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Continuous User Identification

Abstract

The objective of this work has been to investigate the possibility of implementing a Continu-
ous Identification system using Behavioural Biometrics, taking advantage of the high acceptabil-
ity and low cost offered by this method. The Behavioural Biometrics chosen for this work is
Keystroke Dynamics. Continuous Identification is proposed to be performed after a user is locked
out in a Continuous Authentication system, utilizing the same keystroke dynamics.

Three features were considered when extracting the keystroke dynamics: duration, latency,
and relative frequency of each keystroke action. The data was also categorized with respect to
software context. Two distance metrics, namely Manhattan and Euclidean, were implemented
and compared both via a Mean To Mean and via a One To Mean method. Two score fusion
methods were utilized: weighted average mean with fixed weights and with variable weights.
The analysis also included the effect of different data chunk sizes, simulating the number of
actions before a user is locked out.

Th best results obtained was rank-1 identification accuracy rate of 60% after 50 actions and
72% after 1000 actions, when using duration-latency combination, with no categorization, Mean
To Mean comparison, and Manhattan Distance. This setting was then applied on the results from
a Continuous Authentication system. To the best of our knowledge, this work is the first to
address Continuous Identification based on Behavioural Biometrics.
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1 Introduction

1.1 Topics Covered by The Project

In the past few decades, there has been a striking development in various areas of information
technology. Computerization has revolutionized different aspects of life and information man-
agement is one of the areas which has been under notable changes and developments.

Inevitably, with these developments the need for security has also increased. Threats to con-
fidentiality, integrity and availability of information [2] require different information security
mechanisms in order to mitigate them. When it comes to security, one of the challenging areas
that demand attention is access control. It is defined as :

"The prevention of unauthorized use of a resource, including the prevention of use of a resource in
an unauthorized manner"1

Generally, to gain access to information resources, an authentication mechanism is performed.
That is, a process of verifying if a claim for genuineness is true or not. There are different method-
ologies for implementing an authentication system. These are mostly classified into Static or
One-time authentication, and Continuous or All-time authentication.

The simplest and most frequently used authentication mechanism is a static user name and
password scheme. However, the password can be revealed, forgotten or stolen. Biometrics is one
of the areas that can provide higher levels of security by taking advantage of uniqueness and
permanence. Biometric Identification is a process of determining who is claiming to be the gen-
uine user by means of utilizing Biometric characteristics of that person. These can be described
as Physiological and Behavioural characteristics of a human. Examples for Physiological Biomet-
rics are fingerprint, iris, face etc and for Behavioural Biometrics are the way a person types on a
keyboard known as keystroke dynamics, mouse dynamics, gait etc.

In Biometric Identification, the identity of the person who claims to be the legitimate user is
found out. Biometrics can be used for both Static and Continuous authentication. The advantage
of Continuous Authentication over Static Authentication, as suggested by its name, is that the
user is identified in a continuous manner in order to find out who he or she is.

1.2 keywords

Biometrics, Continuous Authentication, Biometric Identification, Biometric Authentication, Keystroke
Dynamics

1.3 Problem Description

A Continuous Biometric Authentication (CA) system monitors the access control to a system
constantly.

1RFC4949, page11, access control, part4

1



Continuous User Identification

A user of a system is usually first authenticated by a Static Authentication process such as a
username/password scheme or a Static Biometric Authentication system. A Static Authentication
is a one-time authentication performed at initial log on to the system. In situations where the
user leaves the computer device, there is a possibility of impersonation by an impostor user.

To avoid this, one way is to continuously monitor the user’s behaviour such as typing rhythm
[3] or the way he uses the mouse [4] etc. through a CA mechanism. At any time, the current
user’s behaviour is compared to the stored behaviour or template. A level of trust is defined which
is continuously adjusted based on this comparison. With any impostor action the trust decreases
and with any genuine action it increases. At some point, after a number of impostor actions the
trust level falls under a certain limit and the user is locked out. To increase the accuracy of the
model, it is recommended to use two or more Biometric factors so the authentication will be
based on all these factors. The question that arises here is the identity of the locked out user.

It might happen that the genuine user is locked out by mistake. But more importantly, iden-
tifying the impostor user can play a significant role in forensics investigations of a cyber crime.
Therefore, in addition to the CA process, there is need for a new concept of Continuous Identifi-
cation process to identify the user who was just locked out. This master thesis will propose a way
of designing and implementing a Continuous Identification system based on keystroke dynamics.
To identify the impostor in a synchronized manner with a CA system, there is need to integrate
the identification system into the CA system.

1.4 Justification and Benefits

In case of any impersonation attack on a system, identifying the attacker can be a great aid to
the forensic investigation. In a CA system, an impostor access can be found out and the impostor
user is locked out of the system, prohibiting him from attempting more illegal actions.

This helps the system to achieve an additional level of protection from such attacks and
also if the account holder is the genuine user he will not be subject to defamation anymore.
In addition, the use of Behavioural Biometrics, along with the high security characteristic of
Biometrics, offers a more acceptable and cost efficient solution. It is acceptable due to the fact
that all the authentication process is anonymous and does not require active interaction with
the user. And, the general property of most Behavioural Biometrics is that there is no need for
additional costly hardware, which makes this method cost efficient.

The Biometrics used in this work is the keystroke dynamics. The result of this research can
boost the progress in practical use of CA in order to provide a more secure, low cost, accurate
authentication solution.

1.5 Research Questions

1. Is it possible to implement a Continuous Identification system using behavioural characteris-
tics of a person? If yes then:

2. To what extent can this system be implemented?

3. What Behavioural Biometric features can be utilized in such a system?

4. How is such a system integrated into a CA system?

2
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1.6 Planned Contribution

The planned contribution of this research is to investigate the possibility of implementing a
Continuous Identification module based on keystroke dynamics. The CA system is a keystroke
dynamics based system and is based on the ideas mentioned in [5] and [6]. To design the iden-
tification system, it must be taken into account what keystroke features are required. Also the
effect of software context should be considered, i.e. the software used by the user when the
keystroke actions were taking place.

3
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2 Biometrics in Authentication and Identification

2.1 Biometrics

Biometrics are unique features that make us perfectly distinguishable from other humans. Bio-
metrics are instances of us and we can be recognized by them. Biometric Recognition, in a simple
form , can be defined as recognizing an individual based on his/her Biometric characteristics.

The biggest advantage of using Biometrics over the other two traditional methods mentioned
above is fraud resistance. It can be much easier to impersonate a person by stealing their pass-
word or their identity card rather than impersonating them by forging or mimicking their Bio-
metric features.

There are two types of Biometric characteristics: Physiological and Behavioural. Physiological
Biometric characteristics are those related to the physiological characteristics of a human being
such as fingerprint pattern, iris pattern, facial features and DNA. Behavioural Biometrics are the
characteristics related to behaviour of an individual. The way an individual talks (speech), walks
(gait), types on a keyboard (keystroke dynamics), works with mouse (mouse dynamics) are some
examples of Behavioural Biometrics.

Every Biometric feature must contain some properties to be considered for authentication.
These properties [7] are,

• Universality: It exists for every individual

• Uniqueness: It is unique in every individual

• Permanence: It remains unchanged overtime

• Collectability: It can be quantified

• Performance: When used in recognition process, this process can be performed fast and pro-
duce results with high accuracy.

• Acceptability: Level of acceptability by people

• Circumvention: It is related to the fraud resistance

Table 1 is adopted from [7] and represents the degree of strength in each of the seven prop-
erties for some of the Biometric modalities.

Although all Biometric characteristics used for authentication have the properties mentioned
above, the degree of strength in each property varies between the them. There are some modal-
ities who have a high level of some property and are low in another. For example, Signature has
a ’high’ degree of circumvention which means it is easy for an impostor to forge a signature.
However, it has a high degree of acceptability; probably because people are more willing to give
their signature sample compared to e.g. their DNA sample.

4
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DNA High High High Low High Low Low
Ear Medium Medium High Medium Medium High Medium
Face High Low Medium High Low High High

Fingerprint Medium High High Medium High Medium Medium
Gait Medium Low Low High Low High Medium

hand vein Medium Medium Medium Medium Medium Medium Low
Iris High High High Medium High Low Low

Keystroke Low Low Low Medium Low Medium Medium
Retina High High Medium Low High Low Low

Signature Low Low Low High Low High High
Voice Medium Low Low Medium Low High High

Table 1: Comparison between the Biometric modalities based on the Biometric properties

2.2 Biometric System

A Biometric system is defined as: "A system for the purpose of the Biometric recognition of
individuals based on their behavioural and biological characteristics."1

There are 4 components in every generic Biometric system [8]:

• Sensor: For Biometric sample (data) collection such as fingerprint, iris, etc.

• Feature Extraction: For extracting Biometric features from the collected data

• Comparison: Extracted features are compared with the features stored in the database and
a score/s is obtained

• Decision-making: Based on the comparison score, a decision is made on acceptance or re-
jection of an identity, or in case of identification the identity is built. [8]

Every Biometric system consists of ’at least’ the above components and works in at least one
of the following three modes at a time:

• Enrollment

• Authentication

• Identification
1ISO/IEC 2382-37, pt, 37.02.03, First edition, 2012-12-15
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2.2.1 Enrollment

In enrollment mode, a Biometric sample is collected through a user interface or sensor. Then a
quality checking process performed where the quality of the sample is verified and the data is
preprocessed in order to remove excess parts. Next, the features are extracted and they constitute
a user’s template. The template is then stored in the database of templates. An extra component
called Quality Checker is involved in this process.

Figure 1 [7] illustrates a block diagram of enrollment process in a typical Biometric system.

Figure 1: Enrollment process of a Biometric system [7]

There can be two types of enrollment, Positive and Negative [9]. Positive enrollment is a pro-
cess where identities of authorized users of the system are created. These templates can be used
later for authentication and positive identification of the users eligible to use the system. On the
the other hand, negative enrollment are used to build the identity of the users, unauthorised to
use the system [9].

2.2.2 Authentication

Biometric Authentication is a process of verifying an identity through Biometric characteristics.
In authentication mode, a Biometric sample is collected through the sensor, pre-processed to
remove any excess parts of it. From the pre-processed data, features are extracted. Then, through
a one-to-one comparison algorithm, extracted features are compared with the features stored in
the template belonging to the actual identity. Comparison process usually results in a score which
represents the degree of similarity between the presented sample and the template of the actual
identity. A threshold is defined for accepting or rejecting the claim to that identity. Finally, based
on this score and the threshold, a decision is made on accepting or rejecting the claim [7].

Figure 2 is a block diagram of authentication process in a Biometric system.
There are possibilities where a false identity is accepted (false acceptance) or a true identity is

rejected (false rejection). The reason for a false acceptance or rejection could be a performance
issue in some part of the authentication system. Hence, the performance of a Biometric Authen-
tication system can be measured as False Acceptance Rate (FAR) and False Rejection Rate (FRR).
FAR is defined as ratio of number of authentications with identity claims falsely accepted to total
number of impostor authentication attempts. FRR is defined as ratio of number of authentica-
tions with identity claims falsely rejected to total number of genuine authentication attempts
[10].

Some research [11] provide with the system performance using FAR and FRR, whereas, some
research [12] prefer to use Equal Error Rate (ERR). It is defined as proportion of FAR to FRR at

6
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Figure 2: Authentication process of a Biometric system [7]

an operating point on ROC curve where FAR=FRR [10], that is the point of intersection of FRR
and FAR curves on ROC.

2.2.3 Identification

Often, there is a confusion when using the terms authentication and identification. These two
terms are frequently used as synonyms in many documents. But, they actually differ from each
other. Authentication is "to verify an identity" 1i.e. is this the person who he claims to be?
Whereas, identification means to "prove one’s identity" 1 i.e. who is this person? In identifica-
tion, after sample collection, preprocessing and feature extraction, a one-to-many comparison is
performed. That is, the sample of unknown user is compared to every template in the database.
With every comparison a score is obtained. Based on the decision criteria e.g. the template with
minimum comparison score [13] is selected as the identified template. There can also be a thresh-
old for identification and if none of the scores fall below this threshold, a not identified verdict can
be made. Figure 3 represents a block diagram of identification process in a Biometric system.

Figure 3: Identification process of a Biometric system [7]

Performance of an identification system can be determined by a metric called Identification
Rate or Identification Accuracy Rate. It is defined as proportion of number of successful identifi-
cations to total number of identifications. Most of the research on Biometric Identification [14],
report their performance using Identification Accuracy Rate.

1http://www.oxforddictionaries.com

7
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2.2.4 Multi-modal Biometrics

There are many issues related to the accuracy and performance of uni-modal systems i.e. sys-
tems using only one Biometric characteristic. These issues include, the sensor capturing issues,
overlapping of feature spaces among multiple users, spoof attacks etc [15].

These issues can be resolved by utilizing of multi-modal Biometric systems. A multi-modal
Biometric system is the system that operates using either of the following or combinations of
them:

• Multiple sensors such as two fingerprint sensors.

• Multiple Biometric characteristics such as keystroke and mouse.

• Multiple processes such as representation, comparison algorithms, etc. [16]

As explained in the previous section, there are 4 main components in a basic Biometric system.
In a multi-modal Biometric system however, another component is added called fusion. Fusion
process can be performed at various levels:

• Feature level

• Score Level

• Desicion level [17]

Figure 4 represents a multi-modal Biometric system which utilizes two types of Biometric
factors: face and fingerprint. Fusion at all three levels are shown:

8
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Figure 4: A multi-modal Biometric system with three levels of fusion
[17]

Fusion at feature level includes combining of the features extracted from multiple Biometric
characteristics and combine them into a single feature set. Fusion at score level, includes combin-
ing the scores obtained from separate comparison(matching) processes. Fusion at decision level
is defined as combining the multiple decisions obtained as a result of multiple authentications
into one [17].

9
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3 Related Work

In this chapter, an overview of the related work is given in order to present the current state of
the art. We shall review the past research on the Continuous Authentication(CA), Continuous
Identification (CI), Keystroke Dynamics (KD) and methodologies used based on our research
questions. Since the focus of this work is on Behavioural Biometrics we will emphasize more on
Behavioural Biometrics and more specifically KD.

3.1 Keystroke Dynamics

Keystroke Dynamics is a Behavioural Biometrics which describes a person’s typing rhythm [18].
One of the earliest research on application of KD in authentication was in 1980. By hypothesizing
that telegraph operators have unique tapping styles, Gaines [19] performed a research in order
to investigate the possibility to authenticate people by the way they type. Since then, there has
been much research [20] [21] [22] [23] [24] [25] on this topic.

A person’s typing can be characterized by various features obtained from the collected infor-
mation such as timing information including time of pressing and releasing, amount of pressure,
etc. Most of the data used in KD authentication is based on timing information. The two basic
time based features are called Duration, which is the time between pressing down and releasing
a key, and Latency, which is the time from releasing a key and pressing down the next key [3].
Other timing information include, Up-Up time which is the period between releasing a key and
releasing the next key and Down-Down time which is the period between pressing a key and
pressing the next key. However the most popular features are based on durations and latencies.
There can also be other features such as the amount of pressure on the keys [21] or the features
adapted from duration and latency such as duration of digraphs i.e. two simultaneous characters
or trigraphs i.e. three simultaneous characters [26].

Figure 5: Keystroke Durations and Latency

10
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3.1.1 Static Vs Free Text

There are two types of KD when it comes to type of input: static and free text [27]. Static input
means the user input to the authentication process is fixed. The input is the same for every user
such as a fixed user name and password for participant. Many works have considered fixed text
input [28] [29] [18].

Clarke et al. [29] performed a research on authentication using numerical key paths on mobile
phones. They collected a set of fixed PINs and numerical passcodes data from 16 participants.
Using Neural Networks classifiers for the performance analysis they obtained an EER of 5.5% for
4 digit PIN and 3.2% for 11 digit passcodes.

In a work by Maxion et al. [18], focused on user authentication on mobile phones, authors
analyzed data of 28 participants. Subjects were each asked to type a fixed 10 digit code 50 times.
Choice of the fixed input was depending on various factors such as the positions of the digits
on the keyboard and positions on the corresponding code. Using Random Forest classifiers they
obtained an EER of 1.5%.

There also many works based on free text. In the analysis based on the free text, the input
varies for everyone, so the input text typed is unexpected. The input text varies for every one
and the user is free to enter anything. Analysis based on free text is mostly performed for a
periodic or a CA [10]. Because, in a CA, a real-time analysis of keystrokes is performed. Hence,
the next action of the user, that is the next input, is not predetermined. The text being dealt with
is therefore a free text.

Gunetti et al. [11] believed that using short static text is not a good way of keystroke analysis.
Because the timing information can be best analyzed when the frequency of typed characters is
higher, thereby, achieving a higher performance rate. They performed a research on keystroke
analysis with free text of 800 characters long on average. They defined two measures called
A for measuring the degree of similarity and and R for measuring the degree of dissimilarity.
According to [11] these two measures are complement of each other and perform the best when
combined. Hence the best result they achieved when combining these two measures was an FAR
of approximately 3.2% and an FRR of approximately 0.02%.

Monrose et al. [14] performed a research on KD authentication. They used both free text
and static text data. Fixed data comprised of a set of words was given to the participants and in
addition, participants could also type their own words. Using weighted probability classifiers they
got their best performance with 90% correct recognition when comparing static input with static
text template. When a static text was compared to free text, they got a 44% correct recognition
rate and when authenticating using free text they got 23% of correct recognition rate. However,
these performance rates were affected by various factors such as uncontrolled data collection
environment and discarding around 50% of the collected data as a result of an outlier removal
process.

In a research on keystroke analysis of free text in an uncontrolled environment, one of the
factors is the type of the keyboard. Kang et al. [12] performed a research on keystroke authen-
tications of long text on various keyboards such as a traditional keyboard, soft keyboard and
mobile phone keyboard. They collected keystroke data of 35 people. Data consisted of long text
inputs of more than 3000 characters. They found out that increasing the text length improves
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the performance as they had an EER of 5.6% when performing analysis with 1000 character text
length on traditional keyboard compared to 24.1% when performing the same analysis with 100
characters.

One of the challenges regarding Behavioural Biometrics, especially KD, is that the user’s be-
haviour is from time to time affected by various environmental factors such as noise, type of the
hardware[25] and emotional factors such as stress [30]. Therefore, if for instance, a genuine
user is stressed his typing cadence is also affected by this stress and if this situation occurs at a
period of verification the user may be wrongly detected as impostor causing a false rejection.

With this assumption, several works[25][4][5] has been performed in an Uncontrolled en-
vironment, where there is no control on how the user types, the time, the place, his health
conditions, hardware used etc.

3.2 Continuous Authentication and Identification

Authentication is not only limited to the login time where verifying an identity is done once only,
i.e. Static Authentication. Static Authentication is usually performed at initial login or re-login
processes, as opposed to CA, which is the way of constantly verifying an identity.

Similar to Static Authentication, CA can be performed using both physiological such as face
[31] [32] and ECG [33] and behavourial modalities such as KD [3] and mouse dynamics [4]
[34]. There have also been research which have used multi-modal Biometrics for CA citeSim2007
[35]. However, for some modalities such as fingerprint and iris, the process is very difficult. The
reason is simply the collectability issues in a continuous manner regarding such modalities. Also,
the cost of additional hardware is high. Hence one of the merits of Behavioural Biometrics i.e.
the cost efficiency [36] makes behavioural modalities a better choice for CA.

In one of the earliest attempts to continuously verify the user’s identity based on KD, Shepherd
[36] introduced a continuous keystroke authentication system based on the timing information
obtained by examining some typing characteristics of a user such as duration and latency. The
possible features he introduced such as key pressure, typing error rates etc made his work a
baseline for future research.

There are two different definitions of a CA system in terms of continuity. One definition is a
system where the authentication is performed at every fixed period of time e.g. 1 minute actions
e.g. after every 500 actions or based on other criteria such as after a silence period [37].

Zheng et al. [37], used this definition for implementing a CA system based on mouse dy-
namics. The system would verify the user identity in their defined unit of "one block" which is a
series of number of move and click events. A problem with their proposed system was that the
total time for verification was proportional to the length of block or more specifically the num-
ber of mouse movements and clicks in a block. Thus the length of block could be large thereby
increasing the verification time.

Monaco et al. [23], introduced a "burst" CA system that would verify the user with a few
keystroke actions after a period of silence. They believed that the chance of hijacking the session
is higher after a pause period. Because this is usually the time when the actual user is not working
at his station and is busy somewhere else. They obtained an EER of 1% when analyzing only 14
samples.
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Ahmed et al. [25] tried to continuously authenticate users based on single key duration and
digraphs. One of the challenges in when it comes to free text is the problem of missing entries
where has not been used by the user. In order to solve this problem they used Neural Networks
as prediction classifiers to predict these values based on the other keys recorded [25]. They
obtained an FAR of 0.0152% and FRR of 4.82%

The above definition of CA in fact refers to periodic or a discrete authentication since authen-
tication is performed between fixed periods and not within each period. Hence, if for instance,
authentication takes place every minute or after 500 actions there might be a possibility of at-
tacks during that one minute or before 500 actions since some impostor actions can be done
within seconds [31].

3.2.1 Bours and Mondal Model

A more meaningful definition of CA in term of continuity, was first introduced by Bours [3]. Here
the authentication is performed with every action by the user. This action can be a simple button
press on a keyboard. In his paper Bours defined an action as a single key press and release. That
is after every key press and release the authentication takes place [3]. Based on this definition,
Mondal and Bours [4] modeled a CA system based on mouse dynamics. They used different
features of the mouse such as acceleration, direction etc.

A CA system was designed by Bours and Mondal [5] based on the Bours definition and with
a use of KD. In this system, a user is authenticated based on every keystroke action he performs.
That is, there are comparisons on every user’s action and the actual logged in user’s template. If
after several actions and based on the comparisons, the users characteristics are found to be very
distant from the logged in user, he will be recognized as an impostor user and locked out of the
system. To define the lock out criteria, a concept of Trust was defined. Initially a trust value would
be set to the maximum, indicating the maximum trust of the system to the current user. Every
action causes a change in the trust value where impostor actions reduce the trust and genuine
actions either increase the trust value or if at maximum trust, it will remain at maximum. [5]

To measure the performance of this system two metrics called Average Number of Impostor
Actions (ANIA) and Average Number of Genuine Actions (ANGA) were introduced [4]. ANIA is
defined as the average number of actions that can be performed by an impostor before he is
locked out. ANGA is defined as average number of actions that can be performed by a genuine
user before he is locked out (falsely). The aim is to keep ANGA high so that a genuine user is
never or very seldom locked out and keep ANIA to the lowest value possible so that an impostor
is locked out as soon as possible.

This definition of CA provides a higher accuracy by lowering the decision making criteria to
a more detailed level, and security by means of verification as early as possible. Because of the
confidentiality, cost efficiency and anonymous monitoring nature indicating a good acceptability,
CA has a great potential to be used as a complementary security measure to the Static Authen-
tication techniques. Our assumed CA system to perform this research has been based on this
model.
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3.2.2 Continuous Identification

An important question is now: who is the user just locked out? To answer this question a new
concept called CI is introduced. It can be defined as a Biometric Identification process where a
locked out user is identified. Unlike CA process which is performed with every action, a CI is
done only when a user is locked out.

Most of the Biometric Identification systems are static [38] [39]. However, There have been
few attempts to identify a person based on his/her continuous biometric data. But, these works
have been all based on physiological biometric modalities such as electrocardiogram (ECG) sig-
nals [40]. To the best of our knowledge, this work is the first to address CI based on Behavioural
Biometrics.
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4 Data Description

4.1 Data Collection

The Data set consists of data of 51 people, collected within 5 to 7 day. They were of different age,
gender, profession and academic background and nationality. But all the participants were above
18 years of age. The environment where the data was collected was uncontrolled [6]. They could
be anywhere, for example at home and do any activity using mouse and keyboard at any time.
To collect the data we used a software called BeLT which was developed at GUC [1]. Participants
were asked to perform their usual daily tasks during a 5 to 7 day period. The only request from
them was to run the BeLT only when they are using the computer themselves. Therefore, in case
somebody else was going to work with the same computer they could pause the program and
resume as soon as they started to work again. However, we actually don’t know if they have done
the same.

4.1.1 BeLT Software

Behavioural Logging Tool (BeLT) is a GUI based Windows application which captures keystroke,
mouse, and software interaction events as well as hardware events. Collected data can be saved
offline on the client’s computer or transmitted to a remote server. BeLT does not store sensi-
tive data such as passwords [6]. We give a brief description of the BeLT functionality and the
produced output format.

The main objective for development of BeLT is that there is a need for a logging tool that
records Keystroke,mouse,software interaction and hardware events all together in a synchro-
nized manner [1]. Most of data collection software such as RUI [41], MouseTrack [42] or WIDAM
[43] work only with one of these modalities.

BeLT is a fast and a user friendly software. When started, it runs in the background and does
not need any specific interaction unless it is required to pause or stop it. A session is defined as
the period the BeLT is started until it is stopped or user loges of or shuts down the computer.

BeLT architecture consists of different modules: Graphical User Interface (GUI), data cap-
turing module, data processing module, update service module and transmission module. Since
explaining these modules in details will take us far from the scope of this research, we will only
emphasize on some features of the BeLT and the collected data format. Due to the fact that we
did not consider hardware and mouse events, we thus, ignore these two and describe the others.
When BeLT is started, any event related to the hardware, software, keystroke and mouse actions
is recorded simultaneously. Recording Time stamp is according to ISO-8601 and sampling period
is 16 milliseconds [6].

Generally, for every event regardless of its type the following information are registered by
BeLT:

• Event ID: A unique ID for each event in that session
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• Event Type: Type of that event

• Action: Action performed in that event

• Value: Input value

• Time: Time of occurrence of that event

• Relation: Event ID for the parent event related to this event

• Flag: Depends on type of the event

• Additional field: If an event was repeated

We shall now describe the above properties with respect to each event type:

Keystroke Events

Table 2 shows the format for keystroke events recorded by BeLT. Each row indicates a different
Event Type.

Event ID Event Type Action Value Time Relation Flag Additional Fields
n K D value T Event ID flag -
n K U value T Event ID flag Count

Table 2: BeLT CSV format for KD events [1]

Event ID field is global and is independent of the event type. Event type is always ’K’. Generally
there are two types of Keystroke events: Key-Down and Key-Up. Hence, action field is either ’U’
indicating Key-Up or ’D’ indicating Key-Down. Value field contains name of the pressed key. Time
field contains the time where the key is pressed or released depending on the action. Relation
is the field containing the Event ID of the parent event. If the action is ’D’ then the relation is
the software interaction Event ID under which the key is pressed. For every ’U’ event there is
an associated ’D’ event since Key-Up event occurs as a result of a Key-Down event. Therefore,
if the action is ’U’, then the relation is the Event ID for the associated Key-Down event related
to this Key-Up event. Flag field indicates if any combination keys have been used. Flag was a
decimal equivalent of a 6 bit binary string. From right to left, bit 0 to 6 would signify alt, ctrl,
shift, Windows, CapsLock, NumLock and ScrollLock respectively. If any of these keys were active
at the time a key event occurred, the bit for that key would be set to 1, otherwise 0. This would
give the binary string different values. For example in case of using only alt, the string would be
000001=1 and if alt+ shift was used, then it would be 000101=5. Finally, the last field contains
additional information such as if the key was pressed and held, what is the equivalent number of
keys when that key was pressed and released repeatedly. However, this option is available only
for Key-Up events. [6].

Software Events

The second type of the event we are going to look at is the software event. Table 3 shows the
format for software events generated by BeLT.
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Event ID Event Type Action Value Time Relation Flag Additional Fields
n S Type Process name T Event ID Elem type Elem desc/ID/rectangle

Table 3: BeLT CSV format for Software events
[1]

Similar to Keystroke events, first element is the Event ID. An ’S’ in the second field indicates
that this is a software event and the third field indicates the event type. There are various types
of software events [1] such as:

• Object Change State (OCS): Change in the state of an element such as checking a radio
button

• Focus Changed (FC): When a software window or any other element is focused on

• Visual Change (VC): When a software window is minimized, maximized or restored

• Element Invoked (EL): When a button is pressed or any other trigger is fired.

• Menu Opened (MO): A menu is opened or another menu item is focused on

• Text changed (TC): Text is changed

• Menu Mode Started (MMS): Viewing a menu for the first time

• Window Opened (WO): A window is opened

Next field contains the process name for that software. Element ID contains the Event ID for
the element that caused this software event to occur. For example, if clicking on a link which is a
mouse click event has caused this software event to occur the the Event ID for that mouse event
would be stored. Flag field’s value depends on the type of software event. It can indicate the
state for that element, or the type of an element according to Microsoft Control Type Identifiers
(CTI)1. Similarly, the last field can also take different values. It can take the Element Description
i.e. the purpose of the element, Element ID which is a unique number, identifying that element
and Rectangle indicating the screen coordinates for that element. [1]

4.2 Pre-processing

In this section, the pre-processing of raw data before extracting features will be described. Raw
files are the CSV files generated by BeLT . As explained before, the environment procedure for
data collection was uncontrolled. Therefore, the amount of collected data varied between every
participants.

4.2.1 Categorization

One of the objectives of this work was to see if the software application context affects the iden-
tification results. Hence, in addition to test with the overall data, we also decided to include

1http://msdn.microsoft.com/en-us/library/windows/desktop/ee671198%28v=vs.85%29.aspx. last accessed
12-05-2015

17

http://msdn.microsoft.com/en-us/library/windows/desktop/ee671198%28v=vs.85%29.aspx


Continuous User Identification

in the analysis the type of the software under which the user had typed the data. Initially, we
created 6 categories, namely: browsing, chat, programming, documenting, gaming and uniden-
tified applications. Unidentified category is the one where keystrokes belong to an unidentified
software.

However, since the experiment was performed in an uncontrolled environment, there was a
risk that there would not be sufficient amount of data collected for all the categories. Hence, we
combined some of these categories and the following categories were finally obtained:

• Internet: Consist of keys typed when using browsers and chatting.

• Documentation: Consist of the keys typed when using word processors and other documen-
tation software.

• Others: Consist of the keys typed when gaming, programming and using unidentified appli-
cations.

From the raw data, only keystroke events and Focus Change FC software events were required
for the purpose of this work. As explained before, software FC event would be logged if focus was
on that software window. Thus, any key-Down event would have that FC Event ID in it’s relation
field. This would indicate that any key typed, would be in that software context. For example,
if there was an FC event related to skype.exe (belonging to Skype) with event_ID=12, then any
Key-Down event x with relation=12 would indicate that x have been typed in the Skype.

By omitting other events such as mouse and hardware and the rest of software events, the
pre-processed file would consist of software FC events followed by key stroke events in the same
format as the raw file.

4.3 Feature Extraction and Template Creation

Before extracting features, software events had to categorized in one of the three categories
mentioned above. Finding the category was a manual process. We extracted software process
name from the value field of the software events in all the pre-processed files. Then, we searched
the web to find the software name corresponding to the executable file name. For example,
chrome.exe belongs to the Google Chrome browser. Therefore, this file belongs to the Internet
category.

From the preprocessed files we extracted the following features:

• Duration of keys

• Latency of keys

• Relative Frequency of each key
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4.3.1 Duration

Duration is defined as the timing difference between a Key-Up and Key-Down events for a single
key.

Let ’k’ be any entered single key then the duration of k is as follows:

Durk = TUk − TDk

Where TU is the Key-Up time and TD is Key-Down time for k.
Only the duration of alphabets was considered. The duration was case insensitive, for example

’A’ and ’a’ would be considered the same. As explained, the sampling period for recording was 16
milliseconds. Hence, if a key was pressed and released in less than this period, the Key-Up event
would not be recorded by BeLT or the time for the Key-Up event would be equal to the time for
the Key-Down event. In such cases the duration was considered to be 15 ms.

It is possible that a data point has a large deviation from other data points in a data set,
thereby, increasing the standard deviation and consequently increasing the error rate. These
data points are called outliers. Outliers are defined as "the observation/s that deviate much from
other observations to arouse the suspicions that they are generated by another mechanism" [44].

In our case, the outliers would be very high or very low duration values. To detect such values
there are many methods. One of these methods is the Inter Quartile Range (IQR).

Consider having a data set of observations. if we sort these values from minimum (min)
to maximum (max), then the midpoint is the median and the range will be max − min. The
observation value at 25th% of data points is the ’first quartile (Q1)’ and the observation value at
75th% of data points is the ’third quartile (Q3)’.

Inter Quartile range, in fact, refers to the observations ’closed’ to median [45]. More precisely,
it is calculated as:

IQR = Q3 −Q1

.
Figure 6 gives a graphical representation of Inter Quartile Range:
To detect the outliers we must detect the inter quartile boundaries:

lower_bound = Q1 − (IQR ∗ k)

upper_bound = Q3 + (IQR ∗ k)

where k is a non-negative constant. In our experiment we set k = 1.5.
Consequently, any observation x is an outlier if:

x > upper_bound

or
1http://fashions-cloud.com/pages/i/interquartile-range-example/ last accessed on 12-05-2015
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Figure 6: Inter Quartile Range(IQR)1

x < lower_bound

We performed the outlier removal process on the extracted durations for each alphabet and
each category. We then, created 4 templates of durations for every user, 3 for each category and
the fourth category included the data without categorization. Each template was a 26× 1 vector
where rows indicate the corresponding number for each alphabet (’1’ to ’26’ for ’a’ to ’z’). The
column included the mean of all durations for that alphabet.

4.3.2 Latency

Latency is defined as the difference between the Key-Down time for a key and Key-Up time for the
next successive key. Let key1 be a key and key2 be the next successive key. The latency between
key1 and key2 is defined as:

Latkey1,key2 = TDkey2 − TUkey1

Where TDkey2 denotes the Key-Down time for key1 and TUkey2 denotes the Key-Up time for
key2.

When extracting latency, we considered only pairs with the latency values less than or equal
to 2000 milliseconds. A latency with more than 2000 milliseconds would indicate a deviation
from a normal operation. For example, a user would type ’a’ and after 5 minutes type ’b’. Then
the latency between a and b would be 5 minutes which is not a normal amount of time for a
latency. There were also cases where latency values would be negative. The reason was because
in some situations, the the next key is pressed before the previous key is released.

As discussed previously, there were times when a Key-Up time was not available. For latencies
we did the same strategy i.e. set Lat = 15. We also performed a similar outlier removal process
on latencies.
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Likewise to durations, we created 4 templates for latencies, 3 for each category and one for
overall latencies without considering any categorization. Each template was a 26 × 26 vector
which included mean values for latencies. The rows corresponded to numerical value of first
letters of a pair (’1’ to ’26’ for ’a’ to ’z’), the columns corresponded to the same but for the second
letter of the pair.

4.3.3 Frequency

For any letter ’n’ we defined the frequency, as fraction of number of occurrences of ’n’ in category
’cat’ to total occurrences of all 26 letters in that category. This frequency is called the Relative
Frequency:

Freqcatn =
countcatn∑26

n=1 countcatn

For example, if in total there were 30 occurrences of ’c’ in the Internet category and there total
frequency of all keys in Internet was 600, then the relative frequency of ’c’ in Internet would be
30/600=0.05

The relative frequency normalizes the frequency values for all the users to the range [01].
In case of frequencies, deleted keys were removed. Deleted keys are the keys that have been

entered but later deleted by the user due to typing mistakes or any other reason. Similar to the
other features, 4 templates were created for frequencies. Each template consist of a 26×1 vector.
Rows represent the corresponding numeric value for alphabet letters and columns represent the
relative frequency.

4.4 Data Separation

We allocated 35% of total data for template creation and the rest for testing. Pre-processing of
test data is the same as training. However, our assumption of test data was a sequence of events,
pre-processed so that the sequence of occurrence of these events is maintained. Since the CA
system performs the comparison process for every single event, we had to maintain a similar file
format for CI too.

Based on our assumption, three types of test files were created for each user. We will here
describe the test data structure for durations and latencies in detail.

4.4.1 Duration Test Files

After pre-processing and feature extraction, a single test file was created for each user, number
of rows varied between each user depending on the amount of data. Table 4 shows the format
for duration test files along with an example of an entry:

Event ID key category Duration
234 2 3 110
236 3 1 122
244 3 2 108

Table 4: Format and Example of a duration test data entry
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The first column corresponds to the Event ID. The second column corresponds to the numer-
ical equivalence of the alphabet, i.e. a=1, b=2, ..., z=26. The third column denotes the category
from 1 to 3 and last column contains the duration values. There was no mean here and we
included any single duration without outlier removal process.

A similar file to the duration test file was created but, it did not include deleted key records.
We used this file for frequency test data and for testing with combinations of durations and
frequencies.

Latency Test Files

The format for latency test file is a bit different from the duration’s. Here, we deal with informa-
tion regarding two keys and not one.

Table 5 shows the format for duration test files along with an example of an entry:

key1 key2 category Latency Dur(key1) Dur(key2)
1 23 3 210 98 122

23 17 3 334 113 105
17 20 2 296 131 111

Table 5: Format and Example of a latency test data entry

The first and second columns correspond to the numeric equivalent of the keys. The third
column indicates the category, the fourth column includes the latency value and the last two
columns represent the durations of key1 and key2 respectively.

Not all keys present in the duration test file will also be present in the latency. The reason is
simply individual keys with no successive key or a ’distant’ successive key (i.e. Lat > 2000ms).
Hence, for reasons to be explained in the Analysis chapter, the duration values were included
again in the latency test file.
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5 Methodology

In this chapter we are going to discuss the analysis process, the settings we used and the results
we have achieved.

5.1 Period Separation

In order to simulate the situation, where after a period of actions the user is locked out, we per-
formed the identification at different period lengths (chunks). Periods are simply defined as num-
ber of actions (n). Here, by n actions we mean n keystrokes and to be more specific n key-downs.
We performed the comparison with 20 periods of length n with n = 50, 100, 150, 200, ..., 1000.
This setting was fixed for every user. That means, we tested for every user with n = 50 then,
with n = 100 and so on. Later, in order to see if it is possible to integrate the CI process into CA
process instead of using fixed periods, for each user, we used the respective ’ANIA’ and ’ANGA’
values obtained from the CA process. We will explain this in detail in the section 5.5 .

5.2 Distance Metrics

To compare the test data with the template values we used the two distance formulae: Manhattan
and Euclidean. These two distance metrics are both Minkowski distance metrics with different p
values [46]. Depending on the feature and categorization we performed small modifications on
these two distance metrics.

In case there was a categorization, the same formula would be used for each category, if there
was test data belonging to that category in the test chunk. In case there was no categorization,
simply the single test vector would be compared to the Uncategorized vector of the template.

The structure of template for durations is:

Tmcat
dur = (tdcat1 , tdcat2 , tdcat3 , ..., tdcat26 )

Where cat is the category number, tdcati is the duration template value for character i in cat
which is µcatdur(i) for duration.

Template structure of frequency is similar to that of duration:

Tmcat
freq = (tfcat1 , tfcat2 , tfcat3 , ..., tfcat26 )

Where, tfcati is the frequency template value for character i in cat.
On the other hand, for Latencies the template structure looks different:

Tmcat
lat = (tl1,1, tl1,2, tl1,3, ..., tl26,26)

where tlcati,j is the latency between i and j in cat.
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5.2.1 Manhattan Distance

Manhattan distance is a distance metric used to find the distance between two or more vectors
such as feature vectors with equal dimension. It is used to find the shortest distance between the
absolute values of coordinates of two points in the X-Y plane. In our case, the two vectors consist
of test and template values.

The formula for Manhattan distance for duration and frequencies is as follows:

MD_dist(Tscat, Tmcat) =

n∑
i=1

∣∣testcati − tempcatci

∣∣
Where testcati is the test value for i in cat, tempcati template value for i in cat and in case of

OM method n = 26.
There are two issues regarding missing template and test data for some specific characters.

1. It is possible that test data entries for some characters are not available and hence the test
value of those character in that chunk is 0. In this situation, we cannot calculate the above
absolute distance for that character. To mitigate this, the absolute distance is:

dist(testcati , tempcatci
) =

{∣∣testcati − tempcatci

∣∣ , if testi 6= 0
0, Otherwise

2. If there is no template entry (i.e. tmi) available for some specific character in some specific
category, then the template entry associated with that character in Uncategorized template
vector is used. If there is no entry in the Uncategorized vector too, then the mean of all
nonzero entries in the Uncategorized template is used as tmi. In comparison with no catego-
rization, mean of nonzero Uncategorized template is considered in case the specified element
is not available.

5.2.2 Euclidean Distance

Euclidean Distance Metric is similar to Manhattan but it is defined as the square root of sum of
squared coordinate differences. It is in fact, the length of the shortest straight line from one point
to the other. The general formula for Euclidean distance metric is:

ED_dist(Tscat, Tmcat) =

√√√√ n∑
i=1

(testcati − tempcati )2

5.3 Comparison Methodologies

We performed the comparison with:

• Categories taken into account

• No categorization.

In category-wise comparisons, in addition to separate n actions we also separated these n
values based on one of the three categories explained in section 4.2.1. Additionally, we per-
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formed the comparison without categories taken into account and compared the test input with
the value stored in the Uncategorized template of each user. The reason behind this is to see how
would the system perform when users are identified based on the application software they have
used. Yet, we also performed the identification irrespective of the software being used.

For the purpose of comparison, we used two methods called Mean to Mean Comparison and
One to Mean Comparison. The comparison process for each of the three features is similar with
small differences. Thus, we explain the comparison process for duration in details as well as dif-
ferent combinations of the features. In all of these processes, comparison has been done when
software categories have been considered and when not, using Manhattan and Euclidean dis-
tance metrics and with both comparison methods (except OM for frequency).

5.3.1 Mean to Mean Comparison

In Mean to Mean (MM) comparison, we compare the mean of durations or latencies in a chunk
(period) of test data with the related template data. That means for every key in the test chunk,
we take the mean value of the corresponding feature for all occurrences of that key. Hence there
is a process of averaging before comparison.

Figure 7 shows the MM comparison of durations. Here, before comparison, by using an
averaging function, test data becomes in a format similar to template that is it is converted to
a 26 × 1 vectors for each category. After averaging, test data will contain mean duration of all
occurrences of every key for each category in the test chunk. For example first two rows in the
test chunk are both 2s and both belong to the same category. Suppose these are the only test data
with these characteristics. Therefore, their mean, is the average test duration of 2 in category 2
of the test data.

5.3.2 One to Mean Comparison

In One to Mean (OM) comparison, each and every element in the test chunk is compared to the
mean value stored in the template. In OM comparison without categorization, The process is
similar to MM. But, we utilize the fourth test vector created by the averaging function. Figure 8
represents this process. For example, mean of all test durations for 3 is stored in the Uncategorized
test vector and then compared to the value for 3, stored in the Uncategorized vector of the
template.

Figure 9 displays the comparison between duration of each event k in a test chunk of length
n of user i and the duration template of user j where i can be equal to j. The first 3 vectors in the
template indicate the template values for each category. The last vector named as Uncategorized
represents the template without categorization. The blue arrows indicate that which durations
in the test chunk are compared to which elements in the template. During the feature extraction
process,any letter (case insensitive) is converted to a digit with a=1, b=2, ..., z=26.

Hence, for example, the first letter in the test chunk is 2 which is equivalent to b (or B).
According to the third column of the test vector, it must be compared with the value for 2 stored
in the Category 2. nth element in the test chunk is a 3 which must be compared to duration of 3
in Category 1.

Figure 10 represents the comparison with the same settings except that categories do not
matter here. For example, all values of 2 regardless of their categories are compared to the
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Figure 7: Comparison of durations using MM method with categorization

Figure 8: Comparison of durations using MM method without categorization
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Figure 9: Comparison of durations using OM method and with categorization

duration value for 2, stored in the ’Uncategorized’ vector.

Figure 10: Comparison of durations using OM method and without categorization

OM and MM process are similar for the latencies. However, the structure of the template and
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test data are different. In test data, each record consists of the durations of the two characters
and their latency. On the other side, there are four 26 × 26 vectors for the template. In OM,
latency of each pair in the latency test file is compared to the related values in the template. In
MM process, four 26 × 26 vectors are created from the test data containing the mean latency
values.

In case of frequencies, we considered only the MM method. Because, frequency of one char-
acter is always one. In MM method for frequency, we calculated for each category, the relative
frequency of each character with a nonzero absolute frequency. That is the number of occurrences
of a character x in a category cat divided by total number of occurrences of each character in cat.
From this we can also conclude, that the relative frequency of each character in the Uncategorized
vector is number of occurrences of that character to the chunk size n which is the total number
of frequencies in that chunk.

Combining the Features

We also performed the comparisons with two different combinations of features:

• Duration and Frequency

• Duration and Latency

We used the same configurations for testing process with minor modifications. For duration
and frequency combination, since we could not apply the OM scheme on frequencies, we per-
formed the analysis in two ways. First, we applied OM on durations and MM on frequencies and
in the second method, we applied MM on both features. The final results were of different units
and ranges, Hence, the overall distance score was obtained by multiplying the distance score
obtained from each of individual comparison processes. That is:

dist(Tscatdur,lat, Tm
cat
dur,lat) = dist(Ts

cat
dur1, Tm

cat
dur1)× dist(Tscatfreq, Tm

cat
freq)

Figure 11 illustrates the first type of comparison process (OM-MM), when combining fre-
quency and duration.

The comparison process is performed separately for each feature. Two distance calculation
functions are the ones used for distance calculation with only durations or frequencies. The
second type of comparison process (MM-MM) is also similar to this function with only duration
distance calculation function changed.

When combining durations and latencies, as explained above, the aggregate distance is ob-
tained by addition of comparison scores of duration of first letter, duration of the second letter
and the latency. That is:

dist(Tscatdl , Tm
cat
dl ) = dist(Tscatdur1, Tm

cat
dur1) + dist(Ts

cat
dur2, Tm

cat
dur2) + dist(Ts

cat
lat , Tm

cat
lat )
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Figure 11: Comparison with duration and frequency combined

(a) OM Comparison Process (b) MM Comparison Process

Figure 12: Comparison with duration and latency combined

5.4 Score Fusion and Decision

After the comparison process for a test chunk, if no categorization has been considered, the final
score is same as the one produced. However, when considering categorizations, 3 scores are
produced for each category. If there is no data from one category the score for that category will
be 0.

In order to obtain a final score, which is defined as the score of user i from test chunk t, we
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must unify these three results. The solution is to fuse these scores into a unified score. Simplest
way to achieve this is to calculate Weighted Average Distance. With respect to our work it is
defined as:

totalDist =

∑3
k=1 distk ∗wk∑3

k=1wk

where distcat is the score obtained from the comparison for kth category and wk is the associ-
ated weight. Weights can be set in two ways, choosing fixed weights or variable weights.

5.4.1 Weighted Average Mean with Fixed Weights

Weights indicate the influence of each score to the final value. Values with more weights con-
tribute more to the final score. First, we decided to apply fixed weights as a combination of 1,
2 and 3. Initially, we gave the weight based on the availability of data i.e. the total amount of
data (training and test) available with respect to each category. In this case the result would be
w1 = 3,w1 = 1,w3 = 2. However, to be more accurate, we performed a testing process with
frequencies and chunk size of 50 when Manhattan distance was used. There were total 3! = 6 dis-
tinct permutations of (1, 2, 3). Hence we performed the testing with each of the 6 permutations
and the results obtained showed that the best weight permutation is : w1 = 3,w1 = 2,w3 = 1.
Table 6 shows the results for chunk size 50 obtained based on performance with frequency when
MD, MM and these weight combinations are used:

w1, w2, w2 ACC(%)
1, 2, 3 11.21
1, 3, 2 11.32
2, 1, 3 11.48
2, 3, 1 12.11
3, 1, 2 12.33
3, 2, 1 12.40

Table 6: Rank-1 results obtained for chunk size 50 using frequencies MM and MD

Results are quite close. However, regardless of this low difference, we selected 3, 2, 1.

5.4.2 Weighted Average Mean with Variable Weights

We also decided to analyze using variable weights. The weights varied depending on the fre-
quency of characters belonging to each category in that chunk. For example, for a chunk size,
n = 50 if 20 of the characters belong to category 1, then the weight for that category is 20,
contributing more to the final score. It was also possible to have two equal weights for two
categories.

5.4.3 Decision

The User with minimum of total score would be the identified user for any test chunk. Our
criteria for identification decision was based on whether a user is identified correctly (denoted
by 1) or not (denoted by 0) at every chunk. We calculated the accuracy rate for 8 ranks. That
means if the test user was among the r identified users with minimum total score, it would be
a correct identification for rank-r otherwise, it was an incorrect identification. Thus, for every
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chunk ch out of m chunks in a test data:

d =

{
1 if correctly identified
0 if incorrectly identified

Where d is the decision made.
From this, we obtained the identification accuracy rate for every user k and every chunk size

ch.

ACC(r, k, ch) =

∑m
i di

m
∗ 100 ,∀di = 1

Where r is the rank number and m is the total number of identifications for that test data
which is equal to the number of chunks in that test data.

The mean of these ACC values determines the system performance for every chunk size ch:

ACC(r, ch) =

∑51
k=1ACC(r, k)

51

Therefore, we shall have the system performance defined as: identification accuracy rate for
each of the 20 chunks.

5.5 Analysis with Continuous Authentication Data

In order to see the performance of the system for identification after a user is locked out, we also
tried to use the results obtained from the CA process. For better understanding, we first describe
the CA process purposed by [5] and then describe the CI analysis performed with the output
from CA performance evaluation.

5.5.1 System Architecture

Figure 13 give an schematic view of the designed CA system by Bours and Mondal [5], where
the red lines represent a possible integrated CI process.

During the enrollment phase, after capturing the KD data from the keyboard, different fea-
tures related to CI and CA are extracted and stored in CI and CA template databases respectively.
For authentication, the KD input is captured and after feature extraction enters into the matching
(comparison) module. During the comparison process, the input is compared to the logged in
user’s template. Based on some threshold, t if the similarity score between the input sample and
template input is lower than the t, the trust value is reduced and if it is higher than t then the
trust value increases. In the decision module the trust value is compared with the lockout thresh-
old lt. If the trust value is more than lt, the user can continue, otherwise he gets locked out. After
lock out, from all the actions the locked out user has performed between previous lock out until
now, the CI related keystroke features of the unknown user are extracted. Extracted features are
then compared to all the templates in the CI database in order to identify the unknown user.

5.5.2 Performance Analysis

As explained before, the performance of the CA system was calculated in terms of ANIA and
ANGA. For every user k, there exist an ANGAk indicating the average number of genuine actions
can be done as user k before lock out and ANIAk indicating the average number of impostor
actions that can be done as user k before lock out. Therefore, if ANGAk = ∞ that means no
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Figure 13: Countinuous Authentication model by Bours and Mondal [5]

value for ANGAk, a genuine user has never been locked out [6]. As explained in section 5.1, we
divided the test data into fixed number of actions and performed the testing. To simulate a more
realistic situation, instead of using fixed chunk sizes we used ANGAk when comparing a test
data of a user with his template and ANIAk when comparing the data with impostor templates.
ANIA and ANGA values used from a CA result set produced by [6]. The CA process used the same
set of data and was based on keystroke features.

For each user k , we performed a 51 × 50 impostor testing with chunk size= ANIAk and
’maximum’ 51 genuine testing with chunk size= ANGAk. If no ANGA value was available for
user k meaning no lock out for genuine user, then we would not perform the genuine testing.
Hence the actual number of computations was less.
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6 Result Analysis

In this chapter, we will report the results obtained under various configurations. We mainly
divide the results into those obtained with software context categorization and those without
such a categorization. Then we will look at different results obtained for various comparison
methods, features, distance metrics and score calculation methods. For each of the settings we
computed the Identification Accuracy Rate (ACC) for each chunk size and for 8 ranks. To avoid
repetition only selected results are presented here. The complete set of results can be viewed in
Appendix A and B.

6.1 Results Based on Categorized Comparison

In this section, we present the results obtained from the analysis based on the software catego-
rization, with various comparison methods, features, distance metrics and score fusion methods.

Detailed results corresponding to this section, can be found in A.1 and A.2.

6.1.1 Based on Distance Metrics

Table 7 displays the Rank-1 ACC for different chunk sizes. Analysis performed with both distance
metrics using MM method when considering various features and when fixed weights are used
for the score fusion.

As shown in the table 7, the results appear to show a difference between the two distance
metrics under the same settings. The most pronounced difference is observed for latency. This
has to do with the quality of the collected data which contained a non-negligible number of
negative latencies, which would mean that the user had not fully released a certain key before
pressing the next key. Some of these negative values were considerably large. Due to the non-
linear nature of the ED, the large negative numbers affect the accuracy of the ED much more
than MD.

The differences in other cases is neither significant nor consistent with respect to chunk size
and features used. At some points it is low and at some points it is high. For example, if we con-
sider the duration and frequency features combined, after 50 actions (chunk size) the difference
between ACC obtained using MD and ED is only 0.6% . The difference is at highest after 1000
events (6.3%).

Given all the considerations above, we cannot conclude that MD in general offers a significant
advantage over ED, especially without knowing the confidence interval for the calculations.

With this preliminary result, we can see that frequency results are notably low compared
to other features with approximately 12.5% ACC after 50 actions (chunk size) and approxi-
mately 23.5%, after 1000 actions. This could indicate that frequency features we used, were not
distinguishing different users to a sufficient level. A possible solution could be including more
Stylometric features [47]. However, measuring various stylometric attributes when the nature
of the data is not consistent is a complicated task which is out of scope of this research. As an
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% MD ED
Chunk Dur Lat Freq D-L D-F Dur Lat Freq D-L D-F

50 31.8 41.5 12.4 53.2 37.2 30.1 27.0 13.1 41.2 36.6
100 40.1 47.3 17.2 58.7 45.9 36.1 30.1 17.0 46.4 43.6
150 45.0 49.9 18.8 61.6 49.3 40.2 31.9 18.6 48.6 45.6
200 48.8 50.7 19.9 63.2 51.6 42.8 33.2 19.3 49.3 46.8
250 49.6 50.6 20.5 63.8 52.8 43.5 31.6 19.3 48.9 47.7
300 51.5 53.5 21.4 65.8 54.4 44.7 35.5 20.2 50.6 48.8
350 51.9 50.8 23.2 66.2 56.0 48.5 35.0 20.5 50.1 49.9
400 54.8 52.9 21.1 66.2 57.2 47.8 33.7 19.9 51.6 50.7
450 54.0 51.4 21.7 66.2 56.1 47.7 35.2 20.8 52.5 49.9
500 55.6 51.2 23.7 67.5 58.8 49.0 34.5 19.9 51.6 51.9
550 55.7 51.8 23.4 67.9 59.1 48.6 35.5 20.4 49.6 51.7
600 56.9 53.3 23.8 68.2 58.6 49.4 35.9 21.7 51.5 52.1
650 56.8 52.2 24.1 67.5 57.8 49.9 36.6 21.1 51.9 52.3
700 58.2 50.0 23.8 68.9 58.3 52.3 35.5 20.8 53.2 53.5
750 56.9 51.4 24.9 69.1 59.3 50.8 34.3 21.3 53.0 53.7
800 58.5 51.9 25.8 68.6 60.0 52.8 32.6 21.6 51.7 55.4
850 58.5 52.7 25.5 68.4 59.3 52.7 33.6 22.3 52.3 55.4
900 57.6 52.3 25.3 68.7 58.4 51.8 34.4 19.6 55.3 52.3
950 58.3 51.7 24.5 69.1 60.5 52.0 33.9 20.7 55.4 53.5
1000 58.8 52.7 23.4 71.2 60.0 53.0 34.8 21.3 55.6 53.7

Table 7: Rank-1 ACC(%) for MD vs ED distance metrics when considering various features

example, the language used was not specified to us since, the experiment was performed in an
uncontrolled environment. Hence we used the frequency features just as an additional measure.

The biggest difference is observed between individual features performance vs combined fea-
tures performance, which is consistent for all combinations and chunk sizes. Using duration and
latency features combined there was 53% successful identification rate after 50 actions. This
amount increased to 71.2% after 1000 events.

Another major observation is that increasing in performance was not linearly proportional to
increase in the chunk size. In fact the ACC values seem to saturate beyond a certain chunk size.

6.1.2 Based on Comparison Method

Table 8 displays the rank-1 ACC obtained when considering two different comparison methods.
As we explained before, we cannot perform OM comparison using frequencies but we performed
the dur-freq analysis using OM on durations and MM on frequencies. Hence, we present the
results obtained again with the similar configurations for 5 features, fixed weights. Here, we
present the result of MD only. Columns related to MM are a repetition of columns for MD in
table 7.
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% OM MM
Chunk Dur Lat Freq D-L D-F Dur Lat Freq D-L D-F

50 32.4 42.5 N/A 53.0 35.1 31.8 41.5 12.4 53.2 37.2
100 41.5 48.1 N/A 57.9 41.2 40.1 47.3 17.2 58.7 45.9
150 46.4 51.4 N/A 60.5 43.9 45.0 49.9 18.8 61.6 49.3
200 49.4 52.5 N/A 62.4 45.9 48.8 50.7 19.9 63.2 51.6
250 51.1 53.2 N/A 62.2 48.1 49.6 50.6 20.5 63.8 52.8
300 53.8 54.4 N/A 63.2 51.2 51.5 53.5 21.4 65.8 54.4
350 53.1 54.0 N/A 63.9 52.2 51.9 50.8 23.2 66.2 56.0
400 55.0 55.4 N/A 64.0 52.0 54.8 52.9 21.1 66.2 57.2
450 55.8 57.6 N/A 65.6 53.2 54.0 51.4 21.7 66.2 56.1
500 57.5 57.7 N/A 66.7 54.1 55.6 51.2 23.7 67.5 58.8
550 56.2 58.6 N/A 68.2 54.3 55.7 51.8 23.4 67.9 59.1
600 58.2 59.4 N/A 65.7 55.4 56.9 53.3 23.8 68.2 58.6
650 57.4 59.6 N/A 68.0 56.0 56.8 52.2 24.1 67.5 57.8
700 59.2 58.1 N/A 65.9 56.2 58.2 50.0 23.8 68.9 58.3
750 58.8 58.4 N/A 66.7 57.2 56.9 51.4 24.9 69.1 59.3
800 59.4 60.2 N/A 67.4 58.8 58.5 51.9 25.8 68.6 60.0
850 59.6 60.6 N/A 67.7 58.0 58.5 52.7 25.5 68.4 59.3
900 59.3 61.0 N/A 67.2 58.5 57.6 52.3 25.3 68.7 58.4
950 59.2 59.9 N/A 67.3 58.1 58.3 51.7 24.5 69.1 60.5

1000 59.7 61.2 N/A 67.8 58.3 58.8 52.7 23.4 71.2 60.0

Table 8: Rank-1 ACC for OM vs MM for various features

From the table, we can observe no significant differences between OM vs MM for the in-
dividual features performances. When using combined features ACC seems to be reduced for
big chunk sizes. Again the differences are believed to be within the confidence interval for the
calculations and no conclusion can be made about the possible advantages of MM over OM.

Consequently, the duration-latency combination once again shows the best performance with
identification rate of 53.2% at chunk size 50 and that of 71.2% at chunk size 1000.

6.1.3 Based on Score Fusion Method

Finally, we can have a look at the results when considering different score calculations. As we
explained previously, for a unified score calculation, we used Weighted Average Mean of the scores
obtained for each category. The result we presented in tables 7 and 8 were based on the fixed
weights (wcat1 = 3,wcat2 = 2,wcat3 = 1). Table 9 represents the results obtained when
considering fixed weights vs variable weights.
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% MM, Variable Weights MM, Fixed Weights
Chunk Dur Lat Freq D-L D-F Dur Lat Freq D-L D-F

50 31.8 41.8 12.7 53.1 37.4 31.8 41.5 12.4 53.2 37.2
100 40.2 47.5 17.8 58.6 47.3 40.1 47.3 17.2 58.7 45.9
150 45.1 49.4 20.2 61.4 50.8 45.0 49.9 18.8 61.6 49.3
200 48.7 50.8 22.4 63.1 53.3 48.8 50.7 19.9 63.2 51.6
250 49.8 50.5 23.5 63.0 55.3 49.6 50.6 20.5 63.8 52.8
300 51.6 53.6 25.8 64.9 56.4 51.5 53.5 21.4 65.8 54.4
350 51.5 51.2 26.6 65.4 58.2 51.9 50.8 23.2 66.2 56.0
400 54.2 52.2 25.7 65.4 59.3 54.8 52.9 21.1 66.2 57.2
450 54.7 52.2 26.0 65.6 59.6 54.0 51.4 21.7 66.2 56.1
500 54.9 51.7 29.0 66.6 61.3 55.6 51.2 23.7 67.5 58.8
550 55.6 52.2 27.7 66.1 62.4 55.7 51.8 23.4 67.9 59.1
600 57.0 52.1 30.5 67.2 62.4 56.9 53.3 23.8 68.2 58.6
650 56.4 53.4 31.9 66.8 62.4 56.8 52.2 24.1 67.5 57.8
700 58.1 49.9 32.4 67.1 63.2 58.2 50.0 23.8 68.9 58.3
750 56.1 51.0 30.9 64.3 63.5 56.9 51.4 24.9 69.1 59.3
800 58.0 51.3 32.4 66.9 63.4 58.5 51.9 25.8 68.6 60.0
850 57.0 52.5 32.4 68.4 62.9 58.5 52.7 25.5 68.4 59.3
900 58.5 52.3 32.9 68.0 62.8 57.6 52.3 25.3 68.7 58.4
950 60.2 53.4 32.0 67.6 64.0 58.3 51.7 24.5 69.1 60.5

1000 60.3 52.5 32.5 68.0 64.7 58.8 52.7 23.4 71.2 60.0

Table 9: Rank-1 ACC for different weights for score unification

Similar to Table 8, no general conclusion can be made about the possible advantages of fixed
weights versus variable weights. Again, the duration-latency combination with fixed size weights
performs best.

From the above results, we can see that the best configuration, in this case, has constantly
been the use of the combined duration-latency features, when using MM comparison and fixed
weights and Manhattan distance.

Figure 14 represents the accuracy rate changes with chunk sizes for 8 ranks when this setting
is applied.
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Figure 14: Identification Rate (ACC%) changes of the best setting at various chunk sizes for 8
ranks

As we can see, there is not much variation in ACC when increasing chunk size on higher ranks.
The results in lower ranks tend to vary more with chunk size compared to the higher ranks. We
can see that ≈ 80% of the identifications have been correct for rank-8 regardless of the chunk
size.

6.2 Results without Categorization

For analysis without categorization, we did not have any score fusion, since there was only one
result obtained with one category (i.e. Uncategorized) taken into consideration. Therefore, we
performed the testing on various features, based on various distance metrics and comparison
methods. Detailed results corresponding to this section, can be found in A.3 and A.4.

6.2.1 Based on Distance Metrics

We first tried to test with different distance metrics. Similar to the analysis with categorization,
our baseline for the analysis was testing with all features when using MM for comparison and
MD as distance metrics. We performed the testing under the same settings but with ED as well.
Table 10 represents the results obtained by MD and ED.
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% MD ED
Chunk Dur Lat Freq D-L D-F Dur Lat Freq D-L D-F

50 31.3 48.6 14.0 60.0 38.0 30.4 31.0 14.4 47.1 36.4
100 40.3 56.2 18.4 65.2 46.8 36.3 34.5 18.8 50.9 43.9
150 45.0 57.6 20.5 66.9 50.6 39.7 36.3 20.5 52.0 46.8
200 47.6 59.5 21.9 69.6 53.8 42.7 36.4 22.4 55.0 49.8
250 50.7 59.4 24.3 68.7 56.0 44.4 36.2 23.4 54.1 51.2
300 51.3 60.0 27.4 69.4 57.1 45.8 37.5 25.4 54.8 52.4
350 53.2 58.5 26.9 68.8 58.1 48.4 37.4 26.5 56.3 54.0
400 54.3 61.2 29.3 70.8 60.3 48.7 36.8 27.8 55.5 54.5
450 55.2 59.8 27.9 68.7 58.7 48.2 37.8 27.8 56.3 55.2
500 56.2 60.2 30.3 68.6 59.6 48.4 36.5 29.1 56.4 55.5
550 57.9 61.9 30.7 69.6 60.2 51.1 36.4 29.8 54.2 56.9
600 56.6 59.9 31.8 69.1 60.9 51.1 38.9 31.8 55.8 57.2
650 58.5 58.7 31.6 70.7 61.8 51.2 38.8 31.3 56.8 58.1
700 59.0 58.2 33.0 69.4 62.2 52.1 35.1 32.3 57.2 59.3
750 60.9 57.9 32.8 67.7 61.9 53.2 35.4 33.6 54.3 58.1
800 60.2 59.2 32.5 72.1 62.5 52.7 33.5 31.4 57.1 57.7
850 60.1 58.0 34.5 70.3 61.5 54.3 35.0 32.7 57.4 59.1
900 58.9 58.6 35.8 69.9 63.1 53.6 35.7 35.9 56.8 59.6
950 61.5 61.0 35.9 70.3 62.1 52.8 34.9 32.8 58.8 58.1

1000 62.4 58.3 37.0 72.9 63.8 54.6 33.8 32.8 60.8 61.2

Table 10: Rank-1 ACC(%) for MD vs ED distance metrics when considering various features

According to the table, the results is much like the case with categorization. When com-
paring the results, when no categorization is considered, we got better performance with each
feature compared to the corresponding feature in the categorized case. For example, the results
for duration are higher when no categorization is done compared to the duration results using
categorization. However, same deviation is observed for latency, and the lowest performance
among the various features still belongs to the frequency with only 14% ACC after 50 events
and 37% after 1000 events. Duration-latency combination has the best performance with 60%
of successful identification rate after 50 events and almost 73% after 1000 events.

6.2.2 Based on Comparison Method

Furthermore, we performed the analysis using OM comparison method. Table 11 represents the
comparison of results when using MM and OM methods. We present the results using MD only.
OM could not be performed for frequencies.
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% OM MM
Chunk Dur Lat Freq D-L D-F Dur Lat Freq D-L D-F

50 30.4 50.0 N/A 60.0 35.6 31.3 48.6 14.0 60.0 38.0
100 36.3 56.0 N/A 64.6 42.0 40.3 56.2 18.4 65.2 46.8
150 39.7 59.9 N/A 66.2 44.8 45.0 57.6 20.5 66.9 50.0
200 42.7 62.3 N/A 69.2 46.9 47.6 59.5 21.9 69.6 53.8
250 44.4 62.5 N/A 69.6 48.7 50.7 59.4 24.3 68.7 56.0
300 45.8 63.7 N/A 69.1 50.1 51.3 60.0 27.4 69.4 57.1
350 48.4 63.7 N/A 69.2 50.1 53.2 58.5 26.9 68.8 58.1
400 48.7 65.6 N/A 70.2 49.8 54.3 61.2 29.3 70.8 60.3
450 48.2 64.9 N/A 71.2 50.8 55.2 59.8 27.9 68.7 58.7
500 48.4 66.1 N/A 72.6 52.6 56.2 60.2 30.3 68.6 59.6
550 51.1 67.8 N/A 73.2 51.8 57.9 61.9 30.7 69.6 60.2
600 51.1 66.2 N/A 72.5 53.1 56.6 59.9 31.8 69.1 60.9
650 51.2 66.4 N/A 72.4 54.5 58.5 58.7 31.6 70.7 61.8
700 52.1 65.9 N/A 71.8 53.9 59.0 58.2 33.0 69.4 62.2
750 53.2 67.9 N/A 72.3 55.2 60.9 57.9 32.8 67.7 61.9
800 52.7 67.6 N/A 72.6 54.5 60.2 59.2 32.5 72.1 62.5
850 54.3 64.6 N/A 71.2 54.4 60.1 58.0 34.5 70.3 61.5
900 53.6 66.9 N/A 72.1 55.6 58.9 58.6 35.8 69.9 63.1
950 52.8 68.1 N/A 70.9 55.8 61.5 61.0 35.9 70.3 62.1

1000 54.6 67.8 N/A 72.6 56.4 62.4 58.3 37.0 72.9 63.8

Table 11: Rank-1 ACC(%)for OM vs MM when considering various features and MD

The table shows a difference between the categorized and uncategorized data. Here MM
performs better than OM for duration. Yet, similar to the analysis with categorization, the best
performance for all chunks is obtained using combination of duration-latency.

Hence, the best performance obtained in no categorization scheme was using duration-latency
pair when using MM method and MD as distance metrics.

Figure 15 represents the best performance for 8 ranks.
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Figure 15: Identification Rate (ACC%) changes of the best setting at various chunk sizes for 8
ranks with no categorization

The graphs show, that in the first rank there is a large difference of ACC scores between
chunk size 50 and 1000 meaning that overall, by increasing the chunk size the performance
improves. However, in the rank 8 the graph tends to the constant function f(chunk size)=ACC,
meaning that regardless of the number of events (between 50 and 1000), more than 82% of the
identifications are correct.

From all the results obtained, we can see that overall, the results improve when no catego-
rization has been performed. A very important reason could be the low universality of features
resulting low frequency and sometimes unavailable template entries in our template set. When
testing, sometimes, there was insufficient data for specific features available for some specific
category, forcing us to use the respective Uncategorized entry for the same feature or even use
the mean value as explained in the analysis part. Hence the intersection between the categoriza-
tion and no categorization schemes increases thereby increasing the chance of similar results.
Also, if we include more software interaction characteristics such as how a user deletes a file
using shortcut keys or the delete button etc, along with the software category, it may provide
more accuracy on how a specific user behaves on specific software category.
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6.3 Results for Analysis with Continuous Authentication Data

As described in section 5.5, we performed an analysis based on ANIAk and ANGAk values.
Table 12 represents the CA results obtained by [5] using only KD . We performed this analysis
for 8 ranks with our best performed settings, i.e. using duration-latency combinations with no
categorization, with MM comparison and MD. According to [5], there were 4 classes defined for
CA analysis. First class (+/+) included the analysis with no genuine user was locked out and all
impostors were locked out. Second class (+/−) included the results with no genuine user locked
out and some impostors were not locked out. Third class (−/+), included the results where
some genuine users were locked out but every impostor was detected. Finally, class four (−/−)
consisted of the results where some genuine locked out and some impostors were not locked out.

CA CI
Class # Users ANIA ANGA # imp.ND ACC(1) ACC(2) ACC(3) ACC(4) ACC(5) ACC(6) ACC(7) ACC(8)
+/+ 43 123 ∞ 61.8 69.4 73.9 76.9 79.0 80.6 81.7 82.7
+/− 3 516 ∞ 3 69.2 75.5 78.1 80.0 81.3 82.9 83.6 84.9
−/+ 5 219 1469 68.4 74.4 78.1 80.2 81.8 82.7 83.6 84.1
−/−

Table 12: Rank-1 to Rank-8 ACC(%) for Continuous Identification based on CA data

As the table shows, on the first class with an ANIA=123, we obtained a rank-1 ACC=61.8%
identification accuracy rate. In second class with ANIA=516, we got an ACC=69.2%, and finally
in the third class with ANIA=219 and ANGA=1469, we got a rank-1 ACC=68.4%.

The complete set of results can be found in Appendix B.

6.4 Discussion

The summary of our findings by this research are:

• Fusion of two keystroke features resulted in significantly higher ACC compared to using indi-
vidual features.

• Increasing the chunk size might improve accuracy to a certain point (ACC), beyond which we
can observe a saturation behaviour in ACC when increasing the chunk size.

• Comparing the two distance metrics studied in this work, ED and MD, the only significant
difference we could see was when using latency as individual feature. One conclusion is that,
the ACC results with ED are affected more by the pre-processing procedure and effective
outlier removal.

• The variations observed in the ACC due to different comparison methods, or score fusion
methods were not large enough to present a strong indication that one method outperforms
the other candidates.

• Categorization based on software context has not improved the ACC. Probably because, un-
available template entries for specific categories has been replaced with Uncategorized tem-
plate entries.
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Overall, pre-processing of the collected data when it comes to outlier removal, or post pro-
cessing of the results to find an optimum choice of the right feature combinations, seem to affect
the achieved results more than distance metrics or comparison methodology, or chunk size.
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7 Conclusions

In this research, we introduced a novel concept called Continuous Identification (CI) through
Keystroke Dynamics (KD). The main idea behind this concept is to identify a locked out user as
a result of CA process. During CA process [5], a user’s activity is continuously monitored in an
action by action manner. That means, on every action performed, the identity of the individual
using the system is verified against that of actual logged on user and a trust level is calculated.
When this level falls below a lock out threshold, the session for that user is ended and he/she
must re-authenticate to regain access to the system.

The most important application of CI is in forensics investigations. In a scenario where an
impostor (possibly an adversary) has been locked out of the system, an interesting question is
who is he? To answer this question, an identification process must be performed as soon as a user
is locked out.

In order to perform our analysis, we used a data set of 51 individuals, collected within 5 to
7 days, where they performed their normal daily activities using any computer. Data collection
environment was uncontrolled and they could perform any activity such as browsing, chat, pro-
gramming, document typing, gaming etc. We performed an statistical analysis on the data set in
order to assess the possibility for CI. We could not find any relevant related work on this concept.
However, we could make use of various previous work on KD and CA.

In order to perform the analysis, we used two distance metrics: Manhattan Distance (MD) and
Euclidean Distance (ED).

As a secondary objective, we tried to perform our analysis with respect to the software con-
text. That means to identify a user based on the software category he has been using while
performing keystroke actions. Hence, in addition to analyzing the keystroke data as whole, we
also categorized the keystroke data based on the used software. We created three categories:

1. For the Internet related software, such as browsers and instant messaging applications

2. Documentation, such as word processors

3. Other software

We then performed the comparison between the test and template within each category. But
at the end, we achieved a better performance without categorization. We believe that the reason
is because when creating templates based on categorization, frequency of various keys was not
high, meaning that for many keys we did not have any data with respect to that category. For
example, there could be many ’a’s in the first category but no ’a’ in the second category. Whereas,
when analyzing without categorization, there was more availability of data. Here, the template
would consist of data for all the keys.

We utilized several features such as, duration of single keys, that is the time between pressing
and releasing a key, latency between the two keys which is the time between releasing a key until
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pressing the next key and relative frequency of single keys. We also used combinations of the
mentioned features as pairs of duration-latency and duration-frequency. The best performance
was achieved using duration-latency pairs and the lowest performance obtained when using only
frequency. This showed that time based features provides more accuracy than frequency. In order
to improve the performance for frequency, we can extend this feature to a complete set of Lexical
Stylometry[47] features.

We also tried to perform the comparison between test and template data in two ways. First,
comparing each of the features for action with the corresponding value in the template. This
is called a One to Mean (OM) comparison. Then, we analyzed the performance by comparing
the average of features in the test data to the corresponding value stored in the template. This
method is called Mean to Mean (MM) comparison. We could not perform the OM comparison on
frequency. However, when combining the features, we performed comparisons on each feature
individually and then we combined the results. In order to combine the results, for duration-
frequency pair we multiplied the individual results together. In order to combine the results
for duration-latency pair, we added the individual results. The results showed no significant
advantage of OM over MM or vice versa.

In case of comparisons with categorizations, we obtained three comparison scores for each
category representing the distance of each user from the the test data. In order to unify the data
we performed a fusion using Weighted Average Mean of the individual scores. We performed
the analysis with fixed weights (w1 = 3,w2 = 2,w3 = 1) and variable weights where each
weight indicates the frequency of test elements in associated with that category in the test data.
At the end, we cannot see any real difference between the ACC results when using fixed weights
compared to the ACC results using variable weights.

Based on the analysis, best approach was MM comparison of duration-latency pairs without
software categories taken into account, when MD was used. The performance was almost 61%
of Identification Accuracy (ACC) rate after 50 events and almost 72% after 1000 events.

We also applied the mentioned best setting based on the results obtained using an existing
CA performance analysis[5]. Using ANGA (if available) as chunk size when comparing a users
data with his own template and ANIA when comparing with other templates. Based on the three
classes of users defined in [5], we obtained an ACC of approximately 62% for the first class, 69%
for the second class and 68% for the third class.

To summarize, an investigation on possibility of Continuous Identification was performed.
Although the results are promising for future research, there is a need for improving the accuracy
before integrating to a deployed CA system. One way of achieving this would be to include more
Behavioral Biometric features.
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8 Future Work

Based on the major findings as a result of this work, there are various directions for the future
development on the subject of Continuous Identification.

Concerning this work there are various open issues that require further investigation:

1. According to the results, performance with no categorization of keystrokes based on software
context was better than the analysis with categorization taken into consideration. A possible
reason for this would be the missing template entries for various categories of a user’s tem-
plate. Should software categorization be ruled out as an ACC improvement method? Or can it
be implemented in a more useful and constructive way? We believe, for instance, that acqui-
sition of more data of various categories for template creation may improve the performance.

2. The findings showed that the performance was affected significantly by the pre-processing
tasks and feature combining methods. Will introducing more keystroke features, such as dig-
its, navigation keys, combination keys, etc, have a significant contribution to higher ACC?
How are the different features best combined? What is the practical limit for the number of
combined features?

3. How can we improve the outlier identification process? Shall all ’odd’ entries such as high
negative latencies be considered outlier? Can it be optimized based on the software catego-
rization?

4. How can the person identification methodology investigated during this work, evolve to a CI
system?

There are also several other ways to carry forward the research on CI systems. A few sugges-
tions are presented here.

• Since, the model by Bours and Mondal has been extended to a multi-modal system including
mouse dynamics[6], the research can also be extended to include mouse dynamics.

• The CI system will benefit enormously by utilizing Machine Learning.

• The performance we achieved was obtained when using a closed-set identification. A closed-set
identification is defined as an identification where the the unknown identity is in database.
On the other side, an Open-set identification is an identification where the unknown user may
not be in the database of identities1. In order to find out if the person is not in the database
of identities or not, an open-set identification can be performed.

• Another interesting activity will be to look into active attack scenarios and verify the perfor-
mance of a deployed CA/CI system in live action.

1http://www.technovelgy.com/ct/Technology-Article.asp?ArtNum=78 last accessed 30-05-2015
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A Appendix A

A.1 Results with Software Categorization and MM

A.1.1 Based on Distance Metrics with Fixed Weights
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Figure 16: ACC(%) for duration vs chunk size for various rank, with MM, fixed weights, and
MD
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Figure 17: ACC(%) for duration vs chunk size for various rank, with MM, fixed weights, and ED
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Figure 18: ACC(%) for latency vs chunk size for various rank, with MM, fixed weights, and MD

52



Continuous User Identification

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

27%
35%

Rank-1

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

37% 43%

Rank-2

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

44% 50%

Rank-3

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

49% 55%

Rank-4

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

53% 57%

Rank-5

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

57% 62%

Rank-6

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

60% 64%

Rank-7

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

62% 67%

Rank-8

Figure 19: ACC(%) for latency vs chunk size for various rank, with MM, fixed weights, and ED
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Figure 20: ACC(%) for frequency vs chunk size for various rank, with MM, fixed weights, and
MD
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Figure 21: ACC(%) for frequency vs chunk size for various rank, with MM, fixed weights, and
ED
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Figure 22: ACC(%) for duration-latency vs chunk size for various rank, with MM, fixed weights,
and MD
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Figure 23: ACC(%) for duration-latency vs chunk size for various rank, with MM, fixed weights,
and ED
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Figure 24: ACC(%) for duration-frequency vs chunk size for various rank, with MM, fixed
weights, and MD
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Figure 25: ACC(%) for duration-frequency vs chunk size for various rank, with MM, fixed
weights, and ED
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A.1.2 Based on Distance Metrics with Variable Weights
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Figure 26: ACC(%) for duration vs chunk size for various rank, with MM, variable weights, and
MD
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Figure 27: ACC(%) for duration vs chunk size for various rank, with MM, variable weights, and
ED
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Figure 28: ACC(%) for latency vs chunk size for various rank, with MM, variable weights, and
MD
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Figure 29: ACC(%) for latency vs chunk size for various rank, with MM, variable weights, and
ED
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Figure 30: ACC(%) for frequency vs chunk size for various rank, with MM, variable weights,
and MD
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Figure 31: ACC(%) for frequency vs chunk size for various rank, with MM, variable weights,
and ED

65



Continuous User Identification

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

53%
68%

Rank-1

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

63%
76%

Rank-2

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

68%
80%

Rank-3

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

72%
83%

Rank-4

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

74%
84%

Rank-5

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

76%
85%

Rank-6

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

78%
86%

Rank-7

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

79%
87%

Rank-8

Figure 32: ACC(%) for duration-latency vs chunk size for various rank, with MM, variable
weights, and MD
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Figure 33: ACC(%) for duration-latency vs chunk size for various rank, with MM, variable
weights, and ED
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Figure 34: ACC(%) for duration-frequency vs chunk size for various rank, with MM, variable
weights, and MD
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Figure 35: ACC(%) for duration-frequency vs chunk size for various rank, with MM, variable
weights, and ED
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A.2 Results with Software Categorization and OM

A.2.1 Based on Distance Metrics with Fixed Weights
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Figure 36: ACC(%) for duration vs chunk size for various rank, with OM, fixed weights, and MD
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Figure 37: ACC(%) for duration vs chunk size for various rank, with OM, fixed weights, and ED
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Figure 38: ACC(%) for latency vs chunk size for various rank, with OM, fixed weights, and MD
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Figure 39: ACC(%) for latency vs chunk size for various rank, with OM, fixed weights, and ED

73



Continuous User Identification

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

53%
68%

Rank-1

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

62%
73%

Rank-2

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

67%
77%

Rank-3

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

71%
78%

Rank-4

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

73%
80%

Rank-5

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

75% 81%

Rank-6

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

77% 81%

Rank-7

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

79% 82%

Rank-8

Figure 40: ACC(%) for duration-latency vs chunk size for various rank, with OM, fixed weights,
and MD
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Figure 41: ACC(%) for duration-latency vs chunk size for various rank, with OM, fixed weights,
and ED

75



Continuous User Identification

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

35%

58%

Rank-1

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

47%

67%

Rank-2

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

55%

73%

Rank-3

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

60%
76%

Rank-4

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

65%
79%

Rank-5

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

68%
80%

Rank-6

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

71%
82%

Rank-7

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

73%
82%

Rank-8

Figure 42: ACC(%) for duration-frequency vs chunk size for various rank, with OM, fixed
weights, and MD
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Figure 43: ACC(%) for duration-frequency vs chunk size for various rank, with OM, fixed
weights, and ED
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A.2.2 Based on Distance Metrics with Variable Weights
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Figure 44: ACC(%) for duration vs chunk size for various rank, with OM, variable weights, and
MD
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Figure 45: ACC(%) for duration vs chunk size for various rank, with OM, variable weights, and
ED
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Figure 46: ACC(%) for latency vs chunk size for various rank, with OM, variable weights, and
MD
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Figure 47: ACC(%) for latency vs chunk size for various rank, with OM, variable weights, and
ED
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Figure 48: ACC(%) for duration-latency vs chunk size for various rank, with OM, variable
weights, and MD
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Figure 49: ACC(%) for duration-latency vs chunk size for various rank, with OM, variable
weights, and ED
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Figure 50: ACC(%) for duration-frequency vs chunk size for various rank, with OM, variable
weights, and MD
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Figure 51: ACC(%) for duration-frequency vs chunk size for various rank, with OM, variable
weights, and ED
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A.3 Results without Software Categorization and MM

A.3.1 Based on Distance Metrics
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Figure 52: ACC(%) for duration vs chunk size for various rank, with MM, uncategorized, and
MD
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Figure 53: ACC(%) for duration vs chunk size for various rank, with MM, uncategorized, and
ED

87



Continuous User Identification

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

49%
58%

Rank-1

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

59%
66%

Rank-2

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

64%
71%

Rank-3

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

68%
78%

Rank-4

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

70%
80%

Rank-5

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

73%
82%

Rank-6

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

75%
83%

Rank-7

Chunk Size

100 200 300 400 500 600 700 800 900 1000

A
c
c
u

ra
c
y
(%

)

0

50

100

76%
85%

Rank-8

Figure 54: ACC(%) for latency vs chunk size for various rank, with MM, uncategorized, and
MD
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Figure 55: ACC(%) for latency vs chunk size for various rank, with MM, uncategorized, and ED
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Figure 56: ACC(%) for frequency vs chunk size for various rank, with MM, uncategorized, and
MD
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Figure 57: ACC(%) for frequency vs chunk size for various rank, with MM, uncategorized, and
ED
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Figure 58: ACC(%) for duration-latency vs chunk size for various rank, with MM, uncatego-
rized, and MD
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Figure 59: ACC(%) for duration-latency vs chunk size for various rank, with MM, uncatego-
rized, and ED
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Figure 60: ACC(%) for duration-frequency vs chunk size for various rank, with MM, uncatego-
rized, and MD
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Figure 61: ACC(%) for duration-frequency vs chunk size for various rank, with MM, uncatego-
rized, and ED
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A.4 Results without Software Categorization and OM

A.4.1 Based on Distance Metrics
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Figure 62: ACC(%) for duration vs chunk size for various rank, with OM, uncategorized, and
MD
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Figure 63: ACC(%) for duration vs chunk size for various rank, with OM, uncategorized, and
ED
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Figure 64: ACC(%) for latency vs chunk size for various rank, with OM, uncategorized, and MD
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Figure 65: ACC(%) for latency vs chunk size for various rank, with OM, uncategorized, and ED
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Figure 66: ACC(%) for duration-latency vs chunk size for various rank, with OM, uncatego-
rized, and MD
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Figure 67: ACC(%) for duration-latency vs chunk size for various rank, with OM, uncatego-
rized, and ED
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Figure 68: ACC(%) for duration-frequency vs chunk size for various rank, with OM, uncatego-
rized, and MD
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Figure 69: ACC(%) for duration-frequency vs chunk size for various rank, with OM, uncatego-
rized, and ED
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B.1 Results Based on CA Data of Class(+/+)

No R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8
1 61.1 68.0 73.1 76.4 78.9 80.4 81.5 82.4
2 69.1 75.4 78.7 80.4 81.6 82.3 82.9 84.3
3 63.4 71.4 75.3 78.2 80.5 81.7 82.8 83.5
4 65.0 71.9 75.9 78.5 80.4 81.4 82.4 83.5
5 64.2 71.3 74.9 78.5 80.5 81.9 83.0 84.0
6 62.6 69.5 74.2 77.4 79.5 81.0 82.5 83.3
7 59.9 67.8 72.1 75.4 77.5 79.5 81.0 81.9
8 61.0 68.5 73.2 76.5 78.8 80.4 81.5 82.8
9 70.4 76.0 79.3 81.8 83.2 84.0 85.2 85.5
10 59.0 67.6 72.5 75.5 78.1 80.1 81.4 82.6
11 69.2 74.1 77.7 79.9 81.6 83.1 83.6 84.1
12 65.0 71.4 76.0 78.6 80.6 81.9 82.6 83.8
13 70.8 74.0 77.9 81.3 82.0 83.2 83.4 83.9
14 66.9 73.5 76.7 79.7 81.2 82.0 82.6 83.6
15 53.4 63.6 69.2 72.7 75.3 77.5 79.1 80.4
16 67.5 73.7 77.4 79.5 80.6 81.4 82.1 83.4
17 64.9 72.0 76.3 79.5 81.2 83.1 84.3 85.2
18 62.7 69.6 74.4 77.6 79.4 81.2 82.1 83.1
19 60.6 68.3 73.0 76.4 78.5 80.3 81.6 82.7
20 59.9 67.8 72.3 75.5 77.9 80.0 81.3 82.4
21 65.5 72.2 76.0 78.5 80.3 81.7 82.9 84.1
22 57.6 65.7 71.0 74.7 77.2 78.8 80.6 81.5
23 66.1 73.0 76.8 78.8 80.4 81.7 82.5 83.3
24 64.8 71.5 75.3 78.0 79.5 81.6 82.8 83.8
25 64.4 71.2 75.6 78.2 80.1 81.3 82.4 83.4
26 60.5 68.4 72.8 76.0 78.0 79.8 81.4 82.3
27 65.3 72.9 76.6 78.8 80.6 81.9 82.6 83.4
28 67.7 74.0 77.7 80.2 81.7 83.0 83.9 84.9
29 48.6 59.3 65.5 69.5 72.5 75.0 76.9 78.5
30 46.3 57.8 63.8 68.0 71.4 74.1 76.0 77.6
31 59.3 67.3 71.9 75.1 77.6 79.7 81.0 82.1
32 53.3 63.4 69.1 72.6 75.3 77.5 79.1 80.4
33 67.0 73.1 77.2 79.4 81.0 81.9 82.9 83.5
34 58.1 65.9 71.3 74.9 77.4 79.0 80.7 81.7
35 51.4 62.0 67.4 71.4 74.3 76.5 78.1 79.6
36 66.6 74.2 78.5 80.8 82.6 84.1 84.8 85.5
37 59.3 67.9 72.2 75.7 78.2 80.0 81.3 82.2
38 48.2 59.0 65.1 68.8 71.8 74.2 76.2 77.5
39 63.6 70.6 75.2 79.1 81.0 82.6 83.3 84.0
40 67.8 73.3 77.0 80.2 81.3 82.3 83.1 83.5
41 64.1 71.5 75.5 78.5 80.4 81.6 83.1 83.9
42 64.0 71.2 75.2 78.4 80.2 81.7 82.9 83.7
43 53.0 63.0 68.8 72.3 75.1 77.2 78.8 80.2

Table 13: ACC(%) Based on CA Data Class(+/+)
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B.2 Results Based on CA Data of Class(+/−)

No R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8
1 71.7 76.3 77.8 79.8 81.1 83.0 83.5 85.6
2 66.3 73.0 76.4 78.7 80.4 81.7 82.5 83.3
3 69.5 77.2 80.0 81.5 82.4 83.9 84.8 85.6

Table 14: ACC(%) Based on CA Data Class(+/−)

B.3 Results Based on CA Data of Class(−/+)

No R-1 R-2 R-3 R-4 R-5 R-6 R-7 R-8
1 68.8 74.9 78.8 80.5 81.7 82.9 83.5 83.8
2 69.2 74.8 78.5 80.2 82.5 83.4 84.5 85.2
3 67.3 74.3 76.9 79.5 81.6 82.3 83.4 84.1
4 68.7 74.7 78.4 80.5 81.9 82.7 83.3 83.8
5 68.0 73.3 77.9 80.1 81.4 82.2 83.2 83.7

Table 15: ACC(%) Based on CA Data Class(+/−)
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