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Abstract

Safety remains an important consideration in control system design. This is partic-
ularly true for the control systems that are employed by the offshore petroleum and
maritime industries, in which authorities continually claim to have developed more
and more rigorous methods and processes to ensure safety and reliability. In addition
to the use of more traditional approaches to conducting redundancy design, backup
system design, robust design, and failure mode and effect analysis, these methods of-
ten involve the use of fault tolerant design to enhance the safety and reliability of the
control system.

As a common practice, segregation and redundant design are used for dynamic po-
sitioning vessels to isolate faulty components and prevent the propagation of faults.
However, many incidents still occur as a result of fault escapes from the segregation
on a torpid detection. In more severe cases, false detection can actually cause faults
and may result in an even more dangerous situation that has more catastrophic conse-
quences. Hence, precise and timely fault diagnosis is necessary for the operator or the
automation system to take appropriate action.

This thesis presents a brief overview of the existing fault diagnose methods, with a
particular focus on particle-filter-based framework for fault diagnosis. The paper com-
mences with a brief review of the background, theory, and typical features of the par-
ticle filter before progressing to examine the relationships and differences between the
particle filter and other traditional stochastic filters. Switching mode hidden Markov
model were employed to model a system with potential faults and a new methodol-
ogy that uses a particle filter as fault diagnosis filter was developed. This method was
then applied on an underwater robotic, which worked in complex environmental dis-
turbance and suffered from different failure modes. Experimental results from ROV
sea trails verified that the new fault diagnosis design is effective and reliable.

Some sections of this thesis have been previously published as journal papers and
conference papers:

• Bo Zhao, Mogens Blanke, and Roger Skjetne. Particle Filter ROV Naviga-
tion Using Hydroacoustic Position and Speed Log Measurements. In American
Control Conference (ACC), 2012.

• Bo Zhao, Mogens Blanke, and Roger Skjetne. Particle Filter-Based Fault-
Tolerant ROV Navigation Using Hydroacoustic Position and Doppler Velocity
Measurements. In 9th IFAC Conference on Manoeuvring and Control of Marine
Craft, 2012.

• Bo Zhao, Skjetne, R., Blanke, M., Dukan, F., “Particle Filter for Fault Diagnosis
and Robust Navigation of Underwater Robot,” IEEE Trans. Control Systems
Technology, 22:6, 2399-2407, Nov. 2014.

• Bo Zhao and Roger Skjetne, “A Unified Framework for Fault Detection and
Diagnosis Using Particle Filter,” Modeling, Identification and Control, Vol. 35,
No. 4, 2014.
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Chapter 1

Introduction

1.1 Background

1.1.1 Safety Issues in the Offshore Oil Industry

In recent decades, scientists have extended their explorations of hydrocarbon from on-
shore to offshore. At the same time, the offshore oil industry has experienced rapid
technological developments in the equipment that is available to conquer the harsh
oceanic environment. The level of automation involved in offshore drilling, oil pro-
duction, and supportive vessels has been steadily increasing. As too have the automa-
tion systems that have been specifically designed to enhance the safety and reliability
of the vessels conduct their various missions.

The majority of the time, offshore installations and marine crafts are isolated in remote
areas of the sea. They are far away from rescue, both spatially and temporally. Hence,
it is very important that the offshore oil industry treat safety as a primary concern.
The authorities require fully redundant design of the vessels. Furthermore, each new-
build vessel undergoes rigorous verification and validation, and existing vessels are
subject to regular inspections and tests. Ship owners and operators also take safety is-
sues seriously, and it is mandatory that comprehensive risk assessments are performed
prior to the operation of equipment and vessels. However, incidents in the offshore
oil industry still occur, and these accidents regularly result in economic losses, envi-
ronmental damage and even the loss of human life. Thus, it is important that further
studies are performed to identify methods of enhancing the safety and reliability of
ships, offshore installations, and offshore operations.

Dynamic positioning vessels

Dynamic positioning (DP) vessels represent just one example of control systems that
have been developed to ensure the safe and efficient operation of vessels. A DP vessel
is required to maintain a given position through a process that is referred to as station
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Figure 1.1: Dynamic positioning system: Offshore Support Vessel Toisa Perseus. In
the background, the fifth-generation deepwater drillship Discoverer Enterprise can be
seen. (Source: [Wikipedia, 2013])

keeping or position keeping. It achieves this through the appropriate application of
thrusters. When a DP vessel is in a station-keeping mode, it maintains a desired posi-
tion and heading in the horizontal plane. A small deviation from the desired position
and direction is permitted. Station keeping is widely used in many offshore operations,
such as drilling, loading and offloading, pipe-laying, etc. It is designed to ensure that
vessels remain in their operational range in order to avoid collision between marine
crafts.

The DP system enables a vessel to perform station-keeping activities. A DP system
consists of several subsystems: the dynamic positioning computer system coordinates
other subsystems, takes sensor input, and calculates control commands; the power
management system ensures the power supply and avoids blackouts; the thruster con-
trol system takes thrust commands from the DP computer system and performs the
lower level control of the thrusters; the position reference system reports the position
of the vessel; and the sensor system measures environment disturbance.

All these offshore operations are critical to the safe operation of the vessel and pre-
vent a loss-position, which could have catastrophic consequences. In the event that the
vessel does stray from a certain operation radius when performing the drilling opera-
tion ([IMCA, 1999]), emergency disconnection has to be performed ([Deegan, 1998],
[Bakken and Smedvig, 2001]), or crude oil will erupt from the well, endanger human
life and result in an environmental disaster. [Anonymous, 2012] reported an incident
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Figure 1.2: Dynamic positioning vessel with its 3 DOFs (surge, sway, yaw) motion,
external disturbances, and thruster forces. Source: –.

during which an offshore diving support vessel lost position with divers below. There
are other reports of DP drive-off due to a misleading position reference ([Marine,
2004]). Unfortunately, DP incidents, which potentially lead to the loss-position of DP
vessels, occur on a regular basis. Data from the IMCA indicates that there were 1.08
incidents per vessel on average in 2007.

The drive-off case described by [Anonymous, 2012] is more severe than the so-called
drift-off. Drift-off occurs when the DP vessel loses position due to an external force,
such as wind, waves, and ocean current, while drive-off is caused by the DP system
itself; for example, due to a misleading position reference or a fail-to-full thruster,
which results in the DP system “pushing” itself away from the desired position.

A number of researchers have developed methodologies that aim to enhance the re-
liability of the DP system in its design and integration phases. In the design phase,
failure modes and effects analyses (FMEA) ([IMCA, 2002]) is required. FMEA is a
systematic analysis of the systems to whatever level of detail is required to demon-
strate that no single failure will cause an undesired event. The aim of FMEA is to
identify potential design flaws to minimize the risk of failure by either proposing de-
sign changes or, if these are not possible, making appropriate changes to operational
procedures. Plenty of research has described the use of FMEA ([Cornes and Stockton,
1998], [DNV, 2004], and [Harper, 2008]).

Alternatively, hardware-in-the-loop (HIL) testing techniques can be employed to ver-
ify and validate the DP software. A DP-HIL vessel simulator is a real-time simulator
that has a direct interface to a DP computer system. The simulator calculates the ves-
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sel motion and other responses to simulate operation in a real environmental. Testing
personnel introduce various failure modes to the simulator, and the response of the DP
system is recorded and analysed. A range of on-board systems and equipment are ac-
tivated in response to the calculated motion of the simulated vessel; for example, the
power system, thrusters, sensors, and position reference systems. Appropriate data
is collected by the corresponding sensor and transmitted back to the DP computers
([Johansen et al., 2005]). A number of researchers have examined the use of DP-HIL
tests ([Phillips and Miller, 2000], [Marine, 2004], [Johansen et al., 2005], [Johansen
and Sørensen, 2009], and [Sørensen, 2011]).

FMEA and HIL tests are powerful tools that can enhance the reliability of a DP sys-
tem by identifying defects and detecting potential safety issues during the design and
manufacture phases. These approaches can eliminate the majority of the design flaws
that are present in the hardware and software. However, there is a distinct lack of
methods that can detect, isolate, and estimate a fault on a real-time basis, and acci-
dents that result from a small fault in the DP system as a result of erratic software
actions are common and have significant consequences. Hence, in the case of an al-
most fully redundant system, i.e., the DP system, it is critical that faults are diagnosed
in order to make good use of the redundant equipment. The more information that is
available about the fault, the better it can be handled. A number of researchers have
studied the diagnosis and fault-tolerant control for DP systems. Besides the overview
paper provided by [Blanke, 2005], a detailed fault tolerant design for ship propulsion
system was provided by [Blanke et al., 1998], and then followed by the work of [Wu
et al., 2006], [Zhang et al., 2009], and [Garg et al., 2011]. In terms of research that has
focused specifically on the thrusters and propellers, valuable studies have been con-
ducted by [Spjtvold and Johansen, 2009], [Fu et al., 2011], and [Chin, 2012]. Several
papers have focussed on a position-mooring system; for example, those conduced by
[Fang and Blanke, 2011] and [Fang et al., 2013]. [Shi et al., 2012] discussed sensor
faults in DP.

Underwater robotics

Underwater robotics are widely used in various sub-sea operations, typically in scien-
tific research and survey, offshore hydrocarbon exploration and production. Underwa-
ter robotics fall into two categories: remotely operated underwater vehicles (ROVs)
and autonomous underwater vehicles (AUVs). AUVs play an important role in wide-
range seabed survey; however, ROVs, which are more complex, offer finer control
and are highly safety-critical, are generally preferred because they can work in close
proximity to offshore hydrocarbon exploration installations. Given this proximity, ac-
curate and reliable positioning and control of the ROVs are required to realize high
precision and fault-tolerant ROV navigation. [Kinsey et al., 2006] discussed some of
the commonly used ROV navigation sensors. These sensors use different principles
and have different features; as such, their update rate, precision, and range are gen-
erally different. ROVs are usually equipped with several types of sensors that work
in combination to form an integrated navigation system that overcomes the disadvan-
tages of each type of sensor to obtain an accurate and reliable position estimate. Some
of the applications of ROV integrated navigation were reported in [Blain et al., 2003],
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Figure 1.3: ROV Minerva in operation. Photo by AUR Lab (Source: [AUR-Lab,
2013]).

[Kinsey and Whitcomb, 2004], and [Dukan et al., 2011]. In these applications, sensors
are assumed reliable; however, sensor faults are frequently encountered in practice,
making it necessary to detect and accommodate the sensor faults. Such faults can be
diagnosed by checking the consistency of the measurements from the redundant sen-
sors; however, it is not always possible to install redundant sensors on ROVs because
of limitations. In this case, making use of all available information from different
types of sensors to achieve a model-based software redundancy is preferred ([Fauske
et al., 2007], and [Filaretov et al., 2012]). Moreover, actuator faults are also important
([Antonelli, 2003], [Alessandri et al., 1999], and [Bono et al., 1999]).

1.1.2 Brief Review of Fault Diagnosis

Due to the increasing requirements of safety, reliability, and performance, fault-tolerant
design for control systems has drawn significant attention. Faults in actuators, sensors,
or other system components in conventional feedback control designs, may result in
unsatisfactory performance, or even instability. Thus, to maintain the performance
of the system, it is important to ensure the system works continues to operate in a
degraded, but safe, condition when faults occur. This is particularly vital in safety-
critical systems, such as those employed in aircraft, submarines, nuclear power sta-
tions, chemical plants, etc. In such systems, the consequences of a minor fault in a
component or any loss of system functionality can be catastrophic, as was the case in
the DP incidents reported and discussed by [Deegan, 1998] and [Jenssen and Hauge,
2002]. Therefore, the demand for reliable, safe, and fault-tolerant control designs is
high.

In order to realize a fault tolerance system, it is first important to detect and diagnose
faults. Two approaches can be employed to achieve this: an analytical approach and a
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heuristic approach.

According to [Isermann, 2006], the analytical approach further consists of two meth-
ods: a signal-processing-based method and a model-based method. The analytical
approach that is based on signal processing considers the time domain (statistical)
and/or frequency domain features of output signals. The threshold, amplitude, mathe-
matical expectation, variance, correlation, and frequency spectrum (Fourier analysis)
must be inspected using a signal-processing-based method. In addition, advanced ana-
lytical methods, such as wavelet analysis, intelligent analysis (such as neural networks
and fuzzy logic), cluster analysis, and some other methods from pattern recognition,
can also be applied. An example of a study that involved a signal-processing-based
method was that conducted by [Galeazzi et al., 2012] in which the parametric roll mo-
tion of a vessel was detected by comprehensively applying several signal-processing-
based FD methods. Other examples can be found in [Henao et al., 2003], where faults
in induction machine drives were studied; and [Hussain and Gabbar, 2011], who stud-
ied gear faults based on pulse shape analysis.

A model-based analytical FDD was discussed in detail by [Blanke et al., 2006]. The
basic idea behind model-based fault detection can be outlined as follows: the nominal
system behaviour derived from the mathematical model or the predicted behaviour by
the model is compared with the actual system behaviour, as derived from the measure-
ments. The essential objective of this method is to design residual generators, which
are functions of the input and measurement of a system. A residual generator produces
a residual signal, which is close to zero when the system is fault-free and differs from
zero when there is fault present. A fault is detected whenever the residual exceeds a
pre-designed threshold. The threshold is designed according to given design parame-
ters, such as the mean-time-to-detect and the false-alarm-rate. The diagnosis of fault
leans on examining the behaviour of the residual. In the case of multiple faults, several
residual generators are usually designed. A fault is isolated when its corresponding
residuals exceed the threshold, while other residuals remain close to zero. However,
for the stochastic systems described by state space models, much of the development
in fault detection schemes has relied on the system being linear and the noise and
disturbances being Gaussian.

This method is very practical and has wide applications. For example, [Blanke et al.,
1998] employed it in a fault tolerant design for a ship propulsion system. It has also
been used to produce a fault tolerant design for station keeping vessels ([Blanke,
2005]), and [Bak et al., 1996] applied a model-based analytical FDD to a satellite
orientation control system.

There have been a number of recent innovations in model-based FD ([Bashi et al.,
2011], [Shang and Liu, 2011], and [Meskin et al., 2013]). [Shang and Liu, 2011]
developed an unscented Kalman filter (UKF)-based method to detect and isolate both
temperature sensor and valve actuator faults in a high-performance aircraft bleed air
temperature control system. Two UKFs were designed to detect two failure modes.
Since UKF was used in the FD scheme, the detection algorithm exhibited the ability
to adopt the nonlinearity of the system. [Bashi et al., 2011] considered fault detection
in large-scale systems in which many practically identical units operate in a shared
environment. A special class of hybrid system mathematical models were introduced
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to describe such multi-unit systems, and a general approach for estimation and change
detection was proposed. The proposed algorithm also considered mode switching and
parameter drift, so it could handle sudden, incipient, and pre-existing faults. [Meskin
et al., 2013] proposed a real-time fault detection and isolation scheme based on the
concept of multiple model for aircraft jet engines, and the current operating mode
of the system was detected according to an evaluation of the maximum probability
criteria.

1.1.3 Brief Review of Particle Filter

Particle filter (PF), which is inherited from the Bayesian estimation and the Monte
Carlo method, has been studied for decades. For example, [Handschin, 1970] and
[Akashi and Kumamoto, 1977] conducted some of the early studies in which the
Monte Carlo technique was used to estimate states in stochastic process. However,
the shortage of computational power at that time limited the further development of
this promising approach. The idea of particle filter was first formally introduced by
[Gordon et al., 1993] in a study in which the fundamental idea of using the Monte
Carlo method to estimate state in a hidden Markov system was recovered from liter-
ature. This method was further enriched by [Kitagawa, 1996], [Liu and Chen, 1998],
and many other researchers. The book produced by [Doucet et al., 2001] contained a
lot of important research. A good early tutorial was produced by [Arulampalam et al.,
2002], and their work represents a very practical introduction to the PF. Recent im-
provements in PF were summarized in [Cappe et al., 2007] and [Doucet and Johansen,
2009]

PFs may be perceived to represent a serious alternative to real-time applications as
classically approached by the (extended) Kalman filter ([Gustafsson, 2010]). The
more nonlinearity or the more non-Gaussian noise that the system model exhibits,
the more potential PFs have, especially in applications where computational power
is rather cheap and the sampling rate is moderate. The PF has drawn great attention
since it was proposed. It is a powerful tool to solve the estimation problems that are
associated with nonlinear non-Gaussian circumstances. Moreover, PF has been wildly
applied; for example, in navigation ([Zhao et al., 2012b]), target tracking ([Karlsson
and Gustafsson, 2006]), computer vision, digital communications, speech recognition,
machine learning, and many other areas (see [Chen, 2003] for more detail).

Particle filter for fault diagnosis

Diagnosing faults in systems is one of the most significant branches of particle filter
applications. Three early studies that involved the use of PF for fault diagnosis in-
clude those completed by [Kadirkamanathan et al., 2000], [Li and Kadirkamanathan,
2001], and [Kadirkamanathan et al., 2002], in which the authors developed a method
that combined the state estimation by a particle filter in a multiple model environment
and likelihood ratio approach to detect and isolate faults in stochastic nonlinear dy-
namic systems. When this method is employed, the fault in the system is modelled as
parameters of the model. The estimation of the state from the particle filter is used to
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derive the likelihood of these parameters. Once the likelihood of a parameter exceeds
a pre-defined threshold, it claims the system is with fault.

Another success story involving the application of a particle filter in fault detection
was described in a series of papers ([Verma et al., 2001] [Thrun et al., 2002] [Verma
et al., 2003], and [Verma et al., 2004]). In these papers, a fault detection problem
involving a space rover was examined and a so-called risk sensitive particle filter
and variable resolution particle filter were developed. The two new particle filters
aimed to improve the efficiency with which the particle filter detected faults. The risk
sensitive particle filter deals with those anomalies that rarely happen but, when they
do, have severe consequences. It tries to distribute more particles, i.e., computation
on these type of anomalies to improve the overall effectiveness of the particle filter.
The variable resolution particle filter is more result-oriented, i.e., the faults result in
similar consequences are represented by so-called abstract particles. By doing so, a
limited number of particles are, therefore, sufficient for representing large portions of
the state space when the likelihood that this part of the state space will be occupied is
low.

[Koutsoukos et al., 2002] produced a particle-filtering-based estimation, monitoring,
and diagnosis algorithm that focused on the interaction between continuous and dis-
crete dynamics in hybrid systems. The hybrid estimation methodology was demon-
strated on a rocket propulsion system. [de Freitas, 2002] described a Rao-Blackwellised
particle-filtering-based fault diagnosis approach ([Doucet et al., 2000b]). The ap-
proach presented in [de Freitas, 2002] combined a particle filter that was designed
to compute the distribution of the discrete states with a bank of Kalman filters that
were required to compute the distribution of the continuous states. In order to effec-
tively track the behaviour of the discrete states, there needs to be a large number of
Kalman filters in the filter bank. One possible method of improving the performance
of the above-mentioned approach was stated in [Morales-Menendez et al., 2002] who
employed a one-step look-ahead approach. [Funiak and Williams, 2003] combined
this approach with probabilistic hybrid automata to allow continuous variables to af-
fect discrete state transitions, which might be a more precise model of the reality than
the hidden Markov model considered in alternative research.

A more recently reported approach to use particle filters for fault diagnosis was re-
sented by [Caron et al., 2007] who used a hidden Markov model with variable tran-
sition probabilities that were estimated online from data. The application involved a
multi-sensor fusion for land vehicle positioning. In [Caron et al., 2007], the latent
parameters and hyper parameters that were introduced into the system model resulted
in a high computational burden.

1.2 Structure of this thesis and contributions

Chapter 2 commences with an overview of the mathematical foundation and formu-
lation of probability and statistics. Then, the concept of recursive Bayesian filtering
is introduced. The Kalman filter, extended Kalman filter, Gaussian sum filter, and un-
scented Kalman filter, which all belong to the recursive Bayesian filtering technique,
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are briefly reviewed. In addition, the Kalman filter is newly proved in the Bayesian
recursive filtering point of view, then the particle filter and related topics are intro-
duced and discussed. Two case studies are employed to illustrate the behaviour and
performance of the particle filter. One of the case studies addresses the mechanism of
the particle filter. The following issues are discussed:

• The prior and posterior distributions estimated by the particle filter.
• The estimation performance according to different types of particle filters.

A particle-filter-based wave filter for dynamic positioning vessel was designed in the
second study. In addition to the assumptions made by [Fossen and Strand, 1999], the
noise and update rate in position reference signals are considered. The different setups
of particle filters are compared. Except for the introductory knowledge of this area,
the main contribution of this chapter is the partile-filter-based wave filter for dynamic
positioning vessels.

Chapter 3 extends the usage of the particle filter to the fault diagnosis problem. First,
the switching mode hidden Markov model for system with possible faults is intro-
duced. Then the algorithm of the particle filter for fault diagnosis is provided. After
the discussion of a few relevant topics, a case study involving the use of this method
for diagnosing faults in the position reference system of a dynamic positioning ves-
sel is studied. This case study continues with the dynamic positioning wave filtering
problem described in Chapter 2, but the common failure modes of the GNSS and hy-
droacoustic position reference sensors are also considered. The aim of the design is
to produce a reliable and robust navigation system that can be employed for dynamic
positioning even when failure occurs in the sensors. The simulation results indicate
that the particle-filter-based navigation system design can effectively detect the fail-
ure of positioning sensors and result in an acceptable estimation of the vessel position
when failure occurs. The main contributions in this chapter are: 1) the demostration
of using particle filter on switching model hidden Markov model for fault detection
and diagnosis, and 2) the faul tolerant design of the dynamic positioning vessel wave
filter.

An ROV experiment for validating the proposed particle-filter-based fault diagnosis
algorithm is given in detail in Chapter 4. The model of the Minerva ROV used in the
experiment is first provided. Then, the failure modes of the ROV navigation sensors
and thrusters are discussed. Using these preparations, a PF-based robust ROV navi-
gation system is designed. The results from the ROV sea trail is given and discussed
at the end of this chapter. The simulation and experimental result regarding this ro-
bust navigation system design is also seen in [Zhao et al., 2012a,b, 2013]. The main
contribution of this chapter is the design, implementation, and experiment of the ROV
robust navigation system.

Chapter 5 summarizes this thesis, and briefly looks into the future research and appli-
cation of the proposed PF-based FD method.
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Chapter 2

Particle Filter

“Now, since our condition accommodates things to itself, and trans-
forms them according to itself, we no longer know things in their reality;
for nothing comes to us that is not altered and falsified by our Senses.
When the compass, the square, and the rule are untrue, all the calcula-
tions drawn from them, all the buildings erected by their measure, are of
necessity also defective and out of plumb. The uncertainty of our senses
renders uncertain everything that they produce. ”

– Michel de Montaigne, “Apology for Raimund Sebond”.

2.1 Introduction to the Filtering Technology

In principle, filtering is a method that physically extracts interesting objects from crude
material. The human being has been using filtering processes for a long time. The
coffee filter is a good example of the physical use of a filter in the modern world. It
separates the coffee from the mixture. However, the filter can also be extensively be
used in informatics, where people want to extract essential information from raw data.
Raw data can be acquired from various tools, such as rulers, scales, meters, and other
sensors, with the purpose of acquiring a measure of reality. However, researchers have
come to the conclusion that no matter how accurate the instrument is and how carefully
the measurement is taken, the environment can always disturb the result. This means
that measured raw data are only distorted reality. Hence, the filtering philosophy is
applied. In statistics, it turns into least square, experimental design and other methods.
In cybernetics and signal processing, it becomes “filtering” techniques.

A measure of the reality is also called observation. The observations show random-
ness. The probability theory studies the concepts and methods of random events and
random variables. It models the random events in the real world as random variables.
While statistics focuses on collecting, analysing, and interpreting a group of data,
stochastic are concerned with studying the behaviour of a system with random inputs.
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Filtering in cybernetics and signal processing has been narrowed down to a technique
that starts by attenuating the noise in a measurement. Then, in order to achieve a better
control performance, it is necessary to observe not only the output but also the overall
status of the system. This technique is always referred as state observer. The Kalman
filter ([Kalman, 1960]) coupled with its various extensions, has dominated both re-
search and industry as the most mature observer since it was first introduced in 1960.
The limitation of the Kalman filter is that it only applies to the linearity of the system.
As its important descendent, the extended Kalman filter locally linearizes a nonlinear
system, and runs a standard Kalman filter on these local linearized approximations.
The performance of the extended Kalman filter works nicely in systems that exhibit
weak non-linearity.

A number of filters have been specially designed for nonlinear systems. For example,
[Fossen and Strand, 1999] designed nonlinear observers that were based on nonlinear-
system theory in order to ensure the estimation error exponentially converged. Else-
where, in stochastic filtering theory, there are unscented Kalman filters, particle fil-
ters, and so on. The unscented Kalman filter features the distribution of the system
states with a group of characteristic points, which are referred to as sigma points. The
system states are estimated by propagating these sigma points. The particle filter esti-
mates the states of the system by simulating the behaviour of the system states with a
group of particles. It is compatible with a large class of systems, linear or nonlinear,
with Gaussian or without Gaussian noise, white or with coloured noise.

This chapter describes the tool that was most commonly used in this thesis, the particle
filter, which is a stochastic filter. The chapter starts with a brief review of the concepts
of probability, statistics, and stochastic process as the basis of stochastic filtering. It
then presents examples of stochastic filters. At the end of the chapter, the theory of
particle filter is introduced using two practical examples.

2.2 Mathematical preliminaries

2.2.1 Basics

Definition 2.1 Let S be a set, and 2S represents the power set of S. Then a subset
F ⊂ 2S is a σ-algebra if

1. ∅ ∈ F ;

2. A ∈ F ⇒ A \X ∈ F , where A \X is the complement of A;

3. A1, A2, . . . ∈ F ⇒
⋃
iAi ∈ F , i = 1, 2, . . . .

Definition 2.2 A set function P on a σ-algebra F is a probability measure when

1. the codomain of P is [0, 1], and P returns 0 for the empty set and 1 for the entire
space;

2. for A1, A2, . . . ∈ F , P (
⋃
iAi) =

∑
i P (Ai), i = 1, 2, . . ..
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Remark 2.1 P (A \X) = 1− P (A), since P (A \X) + P (A) =
P ((A \X) ∪ (A)) = P (X) = 1.

Definition 2.3 A probability space is a triple (Ω,F , P ), where

1. Ω is the sample space which is non-empty;

2. F ⊆ Ω is a σ-algebra;

3. P : F → [0, 1] is a probability measure.

Definition 2.4 random variable

The basic concept of probability theory – random variable – has no commonly ac-
cepted definition. [Cramer, 1999] described random variables as follows:1

Consider a determined random experiment E, which may be repeated
a large number of times under uniform conditions. We shall suppose that
the result of each particular experiment is given by a certain number of
real quantities ξ1, ξ2, . . . , ξk, where k ≥ 1.

We then introduce a corresponding variable point or vector ξ = (ξ1, . . . , ξk)
in the k-dimensional space Rk. We than call ξ a k–dimensional random
variable. Each performance of the experiment E yields as its result an
observed value of the variable ξ, the coordinates of which are the values
of ξ1, . . . , ξk observed on that particular occasion.

Let S denote some simple set of points in Rk, say a k– dimensional
interval, and let us consider the event ξ < S 2, which may or may not
occur at any particular performance of E. We shall assume that this event
has a definite probability P , in the sense explained in 13.5. The number
P will obviously depend on the set S, and will accordingly be denoted by
any of the expressions

P = P (S) = P (ξ < S) .

In the above quotation, Cramer also introduced the cumulative distribution function
as:

Definition 2.5 Given a probability space (Ω,F , P ) on Rn, for every real vector x,
the cumulative distribution function (CDF) of a real-valued random vector X is
given by

FX (x) = P (X E x) . (2.1)

Definition 2.6 Let fX (x) = dFX(x)
d µ denote Radon-Nikodym density of probabil-

ity distribution FX (x) w.r.t. a measure µ. When x is discrete and µ is a counting
1Notations in the quotation are modified to comply with the notations of this thesis.
2If ξ is a vector, so is S, then this should be understood as ξ is elementarily less than S. – by author
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measure, fX (x) is a probability mass function (PMF) ; when x is continuous and
µ is a Lebesgue measure, fX (x) is a probability density function (PDF).

Definition 2.7 Given random vector (or variable) X and Y , the CDF of the joint
random vector (X,Y ) is

F(X,Y ) (x,y) = P (X E x,Y E y) . (2.2)

Definition 2.8 Given random vector (or variable) X and Y , they are independent
if and only if

F(X,Y ) (x,y) = FX (x)FY (y) , (2.3)

or equivalently,
f(X,Y ) (x,y) = fX (x) fY (y) . (2.4)

Definition 2.9 Given a probability space (Ω,F , P ) on Rn, for random variables
X1, . . . , Xn, the marginal probability of sub-group random variables Xp, . . . , Xq

({p, . . . , q} ∈ {1, . . . , n}) is

F(Xp,...,Xq) (x1, . . . , xk) = F(X1,...,Xn) (x1, . . . , xk,+∞, . . . ,+∞) (2.5)

=

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
F(X1,...,Xn) (x1, . . . , xn) dxi · · · dxj . (2.6)

({i, . . . , j} = {1, . . . , n} \ {p, . . . , q}) (2.7)

The marginal density function of X1, . . . , Xk is

f(X1,...,Xk) (x1, . . . , xk) =
dF(X1,...,Xn) (x1, . . . , xk,+∞, . . . ,+∞)

dµ
. (2.8)

Definition 2.10 Given a probability space (Ω,F , P ) on Rn, for random vectors (or
variables)X,Y , the conditional cumulative distribution function of givenX E x
relative to the hypothesis Y E y is

F(X|Y ) (x |y ) = P (X E x |Y E y ) (2.9)

=
P (X E x,Y E y)

P (Y E y)
(2.10)

=
F(X,Y ) (x,y)

FY (y)
(2.11)

and the conditional probability density function is

f(X|Y ) (x |y ) =
f(X,Y ) (x,y)

fY (y)
. (2.12)
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Theorem 2.1 The law of total probability: Given a probability space (Ω,F , P ),
and {Bi} , i = 1, 2, . . . is a finite or countably infinite partition of Ω, then for any
event E of the same probability space:

P (E) =
∑
i

P (E ∩Bi) (2.13)

=
∑
i

P (E |Bi )P (Bi) . (2.14)

he basic concepts associated with probability are outlined above. Another important
concept that is of relevance to the use of a particle filter is empirical distribution,
which describes the cumulative density function with empirical measure of samples.
This concept, and the related theorems, describe the relationship between the results
from random experiments and the random variable.

Definition 2.11 Let (X1, . . . ,Xns) be i.i.d. real random variables with the com-
mon CDF F (x). Then the empirical distribution function is defined as

F̂ns (x) =
number of elements in the sample E x

ns
=

1

ns

ns∑
i=1

1 {Xi < x} ,

(2.15)
where 1{E} is the indicator of event E .

Theorem 2.2 Weak law of large numbers: The sample average converges in prob-
ability towards the expected value µ

X̄n
p→ µ when n→∞,

or for any positive number ε

lim
n→∞

Pr
(∣∣X̄n − µ

∣∣ D ε) = 0.

Theorem 2.3 Strong law of large numbers: The sample average converges almost
surely to the expected value, as

X̄n
a.s.→ µ when n→∞,

or
Pr
(

lim
n→∞

X̄n = µ
)

= 1

The laws of large numbers describe the relationship between the samples and the
population, and can be extended to the following lemma.
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Figure 2.1: Weibull CDF and empirical CDF curves, and Weibull PDF and normalized
histogram.

Lemma 2.1 By the strong law of large numbers, the estimator F̂n (x) in Definition
2.11 converges to F (x) as n→∞ almost surely, for every value of x

F̂n (x)
a.s.→ F (x) , (2.16)

that is
lim
n→∞

sup
x∈Rm

∣∣∣F̂n (x)− F (x)
∣∣∣ = 0, (2.17)

thus the estimator is consistent [Van der Vaart, 2000].

Example 2.1 Figure 2.1 depicts the CDF and PDF curves of Weibull distribution
with scale parameter 1 and shape parameter 1.5, and its empirical approximates with
sample size 10, 100, and 1000, respectively. The three axes at the bottom show the
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Figure 2.2: Probability plots of the samples under different sample sizes, compared
with the true distribution.

kernel density estimation of samples and the normalized histogram of the samples,
as compared to the analytical distribution curve. The approximate becomes more
accurate as the number of samples increases. Figure 2.2 depicts the probability plot,
where the accuracy of the approximations is presented.

The following central limit theorem and the lemma from it shows how the empirical
CDF is close to (or converges to) the true distribution.

Theorem 2.4 Lindeberg-Lévy central limit theorem: Suppose {Xi, i = 1, 2, . . .}
is a sequence of i.i.d. random variables with E [Xi] = µ and D [Xi] = σ2 < ∞,
and let Sn = 1

n

∑n
i=1Xi. Then as n approaches infinity, the random variables√

n (Sn − µ) converge in distribution to a normal distribution N
(
0, σ2

)
, as

√
n

(
1

n

n∑
i=1

Xi − µ

)
d→ N

(
0, σ2

)
. (2.18)

In the case, σ > 0, convergence in distribution means that the CDF of
√
n (Sn − µ)
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converge pointwise to the CDF of the N
(
0, σ2

)
distribution, such as for every real

number z,
lim
n→∞

Pr
[√
n (Sn − µ) < z

]
= Φ (z/σ) , (2.19)

where φ (x) is the CDF of standard normal distribution evaluated at x. Note that the
convergence is uniform in z in the sense that

lim
n→∞

sup
z∈R

∣∣Pr
[√
n (Sn − µ) < z

]
− Φ (z/σ)

∣∣ = 0, (2.20)

where sup denotes the least upper bound of the set.

Lemma 2.2 Continue with Definition 2.11. Let random variable Yi (x) =
1 {Xi < x}, such that

Yi (x) =

{
1 Xi < x
0 Xi ≥ x

. (2.21)

Then E [Yi (x)] =
∫ x
−∞ fX (x) dx = F (x), while D [Yi (x)] = E

[
Y 2
i (x)

]
−

E2 [Yi (x)] = F (x) (1− F (x)). This means given x0 ∈ R,

E [Yi (x0)] = F (x0) (2.22)
D [Yi (x0)] = F (x0) (1− F (x0)) <∞. (2.23)

Use the central limit theorem, yields

√
n

(
1

n

n∑
i=1

Yi (x0)− F (x0)

)
d→ N (0, F (x0) (1− F (x0))) , (2.24)

this is

F̂n (x0) =
1

n

n∑
i=1

Yi (x0)
d→ N

(
F (x0) ,

1

n
F (x0) (1− F (x0))

)
. (2.25)

�

This lemma shows that the accuracy (variance) of pointwise estimation of the empir-
ical CDF to the real CDF is proportional to the reciprocal of the number of samples.
This can be a formal answer to what we observed in the previous Example 2.1; i.e., the
accuracy of the approximation increases as the number of samples increases. Further-
more, it can also be reasoned from the lemma that the estimation variance is 0 when
F (x) = 0 or F (x) = 1, which means the empirical distributions always converge to
the true distribution when x → −∞ or x → +∞, while the estimation accuracy is
low when F (x) is close to 0.5. This can also be observed in the following example.

Example 2.2 Repeating the empirical approach of the Weibull distribution in Ex-
ample 2.1 1000 times, with sample sizes 10, 100, and 1000 , respectively. The results
are provided in Figure 2.3 grouped by sample size. The left column of Figure 2.3
shows the CDF and the 1000 empirical CDF approximations. And the right column
shows the relationship between the F (x)− F̂1000(x) and F (x).
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Figure 2.3: Example: empirical distribution approaching the real distribution with
different sample sizes.

As the sample size increases, the approximation gets more accurate so that the curves
of F (x)− F̂1000(x) become more centralized. Furthermore, the maximum inaccuracy
occurs around the point F (x) = 0.5, which verifies Lemma 2.2.

From these Weibull approximation results, one may develop the assumption that the
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Figure 2.4: Example: empirical distribution approaching a Gaussian mixture distribu-
tion.

approximation accuracy is poor where the PDF is large in value, i.e., the CDF changes
fast. Another example can be used to clarify this issue. The same empirical approx-
imation is applied to a Gaussian mixture distribution. The distribution is structured
by two Gaussian distributions with means −5 and 5, variances 1 and 1. The mixing
proportions are 0.5, 0.5. The result, presented in Figure 2.4, shows that the maxi-
mum approximation uncertainty occurs around F (x) = 0.5, where the CDF curve
is flat, i.e. the f (x) is close to 0. This shows that the approximation accuracy is
not related to the shape of the CDF. The solid and dash lines are the the X-axis,√
F (x)(1− F (x)/1000; i.e., the standard deviation of the approximation error in

Equation (2.25), and 3
√
F (x)(1− F (x)/1000; i.e., the 3σ limit. The figure shows

that the majority of the approximation errors are located in the 3σ limit, which verifies
the result in Equations (2.24) and (2.25) in Lemma 2.2.
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2.2.2 Bayesian Probability

To interpret the mechanism of the particle filter, we also need to introduce the concept
of Bayesian probability, which is named after English mathematician Thomas Bayes.
Bayesian probability represents one method of interpreting probability through, con-
necting the posterior probability, the prior probability, the likelihood, and the evi-
dence with the Bayes’ law:

P (H |E ) =
P (E |H )P (H)

P (E)
, (2.26)

where

• Event H denotes the hypothesis.

• Event E denotes the evidence.

• P (E |H ) is the likelihood which shows the probability of E given H; i.e., the
probability of evidence E being observed when the hypothesis H is true.

• P (H) is the prior that gives the probability of H before E is observed.

• P (E) is the probability that the evidence occurs.

• P (H |E ) is the posterior probability and is the probability of H given the ob-
served evidence; i.e., the extent to which E supports H .

The Bayes’ rule can be derived from Definition 2.10. It is simple but meaningful in
probability theory giving its important position in reasoning. Because the probabil-
ity that the evidence is seldom known while the conditional probability is relatively
easier to obtain, the Bayes’ law is usually used in combination with the law of total
probability, resulting in the following form:

Assuming the space of the hypothesis H is partitioned into H1, H2, . . ., Hn, and the
probabilities P (E |Hi ), i = 1, 2, . . . , n are known (usually by statistical model or
experience), then the posterior is obtained by

P (H |E ) =
P (E |H )P (H)∑n
i=1 P (E |Hi )P (Hi)

. (2.27)

When the partition of the space H is continuous instead of discrete, Equation (2.27)
can be transformed into

P (H |E ) =
P (E |H )P (H)∫∞

i=1
P (E |Hi )P (Hi)

, (2.28)

where Hi, i = 1, 2, . . . constructs a partition of H , such as
⋃∞
i=1Hi = H .
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Bayes inference and Bayes prediction

The Bayes’ rule can be generalized to Bayes inference and Bayes prediction. Given
i.i.d. observations xi (i = 1, 2, . . .) from distribution f (x |θ ), and θ is unknown but
depending on a hyper-parameter α, such that θ ∼ f (θ |α ).

Directly applying the Bayes’ law, yields

f (θ |x1, . . . ,xn,α ) =
f (x1, . . . ,xn |θ ) f (θ |α )

f (x1, . . . ,xn |α )
, (2.29)

or shrinks to

f (θ |x1, . . . ,xn ) =
f (x1, . . . ,xn |θ ) f (θ)

f (x1, . . . ,xn)
, (2.30)

when only θ ∼ f (θ), that is the prior distribution of θ is known, where

• f (x1, . . . ,xn |θ ) =
∏n
i=1 f (xi |θ ) is the likelihood, or sampling distribution

in this special case.

• f (θ |α ) is the prior probability, which is the distribution of the parameter be-
fore observation.

• f (x1, . . . ,xn |α ) is the evidence, or marginal likelihood in this case. This
distribution cannot be obtained directly, but can be calculated via the law of
total probability

f (x1, . . . ,xn |α ) =

∫
θ

f (x1, . . . ,xn |θ ) f (θ |α ) dθ. (2.31)

It is sometimes difficult to obtain an analytical solution of this integration. How-
ever, since the denominator is a constant, we have

f (θ |x1, . . . ,xn,α ) ∝ f (x1, . . . ,xn |θ ) f (θ |α ) , (2.32)

• f (θ |x1, . . . ,xn,α ) is the posterior distribution, which is the distribution of
the parameter θ after the observation.

The Bayesian inference inspires Bayesian prediction, such as

f (xn+1 |x1, . . . ,xn,α ) =

∫
θ

f (xn+1 |θ ) f (θ |x1, . . . ,xn,α ) dθ. (2.33)

2.2.3 Hidden Markov Model

The state-space model has been widely used in control theory to represent systems.
The state-space model of a discrete time-variant system adopts the form

xk+1 = gk (xk,uk) (2.34a)
yk = hk (xk,uk) , (2.34b)
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where

• k is the time index.

• x ∈ RNx is the state variables of the system, and defined as the smallest possi-
ble subset of system variables that can describe the entire state of the system at
any given time.

• u ∈ RNu is the input to the system, which is assumed to be deterministic and
known.

• y ∈ RNy is the output ( observation) of the system.

• g : RNx ×RNu → RNx is process function , which represents the evolution of
the states of the system.

• h : RNx × RNu → RNy is observation function, which describe how the ob-
servation is made from the system.

• x0 and uk, k = 0, 1, . . . are assumed to be known.

A modified model, which also considers the stochastic behaviour of the system due to
noise acting or uncertainty of the system, is

xk+1 = gk (xk,uk,wk) (2.35)
yk = hk (xk,uk,vk) , (2.36)

where in addition to the variables in Equation (2.34)

• w ∈ RNw is the system noise, represents the system uncertainty and unmod-
elled dynamic.

• v ∈ RNv is the measurement noise, represents the phenomenon that the mea-
surement cannot precisely reflect the measured object.

Intuitively, the behaviour of system (2.34a) under given input series can be determin-
istically predicted by simulating the first-order difference equation, such as

xk+1 = x0 +
k∑
i=1

gi (xi,ui) . (2.37)

However, because of the unknown noise terms w, this cannot be done for system
(2.35). Therefore, the distribution of the system states may spread in the space ac-
cording to a certain distribution, even though the initial states and the input series are
the same. In addition, because of the nonlinearity of the process function, it is diffi-
cult to develop a description of the distribution of xk in a close form. We refer to the
following model to describe this stochastic behaviour of the process

Xk+1 |xk,uk ∼ gk (xk,uk) (2.38a)
Y k |xk,uk ∼ hk (xk,uk) , (2.38b)
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Figure 2.5: A vessel in the NE frame.

where g and h now are probability measures, or PDFs, which absorb the noise terms
w and v. Moreover, theX and Y are random variables. This model is named hidden
Markov model. Equation (2.38a) describes the distribution of state vector at time k+1
given the state at time k as xk, where xk is deterministic. The measurement process
adopts a similar meaning. The propagation of such uncertainty is given by stochastic
integral as

p (xk+1) =

∫
g (xk,uk) p (xk) dx. (2.39)

It is important to clarify that the states of a system at a certain time are macroscopically
deterministic. For instance, the position of the object in projectile motion is determin-
istic. However, our knowledge of the deterministic position is non-deterministic due
to system and measurement uncertainty, such that our knowledge about the state of a
system should be always described in the form x ∼ p (x).

An example will be provided to highlight the relationship between state-space model
and HMM.

Example 2.3 Surface vessel manoeuvring model

Consider a low-speed surface vehicle in Figure 2.5 with 3 DOFs, namely surge, sway,
and yaw. The velocity of the vehicle is define in its body frame as surge speed u,
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sway speed v, and yaw rate r. In addition, the vessel position and heading is defined
in the NED frame as north position N , east position E, and heading ψ, which is with
respect to the north. Define position vector η ,

[
N E ψ

]>
, and velocity vector

ν ,
[
u v r

]>
. The kinematic model of the system then is ([Fossen, 2011])[

η̇
ν̇

]
=

[
R (η)ν

M−1 (CRB (ν)ν + CA (νr)νr +D (νr))

]
+

[
0

M−1τ thr

]
+

[
0

M−1τ env

]
+

[
0
w

]
, (2.40)

where

R (η) =

cos (ψ) − sin (ψ) 0
sin (ψ) − cos (ψ) 0

0 0 1

 (2.41)

is the rotation matrix, M is the mass and added mass of the vessel, CRB (ν)ν and
CA (νr)νr are the Coriolis force due to the vessel mass and added mass respectively,
D (νr) is the nonlinear damping force, νr is the vessel relative velocity with respect
to the sea current, τ thr is the thruster force, τ env is the environmental force, w is
the process noise representing the unmodelled dynamic and system uncertainty where
assumed w ∼ N (0,Σw), Σw ∈ R3×3.

Discretizing this system at sampling time T , assuming the sampling frequency is much
higher than the bandwidth of the system, such that the η, ν, νr, τ thr, τ env, and w
can be treated as constants during the sampling interval, yields[
ηk+1

νk+1

]
=

[
ηk
νk

]
+ T

[
R (ηk)νk

M−1 (CRB (νk)νk +CA (νr,k)νr,k +D (νr,k))

]
+T

[
0

M−1τ thr,k

]
+ T

[
0

M−1τ env,k

]
+ T

[
0
wk

]
. (2.42)

Assuming a GNSS measurement of the horizontal position of the vessel is available,
the measurement equation is

pGNSS,k =

[
1 0 0
0 1 0

]
ηk + vGNSS,k. (2.43)

where vGNSS is the GNSS measurement noise, and assumed vGNSS,k ∼
N (0,ΣGNSS,k), ΣGNSS,k ∈ R2×2. This state-space model (2.42) and (2.43) can
be transformed into HMM, such as

ηk+1 |ηk,νk ∼ δηk+1

(
ηk+1 − ηk − TR (ηk)νk

)
(2.44a)

νk+1 |νk ∼ N
(
TM−1 (CRB (νk)νk +CA (νr,k)νr,k +D (νr,k))

+TM−1 (τ thr,k + τ env,k) + νk, T
2Σν

)
(2.44b)

pGNSS,k |ηk ∼ N
([

1 0 0
0 1 0

]
ηk,ΣGNSS,k

)
, (2.44c)
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where δ (·) is the Dirac measure representing the deterministic relation in the kine-
matic part of the vessel model. However, due to discretization error and other sys-
tematic errors, Equation (2.44a) cannot be strict; i.e., designing an observer based on
Equation (2.44a) always results in biased position estimation. Hence, it is common to
add a small amount of white Gaussian system noise, such as using

ηk+1 |ηk,νk ∼ N (ηk + TR (ηk)νk,Ση,k) , (2.45)

instead of Equation (2.44a), where Ση is the covariance matrix of the system noise.

�

2.3 Recursive Bayesian filtering

Having established Bayesian probability, it is now worth providing an overview of the
Bayesian filtering technique. The Bayesian filtering uses Bayesian probability on the
HMM (2.38) to estimate the states of the system.

2.3.1 General Form

In the following discussion, we assume that in HMM the initial time index is “0”,
and the distribution of X0 is known as X0 ∼ p (x0). And denotes the state and
observation sequence up to time index k as Xk = {x0, x1, . . . , xk} and Yk =
{y1, y2, . . . , yk}, respectively.

The purpose of filtering is to estimate the distribution of p (xk |Yk ) which is p(xk|{y1,
y2, . . . , yk}), or to extract information about xk from the observation sequence
{y1, y2, . . . , yk} based on the HMM. Following Equation (2.29), it yields

p (xk |Yk ) =
p (Yk |xk ) p (xk)

p (Yk)
(2.46)

In order to construct a recursive filter, which is to derive p (xk |Yk ) from p (xk−1 |Yk−1 ),
the following partition of the observation series is usually made.
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Figure 2.6: Comparisons of different approximations methods.

p (xk |Yk ) =
p (Yk |xk ) p (xk)

p (Yk)
(2.47)

=
p (yk,Yk−1 |xk ) p (xk)

p (yk,Yk−1)
(2.48)

=
p (yk |Yk−1,xk ) p (Yk−1 |xk ) p (xk)

p (Yk−1) p (yk |Yk−1 )
(2.49)

=
p (yk |Yk−1,xk ) p (xk |Yk−1 ) p (Yk−1) p (xk)

p (Yk−1) p (yk |Yk−1 ) p (xk)
(2.50)

=
p (yk |xk )

p (yk |Yk−1 )
p (xk |Yk−1 ) , (2.51)

where from Equations (2.50) to (2.51) p (yn |Yn−1,xn ) = p (yn |xn ) because yn
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and Yn−1 are independent when conditioned on xn.

This result is in the form of Bayes’ rule in the sense that

• p (xk |Yk−1 ) is the prior probability, which is the prediction of current state
from previous observations and usually expressed as

p (xk |Yk−1 ) =

∫
p (xk |xk−1 ) p (xk−1 |Yk−1 ) dxk−1 (2.52)

by using the law of total probability, where p (xk |xk−1 ) is the transition prob-
ability defined by the system Equation (2.38a) in HMM,

• p (yk |xk ) is the likelihood defined by the observation Equation (2.38b), and

• p (yk |Yk−1 ) corresponds to the evidence and calculated from

p (yk |Yk−1 ) =

∫
p (yk |xk ) p (xk |Yk−1 ) dxk. (2.53)

Substituting Equation (2.53) into Equation (2.51), it will have the form as Equa-
tion (2.28).

Except for some simplified condition, e.g. linear system with Gaussian noise, the
probabilities Equations (2.52) and (2.53) are hardly analytically calculated. Hence,
most of the statistical filtering methods adopt the form of (2.3.1), but are distinguished
by the methods employed to calculate or approximate the terms p (xk |Yk−1 ) and
p (yk |Yk−1 ) . The following sections will contain a brief review of the most relevant
methods that can be used to gain an overview of Bayesian filtering.

2.3.2 The Kalman Filter

The Kalman filter is one of the most popular and practical filtering techniques to be
used over the past half century. The algorithm produced by [Kalman, 1960] seeks to
explain the orthogonality between estimation error vector and observation vector in
Euclidean space. In the following assessment, a new derivation of the Kalman filter,
based on Bayesian filtering framework, is presented.

Typically, the system model considered in the Kalman filter is a time-varying linear
system such as,

xk+1 = Akxk +Bkuk +wk (2.54a)
yk = Ckxk +Dkuk + vk. (2.54b)

In this system,A,B,C,D are known matrices with appropriate dimensions,wk and
vk are multivariate Gaussian white noise vector sequence with zero mean and covari-
ance matrices Σw,k and Σv,k, respectively. Rewriting Equation (2.54) into HMM,
yields
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xk+1 |xk,uk ∼ N (Akxk +Bkuk,Σw,k) (2.55)
yk |xk,uk ∼ N (Ckxk +Dkuk,Σv,k) . (2.56)

Directly applying Equation (2.51), yields

p (xk |Yk ) =
p (yk |xk )

p (yk |Yk−1 )
· p (xk |Yk−1 ) (2.57)

∝ p (yk |xk ) · p (xk |Yk−1 ) , (2.58)

since p (yk |Yk−1 ) is a constant. Defined by Equation (2.56), we have

p (yk |xk,uk )

= (2π)
−Ny

2 |Σv,k|−
1
2 ·

exp

{
−1

2
(yk −Ckxk −Dkuk)

>
Σ−1
v,k (yk −Ckxk −Dkuk)

}
,

(2.59)

and

p (xk |Yk−1 )

= p ((Ak−1xk−1 +Bk−1uk−1) |Yk−1 )

= N
(
Ak−1xk−1|k−1 +Bk−1uk−1,Ak−1Cov

[
xk−1|k−1

]
A>k−1 + Σw,k

)
exp

{
−1

2

(
xk −Ak−1xk−1|k−1 −Bk−1uk−1

)> ·
P−1
k|k−1

(
xk −Ak−1xk−1|k−1 −Bk−1uk−1

)}
(2.60)

where xk−1|k−1 is short for xk−1 |Yk−1 meaning the estimation of the state at time
k − 1 given the observation up to time k − 1, and

P k|k−1 = Ak−1Cov
[
xk−1|k−1

]
A>k−1 + Σw,k. (2.61)

Then

p (yk |xk ) p (xk |Yk−1 )

= (2π)
−Ny

2 |Σv,k|−
1
2

exp

{
−1

2
(yk −Ckxk −Dkuk)

>
Σ−1
v,k (yk −Ckxk −Dkuk)

}
·

(2π)
−Ny

2
∣∣P k|k−1

∣∣− 1
2 exp

{
−1

2

(
xk −Ak−1xk−1|k−1 −Bk−1uk−1

)> ·
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P−1
k|k−1

(
xk −Ak−1xk−1|k−1 −Bk−1uk−1

)}
= (2π)

−Ny
2 −

Nx
2 |Σv,k|−

1
2
∣∣P k|k−1

∣∣− 1
2 ·

exp

{
−1

2
(yk −Ckxk −Dkuk)

>
Σ−1
v,k (yk −Ckxk −Dkuk)−

1

2

(
xk −Ak−1xk−1|k−1 −Bk−1uk−1

)>
P−1
k|k−1 ·(

xk −Ak−1xk−1|k−1 −Bk−1uk−1

)}
= (2π)

−Nx
2 −

Ny
2 |Σv,k|−1 ∣∣P k|k−1

∣∣− 1
2 ·

exp−1

2

{
x>k C

>
k Σ−1

v,kCkxk − x>k C
>
k Σ−1

v,k (yk −Dkuk)−

(yk −Dkuk)
>

Σ−1
v,kCkxk + (yk −Dkuk)

>
Σ−1
v,k (yk −Dkuk) +

x>k P
−1
k|k−1xk − x

>
k P
−1
k|k−1

(
Ak−1xk−1|k−1 +Bk−1uk−1

)
−(

Ak−1xk−1|k−1 +Bk−1uk−1

)>
P−1
k|k−1xk+(

Ak−1xk−1|k−1 +Bk−1uk−1

)>
P−1
k|k−1

(
Ak−1xk−1|k−1 +Bk−1uk−1

)}
.

(2.62)

Suppose that xk |Yk ∼ N
(
x̂k|k ,P k|k

)
, then

p (xk |Yk ) = (2π)
−Nx

2
∣∣P k|k

∣∣− 1
2

exp

{
−1

2

(
xk − x̂k|k

)>
P−1
k|k
(
xk − x̂k|k

)}
= (2π)

−Nx
2
∣∣P k|k

∣∣− 1
2 ·

exp−1

2

{
x>k P

−1
k|kxk − x

>
k P
−1
k|k x̂k|k

−x̂k|kP−1
k|kxk + x̂>k|kΞ−1

k|k x̂k|k

}
. (2.63)

Neglecting the constant proportion factors, yields

p (yk |xk ) p (xk |Yk−1 ) ∝ p (xk |Yk−1 ) . (2.64)

Comparing Equation (2.62) and (2.63), yields

x>k P
−1
k|kxk =x>k C

>
k Σ−1

v,kCkxk + x>k P
−1
k|k−1xk (2.65)

−x>k P
−1
k|k x̂k|k =− x>k C

>
k Σ−1

v,k (yk −Dkuk)

− x>k P
−1
k|k−1

(
Ak−1xk−1|k−1 +Bk−1uk−1

)
(2.66)
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Solving these simultaneous matrices equations, obtains

P k|k =
(
C>k Σ−1

v,kCk + P−1
k|k−1

)−1

=P k|k−1 − P k|k−1C
>
k

(
Σv,k +CkP k|k−1C

>
k

)−1

︸ ︷︷ ︸
,Kk The Kalman gain

CkP k|k−1

= (I −KkCk)P k|k−1 (2.67)

x̂k|k =P k|k

(
C>k Σ−1

v,k (yk −Dkuk) + P−1
k|k−1

(
Ak−1xk−1|k−1 +Bk−1uk−1

))
=
(
Ak−1xk−1|k−1 +Bk−1uk−1

)︸ ︷︷ ︸
,x̂k|k−1

+Kk

(
yk −Ck

(
Ak−1xk−1|k−1 +Bk−1uk−1

)
−Dkuk

)
=x̂k|k−1 +Kk

(
yk −Ckxk|k−1 −Dkuk

)︸ ︷︷ ︸
ek

(2.68)

Hence, the estimation xk |Yk can be recursively obtained as

xk |Yk ∼ N
(
x̂k|k ,P k|k

)
, (2.69)

where µk|k , P k|k are calculated from the observation at current step yk and the esti-
mation at the last step xk−1|k−1 though Equations (2.67) and (2.68), and P k|k−1 is
determined by Equation (2.61). This result coincides with the common Kalman filter
formula.

Then the one step prediction is

xk+1 |xk ∼ N
(
Akx̂k|k +Bkuk,AkP k|kA

>
k + Σw,k

)
(2.70)

Remark 2.2 The Kalman filter is constitutionally based on the property of multi-
variate Gaussian random vectors that an affine transformation of multivariate Gaus-
sian random vectors is Gaussian. For instance, given α1 ∼ N (µ1,Σ1) and α2 ∼
N (µ2,Σ2), then

A1α1 +A2α2 ∼ N
(
A1µ1 +A2µ2,A1Σ1A

>
1 +A2Σ2A

>
2

)
.

This results that if the initial state estimation p (x0), the system noise wk, and the
measurement noise vk are Gaussian distributed, the states and the measurement at
any time are Gaussian distributed.

ince its development, the Kalman filter has found wide use in control engineering and
signal processing applications. There are many explanations and insights available
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into this filtering technology. In addition to these, the Kalman filter can also be in-
terpreted as a Bayesian filtering technique in linear Gaussian circumstance, as shown
here.

2.3.3 Extended Kalman filter

The Kalman filter cannot be directly applied to nonlinear systems because it is not
applicable to nonlinear systems in general. However, the Kalman filter can be applied
to a locally linearized nonlinear system, and such an application is commonly referred
to as the extended extended Kalman filter.

For the type of continuous nonlinear system such as

ẋ (t) = g (x (t) ,u (t) , t) +w (t) (2.71)
y (t) = h (x (t) ,u (t) , t) + v (t) , (2.72)

where g and h are (nonlinear) functions, w (t) and v (t) are white Gaussian noise.

Equations (2.35) and (2.36) can be discretized as

xk+1 = gk (xk,uk) +wk (2.73)
yk = hk (xk,uk) + vk, (2.74)

where k is the time index. Given the prior estimation of the states as xk−1|k−1 , we
can construct the Kalman filter, such as

xk|k−1 = gk−1

(
xk−1|k−1 ,uk

)
(2.75)

P k|k−1 =
∂gk−1

∂x

∣∣∣∣
x=xk−1|k−1

P k−1|k−1

∂gk−1

∂x

∣∣∣∣>
x=xk−1|k−1

+D [wk−1] (2.76)

Ck =
∂hk
∂x

∣∣∣∣
x=xk|k−1

(2.77)

Kk = P k|k−1C
>
k

(
Σv,k +CkP k|k−1C

>
k

)−1

CkP k|k−1 (2.78)

xk|k = xk|k−1 +Kk

(
yk − hk

(
xk|k−1 ,uk

))
(2.79)

P k|k = (I −KkCk)P k|k−1 (2.80)

Since the extended Kalman filter uses the first order linear approximation instead of
the nonlinear system, the approximation error is significant when the nonlinearity of
the system is strong. In statistics, the extended Kalman filter works well when the
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posterior distribution of the states is close to Gaussian, such that the conditions for
the Kalman filter holds approximately. If the posterior distribution is very different
from the Gaussian distribution, for instance, is multimodal or heavily skewed, the
estimation performance can be poor and may diverge.

Example 2.4 Prediction step in EKF

Consider the following system
xk+1 = x2

k, (2.81)

where xk ∼ N
(
µ, σ2

)
.

The linearization gives

x̂k+1 = x̂2
k (2.82)

Pk+1|k = 4x̂2
kPk|k , (2.83)

which means xk+1|k ∼ N
(
µ2
k, 4µ

2
kσ

2
k

)
.

Given three cases x(1)
k ∼ N (12, 4) , x(2)

k ∼ N (3, 4), and x
(3)
k ∼ Rayleigh (1)

the linear approximations can be calculated as x(1)
k+1|k ∼ N (144, 2304), x(2)

k+1|k ∼
N (9, 144), and x(3)

k+1|k ∼ N (452.1, 789.6) respectively. The distributions approxi-
mated pointwisely and by linearization method are shown in Figure 2.7 and Figure 2.8.
The pointwise approximation will be introduced in Chapter 2.4.1. It can be seen as a
relatively accurate approximation. The means and standard deviation of the pointwise
approximation are shown in Table 2.1. The approximation results confirm that when
the posterior distribution is close to normal distribution as in the first case, the linear
approximation is close to the real distribution. However, the linear approximation er-
ror is large when the posterior distribution is significantly different from the normal
distribution.

Table 2.1: Mean and standard deviation of the Monte Carlo and linear approximation
of the posterior distribution

method mean std

Case 1
pointwise 148.0 48.3

linearization 144 48

Case 2
pointwise 13.0 12.3

linearization 9 12

Case 3
pointwise 452.1 28.1

linearization 451.7 18.2

With the exception of the approximation accuracy problem described in the above ex-
ample, the extended Kalman filter suffers from two additional major drawbacks. The
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Figure 2.7: Approximation of p
(
xk+1|k

)
, with pointwise method and linearization

method, where xk|k subjects to Gaussian distributions.

extended Kalman filter relies on the existence of the Jacobian matrices. However,
the Jacobian matrices may not be available when the system has discontinuities. Fur-
thermore, the derivation of the Jacobian matrices is not easy when state-space is high
dimensional. The resulting Jacobian matrices can be very sophisticated and hard to
implement.

2.3.4 Gaussian Sum Filter

The EKF trends to use a linearized system instead of the nonlinear system dynamic,
and approximates the posterior mean and variance. This seems to be a macroscopical
method. It is relatively simple to calculate, but the approximation error can be large
in some conditions. On the contrary, there are methods that can be used to approxi-
mate the distribution microscopically, such as the Gaussian sum filter ([Alspach and
Sorenson, 1972]).
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Figure 2.8: Approximation of p
(
xk|k

)
and p

(
xk+1|k

)
, with pointwise method and

linearization method, where xk|k ∼ Rayleigh (1).

Notice that a distribution function f (x) can be represented by the superposition of a
group of Gaussian distribution function, such as

fA (x) =

l∑
j=1

cjN
(
µj ,Σj

)
, (2.84)

where
∑l
j=1 cj = 1 and cj ≥ 0 for all j. And fA (x) converges uniformly to f (x) of

practical concern as the number of terms l increase and the covariance Σj approaches
the null matrix . In this way, a distribution function is decomposed into a group of
small-scale Gaussian distributions.

If the Gaussian distributions are propagated though EKF, the sum of the processed dis-
tributions portrays the posterior distribution. [Sorenson and Alspach, 1971] described
how the estimation performance of the Gaussian sum filter is better than the EKF;
however, it does involve a much heavier computational load than the EKF.
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Figure 2.9: Approximation of p
(
xk+1|k

)
of system (2.81) using Gaussian sum

method with 50 Gaussian distributions σ = 0.5.

Example 2.5 Prediction step in GSF

The Gaussian sum filter was employed to deal with the second case in Example 2.4,
where the distribution by linear estimation is different from the real distribution.

For convenience, all the Gaussian distributions were chosen to adopts the same stan-
dard deviation. Three setups of the Gaussian sum partition of the posterior distribution
were employed: 50 Gaussian distributions with σ = 0.5, 125 Gaussian distributions
with σ = 0.2, and 250 Gaussian distributions with σ = 0.1. Figure 2.9, Figures 2.10
and 2.11 respectively depict the three cases. In these figures, the axes on top are the
Gaussian partition of the posterior distributionN (3, 4) and the axes at bottom are the
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Figure 2.10: Approximation of p
(
xk+1|k

)
of system (2.81) using Gaussian sum

method with 125 Gaussian distributions σ = 0.2.

transformed Gaussian distributions and their sum.

Table 2.2 contains a comparison of Figures 2.9, 2.10 and 2.11. It is clear that a fine
Gaussian partition results in accurate approximation. There is only a slight differ-
ence between the Gaussian approximation and the pointwise approximation in Case
2. Moreover, a comparison of the information contained in Tables 2.2 and 2.1, reveals
that the mean and standard deviation of the Gaussian sum filter estimated is closer to
the nominal value than the EKF. This implies that when the posterior is significantly
different from a Gaussian, the estimation of the Gaussian sum filter is more precise
than the EKF.
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Figure 2.11: Approximation of p
(
xk+1|k

)
of system (2.81) using Gaussian sum

method with 250 Gaussian distributions σ = 0.1.

There are a number of major drawbacks associated with the Gaussian sum filter in
terms of regarding the computation approach. Firstly, partitioning a distribution into
Gaussian sum is computationally heavy, even when given fixed means and covariance
matrices, determining only the factors cj . Furthermore, it is more difficult to deter-
mine the means, covariance matrices, and the factors cj at the same time. Secondly,
to propagate the Gaussian distributions though the EKF and calculate the mixture is
also computationally heavy. In addition to these drawbacks, the Gaussian sum filter
inherits the drawbacks of the EKF - Jacobian matrices must exist, and the derivation
is complex.
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Table 2.2: Mean and standard deviation of the Monte Carlo and Gaussian sum approx-
imation of the prior and the posterior distribution

the posterior the prior
Method mean std mean std
pointwise 3 2 13.0 12.3

Case 1 Gaussian sum 50 3.00 2.08 13.23 13.76
Case 2 Gaussian sum 125 3.00 2.03 13.05 13.38
Case 3 Gaussian sum 250 3.00 2.03 13.00 13.31

Remark 2.3 Point mass filter (PMF) is described in the literature. PMF grids the
state space and computes the posterior over this grid recursively. This research does
not consider PMF; however, generally, it is understood as GSF with rectangular /
uniformly-distributed bases instead of the Gaussian bases in GSF. PMF also applies to
any nonlinear and non-Gaussian model. The main drawback of the PMF approach is
that if it holds the density of the grid, the computational load increases exponentially
as the dimensional of the state increase linearly.

2.3.5 Unscented Kalman filter

The unscented transformation (UT) is based on the intuition that it is easier to approx-
imate a probability distribution than it is to approximate an arbitrary nonlinear func-
tion or transformation ([Julier et al., 1995] [Julier and Uhlmann, 2004]). The UT uses
so-called sigma points to portray a distribution and trace the propagation of the dis-
tribution. Based on UT, the so-called unscented Kalman filter (UKF) can be derived.
The most noteworthy advantage of UKF over EKF is it represents a derivative-free
method (there is no requirement to calculate Jacobians or Hessians).

The unscented transformation

To portray a distribution, a set of sigma points S is introduced, where S consists of
p + 1 vectors and they are associated with weights, such as S = {(x(i),W (i)), i =
0, 1, . . . , p}. The weights W (i) can be either positive or negative, but the condition

p∑
i=0

W (i) = 1 (2.85)

must be satisfied. A good choice of the set of sigma points consists of a symmetric set
of 2Nx + 1 points that one lies at the center and others lies on the

√
Nxth covariance
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contour, such as for i = 1, . . . , Nx

x(0) = x̄ (2.86a)

W (0) = W (0) (2.86b)

x(i) = x̄+

(√
Nx

1−W (0)
Σx

)
i

(2.86c)

W (i) =
1−W (0)

2Nx
(2.86d)

x(i+Nx) = x̄−

(√
Nx

1−W (0)
Σx

)
i

(2.86e)

W (i+Nx) =
1−W (0)

2Nx
(2.86f)

where
(√

Nx

1−W (0) Σx

)
i

is the ith row or column of the matrix square root of Nx

1−W (0) Σx.

Once the sigma points are decided, a nonlinear transformation z = h (x) of a random
vector x with PDF f (x) can be obtained, such as

1. Transform each point through the function to yield the set of transformed sigma
points

z(i) = h
(
x(i)

)
. (2.87)

2. The mean of the estimation is the weighted average of the transformed points

z̄ =

p∑
i=0

W (i)z(i). (2.88)

3. The covariance of the estimation is the weighted outer product of the trans-
formed points

Σz =

p∑
i=0

W (i)
(
z(i) − z̄

)(
z(i) − z̄

)>
. (2.89)

The unscented Kalman filter

Using the UT in Bayesian recursive filtering, we obtain the UKF. The UKF algorithm
is given below. Detailed derivation of this algorithm can be found in a large amount
of literature; for instance a study by [Julier and Uhlmann, 2004].

Recall Equations (2.73) and (2.74)
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xk+1 = gk (xk,uk) +wk (2.90)
yk = hk (xk,uk) + vk, (2.91)

A new state vector can be defined by augmenting the state-space with the system and
measurement noise as

xa,k =

xkwk

vk

 . (2.92)

Then the system model can be transformed into

xa,k+1 = ga,k (xa,k,uk) (2.93)

ya,k = ha,k (xa,k,uk) , (2.94)

and sigma points of the augmented states can be created from a multivariate Gaussian
distribution with mean

µa,k−1 =

µk−1

0
0

 (2.95)

and covariance matrix

Ka,k−1 =

Kk−1 0 0
0 Σw,k−1 0
0 0 Σv,k−1

 . (2.96)

Following the UT algorithm, transforms the sigma points such as

x
(i)
a,k|k−1 = g

(
x

(i)
a,k−1|k−1 ,uk−1

)
. (2.97)

Then the predicted mean µ̂a,k and covariance K̂a,k can be calculated following Equa-
tions (2.88) and (2.89). Also the prediction points of the observation can be obtained
as

y
(i)
k|k−1 = h

(
x

(i)
k|k−1 ,uk

)
. (2.98)

And the predicted mean ŷk and covariance Ŝk can also be calculated by Equations
(2.88) and (2.89).

The cross covariance matrix is

Kxy
k|k−1 =

p∑
i=0

W (i)
(
x

(i)
k|k−1 − µk|k−1

)(
x

(i)
k|k−1 − µk|k−1

)>
. (2.99)
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Then use the formal Kalman filter update equations:

µk|k = µk|k−1 +W kνk (2.100)

Kk|k = Kk|k−1 −W kSk|k−1W
>
k (2.101)

where

νk = yk|k − yk|k−1 (2.102)

W k = Kxy
k S

−1
k|k−1 . (2.103)

2.4 Particle filter

2.4.1 Pointwise Expression of Distribution

Now is a good time to introduce the particle filter (PF). As the EKF, GSF, and UKF, the
PF is also a Bayesian filtering technique; however, it is distinguished by the fact that
it provides its own unique way of approximating PDFs and describing and estimating
the propagation of the PDFs.

As shown in Lemma 2.1, empirical distribution defined in Definition 2.11 converges
to the real distribution when the amount of samples is large enough. Compared to
empirical distribution approximation, a PDF can be expressed in PF in similar fashion
but with a slight difference insomuch as the PF uses “weighted” samples to construct
the PDF. For instance, the distribution of a random variable Xk ∼ fXk

(xk) can be
approximated by

fXk
(xk) ≈

Ns∑
i=1

w
(i)
k δ

(
xk − x(i)

k

)
, (2.104)

where
{(
x

(i)
k , w

(i)
k

)
, i = 1, . . . , Ns

}
are the samples and their associated weights,

and the amount of samples Ns is called sample size. In this way, a pointwise ap-
proximation of the distribution is spanned by the weighted samples. The empirical
distribution approximation can be seen as a special case of the “weighted” sample ap-
proximation that the weights are uniform, that is, if the “weights” w(i)

k are uniformly
equal to 1/Ns, the weighted sample pointwise expression degenerates to the empirical
distribution.

Compared to the UKF, these weighted samples are different from the sigma points in
UKF in the sense that the samples are somehow randomly chosen while the sigma
points are chosen deterministically.

The pointwise expression of distribution should not be understood as distribution,
and it is impossible to reconstruct the density function fX (x) analytically from a
pointwise expression. However, the functions, for instance the moments, of a den-
sity function can be approached by evaluating the pointwise expression. Such as the
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expectation ofX is approximated by

E [X] =

∫
xf (x) dx (2.105)

≈
Ns∑
i=1

x(i)w
(i)
k−1δ

(
x− x(i)

k

)
. (2.106)

We use the pointwise expression to simulate/describe the propagation of the distribu-
tion of the states. That is, each sample goes though the process equation, and then
forms the resulting PDF as a group of weighted samples. Continuing with Equation
(2.104), if the PDF of random variableXk+1 ∼ g (Xk) is constructed by

fXk+1
(xk+1) =

∫
g (xk) f (xk) dx

≈
Ns∑
i=1

w
(i)
k−1δ

(
xk+1 − g

(
x

(i)
k

))
. (2.107)

2.4.2 Importance Sampling and Proposal Distribution

As is the case with empirical approximation, the accuracy of the pointwise approxi-
mation increases as the sample size increases. However, how can one sample the dis-
tribution to minimize the approximation error when a small sample size is involved?
Limiting the sample size is necessary since, when using PF-based observers, the sam-
ple sizes are limited by the computational capacity. This section will introduce the
importance sampling technique that is employed in this thesis.

Importance Sampling

The importance sampling technique aims to sample the distribution in the region of
“importance” in order to achieve accurate and precise approximation of a PDF that
involves a limited amount of samples. This is especially important in the area of high-
dimensional space, where the densities are usually sparse and the region of interest
where the target lies is relatively small in terms of the entire data space [Chen, 2003].
The aim of importance sampling is to choose a proposal distribution (importance dis-
tribution) q (x) in place of the true probability distribution p (x), which is relatively
unknown and thereby difficult to sample.

Suppose that a group of samples x(i), i = 1, 2, . . . , Ns are drawn from the proposal
q (x), such that x(i) ∼ q (x). Then the distribution p (x) can be approximated by

p (x) ≈ q (x)
∑
i

p
(
x(i)

)
q
(
x(i)

)δ (x(i) − x
)

= q (x)
∑
i

w(i)δ
(
x(i) − x

)
, (2.108)
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wherew(i) ∝ p(x(i))
q(x(i))

is called importance weights, which are normalized according to∑
i w

(i) = 1. A obvious requirement for the proposal q (x) is that its support should
cover the support of p (x). Otherwise, the estimation of p (x) in the region where it is
not covered by the support of q (x) will always be zero.

Then following Equation (2.108) the state propagation in HMM (2.34a) can be ap-
proximated as

p (xk+1) =

∫
g (xk+1 |xk ) p (xk) dxk

=

∫
g (xk+1 |xk )

p (xk)

q (xk)
q (xk) dxk

≈
Ns∑
i=0

g
(
x

(i)
k

)
w(i)δ

(
xk+1 − x(i)

k

)
. (2.109)

Example 2.6 The purpose of this example is to compare the performance of random
sample approximation of a PDF, where the samples are drawn from different proposal
distributions. The objective distribution to approximate is Rayleigh (2) depicted by
the solid line in Figure 2.12. The proposal distributions are:

1. uniform distribution on (−5, 15) i.e. U (−5, 15), which covers, but does not
concentrate on, the Rayleigh (2);

2. uniform distribution on (0, 6) i.e. U (0, 6), which covers only the main part of
the Rayleigh (2), but does not cover the tail;

3. Gaussian distribution N (4, 1), whose support is the whole space but the main
part only partially covers the main part of Rayleigh (2);

4. Gaussian distributionN (4, 3), whose support is the whole space and main part
covers the main part of Rayleigh (2);

5. Gaussian distribution N (2.5, 1.7), whose mean and variance are chosen close
to the theoretical mean and variance of Rayleigh (2);

6. Gaussian distribution N (2.5, 3), whose mean is chosen close to the theoretical
mean of Rayleigh (2), but with a larger coverage;

7. Rayleigh distribution Rayleigh (2), which is exactly the same as the distribution
to be approximated,

respectively. These distributions are shown in Figure 2.12(a). This example is in-
tended to examine the accuracy of the approximation subject to different proposals.

Two different sample sizes, 100 and 10000, are considered. 100 can be taken as a
typical sample size when a PF runs in real-time systems, so that the approximation
result is practical, while the sample size 10000 can be taken as a large number that
shows the asymptotic behaviour of the approximation when the sample size is infinite.
The results are shown in Figure 2.12(b) and 2.12(c). In each figure, the axes to the top
are the CDF curve of Rayleigh (2) and the curves of empirical CDFs of the samples
from different proposals. The proposal is close to the objective if their curves are
close to each other, and vice versa. The axes to the bottom of the chart shows the
approximation result in CDF and empirical CDFs.
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Figure 2.12: Comparison of the proposal distributions.

The rank of the approximation accuracy is shown in Table 2.3. From the results, we
may conclude:

1. If the support of the proposal does not sufficiently cover the support of distri-
bution to be approximated, the approximation cannot be accurate, such as the
result with N (4, 1) as the proposal distribution.

2. When the sample size is small (e.g. 100), too wide support of the proposal
results in bad approximation, since the density of the samples on the support of
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Table 2.3: Approximation efficiency of different proposals.

Rank Sample size
100 10000

1 N (2.5, 3) U (0, 6)

2 U (0, 6) U (−10, 20)

3 N (2.5, 1.7) N (2.5, 3)

4 N (4, 3) N (2.5, 1.7)

5 Rayleigh (2) Rayleigh (2)

6 U (−10, 20) N (4, 3)

7 N (4, 1) N (4, 1)

the distribution to be approximated is low. This is the case with U (−10, 20).

3. Using exact distribution to be approximated as the proposal does not results in
the best approximation, especially at the tails of the objective distribution.

4. When the sample size is 100, using N (2.5, 3), which has the same mean as
Rayleigh (2) and incorporates a slightly larger variance, the best approxima-
tion results. This is because the proposal sufficiently covers the support of the
objective, and the proposal has enough samples at the tails.

5. When the sample size is 10000, proposal distributions with supports cover the
support of the objective distribution and result in good approximations. But
except for 1) when lacking samples at the tails, such as using Rayleigh (2) as
proposal, 2) the shape of the proposal is too far away from that of the objectives.

Remark 2.4 It is recommended that the proposal distribution has a heavy tail so that
it is insensitive to the outliers, and covers the support of p (x) completely.

Proposal distribution

In Example 2.6, the distribution to be estimated is known to us; as such, we can then
recommend a few proposal distributions. However, since, in the HMM, the distribu-
tion to be estimated, i.e., p (Xk |Yk ), is relatively unknown (except for the linear Gaus-
sian case), the proposal distribution cannot be directly constructed from p (Xk |Yk ).
This means we need an approach by which we can construct the proposal based on the
available information: the previous estimation p (Xk−1 |Yk−1 ) and the observations
Yk−1. So the proposal distribution may adopt the form as a function q (x |Xk−1,Yk ).
Then, the task of constructing the proposal distribution is to find the expression of
q (x |Xk−1,Yk ).

According to existing literature, there are many ways to compose the proposal. Three
were selected for the purposes of this research due to their importance and practical
application.
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Prior distribution as proposal The first choice is to directly use the prior estimation
as the proposal, such as

q
(
x

(i)
k |Xk−1,Yk−1

)
= p

(
xk

∣∣∣x(i)
k−1

)
, (2.110)

so that the samples are drawn as

x
(i)
k ∼ p

(
xk

∣∣∣x(i)
k−1

)
. (2.111)

The drawback of this proposal is that the current observation yk, which is the latest
and most direct information of the states, is disregarded in the composition of the
proposal.

EKF or UKF estimation as proposal Assuming an EKF or UKF is designed for
the HMM as

p (xk |Yk−1 ) ∼ NEKF (µk,Σk) = EKF
(
yk,µk−1,Σk−1

)
, (2.112)

or

p (xk |Yk−1 ) ∼ NUKF (µk,Σk) = UKF
(
yk,µk−1,Σk−1

)
, (2.113)

respectively, where the µk−1 and Σk−1 are the estimated mean and covariance from
the PF at k − 1; EKF (·) and UKF (·) are the EKF and UKF algorithm respectively
as mentioned before; EKF (·) and UKF (·) are the resulting Gaussian distributions
respectively. Then samples x(i)

k can be drawn from p (xk |Yk−1 ).

In this case, we 1) first estimate the states with EKF or UKF, then 2) draw samples
from the estimated distributions. As concluded in Remark 2.4, a preferred proposal
should have long tail to cover the objective distribution. However, the resulting normal
distributions from EKF and UKF do not meet this requirement.

2.4.3 Sequential Importance Sampling Partial Filter

The sequential importance sampling (SIS) partial filter algorithm is given in Algo-
rithm 1.

We have made clear the expression of the PDF in Section 2.4.1, and then the impor-
tance sampling, which is exactly the time update in the Bayesian filtering context, is
given in Section 2.4.2. It is now useful to focus on the measurement update step to
complete the Bayesian filtering algorithm.
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input : Ns particles from last time step
{
x

(i)
k−1, w

(i)
k−1

}
, which span the

posterior estimation of the state at time k − 1

p
(
xk−1

∣∣y1:k−1

)
≈
Ns,k−1∑
i=1

w
(i)
k−1δ

(
xk−1 − x(i)

k−1

)
. (2.114)

output: Ns new particles
{
x

(i)
k , w

(i)
k

}
, which span the posterior estimation of

the state at time k

p (xk |y1:k ) ≈
Ns,k∑
i=1

w
(i)
k δ

(
xk − x(i)

k

)
. (2.115)

for each particle do
Time update:

Drawing samples from proposal distribution obtains x(i)
k .

Measurement update:
Updating the weight of the particle obtains w(i)

k .
end
Normalize the weights: w

(i)
k = w

(i)
k /

∑Ns

j=1

(
w

(i)
k

)
Algorithm 1: Sequential importance sampling particle filter

Recall the general form of recursive Bayesian filtering (2.51) that

p (Xk |Yk ) =
p (yk |Xk )

p (yk |Yk−1 )
p (Xk |Yk−1 )

=
p (yk |xk )

p (yk |Yk−1 )
p (xk,Xk−1 |Yk−1 )

=
p (yk |xk )

p (yk |Yk−1 )
p (xk |Xk−1,Yk−1 ) p (xk |Xk−1 )

=
p (yk |xk )

p (yk |Yk−1 )
p (xk |Xk−1,Yk−1 ) p (Xk−1 |Xk−1 )

=
p (yk |xk ) p (xk |xk−1 )

p (yk |Yk−1 )
p (Xk−1 |Yk−1 )

∝ p (yk |xk ) p (xk |xk−1 ) p (Xk−1 |Yk−1 ) ,

since the denominator p (yk |Yk−1 ) is a constant.

If proposal q (Xk |Yk ) is selected in such a way that it can be decomposed as

q (Xk |Yk ) = q (xk |Xk−1,Yk ) q (Xk−1 |Yk−1 ) (2.116)
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Then, following w(i)
k ∝

p
(

X (i)
k |Yk

)
q
(

X (i)
k |Yk

) , it yields

w
(i)
k ∝

p
(
yk

∣∣∣x(i)
k

)
p
(
x

(i)
k

∣∣∣x(i)
k−1

)
p (Xk−1 |Yk−1 )

q
(
x

(i)
k |Xk−1,Yk

)
q (Xk−1 |Yk−1 )

= w
(i)
k−1

p
(
yk

∣∣∣x(i)
k

)
p
(
x

(i)
k

∣∣∣x(i)
k−1

)
q
(
x

(i)
k |Xk−1,Yk

) . (2.117)

In addition, if the proposal is chosen as q (xk |Xk−1,Yk ) = q (xk |xk−1,yk ), such
that the proposal only depends on the states at the latest time instant, the weight update
only then depends on the information from the last iteration, which is very useful and
practical. In this case, the weight update adopts the form

w
(i)
k ∝ w

(i)
k−1

p
(
yk

∣∣∣x(i)
k

)
p
(
x

(i)
k

∣∣∣x(i)
k−1

)
q
(
x

(i)
k

∣∣∣x(i)
k−1,yk

) . (2.118)

Remark 2.5 If use the prior distribution, which satisfies

q
(
x

(i)
k

∣∣∣x(i)
k−1,yk

)
= p

(
x

(i)
k

∣∣∣x(i)
k−1

)
(2.119)

as the proposal, the weights update Equation (2.118) will follow a particularly simple
form, such as

w
(i)
k ∝ w

(i)
k−1p

(
yk

∣∣∣x(i)
k

)
. (2.120)

When compared with other proposal distributions, the former may not represent a
good proposal, since it does not use the current observation, so that its shape can
be relatively different from the posterior, and thereby using this proposal results in a
relatively low efficiency. However, it is computationally much lighter, since it avoids
the calculation of p (yk |xk ) and q (xk |xk−1,yk ), especially when the observation
relation p (yk |xk ) is hard to calculate.

To make good use of the proposal (2.119), we may 1) increase the sample size, and 2)
slightly increase the modeled system noise in the HMM so that q (xk |xk−1,yk ) =
p (xk |xk−1 ) may always covers the posterior sufficiently.

2.4.4 Degeneracy Problem, Resampling, and
Sampling Importance Resample PF

If Algorithm 1 is employed to perform recursive state estimation, a common problem
emerges: the weight degeneracy problem. That is, after a few iterations, only one
particle will have significant weight (close to 1), while the weights of other particles
vanish ([Arulampalam et al., 2002]). In this condition, one particle is used to simulate
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input : particles x(i)
in , uniform weights w(i)

in , i = 1, . . . , Ns.
output: new particles x(i)

out, new weights w(i)
out, i = 1, . . . , Ns.

Construct CDF from weights w(i)
in , such that

c1 ← 0;
ci ← ci−1 + wi;

i← 1 ;
u1 ∼ U (0, 1/Ns);
for j = 1 to Ns do

uj ← u1 + (j − 1) /Ns;
while uj > ci do

i← i+ 1
end
x

(j)
out ← x

(i)
in ;

w
(i)
out ← 1/Ns;

end
Algorithm 2: Multinomial resampling.

the propagation of the states; the other particles merely occupy the computational load
but make no contribution to the estimation. The precision of the estimation is reduced
and divergence occurs.

A good measure of the degeneracy is the effective sample size (Neff ), which [Liu and
Chen, 1998] defined as

Neff =
Ns

1 + Var
(
w
∗(i)
k

) , (2.121)

where w∗(i)k is named “ true weights” and w∗(i)k =
p
(
x

(i)
k |Yk

)
q
(
x

(i)
k

∣∣∣x(i)
k−1,Yk

) . Clearly, Neff ≤

Ns, and the equal sign holds only when the true weights uniformly equals to 1/Ns.
Since p

(
x

(i)
k |Yk

)
is unknown, a good estimation N̂eff of the effective sample size is

given by

N̂eff =
1∑Ns

i=1

(
w

(i)
k

)2 ≤ Ns, (2.122)

which apparently is a measure of the unevenness of the weights.

Previous studies have shown that the effective sample size in Algorithm 1 can only
decrease with time ([Doucet et al., 2000a]); as such, the means to counteract the de-
generacy must be applied to keep the effective sample size high. An intuitive way
to do this is to ensure that the limited particles remain focussed on the important as-
pect of the estimation problem by pruning those particles that have large weights and
eliminating the particles that have insignificant weights. These types of methods are
referred to as resampling methods in the literature. Unless specified otherwise, the re-
sampling method applied throughout this thesis is the systematic resampling method
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input : Ns particles from last time step
{
x

(i)
k−1, w

(i)
k−1

}
, which span the

posterior estimation of the state at time k − 1

p
(
xk−1

∣∣y1:k−1

)
≈
Ns,k−1∑
i=1

w
(i)
k−1δ

(
xk−1 − x(i)

k−1

)
. (2.123)

output: Ns new particles
{
x

(i)
k , w

(i)
k

}
, which span the posterior estimation of

the state at time k

p (xk |y1:k ) ≈
Ns,k∑
i=1

w
(i)
k δ

(
xk − x(i)

k

)
. (2.124)

for i← 1 to Ns do
// for each particle
// Time update: Drawing samples from prior distribution.
x

(i)
k ← x

(i)
k ∼ p

(
xk

∣∣∣x(i)
k−1

)
// Measurement update: Updating the weight of the particle following
equation (2.120).
w

(i)
k ← w

(i)
k−1p

(
yk

∣∣∣x(i)
k

)
end
w

(i)
k ← w

(i)
k /

∑Ns

j=1

(
w

(i)
k

)
// Normalize the weights
w

(i)
k ← RESAMPLE

(
w

(i)
k

)
// Resampling: follows Algorithm 2.

Algorithm 3: Sampling importance resample particle filter.

that was developed by [Kitagawa, 1996]. The algorithm employed for the purposes of
systematic resampling is given in Algorithm 2.

By choosing the prior distribution as the proposal, and using the resampling approach,
we obtain the Sampling Importance Resample Particle Filter in Algorithm 3.

Remark 2.6 The use of EKF or UKF as proposal results in extended Kalman parti-
cle filter or unscented particle filter was discussed in detail by [Van Der Merwe et al.,
2001]. However, because of their computational load per particle, these variant forms
of PF are not applied in this thesis. A detailed explanation on this point is provided in
the next chapter.
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2.4.5 Case Study: PF-based Navigation System

Scenario

Recalling the surface vessel model in Example 2.3, if only the kinematic part of the
model is taken into consideration, the model can then be simplified as

ηk+1 = ηk + TR (ψk)νk +wk, (2.125)

where
wk ∼ N (0,Σw) , Σw=diag

{
0.2 0.2 π/180

}
, (2.126)

is the system noise and T = 1s is the sampling time. For a pure kinematic system, the
position should exactly be the integral of the velocity, so that there should be no system
noise term in the kinematic equation. Nevertheless, we include the noise term to cover
the uncertainty in the kinetics aspect of the system. In addition, a measurement is
available, such as

ηk,m = ηk + vk, (2.127)

where
vk ∼ N (0,Σv) Σv=diag

{
1 1 5π/180

}
, (2.128)

is the measurement noise. The vessel velocity is assumed to be constant

ν =
[
5 2 −10π/180

]>
. (2.129)

And the initial position of the vessel is at

η0 ∼ N
([
−3 5 −π/4

]>
,diag

{
0.5 0.5 5π/180

})
. (2.130)

Prediction under different sampling intervals

Firstly, we compare the accuracy of the prediction under different sampling intervals.
If a shorter sampling time of T1 = 0.01s is employed, the process model (2.125)
transforms into

η′k+1 = η′k + T1R (ψ′k)νk +

√
T1

T
wk. (2.131)

The propagation of the state distribution under process model (2.125) and (2.131) are
shown in Figure 2.13. The distributions are shown in the 3D plot and the contour lines
of the distribution and the time history of the mean of the distributions are shown in
the sub-plot to the top-left. The state propagation under sampling time T = 1s is
detailed in blue and T1 = 0.01s in red. Note that the time history of the mean of the
distribution with sampling time T = 1s is only available at time instance k = 0, 1, 2, 3,
and is linked by straight-line segments.

For T1 = 0.01s, only the distributions and contours at k = 0, 100, 200, 300 are
shown in the figure. Due to the linearization and discretization error, the difference of
state propagation under different sampling times becomes more significant over time.
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Figure 2.13: Distributions of the vessel position at time 0, 1, 2, 3s. Sampling times
used are T = 1s and T1 = 0.01s respectively. The sub-axis shows the contour lines
of the PDF and time histories of the means.

When simulating the system, the velocity is involved into the position in the body
frame defined by the heading ψk. The state propagation cannot be accurately captured
when the sampling time is long; as such, the time history of the mean position state is
piece-continuous straight lines under sampling time Ts = 1s, while it is more curvy
under sampling time Ts = 0.01s. However, the shape of the PDFs are almost the same
under different sampling time, since the propagation of the uncertainty is dominated
by the process noise, which has been scaled by the ratio

√
T1/T .

Remark 2.7 It can be concluded from the simulation that the time discretization
induced significant prediction errors due to non-linearity when the sampling time is
relatively long. If we use the prior distribution as the proposal in PF, such a poor pre-
diction may entail that the proposal distribution cannot sufficiently cover the posterior
distribution and the PF, therefore, will exhibit poor performance or even diverge. How-
ever, it is still possible to use the prior distribution as the proposal, especially when
the non-linearity of the system is weak or the sampling is considered fast enough.

Distributions of the state and the measurement

In the following simulation, the motion of the vessel is simulated with sampling time
0.01s, while the observation and the estimation are made with sampling time 1s in
order to provide a clear view of the simulation results.
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Figure 2.14: Distributions of the states and position measurement. Red surface and
contour lines are from the state distribution, the blue surface and contour lines are from
the measurement, and the green surface and contour lines describe the distribution of
the confidence given the measurement.

Figure 2.14 shows the distribution of the states propagated from the initial condition,
and also the measurements and the confidence of the measurements. The distributions
of the states are simulated by propagating the initial condition through the system
equation.

The distributions of the states becomes more and more flat over time as the variance
of the distribution grows and the process noise pollutes the states distribution over
time. Hence, measurements have to be made to maintain the required accuracy of the
information or knowledge that is available pertaining to the states.

Note that the distributions of the measurement over time are simulated as a superpo-
sition of the distributions of the state and the measurement noise. For instance, the
distribution of the measurement at k = 3 is obtained by propagating the initial states
from k = 0 to 3, then superposed with the uncertainty of the measurement though
Equation (2.127). This distribution describes the possibility at which measurements
are made; i.e., given only the initial condition of the vessel, the measurement at each
time step is a sample from each of the distributions of the measurement. Obviously,
due to the measurement noise, the distribution of the measurement should be flatter
than the distribution of the states. However, as time passes, the variance of the state
distribution become larger and larger, then the measurement distribution approaches
the distribution of the states.

For instance, consider a process Xk ∼ N
(
µ1,k, σ

2
1,k

)
, and an observation of it as

Yk |xk ∼ N
(
xk, σ

2
2

)
, where xk is the realization of Xk, and σ2

1,k increases to infinite
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over time. Then Yk ∼ N
(
µ1,k, σ

2
1,k + σ2

2

) σ2
1,k→∞→ N

(
µ1,k, σ

2
1,k

)
.

The vessel “true” positions are random samples from the serial of the distributions of
the states.

The measurements are made according to Equation (2.127) given the “true” positions.
Three measurements are obtained, as depicted by the green chain lines. The green
surface and contour lines show the confidence of the measurement. Due to the setup of
the measurement equation, the distributions of the confidence at all times are Gaussian
with equal variance in each direction, due to the setup in the measurement equation.
This must be understood in two ways:

View from the “true” state to the measurement: Just following the measurement
relation

ηk,m ∼ N (ηk,D [vk]) , (2.132)

this indicates that the measurements made are surrounding the “true” states sub-
ject to a Gaussian distribution. Moreover, if the observation process can be iden-
tically repeated infinite times, the resulting empirical distribution will portray
the distribution in Equation (2.132). This represents the forward understanding
of measurement.

View from the measurement to the “true” state: “True” state is never available.
The measurement indicates the distribution of the “true” states. A measurement
made as Equation (2.127) shows that the “true” states are located around the
measurement subject to the Gaussian distribution given by the measurement
equation, such as

ηk ∼ N
(
ηk,m,D [vk]

)
. (2.133)

This is the backward understanding of measurement.

State estimation by particle filter

Applying PF Algorithm 3 to Model (2.125) and (2.127) obtains the estimated result
shown in Figure 2.15, where the red surface and contour lines depicts the prior dis-
tribution p

(
ηk|k−1

)
, while the yellow surface and contour lines show the posterior

distribution p
(
ηk|k

)
estimated by the PF, red solid lines show the “true” vessel posi-

tion, the light green chain line shows the measurement, and the light yellow dot lines
show the mean of the estimation.

The time instance k = 2, 3 can be used to illustrate the algorithm of SIRPF. At the end
of time k = 2, a posterior distribution p

(
η2|2

)
was obtained, as shown in the yellow

surface. This is the estimation of the distribution of the states based on a combination
of the initial knowledge, and all previous measurements. Note that the weights of the
particles at this stage have been resampled, so that the weights are uniform.

The time update can then be performed, where new samples are drawn from the pro-
posal distribution. Since SIRPF is used in this simulation, the proposal is the prior
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Figure 2.15: Vessel “true” position, position measurement, the prior estimation, and
the posterior estimation by particle filter with sample size 106, the prior as proposal
distribution.

distribution p
(
η3|2

)
, which is shown as the red surface obtained by pointwise prop-

agation of the samples at k = 2. As previously described, the distribution of the states
always propagates to a flatter one, so that the prior p

(
η3|2

)
is flatter than the posterior

p
(
η2|2

)
.

The prior p
(
η3|2

)
has to be updated using the knowledge from the new information

ηm,3 according to the algorithm. The result of this measurement update is the as
shown as the yellow surface, with the mean depicted by the light yellow dot line.
The 2D plot clearly indicates that the variance of the posterior distribution is less
than the variance of the prior. This is because the new measurement (referred to
the understanding of measurement in the last sub-section) provides more accurate
information of the states than the prior distribution. In addition, we see that the prior
estimation is “dragged” by the measurement, and forms the posterior estimation.

At the end, resampling should be applied to acquire uniform weighted samples.

Comparison between different proposals and different sample sizes

Different proposals are used in the SISPF to compare the estimation performance in
each case. The proposals used in the simulation are:
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Figure 2.16: The time histories of the “true” states, the measurements, and the mean
of the posterior estimation from PF from time k = 2 to 14.

Proposal distribution 1: The prior distribution defined by (2.127), such as

q1

(
ηk
∣∣ηk−1

)
= p

(
ηk
∣∣ηk−1

)
= N

(
ηk−1 + TR (ψk−1)νk,D [wk−1]

)
.

Proposal distribution 2: The prior distribution with larger variance, such as

q2

(
ηk
∣∣ηk−1

)
= N

(
ηk−1 + TR (ψk−1)νk,diag ([0.4, 0.4, 5π/180])

)
.

Proposal distribution 3: The prior distribution with even larger variance, such as

q3

(
ηk
∣∣ηk−1

)
= N

(
ηk−1 + TR (ψk−1)νk,diag ([0.6, 0.6, 10π/180])

)
.

UPF (UKF as proposal): UKF proposal following Equations (2.100)-(2.103).

For Proposal 2 to 4, the time update of the weights of the particles follows

w
(i)
k =

p
(
ηk,m

∣∣∣η̂(i)
k

)
p
(
η̂

(i)
k

∣∣∣η̂(i)
k−1

)
q
(
η̂

(i)
k

∣∣∣η(i)
k−1,ηk,m

) . (2.134)

The simulations last from 0 to 29 seconds. For the Proposal distributions 1-3, three
different sample sizes, 102, 104 , and 106, are tested, while only sample size 102 is
used in the UPF case. Figure 2.16 shows the time series of the estimation of PFs
using Proposal 1-3 with sample size 106, the time series of the estimation of PF using
Proposal 4 with sample size 102, and the time series of the UKF estimation. Figure
2.17 shows the time series of the estimation error of the PFs using every proposal,
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Figure 2.17: The error time histories of the measurements, and the mean of the poste-
rior estimation from PF from time k = 1 to 29. The errors are defined as the difference
between the signal and the “true” states.
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Table 2.4: Total (estimation) errors over time for different proposals, and statistic
results from repeating the simulation 10000 times.

Estimation method Total error in 30sec
[m]

10000 times aver-
age of errors [m],
std. of errors

[
m2
]

(Measurement) 34.2266 36.2826, 3.5023
UKF 21.7916 25.5453, 6.4790

UPF, Ns = 102 18.4585 18.7878, 3.3206
PF, Proposal 1, Ns = 102 19.7746 36.2993, 4.4029
PF, Proposal 1, Ns = 104 18.6188 20.0016, 3.2668
PF, Proposal 1, Ns = 106 18.7194 18.3971, 3.2600
PF, Proposal 2, Ns = 102 20.9302 18.3805, 3.1805
PF, Proposal 2, Ns = 104 22.0399 20.3850, 2.8426
PF, Proposal 2, Ns = 106 21.9016 20.3775, 2.8384
PF, Proposal 3, Ns = 102 23.2608 22.4636, 3.1805
PF, Proposal 3, Ns = 104 23.5497 21.2879, 2.7947
PF, Proposal 3, Ns = 106 23.0869 21.2774, 2.7952

the UKF estimation error, and the difference between the measurement and the “true”
state.

The total errors over time for the different proposals are listed in Table 2.4. The sce-
nario in this example is repeated 10,000 times. The average errors are listed together
with the standard deviation of the errors in Table 2.4. The statistical results show that
the PF-based navigation performs better than the UKF-based method. And PF using
UKF as the proposal exhibits better performance than PFs with other proposals, with
the exception of Proposal 2. The result of Proposal 2 is unusual where the estima-
tion error minimum appears when the number of particles is small, which is against
the rule that the performance of PF benefit from the number of particles. There is
no information available that can explain this and it is perhaps something that can be
considered in future research.

Comparing Proposal 1, 2 and 3, the PFs with Proposal 1 give the best estimation
(ignoring Proposal 2 with sample size 100), followed by the PFs using Proposal 2,
and then the PFs with Proposal 3. This manifests itself as the estimation sensitivity to
the measurement error grows stronger in response to the larger variations involved in
the proposals. Moreover, if the proposal is chosen improperly, the larger sample size
does not always result in a better estimation performance, even when the sample size
is sufficiently large.

Comparing the estimation performance of PFs with different sample sizes but using
the same proposal, there is a clear indication that more particles result in better esti-
mation (ignoring Proposal 2 with sample size 100).
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Figure 2.18: The time series of the estimation error (Euclid distance to the “true”
position) and variance of the estimated distribution.

Besides the estimation error, the performance of the estimation can also be evaluated
by considering its variance, or more specifically, the difference between the shape of
the estimated distribution and the “true” distribution. Figure 2.18 depicts the time
series of the estimation error (and the measurement error) and the time series of the
norm of the estimation covariance matrix. Figure 2.19 shows the likelihood of the
“true” state pertaining to the estimation (and measurement). More precisely, it shows
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Figure 2.19: The time series of the likelihood of the “true” states.

how the “true” state manifests itself in terms of the estimated mean and covariance,
e.g., Figure 2.20. This likelihood should be understood as the difference between the
estimated distribution and the “true” estimation, such that a low likelihood indicates
that there is a poor fit between the estimation and the reality.
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Figure 2.20: Illustration of likelihood. The events and their corresponing likelihood
under a certain likelihood function.

So, from synthetically reading Figures 2.18 and 2.19, it can be concluded that:

• Considering the norm of the covariance of the position states is 0.2m2, the UPF
and UKF exhibit the smallest estimation variance; i.e., the highest precision.
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However, a small estimation variance does not sufficiently lead to the highest
accuracy, such that the UKF has a large estimation error.

• The size (or norm) of the (co)variance of the estimation for the PFs in Proposals
1, 2, and 3 increases in response to the size of the variances of the proposals.

• The size (or norm) of the (co)variance of the estimation for a PF depends on its
sample size. The more particles used the more stable the estimation variance.

• The larger the estimation error is, the less the likelihood is, in general. For
instance, since the estimation (co)variance of the PF with proposal 3 sample
size 106 is quite stable, the likelihood almost only depends on the estimation
error.

• It is hard to tell which filter has the best performance in the likelihood sense.
However, the UKF and UPF performed poorly at certain times. Since the size
of the variances of their estimation is small, the likelihood is quite sensitive.
Moreover, PFs with small sample size may perform more poorly than those
with a large sample size.

From these observations, it is possible to conclude that the PFs with Proposal 1 are
recommended since their estimation error is small and the likelihood of the “true”
states is relatively good. The sample size is not considered in this statement; however,
the largest sample size subjecting to the restriction of the computational capacity is
preferred.

Summary

Concluding from this example:

• The proposal distribution dominates the performance of the PF.

• If the model is accurate enough, the prior is a good proposal, for its computa-
tional simplicity, while the UKF proposal performs better but is computationally
heavy.

2.4.6 Case Study: Wave Filtering for DP Vessel Using Particle Fil-
ter

Introduction

In this case study, we consider the wave-filtering problem for DP vessels. The source
of disturbance that act on DP vessels are mainly derived from wave force, current
force, and wind force. The wave force can be conceptually divided into two com-
ponents: wave-frequency force and low-frequency force. The wave-frequency force
tends to make DP vessels oscillate around a certain point at the wave-frequency; while
the low-frequency motion induced by waves push the DP vessels to drift away. The
current and wind force are usually considered to be slow varying forces ([Fossen,
2011]).
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The wave-frequency wave force is strong, and dominates the resultant force. How-
ever, people always try to avoid controlling the wave-frequency induced motion of the
vessel, since restricting the wave-frequency motion of the DP vessel induces wear and
tear to the machinery of the thruster, and makes little contribution towards a better
DP performance. Hence, it is important that appropriate methods of estimating the
low-frequency motion of a DP vessel, i.e., position and velocity, are incorporated in
the DP control system design. Obtaining the low-frequency motion of a vessel from
the wave and noise corrupted sensor measurements is called wave filtering ([Fossen
and Strand, 1999]).

The conventional method of wave filtering involves using a notch filter or a cascaded
low-pass and notch filter; however, these methods induce a delay between the esti-
mation and the real state. KF and EKF can be used for this purpose as well, where
the state-space has to be augmented by the states of whitened wave motion ( [Fossen,
2011]). Recent research by [Fossen and Strand, 1999] described the use of a passive
nonlinear observer to perform wave filtering.

In addition to the setup described by [Fossen and Strand, 1999], we assume the DP
system uses GNSS and hydroacoustic position reference (HPR) as position reference
sensors, in which the update rates are generally lower than the sampling frequency of
the control system.

Scenario

System Model The low-speed manoeuvring model of a vessel used in this study
partially follows [Fossen and Strand, 1999], and is briefly represented by the following

η̇ = R (y)ν (2.135a)

ν̇ = M−1
(
−Dν +R> (y) b+ τ

)
(2.135b)

ḃ = −T−1b (2.135c)

ξ̇ = Ωξ + Λw (2.135d)
y = η + ηw = η + Γξ, (2.135e)

where η =
[
N E ψ

]>
is the low-frequency position of the vessel defined in the

NED frame, y is the position of the vessel consisting of the low- and wave -frequency
motion also defined in the NED frame; R (y) is the rotation matrix from the body
frame of the vessel to the NED frame; ν =

[
u v r

]>
is the low-frequency ve-

locity of the vessel defined in the body frame of the vessel; M and D are the mass
and damping matrices of the vessel, b ∈ R3 is the dynamic of the slowly varying dis-
turbance consisting of the current and wind defined in the NED frame; T is the time
constant matrix of the slowly varying disturbance dynamic; ξ ∈ R3 is the intermedi-
ate variable of the wave dynamics; Ω is the transition matrix of state ξ; and Γ is the
output matrix of state ξ.
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Wave motion Following the 2nd-order transfer function approximation of the wave-
frequency motion of the vessel described in [Fossen, 2011] and [Sørensen, 2012], the
dynamics of intermediate state ξ is described as

h (s) =
2λω0s

s2 + 2λω0s+ ω2
0

, (2.136)

or in state-space model as

[
ẋw1

ẋw2

]
=

[
0 1
−ω2

0 −2λω0

] [
xw1

xw2

]
+

[
0

2λω0

]
w, (2.137)

where w is white driving noise. By adjusting the power of the driving noise, ẋw1 can
express the wave-frequency motion in 1 DOF of the vessel. The total wave motion
Equation (2.135d) is obtained by collecting three such state-space models.

Current force A vessel in the sea endures current and wind. The resulting force of
the current and wind is strong, but variations in its direction and size occur relatively
slowly. The resulting force of current and wind can be modeled as

ḃ = −T−1b, (2.138)

where b ∈ R3 is the resulting force of the current and wind defined in the NE frame,
and T is the diagonal time constant matrix of the slowly varying disturbance dynamic.

Measurement model According to the basic requirement described in [IMCA, 1996]
and also considering the common practices of DP operation, it is assumed that two
global navigation satellite system (GNSS) sensors and one hydroacoustic position ref-
erence (HPR) sensor are available to the DP vessel. Additionally, it is assumed that the
GNSS sensors update rate is 1Hz, and their measurement is subject to a 2-dimensional
white Gaussian measurement noise with standard deviation diag{1/3m, 1/3m} on the
horizontal plane 3. While the HPR sensor updates at 0.2Hz. The position measure-
ment of HPR subjects to a white Gaussian measurement noise with standard deviation
diag{1m, 1m}. The heading of the vessel is measured by a gyro with update rate 10Hz
subject to a white Gaussian measurement noise with standard deviation 1/3 deg. The
measurements can, therefore, be modeled as

pGNSS1,k = Cpyk + vGNSS1,k (2.139)

pGNSS2,k = Cpyk + vGNSS2,k (2.140)

pHPR,k = Cpyk + vHPR,k (2.141)

ψgyro,y = Cψyk + vgyro,y, (2.142)

where k is the time index; pGNSS1, pGNSS2, pHPR are the position measurement
vectors, each of them consisting of North and East position measurement of the vessel;

3We only consider the GNSS measurement on the horizontal plane in this application.
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ψgryo is the vessel heading measurement from the gyro; vGNSS1, vGNSS2, vHPR, vgyro

are the four measurement noise terms corresponding to the description above; and
Cp = [ 1 0 0

0 1 0 ] and Cψ =
[
0 0 1

]
are the output matrices. Note that the position

and heading measurements are made with respect to the resulting position y, which
consists of the wave-frequency motion.

Particle filter design

Compared with Equation (2.135), the model used in particle filter design has to take
into account two factors:

• discrete time model,

• driving noise.

Since the highest update rate of the sensors is 10Hz, and the dynamic of a surface
vessel is much lower than this value, it is good to have a discrete-time model with
sampling time 10Hz. Since the system dynamics are much lower than the sampling
frequency, it is possible, and also convenient, to use time-difference directly instead
of time-derivative, such as

p
(
ηk+1

)
= N (ηk + TsR (yk)νk,Cov [wη,k]) , (2.143a)

p (νk+1) = N
(
νk + TsM

−1
(
−Dνk +R> (yk) bk + τ k

)
,Cov [wν,k]

)
,

(2.143b)

p (bk+1) = N
(
bk − TsT−1

b bk,Cov [wb,k]
)
, (2.143c)

p
(
ξk+1

)
= N

(
ξk + TsΩξk,Cov[Λwξ,kΛ

>]
)
, (2.143d)

p
(
yGNSS1,k

)
= N (Cpyk + dGNSS,k + bGNSS,k,Cov [vGNSS1,k]) (2.143e)

p
(
yGNSS2,k

)
= N (Cpyk + dGNSS,k + bGNSS,k,Cov [vGNSS2,k]) (2.143f)

p
(
yHPR,k

)
= N (Cpyk,Cov [vHPR,k]) (2.143g)

p
(
ψgyro,k

)
= N (Cψyk,Var[vgyro]) . (2.143h)

where Ts is the sampling time.

The particle filter follows the SIR PF Algorithm 3. Due to the fact that the update
rates of the sensors are different, the measurement update of the particle filter behaves
in such a manner that whenever a new measurement is obtained by a sensor, its corre-
sponding measurement model in (2.142) is used to update the weights of the particles.

Simulation and result

The simulation was performed in MATLAB/ SIMULINK with components from the
MSS toolbox [Fossen and Perez]. The mass and damping matrices of the vessel are
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Figure 2.21: The performance of PF-based wave filtering and nonlinear passive filter.
(a) shows the GNSS measurement and the estimations; (b) is the energy spectrum
of the measurement and estimation errors; (c) shows the measurement error and the
estimation error; (d) shows the frequency response of the filters by comparing the
energy spectrums.

set to

M =

5.3122× 106 0 0
0 8.2831× 106 0
0 0 3.7454× 109


and

D =

5.0242× 104 0 0
0 2.7229× 105 4.3933× 106

0 4.3933× 106 4.1894× 108

 ,
which are adapted from the vessel Northern Clipper, as described by [Fossen and
Strand, 1999]. The vessel is controlled by a properly tuned nonlinear PID controller.
The position and velocity signals from the vessel are directly used as feedback, such
that the offline observers do not affect the performance of the control system.

In the simulation the wave motion of the vessel is simulated by Equation (2.137) , with
w0 = 0.8 and λ = 0.1. GNSS and HPR measurements are simulated by combining the
vessel total position with proper noise. The vessel suffers from current and wind envi-
ronmental disturbance, and the resulting force is simulated as

[
1× 104 8× 103

]
N

from the North and East direction, respectively.
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The position feedback used in the controller is η, so that the PF and the nonlinear
passive filter are working offline. The simulation lasts 5000 seconds. The vessel is
commanded to change the heading from 0deg to 30deg at 500s, then to change the
position to 10m North and 10m East at 800s.

Figure 2.21 compares the the estimations of the passive nonlinear observer and the
particle filters. Figure 2.21 (a) (c) show the time domain performance of the navigation
filters. The PF based wave filter exhibits smaller estimation error, and the performance
during the transient is acceptable. Figure 2.21 (b) (d) show the filtering performance in
frequency domain. Both the PF and nonlinear passive filter can significantly suppress
the wave-frequency disturbance. PF-based wave-filtering for DP vessel can accurately
estimate the position of the vessel even when there is strong external disturbance from
both ocean current and wave. In addition, PF-based wave-filtering is suitable for DP
vessels because it is able to merge multiple measurements.

Summary

PF-based wave filtering for the DP vessel can accurately estimate the position of the
vessel, even when there is strong external disturbance from both ocean current and
wave. In addition, PF-based wave filtering is suitable for DP vessels because it is able
to merge multiple measurements.

2.5 Conclusion

This chapter reviewed basic concepts in probability and stochastics, especially the
Bayesian filtering technique. The Kalman filter, extended Kalman filter, Gaussian sum
filter, unscented Kalman filter were reviewed, as too was the particle filter algorithm.
One illustrative case was presented to provide an overview of the use of the particle
filter in terms of a navigation problem. The application of the particle filter within a
wave-filtering problem involving the DP vessel was also studied.
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Chapter 3

Fault Diagnosis with Particle
Filter

“ ” 

(“There is only one truth!”) 

 (Kudo·Shinichi) 

3.1 Introduction

According to [Gustafsson, 2001, Chapter 10], a linear system with possible faults can
be modeled as a time variant linear system1

xk+1 = Ak (δk)xk +Bu,k (δk)uk +Bw,k (δk)wk (3.1a)
yk = Ck (δk)xk +Du,k (δk)uk +Dv,k (δk)vk (3.1b)

wk ∼ N
(
µw,k (δk) ,Qk (δk)

)
(3.1c)

vk ∼ N
(
µv,k (δk) ,Rk (δk)

)
. (3.1d)

In this model,

• x ∈ RNx is the state vector;
• y ∈ RNy is the measurement / observation vector;

1The notations in [Gustafsson, 2001] have been modified to ensure consistency with this thesis.
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• A ∈ RNx×Nx is the state transition matrix;
• Bu ∈ RNx×Nu is the input matrix;
• Bw ∈ RNx×Nw is the noise input matrix;
• C ∈ RNy×Nx is the measurement matrix;
• Du ∈ RNy×Nu is the direct input to measurement transition matrix;
• w and v are the system noise vector and measurement noise vector, and are

assumed to be white and Gaussian distributed;
• δ is the system mode parameter;
• k denotes the time index, such that if the sampling is evenly made with time

interval T , then the time is t = kT .

All the parameter matrices can be time-varying and conditioned on the system mode
parameter δ, which makes δ essential to this model. It is named the system mode
parameter because the system switches its behaviour (mode) in response to δ changes
providing not all the parameter matrices depend on δ in a trivial manner.

The model (3.1) is linear Gaussian; as such it coincides with most of the assump-
tions associated with the Kalman filter, except for the system mode parameter δ. As
such, the Kalman filter is still valid for model (3.1) assuming that δ is known. How-
ever, in FD problems δ is unknown, and is the objective to detect and diagnose. For
these features of the model, a Kalman filter-bank-based FD scheme was provided by
[Gustafsson, 2001, Chapter 10], where the FD problem is reformed as an estimation
problem of the time series δ1:k, such as to obtain the maximum a posteriori estimator

{
δ̂1:k

}
MAP

= arg max
δ1:k

p (δ1:k |x1,y1:k ) . (3.2)

However, this model has its limitations. These are as follows:

1. The model is linear, but the systems in the real world are nonlinear in general. In
addition, as described in previous research [Zhao et al., 2012b], in some extreme
cases there is a requirement to handle a nonlinear measurement problem. As
such, it is necessary to extend this model to nonlinear circumstances.

2. The noise terms are assumed Gaussian in the model; however, this is not always
the case in the real world. According to [Zhao et al., 2012a], although we can
whiten a coloured noise by states argumentation, a Rice distributed measure-
ment noise and a Gaussian mixture driving noise remains.

This chapter proposes a particle-filter-based fault diagnosis method. Focusing on the
limitations of model (3.1), a generalized system model is defined as a combination of
a hidden Markov model and a Markov chain in Section 3.2. Following this, several
modelling examples are provided in Section 3.2.1. Then, a modified particle filter
algorithm is proposed to estimate the system states and system mode in the generalized
model in Section 3.4. A case study is described in Section 3.7 to validate the proposed
algorithm. The conclusion of this paper follows.
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3.2 Switching Mode Hidden Markov Model

Recall the HMM model Equation (2.38) as

Xk+1 |xk,uk ∼ gk (xk,uk) (3.3)
Y k |xk,uk ∼ hk (xk,uk) . (3.4)

Following the idea that system mode parameters can be employed to represent the
behaviour of the system, we can augment the model with system mode parameter
vector δ, such as

Pr
(
∆k+1 = δj

∣∣∆k = δi
)

= pij,k (3.5)
Xk+1 |(Xk = xk,uk,∆k) ∼ p (xk+1 |xk,uk,∆k )

= fk (xk,uk,∆k) (3.6)
Y k |(Xk = xk,uk,∆k) ∼ p (yk |xk,uk,∆k )

= hk (xk,uk,∆k) . (3.7)

Equation (3.5) is the system mode transition Markov chain, defining how the system
transfers between system modes, where

• ∆ =
[
∆f(1)

∆f(2) · · · ∆f(Nm)
]>

is a discrete random variable defining

the system mode, where the components ∆f(p) ∈
{

0, 1
}

, (p ∈ {1, . . . , Nm})
denote whether the fault “f (p)” occurs in the system. Hence, ∆ ∈ {0, 1}Nm

describes the condition of all the faults in the system, where Nm is the number
of all possible faults in the system. For instance, ∆ =

[
0 · · · 0

]>
is the

fault-free case.

• δi, δj are realizations of ∆, representing two system modes. Since ∆ ∈
{0, 1}Nm , the cardinality of the set of all possible δ is 2Nm , representing all
possible system modes. We assign δm

(q)

,
(
q = 0, . . . , 2Nm − 1

)
to all these

realizations in a certain order. Especially, δm
(0)

=
[
0 · · · 0

]>
.

Equation (3.6) is the system equation; Eequation (3.7) is the measurement equation,
where the variables follows their definitions in HMM.

This model is a generalization of the model (3.1) since this model can describe the
nonlinear systems, and covers the non-Gaussian noise conditions. For instance, the
model (3.1) is covered by switching mode HMM and can be written as
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p (xk+1 |xk,uk, δk ) = N
(
Ak (δk)xk +Bu,k (δk)uk +Bw,k (δk)µw,k,

Bw,k (δk)wkB
>
w,k (δk)

)
(3.8)

p (yk |xk,uk, δk ) = N
(
Ck (δk)xk +Du,k (δk)uk +Bv,k (δk)µv,k,

Bv,k (δk)vkB
>
v,k (δk)

)
, (3.9)

It should be highlighted that although this model is very general, it is not universal,
for instance, the model (3.2) is discrete, but physical systems are always continuous.
Discretization has to be applied to the physical systems to fit the model. This results
in a discretization error, as described in Section 2.4.5.

Remark 3.1 In the switching mode HMM, we implicitly assume that system mode
∆ is independent from the system state x, such that the state neither induces nor af-
fects mode transition. This assumption is good in many cases. However, sometimes
we need to consider the fact that extreme condition of the states may induce physi-
cal faults. This problem is not considered this problem in this paper. A number of
works, such as those by [Funiak and Williams, 2003] discuss the interaction between
the system states and the system mode. It may be useful for future research to in-
clude consideration of the reaction from the state on the system mode to describe the
behaviour of the failures in more detail.

Remark 3.2 Since this model is time discrete, the time when the system mode
transition occurs is also discretized. This means that whenever the mode transition
happens within a sampling interval, it is viewed as having occurred at the sampling
instant. If the sampling time is long, this may induce a divergence of the continuous
reality and the discrete model. However, in the case of a computer-controlled sys-
tem that incorporates a short sampling time, this discretization error is perceived to be
negligible.

3.2.1 Modelling Examples

Modelling a system into the form (3.2) is not difficult. Knowledge and methods of
modelling a system into state-space model can be directly inherited. In terms of
nonlinearity and non-Gaussian noise, it is possible to inherit the nonlinearity of the
system directly rather than linearizing the system as would be the case with the ex-
tended Kalman filter, and the general model is compatible with non-Gaussian noise
by manufacturing the mappings. In general, the modelling process is close to mathe-
matically describing the nature of the systems. This section includes some examples
that describe how the systems, with their possible faults, are modelled in the form of
a switching mode HMM. These examples are furthered enlightened by the examples
of [Gustafsson, 2001, Section 10.2].
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Example 3.1 Changing DC Level in White Noise

One-time Changing Mean Model Consider the case of an unknown DC component
embedded in white Gaussian noise. Suppose that we want to test the hypothesis that
the DC component has changed at some unknown time. We can model the signal by

yk = θ1 − σ (k − l + 1) θ1 + σ (k − l + 1) θ2 + vk, (3.10)

where σ (·) is the step function, θ1 and θ2 are the known DC components embedded
in the white noise before and after the change, l is the change time, and vk is the white
measurement noise. If all possible change instants are to be considered, the variable l
takes its value from the set {0, 1, · · · , k − 1, k}, where l = k should be interpreted as
no change yet.

We can rewrite (3.10) as

yk = ∆k

[
θ1

θ2

]
+ vk, (3.11)

where the system mode parameter ∆k =
[
∆1 ∆2

]
∈
{[

1 0
]
,
[
0 1

]}
. Define

δ0 =
[
1 0

]
, and δ1 =

[
0 1

]
. This model is in the form of (3.2) in the sense that

Yk ∼ p (yk |∆k ) = ∆k

[
N (θ1,Var (vk))
N (θ2,Var (vk))

]
. (3.12)

However the model (3.11) is not equivalent to (3.10), because the system mode in
(3.11) can switch multiple times between δ0 and δ1, while it can only change once in
(3.10). As such, some restriction must be assigned to the system mode parameter in
(3.11), such that ∆ can only change from δ0 to δ1, but never goes backwards. This
can be mathematically described by the following Markov chain (See also Figure 3.1),
that

Pr
(
∆k = δ0

∣∣∆k−1 = δ0
)

= p00 (3.13a)

Pr
(
∆k = δ1

∣∣∆k−1 = δ0
)

= p01 = 1− p00 (3.13b)

Pr
(
∆k = δ0

∣∣∆k−1 = δ1
)

= p10 (3.13c)

Pr
(
∆k = δ1

∣∣∆k−1 = δ1
)

= p11 = 1− p10, (3.13d)

where p00 is the probability that the value of the DC component remains the same
between the time steps, and p01 is the probability that the value of the DC component
will change from θ1 to θ2 between time steps. So are the transition probabilities p10

and p11.

Until now, the combined model of (3.11) and (3.13) is almost equivalent to (3.10).
However, the combined model of (3.11) and (3.13) is more precise because it also
defines the system mode transition probabilities. On the contrary, in model (3.10) the
probability of the mode switching is undefined, which means the prior knowledge,
such as p00 and p01, is not modeled.
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Figure 3.1: The Markov chain of mode transition.

Segmentation in changing mean model If we extend the above scenario to a more
general case by losing the assumptions of previous knowledge of the DC values and
the number of changes in the DC level. In this case, it is convenient to take the DC
level as the system state, and thereby model the signal as

Θk ∼ p (θk+1 |θk,∆k ) = ∆k

[
ρ (θk+1 − θk)
U (θinf , θsup)

]
(3.14)

Y k ∼ p (yk |θk ) = N (θk,Var (vk)) , (3.15)

where ρ (·) is the Dirac function, U (θinf , θsup) is an uniform distribution on θinf and
θsup, and ∆k follows the definition in the previous example. δ0 ,

[
1 0

]
indicates

there is no change at time k, while δ1 ,
[
0 1

]
represents there is a change at time

k.

The mode transition can be defined according to the frequency of the mode change,
such as

Pr
(
∆k = δ0

)
= p1 (3.16)

Pr
(
∆k = δ1

)
= p2 = 1− p1. (3.17)

Example 3.2 Signal drifting

It is common to have a measurement signal that may drift away from its real value.
For example, when the GNSS signal is subject to ionosphere disturbance it may drift
slowly. Assuming three characteristics of the drifting being 1) the drifting may happen
at any time without foreboding, 2) the drift is slow rather than representing an abrupt
change, 3) once drift occurs the signal never returns to the normal condition, we may
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Table 3.1: The Markov chain for the mode transition in Example 3.2.

∆k

Pr δ0 δ1

∆k+1 δ0 p00 0

δ1 p01 1

use the following equations to model the signal drifting

p (dk+1) ∼∆k

[
N
(
dk + d0, σ2

d

)
ρ (0)

]
(3.18a)

p (yk) ∼ N
(
dk, σ

2
v

)
, (3.18b)

where d0 is the unknown drifting speed with PDF p
(
d0
)
, σ2

d is the variance of the
drifting speed, ∆k ∈

{
δ0, δ1

}
, such that δ0 =

[
0 1

]
represents fault-free mode,

and δ1 =
[
1 0

]
represents a drift in the signal. In addition, the mode transition

can be defined as pre the information contained in Table 3.1, where the transition
probabilities should be defined according to the reality. Due to Assumption 3, a drifted
signal will not return to normal.

Example 3.3 Decayed output

1 0

0
n

a

a

desired 

actuation

actual 

actuation

d a d

decay matrix

diag

Figure 3.2: Decayed output.

The output from actuators in a control system can be less than the desired value. This
input reduction may occur suddenly, and changes may be relatively small. Denoting
the desired output by x, and the actual output as y, this fault can be modelled as

p (αk+1 |αk,∆k ) = ∆k

[
1

g (αk)

]
(3.19)

p (τ a,k |τ d,k,αk ) = diag {αk} τ d,k, (3.20)
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where α is a vector, of witch the entries are between 0 and 1, indicating the reduction
rate of each channel of the system output. The dynamic of α is modelled in (3.19),
where PDF g (αk) can be designed in the manner that ensures the entries in αk+1

are less than or equal to the ones in αk, to capture the behaviour of the decay. ∆k =[
∆1 ∆2

]
∈
{[

0 1
]
,
[
1 0

]}
, where δ0 ,

[
1 0

]
confirms that the input channels

are fault-free, and δ1 ,
[
0 1

]
denotes input reduction.

Assuming this aging problem is irreversible if maintenance is not carried out, the mode
transition Markov chain can be designed as

Pr
(
∆k+1 = δ0

∣∣∆k = δ0
)

= p00 (3.21a)

Pr
(
∆k+1 = δ1

∣∣∆k = δ0
)

= p01 (3.21b)

Pr
(
∆k+1 = δ0

∣∣∆k = δ1
)

= 0 (3.21c)

Pr
(
∆k+1 = δ0

∣∣∆k = δ1
)

= 1. (3.21d)

Example 3.4 Missing measurement

It is common for some time instances measurements to be missing in some applica-
tions, typically due to sensor failure. A suitable model for this situation is

p (xk+1 |xk,uk ) = gk (xk,uk) (3.22)

p (yk |xk,uk,∆k ) = ∆k

[
hk (xk,uk)
N (0,∞)

]
, (3.23)

where ∆k ∈
{[

1 0
]
,
[
0 1

]}
, and the missing measurement is modeled as a

sample from distribution N (0,∞) , which gives no information.2

In practice, whether the measurement is missing for a certain period can be deter-
ministically observed, so that the mode transition in this case will not be modelled as
a Markov chain. However, the outliers of measurements, which are also a common
failure mode of the measurement signal, are modelled in the following example.

Example 3.5 Measurement outliers

Outliers are interpreted as samples from a measurement signal that lie abnormally far
from the other values. Mathematically, they can be seen as samples from a distribution
that exhibits much larger variance than standard, such as

yk = ∆k

[
N
(
xk, σ

2
k

)
N
(
xk, σ

2
o,k

) ]
, (3.24)

2The notationN (0,∞) is rough. It is used here to make sure the observer handling this measurement
will not encounter any “missing” measurements. Practically, using an uniform distribution on a wide base
is also valid, and computationally easier.
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where xk is the mean of the measurement, σ2
k is the variance of the measurement in

fault-free condition, σ2
o,k is the variance of the measurement outliers and conceptually

σ2
o,k � σ2

k, and ∆k ∈
{[

1 0
]
,
[
0 1

]}
.

3.2.2 Discussion Regarding the HMM

A augmented system state vector, which consists of the system state vector and the
system mode parameter, can be defined as

ξk =
[
δ>k x>k

]>
. (3.25)

Then the system can be written as

p
(
ξk+1 |ξk,uk

)
= Pr

(
∆k+1 = δi

∣∣∆k = δj
)
· p (xk+1 |ξk,uk )

= pji,k · fk (ξk,uk) (3.26a)
p (yk |ξk,uk ) = hk (ξk,uk) . (3.26b)

Model (3.26) will be used in the following derivation of the PF based FD algorithm.

3.3 Understanding the Behaviour of Switching Mode
HMM

3.3.1 Internal View

Figure 3.3 (a) shows the behaviour of a system with possible faults starting from
known mode and states. The system is assumed to propagate in two modes at each
time step, such that at each time step there are two possible paths for states to prop-
agate. However, the system states can only propagate following a certain path over
time, which is depicted in Figure 3.3 as the solid line. The dashed line is the other
possible path. The observation is drawn from the states, if we do not consider the
faults in the observation.

If the system mode can transfer infinite times between the two modes, the possible
paths of the system mode increase exponentially. However, among the large amount
of possible system mode paths, the system has only actually followed one path. As
shown in Figure 3.3, the solid line represents the path that the system has followed,
and all additional measurements are based on that.

Remark 3.3 The switching mode HMM considered is a discrete-time mode that
represents a discretized approximation of the real world. Therefore, a latent assump-
tion made in this interpretation is that the system mode transitions only occur at the
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(b)

(a)

state

actual state 

propagation

possible state 

propagation

measurement

Figure 3.3: Principle of using PF for fault detection on switching mode HMM. (a)
shows the actual propagation of the states depending on the system mode, and the
measurement from these states. (b) shows the propagation of the states in the particle
filter, where the states propagates along all possible paths, and the measurements are
made from all possible conditions.

sampling instances, rather than between sampling instances, as shown in Figure 3.4.
This assumption is valid when the sampling frequency is high so that shifting the time
instances when the mode transitions occur would not result in significant differences
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discrete

continuous

Mode transition

time

Figure 3.4: Mode transition in continuous and discrete systems.

to the propagation of the states.

3.3.2 External View

If we observe the system from outside, the system mode transitions are unknown.
Figure 3.3 (b) can roughly describe the cognizance of the system as, due to the system
mode, transitions are concealed to the observers; as such, it is only possible to claim
that

1. all the states propagation paths are possible;
2. there is only one “true” path;
3. the observation is from the true path.

Thus, the principle of conducting FD on switching mode HMM is to identify, or es-
timate, the true system path given all the possible system mode transitions and the
observation series. The algorithm of using PF to conduct FD on switching mode
HMM is given in the following.

3.4 Algorithm of Using PF for FD on
Switching Mode HMM

3.4.1 PF Algorithm

The algorithm of the PF proposed in Algorithm 4 is adapted from the SIR PF. In fact,
different Monte Carlo methods, for instance those described by [Arulampalam et al.,
2002] and [Chen, 2003], can be employed to solve the estimation problem in Model
(3.26). Given its simplicity, the SIRPF presented here should be taken as a prototype.
3.5 shows the process of the proposed PF algorithm, and the concept of mode specified
probability space. The steps of the algorithm will be reviewed in the following section.
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Figure 3.5: One cycle of the PF, divided into three steps by chain lines. These steps
correspond to the inheritance, time update and measurement update respectively. The
resampling step is not included in this figure. For the purpose of depicting the replace-
ment of the particles in the time update steps, the particles are conceptually ordered
1–Ns from left to right in the inherit step of the figure.
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Inheriting from the last cycle

At time k, the particle filter inherits p
(
ξk−1|y1:k−1

)
, which is the estimation of the

posterior distribution of the system extended states given the observation up to time
k−1. A conceptual description of the posterior is presented in Figure 3.5. Because the
system contains both continuous states and discrete states, the posterior density should
be understood as a combination of 2Nm scaled distributions subjecting to different
system modes. For instance, the posterior distribution of xk−1 in mode δm

(q)

is

p
(
xk−1

∣∣∣∆k−1 = δm
(q)

,y1:k−1

)
=

p
(
xk−1,∆k−1 = δm

(q) ∣∣y1:k−1

)
Pr
(
∆k−1 = δm

(q) ∣∣y1:k−1

)
≈

∑Ns

i=1 w
(i)
k−1 · ρ

(
xk−1 − x(i)

k−1

)
· ρ
δm

(q)
,δ

(i)
k−1∑2Nm−1

q=0 w
(i)
k−1 · ρδm(q)

,δ
(i)
k−1

, (3.27)

where Ns is the number of particles, ρ (·) is the Dirac function, and ρs,t is the Kro-
necker delta function. When q = 1, the distribution in Equation (3.27) spans the
distribution p

(
xk−1

∣∣∣∆k−1 = δm
(1)

,y1:k−1

)
to the top-left of Figure 3.5. Thereby,

the posterior distribution p
(
ξk−1|y1:k−1

)
is obtained by total probability and condi-

tional probability, such as

p
(
ξk−1|y1:k−1

)
=

2Nm∑
q=1

p
(
xk−1

∣∣∣∆k−1 = δm
(q)

k−1 ,y1:k−1

)

≈
2Nm∑
q=1

(
Ns∑
i=1

w
(i)
k−1 · ρ

(
xk−1 − x(i)

k−1

)
· ρ
δm

(q)
,δ

(i)
k−1

)
. (3.28)

Time update

The purpose of the time update process is to obtain the a priori estimation of the states
as q

(
ξk
∣∣ξ0:k−1,y1:k

)
. In the PF context, this process is performed by drawing sam-

ples from the importance density. The SIR PF uses the most convenient distribution
p
(
ξk

∣∣∣ξ(i)
k−1

)
as the importance density.

There is dependence in the system equation (3.26a). Hence, the time update process
has to be divided into two steps: the system mode time update, and the system states
time update. Intuitively the system mode should be updated first, and then the system
states should be updated, since they are mode dependent. That is, for each particle,
it is necessary to firstly determine its mode at current time instance by propagating
the system mode of a particle though the system mode transition Markov Chain in
Equation (3.5), then obtain the system mode at current time step, and finally determine
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the system states by drawing sample from Equation (3.6). As such, the distribution
that the samples are drawn from is equivalent to

p
(
ξk

∣∣∣ξ(i)
k−1,uk

)
= p

(
[xk, δk]

>
∣∣∣∣[x(i)

k−1, δ
(i)
k−1

]>
,uk

)
= p

(
xk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>
,uk

)
· Pr

(
δk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>
,uk

)
= p

(
xk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>
,uk

)
· Pr

(
δk

∣∣∣δ(i)
k−1,uk

)
, (3.29)

where Pr

(
δk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>
,uk

)
= Pr

(
δk

∣∣∣δ(i)
k−1,uk

)
, because δk is indepen-

dent from xk. At the end of the time update step, the we obtained new positions ξ(i)
k

of the particles.

Remark 3.4 In this circumstance, it is preferable to use as many particles as possi-
ble, while keeping computational load for each particle as low as possible. Different
PF algorithms are mainly distinguished by the importance densities selected, such as
the extended particle filter (EPF) and the unscented particle filter (UPF) ([van der
Merwe et al., 2001]). For instance, [Caron et al., 2007] recommended the use of EKF
or UKF estimation as the importance density in order to reduce the sample size, and
thereby reduce the computational load. However, using EKF or UKF increases the
computational load for each particle; as such, the sample size has to be reduced if the
total computational load is restricted. In our case, because the proposed algorithm
simulates the system mode transition by propagating the particles through the Markov
chain, a certain amount of particles are necessary to adequately capture the behaviour
of the system mode. This is against the principle of EPF or UPF. Hence, the author
recommends the use of a simple algorithm, such as SIR PF, to reduce the computa-
tion for each particle; however, they should be employed in combination with a large
sample size.

Measurement update

At this step, the particle weights will be updated according to the observation at the
current time instance k. The weights are updated following the Baye’s law that when
one particle’s prior ξ(i)

k is supported by the observation, the weight of the particle
should increase, and vice versa.

Given the observation at current time as yk, and chosen the importance density
p
(
ξk

∣∣∣ξ(i)
k−1

)
, it yields

w
(i)
k ∝ w

(i)
k−1 · p

(
yk

∣∣∣ξ(i)
k ,uk

)
, (3.30)

where p
(
yk

∣∣∣ξ(i)
k ,uk

)
is defined by (3.26b).
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estimated state 

distribution

possible state 

propagation estimation

Figure 3.6: The estimation of the PF on switching mode HMM. The distributions in
this figure are not realistic.

Resampling

It is common to employ a resample step in the PF algorithm to counteract the degener-
acy, for example, as per the resample methods proposed in multinomial resampling in
[Smith and Gelfand, 1992], residual resampling in [Liu, 1996], and systematic resam-
pling in [Carpenter et al., 1999]. These methods are suitable for use in the switching
mode HMM circumstance.

Remark 3.5 Regarding the resampling step, we recommend using an adaptive re-
sampling method in Section 3.5.1. The new method is suitable for PF working in
switching mode condition, and is good at handling the case that some system mode
has little marginal probability mass. However, the drawback is the new method results
in a variable sample size.

3.4.2 Fault Diagnosis Algorithm

It is concluded that the system is working in mode δm
(q)

, when the mode ∆k = δm
(q)

has the largest marginal probability mass, such as

max
i

Pr
(
∆k = δm

(i)

|y1:k

)
= q, (3.31)
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input : Ns,k−1 particles from last time step
{
x

(i)
k−1, w

(i)
k−1

}
, which span the

posterior estimation of the state at time k − 1

p
(
ξk−1|y1:k−1

)
≈

2Nm∑
q=1

Ns,k−1∑
i=1

w
(i)
k−1 · ρ

(
xk−1 − x(i)

k−1

)
· ρ
δm

(q)
,δ

(i)
k−1

 .

output: Ns,k new particles
{
x

(i)
k , w

(i)
k

}
, which span the posterior estimation of

the state at time k

p (ξk|y1:k)

≈
2Nm∑
q=1

Ns,k∑
i=1

w
(i)
k · ρ

(
xk − x(i)

k

)
· ρ
δm

(q)
,δ

(i)
k

 .

//for each particle
for i← 1 to Ns,k−1 do

// Time update: Drawing samples from the proposal distribution.

ξ
(i)
k ← ξ

(i)
k ∼ p

(
ξk

∣∣∣ξ(i)
k−1,uk

)
= p

(
xk

∣∣∣∣[x(i)
k−1, δ

(i)
k−1

]>
,uk

)
· Pr

(
δk

∣∣∣δ(i)
k−1,uk

)
// Measurement update:
w

(i)
k ← w

(i)
k−1p

(
yk

∣∣∣x(i)
k ,uk

)
end
// Normalize the weights
w

(i)
k ∝ w

(i)
k−1 · p

(
yk

∣∣∣ξ(i)
k ,uk

)
// Resampling: follows Algorithm 2 or Algorithm 5.
w

(i)
k , i ∈ {1, Ns,k} ← RESAMPLE

(
w

(i)
k

)
, i ∈ {1, Ns,k−1}

Algorithm 4: SIRPF for FD on switching mode HMM.

where i ∈
{

0, . . . , 2Nm − 1
}

. This mode δm
(q)

is named significant mode. The
probability mass is obtained by marginalizing the distribution p (ξk|y1:k), such as

Pr
(
∆k = δm

(q)

|y1:k

)
≈
Ns,k∑
i=1

w
(j)
k ρ

δm
(q)
,δ

(i)
k

. (3.32)

Then the fault detection is performed intuitively: once the observed significant mode
is different from the fault-free mode, the fault is detected. The estimated system mode
at this time gives the failure mode as a fault isolation result. In addition, the size of
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the fault can be obtained by the state estimation of the PF.

There can be alternative ways to deduce the failure mode. One may define threshold
H
δm

(q) ∈ (0, 1) for each system mode δm
(q)

, q ∈
{

1, . . . , 2Nm − 1
}

. Once the esti-

mated marginal mass Pr
(
∆k = δm

(q)

|y1:k

)
of a mode δm

(q)

exceeds the threshold
H
δm

(q) is captured, the system should be considered to have failed in the correspond-
ing failure mode. Although this method requires designing 2Nm − 1 thresholds, it
allows the possibility to tune the sensitivity of the detector; for instance, tuning ac-
cording to the requirements of mean-time-to-detection and false-alarm-rate.

The so-called CUSUM algorithm motivates another way; e.g. [Blanke et al., 2006].
One may take the time cumulation of the marginal mass of the modes as indicators, and
detect the faults by judging the behaviour of the indicators. This method is especially
practical when the mode has little “into” probability in the mode transition Markov
chain.

3.5 Relevant Topics

3.5.1 Adaptive Resampling Algorithm

Vanishing of the particles in rare modes

If the sample size of the PF were infinite, the estimation of the extended states would
be accurate and precise. The accuracy and precision are obtained if there are always
sufficient particles in each system mode.

However, the sample size cannot be infinite. With the exception of the suboptimal
estimation performance, this results in some modes exhibiting very small marginal-
ized probability so that the particles in these mode will unfortunately vanish after the
resampling. For instance, a system has two modes δ1 and δ2, and the transition prob-
abilities are Pr11 = 0.9999, Pr12 = 0.0001, Pr21 = 1, and Pr22 = 0. If the sample
size of the PF working on this system is 100, the particles representing the mode δ2 are
probably not able to “survive” the resampling if the mode δ2 is not very strongly sup-
ported by the observation. When particles in a system mode vanish, the information
carried by these particles is lost. This phenomenon deteriorates the FD performance
when trying to capture a slowly developing failure mode that rarely occurs.

Although this problem is induced by the insufficiency of particles in PF, it is not suit-
able for solving the problem by increasing the sample size. One may consider in the
system (3.26), assuming that one mode has the marginal mass Pr

(
∆f(q)

k = 1
)

=

0.0001 (q ∈ {1, . . . , Nm}), when this mode rarely occurs in the system. It is com-
mon to use more than 100 particles to accurately describe the distribution, which is
representative of the distribution as we found out in Section 2.4.5. So, if using 100

particles, which is a very low value, representing the density p
(
xk

∣∣∣∆f(q)

k = 1
)

, in
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average, 100
0.0001 = 107 particles in total are needed to describe the whole density

p (ξk|y1:k). This large amount of particles is computationally unbearable.

An alternative method involves manufacturing the resampling algorithm so that the it
is able to generate suitable amounts of particles for each system mode and counteract
the vanishing problem, thereby restraining the information loss. Because the probabil-
ity of a fault occurring in a system is generally low, the particles in these modes will
have very light weights. With a standard resampling method, these light-weighted par-
ticles are unlikely to survive. Thus, the suitable amounts of particles regenerated by
the resampling algorithm should entail that the computational cost is not too high, and
the particles from these system modes, which are unlikely to occur, are still adequately
representative of the conditional density of the states in these system modes.

For this reason, an adaptive resampling method can be applied that results in sufficient
samples for the modes with small marginal probability mass and, in the meanwhile,
restricts the total numbers of particles. It is essential that this modified resampling al-
gorithm is able to adaptively determine the number of samples in each system mode in
accordance to their significance, and allow a compromise between the computational
complexity and the estimation performance.

The adaptive resampling algorithm

At first, define N̆s as the minimum number of particles required for representing a
system mode; e.g., 20 for a system with high sampling frequency, and 100 for system
with relatively low sampling frequency. This will result in at least N̆sNm particles in
the PF. As such, if there are too many modes in the system, a large amount of particles
cannot be avoided.

Then, consider those system modes with significant marginal probability mass. Define
Ñs as the number of particles suitable for the estimation with respect to the estimation
accuracy and precision, and that N̆s (Nm − 1) + Ñs should be an acceptable sample
size for computing. Then assign the Ñs particles to each system mode according to
their marginal probability mass, such as

N
(δ(q))
s,k =

⌈
Pr
(
∆k = δ(q) |y1:k

)
· Ñs

⌉
, (3.33)

where N(δ(q))
s,k is the number of particles required in mode δ(q) in the resampling

step, and dae is the minimum integer which is larger than a. For any N(δ(q))
s,k ≤ N̆s,

compulsorily assign N̆s to N(δ(q))
s,k .

After assigning the number of samples N(δ(q))
s,k , resampling can be performed mode-

specifically with any standard method. Resulting from the adaptive resampling, it

obtains a group of particles with uneven weights Pr(∆k = δ(q)|y1:k)/N
(δ(q))
s,k , de-

pending on the modes δ(q) that the particles belong to. This algorithm is summarized
in Algorithm 5.
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input : particles x(i)
in , weights w(i)

in , i = 1, . . . , Ns,in.
output: new particles x(i)

out, new weights w(i)
out, i = 1, . . . , Ns,out.

for q = 1 to Nm do

N
(δ(q))
s,k ←

⌈
Pr
(
∆k = δ(q) |y1:k

)
· Ñs

⌉
if N(δ(q))

s,k ≤ N̆s then

N
(δ(q))
s,k ← N̆s

end
Construct CDF from weights w(i)

in whose corresponding particle xin is in
mode δ(q), such that

c1 ← 0;
ci ← ci−1 + wi;

i← 1 ;

u1 ∼ U

(
0, 1/N

(δ(q))
s,k

)
;

for j = 1 to N(δ(q))
s,k do

uj ← u1 + (j − 1) /N
(δ(q))
s,k ;

while uj > ci do
i← i+ 1

end

x
(j,δ(q))
out ← x

(i)
in ;

w
(j,δ(q))
out ← Pr

(
∆k = δ(q) |y1:k

)
/N

(δ(q))
s,k ;

end
end

Algorithm 5: Adaptive resampling.

It then can be used to derive the lower boundary of the estimated effective sample size
as

N̂eff =
1∑Ns,k

i=1

(
w

(i)
k

)2

=
1∑2Nm

p=1

(
Pr
(
∆k = δ(p)|y1:k

)2

/Ns,δ(p),k

) , (3.34)

where Ns,k =
∑2Nm

p=1 Ns,δ(p),k is the number of particles at time k. Since Ns,δ(p),k ≥
Pr
(
∆k = δ(p)|y1:k

)
· Ñs,

Pr
(
∆k = δ(p)|y1:k

)2

Ns,δ(p),k
≤

Pr
(
∆k = δ(p)|y1:k

)
Ñs

, (3.35)
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for each δ(p). Thereby,

2Nm∑
p=1

Pr
(
∆k = δ(p)|y1:k

)2

Ns,δ(p),k
≤ 1

Ñs

2Nm∑
p=1

Pr
(
∆k = δ(p)|y1:k

)
≤ 1

Ñs
. (3.36)

Substituting this into the above Equation 3.34, yields

N̂eff ≥ Ñs. (3.37)

Thus, the proposed adaptive resampling method can keep the effective sample size
larger than or equal to Ñs.

The least efficient case occurs when one of the modes has the posterior probability
1. For instance, if there are Nm = 24 modes in the system, and setting Ñs = 1000,
N̆s = 100. In the worst case, we still have N̆s (Nm − 1) + Ñs particles in the system;
however, N̆s (Nm − 1) of them have null weights. This makes the effective sample
size N̂eff = Ñs = 1000, and computation was wasted on the other N̆s (Nm − 1) =
2300 particles.

3.5.2 Rao-Blackwellization

Rao-Blackwellization, which is based on the Rao-Blackwell theorem [Lehmann and
Casella, 1998], is a marginalization technique that can be applied to PFs to make the
most of the advantage of the optimal linear filtering method (e.g., KF), and thereby
improve the estimation performance ([Doucet et al., 2000a] [Andrieu and Doucet,
2002] [Schon et al., 2005]). These studies used Rao-Blackwellization to separate the
linear part of a system from the nonlinear part, before applying a Kalman filtering to
estimate the linear part and apply particle filter to the nonlinear part.

Rao-Blackwellization can be applied in the proposed PF algorithm. To give a brief
example, if, in Model (3.2), the mappings f (·, δ) and h (·, δ) are linear and result
in normal distributions, under each mode, the states estimation can be solved opti-
mally by KF. Thus, in the time update step, we still firstly propagate the system mode
through the Markov chain obtaining δ(i)

k . Then we can perform the Kalman filter on
the linear part of the system, and obtain the estimation of xk, as

p
(
x

(i)
k

∣∣∣yk,x(i)
k−1,uk, δ

(i)
k

)
= N

(
µ

(i)
k ,
(
σ

(i)
k

)2
)
, (3.38)

where µ(i)
k and

(
σ

(i)
k

)2

are the estimated mean and variance from KF, N (·) denotes
normal distribution.

Finally, we can perform the particle filter measurement update to obtain new weights
based on yk and also the estimated µ(i)

k and
(
σ2
k

)(i)
, as

w
(i)
k ∝ w

(i)
k−1p

(
yk

∣∣∣∣µ(i)
k ,
(
σ

(i)
k

)2

,uk, δ
(i)
k

)
. (3.39)
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Remark 3.6 The Kalman filter is not the only filter that can be used in the Rao-
Blackwellization approach. In the event that parts of the system exhibit nonlinearity
that is not significant, EKF or UKF can be applied to these parts in a similar way. For
instance, as reported in [Caron et al., 2007], the nonlinear state evolution is covered
by EKF or UKF, and only left the mode switching of the sensors to handle by the PF.
However, as discussed in [Karlsson et al., 2005], the computational complexity should
be examined carefully.

3.5.3 Mode Ambiguity

It is possible that two or more system modes become somehow significant at the same
time. This is raised by the ambiguity of the system and observation mappings in
different modes, such as the mappings fk

(
·, δ(p)

)
and hk

(
·, δ(p)

)
overlaps in a large

part with another mappings pairs fk
(
·, δ(q)

)
and hk

(
·, δ(q)

)
in a different system

mode.

Example 3.6 Considering we have an observation series which can be a zero-mean
Gaussian white noise, or a Gaussian noise with mean at θ, where θ ∈ [−10, 10]. We
can model the system as

P (yk) = ∆k

[
N
(
0, σ2

)
N
(
θ, σ2

)] , (3.40)

where σ2 is the measurement variance, and θ ∼ U (θinf , θsup). Then the CDF of Y if
θ is unknown, is given by

p
(
yk
∣∣∆k =

[
0 1

])
=

∫ +∞

−∞
fY (y − τ |θ ) fΘ (θ) dτ

=
1

θsup − θinf

∫
τ∈[θinf ,θsup]

γN(0,σ2) (yk) dτ

=
1

θsup − θinf

{
ΓN(0,σ2) (y − θinf)− ΓN(0,σ2) (y − θsup)

}
,

(3.41)

where γN(0,σ2) (·), and ΓN(0,σ2) (·) are the PDF and CDF of Gaussian variable with
zero mean and variance σ2, respectively. Let’s assume θsup = 10, θinf = −10,
and σ2 = 1 yields the prior densities shown in Figure 3.7. In this case, if getting a
measurement locates in a small range around zero, for instance [−2, 2], it supports
both of the two system modes, and thereby the PF delivers an ambiguous result.

Better modeling can reduce this ambiguity. The main idea is to reduce the overlapping
of the priors distributions of each system mode. In the previous example, it can be
more accurate and reasonable to use the density

fΘ (θ) =

{ 1
θsup−θinf−2σ θ ∈ [θinf ,−σ] ∪ [σ, θsup]

0 otherwise
, (3.42)
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Figure 3.7: The probability densities of the measurement in two system modes, re-
spectively.

instead of θ ∼ U (θinf , θsup) to represents the randomness of the DC component.
Then it yields a new prior of the PDF of the measurement that

P ′
(
yk
∣∣δk = ∆2

)
=

1

θsup − θinf − 2σ

·
{
φN(0,σ2) (y − θinf)− φN(0,σ2) (y + σ)

+φN(0,σ2) (y − σ)− φN(0,σ2) (y − θsup)
}
. (3.43)

These modified densities are also shown in Figure 3.7. Although there is still an
overlap between the densities, the situation is much better than before.

Thus, one possible method of minimizing the ambiguity involves reducing the over-
lap of the densities. This is a modelling problem and requires a good inspection of
the system and its failure modes. The Jensen-Shannon divergence can be evaluated
numerically; e.g., as per the work of [Nielsen, 2010] and [Fuglede and Topsoe, 2004],
to measure the difference. This yields

JSD
(
p
(
y
∣∣∆ =

[
1 0

]) ∥∥p (y ∣∣∆ =
[
0 1

]))
≈ 16.57, (3.44)

JSD
(
p
(
y
∣∣∆ =

[
1 0

]) ∥∥p′ (y ∣∣∆ =
[
0 1

]))
≈ 19.11. (3.45)

As a comparison, the Jensen-Shannon divergence between p
(
y
∣∣∆ =

[
1 0

])
and

N (4, 1) is 16.
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Figure 3.8: Detection of one-time changing mean model.

3.6 Study Cases: Examples of Diagnosis
for Basic Anomalies

In this section, the PFFD algorithm is applied to diagnose the anomalies identified in
Section 3.2.1. In all the examples in this section, the PFs run with 1,000 particles.

3.6.1 Changing DC Level in White Noise

One-time Changing Mean Model

In this example, we use PF to detect a change of a signal (following the model in
Example 3.1), which is embedded in white Gaussian noise. The size of the change is
1, but we assume four different standard deviation of the noise in each cases.

Figure 3.8 indicated the detection result of a size 1 jump embedded in white Gaussian
noise of different variance. Two axes in a quarter is a group that depicts the signal and
diagnosis, respectively. The signal in the four groups adopts measurement noise with
standard deviation 0.2, 1, 2, and 5, respectively.
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The model running in the particle filter follows Equation (3.12). In the first two cases,
where the signal-to-noise rate is high, the time-to-detection3 is short, and the detection
result is uniform. This means that the rounded probability always indicates “jumped”
after the jump is detected. Hence, in these cases, the PFFD algorithm can effectively
detect the change. When the standard deviation of the measurement noise is 2, the de-
tection result is nonuniform, such that when the jumped measurement signal behaves
close to the zero-mean condition (around 900[sec]), the PFFD indicates “fault-free.”
This phenomenon is significant in the fourth case, where the signal-to-noise rate is
very low. Compared with the first and second cases, the time-to-detection in this case
is longer, the diagnosis is nonuniform, and a false alarm occurs.

Segmentation in changing mean model

The result of diagnosis of the segmentation in changing mean model is shown in Fig-
ure 3.9, where the DC level embedded in the white noise is 0, 0, 2, 4, 10, and 0 in
each 200 second period, as shown in sub-figure (a). The standard deviation of the
measurement noise is 1, as depicted by the blue curve in Figure 3.7, where the prior
probability of the DC level is depicted by the green curve in Figure 3.7.

The model runs in the particle filter follows Equation (3.1). Figure 3.9(a) shows the
DC signal, the measurement signal, and the estimated DC levels. Because the transi-
tion probability is designed in such a way that the estimation “sticky” to the previous
estimation, it takes some time for the estimation to adjust to a new DC level after the
DC level changes. The further the DC level is away from 0, the more precise and
accurate the estimation is; for instance, the DC level at 10 spans from 1000 sec to
1200 sec. This can also be seen in Figure 3.9(b), which indicates most of the particles
work in non-zero mean mode, thus providing a better estimation. Moreover, as per
the last example, the change of DC level is detected as long as the sample size of the
particles of the non-zero-mean mode exceeds the sample size of the particles of the
zero-mean mode. Figure 3.9(c) shows the time sequence of the posterior distributions.

3.6.2 Signal Drifting

The result of the diagnosis of signal drifting is shown in Figure 3.10. The signal in
drifting is shown in Figure 3.10(a) and two estimations of the signal from PF and a
noise driven KF, respectively. Their estimation error is also shown together. The esti-
mations of the drifting speed are shown in Figure 3.10(b), and the estimated posterior
distribution of the drifting speed is shown in Figure 3.10(d). The sequence of the
sample size is shown in 3.10(c).

The model runs in the particle filter follows Equation (3.18). There is no significant
difference between the signal tracking performance of the PF and KF in general. The
PF performs estimates the drifting speed better because it responses faster to drifting
speed changes, and the estimation is more stable in the stationary segments of the
drifting speed. The model used in the PF is Equation (3.18), hence in the time range

3Time-to -detect is defined as the time between a change or a failure happens and the it is detected.
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Figure 3.9: Segmentation in changing mean model.
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Figure 3.10: Detection and estimation of signal drifting.
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from 0 sec to 200 sec, when the sample size of the no-drifting mode dominates, the
estimation of the drifting speed is identically 0. The reason the dynamic of the PF
estimation is faster than the KF estimation is due to the fact that the prior density
p
(
d0
)

is set to be uniform distribution on
[
−1 1

]
. On the other hand, in the station

segments of the drifting speed, the PF estimation of the drifting speed exhibits less
variance than the KF estimation due to the fact that the variance of the driving noise
of the PF is less than the KF. So by separating the system into two modes, the PF can
switch between different dynamics.

Some small peeks around 0 can be observed in Figure 3.10(d) in the time range from
0 sec to 200 sec. These are due to the samples transferring from non-drifting mode to
drifting mode. The sample size indicates the drifting in the signal correctly, with the
exception of the c.a., 15 sec after the first change in drifting speed. This 15 sec delay
is die to the fact that it takes time for the particles to transfer from non-drifting mode
to drifting mode.

3.6.3 Missing Measurement

An illustrative example of a missing measurement is shown in Figure 3.11, where the
signal drifting model in Example 3.6.2 is used. However, instead of a uniform sampled
measurement series, the measurement in this case study is modelled as non-uniformly
sampled measurement, and may be lost from time to time. The measurement is per-
formed every 3, 4 or 5 seconds, and the three gaps can be observed in the figure.

The position and speed estimation of the particle filter is good in general, even when
the measurement is lost. This is due to the fact that the speed happens to be constant
when the position measurement is lost. However, the variance of the position and
speed estimation increases during the measurement missing as 1σ upper and lower
boundaries parts from each other, due to the lack of new information that can be used
to update the estimation. In this condition, only the system time update runs in each
time step, and system noise accumulates. This increases the variance of the estimation.

This phenomenon can be observed more clearly in Figure 3.12, where the measure-
ment in this case is non-uniformly sampled. The sampling time subjects to a uniform
distribution on

[
180 220

]
. After the sudden change of the speed, the estimation by

the particle filter cannot track the true state immediately, due to lack of measurement
(information). However, after about two measurements the particle filter adjusts itself
to the true state, and results in a relatively good estimation.

Comparing Figure 3.11 with 3.12, one can find that the variance of the position esti-
mation is lower when the update rate of the measurement is high, since it depends on
the information obtained from the observation. And thereby, the position estimation
in the first case is much smoother.

Figure 3.11 reveals a dramatic increase in the variance of the speed estimation after
the sudden change in speed; e.g., after 200 sec and 800 sec. This is because, as in
Example 3.6.2, the “speed” state in the particle filter may adopt a “jump” behaviour
instead of a continuous dynamic. Once, the “jump” occurs in the particle filter to
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boundaries of the position and speed estimation are shown as the curves 1σ and 1σ,
respectively.



Study Cases: Examples of Diagnosis
for Basic Anomalies 97

0 500 1000 1500
−50

0

50

100

150

time [sec] (a)

po
si

tio
n

 

 
pm
pe
p

0 500 1000 1500
−10

−5

0

5

10

time [sec] (b)

po
si

tio
n 

er
ro

r

 

 

pe

1σ
1σ

0 500 1000 1500
−3

−2

−1

0

1

2

3

time [sec] (c)

sp
ee

d 
[1

/s
ec

]

 

 
se
s

1σ
1σ

Figure 3.12: Simulation of handling missing measurement. The 1σ upper and lower
boundaries of the position and speed estimation are shown as the curves 1σ and 1σ,
respectively.
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Table 3.2: List of failure modes.

Failure mode GNSS 1 GNSS 2 HPR
Bias ∆GNSS,B -

Drifting ∆GNSS,D -
Outliers ∆GNSS1,O ∆GNSS2,O ∆HPR,O

capture the fast change of the speed, the variance of the estimation increases quite
rapidly.

3.7 Study Case: PF for Fault Diagnosis and Robust
Navigation of DP Vessels

3.7.1 Scenario

In industrial control systems, the typical failure modes in measurements are as follows:

bias - the measurement has a constant-like bias relative to the true signal;

drift - the measurement drifts off relative to the true signal, either by a stochastic
process or deterministically (ramp);

outliers - a sample from a measurement signal that lies abnormally far from the other
values; and

increased noise - the variance of the measurement noise increases.

For safety and reliability, sensor redundancy is often required in industry applications.
This involves the installation of multiple sensors to measure the same system output or
state. The fault diagnosis in this case should focus on monitoring and identifying the
conditions of sensors. In this case study, we continue with the PF-based wave filtering
problem described in Section 2.4.6; moreover, we assume that failures may occur in
the sensors. The PF will be designed to diagnose the faults in addition to performing
its original task of state estimation and filtering.

3.7.2 Analysis and Modelling of Failure Modes

Following the models of fault-free behaviours of GNSS and HPR described in (2.142),
the deviated models when GNSS or HPR are faulty are given in the following.

GNSS Faults

According to [Bhatti, 2007], 23 failure modes may occur in GNSS due to differ-
ent mechanisms. In PF-based fault diagnosis, the modelling of the failure modes
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is focused on the behaviour of the measurement from a GNSS perspective instead of
studying the mechanisms. This entails that the 23 failure modes of the GNSS can be
summarized into bias (named “range error” in [Bhatti, 2007]), drifting, and outliers.

GNSS Bias Several faults result from bias failure modes. The sizes of the bias
depend on the failure, and can range from a few meters to a few kilometres. For DP
operations, GNSS bias tens of meters in size can be critical, since they can be hard
to detect, and induce the risk of drive-off of the DP vessel. How the bias occurs in a
GNSS signal is not clear. It can be assumed that the process by which the bias occurs
in a GNSS signal adopts two ways: abrupt jump and drifting. Abrupt jump can be
modelled as

yGNSS,k = yk + vGNSS,k + bk, (3.46)

where pGNSS is the GNSS measurement, p is the position vector, k is the time index,
v is the measurement noise, and b is the bias term. The bias term b in the case of
abrupt jump performs as bk = 0, k < l, and bk = b0 6= 0, k ≥ l, where l is the time
instant when bias occurs. An abrupt jump in the GNSS signal of a DP vessel is highly
suspicious and can be detected with less difficulty. However, the drifting problem of
GNSS is more difficult to detect and more risky to DP operations.

GNSS Drifting [Bhatti, 2007] described GNSS drifting, the behaviour of the GNSS
signal when drifting occurs is not clarified. By judging the mechanisms of the failure
modes, it is reasonable to assume two kinds of drifting on the signal: deterministic
ramp and random increasing. In both cases, the drifting speed is also of importance.
A fast drift can be easier to detect. Hence, ramp-type drifting is modelled as

dk+1 =

 0 , k < l
dk + rd , k ≥ l |dk| < |dMAX|
dk , k ≥ l |dk| ≥ |dMAX|

(3.47)

yGNSS,k =yk + vk + dk, (3.48)

where rd is a constant representing the speed of drifting. While, for stochastic-
process-type drifting, a suitable prior distribution p(rd) of the speed of drifting can be
designed instead of using a constant drifting speed in the deterministic drifting case,
This should ensure that the drifting term d adopts a desired behaviour. However, a
constant can be seen as a random variable from a distribution given by Dirac delta
function, so that the models of these two types of drifting can be uniformly formu-
lated.

Outliers

For several reasons, such as the aging of the electric circuit and multipath, outliers in
the measurement are frequently encountered, and these manifest themselves as mea-
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Table 3.3: The Markov chain for the transition of combined modes of GNSS sensors
- ∆GNSS =

[
∆GNSS,B ∆GNSS,D

]>
δ(m)

∆GNSS,D 0 1 0

Prδ(m)δ(n) ∆GNSS,B 0 0 1

δ(n)

∆GNSS,D ∆GNSS,B - - - -

0 0 - 0.80 0.20 0.10

1 0 - 0.10 0.75 0.05

0 1 - 0.10 0.05 0.85

sured values that lie far away from others. Through assessing the appearance on the
measurement signal, the outliers are always modelled as a sample from a distribution
with much larger variance than the normal measurements. In our case, the outliers in
GNSS and HPR are modelled as

yGNSS,k = yk + vGNSS,O,k, (3.49)

and

yHPR,k = yk + vHPR,O,k, (3.50)

respectively. And conceptually, ‖Cov [v∗,O,k]‖ � ‖Cov [v∗,k]‖.

3.7.3 Particle Filter Design

In addition to the use of PF as a navigation filter, as described in Section 2.4.6, mode
transitions should be designed to allow the particles to run in abnormal modes to
accommodate sensor failures.

We assume that the GNSS bias and drifting are induced by external problems, such
as ionosphere changes; as such, all GNSS receivers suffer from the same fault at the
same time, and the faults in both GNSS sensors are of the same size. While the outliers
are generally due to internal problems relating to a sensor or multipath phenomenon,
the occurrences of the failure in each sensor are independent. The design of the mode
transition should take these features of the fault into account. For instance, the outliers
may occur as a combination of bias or drifting; however, bias and drifting cannot
happen at the same time. Hence, the mode transition Markov chain of the GNSS is
designed as Tables 3.3 and 3.4.

For the HPR sensor, we augment the state-space with a state representing the random
excursion term, such as the Equations (3.51h) and (3.51k), so that the HPR excursion
problem is not treated as a fault but estimated to be a state by the particle filter. Hence,
the HPR sensor has the only failure mode being the outliers. Its mode transition is as
pre the information presented in Table 3.5.
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Table 3.4: The Markov chain for the transition of the GNSS mode ∆GNSS,i,O

δ(m)

Prmn ∆GNSS,i,O 0 1

δ(n)

∆GNSS,i,O - - -

0 - 0.70 1.00

1 - 0.30 0.00

Table 3.5: The Markov chain for the transition of HPR mode ∆HPR,O

δ(m)

Prmn ∆HPR,O 0 1

δ(n)

∆HPR,O - - -

0 - 0.70 1.00

1 - 0.30 0.00

To sum up, the resulting model runs in the particle filter is shown in Equation (3.51),
where yk = ηk + Γξk is the vessel position as the superposition of vessel low-
and wave-frequency motion, C =

[
I2×2 02×1

]
is the measurement matrix, U([

−20 20
]2)

is a 2-dimensional uniform distribution on the square area
[
−20 20

]
×[

−20 20
]
, and so does U

([
−0.2 0.2

]2)
Some parts of this model, such as the be-

haviour of the sensors, depend on the system mode.

3.7.4 Simulation and Result

Three scenarios were employed to verify the performance of the PF-based fault tol-
erant navigation. In these simulations, the failures in the position reference sensors
are triggered at 250 sec. The three scenarios correspond to bias, drifting, and out-
lier failure modes respectively. The results are shown in Figures 3.13, 3.14, and 3.15
respectively. In each figure, the four axes in the left column denote the position mea-
surement and estimation, and the failure and the estimation of failure in each direction,
respectively. In the right column, the first axis shows the vessel position and the posi-
tion reference; the second axis shows the time history of the significant mode, which
is rounded from the marginal density in the third axis and is also the conclusion of the
mode estimation of the PF; the third axis is the marginal density in each system mode;
and the fourth axis shows the sample size in each system mode.

In Figure 3.13, both of the GNSS signals jumped to 8 m to the north and 9 m to the
west. As shown, the marginal density is dominated by the GNSS bias mode after
triggering the failure, which means the PF detects the failure immediately. The PF
also estimates the failure size precisely, as the estimated failure size is very similar
to the actual failure size. As depicted in the position and reference axis, the vessel
position follows the reference nicely, this means the vessel is able to maintain position
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p
(
ηk+1

)
= N

(
ηk + TsR (yk)

(
νk +R> (yk)νc,k

)
,Cov

[
wη,k

])
, (3.51a)

p (νk+1) = N
(
νk + TsM

−1 (−Dνk + τk) ,Cov
[
wν,k

])
, (3.51b)

p
(
νc,k+1

)
= N

(
νc,k − TsT−1

c νc,k,Cov
[
wc,k

])
, (3.51c)

p
(
ξk+1

)
= N

(
ξk + TsΩξk,Cov

[
Λwξ,kΛ

>
])
, (3.51d)

p
(
bGNSS,k+1

)
=


ρ (0) , ∆GNSS,B

k+1 = 0

U
([
−20 20

]2)
, ∆GNSS,B

k = 0 ∆GNSS,B
k+1 = 1

N
(
TsT

−1
b,GNSSbGNSS,k,Cov

[
wb,GNSS,k

])
, ∆GNSS,B

k = 1 ∆GNSS,B
k+1 = 1

,

(3.51e)

p
(
rGNSS,d,k+1

)
=


ρ (0) , ∆GNSS,D

k+1 = 0

U
([
−0.2 0.2

]2)
, ∆GNSS,D

k = 0 ∆GNSS,D
k+1 = 1

N
(
TsT

−1
r,GNSSrGNSS,d,k,Cov

[
wr,GNSS,k

])
, ∆GNSS,D

k = 1 ∆GNSS,D
k+1 = 1

,

(3.51f)

p
(
dGNSS,k+1

)
=

{
ρ (0) ,∆GNSS,D

k+1 = 0

ρ
(
TsdGNSS,k + rGNSS,d,k

)
,∆GNSS,D

k+1 = 1
, (3.51g)

p
(
bHPR,k+1

)
= N

(
TsT

−1
b,HPRbHPR,k,Cov

[
wb,HPR,k

])
, (3.51h)

p
(
yGNSS1,k

)
=

{
N
(
Cyk + dGNSS,k + bGNSS,k,Cov

[
vGNSS1,k

])
,∆GNSS1,O

k = 0

N
(
Cyk + dGNSS,k + bGNSS,k,Cov

[
vGNSS1,O,k

])
,∆GNSS1,O

k = 1
,

(3.51i)

p
(
yGNSS2,k

)
=

{
N
(
Cyk + dGNSS,k + bGNSS,k,Cov

[
vGNSS2,k

])
,∆GNSS2,O

k = 0

N
(
Cyk + dGNSS,k + bGNSS,k,Cov

[
vGNSS2,O,k

])
,∆GNSS2,O

k = 1
,

(3.51j)

p
(
yHPR,k

)
= N (Cyk + bHPR,Cov [vHPR]) , (3.51k)

p
(
ψgyro,k

)
=
[
0 0 1

]
yk + vgyro. (3.51l)

even when there is a bias failure in the GNSS sensors.

In Figure 3.14, both of the GNSS signals drift with the speed [0.15m/s,−0.1m/s] in
the N-E frame. This drifting speed is rather slow and, therefore, the failure is hard
to detect. The result shows that it takes about 22 s for the PF to detect the failure
where the vessel has drifted off course [3.3m, 2.2m]. After the failure is detected, the
size of the drift can be precisely estimated. Taking the estimation of the drift into the
vessel navigation, the vessel can follow the reference within a 5 m zone with some
oscillation. This is because, following the failure, the only effective position reference
is the HPR, which is less precise and offers low update frequency.

In Figure 3.15, the outliers are triggered on the sensor GNSS1. When the position
signal is an outlier, the marginal density of the GNSS outliers mode becomes high,
and the PF will reject the current measurement.
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Figure 3.13: The performance of PF base FDD for DP vessel with GPSS bias.

3.8 Conclusion

This chapter described the use of a PF-based algorithm for fault diagnosis that was
built on a switching mode hidden Markov model. Examples were given to illustrate
and validate the proposed algorithm. A PF-based DP system fault tolerant design was
also proposed. The simulation results confirmed that the performance of the fault
diagnosis was generally good and that the proposed algorithm provided robust and
efficient state estimation.



104 CHAPTER 3. FAULT DIAGNOSIS WITH PARTICLE FILTER

Figure 3.14: The performance of PF base FDD for DP vessel with GPSS drifting.
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Figure 3.15: The performance of PF base FDD for DP vessel with GPSS outliers.



106 CHAPTER 3. FAULT DIAGNOSIS WITH PARTICLE FILTER



Chapter 4

Application: Particle Filter for
Robust Navigation of
Underwater Robot

“ ‘From a drop of water,’ said the writer, ‘a logician could infer
the possibility of an Atlantic or a Niagara without having seen or heard
of one or the other. So all life is a great chain, the nature of which is
known whenever we are shown a single link of it. Like all other arts, the
Science of Deduction and Analysis is one which can only be acquired
by long and patient study nor is life long enough to allow any mortal to
attain the highest possible perfection in it. Before turning to those moral
and mental aspects of the matter which present the greatest difficulties,
let the enquirer begin by mastering more elementary problems. Let him,
on meeting a fellow-mortal, learn at a glance to distinguish the history
of the man, and the trade or profession to which he belongs. Puerile as
such an exercise may seem, it sharpens the faculties of observation, and
teaches one where to look and what to look for. By a man’s finger nails,
by his coat-sleeve, by his boot, by his trouser knees, by the callosities of
his forefinger and thumb, by his expression, by his shirt cuffs ’ ”

– Conan Doyle, “Study in Scarlet”.

4.1 Introduction

This chapter describes the validation of the particle filter-based fault diagnosis method
proposed in the last chapter through applying the method to the robust navigation
problem of an underwater robot, where 10 failure modes of sensors and thrusters
are considered. Closed-loop full-scale experimental results show that the proposed
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OF UNDERWATER ROBOT

Figure 4.1: ROV Minerva. Photo: Mauro Candeloro.

method is robust, can diagnose faults effectively, and can provide good state estima-
tion, even in cases where multiple faults occur.

The structure of this chapter is as follows. Firstly, Section 4.2 presents the model
of the ROV for the experiment, while its failure modes are analysed and modelled
in Section 4.3. The proposed PF-based FD method is employed to design an ROV
observer in Section 4.4, and finally the results from an ROV sea trial are presented in
Section 4.5.

4.2 ROV manoeuvring Model

4.2.1 The ROV Minerva

The ROV Minerva, as shown in Figure 4.1, is a SUB-fighter 7500 ROV that was
constructed by Sperre AS for NTNU in 2003. It is powered from, and communicates
with, a surface vessel through a 600 m umbilical cable. Minerva is usually deployed
from the NTNU research vessel RV Gunnerus, which is part of the NTNU AUR-Lab.
The specifications of the sensors and other instruments employed in the equipment are
provided in Table 4.1.

The thruster arrangement is shown in Figure 4.3. The starboard and port thrusters are
oriented 10◦ towards the centreline. The side thruster has two propellers, one at each
end, but it has the same power rating as the other thrusters – which in open water is
rated to 300–340N. All thrusters have fixed pitch propellers.

A Kongsberg HiPAP 500, which is a high precision hydroacoustic positioning refer-
ence (HPR) system, is used to measure the position of the ROV relative to the trans-
ducer on the surface vessel. NaviPac is an integrated navigation software that was
produced by EIVA. It outputs the position of the ROV in UTM coordinates based on
the measurements from the HiPAP, the GNSS, and the MRU of the surface vessel. A
Doppler velocity log (DVL) is installed to measure the ROV velocity in addition to an
Xsens MTi, which is used as an IMU. The depth is provided by the HPR and is also
measured by a pressure gauge. More details of the vehicle and its control system can
be found in [Dukan et al., 2011].
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Figure 4.2: ROV Minerva and the notations of its kinematics. Photo: Johanna Jarne-
gren.

Figure 4.3: Overview of thruster configuration (Drawing from: [Dukan et al., 2011]).
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Table 4.1: ROV Minerva specifications

Dimensions LWH: 144× 82× 81cm

Weight (air) 485kg

Payload ≈ 20kg

Max depth 700m

Thrusters Horizontal: 2× 2000W

Vertical: 2× 2000W

Lateral: 1× 2000W

Max speed Horizontal: 2.0knot

Vertical: 1.2knot

Lateral: 1.3knot

Turn rate: 60◦/s

Sensors 100bar pressure gauge

Xsens MTi

Kongsberg HiPAP 500

Teledyne RDI Workhorse Doppler velocity log

Table 4.2: Notations for ROV model.

DOF Force and mo-
ment

Linear and an-
gular velocities

Positions and
Euler angles

1 motion in x direction (surge) X u x

2 motion in y direction (sway) Y v y

3 motion in z direction (heave) Z w z

4 rotation about x axis (roll) K p φ

5 rotation about y axis (pitch) M q θ

6 rotation about z axis (yaw) N r ψ
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4.2.2 Kinematics

Adopting the notations of [Fossen, 2011], based on the SNAME1 formulation, the
kinematics are described by the degrees-of-freedom (DOFs) in Table 4.2 and the body-
fixed reference frame is shown in Figure 4.2. Since the ROV is designed to be passive
and stable in the roll and pitch DOFs, the dynamics in these DOFs are ignored (as-
suming the roll and pitch angles are zero). In this case, the kinematic model of the
ROV is given by the 4-DOF model

η̇ = R (ψ)ν, (4.1)

where η =
[
N E D ψ

]>
is the ROV position and heading in the NED (North-

East-Down) reference frame, ν =
[
u v w r

]>
is the body-fixed velocity and

yaw rate vector, and

R (ψ) =


cos (ψ) − sin (ψ) 0 0
sin (ψ) cos (ψ) 0 0

0 0 1 0
0 0 0 1

 (4.2)

is the rotation matrix which transforms a vector in the ROV body frame to the NED
frame.

4.2.3 Kinetics

According to [Fossen, 2011] and [Dukan et al., 2011], the motion of the ROV can be
described by the model

Mν̇ = −CRB (ν)ν −CA (νr)νr

−DNL (νr)νr −DLνr

−g (η) + τ +wν (4.3)
ν̇c = −T−1

c νc +wc, (4.4)

where M ∈ R4×4 is the combined rigid body and added mass matrix, CRB (ν) ∈
R4×4 is the rigid body Coriolis and centripetal matrix, CA (νr) ∈ R4×4 is the added
mass Coriolis and centripetal matrix, DNL (νr) ∈ R4×4 and DL ∈ R4×4 are the
nonlinear and linear hydrodynamic damping matrices, g (η) ∈ R4 is the restoring
force vector, τ =

[
X Y Z N

]>
is the control force and moment, and wν is

process noise. Moreover, νr = ν −
[
ν>c 0 0

]>
is the relative velocity vector

with respect to the ocean current. The current velocity νc ∈ R2 can be modelled as
the Markov process (4.4), in accordance with [Fossen, 2011], where T c ∈ R4×4 is
a diagonal matrix of positive time constants representing the dynamic of the current,
and wc ∈ R2 is process noise.

1 Society of Naval Architects and Marine Engineers.
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4.2.4 Thruster Control

The ROV motion is controlled by thrusters, for which the rotational speed must be set
and controlled. However, the speed control is unfortunately only open-loop due to the
lack of rotational speed sensors. In our FDPF design we include the thruster system
in the ROV model to account for faults in the thruster control system.

The thruster control described by [Dukan et al., 2011] should be briefly recalled. The
desired generalized force vector τ d must be allocated as a rotational speed for each
thruster. The thruster speed vector n is defined as

n =
[
nl nvp nvs np ns

]>
, (4.5)

where nl, nvp, nvs, np, ns are the rotational speed of the lateral, vertical port, vertical
starboard, port and starboard thrusters, respectively. As all thrusters are fixed, the
thrust vector can be written

τ = TKu, (4.6)

where T ∈ R4×5 is the thrust configuration matrix that depends only on thruster
position and orientation,K ∈ R5×5 is a diagonal gain matrix, and the control input is

u = [|nl|nl |nvp|nvp |nvs|nvs |np|np |ns|ns]
>
. (4.7)

The control input u = ud is found by taking the inverse of Equation (4.6), that is,

ud = K−1T †τ d, (4.8)

where T † = T>
(
TT>

)−1

is the pseudo inverse of T . This gives the actual applied
thrust input by the model

τ = TKu = TK
(
K−1T †τ d

)
, (4.9)

assuming the actual propeller speeds follow the commanded speeds exactly. Obvi-
ously, this introduces some uncertainty into the model, including a small time delay
between τ d and τ due to thruster dynamics.

4.2.5 Sensor Model

Hydroacoustic position reference (HPR) system

The HPR system determines the position of an underwater target by using acoustic
sound waves in the water to measure its distance and direction. It follows that the
measurement is obtained originally in spherical coordinates and then transformed to
Cartesian coordinates. Hence, the position measurement in each Cartesian direction
is correlated.

The HPR suffers from various error sources, such as ray bending, orientation change
of the transducer, and variation of sound velocity in the water column. As such, it is



ROV manoeuvring Model 113

difficult to analyse the behaviour of the HPR due to its time-varying nature. In this
design, the HPR measurement was considered to be a vector with the North and East
positions, whose covariance is time varying, and the covariance of the measurement
noise was estimated recursively from historical data. Note that since the pressure
gauge depth sensor provides more reliable measurements than the HPR measurement
in depth, the depth component in the HPR measurement was not used. Let pA,i =

[NA,i EA,i]
> denote the ROV position at instant i, p̄A is the moving window average

of pA, and p̃A = pA − p̄A is the error vector. The estimate of the covariance ΣA is
correspondingly

ΣA,k =
1

N + 1

k∑
i=k−N

(
p̃A,i(p̃A,i)

>)
=

N

N + 1

(
ΣA,k−1 +

1

N

(
p̃A,k

) (
p̃A,k

)>)
, (4.10)

where N is the tunable time window length. The HPR measurement pA is then sub-
jected to a multivariate Gaussian distribution with a time-varying covariance,

p
(
pA,k |ηk

)
= N

([
I2×2 02×2

]
ηk,ΣA,k

)
, (4.11)

where N denotes the Gaussian distribution function.

Doppler velocity log (DVL)

The DVL measures the velocity of the ROV in 3D space with respect to the water
or with respect to the seabed. We adopt the latter setup in this design and use only
the two horizontal components in its measurement. The DVL measurement is first
decomposed in the “instrument frame” of the DVL, and it is then transformed into the
ROV body frame according to

vD = RROV
DVL

(
vDVL

D + rbROV
DVL

)
, (4.12)

where vDVL
D is the velocity measurement vector in the DVL instrument frame,RROV

DVL

is the constant rotation matrix from the DVL instrument frame to the ROV body frame,
bROV

DVL is the offset between the origins of the two frames expressed in ROV body
frame, and vD is the resulting velocity measurement of the ROV in its body frame.
Because this offset correction requires the yaw rate r of the ROV, it can potentially
be the source of a common mode failure. However, as the offset is small and the
yaw rate is generally low, we choose to neglect the noise and uncertainty involved in
this transformation and express the DVL measurement simply as vD =

[
uD vD

]>
;

that is, the velocities along the x and y axes of the ROV body frame. Assuming the
DVL measurement noise in each direction are independent identically normally dis-
tributed, the DVL velocity measurement vD,k can be seen as a multivariate normally
distributed random vector with expectation

[
I2×2 02×2

]
νk, and covariance matrix

σ2
DI , where σ2

D is the variance of the DVL measurement noise vector. This gives the
resulting DVL measurement vD,k expressed as

p (vD,k |νk ) = N
([
I2×2 02×2

]
νk,σ

2
DI
)
. (4.13)
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η̇ =R (ψ)ν (4.16a)

Mν̇ =−CRB (ν)ν −CA (νr)νr

−DNL (νr)νr −DLν

− g (η) + TK
(
K−1T †τd

)
+wν (4.16b)

ν̇c =− T−1
c νc +wc, (4.16c)

p
(
pA,k |ηk

)
=N

(
[I2×2 02×2]ηk,ΣA,k

)
(4.16d)

p
(
vD,k |νk

)
=N

(
[I2×2 02×2]νk,σ

2
DI
)
. (4.16e)

p
(
DP,k |ηk

)
=N

([
0 0 1 0

]
ηk, σ

2
P

)
. (4.16f)

ψM =
[
0 0 0 1

]
η (4.16g)

Inertial measurement unit (IMU) as heading sensor

The Xsens MTi is used as an IMU, which provides measurements from three-axis rate
gyros, accelerometers and magnetometers. The heading ψ and yaw rate r of the ROV
were estimated by the nonlinear complementary filter by [Mahony et al., 2008], and
further examined by [Fossen, 2011]. This estimation is accurate and reliable; as such,
the dynamic of the estimation error can be ignored and a basic assumption is made
that the heading of the ROV is directly obtained as

ψM =
[
0 0 0 1

]
η. (4.14)

Depth sensor

The pressure gauge depth sensor is reliable and accurate, and it is modeled as

p (DP,k |ηk ) = N
([

0 0 1 0
]
ηk, σ

2
P

)
, (4.15)

where DP is the measured depth from the pressure gauge, and σ2
P is the variance of

the measurement noise.

4.2.6 Resulting ROV Model

Collecting the ROV kinematics (4.1), kinetics (4.3), thruster control (4.9), current
(4.4), and the measurements (4.11), (4.13), (4.15) and (4.14), we obtain the ROV
model (4.16).

This model can be discretized and transformed into an HMM according to

p (xk+1 |xk, τ d,k ) = f (xk, τ d,k) (4.17)
p (yk |xk ) = h (xk) . (4.18)
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Figure 4.4: A segment of the HPR measurement and its update interval, with the
measurement index along the horizontal axis, when the ROV was performing slow
manoeuvres and station keeping.

where x =
[
η ν νc

]> ∈ R11, y =
[
pA vD DP ψM

]
∈ R7, and f (·) and

h (·) are the mappings corresponding to (4.16).

4.3 Anomaly Analysis

When a system suffers from faults, its behaviour will differ from its fault-free con-
dition. Besides faults, anomalies, such as sensor dropouts and outliers, also lead to
deviation from the fault-free behaviour. The phenomena that causes abnormal be-
haviours are referred to anomalies. This section discusses the anomalies observed
in the ROV sea trials. We will model the concluded anomalies from this analysis as
faults, which then becomes the failure modes in the switching mode HMM (4.2.6).

4.3.1 Mode ∆HPR,1 – HPR dropout

The HPR measurement model provided in (4.16d) is valid when the ROV is in shallow
water in witch the HPR holds a nearly constant update rate. It is known that the HPR
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Figure 4.5: Termwise differences of the HPR measurements. A few extremely large
differences that were out of the axis range were ignored.

update rate depends on the slant range between the transponder and the transducer.
As such, when the ROV dives down to deeper water the HPR update rate becomes
nonuniform and lower than the nominal rate. This phenomenon was observed in the
ROV sea trials as shown in Figure 4.4. When the ROV depth was operating around
80m, the HPR update intervals were larger than 2 seconds in general and, in some
extreme cases, it reached 18 seconds. This update rate is too low for a high-precision
ROV positioning control system and will significantly reduce the responsiveness of
the system if these measurement are used directly. Hence, the navigation observer
should accommodate the nonuniform update rate of the HPR and output a reliable
data stream of the position estimate even when the HPR measurement drops out for
tens of seconds. The HPR dropouts are modelled as

p
(
pA,k |xk

)
= N

([
0 0

]>
, σ2

A,dI
)
. (4.19)

where σA,d is assigned to a very large positive number that represents the fact that the
current measurement is uninformative.

4.3.2 Mode ∆HPR,2 – HPR Measurement Outliers

Figure 4.4 shows that the HPR measurement exhibits outliers. This becomes more
visible in the scatter plot in Figure 4.5, which shows the termwise differences of the
HPR measurement series of Figure 4.4. Since the velocity of the ROV is low, the
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termwise differences should be close to zero when the system is fault-free. Hence,
the HPR measurements with large termwise differences from their successors are sus-
pected (the time interval between two measurements should also be taken into ac-
count) outliers. In [Gustafsson, 2001], the outliers are seen as samples from another
process whose noise variance is significantly greater than the one in the normal case,
motivating the distribution

p
(
pA,k |xk

)
= N

([
I2×2 02×2

]
xk, σ

2
A,oI

)
, (4.20)

where σ2
A,oI is the covariance of the outlier distribution, conceptually chosen as∥∥σ2

A,oI
∥∥� ‖ΣA‖.

4.3.3 Mode ∆DVL,1 – DVL Dropout

When the DVL loses sea bottom tracking, it reports a sentinel maximum velocity that
indicates a lost velocity measurement. Along the same lines as the HPR dropout, the
DVL dropout is modelled as

p (vD,k |νk ) = N
([

0 0
]>
,σ2

D,dI
)
. (4.21)

4.3.4 DVL Bias

As described in the model of the DVL, the velocity measurement is conducted in the
instrument frame and then transformed to the body frame, using the lever arm between
the body and instrument frame and the corresponding orientation of the instrument
frame. An alignment error of the instrument frame, that is, a deviation between the
actual (installed) orientation and the configured orientation of the frame, and an error
in the lever arm will cause a bearing and offset error of the measured velocity with
respect to the actual velocity of the ROV, where the size of this error depends also on
the ROV velocity. This problem has been observed in sea trials and should be included
as an anomaly of the DVL. Since this error is unknown and time varying, a 1st-order
Markov process can be used to model a DVL bias, that is

ḃDVL = −T−1
DVLbDVL +wDVL, (4.22)

where bDVL ∈ R2 is the resulting bias of the DVL measurement, TDVL is a 2 × 2
diagonal time constant matrix, and wDVL ∈ R2 is the driving noise of this process. It
follows that the DVL measurement is biased from the ROV velocity according to

p (vD,k |νk, bDVL ) = N
([
I2×2 02×2

]
νk + bDVL,σ

2
DI
)
. (4.23)

4.3.5 Modes ∆THR,t,1 and ∆THR,t,2 – Insufficient Thrust and Zero
Thrust

Thruster faults can have severe consequence on the ROV positioning control system,
and relevant designs have been reported to prevent these; for example, the EKF-based
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thruster fault detection in [Alessandri et al., 1999] and the fault accommodation design
in [Omerdic and Roberts, 2004].

As described in Section 4.2.4, the ROV Minerva is installed with speed-commanded
thrusters. Unfortunately, the speeds of the thrusters are not measured, and the pro-
pellers are therefore controlled in open-loop, implying an unknown error between the
commanded and actual speeds of the thrusters. However, such thruster anomalies can
be categorized into the following list of failure modes (Note: A more comprehensive
description can be found in [Antonelli, 2003]):

1. The actual speed is slightly lower than the commanded speed, e.g. due to an
aging problem of a propeller. Such a failure mode is typically small in size and
can be very hard to detect by fault diagnosis. However, it can easily be handled
by a robust controller, which alleviates this task from the FD design.

2. The actual speed is much lower than the commanded value, e.g. due to the pro-
peller operations being restricted by seaweed or other objects. In this condition,
the thrust loss becomes severe. This failure mode can be referred to as insuffi-
cient thrust, and assigned mode ∆THR,t,1 where t ∈ {l, vp, vs,p, s} is the index
of thrusters.

3. The actual speed is zero; e.g., due to an object blocking the propeller, loss of
power supply, or the fuse breaking. This is the most severe case. This failure
mode is labelled zero thrust, assigned mode ∆THR,t,2.

We augment the state space with the vector
[
al,k avp,k avs,k ap,k as,k

]
∈ [0, 1]

5

to model the thrust loss according to these failure modes. This will represent the
ratio between the desired control input ud,k ∈ R5×1 and the actual control input
uk ∈ R5×1, using uk = diag {αk}ud,k. It follows that for the fault-free case all
entries of αk are 1, for insufficient thrust one or more entries of αk are between 0
and 1, and for zero thrust one or more entries of αk are zero. Inserting this into the
thruster model yields

τ = TKu

= TKdiag {αk}
(
K−1T †τ d

)
= Tdiag {αk}T †τ d. (4.24)

4.3.6 Simultaneous Faults

The system model will transform to a combination of the corresponding models when
faults happen simultaneously. Since there are 14 different failure modes modelled
in the system, there may be be 214 combinations of failure modes (including single
fault cases and the fault-free case). However, some failure modes exclude others for
the same equipment. For instance, the HPR can experience a fault-free, dropout, or
outlier condition at any point in time. Hence, a particle in the filter representing the
system mode of the HPR needs to have three states as opposed to 23 states. As a
result, considering the exclusiveness among the failure modes, there can be a maxi-
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Table 4.3: The Markov chain for the transition of modes ∆HPR,1 and ∆HPR,2.

δ(m)

∆HPR,1 0 1 0

pδ(m)δ(n) ∆HPR,2 0 0 1

∆HPR,1 ∆HPR,2 - - - -

0 0 - 0.75 0.75 0.75

δ(n) 1 0 - N/A N/A N/A

0 1 - 0.25 0.25 0.25

mum of 3 (HPR)×3 (DVL)×35 (Thrusters) = 2187 combinations of failure modes
(including single fault cases and the fault-free case).

4.4 Navigation System Design

4.4.1 Separating the Heave and Yaw DOFs

Work by [Fossen, 2011] indicated that, for the ROV kinematic equation (4.16a) and
kinetic equation (4.16b), the heave DOF is not coupled with the other three DOFs.
Hence, the heave DOF is separately controlled and observed, and a KF is designed
for this purpose. On the other hand, the faults of MTi have never been encountered
in previous ROV sea trails; as such, they are not considered in this navigation design.
And as mentioned, the heading of the ROV is estimated and used as an input to the
particle filter.

4.4.2 Mode Transitions

Since the failure modes discussed in Section 4.3 are induced by different mechanisms,
it is reasonable to assume that they are independent from each other. Hence, the mode
transition Markov chain can also be designed independently for each equipment and
then assembled. Table 4.3 shows the mode transition probabilities for the HPR failure
modes, using

Pr

([
∆HPR,1
k+1 ∆HPR,2

k+1

]>
= δ(n)

∣∣∣[∆HPR,1
k ∆HPR,2

k

]>
= δ(m)

)
= pδ(m)δ(n) .

(4.25)
The transition probabilities for

[
∆HPR,1 ∆HPR,2

]
= [1 0] are not considered in this

Markov chain since the system adopts the HPR dropout mode whenever the HPR
measurement is not available in the last sampling interval. The probability of the HPR
measurement being an outlier is set to 0.25, which is much higher than the rate of
outliers in the experimental data; however, this probability is selected to balance the
detectability and fault alarm rate.



120
CHAPTER 4. APPLICATION: PARTICLE FILTER FOR ROBUST NAVIGATION

OF UNDERWATER ROBOT

Table 4.4: The Markov chain for the transition of modes ∆THR,t,1 and ∆THR,t,2,
t ∈ {l, vp, vs,p, s}.

δ(m)

∆THR,t,1 0 1 0

pδ(m)δ(n) ∆THR,t,2 0 0 1

∆THR,t,1 ∆THR,t,2 - - - -

0 0 - 0.4 0.4 0.4

δ(n) 1 0 - 0.4 0.4 0.4

0 1 - 0.2 0.2 0.2

For the DVL failure modes - ∆DVL,1 and ∆DVL,2, the DVL dropout is handled in the
same way as the HPR dropout; that is, the DVL measurement adopts (4.21) when-
ever its measurement is not available, while the DVL bias has been modelled as an
additional state of the system. Hence, there is no probabilistic mode switching for the
DVL.

The mode transition probabilities for the thruster modes are given in Table 4.4, using

Pr

([
∆HPR,1
k+1 ∆HPR,2

k+1

]>
= δ(n)

∣∣∣[∆HPR,1
k ∆HPR,2

k

]>
= δ(m)

)
= pδ(m)δ(n) .

(4.26)
The total mode transition Markov chain is then obtained by combining the two Markov
chains (4.25) and (4.26), assuming they are independent.

4.4.3 Switching Mode HMM for the ROV

The system mode vector is first constructed

∆ =
[
∆HPR,1 ∆HPR,2 ∆DVL,1 ∆THR,1 ∆THR,2

]>
, (4.27)

where ∆THR,1 and ∆THR,2 are vectors consisting of three components representing
the condition of the three horizontal thrusters. The mode transition Markov chain
subjects to the combination of Equations (4.25) and (4.26), that is,

Pr
(
∆k+1 = δj

∣∣∆k+1 = δi
)

= pij . (4.28)

Augmenting the DVL bias state (4.22), (4.23) and the model of the thruster failure
modes into (4.16), yields the overall model (4.29), where ρ (·) is the Dirac delta func-
tion.

By separating heave DOF from the model, and using the heading estimation ψM,k

from the nonlinear complementary filter as input to the particle filter, the model (4.29)
can then be shrunk and discretized as the switching mode HMM

p (xk+1 |xk, ψM,k, τ d,k, δk ) = f∗ (xk, ψM,k, τ d,k, δk) (4.30)
p (yk |xk, δk ) = h∗ (xk, δk) . (4.31)
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η̇ =R (ψ)ν (4.29a)

Mν̇ =−CRB (ν)ν −CA (νr)νr −DNL (νr)νr −DLν

− g (η) + Tdiag {αk}
(
T †τd

)
+wν (4.29b)

ν̇c =− T−1
c νc +wc, (4.29c)

ḃDVL =− T−1
bDVL

bDVL +wbDVL
(4.29d)

p
(
at,k

)
=


ρ
(
at,k − 1

)
,
[
∆THR,t,1 ∆THR,t,2

]
=
[
0 0

]
U (0, 1) ,

[
∆THR,t,1 ∆THR,t,2

]
=
[
1 0

]
, t ∈ {l, p, s} .

ρ
(
at,k

)
,
[
∆THR,t,1 ∆THR,t,2

]
=
[
0 1

] (4.29e)

p (pA |η ) =


N
([
I 0

]
η,ΣA

)
,
[
∆HPR,1 ∆HPR,2

]
=
[
0 0

]
N
([

0 0
]>

, σ2
A,dI

)
,
[
∆HPR,1 ∆HPR,2

]
=
[
1 0

]
N
([
I 0

]
η, σ2

A,oI
)

,
[
∆HPR,1 ∆HPR,2

]
=
[
0 1

] (4.29f)

p (vD |ν ) =

{
N
([
I 0

]
ν + bDVL, σ

2
DI
)

,∆DVL,1 = 0

N
([

0 0
]>

, σ2
D,dI

)
,∆DVL,1 = 1

(4.29g)

p
(
ψM,k |ηk

)
=ρ
(
ψM,k −

[
0 0 0 1

]
ηk
)
, (4.29h)

where x =
[
pk vk vc,k bDVL,k

]
, y =

[
pA,k vD,k

]
, and f∗ (·) and h∗ (·) are

the mappings corresponding to (4.29).

4.5 Full-scale Test Campaign

The full-scale test was performed on October 17-18, 2012, in Trondheimsfjord, Trond-
heim, Norway. The test focused on the performance of the proposed FDPF-based nav-
igation filter in terms of real environment disturbance, real sensor measurement, and
its cooperation with the ROV control system and the ROV itself.

4.5.1 Setup

System structure

The FDPF-based navigation filter is deployed in the control system of the ROV Min-
erva. The architecture of the ROV control system was described in [Dukan et al., 2011]
and is depicted in Figure 4.6. Referring to this figure, the control system is realized
in the cRIO digital controller by National Instruments and the Host PC located in the
ROV control center onboard the RV Gunnerus, with communication of command and
feedback signals through an umbilical connection. The user interface control panel
that runs on the Host PC, which is connected to the controller through Ethernet, is
used to command and monitor the ROV. Besides the FDPF-based navigation filter,
a Kalman-filter-based navigation filter ([Dukan et al., 2011]), runs in parallel, but in
open-loop, as comparison.
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Figure 4.7: ROV control system architecture: Block diagram of the control system.
Note that the functionality has been implemented to trigger the thruster and sensors
failure modes to ensure that the failure testing more predictable and practical.

Triggering faults

Functionality has been implemented to manually set the relevant thruster and sensor
failure modes, as per Figure 4.7, and the list is as following:

• HPR outliers: A random number is added to the current HPR measurement,
taken from a 2-dimensional multivariate normal distribution with zero mean
and tunable variance.
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Table 4.5: Particle filter parameters in the experiment

Parameter Value

Item notation unit

System noise - velocity wv [m/s] ∼ N (0, 0.002I)

Time constant - current T c [s] 0.01I

Driving noise - current wc [m/s] ∼ N (0, 0.01I)

Time constant - DVL bias T bDVL
[s] 0.01I

Driving noise - DVL bias wbDVL
[m/s] ∼ N (0, 0.01I)

Measurement noise variance - DVL σD

[
m2/s2

]
(0.02)2

Measurement noise covariance - HPR2 ΣA

[
m2
]

(0.2I)2

Measurement noise covariance - HPR outliers ΣA,o

[
m2
]

(3I)2

• HPR dropout: Short-term (e.g., less than 10 sec) dropout of the HPR happens
frequently in normal operation. Long-term dropout is triggered such that the
HPR measurement is frozen to the last value.
• DVL dropout: The DVL measurement is frozen to the last value.
• DVL bias: A tunable constant bias is added to the DVL measurement.
• Loss of thrust: The thruster failure modes are activated by setting the gain αk

in uk = diag {αk}ud,k.

Parameters

In the test trial 200 particles were used in the PF. The mode transition Markov chain
probabilities are shown in Tables 4.3 and 4.4. Other parameters were set according to
Table 4.5.

4.5.2 Discussion of the Results

Figures 4.8 to 4.19 show the results from the ROV sea trial according to the notations
listed in Table 4.6.

Basic Navigation

The output from the use of the FDPF for state estimation of the ROV are shown in
Figures 4.8 and 4.9. In this test the ROV was controlled to move counter-clockwise
along a triangular path in three straight-line segments, with heading along the path.
As can be observed, the HPR measurement suffered from outliers, and its update rate

2In some experiment cases, the covariance of the HPR measurements noise ΣA is set to this constant
instead on update online though Equation 4.10.



124
CHAPTER 4. APPLICATION: PARTICLE FILTER FOR ROBUST NAVIGATION

OF UNDERWATER ROBOT

Table 4.6: Notations in the experimental results figures

Notation Meaning

N, E North and East position.

u, v Surge and sway velocity.

subscript �e FDPF estimate.

subscript �d Desired position/velocity from the guidance system.

subscript �o Measurement without triggered failure modes.

subscript �off Estimation from the sector heading KF in open-loop [Dukan et al., 2011]).

1σ̄ 1σ upper bound of the FDPF estimate.

1σ 1σ lower bound of the FDPF estimate.

is much lower than the sampling frequency of the control system. However, the state
estimate produced by the FDPF was generally good, which verifies its effectiveness as
a state observer exposed to a non-uniform measurement update rate and measurement
outliers. The state estimation performance of the particle filter was similar to the
Kalman filter, but a small high-frequency oscillation was observed due to tuning.

Outliers

The state estimation will be affected if the outliers in the measurements are not de-
tected and handled. For instance, an outlier was triggered, as shown in Figure 4.10
and detected by the FDPF. Hence, the FDPF state estimate was not affected, while the
estimate of the open-loop KF was displaced. Outliers of different sizes were triggered
during an ROV position-keeping test trial, and the statistics of the outlier detection
were calculated as presented in Figure 4.12. Obviously, the detection rate increased
as the size of the outliers became larger. The smaller sized outliers, on the other hand,
exhibited a lower detection rate. This is mainly due to the long update interval of the
HPR, which resulted in increasing uncertainty of the actual ROV position and less
possibility of distinguishing small outliers from the measurement. This phenomenon
can be more explicitly observed in Figure 4.13, making it clear that a small outlier in
the measurement 2m in size, for example, can not be distinguished from a fault-free
measurement.

Figure 4.11 shows a typical response of outlier detection during an ROV position-
keeping experiment. The FDPF detected the majority of the large-sized outliers but
struggled to detect the smaller ones, especially when the outlier was slightly larger but
close to the 1σ boundary.

HPR dropout

Figure 4.13 shows the performance of the FDPF when the HPR dropped out for about
30 sec while the ROV was moving straight in an eastern direction. As previously
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Figure 4.8: Basic state estimation results when the ROV followed a triangular path
with heading along the path. No faults occurred during this test. Note that the outliers
seen in the position measurement were detected and handled by the FDPF.

discussed, the HPR dropout does not have to be diagnosed, since it is handled within
the non-uniform sampling interval mechanism, even for such a long interval. All
the while, the FDPF outputs a steady stream of position estimates. In state-of-the-
art observers, this is typically achieved by entering a “dead-reckoning” mode, see
[Sørensen, 2012], such that the position is estimated open-loop based on the thrust
force and, possibly, velocity measurement. When the position measurement drops out
for the ROV here, the variance of the estimation cannot be reduced by new position
information and the uncertainty of the estimation grows due to system noise. This is
observed by by the increasing distance between the upper and lower 1σ bounds. The
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Figure 4.9: 2D plot of the position measurement PF estimate.

estimated position during the dropout is shown to be close to the original fault-free
measurement, and this confirms the good “dead-reckoning” capability of the FDPF.

DVL dropout

When the DVL drops out, the state estimation is based on the thrust force command
and the HPR measurement. The performance of the FDPF is for this case presented
in Figure 4.14. The output shows that the estimated velocity was satisfactorily close
to the original fault-free measured velocity during the DVL dropout. Similar to the
HPR dropout case, the variance of the velocity estimation started to increase during
the DVL dropout. However, this increase only lasted for approximately three seconds,
at which point it seemed to settle at a stationary value. This can be explained by the
Bayesian properties of the PF, in that the particles with estimated velocity that are sig-
nificantly different from the actual velocity will not be supported by the observations
since these will also yield a large difference between the estimated position and the
measured position. This is a back propagation of information principle for the PF.

DVL bias

In the sea trial, a DVL bias was triggered in the ROV surge direction while the ROV
was in position-keeping operation. The bias was first increased slowly in steps before
being decreased back to 0. The corresponding experimental responses are shown in
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Figure 4.10: Comparison of the position estimates by the PF and KF after triggering
an outlier in the position measurement. The size of the outlier was about 7 meters.

Figure 4.15 and in more detail in Figure 4.16. The bias estimate is close to the value
of the manually triggered failure mode, especially if taking the variances of the DVL
measurement noise and the system noise into account. This indicates that the DVL
bias was well diagnosed by the proposed algorithm.

Insufficient thrust and zero thrust

The reduced-thrust failure mode was tested by decreasing the thrust from the two
surge-directed thrusters to a certain percentage, as shown in the third graph in Figure
4.17, in such a way as to avoid the ROV from spinning in a potentially dangerous
manner. The estimation and detection results from the test are shown in Figure 4.17,
in which the responses of the offline KF are also compared. This illustrates the effect
of using a faulty control input to a “nominal” state observer where, in this case, the KF
estimates rapidly diverged from the true state when the failure modes were triggered,
even with fault-free position and velocity sensors. The use of the FDPF, which is
designed to detect and handle such cases, resulted in good state estimates during these
failure modes, confirming the robustness of the proposed navigation algorithm.

Investigating the detection result in the fourth graph in Figure 4.17 during the (middle)
position-keeping period of this test, shows that there were many false detections. The
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Figure 4.11: Position estimation and outliers detection result by the PF, when the
ROV was performing position keeping. The third plot shows the time serial of fault
triggering and detection.

reasons for this, when performing position-keeping or low speed manoeuvring, is the
small utilized thrust forces that result in an insignificant difference between the fault-
free condition and the insufficient/zero thrust failure mode. Hence, it becomes difficult
to correctly detect these thrust failure modes in such operations; although the effect of
such false detections on the control performance is negligible.

The FDPF failed to provide a distinct detection of the failure modes when the reduced
thrust was triggered. The detection was only manifested in that the zero thrust and
insufficient thrust modes seemed to appear more frequently than the fault-free condi-
tions. However, the last graph of Figure 4.17 shows the time cumulations of the zero
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Figure 4.12: Detection success of the outliers classified by their size (offset from the
original true measurement).

thrust and insufficient thrust modes, which are adjusted by regression constants to en-
sure they stay close to zero during, for example, the ROV position-keeping period.
During the fault, on the other hand, it obviously increased. Thresholding methods can
be applied to these cumulations to give a more correct detection result.

Multiple failure modes

Two combinations of multiple failure modes were tested. Figure 4.18 shows the state
estimation when the DVL drops out during a period of HPR dropout. When both the
HPR and DVL are lost, the FDPF estimates the states only based on the command to
the thrusters. At the end of the 30 sec HPR dropout interval, the position estimate had
deviated approximately 1 m from the measurement, while the velocity estimate was
generally good. The variance of the velocity estimation increased rapidly when both
sensors were lost, since no new information to update the filter was received.

The other multiple failure mode test assessed the system response to HPR outliers
during a DVL dropout period, and the results are shown in Figure 4.19. When HPR
outliers occur during a DVL dropout, the variance of the position estimate becomes
large, and this makes detection of outliers increasingly difficult. The results were con-
sistent with the results from the single failure HPR outliers case in that the majority
of large-sized outliers were detected well but smaller outliers were detected less effi-
ciently. However, the position and velocity estimation was, again, generally good. In
this case, one should also notice that the variance of the velocity estimation did not
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Figure 4.13: Position and velocity measurements and state estimate responses dur-
ing sensor dropouts when the ROV was moving straight forward: Responses when
triggering HPR dropout.
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Figure 4.14: Position and velocity measurements and state estimate responses dur-
ing sensor dropouts when the ROV was moving straight forward: Responses when
triggering DVL dropout.
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Figure 4.15: The triggered DVL bias and its estimate.

increase as much as in the previous multiple failure case (but more than the fault-free
case) since the information from the HPR was backward propagated to the velocity
estimation through the system model.

4.6 Conclusion

In this chapter, the proposed particle filter-based algorithm was applied for fault di-
agnosis (FDPF) to robustify the navigation of an ROV, in which case the navigation
sensors and thrusters are vulnerable and fault diagnosis is essential. The design was
tested in a full-scale ROV sea trial. The design process and test responses have been
presented and discussed in detail in this paper. The experimental results confirmed
that the performance of the fault diagnosis was generally good and that the proposed
algorithm provided robust and efficient state estimation for the ROV under different
combinations of failure modes, signal artefacts and disturbances.
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Figure 4.16: Measured and estimated position and velocity with DVL bias, where the
last graph shows the triggered DVL bias and its estimate.
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Figure 4.17: The first two graphs show the measured and estimated position and ve-
locity during an insufficient thrust failure modes, the third graph shows the size of the
triggered failure modes, the fourth graph shows the detection result, and the last graph
shows the cumulative system mode.
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Figure 4.18: Test results for simultaneous HPR and DVL dropout.
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Figure 4.19: Test results for simultaneous HPR outliers during DVL dropout.



Chapter 5

Conclusion and Future Work

This thesis studied the possibility of using a particle filter as a failure observer to detect
and diagnose failures in nonlinear systems. The paper briefly reviewed existing filter-
ing technology and introduced the particle filter. Then the particle filter was studied
and extensively employed in fault detection and diagnosis (FDD) on a mode-switching
hidden Markov model (HMM). The system mode was used to denote the status of the
system: fault-free or in a predefined failure mode. Following this, the FDD problem
was transformed into an estimation problem. The outputs revealed system failures can
be detected as long as the system mode and system states are correctly estimated.

The PF-based FDD method is practical. Two applications of this method were re-
viewed in detail. In the case of PF-based DP fault tolerant navigation, the PF-based
navigation effectively detected and tolerated the common failure modes of the DP
position reference sensors. At the same time, the wave filtering performance of the
PF-based navigation was better than the conventional method.

The PF-based ROV robust navigation approach takes into consideration the whole
ROV, from the actuator to the sensors. The experiment showed that the PF-based
navigation scheme is capable of detecting and diagnosing the failure modes of the
position and velocity measurements, and the failures in the thrusters of the ROV.

The main advantage of the PF-based FDD is its flexibility. Since PF-based FDD
copes with switching mode HMM, which is very general, we can inherit most of the
modelling experience from the previous work, and simply transfer it into a switching
mode HMM. In addition, because of the flexibility of the system, the modification
work is not significant when the system design changes. For examples, if a new sensor
is added to the system under consideration, only the measurement mapping and the
mode transition Markov chain need augmenting, and the whole FDD scheme does not
need to be redesigned.

Another feature of the PF-based FDD is that it synthesizes fault detection and diag-
nosis tasks into a single process. As previously pointed out, FDD is performed by
estimating the system mode and states.
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Sensor fusion is a common problem that should be taken into consideration when
performing FDD. In this thesis, in the DP navigation study case, the fusion of three
position reference sensors was considered; in the ROV navigation study case, fusion
of position and velocity sensor was considered. Moreover, the results indicated that
there is significant potential to fuse a larger amount of sensors with PF. It is easy and
favourable to use PF to handle the sensor fusion problem.

Two issues need to be resolved to make better use of this method:

1. The probabilities in system mode transition Markov Chain (3.5) need proper
tuning. It has been observed in simulations that these probabilities affect the
sensitivity of the PF-based FDD. That is, when the probability that a system
will transfer from fault-free mode to a failure mode is low, the PF is insensitive
to the failure mode. This may lead to misdetection, especially when the failure
mode occurs isolated in time, as is the case with outliers. On the other hand,
when the transition probability from the fault-free mode to a failure mode is
high, the PF may be over sensitive to the failure mode. This can result in a
misdiagnosis or sometimes further divergence of the estimation. Hence, it is
important to develop a proper design process for the transition matrix.

2. This thesis briefly studied the efficiency problem of the PF. However, the effi-
ciency of PF when it is running on switching mode HMM was not studied. The
questions regarding this can be:

(a) If sampling importance resample PF is still applied, what type of proposal
distribution is particularly suitable for FDD on switching mode HMM?

(b) Are any other PF algorithms suitable for FDD on switching mode HMM?

(c) When the number of system modes increases, is there a requirement to use
a larger sample size to promote acceptable FDD performance? If so, what
is an appropriate sample size?
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