

BACHELOR THESIS:

AUTHORS:
Joakim Jøreng
Martin Storø Nyfløtt
Thomas Mellemseter

DATE: 14.05.2015

CONTRACT MANAGER – A MODERN APPROACH:

Creating a Contract Management System

Using Modern Designs and Frameworks

ABSTRACT

Title: Contract Manager – A Modern Approach: Date : 14.05.2015

 Creating a Contract Management System

 Using Modern Designs and Frameworks

Participants: Joakim Jøreng

 Martin Storø Nyfløtt

 Thomas Mellemseter

Supervisor: Tom Røise

Employer: Electronic Time Car AS

Keywords: Contracts, web, JavaScript, Java, REST, SPA

Number of pages: 89 Number of appendix: 9 Availability: Open

This thesis describes the process around the development of Contract Manager, a system for
administration of contracts in cooperation with ETC AS. The system lets users administrate
contracts through a web-application that is also scalable on mobile devices. Additionally, the
project involves two hybrid-apps that makes it possible to take pictures of contracts as an
attachment and lets the user receive push notifications regarding their contract statuses. The
target group for this system is home-users and organization users.

Contract Manager consists of a web-application, two mobile-applications and one backend. The
mobile apps and the web-app communicates with the backend through a REST-full web-api. The
system also involved Facebook integration for login and a subscription module that uses PayPal.

Much of the focus throughout the project has been on using modern, popular and well
established frameworks that solves several problems web-applications face today regarding
scalability on different devices, modularity and flexibility.

SAMMENDRAG

Tittel: Contract Manager – A Modern Approach: Dato : 14.05.2015

 Creating a Contract Management System

 Using Modern Designs and Frameworks

Deltakere: Joakim Jøreng

 Martin Storø Nyfløtt

 Thomas Mellemseter

Veileder: Tom Røise

Oppdragsgiver: Electronic Time Car AS

Stikkord: Kontrakter, web, JavaScript, Java, REST, SPA

Antall sider: 89 Antall vedlegg: 9 Tilgjengelighet: Åpen

Denne oppgaven beskriver prosessen rundt utviklingen av Contract Manager, et system for
administrering av kontrakter, i sammarbeid med ETC AS. Systemet lar brukere administrere
kontrakter via en web-applikasjon som også er skalerbar på mobile enheter. Det er i tillegg
utviklet to hybrid-apper som gjør det mulig for brukere å ta bilde av kontrakter og legge de inn i
systemet, samt motta push-notifikasjoner for varsler om kontrakter. Målgruppen for systemet er
privatbrukere samt organisasjonsbrukere.

Contract Manager består av en web-applikasjon, to mobil-applikasjoner og en backend.
Mobilappene og web-appen kommuniserer med en server via et REST-full web-API.
Det har også blitt implementert Facebook-støtte for login og en betalingsmodul som tar i bruk
PayPal som betalingstjeneste for systemet.

Mye av fokuset igjennom prosjektet har vært på å ta i bruk moderne, populære og veletablerte
rammeverk som løser flere problemer web-applikasjoner møter i dag deriblant skalerbarhet på
forskjellige enheter, modularitet og fleksiblitet.

Preface
We would like to thank everyone that has contributed to this project. Special thanks goes to

the employer of this project, Dag L Solhaug, who made this project possible. Thanks to Tom

Røise for excellent supervising through the entire project. Thanks to Eivind Arnstein

Johansen for giving us feedback on the user-interface, and thanks to Mark Bertels (NL) for

helping us with Hibernate. We would also like to thank Dennis André Østvik Gjerdingen, Pål

Storsveen and Trine Jeanette Storsveen for taking our user tests.

We would also like to thank the staff members at Gjøvik University College (GUC) that has

answered questions related to this project and anyone else who has not been mentioned

earlier who has contributed in any way.

Gjøvik, 14.05.2015

Table of Contents
1. Introduction .. 1

1.1 Background ... 1

1.2 Project Description ... 1

1.3 Scope .. 2

1.4 Target Audience ... 3

1.5 Application Target Audience .. 3

1.6 Purpose ... 3

1.7 Academic Background .. 4

1.8 Roles ... 4

1.9 Glossary .. 5

1.10 Document Structure ... 6

2. Project Management .. 7

3. Contract Lifecycle ... 10

4. Project Planning ... 11

4. 5 Conceptual Data Model ... 11

4.6 User Types .. 11

4.7 Legal.. 12

4.8 Groups and Rights .. 13

4.9 Backlog ... 14

4.10 Survey ... 14

5. System Architecture ... 16

6. Technologies ... 20

6.1 Restlet ... 20

6.2 Hibernate .. 22

6.3 Angular ... 23

6.4 Bootstrap .. 25

6.5 Android and Windows .. 28

6.6 Gradle ... 29

6.7 Grunt and Bower .. 30

6.8 Project Dependencies .. 31

7. Design ... 33

7.1 Angular ... 33

7.2 Implementation of Restlet and API .. 46

7.3 Hibernate Integration ... 51

7.4 Graphical User Interface .. 55

7.5 Internationalization .. 67

7.6 Hybrid Apps .. 70

8. QA ... 74

8.1 API... 74

8.2 SonarQube .. 76

8.3 Angular ... 77

8.4 JSHint .. 79

8.5 User Testing .. 79

9. Technical Memos ... 81

9.1 Hosting Options for Java 8 Web-Applications in the Cloud ... 81

9.2 Secure Storage of Passwords ... 82

9.3 Platform Selection .. 83

10. Summary .. 85

10.1 Results .. 85

10.2 Further Development ... 86

10.3 Group Evaluation .. 87

10.4 Conclusion .. 88

References .. 90

Appendices ... 97

A – Project Plan .. 97

B – Hour Log ... 113

C – Meeting summaries .. 122

D – Backlog ... 134

E – Group Rules .. 137

F – Deployment on Microsoft Azure using FTP .. 138

G – User Tests ... 143

H – Email Communication with the Norwegian Data Protection Authority (Norwegian) . 146

I – Project Agreement .. 149

1

1. Introduction

1.1 Background
During our everyday lives, we get relations with several different vendors. Typically through

contracts, such as a rent, insurance, or a mobile subscription. These contracts are kept in

different IT systems or kept as a sheet of paper hidden in a drawer nobody knows where is.

With an even increasing stream of services from the digital world: bookkeeping, managing

and controlling all the different contracts and subscriptions becomes increasingly difficult.

Organizations may often want to get an overview and find a specific insurance contract

without having to use time on tracking down a specific coworker, and then wait for that

person to locate and fetch the contract while the server park is literally on fire. This problem

also applies to home users, but in another context. In other words, no one wants to spend

time finding contracts.

Electronic Time Car AS (ETC) is an innovative IT-company with cutting-edge solutions for

managing vehicles used by three or more drivers in small and large car pools. Dag L. Solhaug,

the CEO of ETC, has recognized the need for a system where all contracts are organized and

where users can archive their contracts and get notifications when these expires. He wants

the system to aim at a new market for contract management despite differing from the

market ETC usually targets. This system should also be available on several platforms as

users has an increasing use of tablets and mobile devices both professionally and at home.

Additionally, the system should be able to store the contract and its associated information

in a safe and secure manner available as a subscription system.

Contract Manager attempts to solve the issues described above. It is a system designed for

both private users and organizations available through different subscription models

depending on the user type.

1.2 Project Description
In brief overview, the system makes it possible for users to store and manage contracts. It

helps users to organize their contracts by organizing them through this system. Different

configurations based on the contract type and the life span of the contract determines how

the system should act. Several users can be added to a contract as a notification receiver

that will make the system notify these users once a contract should be renewed or is about

2

to expire. Users can also easily find contracts by searching using keywords for metadata of a

contract.

The organization administrator can manage their users, who has access to which contracts

and which rights they have. This is managed by separating users into groups and contracts

into categories. Home users does not have these options, but they have a simplified version

of categories.

The system is available as a web application and a mobile app. These will then communicate

to a backend (referred to as the API) that stores the user data in addition to the contracts

and provides a common interface for both the mobile and the web application.

1.3 Scope

Field of Study

- Responsive web application using HTML, CSS and JavaScript

- Android mobile application development

- Windows application development

- RESTful API-design

- Java servlets

- Internationalization

- Relational database design together with an ORM framework

- Unit testing

- Contracts

Project Restrictions

- The web development aims at browsers supporting HTML5, which includes newer

versions of Chrome, Firefox and Safari and minimum Internet Explorer 9.

- No iOS application is developed as this required additional cost in terms of

development license and a Mac computer. This project targets only the Windows and

Android platform.

- The Android application development targets minimum API level 16 (Android 4.1)

and higher in order to make the development and testing of the Android app easier.

- The system supports English and Norwegian in addition to support for further

internationalization of the system.

3

1.4 Target Audience

There are several target audiences for this project: The project as a whole, the report and

the target audience of the final product. The target audience of the report will be those who

want to get an insight into how this system was developed. This may be examiner,

supervisor, customer, those who will work with the system at ETC, or any future employer.

This report is written in English in order to aim towards a more international audience. The

project attempts to contribute to both society and our own experience and knowledge by

demonstrating the usage and challenges of commonly used tools and frameworks.

1.5 Application Target Audience
The target audience of the final product is broad since the product aims for both the private

and small to medium-sized organizations. It is assumed that a contract management system

appeals to those of an adult age. This means people under 18 are not considered as the

target audience, but they can still use the product. The large target audience has led to an

extensive use of universal design principles.

The initial release will be focusing on the Norwegian market even though it is a system

requirement to support internationalization and will include the English language package.

1.6 Purpose
It was in early November that all the different bachelor project descriptions were announced

on Fronter. We quickly saw that the project description from ETC stood out from the other

projects. By having a well-defined description, we felt that we could use and build on most

of what we have learned through our three years here at Gjøvik University College (GUC).

This project was also a quite concrete project that was not too abstract, which makes it easy

to explain to people without any IT background. After a discussion with our supervisor and a

short meeting with the customer, it was decided that the project was given to us based on

our academic background and the nature of the project.

We had several goals with our project. As mentioned in the title, the project is a modern

approach by using modern designs and frameworks. We also wanted to end up with a good

product that someone would be likely to use by utilizing tools and frameworks that are

frequently used in the software engineering industry, which the customer was open to.

ETC also wanted to end up with a good product that was easy to use and could also be

maintained and further extended. This is the reason why the backend languages were

limited to PHP and Java (further discussed under 6.1 Restlet).

4

The name ctrctmgr is short for Contract Manager and comes from having to make a short

name for our project website that had to be maximum 8 characters long. This abbreviation

became frequently used as it was a shorter and easier way to write Contract Manager.

Therefore it became the codename for this project.

1.7 Academic Background
Each of the team members have studied Bachelor of Science in Software Engineering (BPU)

full-time for three years. This has provided experience with how software should be

planned, and implemented together with experience from some tools and languages. This

includes C++, PHP, Java, Android application development and MySQL, in addition to

experience with web development in PHP, HTML, CSS and JavaScript with jQuery. Thomas

and Joakim have taken mobile development project in addition to web coding as elective

courses, which has provided them experience with development of webpages together with

Bootstrap. Martin has studied multithreaded programming that focused on different multi-

threading frameworks in C and C++. He has also experience with C#, C++CLI, the .NET

Framework and the MySQL DBMS (Database Management System) from outside the studies.

This report assumes the reader has the same academic background as any student would

have from studying IMT (Information Media Technology). Some of the aspects that the

reader should be familiar with that is also covered in IMT includes the HTTP-protocol,

software engineering patterns, relational databases, the Java programming language,

common concepts in web development such as cookies and sessions, HTML, JavaScript and

CSS. The reader should also be familiar with the concepts of annotations and reflection in

the Java programming language.

This knowledge provides the baseline of understanding how to use the different tools and

frameworks in this project. Only a small number of tools in this project is covered in IMT,

which are specified under chapter 6. Technologies and chapter 8. QA.

1.8 Roles

Each group member had one certain role in the project. During the project-planning phase, it

was decided which roles each member should have. Martin was the group leader. He took

responsibility for the team, scheduled meetings, wrote reports and acted as the scrum

master by maintaining the task board. He was also responsible for the backend. Thomas was

responsible for the user interface of the application such as layouts, colors, fonts and making

5

sure that the layout became user-friendly. Joakim was responsible for the tools and

frameworks being used on the web application.

Supervisor Customer

GUC

Software Industry
and Community

Trends, tools, frameworks, patterns,
documentation, support

Experience, knowledge

System requirements,
progress feedback

Report feedback,
general information

Other bachelor
group

User tests

Figure 1 – How different sources has contributed to the project.

Figure 1 shows how different parts have contributed to the project. Another bachelor group

contributed to this project by giving feedback on Contract Manager through user tests. The

software industry and community contributed with different frameworks, environments and

support through different forums such as Stack Overflow.

1.9 Glossary
Contract Manager (ctrctmgr): Also referred to as the product.

Customer: Employer of the project (Dag L Solhaug). He is also the Product Owner.

User: Someone that uses Contract Manager as either an organization user, home user or

system administrator.

Organization user: An organization user is a user who belongs to an organization.

Home user: A home user is someone that uses the product under private circumstances.

6

Point of entry: The first web page that the user sees when they want to start using Contract

Manager. This web page provides information such as product features, support and

registration.

Core product: The web page that provides login and all the features regarding contract

management.

Web-app: Unless core product or point of entry is mentioned, it means both of them seen as

one web site.

API: Unless nothing else is mentioned, it refers to the web-API that stores user-data (for

further description see chapter 5. System Architecture).

1.10 Document Structure

This thesis is structured into the following sections:

Introduction: This section gives the reader a basic understanding about what this project is

about and who was involved.

Project management: Provides the reader an overview of how the project was managed,

such as how software development methodologies were used in this project.

Project planning: How the system was planned in addition to an overview of different

system requirements.

System architecture: A description of the overall system architecture while also discussing

alternatives.

Technology: Provides the reader an introduction to some of the most central technologies

being used in this project; alternatives, how they work and why they were used.

Design: How the system has been implemented with the different technologies being

discussed under 6. Technologies.

QA: How quality assurance was performed on different components.

Summary: Summarizes the entire project as a whole.

Each code snippet is embedded in a frame and referred to as a figure. These snippets will

follow the conventions, fonts and formatting from their language and the IDE which was

used.

7

2. Project Management
As discussed in the project plan (see appendix A – Project Plan), it was decided to use Scrum

as the software methodology as both the team and the customer had good experience with

it. Additionally, due to incomplete system requirements, an agile system development

methodology became a reasonable choice. The customer had also good experience with

one-week sprints as it would lead to a steady work-flow and the team could respond rapidly

to any items that may have been misinterpreted. Despite some hints from our supervisor

that the sprint length could be too short and would generate too much overhead, it seemed

to work well in this project. Some of the factors that made this go well was that the

customer was a five-minute walk away from campus and it made the team get used to a

weekly routine.

Meetings with Customer

Meetings was scheduled every Tuesday with the customer. During these meetings, new

features and functionality developed since last meeting was demonstrated, followed by a

sprint retrospective meeting, then a sprint-planning meeting for the next sprint. In the

planning meeting, the project leader suggested which items would be appropriate for next

sprint, taken from the backlog, where the customer could intervene and change the

priorities. The project leader took notes and published a meeting summary that became

available on the project website after the meeting. These summaries reflected the outcome

and what we discussed during the retrospective meetings and which items that became

scheduled for next sprint.

When the customer was absent on a scheduled meeting, the team would start working on

new features from the backlog that seemed reasonable to start working on as long as the

items in the current sprint was completed.

Meetings with Supervisor

The meetings with the supervisor was scheduled after the meeting with the customer. In

these meetings, the status of the project was discussed in addition to subjects related to this

project report. If the group had no questions and nothing to discuss with the supervisor, the

meeting would be canceled and the next meeting would then follow on next Tuesday.

Task Board

The task board was the center of the project organization. It made it easy for everyone to

see the current stage for each item with its tasks. Although many project use online boards,

8

it was decided to use a physical board. This provided motivation as the post-it notes were

moved when there was progress to tasks and items. This also made each developer get up

from the chair and get their blood circulation going in order to maintain a clear mind. As the

project made progress, the team became better at splitting items into smaller tasks. For

example, in the beginning of the project, the team members worked with larger items and

did not split these into smaller tasks. This made it harder for the team to keep track of what

they were doing. After a while, items were more frequently split down into tasks that also

made the progress more transparent. This issue has also been reflected in the meeting

summaries (see appendix C – Meeting summaries).

Figure 2 – Photo of the task board. Picture is taken from the last sprint.

Figure 2 shows the task board that was used during the project. It was located in a computer

lab on campus with very low activity. Unless this room was used for a lecture, this was the

room where the team usually did the development between 10:00 and 18:00. As seen in

Figure 2, there were four phases: to-do, in-progress, QA and done. The to-do phase was

items that nobody had started working on yet, in-progress was items that were under

implementation, QA was a test phase, and done was items that were completed. A further

description of the QA phase can be found under chapter 8. QA. Sometimes the items that

entered the done had some missing functionality or had some extra work that had to be

done. In this case, an extra post-it note was added to the item, describing what had to be

done.

9

Figure 3 – How an item (orange) is broken down to tasks (yellow).

Also note that the post-it notes on Figure 2 has different colors. The pink notes to the left of

the board described which part of the project or module each note belonged to in their row.

Orange notes were items, and yellow were tasks (Figure 3). On the right side of the board

were the sprint goal, a time schedule for the room, new items that appeared during the

sprints that were not planned, and items that were to be added in the next sprint.

After the meeting with the customer and our supervisor that was usually scheduled on a

Tuesday, the scrum master would be responsible for removing the old tasks and items, then

add the new items. Usually if there were items that were to be completed after the sprint,

only the items under the done phase were taken down. New items were added the next day.

10

3. Contract Lifecycle
One challenge in this project was to generalize contracts to a format that a computer could

easily interpret. There is no specific standard for all the contracts, but there are however

certain attributes that normally appears on contracts, such as a start and end date, involved

parties, a reference number, and so forth.

01.03.2015 01.05.2016

01.04.2016

Contract expired /
Contract automatic renewed01.04.2015 - 01.04.2016

Duration of the contract

01.05.2015

Contract added

01.01.2016

Renewal deadline /
Unsubscribe deadline

15.12.2015

User notified

Figure 4 – Illustration of the lifecycle of a recurring contract.

Since the system does not restrict users from entering a contract that has already become

active or is about to begin, it also stores the date a contract is added to the system. This is

illustrated in Figure 4 where the curly bracket represents the lifespan of the contract.

While the system supports automatic renewing, the outcome of a renewal would depend on

the contract type. This system manages two types of contracts: Recurring and date-to-date

contracts. A recurring contract will be automatically renewed once the expiration date is

reached, while a date-to-date contract would be automatically archived. The system also

allows users to specify a deadline before a contract has to be terminated or renewed,

depending on the contract type.

Although there are several other variants of contract lifecycles with other important dates,

this is the general lifecycle-model which Contract Manager is based on.

11

4. Project Planning
This chapter will discuss how the system were planned together with the customer in

addition to the backlog for the project. How items were taken from the backlog is discussed

under chapter 2. Project Management.

After the first meeting with the customer, low-fi prototypes on paper were created, which

was basic drafts on how the user-interface would look like. These prototypes were then

demonstrated to the customer. This made it possible to get a common understanding of

how the product should behave and which features it should have, by using a GUI-down

approach. As the project made progress, items were added to a backlog in a spreadsheet

available through Google Drive.

4. 5 Conceptual Data Model
After a few weeks of planning and prototyping, we had managed to get a good overall

picture of how the system should be created. As discussed in the project plan, we were

going to create a conceptual data model of the system. This allowed us to get a deeper

understanding of what needs to be implemented and it also acted as a good tool to keep

track of what was implemented in the system and what was left to be done. Figure 5 shows

the final conceptual model that was used throughout the project.

User

-firstName
UserAction

-text

SystemAdministrator HomeUser

-twoFactorEnabled

OrganizationUser

OrganizationAdminExecutioner

Contract

-title

Group

-name

Category

-name

-lastName
-email
-password
-twoFactorKey

-facebookKey

Organization

-name
-organizationNumber
-enabledTwoFactorAuth

Attachment

-fileContent
-fileName

-text
-fileType

-creationDate

-parties {...}
-datePeriod
-startDate
-renewalDate
-responsible
-owner
-notes

-notificationType
-notificationTime

-memberName

-expirationDate

1..1

1..*

Member

of

1..*

0..*
Member of

0..*

0..*

Has access to

0..1
0..*Is under

1..1

0..*

Attached

0..*

1..1
 Does

{Mandatory, or}

1..1

1..1

Does

1..1

0..*

Creates

1..1

Is owner of

0..*

0..*

Has special rights to

0..*

Subscription

-subscriptionType
-paymentInfo

1..1

0..1 1..1
 Has a

right flags

right flags

Figure 5 – Conceptual data model of the system.

4.6 User Types

The system supports several different user types. The two main categories are home-users

and organization users. We saw that home users and organizations has different needs in

12

terms of contract management; however, there is some overlap between these two user

types.

Home User

Home users are users who uses the system on an individual-basis. These users can pay for

using the system in order to get access to more features such as custom categories, the

ability to add more contracts and so forth. All the users has access to basic functionality such

as adding, removing, exporting contracts and so forth. The active subscription of the user

may for example determine how many contracts a user can store.

Organization Administrator

The organization administrator has the responsibility for administrating the organization

settings in addition to providing members of the organization access to the system. By using

this approach, it is possible to create rights and groups. This aspect is discussed later under

4.8 Groups and Rights. The organization administrator is also responsible for the subscription

for the organization.

Organization User

The organization user is added to the system by an organization administrator through

email. How much functionality this user has access to is determined by which rights the user

has been assigned by other users and/or the organization administrator. Limits on features

are determined by the active subscription for the organization.

System Administrator

The system admin is a person who is responsible for maintaining the system and is not

meant for storing contracts. This user has access to view all the active subscriptions of the

system in addition to view and modify system settings.

4.7 Legal
During the beginning of the project, we saw that it would be necessary to make an

evaluation whether the system would require special approval from the Norwegian Data

Protection Authority, as mentioned in the project plan (see appendix A – Project Plan).

However, after contacting them, it was made clear that a terms-of-service where the user

accepts the processing of the information they supply to this system would be sufficient (see

appendix H – Email Communication with the Norwegian Data Protection Authority

(Norwegian)) in addition to following laws regarding data deletion and routines specified by

the Norwegian Data Protection Authority.

13

4.8 Groups and Rights
A lot of time during the preparation stage of the project was used to discuss how groups and

rights should be modelled in the system. This system manages rights on two levels: Group-

based and individual-level. Groups are targeted at organization users to avoid

micromanagement of rights towards different contracts. Both organization users and home

users can use individual-level albeit home users can only use this for managing rights to

contracts they have chosen to share with other individual home users.

Individual level rights are used to give one specific user rights to a contract. This right

determines whether the user has access to read, modify, delete and assign other user rights

to the contract.

Group-based rights are meant for only organization users. A user can be a member of a

group. This group of users are then given rights to a category. All the rights given to the

relationship between the group and the category will then apply to the contracts under that

category, as seen in Figure 6.

Category A

C1 C2 C3

Contracts

Category B

C4 C5 C6

Contracts

Has rights to Has rights to

Group X Group Y

Has individual rights to

Figure 6 – Shows how an organization can manage its users and assign rights to different contracts.

14

4.9 Backlog

The customer were also given access to the backlog so that he could keep track of what was

added in addition to keep track of what was left of the product. Once items were done, they

were highlighted as green in the backlog. Towards the end of the project, items became

highlighted as red when the team saw that there was not enough time to implement them.

Figure 7 shows a full use-case description of the system with different external actors and

use-cases from the product backlog (see appendix D – Backlog). The API is not included as

the figure shows the use-cases for different user-types and external systems. Most of the

items in the backlog were added in the beginning of the project. It has been stable

throughout the project with fewer new system requirements as the project made progress.

4.10 Survey
During the second sprint, a survey was performed to get a picture of how managing

contracts were currently done by both organizations and home users. Finding which features

that were used most frequently would guide us in the right direction, knowing which

features should be focused on. The team interviewed five people where three were

representing an organization. The result were contradictory. Some rarely looked up old

contracts, while other more frequently, but what most seem to agree on was that they were

willing to pay to remove advertisement. The most frequent feature they saw as most

important was adding a contract.

15

Org Admin

Org User

Login

Login with facebook

Create account

Manage group rights

Manage group members

Create/remove group

Add/Remove category

Rename category

<<extend>>

Invite to org.

<<include>>

Logout

<<Abstract>>
User

<<extend>>

<<System>>
Facebook

View contract

Add contractEdit contract

View all contracts

Add note

Remove note

Export contract

Print contract

Manage rights

Add attachment

Download attachment

Remove attachment

System admin

View and modify system settings

View subscribed users

Modify account details

<<extend>>

View notes

<<include>>

<<include>>

View attachments

<<extend>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<extend>>

<<extend>>

Modify contract status

<<include>>

<<extend>> <<include>>

<<include>>

<<include>>

<<extend>>

Manage subscription

<<System>>
PayPal

Home User

<<extend>>

Add/Remove category

Rename category

<<include>>

Figure 7 – Use-case diagram of different actors in the system.

16

5. System Architecture
Contract Manager consists of the following components: The API, the web app, the 2 hybrid

apps and the database. The two hybrid apps both relies on this web app by embedding the

web app in a web-view. The API (also referred to as backend) is a REST-full (Representational

state transfer) web service that manages and stores user data. REST-full means a service

following REST principles. The API also creates a common interface for both the hybrid apps

and the web app so that several API-calls can be re-used in the hybrid-apps and the web app.

The relation between these different components is illustrated in Figure 8.

Database

Web-API

Web app Windows hybrid appAndroid hybrid app Embedds Embedds

REST/JSON

Figure 8 – A brief overview of the different components that makes up Contract Manager.

It was from early on in the project that it became clear it would be necessary to re-use code

and logic in the hybrid apps from the web app. While some calls could be directly re-used by

calling the API calls in the web apps from the hybrid app, some calls would still have to be

coded in the native part such as uploading a photo of a contract and session handling. This is

due to the fact much functionality is not available through APIs in JavaScript for a web-

application. This is further discussed under 7.6 Hybrid Apps.

17

Database

CGI-script

Generated content, static
content (HTML, CSS, JS)

Minor web API

Database

Web API

Web App

Browser Browser

Traditional API-driven

Figure 9 – Two different architectural patterns for web applications.

Figure 9 shows two different architectures that were discussed when developing Contract

Manager. The pattern on the left is a traditional web-application [1] [2] where the HTML

code is manipulated on the server-side before being sent to the client using a CGI-script

(Common Gateway Interface) such as PHP, ASP.NET or Java. The client could be seen as a

thin client as it would only view HTML code and do minimal modifications with JavaScript. In

some cases, the JavaScript would rely on some API calls (often the case if the page uses

AJAX) when the website needs to make modifications on the client-side. A system following

this pattern would be a more monolithic system as all the components are tightly coupled in

one system. A side effect of this is that generalists could easier work with the system. On the

other hand, it makes it harder to split up tasks as the system exists as a whole and it gets

harder to work on each component separately. The system would also become harder to

scale due to the amount of different components a developer has to relate to when working

on the system.

The pattern to the right in Figure 9 is an API-driven (or API-centric as [3] calls it) web

application where the web app will communicate with an API, then put together the HTML

document on the client-side. In this case, the client could be seen as a thick client that may

rely on a JavaScript framework in order to modify and view the web page. It is important to

note that the client does not have to be a web app; it could be a mobile application like the

mobile apps in this project or a different system that has integration towards the API. This

approach follows more service-oriented architecture (SOA) [4] and microservice architecture

[5] as each system can be developed, scaled and deployed independently. This leads to a

18

weaker coupling between each component and makes it easier for experts to work on the

project and easier to split up tasks when implementing new features. In Contract Manager,

the web-app is a single-page application (SPA) [6] built with an MVC-framework (Model View

Controller). SPA makes it possible to save bandwidth on mobile devices, as the entire

webpage is not re-loaded when the user navigates throughout the system. This also saves

battery resources since only parts of the website is reloaded.

We chose an API-driven architecture as it would allow us to reuse several calls in the web

application and the hybrid apps. It would also make the system more extensible as other

systems could integrate this system with little to no modifications on the API. By having a

static web-app, modifications by a CGI-script is eliminated, thus making it easier to spread

the web-app on a content delivery network and doing maintenance work since the

developer only has to relate to the API specifications and the SPA framework. From an

object-oriented perspective, the web app gets a lower coupling to the back-end as the server

code is abstract through what can be considered as a standardized protocol, in this case

HTTP with REST. REST was chosen as it is commonly used for web APIs and was a good fit for

our case [7].

REST is an architectural style, mostly used in web APIs [8] [9]. REST relies heavily on the HTTP

1.1 protocol, as REST was developed in parallel with the HTTP 1.1 protocol. Having different

resources exposed on the web through HTTP does however not mean it is RESTful as the

resources would have to be stateless, which is discussed later on. The idea in REST is that the

server has different resources that are available from an URI (Unique resource identifier). A

call to a RESTful API would consist of an HTTP verb and the URI of the resource in addition to

additional HTTP headers, for example authentication tokens and optional form data.

Another important aspect of REST is that the HTTP verb in addition to the URI should be as

self-documented as possible. The call bellow (Figure 10) is a simplified HTTP call to get the

preferred language for a user in Contract Manager. A further discussion regarding this call

can be found under 7.5 Internationalization.

19

Figure 10 – The http call for getting the preferred language and the response.

The HTTP response code will indicate whether the call was successful and if there was a

response body or not. In REST, this is described as the state of the representation of a

resource. In this case, the response is a JSON object indicating the preferred language for the

user. The response is defined as a representation of a resource. It is important to note that

REST does not explicitly say that the response objects should be JSON; it could be HTML,

XML or even binary data depending on the HTTP content-type header.

Another architectural constraint in REST is that the server should be stateless. This means

that the server should not store any state about the user directly or care about the state of

the user-interface of the client. In other words, the call to the API should contain all the

information required to obtain the state of the client. Information about different session

data does then have to be stored in a database in order to comply with the stateless

constraint in REST. A further discussion regarding sessions can be found in 7.2

Implementation of Restlet and API. One of the advantages of having a stateless server is that

it is easy to scale by adding another instance of the server together with a load balancer

between the instances.

REST provides a standardized way for client-server communication, which also makes the

system extensible and scalable. In Contract Manager, REST allows a standardized way of

communication between different components (Figure 8) and facilitates re-use, scalability

and flexibility.

Request: GET http://localhost:8080/ContractManagerAPI/languages/preferred
Response: HTTP 200: OK
Response body:
{
 "language": "en-us",
 "name": "English (US)"
}

20

6. Technologies
This chapter will discuss some of the technologies being used in Contract Manager. The

reader will get insight into what the different technologies are, a short overview of how they

work, alternatives, and why they are used in this project. Later on, the reader will get

insights into how each technology is used under chapter 7. Design. Figure 11 shows all the

different technologies that will be discussed later and where in the system they have been

applied. Note that it does not cover every single framework/technology being used. The

database does not have any specific technology attached, as this is abstract through

Hibernate.

Database

API

Web appAndroid app Windows App

Figure 11 – Overview of where the different technologies that will be discussed in this chapter is applied in Contract

Manager.

6.1 Restlet

During the project-planning phase, the customer initially wanted a system in PHP where Java

was a second alternative. It was decided to use Java due to the extent of the system in

addition to the different tasks and tools the backend would rely on. As the customer wanted

support for OCR, there was better libraries for Java based on the documentation and

reputation of the different libraries. Another key factor was that the backend was going to

be a RESTful API where Java could provide better scalability, design and tools compared to

PHP. However, as features such as OCR and encryption did not get implemented due to

21

prioritizations, the system could have been built with PHP. On the other hand, the final code

would not have the same design that would allow as easy integration with these features.

It was decided to implement the API with Restlet as it provided good documentation and is a

framework that is easy to understand. Restlet is a lightweight, open source framework for

developing RESTful APIs in Java [10]. The framework uses the same terminology on its

components as what REST does. It mainly consists of four central components: Router,

representation, resources and connectors. The connector specifies which protocol the

application should receive calls on, for example HTTP. However, if the application is

deployed as a servlet container, no connector is required. A router is the component that

redirects a call to a resource, if found. The resource will handle the call based on the HTTP

verb for the call and return a representation, for example a string. Each verb is annotated

above the method that will handle the call. The code bellow (Figure 12) is an example of how

a representation of the preferred language is returned to the client. A demonstration of the

response form this call can be found under chapter 5. System Architecture.

Figure 12 – Code snippet for getting the preferred language for a user. The code is from the class

PreferredLocaleResource.java.

Each resource has to extend the ServerResource class in order to be registered in the

router together with its URI. The annotation @Get above getLocale() implies that this

function should handle GET requests. One important aspect of Restlet is GSON integration.

GSON is a JSON (JavaScript Object Notation) library developed by Google for serializing and

de-serializing JSON objects in Java [11]. It relies on reflection and annotations to map fields

between classes in Java and the fields in the JSON object. In Contract Manager, GSON makes

it possible to avoid having to create one class for each representation. This leads to less code

duplication.

@Get
public GsonRepresentation<Locale> getLocale() {
 Series<Header> headers = HeaderHelper.getRequestHeaders(getRequest());
 String languageString = headers.getValues("accept-language");
 Locale locale = LocaleFactory.getPreferredLocale(languageString);

 return RepresentationFactory.makeRepresentation(locale,
 LocaleRepresentation.class);
}

22

6.2 Hibernate
Hibernate ORM (Also referred to as just Hibernate) is an open source ORM (Object

relationship mapping) framework for Java applications, available under the GNU Lesser

General Public license [12]. An ORM framework provides database access through a higher

level of abstraction compared to writing traditional SQL queries that would fetch entries

from a database. It achieves this by mapping classes in the code towards tables in a

relational database. Without using ORM, parser code (also known to as a mapper) is

required to map the structure of a class towards its structure in a database. These classes

have SQL code and maps different fields in a class towards fields in a database. No SQL code

is required when using Hibernate as the framework would generate the required SQL code

to fetch, modify and delete entries in a database. A result of this is that the application using

Hibernate can easily move to a different DBMS (Database management systems) as if used

correctly, the only modification required when switching between DBMS is changing the

database driver (also referred to as the database connector). Hibernate does however have

a higher level SQL language named Hibernate Query Language (HQL) that makes it possible

to write DBMS independent SQL queries.

In this project, Hibernate made it possible to simplify code by eliminating mapper classes

and reducing the time required to create tables in the database. As of less code, the code

also becomes more maintainable. Hibernate also facilitates re-use of code and classes. As

Hibernate is frequently used in Java and Java EE applications, a large amount of

documentation is available in addition to support through different communities on the

Internet. We also have experience with Hibernate from a system made in IMT3281 –

Software Development. An alternative to Hibernate was using JDBC (Java Database

Connector) directly, thus removing the layers of abstraction provided by Hibernate, as it is

not an ORM framework. Using JDBC would lead to extra code and development costs

compared to Hibernate, which was the main reason why Hibernate was selected instead of

JDBC. One disadvantage of using Hibernate is that it has far longer startup time compared to

JDBC. However, in this project it does not have any significant impact, as it is an operation

that only would have to be executed on the first page-load.

Hibernate can map classes in two ways: Either through an XML document or annotations in

the code. It relies on reflection in order to map the data towards classes. It was decided to

use annotations, as metadata about a class and its members is natural to store in

23

annotations. Regardless of using annotations or XML mapping, each class that Hibernate

would map has to be listed in the hibernate.cfg.xml file, which is the configuration file for

Hibernate. This XML document contains information about which database driver to use,

database name, username, password, hostname, caching and logging settings and so forth.

It is also worth mentioning that Hibernate can efficiently optimize and cache queries and the

query result because of the high level of abstraction.

6.3 Angular
AngularJS is a client side web application framework based on JavaScript. Angular is

developed and maintained by Google and is an SPA designed for CRUD (Create, Read,

Update, Delete) applications [13]. It offers a wide set of tools and is described by its creators

as the way HTML would have been if it was designed for creating web applications. Angular

makes it possible to create reusable HTML templates which serves as the view and can

dynamically bind the data retrieved by a controller.

While researching which approach we that should be used on web application, several

different JavaScript SPA frameworks was considered, evaluating the tools they provided,

documentation, popularity and general developer feedback.

Metric AngularJS Backbone.js Ember.js

Stars on Github 27.2k 18.8k 11k

Third-Party Modules 800 ngmodules 236 backplugs 21 emberaddons

StackOverflow Questions 49.5k 15.9k 11.2k

YouTube Results ~75k ~16k ~6k

GitHub Contributors 928 230 393

Chrome Extension Users 150k 7k 38.3k

Table 1 – Statistics of usage as of August 16 2014 [14].

The range of frameworks was limited to consist of KnockoutJS, EmberJS, BackboneJS and

AngularJS, which are all available under the MIT licence [15], which permits usage in

proprietary software.

Angular and Ember seemed to offer a lot of the same tools and are both using the MVC

(Model View Controller) pattern, whereas KnockoutJS and BackboneJS is a lot more

lightweight.

24

Angular was chosen instead of Ember because of the strength of the Angular community and

amount of shared content on the web as shown in Table 1, as well as Angular focuses on

CRUD as Contract manager is a typical CRUD application. There was performed a small pilot

project using Angular to develop the bachelor project website, which was a positive

experience.

Using Angular made it possible to create modularized code that was easy to reuse and

modify for each individual use case. It also had a wide support for external tools like

automated testing and external code packages that was easy to use right out of the box.

Core Components

Figure 13 – Angular architecture [14].

An Angular app consist of a root module with an arbitrary amount of child modules as shown

in Figure 13. Some modules may be simple and not contain any configuration and routing

options besides what is provided from the root module. Each module usually have one or

more controllers, which is used to bind data and handle user interaction in the view. A

controller will be assigned to a view, creating a scope. The scope can be thought of as an

area of code in a view, available for the assigned controller to administrate.

25

Directives are more or less customized HTML tags that can be inserted straight into a module

view. A directive can be thought of as an isolated component. Directives can have their own

controller, view and scope, but are also able to inherit the parent scope. Directives are easy

to reuse and can be thought of as a standalone web component. This results in reuse of

HTML and JavaScript code.

Factories contain business logic and utilizes Services to communicate with a web-server.

Module controllers use these factories to retrieve data to insert it into the scope.

6.4 Bootstrap

Bootstrap is an open source HTML, CSS and JavaScript framework for developing responsive

web pages. It is released under the MIT license and is according to their website, the most

popular framework in their category [16]. The reason why Bootstrap was chosen was

because we already had experience with it and knew it had a good reputation in the web

development community.

Aside from creating a website responsive, the framework also provides a set of styled

components such as dropdown lists, input fields and alert boxes. Bootstrap provides over

250 free icons which helps scaling more easily as button labels can be replaced with icons

and still convey the same meaning. While having over 250 icons to choose from, this made it

more difficult finding the suitable icons conveying the right context. Bootstrap also did not

have icons that represent general concepts such as groups. We ended up using the open eye

icon which originally was used to convey rights, which was then changed to a lock. We could

have created our own icon, but valued more being consistent and only using Bootstrap

icons.

Browser Support

Bootstrap version 3 supports the latest browsers and platforms shown in Figure 14. It also

supports Internet Explorer 8 and newer [16].

Figure 14 – Showing latest browser support for the Bootstrap framework [16].

26

Scaling With Bootstrap

Bootstrap performs scaling by using a grid system. This is a method of dividing an HTML-

element into rows and columns which dynamically changes depending on the screens width.

One starts off by using either the container or the container-fluid class. The

difference being the latter fills the whole element width. Within these elements one can

define rows with the row class and their child elements with different col classes. Bootstrap

has defined four different width boundaries where changes will takes place. These

boundaries are displayed in detail in Figure 15.

Figure 15 – Showing defined boundaries from Bootstrap with corresponding media query.

A column element has 12 different options for how much space it should take up in each of

the defined devices. Figure 16 shows how this is done in HTML and CSS. It has one row with

three columns representing different aspects of the core product. A column class starts with

the col keyword followed by which device it represents and ends with a number between 1

and 12. If the sum of all similar col classes exceeds 12 within one row, the row starts to

wrap columns to a new row. It can be seen in the code example that on small (sm), medium

(md), and large (lg) devices all have 4 in size. This adds up to 12, meaning it fits perfectly

within the row. On extra small devices (xs) however, each column gets all the width, making

each column appear as rows. The corresponding layout is displayed in Figure 17.

27

Figure 16 – A simplified code snippet from point of entry that shows how Bootstrap use column classes in order to scale on

different devices.

Figure 17 – Corresponds with the code in Figure 16. Example is from point of entry. The text in each box is a subjective

message to a customer and is not relevant in this text.

Colors and Fonts

Since Bootstrap provides both color codes and font selection, this has not been one of our

main priorities. This is also something that is easily changeable due to the framework. There

are also plugins available for adding different themes to Bootstrap, one of them called

Bootswatch. As the current version of Bootstrap is not colorblind friendly, adding a

customized theme should be implemented before a release, even though a revision of their

color scheme is happening in the next bootstrap version [17]. On another note, as users have

different preferences, providing the option for changing the theme would satisfy more users,

like adding a dark theme to the core product, making it an option in the settings menu.

Supporting Screen Readers

Blind people need assistance reading content and helping them navigate around in an

application such as using screen readers. By designing for screen readers, these users can

become more independent. These applications read HTML and provides functionalities for

skimming through content from paragraph to paragraph. One way of navigation through a

<div class="row">

 <!-- Information / advertisement -->

 <div class="col-xs-12 col-sm-4 col-md-4 col-lg-4">

 <div class="col-xs-12 col-sm-4 col-md-4 col-lg-4">

 <div class="col-xs-12 col-sm-4 col-md-4 col-lg-4">

</div>

28

page is by pressing the tab key and the screen reader tells the user what each link is. This

however depends on how the HTML is put together [18].

Bootstrap provides classes for screen readers to add to the HTML, which is used in this

project. This means that each input field has an associated label which describes what

information the input expects. This is done by adding the sr-only class to the label which

hides the label. In cases where the label should be visible, the sr-only-focused class

should be used instead. Header elements is also important as they give the users the ability

to separate content more effortlessly. This is also an HTML element that has been used.

This was further tested using ChromVox, which is a screen reader extension for Chrome. By

pressing tab, we get voice feedback for the current link that the user can interact with.

Before stating that the core product fully supports screen readers more user tests must be

completed.

6.5 Android and Windows
It was specified in the project description provided by the customer that the system should

have multiplatform app support. As mentioned in the project plan (See appendix A – Project

Plan), it was decided not to develop for the iOS platform, as this would involve additional

hardware and developer licenses. The project would then involve a portable Windows and

an Android app. It was initially planned to create two native apps, however, due to

prioritizations, a hybrid application had to be developed instead.

After deciding to use hybrid apps, some cross-platform compilation tools were considered.

Xamarin [19] is a framework where an app can be written in C# and be compiled to a variety

of platforms. However, this was not chosen since it is not free. Cordova [20] was another

framework that was considered. It allowed us to take the web app and easily generate

projects that was ready to deploy on a range of mobile platforms. After discussing with the

customer regarding Cordova, he seemed critical to using it, as it would introduce more work

when changes were made to the web application. Therefore, it was decided to create a

hybrid application for Android and Windows using the native tools available on each

platform.

There was initially two features requested from the customer that lead to making the mobile

applications: Push notifications about expiring contracts, calendar integration and being able

to take a picture of a contract. Without these features, the app could just be a web app that

29

the user could pin to the home screen of their device. There is currently an API for camera

interaction through newer HTML5 standards [21]. However, this API is meant as a

replacement for web-cameras and is not created for capturing an image that is uploaded to

a website. HTML-5 push notifications is still under development where W3C has only

published a draft of the push API recommendation [22].

6.6 Gradle
Gradle is a project automation tool [23] that is used for building the project and adding

external libraries. Instead of making each developer download each dependency for the

project manually, the project automation tool would do this automatically. The team has

experience with Gradle from IMT3662 – Mobile Development Theory and IMT3672 – Mobile

Development Project, as Gradle is the default project automation tool when developing

Android apps with Android Studio. In this project, Gradle was used both for the API and for

the Android application. The Windows app did not use Gradle, but a similar tool called

NuGet, which is a package manager for .NET applications [24].

One alternative to using Gradle was Maven, which is perhaps the most commonly used

project automation tool with Java. Gradle has the build automation script in addition to the

dependencies in a JSON-like file named build.gradle. Maven however has an xml-file named

pom.xml. One of the advantages of using Gradle is that it allows using dependencies from

Maven repositories. Maven repositories can for example contain libraries that can be used in

the project, for example Restlet. We decided to use Gradle for both the Android and the API

as we have good experience with it, it integrates well with Android Studio and we are

consistent in terms of which tools are used where. Below (Figure 18) is a stripped down

example from build.gradle for adding Restlet as a dependency to the API.

Figure 18 – Excerpt from build.gradle declaring dependencies for Restlet.

dependencies {
 compile 'org.restlet.jee:org.restlet:2.3.0'
 compile 'org.restlet.jee:org.restlet.ext.jackson:2.3.0'
 compile 'org.restlet.jee:org.restlet.ext.servlet:2.3.0'
 compile 'org.restlet.jee:org.restlet.ext.gson:2.3.0'
 compile 'org.restlet.jee:org.restlet.ext.fileupload:2.3.0'
}

30

6.7 Grunt and Bower

Grunt

Grunt is a JavaScript task runner, which provides an ecosystem of plugins that is related to

web application development such as testing, deployment and code inspection [25]. Grunt

can be configured to automate processes that would normally take up a lot of time such as

testing procedures and preparing the application for deployment. Grunt provides a

command line interface where the processes can be executed. An example would be running

the local web server plugin being used by typing “grunt serve” in the command line

interface. This would set up a local development environment to host the web application.

Figure 19 – Local web-development server configuration. Simplified snippet from gruntfile.js

Configurations for the local HTTP server can be found within the gruntfile (Figure 19), along

with configuration for any other Grunt plugins.

All the installed Grunt plugins for a project are added to the file “package.json” on

installation, which contains the name of the plugin along with their version number. This

makes it possible for other developers to install these tools automatically with the required

version upon project setup on their local pc with a single NPM (Node Package Manager)

command [26]. NPM is also the tool being used for installing Grunt and Bower.

Bower

Bower is used for handling installation and management of front-end frameworks, libraries

and assets. Like Grunt, Bower registers all installed packages that are registered as

dependencies in a file. This file is called “bower.json”.

To install a new package e.g. “jQuery”, the command line “bower install jquery” has to be

typed in the command line interface. Bower will search its library for the jQuery package,

prompt the user for the preferred version and then download it into the folder “Bower

components” within the project.

Bower in combination with Grunt offers many of the same services as Gradle (See 6.6

Gradle).

connect: {

 options: {

 port: 9000,

 hostname: 'localhost',

 livereload: 35730

31

6.8 Project Dependencies
This section lists all the frameworks and plugins that has been used in different parts of the

project. Plugins/frameworks that has a N/A license means that there was not specified any

license together with the source code or on the information website for the

plugin/framework.

The different licenses has not had any impact on the project as each library is only linked to

and not modified. There are however, licenses such as the GNU LGPL (Lesser General Public

License) which only allows dynamic linking [27]. This means code and libraries under the

GNU LGPL license cannot be used in commercially systems if the code is compiled together

with the system.

Web app

Name Version License Description

Angular 1.3.15 MIT SPA Framework

json3 3.3.2 MIT JSON utility

Bootstrap 3.3.2 MIT CSS and JavaScript framework for responsive
webpages

angular-animate 1.3.11 MIT Animation support with Angular

angular-resource 1.3.11 MIT API integration

angular-route 1.3.11 MIT Routing support between webpages

angular-
webstorage

0.11.0 MIT Session storage (alternative for cookies)

ng-facebook 0.1.6 MIT Facebook integration

angular-wizard 0.4.2 MIT Library for creating a wizard in Angular

ng-flow 2.6.0 MIT File uploading framework

angular-bootstrap 0.12.0 MIT Bootstrap integration within Angular

Oclazyload 0.5.2 MIT Lazy loading of controllers and modules

angular-feedback 0.9.4 MIT Automatically closing popup

ngBootbox 0.0.4 N/A Message dialog/popup library

angular-ui-
calendar

0.8.1 MIT Calendar plugin

Table 2 – Licenses for different libraries used in the web-app.

API

Name Version License Description

junit 4.12 Eclipse
Public
License 1.0

JUnit testing
framework

com.lowagie:itext 4.2.1 GNU GLPL
3.0

PDF framework

org.hibernate:hibernate-core 4.3.8 GNU GLPL
2.1

Hibernate ORM

32

org.restlet.jee:org.restlet 2.3.0 Apache 2.0 Rest framework

org.restlet.jee:org.restlet.ext.servlet 2.3.0 Apache 2.0 Restlet servlet
integration

org.restlet.jee:org.restlet.ext.gson 2.3.0 Apache 2.0 Restlet GSON
integration

org.restlet.jee:org.restlet.ext.fileupload 2.3.0 Apache 2.0 File upload support
with Restlet

mysql:mysql-connector-java 5.1.34 GNU GLPL 2 MySQL database
connector

org.hibernate:hibernate-hikaricp 4.3.8 Apache 2.0 Database connection
pooling framework

org.mindrot:jbcrypt 0.3m ISC/BSD Blowfish crypt

org.apache.commons:commons-email 1.3.3 Apache 2.0 Email support

javax.transaction:jta 1.1 N/A Java transaction
support (required by
Hibernate)

org.apache.poi:poi 3.11 Apache 2.0 Spreadsheet
generation support

org.apache.poi:poi-ooxml 3.11 Apache 2.0 Support for newer
Office formats (eg.
XLSX)

com.paypal.sdk:rest-api-sdk 0.5.1 N/A PayPal integration

org.slf4j:slf4j-simple 1.6.6 MIT Logging framework
(required by HikariCP)

org.apache.tomcat:tomcat-catalina 7.0.41 Apache 2.0 Embedded Tomcat
support

org.apache.tomcat:tomcat-util 8.0.21 Apache 2.0 Embedded Tomcat
support

org.apache.tomcat.embed:tomcat-
embed-core

8.0.21 Apache 2.0 Embedded Tomcat
support

Table 3 – Licenses for different libraries used in the API.

Name Version License Description

Newtonsoft.JSON 6.0.8 MIT JSON library for C#

Facebook 6.8.0 Apache 2.0 Facebook C# SDK
Table 4 – Licenses for different libraries used in the Windows app.

33

7. Design
This chapter will discuss how each component has been implemented using the technologies

discussed earlier. The reader will first become familiar with the file-structure of the source

code, which shows where each file that is referred to is highlighted in bold. In these figures,

files are dark blue, while folders are grey, ending with a dash. Only the structure of the API

and web-app is illustrated with these figures.

7.1 Angular
We made a decision to split up the web application into two parts. These two parts were

codenamed point of entry and core product where point of entry handles everything

concerning product support, registration and being the products face towards potential

customers. It also provides relevant information about the product. It seemed logical to do

this split as they had different purposes. Point of entry was aimed towards potential

customers, and the core product was for existing users.

Angular is used in both the point of entry and the core product app, although their structure

is different due to the difference in size and scope.

34

Point of Entry

Point of Entry

bower.json
Gruntfile.js

package.json

app/
[1 183 lines]

bower_components/
dist/

node_modules/
test/

images/
styles/

404.html
en-us.json
index.html
nb-no.json

scripts/views/

app.js

controllers/

factories/

services/

home.html
register.html
support.html

tos.html mainController.js
registerControllers.js
supportControllers.js

languageFactory.js
registrationFactories.js

languageService.js

Figure 20 – Point of entry file structure expanded on the files being referenced.

35

DashboardApp

Controllers

Main controller

Register
Controllers

Point of entry

Support
Controllers

Factories

Language
Factory

Registration
Factory

Language
Service

Resource

API connection

Views

Main view

Register
view

Support
view

Terms of
service

view
Home view

Figure 21 – Point of entry application structure.

The structure of the Point of entry Angular application is illustrated in Figure 21, which

provides an overview of the application with low level of complexity and how it uses covers a

lot of the core Angular features.

The application has four views that the user will experience as web pages, but only three of

them have assigned controllers. This is because the Terms-of-service view contains only

static content. The main view wraps all the other views and serves as content that shall

remain in the application GUI (Graphical User Interface) regardless of which one of the other

views that is currently loaded.

Point of entry consists of a single module called DashboardApp and has the following

controllers assigned to it: Main, Register, and Support together with their respective views.

36

Figure 22 – Simplified code snipped from index.html in Point of Entry showing main controller wrapping ng-view.

Figure 22 shows how the main-controller is registered in the body tag which wraps the

entire application including the element with the data-ng-view attribute. This element is

where views are loaded into. This means that whenever a view is loaded it will be available

for the scope of the main-controller, but each view has been assigned its own controller to

maintain readability in the code. This enables the main-controller to focus on functionality

that involves the application as a whole (e.g. language and navigation) while the specialized

controllers can focus on their own tasks.

Controller calls
factory

Prepare service with
parameters

Service fires API call View interaction API response

Process received
data

<<On success>>

Handle lost
connection with

server
<<On error>>

Controller handles
received data

View Controller Factory Service API

Figure 23 – Interaction flow between different angular components for an API GET request

Figure 23 illustrates how the different components in Figure 21 interact in a generalized

setting for interaction between the user and the API. A concrete example follows.

<body data-ng-app="dashboardApp" ng-controller="mainCtrl">

 <…>

<!--This will be visible on all pages -->

 </…>

 <main class="container-fluid">

 <div data-ng-view class="…">

 <!—- Templates will be displayed here -->

 </div>

 </main>

</body>

37

Case: Change Current Language

View Interaction

The user selects a new language in the dropdown menu as

shown in Figure 24.

When a language has been selected, the on-click listener for the selected item will be fired

(Figure 25). This listener is an Angular directive called ng-click, which can be passed

JavaScript code that will be executed when the element is clicked. In this case the

changeLanguage function, which belongs to the Main-controller scope. This function gets

passed the language that has been associated with list element [28].

Controller Calls Factory

Figure 26 – changeLanguage from mainController.js.

The Main-controller function changeLanguage illustrated in Figure 26 invokes the

languageFactory to change the current language.

Prepare Service with Parameters

scope.changeLanguage = function(language) {

 languageFactory.changeLanguage(language, function(langPack) {

 scope.langPack = langPack;

 scope.currentLanguage = language.name

 });

};

var setLanguage = function(languageCode, onSuccess, onError){

 languageService.getLanguagePackage.get({

 language:languageCode}, function(langPack) {

 onSuccess(langPack);

 },

 function(response) {

 // Connection lost, redirect to service unavailable

 });

};

Figure 27 – Language Factory method setLanguage triggered by languageFactory.changeLanguage. Snippet from

languageFactory.js.

Figure 24 – Selecting language in

the view.

<li … ng-click="changeLanguage(language)">…

Figure 25 – Code outtake from the main view corresponding with Figure 24. Simplified snippet from main.html.

38

Figure 27 shows how languageFactory initiates an HTTP-GET request using

languageService with code for the selected language, success and error scenario

methods.

Service Fire API call

Figure 28 – Language service utilizing Angular $resource for http requests. Snippet from languageService.js.

The Angular $resource is utilized in both of our Angular services. $resource is designed

to easily interact with RESTful data sources and provides an abstract interface to the more

low-level $http service [29]. In this particular case the language package object will be

executed and attempt to get the JSON language file from the server.

API Response Success

A success scenario will involve a returned language package JSON file. This will trigger the

onSuccess callback function in the languageFactory (Figure 27).

API Response Error

An error occurred and there was no response from the server which is likely to be loss of

connection or server error. Therefore the user will be redirected to the “service unavailable”

site. This action is performed by the onError callback function in languageFactory

(Figure 27).

Controller Handles Received Data

The callback function in changeLanguage (Figure 26) receives the language package from

the API and updates the scope variable langPack to point to the received data. It also

updates the current selected language variable. The new language package is now available

through the entire application as the main controller scope wraps the entire application.

angular.module('dashboardApp')

 .factory('languageService', ['$resource', 'RESOURCE',

 function(resource, RESOURCE) {

 …

 var languagePack = resource(':language.json',

 {language:'@language'});

 …

39

Core Product

Core Product

bower.json
Gruntfile.js

package.json
.jshintrc

bower_components/
dist/

node_modules/
test/

app/
[12 533 lines]

assets/
scripts/

404.html
app.js

en-us.json
index.html

maincontrollers.js
mainFactories.js

nb-no.json
robots.txt

unavailable.html

common/ modules/

admin/
login/

overview/
system/

addContract/

myContracts/

settings/

addContract.html
addContract.js

addContractControllers.js
directives.js

controllers/
templates/

views/

controllers/
templates/

views/

myContracts.html
myContracts.js

myContractsControllers.js
myContractsDirectives.js

myContractsFilters.js

edit-contract.html
special-rights.html

templates/

settings.html
settings.js

settingsControllers.js
settingsDirectives.js
settingsFactory.js
settingsService.js

animate.css
animations.css

common.css
sharedProperties.js

controllers/
factories/
services/

templates/

directives/

dateInputField/
rightsTable/

simpleFilterList/

editableInputField/ manageAttachment/

editableInputField.js
editable_input_Field.html

manage-attachment.html
manageAttachment.css
manageAttachment.js

Figure 29 – File structure of core product expanded on the files being referenced.

40

Angular

Contract Manager
(Root module)

Modules

Add contract
Module

My contracts
Module

Admin
Module

Overview
Module

Settings
Module

Login
Module

Shared resources (common)

Controllers Directives

Factories Services

My contractsAdd contract Admin Overview Settings Login

Controllers Controllers Controllers Controllers Controllers

Views Views Views Views Views

Directives Directives

Filters Categories
Module

Groups
Module

My Org
Module

Controllers

Directives

Factories

Services

Directives

Services

Factories

System
Module

System

Controllers

Customers
Module

SysSettings
Module

Directives

Factories

Services

Groups My
Organization

Categories Customers SysSettings

Controllers

Views

Factories

Controllers

Views

Controllers

Views

Controllers

Views

Controllers

Views

Test

Scripts

Bower components

Angular specific
components

Other components

Figure 30 – Core product structure. The arrows points to an expanded view of each module.

Figure 30 provides a more abstract overview of the core product structure than in Figure 29

than what the point of entry did as shown in Figure 21. It provides an overview of all the

core components in the Core product application by displaying all the modules, abstract

41

content overview and their shared resources, all of which are built using the Angular

framework.

Modules

Each module in Figure 30 is represented by its own color along with its resources and points

to their respective content. All modules displayed and the shared resources (Figure 30) have

been developed in this project, except for the bower components. Bower components are

external plugins that have been included through Bower, even the Angular framework is a

Bower component (see 6.7 Grunt and Bower).

The single exception is “Scripts”. Scripts contain standard JavaScript functions used as a

bridge between the Angular application and external services like Facebook and the Hybrid

mobile applications.

Instantiating

The root module has seven modules attached to it, all of these listed as dependencies during

instantiation as illustrated in Figure 31. All other dependencies are listed here as well as long

as two or more sub modules have them as dependencies. An example would be the Bower

component ‘Feedback’ module which purpose is to display feedback to the user [30]. This is

used in several of our modules and therefore listed as dependency of the root module.

Figure 32 illustrates the instantiation of the addContract module. This module is the only

module utilizing the wizard and therefore it is listed as a dependency here instead of the

root module.

angular.module('addContractModule', ['mgo-angular-wizard']);

Figure 32 – Instantiation of addContract. Snippet from addContract.js.

angular.module('ContractManager', [

 'loginModule',

 'myContractsModule',

 'overviewModule',

 'addContractModule',

 'settingsModule',

 'adminModule',

 'systemModule',

 …

 'Feedback'

])

Figure 31 – Instantiating ContractManager module (Root). Simplified snippet from app.js.

42

Routing

The root module (Top of Figure 30) is configured to handle routing related to its own

submodules. Routing is done using the ngRoute directive which provides access to the

$routeProvider object [31]. We have utilized the when() and otherwise() functions

from the $routeProvider to determine which template files to load into the ng-view

depending on the URL address. In this case, when the location URL changes to #/login, the

main view of the login module will be loaded and assigned its controller as illustrated in

Figure 33.

This is done for all the main views within the application with their own assigned paths.

Invalid paths will result in a redirect back to /login. If the user has an active session, the user

will again be redirected back to overview.

Figure 35 – Setup for lazy loading files on request. Simplified snippet from app.js.

.otherwise({redirectTo: '/login'});

.when('/myContracts', {

 templateUrl: 'modules/myContracts/myContracts.html',

 controller: 'myContractsCtrl',

 resolve: {

 lazy: ['$ocLazyLoad', function(ocLazyLoad) {

 return ocLazyLoad.load([{

 name: 'myContractsModule',

 files: [

 'modules/myContracts/myContractsControllers.js',

 …

]...
…

angular.module(‘ContractManager’).config(['$routeProvider',

 function (routeProvider) {

 routeProvider

 .when('/login', {

 templateUrl: 'modules/login/login.html',

 controller: 'loginCtrl'

 })

…

Figure 33 – Sets up routing configuration for ContractManager module. Simplified snippet from app.js

Figure 34 – Unassigned paths will result in redirect to /login. Simplified

snippet from app.js.

43

Despite this application being an SPA, we have tried to utilize some lazy loading as the

application has specialized modules for specific operations and a typical user session does

not require all the modules. To achieve this, we have utilized a third party Angular plugin

called ocLazyLoad [32]. An example of usage is illustrated in Figure 35. By using lazy loading,

the network traffic is reduced, which is favorable for both the server and users on mobile

devices with limited bandwidth. The initial reason for using lazy loading was that it solved an

issue with the language package not being distributed properly around in the system due to

everything loading in at the same time asynchronously. This is no longer a problem as the

language package is set to load before everything else, but it was decided to keep the lazy

loading due to the positive effects mentioned above.

Factories and Services

As illustrated in Figure 30, factories and services are spread around different modules and in

the shared content area. The reason for this is that some factories and services are used by

several modules and some are specialized for specific modules. The ContractFactory for

example is responsible for everything related to creating and updating contracts. This

functionality is needed from several locations in the application and therefore the

ContractFactory has been placed among the shared resources. On the other hand,

settings factory is only utilized by the settings controller to update profile settings, no other

modules depends on this factory or the settings service and has therefore no reason to be a

shared resource.

Figure 36 – Factories and Services both utilize the angular.module.factory receipt.

// Simplified snippet from settingsFactory.js

angular.module('settingsModule')

 .factory('settingsFactory','settingsService,

 'sessionFactory', '$window',

 function(settingsService, sessionFactory, window) {

 ...

 }

]);

// Simplified snippet from settingsService.js

angular.module('settingsModule')

 .factory('settingsService', ['$resource', 'RESOURCE',

 function(resource, RESOURCE) {

 ...

 }

]);

44

We chose to utilize factories and services as illustrated in Figure 23 where factories contain

business logic and often use one or more service whereas services acts as an interface

towards the API. However, both factories and services use the angular.module.factory recipe

[33], even though there is an angular.module.service available(Figure 36). There are several

reasons why we decided to use the factory receipt in both cases. The factory and service

recipes both inherit the same angular.module.provider receipt and have marginal

differences. While doing research regarding Angular, we observed that the service receipt

seemed pretty much neglected by the entire Angular community. In most cases, references

to service objects was not coherent with objects created from the service receipt, but with

factory.

Directives

Directive is a versatile Angular tool which enables creation of customized HTML tags either

as an element, attribute or class, or a combination of them. This made it possible to

minimize code duplication as we could put components that was needed several places into

a directive and reuse it whenever needed [34]. Directive components can be thought of as a

closed box with no connection to its surroundings. Although connection with the

surroundings such as the parent controller scope can be achieved and even inherited. The

Angular toolbox includes directives such as ng-click illustrated in Figure 25. The ng-

click directive is restricted to be an attribute and its purpose is to set an on click listener

on the element it is attached to. Most of the directives we made ourselves are restricted to

be elements.

It seems to be consensus in the Angular community that all DOM manipulation should be

done within directives and keep the controller as unintelligent as possible [35]. When we

realized that this would make our code more reusable and testable, we settled for a more

extensive use of directives.

45

Figure 37 – Editable input field directive utilized in edit-contract.html

Figure 37 illustrates usage of our ‘editable input field’ directive utilized in the edit-contract

template file. In this particular case, it is used to edit the name of the contract. Since this

directive has its own closed scope, the variable to be edited has to be passed from the

parent controller scope. The update function must be provided by the parent controller and

passed as attribute. This was a choice we made to make the directive more adaptable and

reusable for future usage.

As Figure 38 illustrates, the editable input field is attached to the root module which makes

it available for all submodules to use. This directive is restricted to be used as an element,

which means that if it is implemented as an attribute to other tags it will cause a compilation

error. Template URL points to an HTML file which is the GUI layout for this directive which

can be seen in Figure 39.

The different isolated scope variables in Figure 38 are handed as @, =, or &

which are keywords for the Angular compiler that represent

strings, two way binding and function passing.

<editable-input-field

 original-val="selectedContract.title"

 label="Contract name"

 show-label="true"

 update-fn="updateName(newValue)">

</editable-input-field>

angular.module('ContractManager')

 .directive('editableInputField', function() {

 return {

 restrict: 'E',

 templateUrl: 'common/directives/editableInputField/e…

 scope: {

 label: '@',

 showLabel: '@',

 originalVal: '=',

 updateFn: '&'

 }, …

Figure 38 – Editable input field has an isolated scope. Snippet from editableInputField.js

Figure 39 – editable input field

in action

46

7.2 Implementation of Restlet and API

Database

API

Hibernate

Resources

Representations

Batch
jobs

Email services

Paypal API
Facebook
Graph API

ReCaptcha

Factories

Sessions

Users

Contracts

Groups

Rights

i18n Attachment

Categories

Keys Payment

Notes

User
activity

Push services

Google Cloud
Messaging

Windows
Messaging Services

Push
Provider

Restlet

Figure 40 – A representation of the main components in the API. Each call is routed to the appropriate resource that will

return a representation depending on the request.

This section will discuss central components in the API and how it has been built using

Restlet. Figure 40 shows an overview of the different main components in the API. It also

relies on different external services such as email, push services, Facebook and ReCaptcha.

Internal classes such as sessions, groups, etc. are available through factory classes that

interacts with Hibernate. These classes are exposed through annotations for making an

appropriate representation, given the context.

47

API

build.gradle
sonar-project.properties

WebContent/
res/
sql/

src/
[11 468 lines]

test/
[1 755 lines]

no/etc/ctrctmgr/api/

no/etc/ctrctmgr/test/

activation/
contracts/

email/
i18n/

recaptcha/
rights/

usergroups/
users/

ConfigurationProviderTest.java
UtillityTest.java

sessions/ resources/

MockedSessionFactory.java
SessionFactoryTest.java

LocaleResourceTest.java
MockedServerResourceFactory.java

contracts/
helpers/

login/
organization/
registration/

users/

activation/
batch/
email/
i18n/

paypal/
push/

recpatcha/
representations/

rights/
routing/
system/

usergroups/
users/
util/

database/

lazyloading/

AbstractDatabaseAction.java
DatabaseDeletion.java
DatabaseInsertion.java

DatabaseQuery.java
DatabaseUpdate.java

HibernateUtil.java

GenericLazyLoader.java
LazyLoader.java
NoLoader.java

contracts/ resources/ sessions/

attachments/
exporting/

notes/

Contract.java
ContractFactory.java

RenewalEvent.java

categories/

Category.java
CategoryFactory.java
CustomCategory.java
DefaultCategory.java

DefaultCategoryName.java
DefaultCategoryNameKey.java

HomeUserCategory.java
OrganizationCategory.java

AndroidPushResource.java
LocaleResource.java

OneTimeAccessResource.java
PreferredLocaleResource.java

WindowsPushResource.java

activation/
batch/

contracts/
helpers/

login/
organization/

payment/
registration/

sysadmin/
users/

OneTimeKey.java
Session.java

SessionFactory.java

ApplicationRouter.java
ConfigurationProvider.java

TomcatMainEntry.java

Figure 41 – Overview of the file structure of the API source code that has been written during this project expanded on the

source files being referenced.

When the user is requesting all the contracts that the user has access to, an HTTP-GET call is

made to a ContractOverview resource. Before the resource attempts to find any

contracts, the session key-id is validated in order to verify and identify the user making the

request. After this, the resource will request a list of contracts from a ContractFactory,

which will find the contracts that the user has sufficient rights to view through HQL. The

resource will then return a GSONRepresentation<Contract> from a

RepresentationFactory that would build up a GSON-representation based on the

annotation provided by the resource to the factory.

48

Figure 42 –The function createInboundRoot() that registers all the different API calls. This function is a simplified

version of the original code from ApplicationRouter.java.

The first HTTP call after startup of the API will instantiate createInboundRoot() in

ApplicationRouter (Figure 42). This will build up the router that routes calls to their

appropriate resource and registers each server resource together with its URI. One issue was

handling sessions, as we did not want to add an if-statement in each function in the server

resource that checks if the connection has sufficient rights. This was achieved by creating the

abstract class AuthenticatedServerResource that would intercept the HTTP call and

verify the session before it reached the ServerResources. That way, we could easily

require a valid session for a resource by making it extend the abstract class.

One challenge when developing the API was to avoid having duplicate classes for different

representations. Data from an entity should for example not be copied over to a new class

just to select which fields should be serialized. An approach like this would lead to duplicates

and varieties of classes spread around the system. It would be hard to maintain and not very

good in terms of object-orientation as there exists variants of the same class throughout the

system. The goal was to reduce code and duplications in the same way class duplications can

be avoided with Hibernate. This was solved by creating an annotation that specified which

fields of an object should be serialized together with GSON by using reflection. When a

representation of a class was required, the class together with the annotation type was

passed to a RepresentationFactory that would create the GSON representation of the

fields annotated with the given annotation. Being limited to class members would be a

@Override
public Restlet createInboundRoot() {
 if (!Utility.inDev()) {
 Logger.getLogger("org.restlet.Component.LogService")
 .setLevel(Level.SEVERE);
 }

 Router router = RouterFactory.makeRouter(getContext());
 router.attach("/register/homeuser", HomeUserRegistrationResource.class);
 ...
 router.attach("/access/{key}-{id}", OneTimeAccessResource.class);
 router.attach("/activation/{key}-{id}", ActivationResource.class);
 router.attach("/languages", LocaleResource.class);
 router.attach("/languages/preferred", PreferredLocaleResource.class);
 router.attach("/batch/{key}", BatchResource.class);

 return router;
}

49

disadvantage as there are cases where the return value of a function is required in a JSON

object. This was solved by finding methods that returns a string and is annotated with

@ExposedMethod(String propertyName) inside the object being subject to

serialization (Figure 43). Using annotations also solved the issue where a class needs to have

several different representations due to the fact methods and properties can have several

annotations.

Figure 43 – Snippet of how the abstract function getName under the class Category is annotated for different

representations.

As discussed earlier, it is required that the API must be stateless in order to be RESTful.

Usually, session tokens are attached to requests using cookies and stored on the server

through the application layer. For example, a traditional PHP web-application (See 5. System

Architecture) would store the session token in cookies and retrieve the session state from

the $_SESSION variable [36]. PHP would either store the session data in memory or to the

file system of the server. This does not follow RESTfull principles as the state is persistent

through memory or the file system through the PHP runtime. It can therefore not be

accessed through another instance of the webserver. However, if stored on a common

medium such as a database, each instance would be able to retrieve the session state.

Storing session identifiers in the database is a common approach when handling session in

REST [37] and is the approach we decided to use when storing sessions in our system.

Figure 44 – Generation of a random, unique session key. This function is located in SessionFactory.java.

@DefaultContractRepresentation
@CategoryRepresentation
@ExposedMethod("name")
public abstract String getName();

public static Session createSession(User user, boolean longExpTime) {
 Session session = new Session()
 .setSessionKey(Utility.randomString(120)).setUser(user)
 .setLongLived(longExpTime);
 setSessionTime(session);

 try (DatabaseInsertion<Session> query = HibernateUtil.getInstance()
 .insert()) {
 int id = (Integer) query.insert(session);
 session.setId(id);
 }

 return session;
}

50

Another challenge was to create session tokens that was unique to prevent sessions from

colliding and prevent others from entering it. As Hibernate requires entities to have a

primary key, the auto-incremented primary key value could be used together with a random

string as the session token. This would result in a string both random and unique. (Figure 44)

We decided to put the session token in the request URL as this would provide easy access to

the key and easy integration on different platforms as it provides a more standardized and

self-documenting implementation compared to using cookies. However, in retrospect we

can see that using OAuth 2.0 [38] by using standard HTTP authorization and putting the

session key in the Authorization field would be a better approach. This would lead to some

more code for header modifications when making API-calls that requires authentication in

the web-app and mobile apps. On the other hand, it would lead to a more standardized way

of authentication, which would make it easier for new developers to understand how the

system deals with authentication.

Client API

GET .../contracts/{contractId}/export/pdf

GSONRepresentation<OneTimeKey>

GET /access/{key}-{id}

Generated PDF document

Figure 45 – How a client downloads a PDF export of a contract using a one-time key. The first URI has been shortened.

One issue of placing the keys in the URI is that they can easily be exposed, for example when

downloading an export of a contract. If Alice sends the link to Bob, Bob would have the

session token for Alice and could potentially access that session. It is possible to limit each

session to an IP address, however there is no guarantee for which person is behind an IP-

address as they may be on the same network and a user may be traveling between different

network and would not want to re-authorize. This problem was solved by generating a one-

time key that would allow a user to access a resource one time only as seen in Figure 45.

After accessing, the one-time key is deleted and is no longer usable. That means if Alice

51

sends a download link for exporting a contract to Bob, Bob would only have a one-time link

that does not relate to the session of user Alice.

Encryption was a system requirement specified early on in the project. Having stored

contracts in a secure manner is important to prevent intruders from obtaining the contracts

in case of a data-breach. However, this was down prioritized as encryption became more

extensive than first anticipated (further discussed under 10.2 Further Development).

7.3 Hibernate Integration
Hibernate plays an important role in Contract Manager as it acts as the communication layer

towards the database when data are made persistent such as user information and

contracts. This section will discuss the following central aspects of Hibernate: the

HibernateUtil singleton class that acts as a façade towards Hibernate, the Hibernate

configuration file, query helpers for database interaction, lazy loaders and the entities

themselves.

Access to Hibernate is available through the singleton class HibernateUtil. This class acts

as a wrapper around different APIs in Hibernate in order to reduce duplicate code. The class

was implemented as a singleton as it holds references to a connection pool, which Hibernate

uses to manage database connections. The code snippet in Figure 46 shows how the class is

implemented using singleton and how it achieves thread safety and lazy loading through

static initialization.

Figure 46 – The singleton patter applied to the HibernateUtil class. This snippet is a simplified version of the actual class.

Once getInstance() is called, the singleton instance is created. One reason why it is

implemented as singleton is that the class needs to be initialized and there should be only

one instance of it. Although it could be implemented as a static class and initialized in

ApplicationRouter.java, a static class would require an initialization function that must

be called before any database calls are made. Applying the singleton pattern would remove

public class HibernateUtil {
 private static final HibernateUtil INSTANCE = new HibernateUtil();

 private HibernateUtil() {
 // Initializes Hibernate
 }

 public static HibernateUtil getInstance() {
 return INSTANCE;
 }
}

52

the initialization call as the class is initialized at the first call to getInstance(). It is

therefore not possible to forget to initialize Hibernate as the initialization call is there by

design through the singleton pattern, for example for unit tests. Another important aspect is

thread safety. Initializing Hibernate may take several seconds, as it has to load classes, map

them, build up queries, connect to the database and so forth. If two calls are made to the

API where both would attempt to create the singleton instance, the Java language

specifications guarantees that its static fields are initialized before any calls to the class are

made [39]. As the class initialization is thread safe, the singleton implementation becomes

thread-safe, therefore, there is no synchronized keyword in the function

getInstance().

Setting up the Hibernate configuration is made by replacing strings in the

hibernate.cfg.xml file with environment variables. Although it is possible to use a

traditional configuration file, environment variables is easier in a cloud environment as the

environment variables for a deployment is configured through an XML deployment file (see

appendix F – Deployment on Microsoft Azure using FTP). The string

“${env.CTRCTMGR_DB_USERNAME}” in the XML file is then replaced by the environment

variable “CTRCTMGR_DB_USERNAME”.

Database operations are made through query-helper objects that acts as a wrapper around a

Transaction and a Session instance. The Transaction instance has to be retrieved

before a Session instance can be retrieved out from it, which performs the database

operations. Once this is done, it can then perform any required database operation. If no

exception was thrown, it should commit its changes, otherwise rollback its changes. As

having to call all of these functions in addition to handling exceptions would result in

duplicated code, these calls are then abstracted through the query-helper classes. Figure 47

shows the different query helpers and their relation.

53

DatabaseDeletion<T>

+DatabaseDeletion(SessionFactory)
+delete(T) : void

<<Interface>>

AutoClosable

+close() : void

<<Abstract>>

AbstractDatabaseAction

-session : Session

+close() : void

DatabaseInsertion<T>

+DatabaseInsertion(SessionFactory)

DatabaseQuery<T>

-criteria : Criteria

+DatabaseQuery(Class<T>,
SessionFactory)

DatabaseUpdate<T>

+DatabaseUpdate(SessionFactory)

-transaction : Transaction

+AbstractDatabaseAction(SessionFactory)
+getSession() : Session
#doRollback() : void

+insert(T) : Serializable -genericType : Class<T>

+where(Criterion) : DatabaseQuery<T>
+getResult() : T
+getResults() : List<T>

+update(T) : void

<<Interface>>

Session

...

<<Interface>>

Transaction

...

1..1

0..*

1..1

0..*

Figure 47 – UML diagram of the different query helpers in addition to how it is built on top of existing library function.

Note that the DatabaseQuery<T> has a function where(Criterion), which returns a

DatabaseQuery<T>. This is to use the cascade pattern [40] in order to simplify conditions

on a query. The code snippet in Figure 48 from SessionFactory.java demonstrates how

Session entities are retrieved.

Figure 48 – Example usage of the query helper DatabaseQuery. The snippet is from the function getSessionKey in

SessionFactory.java.

These queries are mostly used in factory classes. The factories are implemented as static

classes unless they need initialization, where in that case the singleton pattern is applied.

These factories performs different database actions such as inserting, updating and

retrieving.

A class that is capable of being persistent through Hibernate needs the @Entity annotation.

Parent entities are annotated with @Inheritance to declare they can be inherited. Entities

must also have a field declared with @Id that becomes the primary key. A field that is auto-

incremented, for example a contract id must be annotated with @AutoGenerated. N-to-N

try (DatabaseQuery<Session> query =
 HibernateUtil.getInstance().query(Session.class)) {
 session = query.where(Restrictions.eq("id", id))
 .where(Restrictions.eq("sessionKey", key))
 .getResult();
}

54

relations can also be implemented by using @OneToOne, @OneToMany, @ManyToOne or

@ManyToMany annotation on the foreign member, depending on the type of relation. These

annotations may also hold information such as whether the member should be lazy loaded

or not, what member name it is mapped to in the other entity and what should happen on

object deletion. It is important to note that if the entity Contract that has a one-to-many

relation to the entity Note, Note must have a many-to-one relationship to Contract and

the one-to-many annotation must describe which member it maps to in Note. Otherwise,

Hibernate will create an additional table contract_note with the references between the

two classes, as it will not understand how to map them.

As objects may hold references to other objects, there has to be a mechanism to decide

when objects should be loaded and when they should not be loaded. By default, many-to-

one relations are loaded once an entity is retrieved from the database, unless their

annotation specifies they should be lazy loaded. One-to-many has lazy loading by default

[41], unless the annotation specifies it should follow the eager fetching strategy, which

means the items should be fetched once an entity is retrieved from the database. A

disadvantage of using this strategy is that objects quickly becomes expensive to retrieve

from the database, therefore the lazy loading strategy should be used whenever possible on

one-to-many relations.

One challenge with using lazy loading was to create a wrapper that would perform the lazy

loading on class members, as the entity had to be associated with an open session before

the member could be fetched from the database. This was solved by first checking if the

member was lazy loaded, if it was not loaded the entity should be reloaded from the

database and then member could be loaded. The issue here, however, was that this could

not be performed in one call. If there was a function void <T> assertLoaded(T

owner, Object member) that first refreshed the owner then loaded the object, the

member parameter would hold a reference to the member in the old instance before the

owner refreshed from the database. Figure 49 shows how this is applied to getting notes for

a contract.

55

Figure 49 – Code snippets for getting all the notes from a contract from Contract.java.

The using function will refresh the entity if the member (in this case, notes) is not loaded,

thereby associating it with a session. Once the call is performed, this.notes is sent to the

lazy loader as this is now a collection in a refreshed entity associated with an open session.

An important aspect of the HibernateUtil.using function is that it will return a concrete

implementation of GenericLazyLoader<T> where T is the type of the object being lazy

loaded. It will decide which type of GenericLazyLoader<T> to create and return based on

the return value from Hibernate.isInitialized(member) that checks whether the

member is initialized or not. If it is initialized, it will return a NoLazyLoader<T> that simply

returns the member in the assertLoaded function.

7.4 Graphical User Interface
The Graphical User Interface (GUI) is one of the most important factors in any computer

system. It defines the first impression for the user and would later on have an impact on the

overall user experience. If the user finds the software to be difficult to learn and/or use, an

otherwise excellent product could fail [42]. Universal design principles have been used in

order to satisfy parts of the target audience.

It was predetermined that the web app had to be responsive and thus support different

screen resolutions. It was challenging to maintain a good user experience while displaying

less information on smaller devices. Having a scalable website is becoming more and more

mandatory and especially for businesses. For example, Google punishes websites that is not

mobile friendly by reducing their priority when displaying search results [43]. AngularJS

directives provides making custom HTML tags with directives which leads to eliminating

duplicate HTML. This makes the design easily extendable. Designing for desktop was

prioritized from the beginning, but how the layout would scale down was always considered

and adjustments were made accordingly. By maintaining a familiar user interface on all

screen sizes makes it easier for the user when changing devices with different screen

resolutions.

public List<Note> getNotes() {
 return HibernateUtil.getInstance()
 .using(this, this.notes)
 .assertLoaded(this.notes);
}

56

Main Layout

During one of the first sprints we discussed ideas of how the main layout should look like for

the core product. We got inspiration from some of the most popular social media websites,

news webpages, and similar software such as Novatus contracts [44] and eContracts [45].

They all have a header where the account button is placed to the right. Novatus and

eContracts also used the whole width given as available space for displaying content. These

two layout principles can be recognized in our system as well. After showing this structure to

our customer, he was satisfied with the approach.

Figure 50 – Main structure of the core product. Showing the entry module - Overview.

57

When taking advantage of the full width, the header occupies the

entire width. The main navigation were placed to the left, and the

rest is the view for loading each module. This is shown in Figure 50.

Our reasoning for a side menu rather than having menu items in the

header was to make it more extendable. The number of such items

has a limit before they start overlapping each other. Naming the

menu-items also comes into play for how much space they take up.

By keeping a side menu, the core product also scales more natural

down on smaller screens and the users would recognize how to

navigate through the app. This can be seen in Figure 51 where the

button to the top left toggles the menu with a slide effect. One might

argue why we did not put the menu items in the header as long as

there was space there. This was due to the fact that the amount of items there could be

were unknown at the time, and it would be harder to scale on mobile devices.

The header in core product plays two important

roles. It gives easy and quick access to main

functionalities that does not necessarily relate to

contracts and it tells the user where he or she is

located within the app. The notification button

acts as a dropdown menu where the user will find

unseen notifications about contracts or the organization he or she is a part of. For example

new members joining or when a new category has been created. The number represent the

amount of unseen notifications and as soon the bell icon is clicked, the notifications is

flagged as seen and thus reset to 0 as it can be seen in Figure 52.

Figure 51 – The core

product on a mobile phone.

Having the same side

menu.

Figure 52 – The notification dropdown menu. Keep up

with events concerning the user.

58

The button to the right from the notification is also a dropdown

menu, but only for functionalities that is linked with the user

account. For instance in Figure 53, one can see that Ola Nordmann

is an organization administrator and has therefore access to

managing groups (see 4.6 User Types) and his organization. It also

has a link to general account settings for changing password, profile

picture, and subscription for administrators. Even though the profile

picture for home users is only seen by themselves, it gives the

option to personalize their account. However, this is a feature that

could later on be used in other features that may be added to the

system. Also note that categories is not an admin option, so every user independent of their

user type has access to this feature. Although free users get a dialogue message that the

account needs to be upgraded when trying to add new categories. This was something our

customer wanted as an attempt to encourage the users to subscribe to use the system.

When it comes to user feedback about where the user is

currently located, we considered using the breadcrumb

design-pattern [46]. It solves the problem of providing

the user context in the application and it gives an easy

way of navigating back. However, a pattern like this is

more useful in applications where the link hierarchy is

about four or more levels deep. Based on the

functionalities that was required by our customer did

not result in a deep link hierarchy, and instead a simpler

solution were used by only displaying the current location in the header. For navigating back,

the user has access to the side menu. This can be seen in Figure 54.

Responsive Issues

When it comes to myContracts module, a lot is displayed to the user when selecting a

contract; both options and information. This led to element wrapping and overlapping when

the width is balancing on the Bootstrap boundaries (See 6.4 Bootstrap). As shown in Figure

55, the vertical option button overlaps the export dropdown menu, and the tabs below the

header title has wrapped to several lines. This is not an easy problem to fix as the length of

the tab names play a role of how much space they take up and was therefore ignored due to

Figure 54 – Shows the side menu and how the

user easily can see where in the app he or she

is located.

Figure 53 – Account options

for an organization

administrator.

59

prioritization. One of the solutions involved making the side menu a toggle button just like it

is on the smaller devices, but this required some refactoring and leaves desktop users having

to do twice the work when navigating around the app. Another solution was to make the

tabs and some button labels only displaying icons, however this would be confusing as some

of the buttons would share the same icons have we been consistent.

Figure 55 – When the screen width is balancing on the Bootstrap boundaries, some issues appeared. Notice the tabs to the

left and the option buttons.

Finger Friendly Buttons

When developing for mobile devices, touch

becomes the main source for input, and smaller

objects (also referred to as target) on the device

becomes increasingly harder to interact with. It

requires more accuracy from the user and with

grouped buttons they can accidentally hit a

neighboring target and trigger an unintended

action. Using the thumb to press buttons also has

the risk of covering the whole button, leaving it to

display no feedback when pressed, as shown in

Figure 56. Having bigger buttons is also consistent with Fitts’s Law [47], as the user is not

slowed down because he or she needs to focus on accuracy. This concerns all screen sizes.

Figure 56 – Showing that small buttons tends to make

the user use their fingertip instead of their finger pad

(8).

60

Massachusetts Institute of Technology (MIT) have studied human fingertips to investigate

the mechanics of tactile sense and found out that the average width of the index finger is

about 1.6 cm – 2 cm. This is actually wider than what most mobile guidelines suggests.

Google recommends about 7 mm – 10 mm [48], while Microsoft recommend not going

smaller than 9 mm on square buttons. They also note that rectangle-shaped buttons can

have a minimum height of about 7 mm [49].

Bootstrap provides three different button sizes where the standard is 30 pixels in height. By

appending the btn-sm class to the button element, it becomes 22 pixels, while the btn-lg

makes it 46 pixels. However, CSS pixels is not a physical unit and converting it to millimeters

depends on the density of the screen or DPI (Dots per Inch). In other words, physical and

logical pixels are two different units. For instance, a device can have a screen resolution of

1080 x 1920 with a pixel ratio of 3. This calculates to an interpret resolution to 360 x 640.

This way, a phone with high resolution would not render the content too small, and it is this

resolution CSS relates to [50]. To fit the content to the devices viewport is simply by adding

the meta-element in the HTML header shown below in Figure 57.

Figure 57 – The meta element which make sure the content fits on different devices. Notice width=device-width. This is taken

from the header in the index.html from core product.

Not all Bootstrap components provides these options of changing its size, which led to

overriding the CSS rules adjusting it to comply with our requirements. An example of this is

the dropdown menu from the account button shown in Figure 53. Originally, the menu items

were 26 pixels in height, but has been adjusted to 40 pixels. The reason for not going bigger

was because a list of these buttons would take up too much space. For instance, having

many finger friendly buttons displayed at once, the space for content gets limited on small

screens. That being said, finger-friendly buttons is not always practical, as discussed in [51].

Figure 58 – Shows a CSS rule for the account list for adjusting the clickable area. This is from the main.css file from the core

product.

<meta name="viewport" content="width=device-width, initial-scale=1.0,

maximum-scale=1.0"/>

ul#account-list > li > a {

 padding: 10px 20px;

}

61

Adjusting the size of a button is done in CSS by changing the padding attribute. This is done

to all anchor elements within the account-list as shown in Figure 58. The first value

represent top and bottom padding, while the second value represent left and right padding.

In other words, the height of the button becomes the font size in height + top and bottom

padding. If the customer decides to change how all buttons are at default, he has to make

changes to the Bootstrap framework.

Figure 59 – Displaying the clickable area in light green to support finger friendly buttons.

Mental Model

We have also been concerned with keeping a user interface that tells the user how the

system works as simple and correct as possible. This way the user would have a more correct

image of what happens behind the scene and then have a better understanding of how to

operate it. For instance, in Figure 59 those who have access to a contract and those who do

not is separated. Those with access also has the read privilege by default. In other words

read is the same as having access to the contract, but by splitting them into two distinct

groups, it gives an easier understanding of who has access and who do not. This could have

been solved differently by only having the list of privileges, where those who do not have

access at all, would have all unchecked. But again, this solution lacks an easy illustration of

who has access. This has also been used in managing all members in an organization, those

who is active and those who have their account frozen [52].

Using known metaphors for our target audience is a good practice as they would already

relate to it when first encountering such features. When viewing notes to a contract, post-it

notes has been used as a metaphor. This was achieved by making the notes appear as a

square shape with a yellow background color. This can be seen in Figure 60.

62

Figure 60 – How the post-it metaphor is used for notes. One can also notice that the notes are displayed on a small device as

a lot of the contract options is hidden into the vertical dotted button.

Adding a Contract Using the Wizard Pattern

A contract contains multiple inputs representing different aspects of a contract like involved

parties, dates, and adding attachments to name a few. As a lot of choices can lead to not

choosing at all (also known as the paradox of choice [53]) to minimize the number of input

fields dividing the goal into multiple steps for adding a new contract were done. This way,

optional inputs would more likely to be filled in as well. The wizard pattern solves this

problem, where the balance between number of steps and how much each step requires to

continue is the key to encourage the users to fill in as much information as possible. It is

recommended between 3 and 10 subtasks with not too many steps [54]. By categorizing all

inputs resulted in a total of 6 steps where the last step is a summary of the contract and the

user can double check the inputs before saving it as an active contract. The process of going

through the wizard is illustrated in Figure 61.

63

Add contract

Enter information in the
current step

Create new contract

Finished entering information

Continue the wizard?

No
Abort adding new

contract

Is input valid?

No

Show user feedback

YesMove to next step

Update contract

Yes

More steps?

Yes
Try navigating to the

next step

No

Saved contract?

Forgot
Contract added to

draft
Saved

Contract added as an
active contract

Finished adding new contract

Show user feedback

Figure 61 – Showing the process of going through the wizard and illustrating the states the contracts can end up being in.

A contract can have one of three different states:

active, expired, or draft. Contracts are grouped

together based on their state, which is represented

through tabs, as seen in Figure 62. Contracts within

the active tab is ongoing contracts, and expired

contracts is available under the archive tab. The last

one is contracts that has not been completed

through the wizard, and has therefore been marked

Figure 62 – Under my contracts, one can change

which group of contracts is displayed in the list.

64

as draft. Therefore, users does not need to re-enter contracts which may take several

minutes.

According to the user survey (See chapter 8.5 User Testing), adding contracts was one of the

features that would be most used. The third party plugin called angular-wizard met the

requirements for a wizard and minimized the workload against having full control over the

appearance. It is easy to extend the wizard and modify a step since they have their own

HTML file. How this looks in HTML is shown in Figure 63 where the first wz-step element

tag is expanded showing the ng-include element that loads the HTML for that current

step.

Figure 63 – Shows the angular-wizard plugin in action. This starts with the wizard element tag.

The wizard partially uses the breadcrumb pattern as one cannot skip steps. This is

represented by the timeline placed in the bottom of the wizard showing each step at all

times where they have both a name and a dot indicating its state with different colors.

Green represent a finished step, dark grey the current, red indicates invalid input, and light

grey being next steps. This is displayed in Figure 64 where the current location is the time

and date step.

<div id="addContract" data-ng-init="init()">

 <wizard class="well col-xs-12 col-sm-12 col-md-10 col-lg-10">

 <!-- This step covers contract categories & the people involved -->

 <wz-step title="{{slideNames[0]}}" canexit="validateSlideGeneral">

 <ng-include

 src="'modules/addContract/views/general_information_slide.html'">

 </ng-include>

 </wz-step>

 <!-- This step covers date & time information -->

 <wz-step title="{{slideNames[1]}}" canexit="validateSlideTime">

 <!-- This step covers contract attachments -->

 <wz-step title="{{slideNames[2]}}" canexit="validateSlideAttachment">

 <!-- Notification settings -->

 <wz-step title="{{slideNames[3]}}" canexit="validateSlideNotify">

 <!-- Write a note for this contract -->

 <wz-step title="{{slideNames[4]}}" canexit="validateSlideNotes">

 <!-- Edit. Any final adjustments? -->

 <wz-step title="{{slideNames[5]}}" canexit="validateSlideConfirm">

 </wizard>

</div>

65

Figure 64 – The wizard currently on the second step as the timeline indicates.

The first input that is required is the start date to make the other inputs enabled. The length

of the contract can be chosen in two ways, either setting the end date, or provide with a

number indicating how long it lasts, either in years, month, weeks or days. As not all

contracts has the option of being renewed the last input is optional representing the

deadline before the contract can be renewed. If the contract has no restriction about this,

the input could be one day, stating that the contract can be renewed the day before it

expires.

The option of making the contract automatically renewed is provided with a checkbox. While

this is checked the end date input is hidden with a slide effect, and the context of the last

input changes from being about renewal deadline to the deadline for unsubscribing.

Angular has a Bootstrap plugin named angular-bootstrap. This has

provided us with a fully customizable and flexible date picker

which support localization of the date format. This also uses the

default Bootstrap styling which keeps our look and feel

consistent. As the HTML 5 date picker had some compatibility

issues with Internet Explorer, the angular-bootstrap became a

better alternative. Although, the plugin states it is flexible,

viewing it on extra small screens could cause unwanted horizontal

scrolling. By removing padding and limiting empty space we

Figure 65 – The angular-

bootstrap flexible and

customizable date picker.

66

manage to scale even further down to smaller screens. This date picker is illustrated in

Figure 65.

User Feedback

When a user interacts with the system, feedback is important to prevent confusion

regarding results from performed actions. We have used two separate plugins for feedback,

one is a dialogue box giving the user the option to confirm or cancel the action. This type of

feedback is used where the outcome is not reversible, like deleting a contract. The other

plugin is simpler, this just shows a message on the screen stating that an action succeeded or

failed. These plugins in action is displayed in Figure 66 and Figure 67 respectively.

Figure 66 – The ngBootbox plugin in action showing whether the user wants to delete the contract or not.

Figure 67 – Showing a success message using the ng-feedback plugin.

In cases were an action reflects what is being displayed on the screen, none of these types of

feedback is used. The reason is that the changing content is feedback itself. An example of

this is deleting a category, as one would immediately see that the category disappears from

the list of categories. However, the API does not allow deleting categories that has contracts

assigned to it, and since a category is created by entering its name, a dialogue box to confirm

this deletion would therefore not be necessary.

We also have a third method of dynamically showing feedback to the user. These are mainly

related to form validating where the user have missed one or more required input. In Figure

68, the user have tried to navigate to the next step in the wizard while leaving both the start

and end date empty. This is however done with Angular and not by any third party plugin.

67

Figure 68 – Showing feedback on required input before the user can navigate to the next step in the wizard.

7.5 Internationalization
Internationalization (also referred to as i18n) is a large field and is important in applications

that is going to be adapted to different languages. In Contract Manager, i18n was a system

requirement that came quite early in the planning process and has been a continuous

process through large parts of the development process. The customer wanted two

languages to be initially supported in the system: Norwegian and English.

Before displaying the localized text, the system would have to know what language the user

would prefer. Several options were considered for identifying the preferred language. One

approach were to identify the preferred language through JavaScript APIs, a disadvantage

for this approach is that there is no standardized call for getting the language which means

that different calls for different browsers is required [55]. Another approach is to estimate

the user-location based on the IP-address [56]. This would be highly unreliable as if a non-

English speaking user is in Norway on vacation, the system would select Norwegian even

though the language on their computer is set to English. A third approach is to look at the

HTTP accept-language header on requests [57]. Using this approach, the API would easily

detect what language the user would prefer. It also contains several languages that the user

68

would prefer, so that the system can select a language that is known to the user if

supported.

Language detection relies on the HTTP accept-language header value as it provides a

standardized language selection. This way, the language selection can happen on the API.

This approach compiles with REST principles as the responses from the API depends on the

state of the client that is represented in the HTTP request. The user language is set to the

preferred language based on the accept-language header value upon user registration. After

this, the user can override the preferred language by going to settings and select a different

language. Before the user is signed in, the language is decided by the return value of a

resource that would return the preferred language for the user. The example bellow (Figure

71) shows how a request is made to get the preferred language together with the response

body in JSON from the API:

Figure 69 – How the preferred language is retrieved from the API together with the response body.

After determining the language of the user, the user-interface needs to update and show

localized strings in the returned language from the API. There was considered two options

for doing this. One approach was to have a CGI-script that would replace strings in the HTML

files that Angular uses. The second way was to use binding in Angular in order to show the

strings where each string would be found in one JSON document for each supported

language. We decided to use bindings in Angular, as having server-scripts that would modify

the HTML files would go against some of the benefits by having a SPA discussed under

chapter 5. System Architecture. The following HTML snippet (Figure 70) is an example of

how strings are bonded into the HTML using Angular.

GET http://localhost:8080/ContractManagerAPI/languages/preferred
Response body:
{
 "language": "en-us",
 "name": "English (US)"
}

69

Figure 70 – How strings are displayed in the HTML code in index.html under core product.

The langPack variable is set using the following JavaScript function from

mainController.js in order to load the language. (Figure 71)

Figure 71 – How the langPack instance is set in mainController.js under core product.

The language that is loaded is determined by whether the user has an active session or not.

An active session will always have a language associated with it, which is returned by

sessionFactory.getCurrentLanguage(). The loadLanguages function is called

once the web app is initialized, when the user changes language and when the user signs in.

 <span class="glyphicon glyphicon-log-out"

 aria-hidden="true">

 {{langPack.main.logout}}

scope.loadLanguages = function(callback) {

 if (sessionFactory.getCurrentLanguage() == null) {

 languageProvider.getPreferredLanguage()

 .$promise

 .then(function(lang) {

 stringLibrary.getLanguagePack({

 lang: lang.language

 }).$promise

 .then(function(pack) {

 scope.langPack = pack;

 if(angular.isFunction(callback)) {

 callback();

 }

 });

 });

 } else {

 stringLibrary.getLanguagePack({

 lang: sessionFactory.getCurrentLanguage()

 }).$promise

 .then(function(pack) {

 if (angular.isFunction(callback)) {

 scope.langPack = pack;

 callback();

 }

 });

 }

};

70

7.6 Hybrid Apps

API

Web app

Web-view JS Interop

Native code

Hybrid-app

Figure 72 – Architecture of the Android and Windows hybrid apps.

Both the Windows and Android hybrid-apps follow the same architecture (Figure 72). They

both use a web-view, which embeds the web-app through the Internet. Each hybrid-app can

interact with the JavaScript code inside the web-app through a JavaScript interop. JavaScript

interop is a bridge between the web app and the hybrid-app for communication between

these two. The web-app can also interact with the hybrid-app by sending a message to the

hybrid-app. This is necessary as the web app needs a way of telling the native part of the

hybrid-app when to invoke certain functions, for example starting the camera when the user

wants to upload a picture of a contract.

Figure 73 – A code snippet of how a message is sent to the different apps when the user wants to upload a picture of a

contract.

Figure 73 demonstrates how a message is sent to the native part of the hybrid applications.

The main difference between Windows and Android is that Windows operates with strings

and Android operates with exposing native methods through the global variable Android in

$scope.takePicture = function (contractId) {

 if ((window) && (window.external)

 && ("notify" in window.external)) {

 window.external.notify("PIC:" + contractId);

 }

 if (typeof Android != 'undefined') {

 Android.takePicture($scope.contract.id);

 }

};

71

JavaScript. Functions are then exposed by annotating them with @JavascriptInterface,

as seen in Figure 74.

Figure 74 – The Java function called when the Javascript function Android.takePicture(contractId) is called. Code

snippet is from the class HybridAppInterface.

On Windows, the received message has to be parsed and then invoked on the appropriate

message handler. Each call is received through events in C# that is registered on the web-

view (Figure 75). Events is a callback function that is called when a certain events occurs, it

can be seen on as a language-level implementation of the observer pattern as an event can

have several event handlers registered on itself. When the message for taking a picture is

received (e.g. “PIC:1”), the code will attempt to find the message handler for the received

message header (PIC) and pass the parameters to the handler, in this case “1” which is the

contract id. The message handler would then start the camera on the device then later on

upload a picture if a picture was taken to the API.

@JavascriptInterface

public void takePicture(int contractId) {

 Log.w("SESSION takepic:",

 contractManagerSession.getSessionKey());

 Intent cameraIntent =

 new Intent(mActivity, CameraActivity.class);

 cameraIntent.putExtra("contractId", contractId);

 cameraIntent.putExtra("sessionKey",

 contractManagerSession.getSessionKey());

 mActivity.startActivity(cameraIntent);

}

72

Figure 75 – Callback function and the registering of message handlers for received calls from window.external.notify

in the Windows app. Code snippet is from the class AppHelper.

One challenge with the Windows app is that the Windows Phone and the Windows APIs for

invoking the camera are different. As mentioned earlier, the Windows application is a

portable Windows application. This means it can run on both Windows and Windows Phone.

All common code between each platform is added to two projects (modules) named

“Shared” and “Common” (Figure 76). Platform-specific APIs such as camera is then wrapped

by using an interface inside the projects specific to each platform. In Windows 10, Microsoft

unifies all the APIs to one, which would lead to only one project for Contract Manager [58].

public AppHelper(WebView view, ICameraProvider cameraProvider)
{
 this.view = view;
 this.messageHandlers = new Dictionary<string,IMessageHandler>();
 this.messageHandlers.Add("LOGIN", new LoginHandler());
 this.messageHandlers.Add("FB", new FacebookLoginHandler());
 this.messageHandlers.Add("PIC", new PictureMessageHandler(cameraProvider));
 this.messageHandlers.Add("LINK", new ExternalLinkHandler());
 this.messageHandlers.Add("LOGOUT", new LogoutHandler());

 this.view.Navigate(new Uri(applicationUrl));
 this.view.ScriptNotify += ExternalEventReceived;
 BackgroundTaskHelper.RegisterTasks();
 Debug.WriteLine("AppHelper initialized");
}

private void ExternalEventReceived(object sender, NotifyEventArgs e)
{
 Debug.WriteLine("Message from window.external.notify: {0}", e.Value);

 string header = e.Value.Split(':')[0];

 IMessageHandler handler;
 if (messageHandlers.TryGetValue(header, out handler))
 {
 Debug.WriteLine("Invoking message [{0}]", header);
 handler.Invoke(this, e.Value.Substring(e.Value.IndexOf(":") + 1));
 }
 else
 {
 Debug.WriteLine("Unknown message: {0}", e.Value);
 }
}

73

Figure 76 – Project structure of the Windows application.

When the user starts the application and signs in, the session key-id token is sent to the

native part of the application. The native part will then register the device as a push device

with the API. On every API-call the native part performs has the session key-id in the URL for

authentication. This token is then removed when the user signs out in the application.

74

8. QA

8.1 API
We saw early on in the project that tests on the API would be the most important

component in the system to test, as it is the most central component in the system. Unit

tests were written using the JUnit framework as this was the framework we had most

experience with in Java. The goal of the unit tests were to have a test on each single

component unless the test would become too expensive

to create. There are for example no unit tests on external

services such as email and push messages as testing these

modules would require a lot of code and would easily

introduce new dependencies in the project. All the tests

were executed in Eclipse, as seen in Figure 77.

Each test for the API attempts to focus on one single

component in system. However, each test usually

depends on more classes than one class being subject to

the test. Each test usually involves the database and a

factory to create for example a user if needed. The

classes creating test objects such as users in the system is

called mocked factories. There are also mocked resource

factories, as some resources requires a valid session or a contract to be executed. These

factories were created to avoid having to duplicate code for user-creation throughout the

tests. Some examples are MockedHomeUserFactory, MockedOrganizationFactory

and MockedSessionFactory.

Tests were written at several levels in the API. Utility classes, factories and resource classes

(See 7.2 Implementation of Restlet and API) are the class categories that has been most

extensively tested. The tests were written for each level, as there is often a dependency

between these. Resource classes depends on factory classes, and they both often rely on

utility classes. This allowed us to identify if there was a problem e.g. parsing of POST or GET

parameters or if there was a problem with the database operations. Figure 78 shows how a

unit test was written on factory level together with a mocked factory. Figure 79 shows

another unit test on resource level.

Figure 77 – Execution of unit tests in Eclipse.

75

Figure 78 – A unit test of getting session keys on factory-level.

Figure 79 – Test of getting available language on resource-level.

Towards the end of the project, the tests became more and more extensive. At one point,

we had to consider whether we should be working on an extensive testing framework for

the API or the API itself. It is possible to test every function and attempt to get every

outcome of the function; however, writing tests that extensive would drastically increase the

testing code. When a test did not run successfully, the cause would often be that there was

minor changes in for example API parameter naming, or a change in the return value of a

function. However, writing tests at this level has potentially reduced the amount of

development time by e.g. knowing a contract that is added to the system can be retrieved

back. The unit tests was also used as an indicated on whether the API was set up correctly on

each computer used by the development team.

@Test
public void testSessionKeyHandling() {
 Session session = MockedSessionFactory.mockSession();

 assertNotNull(session);
 assertNotNull(session.getUser());
 assertTrue(session.getExpirationTime() > Utility.currentTimestamp());
 assertTrue(session.getExpirationTime() > Utility.currentTimestamp() + 200);

 String[] key = session.getSessionKey().split("-");
 Session sessionCompleted =
 SessionFactory.getSessionKey(Integer.valueOf(key[0]), key[1]);

 assertNotNull(sessionCompleted);
 assertEquals(sessionCompleted.getId(), session.getId());
}

@Test
public void test() throws Exception {
 LocaleResource resource = new LocaleResource();
 GsonRepresentation<List<Locale>> representation = resource.getLanguages();

 assertTrue(representation.getObject().size() > 0);
 Locale locale = representation.getObject().get(0);

 assertNotNull(locale);
 assertNotNull(locale.getLanguage());
 assertFalse(locale.getLanguage().isEmpty());
 assertNotNull(locale.getName());
 assertFalse(locale.getName().isEmpty());
}

76

8.2 SonarQube
SonarQube (also referred to as Sonar) [59] is a quality assurance tool for making sure that

code complies with a given set of rules. These rules are often based on language

conventions. In this project, Sonar was used in the QA process of the API. Each rule that is

violated is then reported as an issue through Sonar (See Figure 80). Sonar supports a wide

range of languages, however we saw it sufficient to only use it on the API as there was other

tools that was a better fit for the other languages. We had previous experience with Sonar

from IMT3281 – Software Development and we felt it was appropriate to use Sonar as it is

often used in larger Java projects.

Figure 80 – A list of the different issues reported by Sonar.

As seen in Figure 80, there are still major and minor issues. The first issue in Figure 80

(Methods should not be too complex) is often at a function that has too many return values.

Some of these functions are quite short (10-20 lines long), and complying with this rule

would involve introducing unnecessary complexity in the code that would in the end make it

less readable.

Sonar did also make it possible to discover some bugs. For example, if there was a parameter

or a function that was not used or if there was a block of code that was commented out, it

would appear as an issue in Sonar. As seen in Figure 81, Sonar would also detect duplicated

code blocks and mark these as issues. This way, it would contribute to making the code more

object-oriented and other insights such as how large the project currently is.

77

Figure 81 – Statistics of the project size, duplications and code complexity.

As seen in Figure 82, Sonar was used about one time each month and more intensively

towards the end of the project. The blue line indicates complexity and the yellow is a result

of the estimated time Sonar has estimated it would take to fix the issues. Note that the

complexity of the project grew due to the growth of the code-base as the project made

more progress.

Figure 82 – History of Sonar issues throughout the project.

8.3 Angular

Refactoring

As the Core product grew in size, refactoring became necessary to maintain a lean working

environment. At the early stages of development, the Core product had the same file

78

structure as the Point of entry application, but had to move on to a more extensive structure

several times during development (See Figure 20). File and folders needed restructuring as

well as distributing responsibility into more specific units such as more specialized

controllers, factories and services within each module.

Code Reviewing

As none of the group members had any experience using Angular before this project, it was

crucial that those working with Angular shared their gained knowledge and reviewed code

written by other members. This helped to utilize the Angular framework in a larger extent

and create a shared perception of how it should be used.

Manual Testing

Manual testing was done mainly using Google Chrome tools such as the network log and the

console. Angular provided error messages for everything related to compilation of the app in

the web-console. These messages did not provide specific information about the issue at

hand, but was a useful indicator to determine if the problem was a missing file or a syntax

error. All scopes was monitored through the Chrome console during development, and all

API calls through the network log.

Unit testing

For automated unit testing, the Karma test runner [60] was utilized with Jasmine [61] as the

testing framework.

Figure 83 illustrates a unit test for the main controller in the point of entry application. It

utilizes the Jasmine functions describe, it, spyOn and expect. These functions are used

to describe what is being tested, declare specific test cases, generate behavioural

 describe('$scope.changeLanguage', function() {

 var language = 'en-us';

 it('should initiate change of language...', function() {

 var $scope = {};

 var controller = $controller(

 'mainCtrl', {$scope: $scope}

);

 spyOn($scope, 'changeLanguage');

 $scope.changeLanguage(language);

 expect($scope.changeLanguage).toHaveBeenCalled();

 });

...

 Figure 83 – Simplified snippet from Point of entry, main.js, unit test.

79

information, and assertion. This test expects that the scope function changeLanguage to

have been run.

We did not prioritize extensive use of unit tests in either of the Angular applications as we

experienced it to be a lot more complex than first expected as the dependencies of the

components to be tested would have a large impact the complexity of the test. It seemed

crucial to write these tests along with or before the actual code instead of doing it later on.

8.4 JSHint
JSHint is a tool used for code inspection, like Sonar. It makes sure that standard JavaScript

conventions are followed as well as customized project conventions.

JSHint was utilized in both Angular projects, installed through the NPM, and set up with

Grunt. It provided feedback regarding the code whenever the command line interface

command “grunt” was used.

The rules for validation was set up in the jshintrc file

as displayed in Figure 84. This ruleset was applied to

the entire project and reported all deviations from

the given rules upon lint check [62].

Figure 85 – Output from JSHint

Figure 85 illustrates a JSHint report that points to two deviations from the rule sheet. The

report specifies what needs to be done in order for the code to comply with the rules.

8.5 User Testing

There was created three different test cases containing about five tasks each. These cases

tested both minor and main functionalities, where the main purpose was to get subjective

feedback from people outside of the development team. Another bachelor group consisting

of three people tested the web application. One developer observed each test in case

something went wrong. The goal was initially to get an overview of user feedback and report

back to the customer for further development, however some issues were fixed.

After each test case, the testers answered four questions about the main functionalities.

Questions like creating a new contract, finding a specific one, and more in general, how they

app\modules\overview\overviewFactory.js
line 432 col 101 Strings must use singlequote.
line 41 col 14 Missing semicolon.

"camelcase": true,

"curly": true,

"quotmark": "single",

Figure 84 – JSHint rules. Simplified snippet from

jshintrc

80

felt when navigating throughout the application. Adding a new contract was a lot to digest

since they had little background about what a contract represents in our system. Knowing

which step in the wizard they were currently in and what input was mandatory was difficult

to know. Having the wizard scalable makes each input field also very long for big screens.

When it came to finding a specific contract, the feedback was positive. One drawback that

came up was that the list of contracts should been sorted from newest to oldest. As there

were multiple contracts in the system, the testers used scrolling for finding a contract rather

than using the search feature under the contract overview. In general, the testers reported

that navigating through the app was intuitive and easy, but when viewing a contract the

amount of options given became overwhelming for some. However, they appreciated the

user feedback in the application.

When making a drafted contract active, the edit button was highlighted for guiding the user

where this option was available. In this case, the main goal for looking at drafted contracts

would be to approve them as active after checking its content. However, this made it more

confusing as the users though they already were inside edit mode. After discussing the issue,

it was considered as a design flaw and went back to the previous look. How it was before the

fix is displayed in Figure 86.

Figure 86 - Showing the highlighted edit button for guidance on drafted contracts.

In cases where there was a list of items, where each item contains an icon representing an

action, the entire item should have been clickable, and not only the icon. The reason for not

doing it in the first place was an attempt to prevent accidental clicks. This was an attempt to

design to prevent human errors.

81

9. Technical Memos

9.1 Hosting Options for Java 8 Web-Applications in the Cloud
One discussion with the customer was hosting options for Java web-application (See

appendix C – Meeting summaries). It was decided to look closer into which hosting options

are available in the cloud. This memo describes some options for hosting an Apache Tomcat

8 container on the following PaaS (Platform as a Service) providers: Amazon Web Services

(AWS), Microsoft Azure and Google Cloud.

A Tomcat container is a Java servlet container that is responsible for the interaction between

the webserver and the Java servlet itself [63]. It routes HTTP calls to the desired resources in

the servlet in addition to the lifecycle of the servlet.

AWS has a platform for web-applications called Elastic Beanstalk that supports a long range

of different technologies. AWS has been supporting Java 8 quite early with Tomcat 8 [64].

Hosting in AWS using Elastic Beanstalk is trivial as a hosting-container can be set up in a few

minutes through a wizard.

Compared to AWS, Microsoft Azure requires a bit more configuration as they are currently

only providing Java 7 through their cloud portal. However, it is still possible to set up Tomcat

8 with Azure as they allow custom deployment of Java applications [65]. When the team

followed this tutorial, the Java runtime would not work unless the JDK version was 1.8u0

[66]. The platform architecture did also have to correspond with the configuration on the

Azure portal, as Azure allows customers to switch between x86 and x64.

Goolge Cloud supports older versions of Tomcat but not Tomcat 8. However, it is possible to

use IaaS (Infrastructure as a Service) which is harder to set up and is more expensive

compared to PaaS.

Provider Platform

Google Cloud Tomcat 7

Microsoft Azure Tomcat 7/custom deployment

Amazon AWS Tomcat 8

Table 5 – Different Java platforms for Google, Microsoft and Amazon.

In conclusion, it seems that it is good support for Java web-applications among cloud

providers. Although Java 8 and Tomcat 8 is quite new in terms of Java platforms, it may take

some time before every cloud provider supports the newest versions. It is also worth

82

mentioning that hosting on an IaaS stack would give more flexibility compared to PaaS

although it would require more configuration.

9.2 Secure Storage of Passwords
Storing passwords in a secure way is crucial when storing passwords. There are however,

many ways to store passwords. This memo discusses methods for storing passwords in a

secure manner.

Encrypting passwords is one way of storing passwords, but is considered as insecure as it is a

two-way function. It is however, important not to confuse encryption with hashing, which is

a one-way function. Password hashing is therefore used instead of encryption as it makes it

far more complicated for an outsider to obtain the clear-text value.

There are several well-known hashing functions such as SHA-1, MD5 and the SHA-2 family

[67]. A good hashing function for storing passwords should have the following criteria:

- It should be slow in order to prevent brute-force attacks, while at the same time not

be too slow that would result in a resource hog.

- Generate unique hashes for each user to prevent dictionary attacks. Two users with

the same password should therefore not end up with the same password hash.

- Follow a standardized and well-known hashing function that has been proven secure.

Both SHA-1 and MD5 are considered as cryptographically broken due to the fact they are

vulnerable to collision attacks [68] [69]. This means it is possible to find values that would

produce the same output value of a hashing function effectively.

One commonly used strategy is to use salts and peppers. The pepper can be used in order to

increase the complexity of the password and prevents dictionary attacks by adding a string

at the end of the password. Peppers should therefore be stored in a secure location and not

in the database. Salts should be a unique value for each user that should be used to initialize

the hashing function. The salts would prevent a dictionary-attack, as the brute-force attacker

would have to generate a rainbow-table for each user.

Some hashing algorithms supports taking a value that initializes the hashing function, as

described above with salts. One example is bcrypt [70] that is a key derivation function,

which can be used for hashing passwords. It is an adaptive function, meaning it is

configurable how expensive the hashing process will be. It is also possible to use hashing

83

functions such as sha-256 and sha-512, but they are not derivative functions and does

therefore not provide the same flexibility as bcrypt.

When storing passwords, bcrypt is a function that should be highly considered. It is still not

considered as cryptographically broken and is well known for a quite secure way for hashing

passwords. That being said, it is not possible to achieve a 100% secure way for hashing

passwords.

9.3 Platform Selection
The type of platform will have an impact on who will use the application and how they will

use it. This project aims at the web and a native mobile application, enabling multiplatform

support while at the same time having application that targets specific platforms. During the

first meetings with the customer, the customer suggested that the focus should be on the

Android and Windows platform due to limited resources and knowledge about each

platform. As the iOS platform required developer license and extra equipment (See 1.3

Scope) this was a platform we decided not to develop for.

By writing a Windows application targeted at Windows 8.1, it would make it possible to use

the same code-base both on mobile and on other devices. Windows 10 is also an option;

however, Windows 10 is currently in early preview stage. A better approach would be to first

aim at Windows 8.1 and then later upgrade to Windows 10 when needed, as it is easier to

upgrade an application together with new framework releases.

84

Version Codename API Distribution

2.2 Froyo 8 0.4%

2.3.3 -

2.3.7

Gingerbread 10 7.8%

4.0.3 -

4.0.4

Ice Cream

Sandwich

15 6.7%

4.1.x Jelly Bean 16 19.2%

4.2.x 17 20.3%

4.3 18 6.5%

4.4 KitKat 19 39.1%

Android usage statics from [71].

Choosing which Android API to aim at limits the user-reach of the application. By using a

lower (older) API, the application would reach more users. On the other hand, lower API

level would involve more testing and often more code in order to support different APIs. As

API level 15 and lower only makes up 14.9% of the Android market share in the statistics

above, a good approach would be to aim at API level 16 and higher.

A hybrid application would require API level 17 that would target 65.9% of the Android

market.

Mentioned in 1.3 Scope, the web application should aim at browsers supporting HTML5.

Because of this, users running Windows XP with Internet Explorer 8 would not be supported.

Web application development often involves multi-platform support. However, some users

are nevertheless excluded as of newer web standards and obsolete browsers. Enforcing

legacy browser support would limit which frameworks that can be used in addition to extra

testing. Since users that are still running Windows XP are advised to use other browsers such

as Google Chrome or Firefox because of security reasons, dropping support for Internet

Explorer 8 and older would be reasonable.

https://developer.android.com/about/versions/android-2.2.html
https://developer.android.com/about/versions/android-2.3.3.html
https://developer.android.com/about/versions/android-2.3.3.html
https://developer.android.com/about/versions/android-4.0.html
https://developer.android.com/about/versions/android-4.0.html
https://developer.android.com/about/versions/android-4.1.html
https://developer.android.com/about/versions/android-4.2.html
https://developer.android.com/about/versions/android-4.3.html
https://developer.android.com/about/versions/android-4.4.html

85

10. Summary

10.1 Results
As discussed under 4. Project Planning, most of the planned functionality for this system has

been implemented. There was however features such as encryption, two-way authentication

and OCR that became down-prioritized as there was not sufficient time to implement these.

On the other hand, Contract Manager provides a baseline for contract management where

all the fundamental features are ready from the project backlog. What is left to be done

before the system can be deployed for customer is further discussed under 10.2 Further

Development.

Contract Manager provides an alternative to having contracts in drawers and folders where

there is often no system or structure. It makes it possible for users to find contracts far more

efficiently than finding a contract in a drawer. Users does no longer have to be on the same

location as they access their contracts through the Internet. Although this introduces new

aspects in terms of security, the system has had focus on using robust authentication

mechanisms and widely used, well-known password hashing functions.

By using frameworks such as Hibernate, GSON and Angular, modifications to existing system

requirements has been rapidly implemented due to how modular this system has become,

enforced by the frameworks listed above. If a new field has to be added to a contract, in the

API, the field is added as a member in the contract class, getters and setters are created in

addition to modifications on the creation and updating of a contract. In Angular, minor

changes has to be made in the wizard and the displaying of a contract in order to display the

new attribute.

Due to time restrictions, some modules does not have unit tests for it. For example, the

Angular applications lacks sufficient tests. Since Angular was a new framework we did not

have any experience with, understanding the fundamentals and focusing on developing the

product itself became more prioritized than understanding how unit tests should be written

in Angular. This also applies to the Windows application. On the other hand, there was more

focus on writing sufficient tests on the API, as this became the most central component in

the system.

If the project were to be developed from scratch again, we would still have used much of the

same frameworks and technologies that is currently used. That being said, there are still

86

implementations that should be done differently. There should be more focus on parameter

validation to the API on an abstract level since much of the code in the resource classes

today is code that validates the input data. Authentication standards such as OAuth 2.0

should also be considered, as mentioned under 7.2 Implementation of Restlet and API. Now

that we are more familiar with Angular, there would be some structural differences and less

refactoring compared to in this project.

10.2 Further Development
As mentioned earlier, Contract Manager is currently providing a baseline of the functionality

for a contract management system. Some work remains to be done in order to make it a

system that is available commercially. There should be done more testing on the system in

addition to extra features that is discussed previously.

There was planned how encryption could be implemented early on in the project; however,

this would not work and had to re-do the idea. After this, we saw that encryption would be

far more extensive to implement than first thought. Initially, it was planned to have a key

that decrypts the user-data on the API. The key is unlocked by using the password of the

user. However, this does not work if the user forgets their password, which would lead to

the user losing access to all their data. A better approach would be to have a generated key,

which the user would have to store and enter in the client in order to access the system. On

the other hand, it would still require that the user does not lose the encryption key.

Like mentioned earlier, OCR was another feature that was not implemented due to

prioritization. It can however be implemented by identifying the received data when an

attachment is received and then run the uploaded file content through an OCR library which

would attempt to identify the text. This text can then be searchable by adding the text to a

new member in the attachment entity.

The modularity of this system has been heavily affected by using the different architectures

and frameworks. Having a RESTfull and microservice architecture has enforced weak

coupling between different components in the application. For example, the API is not

dependent on the web application, meaning a new system can easily start integrate the

system, independently on the SPA in Contract Manager.

Better documentation on the API would be required if another system were to use our API.

Although the API is documented using JavaDoc, there is no documentation on the HTTP-calls

87

and responses to the API. The web-app is developed by tight cooperation between the

developers internally in order to comply with which data the API provides and accepts.

Additionally, there should be a way of specifying input data restriction on a more abstract

level as much of the code in each resource class is data input validation. This can be

implemented by creating a validator, which is a Restlet component for enabling restrictions

on different patterns for various fields [72].

Organization administrators should also have a wizard that enables them to easily set up and

get started with this system when first entering Contract Manager. This would allow the user

to quickly invite users and it would make the user quickly see more use of the system than

being greeted with an empty overview where the user may not understand what to do next.

10.3 Group Evaluation

During the beginning of the project, much time went onto researching on different

frameworks in terms of functionality and then later on learning how to use each framework.

This process lasted throughout the project.

Having one-week sprints made the team enter a weekly rhythm, as each week would contain

meetings at the same day of the week. As mentioned under 4. Project Planning, we saw that

having one-week sprints made it possible to quickly get feedback on the progress and quickly

respond to features that has not been implemented correctly. This also forced the velocity of

the project progress to be stable.

In this project, each team member had an assigned role. This made it possible for each team

member to focus on their own task and have a good focus on what their role in the project

is. It also played well together with how modular the system is, as someone who is working

with the web app does not need to understand how Hibernate works. Another important

aspect of having roles is that it made the team more agile since as team member could

better understand what they were doing and therefore perform work far more efficiently

than if they would have to understand how the entire system worked as one.

There has been no major conflicts throughout the project. Either through data loss, conflicts

between team members or between periods where large amount of code has become

irrelevant or implemented wrong. This is the result of sufficient planning in terms of backup

routines, research and have a gathered team where each team member can easily discuss

88

issues with others. There has been discussions where different views has been thoroughly

discussed. These were solved by voting.

Figure 87 – Estimate of time distribution throughout the project based on the hour log.

Figure 87 shows the time distribution throughout the project, based on the hour log (see

appendix B – Hour Log). In total, the project consists of about 1500 working hours. The

length of each day has been stable (about 8 hours), however this was normally longer when

the team had many items to complete during a sprint or was working behind schedule.

10.4 Conclusion
SPA is getting more and more relevant in web technology. Currently, there is no

standardized framework for writing SPAs, however Google is currently working on a W3C

specification for web components [73] which makes it possible to create a SPA with

standardized HTML components without introducing any external SPA frameworks such as

Angular. Additionally, SPAs works well together with the microservice architecture as it

decouples the view from the business logic layer far more extensively compared to

traditional web-pages.

SPA has played an important role for Contract Manager both in terms of project

management and providing support for mobile devices. Having a wide range of different

users that should access the same system has been challenging both while planning and

implementing the system. By applying design patterns and following object-oriented

practices, we managed to create a system that would appeal to our target audience that is

both modular and attempts to be as user-friendly as possible.

70 %

8 %
2 %

16 %
4 %

Time Distribution

Developing Pre-project Meetings Report Research

89

Another challenging aspect of this project was to understand the general life-cycle of

contracts. As this model was unveiled, the project grew drastically in complexity and size.

Maintaining a user-interface that is easy to understand for both home users and

organization users while maintaining the business aspect behind contracts was also

challenging in this project.

This project has been built on the baseline of three years of studies at Gjøvik University

College where knowledge and experience from almost every course has contributed. We

have widened our horizon by learning new frameworks and gaining experience from a real-

world scenario. Many of the frameworks that has been used in this project are widely used

and well recognized in the software industry, which has been a valuable experience for the

team.

In conclusion, Contract Manager attempts to solve many of the issues web-based

applications face today in terms of scalability, modularity and flexibility. It has been

developed by using agile system development methods, design and architectural patterns

such as REST and SPA in addition to widely used and well recognized frameworks and

architectures. As this project has had such a big focus on mobile devices and newer

technologies such as SPA and REST, it is the reason why this thesis is titled Contract Manager

– A Modern Approach: Creating a Contract Management System Using Modern Designs and

Frameworks.

90

References
1. Wasson M. ASP.NET - Single-Page Applications: Build Modern, Responsive Web Apps

with ASP.NET. [Online].; [cited 29.04.2015]. Available from:

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx.

2. Brehm S. Isomorphic JavaScript: The Future of Web Apps - Airbnb Engineering. [Online].;

[cited 29.04.2015]. Available from: http://nerds.airbnb.com/isomorphic-javascript-

future-web-apps/.

3. Anuff E. API-Centric Architecture: All Development is API Development | Apigee Blog.

[Online].; [cited 30.04.2015]. Available from:

https://blog.apigee.com/detail/api_centric_architecture_all_development_is_api_devel

opment.

4. Barry DK. ervice-Oriented Architecture (SOA) Definition. [Online].; [cited 23.04.2015].

Available from: http://www.service-architecture.com/articles/web-services/service-

oriented_architecture_soa_definition.html.

5. James Lewis MF. Microservices. [Online].; [cited 23.04.2015]. Available from:

http://martinfowler.com/articles/microservices.html.

6. Single-page application - Wikipedia, the free encyclopedia. [Online].; [cited 14.04.2015].

Available from: http://en.wikipedia.org/w/index.php?title=Single-

page_application&oldid=656077250.

7. Why REST is So Popular. [Online].; [cited 14.04.2015]. Available from:

https://www.serviceobjects.com/resources/articles-whitepapers/why-rest-popular.

8. Representational state transfer - Wikipedia, the free encyclopedia. [Online].; [cited

14.04.2015]. Available from:

http://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=656

323932.

9. Fielding RT TR. Principled Design of the ModernWeb Architecture. ICSE '00 Proceedings

of the 22nd international conference on Software engineering. 2000: p. 407-416.

https://msdn.microsoft.com/en-us/magazine/dn463786.aspx
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
http://nerds.airbnb.com/isomorphic-javascript-future-web-apps/
https://blog.apigee.com/detail/api_centric_architecture_all_development_is_api_development
https://blog.apigee.com/detail/api_centric_architecture_all_development_is_api_development
http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/articles/web-services/service-oriented_architecture_soa_definition.html
http://martinfowler.com/articles/microservices.html
http://en.wikipedia.org/w/index.php?title=Single-page_application&oldid=656077250
http://en.wikipedia.org/w/index.php?title=Single-page_application&oldid=656077250
https://www.serviceobjects.com/resources/articles-whitepapers/why-rest-popular
http://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=656323932
http://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=656323932

91

10

.

Restlet | Products | Restlet Framework | Features. [Online].; [cited 29.04.2015].

Available from: http://restlet.com/products/restlet-framework/features/.

11

.

Google. google-gson - A Java library to convert JSON to Java objects and vice-versa -

Google Project Hosti. [Online].; [cited 14.04.2015]. Available from:

https://code.google.com/p/google-gson/.

12

.

Hibernate (Java) - Wikipedia, the free encyclopedia. [Online].; [cited 14.04.2015].

Available from:

http://en.wikipedia.org/w/index.php?title=Hibernate_(Java)&oldid=655723466.

13

.

Angular. Angular developer page. [Online].; [cited 29.01.2015]. Available from:

https://docs.angularjs.org/guide/introduction.

14

.

entwiclertagebunch. [Online].; [cited 15.02.2015]. Available from:

http://entwicklertagebuch.com/blog/2013/10/how-to-structure-large-angularjs-

applications/.

15

.

Wikipedia. MIT licence. [Online].; [cited 12.05.2015]. Available from:

http://en.wikipedia.org/wiki/MIT_License.

16

.

Twitter Bootstrap. [Online].; [cited 30.04.2015]. Available from:

http://getbootstrap.com/.

17

.

Otto M. form validation state colors not colorblind-friendly · Issue #14744 ·

twbs/bootstrap. [Online].; [cited 07.05.2015]. Available from:

https://github.com/twbs/bootstrap/issues/14744.

18

.

WebAIM. WebAIM: Designing for Screen Reader Compatibility. [Online].; [cited

07.05.2015]. Available from: http://webaim.org/techniques/screenreader/.

19

.

Mobile App Development - App Creation Software - Xamarin. [Online].; [cited

11.05.2015]. Available from: https://xamarin.com.

20

.

Apache Cordova. [Online].; [cited 04.05.2015]. Available from:

http://cordova.apache.org/.

21

.

W3C. HTML Media Capture. [Online].; [cited 04.05.2015]. Available from:

http://www.w3.org/TR/html-media-capture/.

http://restlet.com/products/restlet-framework/features/
https://code.google.com/p/google-gson/
http://en.wikipedia.org/w/index.php?title=Hibernate_(Java)&oldid=655723466
https://docs.angularjs.org/guide/introduction
http://entwicklertagebuch.com/blog/2013/10/how-to-structure-large-angularjs-applications/
http://entwicklertagebuch.com/blog/2013/10/how-to-structure-large-angularjs-applications/
http://en.wikipedia.org/wiki/MIT_License
http://getbootstrap.com/
https://github.com/twbs/bootstrap/issues/14744
http://webaim.org/techniques/screenreader/
https://xamarin.com/
http://cordova.apache.org/
http://www.w3.org/TR/html-media-capture/

92

22

.

W3C. Push API. [Online].; [cited 04.05.2015]. Available from:

http://www.w3.org/TR/push-api/.

23

.

Polyglot Builds - Gradle. [Online].; [cited 14.04.2015]. Available from:

http://gradle.org/why/polyglot-builds/.

24

.

NuGet Gallery | Home. [Online].; [cited 11.05.2015]. Available from:

https://www.nuget.org/.

25

.

GruntJS. [Online].; [cited 08.05.2015]. Available from: http://gruntjs.com/.

26

.

NPM. NPM js. [Online].; [cited 11.05.2015]. Available from: https://www.npmjs.com/.

27

.

Google Answers: Using LGPL code for commercial application. [Online].; [cited

11.05.2015]. Available from:

http://answers.google.com/answers/threadview/id/439136.html.

28

.

team A. Angular documentation ng-click. [Online].; [cited 05.05.2015]. Available from:

https://docs.angularjs.org/api/ng/directive/ngClick.

29

.

team A. angular $resource. [Online].; [cited 05.05.2015]. Available from:

https://docs.angularjs.org/api/ngResource/service/$resource.

30

.

Pfeiffer A. Github angular-feedback. [Online].; [cited 01.03.2015]. Available from:

https://github.com/andreipfeiffer/angular-feedback.

31

.

Team A. Angular route provider. [Online].; [cited 06.05.2015]. Available from:

https://docs.angularjs.org/api/ngRoute/provider/$routeProvider.

32

.

ocombe. Github ocLazyLoad. [Online].; [cited 10.03.2015]. Available from:

https://github.com/ocombe/ocLazyLoad.

33

.

Angular Team. Agular docs. [Online].; [cited 11.05.2015]. Available from:

https://docs.angularjs.org/api/ng/type/angular.Module.

34

.

Angular team. Angular directive. [Online].; [cited 15.03.2015]. Available from:

https://docs.angularjs.org/guide/directive.

35

.

Esteva S. consensus. [Online].; [cited 07.05.2015]. Available from: http://ng-

learn.org/2014/01/Dom-Manipulations/.

http://www.w3.org/TR/push-api/
http://gradle.org/why/polyglot-builds/
https://www.nuget.org/
http://gruntjs.com/
https://www.npmjs.com/
http://answers.google.com/answers/threadview/id/439136.html
https://docs.angularjs.org/api/ng/directive/ngClick
https://docs.angularjs.org/api/ngResource/service/$resource
https://github.com/andreipfeiffer/angular-feedback
https://docs.angularjs.org/api/ngRoute/provider/$routeProvider
https://github.com/ocombe/ocLazyLoad
https://docs.angularjs.org/api/ng/type/angular.Module
https://docs.angularjs.org/guide/directive
http://ng-learn.org/2014/01/Dom-Manipulations/
http://ng-learn.org/2014/01/Dom-Manipulations/

93

36

.

PHP: Introduction - Manual. [Online].; [cited 29.04.2015]. Available from:

http://php.net/manual/en/intro.session.php.

37

.

James P. Living Without Sessions. [Online].; [cited 11.05.2015]. Available from:

http://www.peej.co.uk/articles/no-sessions.html.

38

.

Internet Engineering Task Force (IETF). RFC 6749 - The OAuth 2.0 Authorization

Framework. [Online].; [cited 29.04.2015]. Available from:

https://tools.ietf.org/html/rfc6749.

39

.

Oracle. Chapter 12. Execution. [Online].; [cited 11.05.2015]. Available from:

https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.2.

40

.

Method cascading - Wikipedia, the free encyclopedia. [Online].; [cited 10.04.2015].

Available from:

http://en.wikipedia.org/w/index.php?title=Method_cascading&oldid=615215005.

41

.

OneToMany (Java EE 6). [Online].; [cited 29.04.2015]. Available from:

http://docs.oracle.com/javaee/6/api/javax/persistence/OneToMany.html#fetch().

42

.

Landrum A. Focusing on UI/UX and The Importance of Good Design | Merge. [Online].;

[cited 06.05.2015]. Available from: http://www.mergeagency.com/creative-

design/importance-of-good-ui-ux.

43

.

Nygard-Hansen HP. Blog owned by Hans-Petter Nygard-Hansen. [Online].; [cited

09.04.2015]. Available from: http://hanspetter.info/2015/03/google-straffer-nettsider-

som-ikke-er-mobiltilpasset/.

44

.

Novatus, Inc. novatusinc. [Online].; [cited 04.05.2015]. Available from:

http://www.novatusinc.com/.

45

.

Optimus BT. eContracts for office 365. [Online].; [cited 04.05.2015]. Available from:

http://www.optimusbt.com/econtracts-for-office/.

46

.

Welie Mv. Breadcrumbs - Interaction Design Pattern Library - Welie.com. [Online].;

[cited 27.01.2015]. Available from:

http://www.welie.com/patterns/showPattern.php?patternID=crumbs.

http://php.net/manual/en/intro.session.php
http://www.peej.co.uk/articles/no-sessions.html
https://tools.ietf.org/html/rfc6749
https://docs.oracle.com/javase/specs/jls/se7/html/jls-12.html#jls-12.4.2
http://en.wikipedia.org/w/index.php?title=Method_cascading&oldid=615215005
http://docs.oracle.com/javaee/6/api/javax/persistence/OneToMany.html#fetch()
http://www.mergeagency.com/creative-design/importance-of-good-ui-ux
http://www.mergeagency.com/creative-design/importance-of-good-ui-ux
http://hanspetter.info/2015/03/google-straffer-nettsider-som-ikke-er-mobiltilpasset/
http://hanspetter.info/2015/03/google-straffer-nettsider-som-ikke-er-mobiltilpasset/
http://www.novatusinc.com/
http://www.optimusbt.com/econtracts-for-office/
http://www.welie.com/patterns/showPattern.php?patternID=crumbs

94

47

.

Wikipeda. Fitts's law - Wikipedia, the free encyclopedia. [Online].; [cited 04.05.2015].

Available from:

http://en.wikipedia.org/w/index.php?title=Fitts%27s_law&oldid=647665922.

48

.

Android. Android developer. [Online].; [cited 04.05.2015]. Available from:

http://developer.android.com/design/style/metrics-grids.html.

49

.

Microsoft. Windows Dev Center. [Online].; [cited 04.05.2015]. Available from:

https://msdn.microsoft.com/en-

us/library/windows/apps/hh202889%28v=vs.105%29.aspx#BKMK_Touchtargetsandtext.

50

.

Vincent Hardy SG. understanding-css-units · tutorials · WPD · WebPlatform.org.

[Online].; [cited 12.05.2015]. Available from:

https://docs.webplatform.org/wiki/tutorials/understanding-css-units.

51

.

T A. Smashingmagazine. [Online].; [cited 14.01.2015]. Available from:

http://www.smashingmagazine.com/2012/02/21/finger-friendly-design-ideal-mobile-

touchscreen-target-sizes/.

52

.

Interaction Design Foundation. Mental Models. [Online].; [cited 05.05.2015]. Available

from: https://www.interaction-design.org/encyclopedia/mental_models_glossary.html.

53

.

Wikipedia. The Paradox of Choice - Wikipedia, the free encyclopedia. [Online].; [cited

06.05.2015]. Available from:

http://en.wikipedia.org/w/index.php?title=The_Paradox_of_Choice&oldid=649134981.

54

.

Welie Mv. Wizard - Interaction Design Pattern Library - Welie.com. [Online].; [cited

27.01.2015]. Available from:

http://www.welie.com/patterns/showPattern.php?patternID=wizard.

55

.

W3C. Don't call me DOM » Determining the user’s language in JavaScript. [Online].;

[cited 14.04.2015]. Available from:

http://people.w3.org/~dom/archives/2010/04/determining-the-user%E2%80%99s-

language-in-javascript/.

56

.

Geotargeting - Wikipedia, the free encyclopedia. [Online].; [cited 14.04.2015]. Available

from: http://en.wikipedia.org/w/index.php?title=Geotargeting&oldid=653237571.

http://en.wikipedia.org/w/index.php?title=Fitts%27s_law&oldid=647665922
http://developer.android.com/design/style/metrics-grids.html
https://msdn.microsoft.com/en-us/library/windows/apps/hh202889%28v=vs.105%29.aspx#BKMK_Touchtargetsandtext
https://msdn.microsoft.com/en-us/library/windows/apps/hh202889%28v=vs.105%29.aspx#BKMK_Touchtargetsandtext
https://docs.webplatform.org/wiki/tutorials/understanding-css-units
http://www.smashingmagazine.com/2012/02/21/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://www.smashingmagazine.com/2012/02/21/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
https://www.interaction-design.org/encyclopedia/mental_models_glossary.html
http://en.wikipedia.org/w/index.php?title=The_Paradox_of_Choice&oldid=649134981
http://www.welie.com/patterns/showPattern.php?patternID=wizard
http://people.w3.org/~dom/archives/2010/04/determining-the-user%E2%80%99s-language-in-javascript/
http://people.w3.org/~dom/archives/2010/04/determining-the-user%E2%80%99s-language-in-javascript/
http://en.wikipedia.org/w/index.php?title=Geotargeting&oldid=653237571

95

57

.

W3C. Setting language preferences in a browser. [Online].; [cited 14.04.2015]. Available

from: http://www.w3.org/International/questions/qa-lang-priorities.en.php.

58

.

Gallo K. A first look at the Windows 10 universal app platform. [Online].; [cited

11.05.2015]. Available from: http://blogs.windows.com/buildingapps/2015/03/02/a-

first-look-at-the-windows-10-universal-app-platform/.

59

.

SonarQube - Wikipedia, the free encyclopedia. [Online].; [cited 03.05.2015]. Available

from: http://en.wikipedia.org/w/index.php?title=SonarQube&oldid=657238023.

60

.

Karma. Karma. [Online].; [cited 12.05.2015]. Available from: http://karma-

runner.github.io/0.12/index.html.

61

.

Jasmine. Jasmine. [Online].; [cited 12.05.2015]. Available from:

http://jasmine.github.io/2.0/introduction.html.

62

.

Wikipedia. Lint. [Online].; [cited 12.05.2015]. Available from:

http://en.wikipedia.org/wiki/Lint_%28software%29.

63

.

Web container - Wikipedia, the free encyclopedia. [Online].; [cited 29.04.2015].

Available from:

http://en.wikipedia.org/w/index.php?title=Web_container&oldid=657414748.

64

.

Amazon. AWS Elastic Beanstalk Supports Java 8 Tomcat 8. [Online].; [cited 15.04.2015].

Available from: http://aws.amazon.com/about-aws/whats-new/2014/11/05/aws-

elastic-beanstalk-supports-java8-tomcat8/.

65

.

rmcmurray. Upload a custom Java website to Azure. [Online].; [cited 15.04.2015].

Available from: http://azure.microsoft.com/en-us/documentation/articles/web-sites-

java-custom-upload.

66

.

Nyfløtt MS. java - Tomcat 8 on Azure websites - Stack Overflow. [Online].; [cited

15.04.2015]. Available from: http://stackoverflow.com/questions/27926673/tomcat-8-

on-azure-websites/28221027.

67

.

Secure Hash Algorithm - Wikipedia, the free encyclopedia. [Online].; [cited 13.05.2015].

Available from:

https://en.wikipedia.org/w/index.php?title=Secure_Hash_Algorithm&oldid=655252398.

http://www.w3.org/International/questions/qa-lang-priorities.en.php
http://blogs.windows.com/buildingapps/2015/03/02/a-first-look-at-the-windows-10-universal-app-platform/
http://blogs.windows.com/buildingapps/2015/03/02/a-first-look-at-the-windows-10-universal-app-platform/
http://en.wikipedia.org/w/index.php?title=SonarQube&oldid=657238023
http://karma-runner.github.io/0.12/index.html
http://karma-runner.github.io/0.12/index.html
http://jasmine.github.io/2.0/introduction.html
http://en.wikipedia.org/wiki/Lint_%28software%29
http://en.wikipedia.org/w/index.php?title=Web_container&oldid=657414748
http://aws.amazon.com/about-aws/whats-new/2014/11/05/aws-elastic-beanstalk-supports-java8-tomcat8/
http://aws.amazon.com/about-aws/whats-new/2014/11/05/aws-elastic-beanstalk-supports-java8-tomcat8/
http://azure.microsoft.com/en-us/documentation/articles/web-sites-java-custom-upload
http://azure.microsoft.com/en-us/documentation/articles/web-sites-java-custom-upload
http://stackoverflow.com/questions/27926673/tomcat-8-on-azure-websites/28221027
http://stackoverflow.com/questions/27926673/tomcat-8-on-azure-websites/28221027
https://en.wikipedia.org/w/index.php?title=Secure_Hash_Algorithm&oldid=655252398

96

68

.

Vulnerability Note VU#836068 - MD5 vulnerable to collision attacks. [Online].; [cited

13.05.2015]. Available from: https://www.kb.cert.org/vuls/id/836068.

69

.

Schneier B. SHA-1 Broken - Schneier on Security. [Online].; [cited 13.05.2015]. Available

from: https://www.schneier.com/blog/archives/2005/02/sha1_broken.html.

70

.

bcrypt - Wikipedia, the free encyclopedia. [Online].; [cited 13.04.2015]. Available from:

http://en.wikipedia.org/w/index.php?title=Bcrypt&oldid=644165711.

71

.

Dashboards | Android Developers. [Online].; [cited 29.04.2015]. Available from:

https://developer.android.com/about/dashboards/index.html.

72

.

Validator (Restlet API 2.3.2 - Java Standard Edition). [Online].; [cited 06.05.2015].

Available from: http://restlet.com/technical-resources/restlet-

framework/javadocs/2.3/jse/api/org/restlet/routing/Validator.html.

73

.

Web Components - Wikipedia, the free encyclopedia. [Online].; [cited 06.05.2015].

Available from:

http://en.wikipedia.org/w/index.php?title=Web_Components&oldid=659521053.

https://www.kb.cert.org/vuls/id/836068
https://www.schneier.com/blog/archives/2005/02/sha1_broken.html
http://en.wikipedia.org/w/index.php?title=Bcrypt&oldid=644165711
https://developer.android.com/about/dashboards/index.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/org/restlet/routing/Validator.html
http://restlet.com/technical-resources/restlet-framework/javadocs/2.3/jse/api/org/restlet/routing/Validator.html
http://en.wikipedia.org/w/index.php?title=Web_Components&oldid=659521053

97

Appendices

A – Project Plan

PROJECT PLAN
ctrctmgr

Høgskolen i Gjøvik
IMT3912 – Bacheloroppgave IMT

Table of Contents
1. Introduction ... 1

1.1 Background ... 1

1.2 Learning Objectives .. 1

1.3 Impact Objectives ... 1

1.4 Performance Objectives ... 2

1.3 Target Audience ... 2

2. Scope .. 2

2.1 Field of Study .. 2

2.2 Project Restrictions .. 2

2.3 Project Description ... 3

3. Project Organization ... 5

3.1 Roles and Responsibility ... 5

3.2 Project Rules ... 5

4. Planning, Monitoring and Reporting .. 6

4.1 Software Development Methodology .. 6

4.2 Status Meetings .. 8

5. Organization of Quality Assurance ... 8

5.1 Documentation, Standardization and Source Code ... 8

5.2 Risk Analysis ... 9

5.3 Tools ... 10

5.6 Legal .. 12

6. Project Plan... 13

6.1 Gantt Scheme ... 13

References .. 14

1

1. Introduction

1.1 Background
During our everyday lives, we get relations with several vendors. Typically through contracts:

either a rent, insurance, or a mobile subscription. These contracts are kept in different IT

systems or kept as a sheet of paper hidden in a drawer nobody knows where is. With an

even increasing stream of services from the digital world: bookkeeping, managing and

controlling of all the contracts becomes increasingly difficult. Organizations may often want

to get an overview and find a specific insurance contract without having to use time on

tracking down a specific coworker and wait for them to locate and fetch the contract while

the server park is literally on fire. In other words, organizations and home users does not

want to spend time finding contract.

Electronic Time Car AS (ETC) is an innovative IT-company with cutting-edge solutions for

managing vehicles used by three or more drivers in small and large car pools. Dag L. Solhaug,

the CEO of ETC, has recognized the need for a system where all contracts are organized and

where users can archive their contracts and get notifications when these are expiring. This

system should also be available on several platforms as users has an increasing use of tablets

and mobile devices both professionally and at home. In addition, the system should be able

to store the contract and its associated information in a safe and secure manner.

Our project, codenamed ctrctmgr that is short for contract manager, is the solution to the

problems described above. It is a system designed for both private users and organizations.

1.2 Learning Objectives

- Use a wide range of frameworks and technologies.

- Understand the importance of unit tests.

- Practical usage of Scrum.

- UI design

1.3 Impact Objectives

- Create a system which both the customer and the group is happy with.

- Make the system available on the web, Android, Windows Phone 8.1 and Windows

8.1.

- Write a good project report that describes our work in-depth.

- Create a user-interface that is both easy and efficient in use.

2

1.4 Performance Objectives

- Create a robust and scalable system that can scale up on demand.

- Make it easier for users to systemize contracts and get notifications about their

status.

1.3 Target Audience

The target audience is broad since the product aims for both the private and the corporate

market in any scale. In other words, those who administrate and manage contracts. We can

assume that a contract management system appeals to those of an adult age. In other

words, we are not considering people under 18 as our target audience but they can still use

the product. The initial release will be focusing at the Norwegian market even though we are

planning the product to support internationalization and will have the English language

package included in the initial release.

2. Scope

2.1 Field of Study

- Responsive web application using HTML, CSS and JavaScript

- Android mobile application development

- Windows application development

- RESTful API-design

- Java servlet

- Internationalization

- Relational database design

- Cryptology

- Unit testing

- Contracts

- OCR (Optical Character Recognition)

2.2 Project Restrictions

- The web development will aim at browsers only supporting HTML5, which is newer

versions of Chrome, Firefox and Safari and minimum Internet Explorer 9.

- No iOS application will be developed as this required additional cost in terms of

development license and a Mac computer.

3

- The Windows application development will target Windows 8.1, which makes it

possible to run the same application on mobile and on desktop.

- The Android application development will target minimum API level 16 (Android 4.1)

and higher in order to make the development and testing of the Android app easier.

- The system will use OCR (Optical character recognition) libraries in order to make it

possible to search on text in uploaded attachments and images taken with the

phone. Text from Word/OpenOffice documents or PDF documents with text will be

directly extracted instead of using OCR. This processing will occur on the backend

and not in a browser or a mobile device.

2.3 Project Description

In brief overview, the system will make it possible for users to store and manage contracts.

This system will be available through a web application and an app for Windows and

Android. Although the system can be thought of as an archive, the system will take the idea

one step further. Users will get notifications either through email, the mobile app or in the

system. It should be customized for both home users and organizations. Therefore, it is

important to make a user-interface that is both simple and easy to understand.

The system will consist of the following main-features:

- Present contract metadata in a generalized print-friendly contract template.

- Contract archive that makes it possible for the users to store, manage and search

through their own contracts.

- Attachments can be added to contracts that is often a scanned document, a picture

or a PDF with the actual contract. Once the user have uploaded the document, the

text is extracted from the document directly if possible or through OCR.

- It should be possible to earn money from making the system available. This is

achieved through revenue from advertisement or subscriptions. There are specific

subscriptions for home users and organizations that removes advertisement and

adds extra security features. Subscriptions are paid through PayPal.

- As contracts are often security-critical and is not some kind of information that

organizations would want everyone to know, these are encrypted using a key-chain

that is in the end locked with the user password.

- Two-factor authentication for enhanced security.

4

- The web-app is scalable for mobile users and desktop users.

- Home users are able to sign in using Facebook.

- Overview that makes the user aware of expiring contracts and recent activity.

- The system administrator should be able to have an overview of users paying for the

service.

- Contracts and overviews can be exported to a file or be printed.

- For organizations, users can be assigned to have individual read/write rights to a

contract or through a group to a contract category.

The project will cover the following platforms:

- Windows 8.1 application development in C# and the .NET Framework

- Android application development

- Responsive web applications with AngularJS and Bootstrap

- Backend REST API written in Java together with MariaDB

Maria DB

RESTful API

Android application
Windows 8.1
application

Web application

Figure 1 - System Overview.

5

3. Project Organization

3.1 Roles and Responsibility
Group Leader - Martin Storø Nyfløtt

See appendix A for roles regarding the group leader. Will also be taking notes from meetings

with supervisor and customer and make sure these are published on the project website.

Technology Responsible - Joakim Jøreng

Design Responsible - Thomas Mellemseter

Supervisor - Tom Røise

The supervisor will be giving feedback and highlight what needs to be done. If the group

leader fails to resolve issues in the group, the supervisor will be requested to resolve the

given issue.

Employer/customer - Dag L Solhaug

Defines demands and limits to the software that should be developed. Will give feedback on

the project progress.

3.2 Project Rules
The group has agreed upon and signed a sheet of group rules. See appendix E – Group Rules.

6

4. Planning, Monitoring and Reporting

4.1 Software Development Methodology
Due to rather unclear requirements in terms of functionality, we saw the need of using an

agile methodology, the project size, and its natural module division was an important factor

deciding what kind of methodology we wanted to use and having a product owner who has

years of experience with Scrum.

The software development methodology of our project is heavily influenced by Scrum but is

accompanied by a few RUP artifacts created in the inception/planning phase. Artifacts such

as glossary, use case, risk analysis document and conceptual data models will be prioritized.

Employer/customer Dag Solhaug is acting as product owner and the acting group leader has

the role of being the Scrum master.

Our version of Scrum master consists of a simplified role with a specific set of continuous

tasks that will be active during the entire project.

The reason for using a simplified and concretized version of the Scrum master is to avoid the

problem having to “wear different hats”. Mitch Lacey points out in the article mixing roles in

Scrum that having the role combination of Scrum master and being member of the

development team can be quite problematic and disastrous [1].

The following list is the tasks concerning the role of our Scrum master.

- Make sure to reserve a proper working environment for the development team

during sprints.

- Set up day-to-day time schedule every week where the team will be working

together. After the daily scrum on Fridays, the Scrum master must gather

information about each team members schedule to achieve this.

- Lead the daily scrum meetings that will be held each day 10:00 except on Tuesday

where the meeting will occur after the meeting with the supervisor and on Friday

when Joakim is available after his lecture.

- Responsible for keeping backups of the task board.

The team will be using some of best practices provided by Henrik Kniberg in the book “Scrum

and XP from the trenches” [2] such as seating the developer team together and using a

physical task board.

7

This will be the initial sprint length as this was recommended by the employer. However, it

may be adjusted if the group see that adjustment is needed.

Sprint review meetings will be held 12:30 to 13:00 where the development team will present

the result of the previous sprint with a live demo. From 13:00 to 13:30, there will be sprint

retrospective meeting where the development team will discuss what worked, what did not

work and what to start doing. Sprint planning for the upcoming sprint will be held from

13:30 to 14:00 and will be used to achieve a sprint goal and which backlog items that will be

included in this sprint. These meetings will be held at the ETC headquarters.

8

4.2 Status Meetings
The group will have status meetings with supervisor and employer every Tuesday. The group

can cancel a status meeting with the supervisor or employer if needed. The group leader will

take notes and be responsible for making a summary of each meeting that is later published

to the project website.

5. Organization of Quality Assurance

5.1 Documentation, Standardization and Source Code

According to group rule §7 (See appendix A), all code and documentation should follow the

standards and conventions for the language or the framework that is being used. All code

should be documented once the core functionality is done. All Java code will be documented

using JavaDoc while C# and JavaScript will be documented using the appropriate

documentation standards according to IDE and language. One of the key areas of SonarQube

is to make sure that the code is following standard coding conventions. SonarQube will be

used for all the languages as it supports these. In C#, code will go through the code analysis

tool in Visual Studio with the rule set “Microsoft Managed Recommended Rules”. The

Android code will go through lint checks in order to follow standards and guidelines made by

Google.

Code should be designed to be unit-tested. As long as a component is trivial or it is a critical

component, unit tests should be added to that component. This applies to all platforms. If

the group has enough time, user tests should also be considered for the web-application and

the apps. UI and performance tests should also be considered together with Visual Studio.

All Java code will use JUnit unit tests, C# will use integrated unit testing framework in the

.NET Framework and JavaScript will have unit tests written in Jasmine. Integration testing

will be done when a component is added to an application. The integration test will have its

focus on communication with the RESTful API and the presentation of received data.

The customer has stated that the application should support several languages, so

internationalization becomes an important element in the user-interface. Each platform has

its own set of tools and guidelines on internationalizations.

Every critical document for the bachelor project should be stored in a shared folder on

Google Drive. This way, the group would not have any issues with loss of data in case a

device malfunctions or any loss of device.

9

Java conventions:

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

C# conventions:

http://msdn.microsoft.com/en-us/library/ff926074.aspx

JavaScript Google conventions:

http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

AngularJS Google conventions:

https://google-styleguide.googlecode.com/svn/trunk/angularjs-google-style.html

HTML/CSS Google conventions:

https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml

5.2 Risk Analysis

Issue Probability Impact

1 The norwegian data protection authority decides that we should

not be allowed to run the system.

Medium High

2 Not able to complete the project. Medium Medium

3 Illness among one or more group members Low Medium

4 Bitbucket is down Low Low

5 Loss of data due to malware, loss of devices or hardware failure. Low High

6 Group member leaves Low High

7 Stored documents becomes corrupt or unbuildable after saving Low Medium

8 SonarQube fails at analyzing source code and corrupts previous

analysis.

Low Low

9 Inaccurate time estimation High Medium

http://www.oracle.com/technetwork/java/codeconventions-150003.pdf
http://msdn.microsoft.com/en-us/library/ff926074.aspx
http://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml
https://google-styleguide.googlecode.com/svn/trunk/angularjs-google-style.html
https://google-styleguide.googlecode.com/svn/trunk/htmlcssguide.xml

10

Issue

Preventive action On occurrence

1 Make proper research during the

project planning and request

information and guidelines from the

authorities.

Complain to authorities, discuss with

supervisor

2 Develop the project in increments

using agile software methods.

Deliver what is completed

3 Make sure each group member gets

enough physical activity, extra

vitamins, make sure that at least one

more group member understands the

code that is submitted to the project.

If someone is ill and gone over a longer

time, shall the active group leader maintain

the status with the ill group member and

make sure that the group member is up to

date on the group progress.

5 Use version control on the source

code where everyone has the

repository synced, use cloud

technology for file sharing so that all

the documents are available through

the net.

Restore data from previous backups, cloud

store or Git repository.

6 Make sure each group member is

doing their work and that they are

working well together as a team.

Notify supervisor.

7 Store Word documents for the final

report as .xml to enable version

control, use version control on all

source code. Good backup routines.

Restore data from previous backups, cloud

store or Git repository.

9 Estimate items with unforeseeable

length as a group.

Reschedule sprint

5.3 Tools
Microsoft Visual Studio 2013

Visual Studio is an IDE by Microsoft for development on the Windows platform. It covers a

wide range of technology from web development and .NET to low-level Windows driver

development. We will use this IDE for the Windows application development.

11

Eclipse Luna IDE for Java EE Developers

Free, open-source Java IDE for development of Java Enterprise Edition applications. This will

be used on the backend part of the system.

Android Studio

An IDE for Android development created by Google, which is built on top of the IntelliJ IDEA,

developed JetBrains. It will be used for the development and testing of the Android

application.

Google Drive

Cloud sharing solution by Google, which makes it easy and convenient to share files and

documents with other group members. It is also tightly integrated with Google Docs.

Google Docs

A lightweight alternative to Microsoft Word, which makes it easy to collaborate on writing

documents and plans. As this tool lacks some essential tools, we have chosen to write the

final report using Word and to use Google Docs as a “mock up”-tool instead.

Bitbucket with Git

Bitbucket is an online repository that will be used for version control (Git). The group has

good experience with Git and Bitbucket from previous project.

Trello

Online task-board that the group will use for organizing and bookkeeping workflow

throughout the project. It makes it easy and convenient to keep track of what other group

members are currently doing.

SonarQube

Java application that makes sure that the Java source code is following Java conventions and

standards. It also makes sure that the code is simple and easy for others to read and

understand. In some cases, SonarQube can reveal bugs.

Microsoft Office Word

Will be used for writing the final report, meeting summaries and longer documents that will

be included in the report. As for the project planning, Word will be used for formatting the

report. Word documents stored in source control will be saved as XML documents to make it

convenient for merge issues.

12

StyleCop

Plugin for Visual Studio that notifies the developer when the code does not follow C#

conventions.

Gradle

Build automation tool that is used in Java-related parts of the project. It makes it possible to

easily include other libraries in the project that is stored in public repositories on the

Internet.

Webstorm

An IDE developed by JetBrains for web development (CSS, JS, HTML).

Microsoft Visio

Illustration tool used to create flowcharts, UML diagrams and other illustrations.

5.6 Legal
All systems that stores and manages information that can be associated with a person is

affected by The Personal Data Act. The law states that the Data Protection Authority shall be

notified once systems are gathering this type of data in addition to the purpose of the

gathering/processing. The ctrctmgr project gathers data that can be associated with persons

such as name and email address. In addition, the law states that all systems that gathers

sensitive information has to apply for license from the Data Protection Authority.

Personal Data Act §2 section 8 - Definition of sensitive personal data

a) racial or ethnic background, or political, philosophical or religious beliefs,

b) that a person has been suspected, charged or convicted of a criminal offense

c) health conditions,

d) sexual relationships,

e) membership in unions.

Personal Data Act §2 section 8, translated from lovdata.no [3]

As users can enter data that may apply under this law, it may be necessary to apply for a

license from the Data Protection Authority. The group is in dialogue with the Data Protection

Authority on whether the system requires a license or if it is sufficient to only notify them

about the information processing.

13

6. Project Plan

6.1 Gantt Scheme

ID Start Finish Duration
2015

jan feb mar

8 6d03.02.201527.01.2015Sprint 1

11d26.01.201512.01.2015Pre project1

9 6d14.04.201507.04.2015Sprint 11

11

14

24d15.05.201514.04.2015Project report

15d05.06.201518.05.2015Project presentation

3 8d26.01.201515.01.2015Website

4 11d26.01.201512.01.2015Research

2 7d20.01.201512.01.2015Prototyping

6 0d26.01.201526.01.2015
Pre project
deadline

5 8d26.01.201515.01.2015Report

7 56d14.04.201527.01.2015Sprints

10 0d14.04.201514.04.2015Finished product

apr mai

Task Name

16 5d05.06.201501.06.2015
Project
presentation

17 0d05.06.201505.06.2015Done

13 0d15.05.201515.05.2015
Project report
deadline

12 24d15.05.201514.04.2015Write report

15 11d01.06.201518.05.2015
Presentation
planning

Figure 2 – Gantt scheme for the planned project progress.

The development will take place over 11 sprints that will result in the final product. Which

backlog items that will be included in each sprint will be decided by the product owner. Unit

testing will be a continuous process during each sprint. For a more detailed description

about each sprint, see 4.1 Software Development Methodology.

14

7. References
1. Lacey M. AgileConnection | Mixing Roles in Scrum. [Online].; [cited 22.01.2014].

Available from: http://www.agileconnection.com/article/mixing-roles-scrum.

2. Kniberg H. Scrum and XP from the Trenches: How we do Scrum: C4Media; 2007.

3. Lovdata - Lov om behandling av personopplysninger (personopplysningsloven) - Kapittel

I. Lovens formål og virkeområde. [Online].; [cited 2015.01.19]. Available from:

http://lovdata.no/lov/2000-04-14-31/§2.

http://www.agileconnection.com/article/mixing-roles-scrum
http://lovdata.no/lov/2000-04-14-31/§2

113

B – Hour Log

Applies Date Start End Category Description

All 08.01.2015 09:30 10:40 Meeting: Dag
In meeting with contracting
authority

All 08.01.2015 11:00 11:45 Pre-project Lo-fi prototyping

All 08.01.2015 12:10 13:05 Pre-project Lo-fi prototyping

All 08.01.2015 13:15 14:20 Course Project course

All 08.01.2015 14:30 16:00 Pre-project Project management

All 08.01.2015 16:00 17:00 Pre-project Lo-fi prototyping

Thomas 08.01.2015 18:30 19:30 Administrartivt Hour log

All 09.01.2015 14:20 17:25 Pre-project Lo-fi prototyping

Martin 09.01.2015 19:45 23:00 Learning: Practical Bootstrap prototyping

Martin 10.01.2015 12:00 14:00 Learning: Practical Bootstrap prototyping

Thomas 10.01.2015 16:30 18:30 Learning: Theoretical Learning AngularJS

Joakim 11.01.2015 10:00 16:00 Learning: Theoretical Learning AngularJS

Martin 11.01.2015 12:00 14:00 Learning: Practical Boostrap prototyping

All 12.01.2015 11:30 17:15 Pre-project Requirement specification

JT 13.01.2015 09:30 12:15 Learning: Practical Learning AngularJS

Martin 13.01.2015 09:30 12:15 Learning: Theoretical Learning AngularJS

All 13.01.2015 12:15 14:00 Meeting: Dag
Roles & Groups / Lo-fi presentation
/ Secure Contracts

All 13.01.2015 14:15 15:00 Meeting: Tom Meeting 1

All 13.01.2015 15:00 18:00 Learning: Practical AngularJS

Thomas 14.01.2015 09:30 15:40 Learning: Practical AngularJS + Pre-project document

Joakim 14.01.2015 09:30 15:40 Learning: Practical AngularJS + Pre-project document

Martin 14.01.2015 09:30 15:40 Administrartivt
Bachelor Contract / mail about
privacy / pre-project

Thomas 14.01.2015 15:40 17:30 Research
AngularJS + Angular Material
Design

Thomas 15.01.2015 18:00 22:00 Learning: Practical Refactoring AngularJS

Thomas 15.01.2015 10:00 13:00 Project website
Bachelor webpage setup
(bitbucket) / angular

Martin 15.01.2015 10:00 13:00 Administrartivt Metting reference[26-27] / legal

Joakim 15.01.2015 10:00 13:00 Pre-project Project planning

MJ 15.01.2015 13:00 18:00 Pre-project Writing pre-project

Thomas 15.01.2015 13:00 18:00 Project website HTML markup / includes..

Martin 16.01.2015 14:30 17:45 Pre-project Report

Joakim 16.01.2015 16:00 17:45 Pre-project
Report / Software Development
methology

Thomas 16.01.2015 14:30 17:45 Project website
home - footer-logos (teknologi /
software) + info demo

Martin 19.01.2015 17:00 17:30 Pre-project Report

Martin 19.01.2015 09:30 10:00 Administrartivt Legal

All 19.01.2015 10:00 13:00 Pre-project Project planning document

114

JT 19.01.2015 13:15 17:50 Project website
Angular file structure and backend
scritps

All 20.01.2015 12:30 14:00 Meeting: Dag Data structure (users / contracts)

All 20.01.2015 14:05 15:00 Meeting: Tom Meeting 2: pre-project feedback

All 20.01.2015 15:15 17:30 Pre-project Pre-project correcting

Thomas 21.01.2015 09:30 17:10 Project website Archive and link is working

Joakim 21.01.2015 10:00 17:10 Pre-project Report

Martin 21.01.2015 10:00 16:30 Pre-project Report

Martin 22.01.2015 10:00 16:30 Pre-project Finished draft, Gradle and Eclipse

Thomas 22.01.2015 10:00 16:30 Project website
styling archive and markup
refactoring

Joakim 22.01.2015 10:00 16:30 Project website Refactoring

Martin 22.01.2015 19:00 20:00 Learning: Practical Restlet in Eclipse with Gradle

Martin 23.01.2015 11:00 16:45 Learning: Practical
Deploying Restlet applet on
Microsoft Azure, Restlet basics

Joakim 23.01.2015 14:30 16:45 Project website Scrolling

Thomas 23.01.2015 10:00 17:00 Project website
About page and index markup
restructuring and css cleanup

Thomas 26.01.2015 10:00 13:00 Project website Final adjustments

Thomas 26.01.2015 13:15 16:30 Learning: Theoretical
Refresh memory - password
protect / restlet +

MJ 26.01.2015 10:00 16:50 Pre-project Finalizing

All 27.01.2015 12:30 13:20 Meeting: Dag See meeting reference for this date

All 27.01.2015 14:15 14:30 Meeting: Tom See meeting reference for this date

Martin 27.01.2015 15:00 17:50 Developing API

JT 27.01.2015 15:00 17:50 Research Design patterns / best practises

Joakim 28.01.2015 10:00 18:00 Developing Angular setup

Martin 28.01.2015 10:00 18:00 Developing API development (registration)

Thomas 28.01.2015 10:00 18:00 Developing Dashboard index

Martin 28.01.2015 21:00 22:00 Developing Commenting code

Joakim 29.01.2015 10:00 17:00 Developing Setting up angular

Martin 29.01.2015 10:00 17:00 Developing
Completed API for login and
registration, testing, documenting

Thomas 29.01.2015 10:00 17:00 Developing Web index

Martin 30.01.2015 15:00 16:00 Developing Testing

Joakim 30.01.2015 15:00 17:30 Developing Angular setup

Thomas 31.01.2015 20:00 23:00 Developing
Dashboard working partial and
ngSwitch

All 02.02.2015 10:00 19:00 Developing Demo demo

All 03.02.2015 12:30 13:00 Meeting: Dag Sprint one / two

All 03.02.2015 14:15 14:40 Meeting: Tom Sprint one, report

All 03.02.2015 14:45 17:00 Administrartivt Task board

MJ 03.02.2015 17:00 18:00 Developing Login

Thomas 03.02.2015 17:00 18:00 Developing Index

All 04.02.2015 10:00 12:00 Research Questionare

115

Joakim 04.02.2015 12:00 18:00 Developing Connecting API, session

Martin 04.02.2015 12:00 18:00 Developing
Facebook backend, email
notifications

Thomas 04.02.2015 12:00 18:00 Developing Login and registration

Martin 05.02.2015 10:00 17:45 Developing
Email notification, Facebook login
btn integration

Joakim 05.02.2015 10:00 18:00 Developing Refactoring, cookies

Thomas 05.02.2015 10:00 18:00 Developing
Webapp Refactoring + Index
restructuring (header done)

Martin 06.02.2015 14:45 17:30 Developing Bugfixing (API: Password reset)

Thomas 06.02.2015 15:00 18:30 Developing Index

Joakim 06.02.2015 14:00 18:00 Developing Index

Martin 07.02.2015 11:00 12:00 Developing Sonar, bugfixing, refactoring (API)

Martin 08.02.2015 11:00 13:00 Administrartivt
Data protection authorities,
meeting summary

Thomas 09.02.2015 10:00 18:35 Developing Index + overview mockup

Martin 09.02.2015 10:00 19:00 Developing
API fixes, forgotten password GUI,
registration hookup, front page

Joakim 09.02.2015 10:00 19:00 Developing Session handling, prototyping

All 10.02.2015 12:30 13:20 Meeting: Dag Dag

All 10.02.2015 14:15 15:15 Meeting: Tom Tom

JT 10.02.2015 15:15 17:00 Artifact Glossary

Martin 10.02.2015 15:15 17:40 Developing API: save user settings

Joakim 11.02.2015 10:00 17:00 Developing Use-case, wizzard

Martin 11.02.2015 10:00 17:20 Developing
API (user settings, profile picture,
available locales)

Thomas 11.02.2015 10:00 18:30 Developing use-case, wizard + settings module

Martin 12.02.2015 10:00 15:30 Developing
Session handling, API (Categories,
store contract)

Martin 12.02.2015 18:50 21:00 Developing API: modify contract data

Thomas 12.02.2015 10:00 18:00 Developing settings module + form validating

Martin 13.02.2015 10:30 18:00 Developing

API: Categories, common contract
data, JSON serialization of method
return values, unit testing

Martin 14.02.2015 12:00 15:00 Developing API: Attachments

Martin 15.02.2015 11:00 13:00 Developing API: Unit-tests of attachments (QA)

Thomas 16.02.2015 10:00 19:00 Developing
Settings module, login setup,
feedback form

Martin 16.02.2015 10:00 18:00 Developing Adding contracts (integration)

Joakim 16.02.2015 10:00 17:30 Developing wizard finalize slide

Martin 17.02.2015 15:20 18:00 Developing Fixing date picker

Joakim 15.02.2015 18:00 21:00 Developing wizard finalize slide

Joakim 17.02.2015 10:00 18:30 Developing wizard attachments

Thomas 17.02.2015 15:20 18:00 Developing Settings communication to server

All 17.02.2015 14:15 15:00 Meeting: Tom Scrum + rapport

116

Martin 18.02.2015 10:00 18:00 Developing
Fixing input fields for adding
contracts

Thomas 18.02.2015 10:00 18:00 Developing
Uploading viewing profile picture /
gui notes

Joakim 18.02.2015 10:00 18:00 Developing Wizard attachments uploading

Martin 19.02.2015 10:00 18:00 Developing
Date picker, API (get org.
members, cross-domain)

Thomas 19.02.2015 10:00 18:00 Developing
Meeting Dag, settings feedback,
wizzard stuff

Martin 20.02.2015 13:00 18:00 Developing

API: Hibernate fixes, storing
notifications, get org users, get
user type

Joakim 19.02.2015 10:00 18:00 Developing Attachments frontend

Joakim 20.02.2015 10:00 18:15 Developing Notifications frontend

Thomas 20.02.2015 10:00 20:00 Developing wizard time & calendar

Thomas 22.02.2015 19:30 22:30 Developing wizard time & date solution

Martin 22.02.2015 19:00 20:00 Developing Add more parties to contract (GUI)

Martin 23.02.2015 10:00 18:20 Developing
Adding more parties, refactoring,
note backend, owner

Joakim 23.02.2015 10:30 18:30 Developing angular finilize

Thomas 23.02.2015 11:20 19:30 Developing
time and date solution / validate
(var refactoring)

Thomas 24.02.2015 12:10 18:00 Developing
Validating / refactoring / Meeting
with Tom

Thomas 25.02.2015 10:00 19:00 Developing
Wizard validating / feedback /
meeting Dag

Martin 24.02.2015 12:10 18:00 Developing i18n

Martin 25.02.2015 10:00 18:00 Developing Meeting, bugfixes, i18n

Joakim 24.02.2015 10:00 18:00 Developing Wizard bugfixing

Joakim 25.02.2015 10:00 18:00 Developing Wizard bugfixing

Thomas 26.02.2015 10:00 17:00 Developing
Wizard scaling debugging / archive
(myContract) markup demo

Martin 27.02.2015 13:30 17:00 Developing Bugfixing

Thomas 27.02.2015 13:30 17:00 Developing
Mycontracts markup / styling /
highlight menu item

Joakim 02.03.2015 10:00 18:30 Developing Show contract data

Martin 02.03.2015 10:00 19:00 Developing
Refactoring, QA, REST research,
Sonar fixes

Thomas 02.03.2015 10:00 19:15 Developing
Refactoring (directive) / Archive
styling / main (index) fixes

Martin 03.03.2015 10:30 12:00 Developing
Sonar fixes, research on Restlet
validators

Martin 03.03.2015 15:00 18:15 Developing
Advanced notes (API), delete
contract

Thomas 03.03.2015 10:30 12:00 Developing Small fixes, notification dropdown

All 03.03.2015 12:30 13:20 Meeting: Dag Wizzard & archive (mycontracts)

All 03.03.2015 14:15 15:00 Meeting: Tom Report / Development phase

117

Thomas 03.03.2015 15:00 19:00 Developing
Index bugs & refactoring / archive
functionality = tabbed searche

Joakim 03.03.2015 15:00 19:00 Developing Note system

Joakim 04.03.2015 10:00 18:00 Developing Note system

Thomas 04.03.2015 10:00 18:00 Developing
Filter / archive / "note system"
small fixes

Thomas 05.03.2015 10:00 18:00 Developing Print / fixes / small changes

Martin 05.03.2015 10:00 18:00 Developing Fixing relation issues, export PDF

Joakim 05.03.2015 10:00 18:00 Developing edit

Joakim 06.03.2015 16:00 17:30 Developing Refactoring

Thomas 06.03.2015 16:00 18:00 Developing
Refactoring / highlight on selected
contract item.

Martin 06.03.2015 15:00 17:15 Developing PDF exporting

Martin 07.03.2015 10:00 12:00 Developing Single-use key

Martin 08.03.2015 10:00 15:00 Developing Export to XLS, CSV, XLSX

Martin 09.03.2015 10:00 17:30 Developing
i18n of export data, single-use
keys, activity log, unit tests

Martin 10.03.2015 14:45 19:10 Developing Fixes, notification

JT 09.03.2015 10:00 18:00 Developing Editing and event demo

Thomas 10.03.2015 14:45 20:40 Developing directive date input

Joakim 10.03.2015 14:45 20:00 Developing Bug fixing

Martin 10.03.2015 14:45 19:00 Developing Bug fixing, planning

Martin 11.03.2015 10:00 19:20 Developing
Add/remove org users, basic rights
model, category works for org.

Thomas 11.03.2015 10:00 18:30 Developing
Clean up directvie, finished time
edit

Thomas 12.03.2015 10:00 20:45 Developing
Single rights / GUI choices / clean
up

Martin 12.03.2015 10:00 21:20 Developing Groups and rights

Joakim 12.03.2015 10:00 21:20 Developing Group and category management

Martin 13.03.2015 11:30 17:00 Developing Rights, unit testing, Sonar

Thomas 13.03.2015 12:00 20:30 Developing
Directive on rights table / Single
Rights binding (gui - db)

Thomas 14.03.2015 17:30 23:00 Developing Directive and rights functionality

Thomas 16.03.2015 10:00 21:00 Developing
Manage organization and
refactoring

All 17.03.2015 12:00 14:00 Developing Preparing demo, bugfixes

All 17.03.2015 14:00 15:00 Meeting: Dag Projet status meting

Thomas 17.03.2015 15:30 17:45 Developing
Implementing sum value in
contract / fixed directive

Martin 17.03.2015 15:30 17:45 Developing Sum (API), research on payment

Thomas 18.03.2015 10:30 18:00 Developing
Next expiring contracts(GUI) /
Calendar testing (solution hunting)

Joakim 13.03.2015 15:00 18:00 Developing Rights

Joakim 15.03.2015 10:00 13:00 Developing Groups and rights

118

Joakim 16.03.2015 10:00 18:00 Developing rights

Joakim 17.03.2015 15:00 18:00 Developing Refactoring

Martin 18.03.2015 10:00 19:00 Developing Paypal API integration

Joakim 18.03.2015 10:00 19:00 Developing Refactoring, route authentication

Thomas 19.03.2015 10:00 20:00 Developing Calender / nextExp / PayPal

Joakim 19.03.2015 10:00 20:30 Developing

Thomas 20.03.2015 10:00 17:45 Developing
Change subscription in settings
(missing api to work)

Joakim 20.03.2015 15:00 17:45 Developing Mobile web app

Martin 19.03.2015 10:00 20:00 Developing Paypal, Windows hybrid app

Martin 20.03.2015 10:00 17:30 Developing
Push notifications (Windows) with
push registraiton (API)

Martin 21.03.2015 11:00 15:00 Developing Push prototype on Android

Martin 22.03.2015 12:00 18:00 Developing
Push registration (API),
documentation, refactoring

Thomas 23.03.2015 10:00 19:00 Developing

Finished paypal chaning
subscription / myOrg mobile /
ngTouch

Thomas 24.03.2015 12:00 18:00 Developing GUI scaling wizard and category

Martin 23.03.2015 10:00 20:00 Developing
Background tasks for push,
facebook integration

Martin 24.03.2015 10:00 18:15 Developing
Facebook integration, picture of
contract

Joakim 23.03.2015 10:00 18:00 Developing Android app

Joakim 24.03.2015 10:00 18:00 Developing Android facebook

Thomas 25.03.2015 10:00 18:00 Developing
archive contract & export multiple
GUI buttson & scaling

Martin 25.03.2015 10:00 19:00 Developing Picture of contract

Martin 26.03.2015 10:00 18:00 Developing
Windows QA, meeting, export list
of contract, report planning

Joakim 26.03.2015 10:00 18:00 Developing Picture of contract

Thomas 26.03.2015 10:00 18:00 Developing Mobile friendly modules

Martin 27.03.2015 14:00 17:00 Developing Report planning, API work

Martin 30.03.2015 10:00 13:00 Developing API modifications, refactoring

Martin 31.03.2015 10:00 17:00 Developing
Containerless API, tested
compatibillity with Spartan

Thomas 30.03.2015 16:00 18:00 Developing Working multiple export

Thomas 03.04.2015 18:30 21:50 Developing
System module with woking
customer list

Martin 03.04.2015 19:00 22:00 None System architecture

Thomas 04.04.2015 14:30 16:45 Developing System settings

Thomas 06.04.2015 16:00 20:45 Developing
attachment upload in directive &
mobile firendly

Thomas 07.04.2015 14:00 19:00 Developing Notes mobile friendly

Thomas 09.04.2015 10:00 15:30 Developing Bug fixes & refactroing

119

Thomas 09.04.2015 16:15 18:00 None Gui report & research

Martin 09.04.2015 10:00 17:30 Developing
Bugfixing, refactoring, subscription
restrictions

Martin 09.04.2015 12:00 15:00 Developing
QA, bugfixing, refactoring, Sonar
issues

Martin 10.04.2015 13:00 19:00 Artifact Report: Hibernate

Martin 11.04.2015 10:00 16:00 Artifact Report: Hibernate and Restlet

Martin 12.04.2015 12:00 17:00 Artifact Restlet design

Martin 13.04.2015 10:30 18:00 Artifact
Internationalization, Gradle,
technical memo on pw hashing

Thomas 13.04.2015 10:00 19:00 Developing
Fixing bugs / redirect on homeUser
invite

All 14.04.2015 12:30 13:30 Meeting: Dag

All 14.04.2015 14:15 14:45 Meeting: Tom

Thomas 14.04.2015 15:00 19:00 Developing
Gui fixes & redirect from Paypal
(inprogress)

Thomas 15.04.2015 10:45 18:15 Developing
Refactor paypal redirect and
highlight on aside the angular way

Martin 14.04.2015 12:30 18:20 Report Meetings, report

Martin 15.04.2015 10:00 18:00 Developing
Report (Memo + project
management)

Joakim 13.04.2015 10:00 18:30 Developing Android app

Joakim 14.04.2015 15:00 18:30 Developing Android app

Joakim 15.04.2015 10:00 18:00 Developing Android app

Joakim 16.04.2015 11:45 18:00 Developing Android app

Thomas 16.04.2015 10:15 18:00 Developing
login fixes, support, http get
handling

Martin 16.04.2015 11:30 20:30 Report
Report (Project management),
deployment on Azure

Joakim 17.04.2015 14:00 18:10 Developing Android app

Martin 17.04.2015 14:00 18:10 Developing Optimization

Thomas 21.04.2015 12:30 18:00 Developing
Big fixes, Test cases and 'home-
standard-user-category'

Martin 21.04.2015 12:30 18:30 Report Report writing, bugfixes

Martin 20.04.2015 10:00 18:00 None
Switched database connector
manager, fixed onetime key issue

Joakim 20.04.2015 10:00 18:00 Developing Android app

Joakim 21.04.2015 12:00 17:00 Developing Refactoring core

Thomas 22.04.2015 10:15 18:00 Developing
Bugfixes, Rapport GUI, Test case,
notification adjustments

Joakim 22.04.2015 10:00 18:00 Developing Refactoring core

Joakim 23.04.2015 10:00 17:00 Developing
Refactoring core + rights
management

Martin 23.04.2015 10:00 17:20 Report Report

Thomas 23.04.2015 10:00 17:40 Developing
Report, css refactor, bug fixes and
some todos

120

Joakim 24.04.2015 16:00 18:00 Developing subscription restrictions

Martin 24.04.2015 16:00 18:40 Report
Finding images, icons, POE fixes,
created API call, sent in report

Thomas 24.04.2015 17:30 19:00 Developing
POE language & scaling bug fix
(GUI)

Thomas 25.04.2015 18:00 19:30 Developing
Language POE dropdown + scaling
bugs

Thomas 27.04.2015 10:15 18:00 Developing
Bug reporting and fixing, cleanup +
commenting + testing

All 28.04.2015 11:00 12:30 Developing Bugfixes

All 28.04.2015 12:30 15:00 Report
meetings with supervisor and
customer

Martin 27.04.2015 10:00 19:00 Developing i18n

Martin 28.04.2015 15:00 18:00 Report Project report

Thomas 28.04.2015 15:00 17:50 Developing
Bug fixes, updating involved
parties, + some report

Thomas 29.04.2015 10:30 17:40 Report
Testing with real people + report +
bug fixes

Martin 29.04.2015 10:30 17:40 Report Report

Martin 30.04.2015 10:30 17:45 Learning: Practical
Embedded containers on Azure +
performance analysis

Thomas 30.04.2015 10:30 18:20 Report
Bug fixes, string reporting, report
gui and bootstrap

Martin 01.05.2015 10:30 18:00 Report
Technical memo on performance,
planning

Thomas 01.05.2015 10:30 18:00 Report
GUI, target audience + reading
(some development refactoring)

Martin 03.05.2015 12:00 15:00 Report QA

Joakim 26.04.2015 10:00 12:00 Developing i18n

Joakim 27.04.2015 10:00 15:00 Developing i18n

Martin 04.05.2015 10:30 18:00 Report Hybrid apps, list of plugins

Joakim 28.04.2015 10:00 15:00 Developing i18n

Joakim 29.04.2015 10:00 15:00 Developing i18n

Joakim 30.04.2015 10:00 18:00 Developing Refactoring

Joakim 01.05.2015 10:00 18:00 Developing Testing

Joakim 03.05.2015 10:00 12:00 Report Angular technology

Joakim 10.04.2015 11:00 18:00 Report Design Angular

Martin 05.05.2015 12:00 18:30 Report
Readme files, reviewing reports,
started on wrap-up

Thomas 05.05.2015 12:00 18:45 Report GUI, Contract lifecycle, reviewing.

Joakim 06.05.2015 11:00 18:00 Report Angular

Martin 06.05.2015 11:00 18:00 Report Ending

Thomas 06.05.2015 11:00 18:20 Report
Contract lifecylce, GUI, and
bootstrap

Joakim 07.05.2015 10:00 18:00 Report Angular Design

Joakim 04.05.2015 10:00 18:00 Report Angular

121

Joakim 05.05.2015 10:00 18:00 Report Angular

Martin 07.05.2015 10:00 18:00 Report
Conclution, description, stitching
stuff together

Thomas 07.05.2015 10:00 18:00 Report
Survey, review, gui / contract life
cycle

Thomas 08.05.2015 11:00 16:45 Report GUI feedback & reviewing

Joakim 08.05.2015 13:00 17:00 Report Grunt & Bower

Martin 08.05.2015 11:00 17:00 Report Commissioning

Martin 10.05.2015 12:00 15:00 Report Reviewing

Martin 11.05.2015 10:30 20:45 Report
Meeting, going through report and
fixing issues

Thomas 11.05.2015 11:00 20:00 Report
Going through report and fixing
issues

Thomas 12.05.2015 12:00 18:00 Report Report fixing

Martin 12.05.2015 12:00 20:45 Report Report fixing

Joakim 11.05.2015 12:00 18:00 Report Report fixing

Joakim 13.05.2015 11:15 18:00 Report Report fixing

Martin 13.05.2015 10:30 18:00 Report Report fixing

Thomas 13.05.2015 10:30 18:00 Report Report fixing

Martin 14.05.2015 10:00 18:00 Report Report fixing, delivering

Joakim 14.05.2015 10:00 18:00 Report Report fixing, delivering

Thomas 14.05.2015 10:00 18:00 Report Report fixing, delivering

122

C – Meeting summaries
Meeting Summary - ETC

Duration: 1 hour

January 8, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug

Next meeting: January 13, 12:30, ETC

Announcements

The group has successfully obtained the task. Further discussion about the project is required.

Discussion

The discussion during the meeting was centralized around which features the system should support.

Concept drawings of the system played a central role during the discussion. Some of the discussed

features were:

- Contracts should have attachments in PDF, image or document format that should be received from a

scanner or a camera.

- The system should behave equally on different platforms.

- There should be an overview page to make the user get a simple overview of the status of the current

contract.

- The system owner should have an overview of active subscriptions.

- Should support Google Analytics and Google AdSense to gather user activity and get revenue from the

free-version of the system.

- The system should be structured and simple to use.

Follow-up Points

- Look into how development for Windows 10 apps can be used both on desktop and phone without

major adjustments.

- Research optical character recognition (OCR).

- Create lo-fi prototypes of the web-app.

- Suggestion on which subscriptions should be available.

123

Meeting Summary - ETC

Duration: 1 ½ hour

January 13, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug

Next meeting: January 20, 12:30, ETC

I. Announcements

The group has finished creating lo-fi prototypes of the web site including a concept website, has

started creating system requirements and a concept for how contracts should be securely encrypted.

Agenda for the meeting:

- Project contract

- Presentation of lo-fi prototype, concept website

- List of discussion items

- Contract encryption system

- Subscription

- Announcement of system requirements

- Tools to be used

- Summary, next meeting time

Discussion

The customer was happy with the prototypes but felt that the overview needed a better solution.

Other companies should be able to integrate this system with their system, for example, Telenor

should be able to publish contracts in our system to their customers if they are using our system. It is

important to note that there should be a categorization system so users can easily categorize

contracts.

One issue might be to find a way to make private users pay for the system. The group did not see the

advertisement as a good enough approach as users are likely to visit the website only a few times

each month, which will not generate much web traffic. An alternative approach would be a one-time

payment for the mobile application.

Customer was concerned about capacity issues when encrypting attachments to contracts.

Therefore, it would be reasonable that this feature should be available for more expensive

subscription options. There should be maximum four subscription options, where two should be for

private users and the two last should be for organizations/companies.

The customer did not know about any of the frameworks that the group suggested should be used

for development of the application. The group did not see PHP as a sufficient language for the

development of the application both due to the scale of the application and the required libraries. As

the customer stated Java was an alternative, the group saw this as the best approach. However, the

customer raised concern around hosting option for Java websites. The group stated that the most

major cloud vendors (Google, Microsoft and Amazon) has hosting options for Java web applications.

After going through Hibernate, the customer raised a wish for using MariaDB for the database in the

system.

124

Follow-up Points

- Look for a better solution on how to solve the dashboard.

- Continue on system requirements.

125

Meeting Summary - Supervisor

Duration: 1 hour

January 13, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Tom Røise

Next meeting: January 20, 14:00, HiG

I. Announcements

Agenda:

- Project contract

- Discuss group rules

- What should be on the pre-project, where is the template that was presented on the last bachelor

information lecture?

Discussion

The supervisor raised concern that the group would start writing code that should not be rejected in

the final product, at this stage there should only be prototypes.

System requirements should be handed in as an appendix in the pre-project. Prioritize quality above

quantity in the reports.

Previous bachelor projects that the group should look more into was discussed.

Should begin setting up the group website; ask IT when this is ready.

Optical text recognition (OTR) should be looked more into when scanning contracts.

Follow-up Points

- Ask IT when we can publish the website.

- Keep OTR in mind, as this should be looked more into at a later point.

126

Meeting Summary - ETC

Duration: 1 ½ hour

January 20, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug

Next meeting: January 27, 12:30, ETC

I. Announcements

The group has finished writing a draft of the project plan. Research has also been done in which

cloud providers has good cloud support. Amazon provides the latest Java 8 platform, while Microsoft

provides Java 7 out of the box. It is, however, possible to upload a custom JVM but there are

compatibility issues regarding using newer updates where Java 8 update 0 was working fine.

Microsoft is aware of this issue and is working on resolving it in addition to making it possible to

select other Java versions from the Azure control panel.

The group is also in dialogue with the Norwegian Data Protection Authority as the system may

process personal or sensitive personal information. It is unclear whether the project requires a

license or if it is sufficient to notify them regarding the system.

A few solutions on how login and contract sharing has been sent to employer.

Project website development has started and should be done shortly.

Agenda for the meeting:

- Norwegian Data Protection Authority

- Cloud solutions

- Discuss contract sharing and groups

- Discuss login for home users and organizations

- Further discussion regarding feature specification

Discussion

The employer was positive to requesting the authorities on declaring whether the project requires a

license or just a notification, they got experience with the Data Protection Authority from previous

projects. Considers to host the application in Ireland and that the legal aspect should be ok regarding

this matter.

The discussion regarding group contracts ended with that each user should be assigned to a group

where the group (user group) should have read or read/write-rights to a contract category (context

group). The solution that was submitted earlier were not customizable regarding read/write-rights.

When a user is given ownership/individual rights to a contract where the contract is not in a category

should the user only see that contract and other contracts which the user has sufficient rights to in

that category.

The group highlighted the issue regarding Facebook login for organizations, as this may not be a good

approach in terms of security. Employer acknowledged the issues but suggested that the difference

between home user and organization login should be clearer by having a different background or an

entirely different webpage for each login.

127

Advertisement should gather data from the metadata being displayed on the website (and not from

the attachments) and use that data to get ads that are more accurate.

Subscription types were also discussion. The paid home user subscription should remove ads, enable

encryption, custom categories and make two-factor authentication possible. Organizations should

have a trial version with a low limit on user and contract count. Contract attachment limits would

also be reasonable. It would be possible to add advertisement to this version. The paid version for

organizations should for example not have limits in terms of contracts or users. Should allow

encryption and two-factor authentication. The big issue is to increase the quality on paid

organization subscriptions. Another issue is to consider when the system should stop the user from

taking an action due to a limit on their subscription.

Employer agreed to that code snippets can be used in the final project report as long as they do not

make it possible for others to clone the system. ETC was using Ant as project automation tool but

Gradle was an acceptable tool. The employer suggested one-week sprint length as longer sprint

length often makes the development team dull and would make the development methodology

move closer towards waterfall.

128

Meeting Summary - HiG

Duration: 1 hour

January 20, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Tom Røise

Next meeting: January 27, 14:30, HiG

I. Announcements

The group is in dialogue with the Norwegian Data Protection Authority. The group is pleased with the

current progress on the project.

Agenda for the meeting:

- Norwegian Data Protection Authority

- Task-board

- Feedback on the project plan

Discussion

Having a dedicated room for the bachelor project will become problematic, as the school has already

allocated all its rooms and resources. It would be possible to both book a group room continuously

and take a picture of the task board after each day. Another way would be to use the current room

(G223) and hope that nobody removes the task board. As the group members see that Trello does

not fit well enough in terms of features and customization. Jira and Confluence was mentioned as an

alternative.

Feedback was given to the draft of the pre project. The problem description should be redefined as

the product that the team is going to create is now more clear, compared to the abstract description

that was given to the group in the beginning of the project.

Should be clear on where the boundary of the project is as topics such as market analysis and

decisions on whether advertisement should be a subject is a decision the employer should make.

129

Meeting Summary - ETC

Duration: 1 hour

February 3, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug

Next meeting: February 10, 12:30, ETC

I. Announcements

The group got close to completing the goal of the last sprint (see previous meeting summary). Much

progress has been made with the API; however, the website has been lagging more behind due to

switching and learning a new task runner for building the project. There was lack of documentation

under Google Closure and we saw that Grunt was a far better alternative.

We are also going to have a meeting with Eivind (lecturer in ergonomics) and discuss design and

eventually creating a user survey.

Agenda for the meeting:

- Scrum retrospective

- Scrum planning

Discussion

Retrospective:

- We need to get the scrum board as soon as possible. Currently waiting for resources from the

bookstore.

- Need to get better at communicating with each other, both asking for help and announcing what each

member is working on.

- Need to break down larger task in smaller tasks; last sprint had too abstract tasks with two little

concrete items.

- Too few breaks.

- Learned and experienced a lot.

Items/tasks for next sprint:

- GUI-setup: 2-3 days

- Email-system (Email verification and forgotten password mechanism): ½ days

- Facebook backend: ½ day

- Facebook login: ½ day

- Session handling: 1 day

- Discussing with the Norwegian Data Protection Authority on whether it is required that the system

requires license or if a notification is sufficient: 1-2 hours

130

Meeting Summary - ETC

Duration: 1 hour

March 10, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug

Next meeting: March 17, 14:00, HiG (Status meeting)

I. Announcements

Most of the items from last sprint have been completed. The group is happy with the progress that

has been made.

Agenda for the meeting:

- Scrum retrospective

- Scrum planning

Discussion

It was discussed that the next few sprints is crucial for how many items in the backlog that will be

completely implemented. There will be a status meeting together with the supervisor (Tom) where

the product will be reviewed on the next meeting.

Retrospective:

- Good work-flow

- Has become better on splitting items into tasks

Items/tasks for next sprint:

- Activity log for recent user activity

- Date modification in edit contract

- Mobile scaling

- Administrate organization members (Adding/removing)

- Administrate categories

- Administrate groups

- Rights between groups, categories and contracts

- Individual rights on contracts

131

Meeting Summary – Status Meeting

Duration: 1 hour

March 17, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug, Tom Røise

Next meeting: March 26, 12:30, ETC/April 7, 14:15 HiG

I. Announcements

The product is starting to get close to feature completeness, the previous sprint was challenging but

nearly all of the items have been completed.

Agenda for the meeting:

- Project review

- Scrum retrospective

- Scrum planning

Discussion

A prototype on a Windows hybrid app was demonstrated that was made with Cordova. However, the

customer has expressed skepticism regarding maintenance around this as several versions of the

web app is generated through a cross-platform compiler tool.

Retrospective:

- Has been working very efficient the last sprint

- Has gotten more done than thought

- Has become better at splitting up items into tasks, it is motivating to get up from the chair and clear

the head once progress had been made to a task.

Items/tasks for next sprint:

- Hybrid apps: Push, login, take picture

- Pay with PayPal

- Next expiring contracts + calendar on Overview

- Further work with scaling pages on phone

- Sum on contract

132

Meeting Summary - ETC

Duration: 1 hour

April 14, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Dag L Solhaug

Next meeting: April 28, 12:30, ETC

I. Announcements

Many of the items/tasks from previous sprint has been completed, there are however still tasks that

needs to be carried out. There has not been much time for testing in the last sprint to test the entire

product. This day (April 28.) is also the date in the project plan, which the project should be done.

Agenda for the meeting:

- Scrum retrospective

- Scrum planning

Discussion

Retrospective:

- Important to have the option for workarounds for features such as payments, captcha and email

activation.

- Having one-week sprints has been fine, has also made the team get a decent workflow for every week.

Although this was according to the project plan, everyone agreed that one extra extended sprint with

the length of two weeks that would be sufficient to get the project done. Dag wants the application

to be deployed on Azure as of the free subscription tier. There will also be done some user testing in

coordination with another bachelor group.

Items/tasks for next sprint:

- Azure deployment

- Complete Android app

- Support page (Point of entry)

- Complete I18n

- Continue refactoring of components around the system

- Rights on components on the page on subscription level and user-type level

133

Meeting Summary - Supervisor

Duration: 40 minutes

April 14, 2015

Present: Martin Storø Nyfløtt, Joakim Andreas Jøreng, Thomas Mellemseter,
Tom Røise

Next meeting: TBA

I. Discussion

We are currently moving towards the final phase of the project and there is still development to be

done. A more thorough testing of the system will also be performed towards the end of the project

together with user testing that will be coordinated together with another bachelor group.

Feedback on drafts for different segments on the final project report was given. Much of the

feedback went to that there was written too much abstract and too little concrete towards our

product. Supervisor also felt that we introduced the reader too much to different technologies

instead of demonstrating how it was applied to our case.

134

D – Backlog

Type Title Description

1 Technical Web-browser
compatibility

Minimum IE9, newer versions of Chrome, Firefox and
Safari

2 Functional Registration:
Private

Register a user (name, email, password, subscription
type)

3 Functional Registration:
Organization

Register an organization (org-name, email, password,
subscription type)

4 Technical Technology:
Frontend

AngularJS (web), Android API 16+, Windows 8.1

5 Technical Technology:
Backend

Hibernate, Restlet

6 Functional Login User signs in with email and password, extra token if two-
factor is activated/required

7 Functional Login:
Facebook

Private users can log in using Facebook

8 Functional Manage
categories

An org. admin can add new categories in the
organization, private users can add new categories to
their own account

9 Functional Categories:
Rights

A user has read/modify/admin rights to a contract, either
directly or through a group which has assigned rights to a
category

10 Functional Individual
rights

An org. admin can add users to a group

11 Functional Create
contract

A user can add a contract to their account

12 Functional Create
contract:
category

Auto-completion for category

13 Functional Create
contract:
fields

Title/name, created date (automatic), expiration date,
second party, (other parties), period (optional), start-date
(optional), renewal date (optional), responsible
(optional), notes (optional), attachments (optional),
notification type (mail, app, calendar), notification time,
category (optional)

14 Functional Create
contract:
attachment

User can browse or drag and drop an attachment for a
contract into a box which will then be uploaded or take a
picture if using a mobile device

15 Functional Create
contract:
share

User can share a contract with individual users

16 Functional View
contracts:
overview

The user can view all the contracts which the user is
creator of and is responsible for on the page "My
Contracts"

135

17 Functional View
contracts:
group

The user can click on the name of a group which the user
is a part of and then get the overview of all the contracts
that has been shared in that group

18 Functional View
contracts:
shared

The user sees the contracts that is shared with him/her
(individually) on the page "shared contracts"

19 Functional View
contracts:
search

The user can enter key-words in the search field above
the overview to filter contracts and/or specify a date in
the date/time picker

20 Functional View
contracts

The user gets a list of contracts, which includes title,
expiration date, creation date, and involved parties,
should show if the contract has an attachment. Can click
on a contract to show more details.

21 Functional User settings User can change email and password on the settings
page, requires that the user re-enters the password for
the account, the new email/password is entered two
times

22 Functional User settings:
two-way auth

User can enable two-way auth if the subscription enables
this, is prompted to handshake with eg. Google
Authenticatior.

24 Functional User settings:
subscription

User can select which type of subscription they want on
the subscription page, is prompted to enter PayPal data if
this is not stored already

25 Functional Edit contract A user can modify the contracts details, shared users,
groups and add/remove attachments

26 Functional Export data
from
overview

User can export the current overview to PDF, XLS, or
print

27 Functional Overview:
next expiring
contracts

The user sees a list of the next expiring contracts (name,
expiration date/time left, parties)

28 Functional Overview:
expiring
contracts on
dates

The user can click on the date in a calendar which will
show all the expiring contracts in a list below

29 Functional Overview:
events

The user sees a list of the last actions that has taken place
in the groups which the user is a member of, for example
modified/added/removed contracts

30 Functional Sign out User can sign out from the drop down menu when signed
in.

31 Functional Forgotten
password

The user can request a password reset by submitting the
email address + captcha

32 Functional Homepage The homepage lists general features, subscription details,
contact information and link to login, registration and
contact info

136

33 Functional Register:
Facebook

Only private users can register using Facebook

34 Functional Login:
Facebook

Only private users can log in using Facebook

35 Functional Encrypt
contracts

Contract attachments and its metadata is encrypted on
the server using a public-private key-chain (See Visio
illustration) if the subscription enables this.

36 Functional View
subscribed
users

The system administrator can see a list of all the
subscribed members and their status.

37 Functional Groups An org. user is a part of one or more groups, which then
is assigned to a category among with its rights.

38 Functional Organization Organization can add new users to their organization,
account details sent by mail.

39 Technical Hybrid app Windows Phone hybrid app

40 Technical Hybrid app Android hybrid app

41 Technical OCR Images / scanned documents gets their text extracted
through OCR

137

E – Group Rules

Grupperegler

§1 - Fravær fra faste møtetider skal rapporteres til prosjektleder (Martin) minst en dag i

forveien.

§2 - Dersom et medlem ikke utfører arbeidsoppgaver skal veileder kontaktes dersom dette

gjentar seg.

§3 - Dersom gruppeleder og veileder er enig, kan medlemmer ekskluderes.

§4 - Avgjørelser internt i gruppen avgjøres ved håndsopprekning, men dersom det oppstår

store uenigheter er prosjektleder ansvarlig for å få alle til å komme til enighet.

§5 - Gruppeleder har rett til å signere på vegne av gruppa.

§6 - Eventuelle kostnader deles likt på alle gruppemedlemmene.

§7 - Dokumentasjon og kode skal følge retningslinjer og standarder som gruppen har

bestemt og bør helst følge standarder og konvensjoner i det programmeringsspråket som er

i bruk.

Signatur:

138

F – Deployment on Microsoft Azure using FTP
This guide explains how to deploy Contract Manager as a web app hosted on Microsoft

Azure.

Before deployment, make sure the following files are ready:

- The API compiled as a WAR or a JAR (Note: Remove the .SF files from the JAR archive

under the META-INF, otherwise the runtime will throw an exception regarding signed

JARs)

- All CSS, JS, HTML for core product and point-of-entry.

- An SQL file for the database (database.sql)

- Tomcat 32-bit zip file for Windows from http://tomcat.apache.org/download-80.cgi

(not needed if the API is deployed as a JAR)

- JDK 1.8u0 32-bit installed on a Windows machine from

http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-

2177648.html#jdk-8-oth-JPR

Setting up MySQL on Azure

Sign into Azure on https://portal.azure.com

In order to create a new database, click the “New” button on the bottom right-hand corner

of the screen, click “Data + Storage”, click “Azure Marketplace” and enter “MySQL” in the

search-field. The select MySQL Database by ClearDB. Click on the create button and enter a

database name, e.g. “ctrctmgrdb”. Make sure a location close to the desired target audience

has been selected. Take note of which location the database is deployed to as this will be the

same location for the website. Make sure the Legal Terms has been ticked, read the text and

clicked “OK” before clicking “Create”.

Once the database has been created, it will appear on the portal dashboard and will

automatically open. After this, click properties to get the MySQL hostname, port number,

username and password. The database name will be the same as entered in the wizard

earlier, in this case “ctrctmgrdb”. Then execute the default SQL file database.sql on the SQL

database.

http://tomcat.apache.org/download-80.cgi
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html#jdk-8-oth-JPR
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html#jdk-8-oth-JPR
https://portal.azure.com/

139

Figure 88 – The created database as seen through the Azure portal.

Setting up an Azure Website

Sign into Azure on https://portal.azure.com

Create a new website by clicking on New -> “Web + Mobile” -> “Web app”. Enter a name for

the URL being used for the website, eg. “ctrctmgr”. In order to deploy the website as a free

instance, click “Or create new” under “APP SERVICE PLAN”, then click “PRICING TIER”, click

“View all” and select “Free” on the bottom of the page.

Figure 2 – The created web app through the Azure portal.

Once the website has been created, it will appear on the home screen and automatically

open. Click the button “Get publisher profile” next to delete. This will download an XML file

containing the FTP username and password. Open the XML file in a text editor such as

Notepad++ and find the publishProfile for FTP. The FTP address will be the publishUrl

attribute, username is the userName attribute and password is the userPWD attribute.

https://portal.azure.com/

140

Figure 89 – Credentials for FTP deployment where the ftp hostname, username and password is highlighted with green

boxes.

Open a FTP client and connect using the hostname, username and password from the

deployment profile. Under /site/wwwroot, create a folder “bin”. Under bin, create a folder

named “jdk1.8.0”. Upload the content from JDK 1.8 update 0 installed on the Windows

machine earlier from “C:\Program Files (x86)\Java\jdk1.8.0” to the newly created folder

“jdk1.8.0”.

The API can be deployed either as a JAR file (embedded container) or as a WAR. The

difference being the JAR has a slower response time than WAR deployment (a few

milliseconds on avg.) but the WAR will take significantly longer to start up.

WAR deployment

Create a folder named “tomcat” under the bin folder. Next, upload the content of the zipped

Tomcat folder to the folder named “tomcat”. After this, upload server.xml to

141

/site/wwwroot/bin/tomcat/conf and replace the existing xml file.

Figure 90 – Tree structure of Tomcat deployment.

It might be a good idea to delete all the folders except ROOT in

/site/wwwroot/bin/tomcat/webapps, in order to improve startup speed of Tomcat, it is also

possible to enable native libraries for Tomcat. This can be done by moving the file “tcnative-

1.dll” in /site/wwwroot/bin/tomcat/bin to \site\wwwroot\bin\jdk1.8.0\bin.

http://wiki.apache.org/tomcat/HowTo/FasterStartUp

Then upload the static content to ROOT under /site/wwwroot/bin/tomcat/webapps.

JAR deployment

Create a folder named “api” under “bin”. Upload the JAR file to this folder and create a file

called “startup.bat” with the following contents:

Upload the static content to the wwwroot folder (/site/wwwroot/).

web.config

At this stage, all the binary files for the platform running Contract Manager has been upload.

It is now necessary to configure Azure how to use the binaries.

Open the file “web.config” in a text editor and edit the environment variables required for

Contract Manager suffixed by CTRCTMGR. Enter the MySQL username and password from

the previously configured database. If the API is deployed as a jar, make sure the

processPath attribute is set to ” d:\home\site\wwwroot\bin\api\startup.bat”

d:\home\site\wwwroot\bin\jdk1.8.0\bin\java.exe -jar

d:\home\site\wwwroot\bin\api\ContractManagerAPI.jar

no.etc.ctrctmgr.api.JettyMainEntry -Djava.net.preferIPv4Stack=true -o true

http://wiki.apache.org/tomcat/HowTo/FasterStartUp

142

For more information regarding debugging web.config, see:

http://www.iis.net/learn/extensions/httpplatformhandler/httpplatformhandler-

configuration-reference

http://www.iis.net/learn/extensions/httpplatformhandler/httpplatformhandler-configuration-reference
http://www.iis.net/learn/extensions/httpplatformhandler/httpplatformhandler-configuration-reference

143

G – User Tests

Test Case 1

User: Pay3 Pal (q@q.no)

Role: organization administrator

Task 1

Login as an organization with
email: q@q.no
pwd: Hei123
Task 2

Create a new contract category to your organization. Name the category whatever you like.

Task 3

Create a new group to your organization. Name this group ‘IMT’.

a. Add the user ‘Pay Pal’ and assign the category you added in task 1.

b. Let the IMT group get the Modify right priviledge to the added category.

Task 4

Add a new contract with the following criterions as a minimum (NB: read all requirements

before starting to add the new contract)

1. Add it to the category you created in task 2.

2. Add ‘HIG’ as a party to the contract

3. The contact started on the 01.april.2015 and lasts for 1 year

4. Write a note to the contract with whatever content.

5. Save the contract

Task 5

Edit the contract you added. Add an attachemnt, and delete your note.

Task 6

Edit a contract that is not active. In other words, undraft the ‘1234’ contract.

144

Test Case 2

User: Thomas Mellemseter (b@b.org Hei123)

Role: organization administrator

Task 1

Log in as an organization user and email: b@b.org

change the profile picture. pwd: Hei123

Task 2

Edit the next expiring contract. Edit the name to ‘AUDI R8’.

Task 3

Add a new contract with the following requirements as a minimum (NB: read all

requirements before starting to add the new contract)

1. Mark the contract as automatically renewal.

2. Add an attchement.

3. Write a note to the contract with whatever content.

4. Do NOT save the contract, and navigate to overview when finished with the

above requirements.

Task 4

The contract you added is not vaild. You do NOT want to delete the contract, but archive it

instead.

Task 5

Export the ‘HIG IMT’ contract to .pdf, and add a new note to the contract.

Test case 3

User: Thomas mellemseter (b@b.no Hei123)

Role: Home User

Task 1

Login in as a home user with:
email: b@b.no
password: Hei123
Task 2

Add a contract with the following requirements (Feel free to add other optional input fields)

a. Reference = KJPOS123

b. The contract lasts for 20 months.

Task 3

145

Share the contract you created in Task 2 with d@d.org

Task 4

Export all EXTRA (category) contracts to one .xls file (HINT: It should be 3 contracts)

Task 5

Delete the contract you created in Task 2.

Questions

1. What was it like to add a new contract, could something be better?

2. What was it like to find a contract you were looking for?

3. What was it like navigating through the app?

4. Other comments, concerns you would like to share?

146

H – Email Communication with the Norwegian Data Protection Authority (Norwegian)
Fra: juridisk <juridisk@Datatilsynet.no>
Sendt: 12. februar 2015 09:24
Til: martin.nyflott@hig.no
Emne: VS: Vurdering av system ang. konsesjon

Hei.

Vår svartjeneste gir deg kortfattet rådgivning. Vi vil derfor ikke konkludere i saken din, men gi deg råd
og veiledning.

Det er i utgangspunktet meldeplikt for behandling av alminnelige personopplysninger, jf.
personopplysningsloven §§ 31 og 32, og konsesjonsplikt for behandling av sensitive
personopplysninger jf. § 33. Se hva som omfattes av definisjonen sensitive personopplysninger i
lovens § 2 nr. 8. (se link til loven her: http://lovdata.no/lov/2000-04-14-31).

Det er imidlertid gjort unntak for konsesjon- og meldeplikt for behandling av sensitive
kundeopplysninger dersom den registrerte har samtykket til registreringen og behandlingen av
sensitive personopplysninger, og opplysningene er nødvendige for gjennomføringen av en
kontraktsforpliktelse, jf. personopplysningsforskriften § 7-14 (se link til forskriften
her: http://lovdata.no/forskrift/2000-12-15-1265).

Det er også gjort unntak fra meldeplikten for behandling av alminnelige personopplysninger om
kunder, abonnenter og leverandører, dersom personopplysningene behandles som ledd i
administrasjon og gjennomføring av kontraktsforpliktelse, jf. forskriften § 7-7.

Oppsummert foreligger det altså verken meldeplikt eller konsesjonsplikt for deres prosjekt, forutsatt
at behandlingen av personopplysninger faller innenfor bestemmelsene og beskrivelsen over.

Jeg legger til at all elektronisk behandling av personopplysninger reguleres av
personopplysningsloven, og at lovens øvrige bestemmelser derfor vil gjelde for prosjektet. Dere er da
pliktige å følge personopplysningslovens regler om hvordan opplysningene oppbevares, hvem som
har tilgang til opplysningene, sletterutiner osv. For å gi dere en oversikt over reglene om dette,
legger jeg ved en link til vår veileder om informasjonssikkerhet og internkontroll. Se link til veileder
her: http://www.datatilsynet.no/Sikkerhet-internkontroll/internkontroll_informasjonssikkerhet/

Håper dette er til hjelp for deg. Hvis noe er uklart, eller du har flere spørsmål, kan du kontakte oss
igjen ved å svare på denne e-posten.

Vennlig hilsen

Kristine Hagtvedt Holte
juridisk rådgiver, Datatilsynet
………………………………………………………………………………
Telefon: (+47) 22 39 69 00
Postadresse: Postboks 8177 Dep, 0034 Oslo .
Besøksadresse: Tollbugata 3, Oslo

www.datatilsynet.no
www.personvernbloggen.no

http://lovdata.no/forskrift/2000-12-15-1265
http://www.datatilsynet.no/Sikkerhet-internkontroll/internkontroll_informasjonssikkerhet/
http://www.datatilsynet.no/
http://www.personvernbloggen.no/

147

www.twitter.com/datatilsynet
Datatilsynet – i front for retten til selvbestemmelse, integritet og verdighet

Fra: Martin Storø Nyfløtt [mailto:martin.nyflott@hig.no]
Sendt: 8. februar 2015 13:56
Til: Postkasse
Emne: Vurdering av system ang. konsesjon

Hei,

I sammenheng med utviklingen av et IT-system under bacheloroppgaven til gruppen min, ser vi det

nødvendig å utføre en vurdering om systemet vårt krever konsesjon eller om det er tilstrekkelig med

melding til datatilsynet. Vi hadde derfor satt pris på om dere kunne gjøre en vurdering av vårt system

slik at vi eventuelt kan søke om konsesjon før systemet er ferdigutviklet og skal settes i drift.

Systemet er et arkivsystem for kontrakter. Dette systemet skal da brukes av både bedriftsbrukere og

privatbrukere og skal være tilgjengelig som en web-applikasjon samt mobilapplikasjon. Hensikten

med systemet er at brukere skal kunne legge inn kontrakter og deretter kunne enkelt hente ut

kontraktene når det er ønskelig, samt få varsler når kontrakten er i ferden med å gå ut. Kontrakter

kan for eksempel være husleie, bredbånd, mobilabonnement, arbeidskontrakt, forsikring, m.m.

Når brukere registrerer seg, lagres fornavn, etternavn, epost-adresse og et passord i databasen. Disse

opplysningene er felles for både privat og bedriftsbrukere. Bedriftsbrukere blir i tillegg registrert med

bedriftsnavn og organisasjonsnummer.

Kontrakter brukere registrerer i systemet kan deles med andre brukere ved å oppgi hvilke brukere

skal kunne lese/endre kontrakten dersom brukeren ønsker dette. Det er opp til brukeren hva slags

informasjon som skal legges inn om kontraktene og hvilke kontrakter som skal legges inn i systemet.

Følgende metadata er forskjellige felt brukeren fyller ut når en kontrakt legges inn og blir lagret i

systemet:

- Tittel på kontrakt

- Navn på personer/bedrifter som er en part i kontrakten

- Tidsrom for når kontrakten er gyldig

- Start/utløpsdato

- Tidspunkt for fornyelse av kontrakt

- Hvilke personer som er ansvarlige for kontrakten

- Tidspunkt for når brukeren skal bli varslet om at kontrakten skal fornyes eller er i ferden med

å løpe ut og om denne varslingen skal gå via epost eller om brukeren skal få varsling inne i

selve systemet

http://www.twitter.com/datatilsynet
mailto:martin.nyflott@hig.no

148

- Kategori for kontrakt, for eksempel. Forsikring, bank eller mobil. Brukeren kan selv

administrere hvilke kategorier som er tilgjengelige.

- Ekstra notater som brukeren ser kan være nyttig å legge inn.

Brukeren kan laste opp selve kontrakten i tillegg til metadataene til kontrakten som kan være et

scannet dokument, et bilde av kontrakten med mobiltelefon, eller et Word/OpenOfice/PDF-

Dokument. Disse dokumentene blir indeksert og gjort søkbare i systemet for eieren av kontrakten

slik at brukeren enkelt skal kunne finne igjen en kontrakt som har blitt lagt inn.

I tillegg kan brukerne abonnere på systemet via PayPal. Betalingsopplysninger brukerne bruker blir

lagret og behandlet hos PayPal og ikke i vårt system.

Beskrivelsen over gjelder hvilke opplysninger blir lagret om brukere og hva slags informasjon de kan

legge inn i systemet. Dersom noe av dette er uklart hadde vi satt pris på om dere kunne komme

tilbake til oss ang. dette slik at vi kan utdype/forklare det som er uklart.

Mvh.

Martin Storø Nyfløtt

149

I – Project Agreement

150

