared in the old
interface or in the proposed interface. A standard
maintenance practice is to introduce a new
interface that extends Torrent and add those
methods in the new interface. This is a kind of
interface upgrade. By doing so, we maintain a
downward compatibility of the old interface
(Torrent) and do not break the code. Otherwise,
declaring new methods in the interface, would

!""#

!$"#

!%"#

!&"#

!'"#

&""#

&$"#

&%"#

&&"#

&'"#

(""#

)# $# *# %# !# &# (# '# +#)"#

!
"#
$%
&'
()
)*
%

+,"-#'./(0$1%

,-./0/-123#45#6$"7#

,-./0/-123#45#,89:;;#

P7: A Decision Support System to Refactor Class Cycles

 211

force other children of Torrent to implement
them.

The new Java SDK59 version 8, however makes
it possible to declare such new methods with
empty or default implementations in Torrent.
This produces the same results, as the old classes
are not forced to implement the new methods.
This is significant because it simplifies
maintenance and refactoring activities. Rather
than defining a new interface because of
additional functions, it is now possible to define
new contracts as default methods and without the
burden of forceful implementation of new
methods by all children. Arguably, this feature can
also be a shortfall. First, it would be hard for
children to be aware of declared methods in the
interface because it is not required anymore.
Second, in terms of maintenance and upgrade, it
would be hard to keep track of changes
(extensions, etc.) that have been made as the
system evolves.

B. RQ2: Does tuning with IRCRSS
always improve the system’s
structure?

To answer this question, we simulate
refactoring on the fifteen applications. The results
in Table V demonstrate that it is possible to take
advantage of the IRCRSS metric in several
applications. There are cases such as Logisim,
JXplorer, Azureus, OpenRocket, and Hibernate,
where relatively high SCC reductions exist when
the measurement from IRCRSS metric is applied.
However, in a few applications (e.g. Megamek,
VidCoder and Squirrel-sql), there is no difference
in the results with the IRCRSS metric. In total,
there are improvements in the fitness values of 12
out of the 15 applications. We can conclude that
the IRCRSS metric can improve the code structure
in the majority of the cases. The metric (IRCRSS)
provides tangible and useful information to
clients/services that are being coupled. The
IRCRSS value is zero or nearly zero when the
published types of a class are tightly coupled with
other classes (in most cases, concrete classes and
not interfaces). This has implications for
maintenance and testing. A class/service that is

59 http://docs.oracle.com/javase/tutorial/java/IandI/defaultmetho

ds.html

heavily reused and is tightly coupled in its
published members would be difficult to reuse,
maintain and test.

C. RQ3: Can the use of IRCRSS
metric reduce restructuring and
refactoring effort?

During code restructuring, new
edges/relationships are created and some
edges/relationships are removed. To answer this
question, we have categorized the restructuring
effort by the number of edges (source → target)
that the CB-DSS proposes for refactoring. In
addition, we complement it by inspecting the
reported number of edges created by the system
after refactoring. We compare the fitness when
IRCRSS metric is applied to the fitness when it is
not. As shown in the column “%Reduction-
Refactoring Edges” in Table V, when IRCRSS
metric is used, the CB-DSS is able to reduce the
refactoring efforts. In six cases, there are
significant reductions in the refactoring edges. For
instance in Logisim and Hibernate; the refactoring
edges are reduced by 63.2% and 66% respectively
when IRCRSS metric is used. This is noteworthy
in the sense that refactoring fewer edges would
translate to a reduction in refactoring efforts.

We complement this result by reporting the rate
of reduction (%Edge Reduction) in the class edges
created in the applications when IRCRSS is
applied. As shown in this table, the total number
of edges after refactoring with IRCRSS reduced
reasonably in some applications (e.g. Logisim,
OpenRocket, Hibernate and JStock). In other
words, fewer relationships are created in the code
when IRCRSS is applied. This is related to the
explanation given above (RQ2). When the
signatures of published methods of a class are
tightly coupled to other concrete classes, it would
result in more relationships/edges being created
during decoupling/restructuring.
It is positive to have fewer classes and
relationships/edges during restructuring. The
fewer the number of edges that exist in an
application, the better it would be to reason about
the coupling situation in the application.

A. Qualitative Evaluation
We have carried out an interview with the

software maintenance engineer of our industrial

P7: A Decision Support System to Refactor Class Cycles

 212

partner to determine the usefulness and usability
of the CB-DSS. We drafted questions that covered
four areas namely; user experience, compatibility,
impact and functionalities. For user experience,
we asked whether the CB-DSS is easy to use,
whether it is easy to learn quickly, whether the
system’s functionalities are clear and
understandable and whether it will be used in the
future. Under compatibility we asked whether the
CB-DSS fits well with the work practices. In
terms of impact, we asked whether the approach is
useful for refactoring complex structural part of

the code, whether the approach is able to identify
good candidates for refactoring and whether the
actual code structure improved after refactoring.
Summary of Respondent’s views

User experience: The respondent views are
that the tool is easy to use and can be learned
quickly and individually with a proper help file. It
does not take time to learn how to use it. The
functionalities are clear and understandable and

TABLE V. REFACTORING BY TUNNING WITH AND WITHOUT IRCRSS METRIC
System Before Refactoring After Refactoring

IRCRSS=False, N=10 IRCRSS =True, N=10

Mean
(CRSS)

Mean
(SCC)

Max
(SCC)

 Mean
(CRSS)

 Mean
(SCC)

Max
(SCC)

 Mean
(CRSS)

Mean
(SCC)

Max
(SCC)

%Reduction-
Refactoring

Edges

%Edge
(Reduction)

Logisim 363.31 16.15 437 341.92 14.22 406 245.89 9.6 272 63.2 40.1

JXplorer 48.69 11 35 51.14 11.4 37 43.24 9.2 29 18.45 4.0

Azureus 703.67 22.82 804 326.51 8.51 306 295.46 7.37 253 3.12 4.1

OpenRocket 206.35 10.64 213 203.64 10.03 190 200.96 9.65 165 36.2 32.7

Hibernate 756.87 19.64 1442 756.9 19.62 1439 701.35 18.39 1254 66.0 57.7

Somtoolbox 252.1 21.23 229 206.26 14.71 185 201.85 15.06 178 48.1 2.9

ermaster 577.78 580 580 424.63 89.8 411 405.3 85.2 388 -1.7 -3.4

JStock 154.64 41 153 108.7 21 110 106.26 20.5 107 22.1 13.9

commApp 115.06 10.03 115 112.78 8.48 83 112.07 8.45 82 5.2 4.6

GanttProject 171.82 12.85 247 169.56 12.28 210 160.76 12.24 208 -10.9 5.2

Weka 255.31 11.76 232 54.85 3.63 13 54.76 3.61 12 1.63 0.4

Openproj 274.49 12.57 269 247.71 11.62 177 247.32 11.61 176 1.53 0.9

Megamek 1450.96 246.5 1464 1146.66 163.88 1205 1146.66 163.88 1205 0.0 0.0

VidCoder 17.22 6 14 5.60 2.17 3 5.51 2.2 3 5.2 5.1

Squirrel-sql 402.53 29.14 457 359.06 22.83 366 359.06 22.83 366 0.3 0.4

can motivate maintenance practices in the
company. The only challenging part is how to
choose the parameters for the algorithm.

Compatibility: The tool will fit maintenance
work practices and using the tool regularly can
help developers to have a picture of the code’s
structure and keep an eye on maintainability.

Impact: Respondent states that at present,
large parts of their code are not that maintainable,
looking at the code you can spot some areas that
should be changed (e.g. excessively large and
coupled classes), some bad coding practices and
so on. The tool will stimulate actions to correct
some of these problems. In addition, code reuse
would be easier.

P7: A Decision Support System to Refactor Class Cycles

 213

Functionalities: The approach is able to
identify good targets for refactoring and the code
structure improved after refactoring. The
respondent prefers a simulation tool rather than an
automated tool for this large scale restructuring.
This agrees with the feedback we got from three
other developers in the same company during our
presentation sessions.

6. Threats and Limitations
The CB-DSS is implemented on top of the

Jepend tool that uses BCEL to collect class
dependency data. Java’s specification uses type
erasure, therefore, information about type
parameters of generic types are not available in
the Java bytecode. In addition, we cannot identify
dependencies created by the use of reflection.
This is a common limitation of static analysis.
The accuracy of the CB-DSS depends on the
accuracy of the parser tool that generate the
dependency data.

The refactoring result by CB-DSS is
sometimes an approximation due to the use of a
new and generic interface. A candidate may have
an existing interface that only needs to be
upgraded during refactoring. The CB-DSS does
not take this into consideration during its
computation and simulation.

7. Conclusion
We have implemented a new metric, IRCRSS

and a cycle breaking decision support system
(CB-DSS) to resolve class dependency cycles and
improve the overall code structure. The evaluation
of the CB-DSS proved that it is useful and
implementable in many cases in real life systems.

Our contributions in this work are therefore as
follows:

1. Significant improvement on the strategy
employed in [20] by introducing a new metric
IRCRSS, to identify CRSS reduction between
an interface and its implementation. In this way,
it is possible to improve the structural quality of
the code and reduce the refactoring efforts

2. A cycle breaking system that proposes
executable refactoring actions. These actions are
fine-tuned for each proposed edge (source →
target), with details such as the strategy and
action to break the edge, and the actual code

location (method or field) where the strategy
should be applied in the source class

3. We demonstrate the validity of the CB-
DSS by the manual refactoring on industrial and
open source systems.

References
[1] Bass, L., P. Clements, and R. Kazman, Software

Architecture in Practice. 2003: Addison-Wesley
Longman Publishing Co., Inc. 528.

[2] Lakos, J., Large-scale C++ software design. 1996,
Redwood City, CA: Addison-Wesley Longman.

[3] Martin, R.C., Design principles and design patterns.
Object Mentor, 2000. 1: p. 34.

[4] Parnas, D.L., Designing Software for Ease of Extension
and Contraction. IEEE Transactions on Software
Engineering, 1979. SE-5(2): p. 128-138.

[5] Fowler, M., Reducing Coupling. IEEE Softw., 2001.
18(4): p. 102-104.

[6] Martin, R. Design Principles and Design Patterns. 2000;
Available from: http://www.objectmentor.com.

[7] Briand, L.C., Y. Labiche, and W. Yihong. Revisiting
strategies for ordering class integration testing in the
presence of dependency cycles. in Proc. 12th
International Symposium on Software Reliability
Engineering, (ISSRE 2001) 2001.

[8] Jungmayr, S. Identifying test-critical dependencies. in
Software Maintenance. 2002.

[9] Kung, D., et al., On Regression Testing of Object-
Oriented Programs. Journal of Systems Software, 1996.
32(1): p. 21-40.

[10] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi.
Criticality of Defects in Cyclic Dependent Components.
in 13th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM).
2013. Eindhoven, Netherlands.

[11] Oyetoyan, T.D., D.S. Cruzes, and R. Conradi, A study
of cyclic dependencies on defect profile of software
components. Journal of Systems and Software, 2013.
86(12): p. 3162-3182.

[12] Zimmermann, T. and N. Nagappan, Predicting
subsystem failures using dependency graph
complexities. ISSRE 2007: 18th IEEE International
Symposium on Software Reliability Engineering,
Proceedings, 2007: p. 227-236.

[13] Johnson, R., et al., Professional Java Development with
the Spring Framework. 2009: John Wiley & Sons.

[14] Walls, C., Modular java: Creating flexible applications
with OSGi and spring. 2009: pragmatic bookshelf.

[15] Dietrich, J., et al., Barriers to Modularity-An Empirical
Study to Assess the Potential for Modularisation of Java
Programs, in Research into Practice–Reality and Gaps.
2010, Springer. p. 135-150.

[16] Melton, H. and E. Tempero, An empirical study of
cycles among classes in Java. Empirical Software
Engineering, 2007. 12(4): p. 389-415.

P7: A Decision Support System to Refactor Class Cycles

 214

[17] Brown, N., et al. Managing technical debt in software-
reliant systems. in Proceedings of the FSE/SDP
workshop on Future of software engineering research.
2010. ACM.

[18] Eades, P., X. Lin, and W.F. Smyth, A fast and effective
heuristic for the feedback arc set problem. Inf. Process.
Lett., 1993. 47(6): p. 319-323.

[19] Melton, H. and E. Tempero, JooJ: real-time support for
avoiding cyclic dependencies. Proceedings of the
thirtieth Australasian conference on Computer Science,
2007. 62: p. 87-95.

[20] Melton, H. and E. Tempero, The CRSS metric for
package design quality, in Proceedings of the thirtieth
Australasian conference on Computer science - Volume
62 2007, Australian Computer Society, Inc.: Ballarat,
Victoria, Australia. p. 201-210.

[21] Peffers, K., et al., A Design Science Research
Methodology for Information Systems Research. J.
Manage. Inf. Syst., 2007. 24(3): p. 45-77.

[22] Martin, R.C., Granularity, C++ Report, 1996. p. 57-62.
[23] Gamma, E., et al., Design patterns: elements of reusable

object-oriented software. 1995: Addison-Wesley
Longman Publishing Co., Inc. 395.

[24] Cormen, T.H., et al., Introduction to algorithms. 2nd ed.
2001, Cambridge, Mass.: MIT Press. xxi, 1180.

[25] Fowler, M., Refactoring: improving the design of
existing code. 1999: Pearson Education India.

[26] Gobner, J., P. Mayer, and F. Steimann, Interface
utilization in the Java Development Kit, in Proceedings
of the 2004 ACM symposium on Applied
computing2004, ACM: Nicosia, Cyprus. p. 1310-1315.

[27] Steimann, F., W. Siberski, and T. Kuhne, Towards the
systematic use of interfaces in JAVA programming, in
Proceedings of the 2nd international conference on
Principles and practice of programming in Java2003,
Computer Science Press, Inc.: Kilkenny City, Ireland.
p. 13-17.

[28] Fowler, M. Inversion of control containers and the
dependency injection pattern. 2004.

[29] Shah, S.M.A., J. Dietrich, and C. Mccartin. On the
Automation of Dependency-Breaking Refactorings in
Java. in 29th IEEE International Conference on
Software Maintenance (ICSM). 2013. Eindhoven,
Netherlands.

[30] Dietrich, J., et al., On the existence of high-impact
refactoring opportunities in programs, in Proceedings of
the Thirty-fifth Australasian Computer Science
Conference - Volume 122 2012, Australian Computer
Society, Inc.: Melbourne, Australia. p. 37-48.

[31] Mens, T., G. Taentzer, and O. Runge, Analysing
refactoring dependencies using graph transformation.
Software & Systems Modeling, 2007. 6(3): p. 269-285.

[32] Van Der Straeten, R., V. Jonckers, and T. Mens,
Supporting Model Refactorings Through Behaviour
Inheritance Consistencies, in «UML» 2004 — The
Unified Modeling Language. Modeling Languages and
Applications, T. Baar, et al., Editors. 2004, Springer
Berlin Heidelberg. p. 305-319.

[33] Laval, J. and S. Ducasse, Resolving cyclic
dependencies between packages with enriched
dependency structural matrix. Software-Practice &
Experience, 2014. 44(2): p. 235-257.

[34] Melton, H. and E. Tempero. Identifying refactoring
opportunities by identifying dependency cycles. in
Proceedings of the 29th Australasian Computer Science
Conference-Volume 48. 2006. Australian Computer
Society, Inc.

[35] Hautus, E. Improving Java Software Through Package
Structure Analysis. in The 6th IASTED International
Conference Software Engineering and Applications.
2002. Cambridge, MA, USA.

[36] Fenton, N.E. and S.L. Pfleeger, Software Metrics: A
Rigorous and Practical Approach. 1998: PWS
Publishing Co. 656

Appendix B

 215

Appendix B: Secondary papers

Appendix B contains three other papers produced during this PhD research. P8 is
contained in the discussion part of the study. P9 and P10 contains discussions that are
related to Smart Grid systems

P8. Oyetoyan, T.D., Cruzes, D.S., Conradi, R., 2012. Can Reused Components

Provide Lead to Future Defective Components in Smart Grid Applications?,
Parallel and Distributed Computing and Systems : Software Engineering and
Applications (PDCS 2012). ACTA Press

P9. Oyetoyan, T.D., Conradi, R., Sand, K., 2012. Initial survey of Smart Grid
activities in the Norwegian energy sector - use cases, industrial challenges and
implications for research, ICSE 2012 International Workshop on Software
Engineering for the Smart Grid (SE4SG), Zurich, Switzerland, pp. 34-37.

P10. Oyetoyan, T.D., Conradi, R., Cruzes, D.S., 2011. Open Source Software for the
Smartgrid: Challenges for Software Safety and Evolution. NIK: Norsk
Informatikkonferanse 2011, Tromsø¸, Norway, pp. 239-243

 216

P8: Can Reused Components Provide Lead To Future Defective Components In Smart Grid Applications?

 217

P8: Can Reused Components Provide Lead To Future Defective
Components In Smart Grid Applications?

Published: In Proc. Parallel and Distributed Computing and Systems: Software Engineering and
Applications (PDCS 2012). ACTA Press

Tosin D. Oyetoyan

Computer and Information
Science Department, NTNU,

Trondheim, Norway
tosindo@idi.ntnu.no

Daniela S. Cruzes
Computer and Information

Science Department, NTNU,
Trondheim, Norway
dcruzes@idi.ntnu.no

Reidar Conradi
Computer and Information

Science Department, NTNU,
Trondheim, Norway

reidar.conradi@idi.ntnu.no

ABSTRACT
Smart Grid systems are kind of System of Systems with distributed and highly heterogeneous software
connected to provide various services. Early knowledge of defect prone parts is useful for improving the
safety and maintenance of these kinds of systems. We report the results of an empirical study of using
reused components to predict future defective components in a type of open source Smart Grid application
(transmission and operation domain of Smart Grid). Our results showed that reused components of this
Smart Grid application are strong predictors of future defective components. The model’s best predictors
gave an average recall of 0.92 (average precision of 0.406) when tested across three future releases. Which
implied that 92% of predicted defective components in the next release turned out to be defective. This
model can be employed to tailor quality assurance (QA) efforts in a way that blind spots are avoided in such
critical system and QA effectiveness significantly improved.
KEY WORDS
Component; Smart Grid; prediction model; empirical study; Component defect-proneness; Import types; System of
Systems.

 218

P9: Initial Survey of Smartgrid Activities in the Norwegian Energy Sector: Use Cases, Industrial Challenges
and Implications for Research

 219

P9: Initial Survey of Smartgrid Activities in the Norwegian Energy
Sector: Use Cases, Industrial Challenges and Implications for

Research
(Position paper)

Published: ICSE 2012 International Workshop on Software Engineering for the Smart Grid (SE4SG),
Zurich, Switzerland, pp. 34-37

Tosin Daniel Oyetoyan1, Reidar Conradi1
Norwegian University of Science and Technology

(NTNU), Trondheim, Norway
{tosindo,reidar.conradi}@idi.ntnu.no

Kjell Sand1,2
SINTEF Trondheim, Norway

kjell.sand@sintef.no

Abstract—Motivation: Understanding user requirements and technological challenges for smartgrid is
important to deliver competitive and visionary products and services, and thus to shape the direction of
research and development. Since smartgrid is still in the formation stage with many stakeholders, we should
quickly develop consensual and pragmatic international standards and strategies. Goals: To assess the
feasibility of proposed smartgrid requirements, formulated as 16 generic use-cases by an EU working group,
and to identify attitudes, products, services and future technologies. Subsequently, we want to provide
information on identified gaps between technologies, functionalities and stakeholders` views, and future
direction. Approach: We have designed and carried out an initial industrial survey in Norway on how
generic use-cases for smartgrid activities are interpreted by 6 representative stakeholders in the Norwegian
energy sector. To achieve this goal, we designed a survey with metrics built on and around these use-cases.
Results: The users’ work experience and views on the functionality expressed in the use-cases revealed a
gap in focus and culture. Also, there was no agreement on what the term “smartgrid” stood for. In addition,
the relevance of smartgrid functionalities is shown to vary over time and with different stakeholders.
Discussion: The pre-study results indicated that there is potential for using information from future data
collected from over 270 actors to bridge gaps and focus on smartgrid research and development.

Keywords: smartgrid usage; stakeholders, requirements; use- case; pre-study; survey; Norwegian energy
industry.

 220

P10: Open Source Software for the Smartgrid: Challenges for Software Safety and Evolution

 221

P10: Open Source Software for the Smartgrid: Challenges for
Software Safety and Evolution

Published: Norsk Informatikkonferanse 2011, Tromsø¸, Norway, pp. 239-243

Tosin Daniel Oyetoyan, Reidar Conradi, Daniela Soares Cruzes

Department of Computer and Information Science, NTNU, Trondheim, Norway.

Abstract
The growing Smartgrid behind today’s electricity supply introduces many challenges. One
aspect is the management of various software that drive these new systems at different domains
(generation, transmission, distribution and consumption) and nodes of the Smartgrid network.
Managing such concerted, distributed, evolving and heterogenous System of Systems requires
a methodical approach to support more standardized processes and products to reach the
Smartgrid vision. This paper presents a recent research project focusing on assessing the
adoption of OSS for the Smartgrid by investigating its safety and evolution criteria.

 222

..

..

..

..

..

..

..

..

GODKJENNING
FRA

OPPNEVNT SENSURKOMITE
av avhandling for graden

PERSONALOPPLYSNINGER

AVHANDLING

SENSURKOMITEENS VURDERING

Kandidat:

Tittel på avhandlingen:

Trondheim, den

navn underskrift

navn underskrift

navn underskrift

navn underskrift

Avhandlingen er bedømt og godkjent for graden philosophiae doctor
Avhandlingen er bedømt og godkjent for graden doctor philosophiae

Institutt:

Tosin Daniel Oyetoyan

Department of Computer andInformation Science

Dependency Cycles in Software Systems: Quality
Issues and Opportunities for Refactoring

