
BACHELOROPPGAVE:

Accommodating a Game Engine for Com-
munity Adoption

FORFATTERE:
Joakim N. Stien
Sverre B. Stensby

DATO:
15.05.2015

Accommodating a Game Engine for Community Adoption

Sammendrag av Bacheloroppgaven

Tittel: Tilpassning av spillmotor for adopsjon hos open-
source samfunnet

Nr: 25

Dato: 15.05.2015

Deltakere: Joakim N. Stien
Sverre B. Stensby

Veiledere: Mariusz Nowostawski

Oppdragsgiver: Suttung Digital

Kontaktperson: Asbjørn Sporaland,
sporaland@suttungdigital.com, 95080723

Stikkord Åpen kildekode, spillmotor, Nox, Suttung Digital

Antall sider: 70 Antall vedlegg: 8 Tilgjengelighet: Åpen
Kort beskrivelse av bacheloroppgaven:
Oppgave om tilpasning og utvidelse av spillmotor for å gjøre den til et bedre alterna-
tiv for utvikling av spill. Vi har lagt til partikler, nettverk, normal og specular maps.
Vi har forbedret implementasjonen av lyd, skyggegenerering, og API.

i

Accommodating a Game Engine for Community Adoption

fontsize1416Summary of Graduate Project

Title: Accommodating a Game Engine for Community
Adoption

Nr: 25

Date: 15.05.2015

Participants: Joakim N. Stien
Sverre B. Stensby

Supervisor: Mariusz Nowostawski

Employer: Suttung Digital

Contact person: Asbjørn Sporaland,
sporaland@suttungdigital.com, 95080723

Keywords Open source, game engine, Nox, Suttung Digital

Pages: 70 Appendixes: 8 Availability: Open
Short description of the main project:
Thesis on improving and expanding a game engine, to make it a better alternative
for game development. We have added particles, network capabilities, normal and
specular maps. We have improved the implementation of the audio, the shadow gen-
eraton, and API.

ii

Accommodating a Game Engine for Community Adoption

Preface

We would like to thank Mariusz Nowostawski for his guidance, and for supervising

our project. We would also like to thank Magnus Bjerke Vik and Asbjørn Sporaland

and the rest of Suttung Digital for providing the task, engine and helpful input. We

would also like to thank Simon McCallum for supporting us trough our time at Gjøvik

University College.

iii

Accommodating a Game Engine for Community Adoption

Contents

Preface . iii

Contents . iv

List of Figures . vii

List of Tables . viii

1 Introduction . 1

1.1 Task Presentation . 1

1.2 Intended Audience . 2

1.3 About the Authors . 3

1.4 Thesis Scope . 3

1.5 Project Roles . 3

1.6 Terminology . 4

1.7 General Requirements . 4

1.8 Introduction to Nox . 5

1.8.1 History of Nox . 5

1.8.2 Nox Design Philosophy . 5

1.8.3 The Relevance of the In-House Game Engine 5

1.8.4 Open Source, Game Engines and Nox 7

1.9 Nox Architecture . 7

1.10Considered Features . 9

2 Network . 12

2.1 Network Requirements . 12

2.2 Network Architectural Design . 12

2.2.1 Network System Design . 13

2.2.2 Indistinguishable Network Configurations 14

2.2.3 Synchronized Actors . 14

2.2.4 Channels . 15

2.3 Protocol Implementation . 16

2.3.1 Relationships and Identities . 16

2.3.2 Protocol Overview . 16

2.3.3 Initiation Phase . 17

2.3.4 Game Phase . 19

2.3.5 Security and General Flaws . 21

2.3.6 Packet Implementation . 21

2.3.7 Packet Translator . 23

2.3.8 Dedicated Servers . 23

2.4 Network API Design and Usage . 23

2.4.1 Declaring an Actor as Synchronized 23

2.4.2 Network Events . 24

2.4.3 Making Game Critical Decisions . 25

2.4.4 Creating a Synchronized Component 26

iv

Accommodating a Game Engine for Community Adoption

2.4.5 Sending Large Files . 27

3 Stencil Shadows . 29

3.1 Stencil Shadow Requirements . 29

3.2 Light and Shadow in 2D . 29

3.3 Existing Ray-cast Based Implementation 31

3.4 Stencil Shadows in 2D . 33

3.4.1 Rendering . 35

3.5 Performance Analysis . 36

3.5.1 Shadow Generation Performance 37

3.5.2 Rendering Times . 39

3.5.3 Total System Impact . 41

3.5.4 Performance Conlcusion . 43

4 Normal and Specular Maps . 44

4.1 Requirements . 44

4.2 Normal and Specular Maps . 44

4.3 Implementation . 46

4.4 API Usage . 46

5 Particle System . 48

5.1 Requirements . 48

5.2 Selecting a particle system . 48

5.2.1 Writing our own particle system . 48

5.2.2 Using LiquidFun . 48

5.2.3 Conclusion . 49

5.3 Particle systems in 2D . 49

5.4 The Design . 50

5.5 API Usage . 53

6 Audio Improvements . 56

6.1 Requirements . 56

6.2 Design . 57

6.3 Implementation . 57

7 Simplified API . 59

7.1 Requirements . 59

7.2 Nox Usage . 59

7.3 New API Design . 62

7.4 Implementation . 64

7.4.1 Game Layer Abstraction . 64

7.4.2 Exposing JSON Functionality . 66

8 Group Work . 67

8.1 Group Structure . 67

8.2 Evaluation of Group . 67

9 Task Critique . 68

10Conclusion . 69

10.1Goal Discussion . 69

10.2Continued Development . 69

10.3Conclusion . 70

Bibliography . 71

v

Accommodating a Game Engine for Community Adoption

A External Repositories . 72

B Task Description . 73

C Nox Coding Conventions . 75

D Nox Documentation Conventions . 80

E Project Plan . 83

F Project Agreement . 91

G Time Log . 94

H Commit Log . 97

vi

Accommodating a Game Engine for Community Adoption

List of Figures

1 Original Nox Layer Diagram . 8

2 Pyresis (Nox) Architecture . 9

3 Network system class diagram . 14

4 Logical flow diagram of component synchronization 15

5 NNP Initiation Phase . 18

6 NNP Game Phase Heartbeat . 19

7 NNP Game Phase Arrival and Departure 20

8 NNP Game Phase Component and Event Channels 21

9 Packet API example code . 22

10 Defining a synchronized actor . 24

11 Adding a custom destruction handler . 25

12 Sending an event to the server . 25

13 Making server-side game decisions . 26

14 Synchronizing a component’s state . 27

15 Sending large binary files . 28

16 The Swapper screenshot . 30

17 Abstract shadow generation formula . 31

18 Ray-cast based light polygon . 32

19 Ray-cast shadow generation pseudo code 33

20 Ray-cast generated shadows rendering pseudo code 33

21 Stencil based shadow generation pseudo code 34

22 Stencil based light and shadow polygon 35

23 Stencil based light & shadow rendering pseudo code 36

24 Light performance test application . 37

25 Ray-cast light & shadow generation time 38

26 Stencil based shadow generation times 39

27 Ray-cast and stencil based shadow rendering times 40

28 Total system impact of light implementations 42

29 Normal map example in 3D . 45

30 Normal map in 2D . 45

31 Specular map in 2D . 46

32 Normal and specular map definition . 47

33 Particle accuracy . 50

34 Particle system . 52

35 Particle component definition . 54

36 Screenshot from control demonstration 60

37 Nox’s new 3 layer architecture . 63

38 Game Controller Creation-interfaces . 64

39 Game layer class diagram . 65

40 Actor creation in JSON and C++ . 66

vii

Accommodating a Game Engine for Community Adoption

List of Tables

1 Supported data types in packets . 22

2 Test environments . 36

3 Light implementation complexity comparison 43

4 Particle flags . 55

viii

Accommodating a Game Engine for Community Adoption

1 Introduction

1.1 Task Presentation

Suttung Digital is an independent game developer residing in Gjøvik, Norway. Sut-

tung Digital is developing a game engine called the Nox engine for internal projects.

The engine has been released as an open source project. See the discussion in Sec-

tion 1.8 for a more detailed description.

The original task description initially gave us the impression that we were to opti-

mize a game engine. In meetings with Suttung Digital, it became clear that what the

task was really about was to improve the game engine by adding new features and

optimizing existing ones. We changed the subject of the thesis to "Improving the Au-

diovisual Aesthetic Presentation of Nox" before deciding on our final subject in the

middle of March; "Accommodating an Open Source Game Engine for Commmunity

Adoption".

Suttung Digital wishes to attain a hobbyist and professional community around

the Nox engine. One of the visions for the engine is to have a module system, through

which user created modules for Nox can be freely distributed. The module system

would be a crossover between a Linux package manager and other community dis-

tribution channels like the Unity Store for the Unity 3D Engine. In order for such a

system to exist, a relatively large user base is required.

Our task is to accommodate the Nox Engine for community adoption. We consider

this task to be similar to selling the engine. No money will change hands, nor will

any advertisements be displayed. When "selling" an open source game engine, the

currency received is a feeling of accomplishment and community improvements on

the engine.

We believe, through experience and reasoning, that there are three general steps

in committing to a third-party library solution of any kind. The time spent in step

1 and 2 are proportional to the significance a commitment to the library will result

in. A library to parse XML will generally have a low significance compared to a fully

fledged game engine, as it can be easily replaced should it fail to satisfy. A game

built on top of a game engine is almost always locked to that particular engine. The

three steps are:

1. Interest

The software peaks the interest of the user through impressive features, demon-

strations or portfolio.

2. Investigation

The user gets his first deep impression with the software by either playing with

demonstration applications, implementing simple applications or reading the doc-

umentation.

3. Long term commitment

The user was satisfied with the investigation, and decides to commit to the solu-

1

Accommodating a Game Engine for Community Adoption

tion in a project.

In the above model, step 1 and 2 are the steps where potential users are most

likely to decide against using a software solution. If they reach step 3, where they

commit to the solution, they are less likely to abandon the solution in favour of

something else. Our primary objective is therefore to reinforce the experience of

steps 1 and 2. In direct terms of a game engine, we believe to have identified the key

aspects of getting a user hooked (interest), and being satisfied with the investigation.

• Interest

• Wide variety of advanced features

A wide feature set increases the likelihood that the user will continue investi-

gating.

• Portfolio of released games using the engine

A portfolio of released games shows that someone else have already commit-

ted to the engine and succeeded.

• Branding and previous knowledge

Having some previous knowledge of the engine, to literally any extent, in-

creases the likelyhood that a user will decide to further investigate it.

• Investigation

• Ease of use

The user needs to be able to get something quick and dirty running in 20

minutes or less. This could be something as simple as compiling the library or

a demonstrational project.

• Documentation

The documentation needs to be as complete as possible, showing not only that

the developers of the engine are serious, but also that if the user gets stuck,

he may figure it out easily.

• Size of user base

The size of the user base shows that other people have already committed to

the engine. This implies that the engine is in good shape and that help is easy

to get.

1.2 Intended Audience

This report is aimed at those who wish to learn about open source development,

game engine development and combining these two to attract a larger audience.

Readers are expected to be in the very least familiar with object oriented program-

ming and software design. The report does not go in depth of what can be achieved

with the developed features (or the Nox engine in general), but rather how the fea-

tures were implemented, and how they benefit Nox in attracting potential users.

The work we have done is aimed towards the users of the Nox engine, both

present (Suttung Digital) and future. We believe that our contributions to the engine

can help Nox attract hobbyist developers, which hopefully will further contribute to

2

Accommodating a Game Engine for Community Adoption

the engine.

1.3 About the Authors

Both of us have attended the course Game Programming at Gjøvik University College

since 2012. Neither of us have worked on any open source projects of significance

in the past, but both of us have a fascination for all the amazing projects that has

been developed as open source projects with collaborators spread across the globe.

Neither of us have prior to this project contributed significantly on an open source

project with other contributors. Actually doing this was something we both wanted

to do. We had not used the Nox engine previously, but we had a rough overview from

the details described in Pyroeis [1].

In order to perform the tasks that were required, we would need to have in-depth

knowledge of network programming, network protocol design, graphics program-

ming (OpenGL), and getting acquainted with a large, existing code base.

From previous projects, Joakim had knowledge of network programming in games

and other utility applications, and some experience in network protocol design for

games. Sverre had knowledge and experience of programming game logic, physics

and graphics, but no experience with expanding a pre-existing project of this scale.

The both of us have been exposed to OpenGL via courses at Gjøvik University

College, and we have used a handful of game engines and frameworks for hobby and

school projects - most notably Cocos2D, Game Maker, Unity 3D, SFML and SDL.

The most challenging, and quite possible the most valuable element we needed to

learn was to simply read and understand code. Code someone else has written. Code

with missing or outdated documentation. Obviously, this was also the first thing we

needed to do in order to ascertain what needed to be done where. This element is

also tightly knit with another aspect neither of us had been previously exposed to,

complying with all standards defined for the code base (documented or not), and

sticking to the existing architecture and patterns.

1.4 Thesis Scope

The scope of this thesis is limited to features we deem attractive in a game engine.

This concerns primarily audiovisual effects and general features, but usability and

performance improvements within reasonable frames are also included.

1.5 Project Roles

Our group structure has been quite flat, as a team of two people leave little room

for leadership. Disputes and differences in opinion have been settled via discussion

rather than via a supreme authority.

All code and work written by both members of the group was equally shared.

However, when working on multiple, disjoint features, it’s natural that one per-

son takes additional responsibility in designing, implementing or testing a feature.

Joakim led the development of the stencil generated shadows (Chapter 3), audio im-

provements (Chapter 6), the simplified API improvements (Chapter 7), and normal

& specular maps (Chapter 4). Sverre led the development of the particle system

(Chapter 5). The Nox Networking Protocol was designed by Joakim, while the imple-

mentation of the network system was a shared effort.

3

Accommodating a Game Engine for Community Adoption

1.6 Terminology

• Game Session

Game session refers to a period of time in which two or more players are con-

nected from different game clients to the same server.

I am going to join this game session and play a match.

• Lobby

The lobby refers to all connected clients in a networked game session.

I am going to send this packet to the lobby.

• Synchronized Actor

A synchronized actor is an actor which is owned by one game client, and mir-

rored on the rest of the lobby.

The avatar of Alice is controlled by Alice’s game client, and mirrored on Bob’s

game client

• NNP

The Nox Networking Protocol. The term refers to the logical data flow and rules

that govern the communication between connected game clients in a game ses-

sion.

The NNP is divided into two main phases.

• AABB

AABB refers to an Axis Aligned Bounding Box - a rectangle whose horizontal and

vertical lines are perfectly perpendicular to the X and Y axes respectively. The

size of the box perfectly encapsulates the entirety of a shape.

The AABB of a circle with r=1 is a square of size 2x2.

1.7 General Requirements

When working with Nox, we set some guidelines and rules for ourselves. Some of

them, like conforming to Nox’s already defined standards, were required to make

Suttung Digital even consider the developed features.

When working on an existing code base, it is important that new additions adhere

to the existing rules and guidelines for submissions. For Nox, this includes conform-

ing to the existing code standards (see Appendix C). Suttung Digital already has

games built on top of Nox, meaning that changes and additions should not break

existing APIs or features, unless the benefit of doing so greatly outweighs the work

required to leave the existing APIs untouched. All features should be developed with

the design philosophy of Nox in mind.

All new libraries integrated with Nox must be open source. This will increase ease

of adding support for mobile platforms, or platforms running on other architectures

than x86 in the future.

The Nox engine originally supported Mac OS X, Windows and Linux. All our fea-

tures, included libraries and code must function identically on all of these three

platforms.

4

Accommodating a Game Engine for Community Adoption

1.8 Introduction to Nox

1.8.1 History of Nox

The Nox Engine was initially developed by Asbjørn Sporaland, Magnus Bjerke Vik,

Tomas Klungerbo Olsen, Håkon Nordling and Edvin Avdagić all of whom are previ-

ous students at Gjøvik University College. The initial engine was developed for the

course IMT3601 (Game Programming). Magnus Bjerke Vik and Asbjørn Sporaland

continued the development of the engine for their bachelor’s thesis, Pyroeis[1]. For

the Pyroeis project, Nox was integrated directly into the game as a monolithic struc-

ture. It was later extracted from the game, and published as a standalone project.

April 1st, 2014, the five original developers and Jakob Solheim founded Suttung Dig-

ital, an independent game studio, where the development of Nox continued. Nox

was made public as an open source project licensed under the MIT License 1 on

bitbucket.org in January 2015. Nox is currently being used for Suttung Digital’s up-

coming game release, Astral 2 3 and other internal projects.

1.8.2 Nox Design Philosophy

To allow game designers to change parameters in a game without constantly recom-

piling, Nox focuses primarily on defining aspects of the world via JSON files. Actors,

texture atlases, control schemes and game scenes are defined in JSON files.

Nox separates code explicitly via namespaces. Namespaces are used in Nox much

like packages are used in Java. There are four "primary" namespaces; app, logic,

util, and window. Most classes exists within one of these four namespaces, and

some exists at deeper levels of namespacing. The directory structure of the source

code reflects the namespaces.

Nox is designed to be a modularized system, where key components of the engine

are interchangeable. Core subsystem classes are therefore always abstracted behind

interfaces.

1.8.3 The Relevance of the In-House Game Engine

Game engines are expensive to develop and maintain. As of early 2015, the options

for commercially developed and open source game engines available for free 4 are

seemingly endless. How can any small developer gaze at the sea of game engines

and economically justify developing a game engine from scratch? We will look at

some of the reasons a game developer, primarily a small one, may have.

Bugs in the engine

Anyone even slightly familiar with software development knows that bugs are impos-

sible to avoid. Bugs occurring in the in-house engine are relatively easy to identify

and eliminate, as the entire team has full access to, and is likely already familiar

with, the source code. Open source third party engines are in theory equal in this

aspect. However, the team is unlikely to have in-depth knowledge and familiarity

with the inner aspects of the game engine, making it harder to find and fix bugs

without first getting properly acquainted with the code base. Closed source propri-

1http://opensource.org/licenses/MIT
2https://web.archive.org/web/20150420121031/http://www.indiedb.com/games/astral
3https://web.archive.org/web/20140913133344/http://suttungdigital.com/project/astral/
4Unreal Engine 4 is free up to a certain gross income level. Unity Engine 5 offers more advanced tools

and features as a subscription service.

5

Accommodating a Game Engine for Community Adoption

etary engines are black boxes whose internals cannot be studied or changed by the

users of the engine.

The best approach for bugs in third party engines, regardless of source code

availability, will often be to file a bug report to the development team and wait for

a fix. With open source game engines, the users of the engine may collaborate with

the engine developers to fix the issue. With closed source engines, waiting for a fix

is only approach which can be taken5. If a developer is stuck on an issue with a very

popular engine, it is likely that someone else have experienced the same issue, and

there is a solution to be found after a few minutes with a search engine.

The large commercial game engines has been tested on a large variety of hard-

ware. This makes it less likely that there are specific bug that makes it unusable on

particular hardware configurations that a studio does not have in it’s test environ-

ments.

Specific requirements

Occasionally, the developed game has specific enough requirements that existing

game engines simply doesn’t satisfy the needs. Games such as Just Cause 2 (Avalanche

2), Grand Theft Auto 5 (Rockstar Advanced Game Engine), and the Battlefield fran-

chise (Frostbite engine) are examples of where a game’s specific requirements and

the budget of the game justifies the additional cost of developing a custom made

game engine, over fitting the game into existing technologies. However, these are

multi-million dollar budget games with high financial ambition, neither of which most

game studios have. While all of the aforementioned games are in 3D, which is the

strongest pusher of technology boundaries, games in 2D may also have such specific

requirements that developing a custom engine is just.

Not Invented Here

It’s common to be more comfortable when working with code you have written your-

self than working with someone else’s. The Not Invented Here Syndrome is likely a

common basis for the development of in-house engines among smaller independent

game studios. As described by Wikipedia 6:

“Not invented here (NIH) is the philosophical principle of not using third party so-

lutions to a problem because of their external origins. ... In programming, it is also

common to refer to the "NIH syndrome" as the tendency towards reinventing the

wheel (reimplementing something that is already available) based on the belief

that in-house developments are inherently better suited, more secure, more con-

trolled, shorter development time, or lower overall cost (including maintenance

cost) than using existing implementations.“

Licensing Fees

There are commonly some licensing costs with a successful game. If the studio ex-

pects to sell enough games that the cost of royalties to a third-party game engine

developer exceeds the cost of developing their own engine, it would make sense to

produce their own engine. With a small developer, this is a less achievable goal.

5One might be able to work around the problem, but that is not always the case.
6http://en.wikipedia.org/wiki/Not_invented_here

6

Accommodating a Game Engine for Community Adoption

1.8.4 Open Source, Game Engines and Nox

With Unity, Unreal Engine and Source recently adopting, to varying degrees, busi-

ness models centralized around giving away the engine for free, are open source

game engines still relevant? Erlend Sogge Heggen, the Community Manager of the

jMonkeyEngine certainly things so [2]. He believes that open source game engines

“keeps the big guys honest“, and that when open source is done right, everybody

wins.

“...as long as we can show that these things can be accomplished by a part-time

hobbyist just for the heck of it, the end user gets a fair price (i.e. free!), and our

fellow hardcore misfits will continue trying to solve the most difficult problems

the industry has to offer“

Erlend Sogge Heggen states that Facebook and Google compete in having the

best free and open source framework for web development to ultimately create the

best user experience in their own products [2]. Great open source projects attract

great developers, which further help develop the frameworks resulting in a better

user experience for Facebook, Google, and the users of their open source frame-

works. As Sogge Heggen states, everybody wins.

For a company to attract high quality developers to their open source project, the

first stone to be laid is the initial investment. To make someone use and further de-

velop your product, it must first be built. The initial product must show high enough

quality to differentiate itself from not only all other related open source projects,

but also other commercially available products. Nox is not only competing for users

with other open source engines such as LibGDX, jMonkeyEngine and Cocos2D - now,

more than ever, is it also competing with commercial game engines like Unity 3D and

Unreal Engine.

We think that a small developer like Suttung Digital would not generally benefit

from using an in-house engine, as they are expensive to create and maintain. How-

ever, when it is an open source engine, it can be used as a marketing tool. The cost

of developing and maintaining the engine will still be significant, but releasing the

engine under an open source license may prove beneficial for both games released

by the studio, and the engine itself. Frictional Games, a studio most famous for de-

veloping Amnesia: The Dark Descent, and the Penumbra franchise, released their

in-house engines used for Penumbra: Overture, the HPL Engine 17, under the GNU

General Public License (GPL)8.

1.9 Nox Architecture

The architecture of Nox is inspired by the architecture defined throughout the book

Game Coding Complete, 4th Edition, written by Mike McShaffry and David Graham

[3]. 9

As stated in Pyroeis by Magnus Bjerke Vik and Asbjørn Sporaland [1]:

The architecture of the system is two-layered: Application and logic. Application

communicates with the platform (SDL2, OpenGL, OpenAL, and the OS), while

7 http://en.wikipedia.org/wiki/HPL_Engine
8http://www.gnu.org/copyleft/gpl.html
9This has been stated my Magnus Bjerke Vik in discussions about Nox.

7

Accommodating a Game Engine for Community Adoption

logic handles the game’s states and is platform-independent. In the logic there

are three main components: Actor, game view, and event. An actor is an entity in

the world. A game view is an interface to the program for a human, ai, or remote

player, that often control an actor.

In the original Nox architecture (Figure 1), the game code was considered hierar-

chically equal to the logic layer. The game code was responsible for a lot of the work

required to make the logic and application layers communicate with each other. The

changes made to the layer structure and the responsibilities of the game code is

discussed in greater detail in Chapter 7.2.

Figure 1: The original Nox layer structure. The game code is hierarchically equal to the logic

layer.

Nox is designed to be a modular, loosely coupled system. Implementations of spe-

cific frameworks and libraries such as OpenGL and Box2D are abstracted behind

generic interfaces. This allows these libraries to be replaced by other libraries pro-

viding the same functionality, should this be desired.

8

Accommodating a Game Engine for Community Adoption

Figure 2: The architecture of Pyroeis (Nox). Only the most important classes and methods

are included. Many of the names have been changed, but the core design remains the same.

Figure taken from Pyroeis[1].

1.10 Considered Features

Multiple features were proposed (either by us or by Suttung Digital) and taken into

consideration for implementation. Not only did we not have the time to implement

them all, but we needed to focus on the features which would aid the engine in

attracting users. One of the criteria we used for deciding whether or not we consid-

ered a feature to be attractive enough, was to ask ourselves if the feature in itself

would be immediately noticeable. One of the items which did not pass this test was

to refactor the graphics system. We also took into consideration whether or not the

feature could be considered to be expected in the engine. Particle systems, further

discussed in Chapter 5, were one of those features. The time required to develop the

feature at hand was also taken into account.

9

Accommodating a Game Engine for Community Adoption

Network and Multiplayer

One of the first features that was requested was networking. Networking is generally

expected to some degree, depending on the scope of the engine. Game frameworks

like SDL and SFML need not provide fully realized networking protocols. The work

of implementing network is described in Chapter 2.

Improved Audio Support

Nox originally had a primitive support for playing sound, which they requested to be

improved upon. The new audio system is described in Chapter 6.

Particle System

Suttung Digital wanted support for particle systems in Nox. The particle system is

described in Chapter 5.

Normal and Specular Mapping

We considered normal and specular maps to be a feature with the potential to raise

the grahpical aesthetics of games drastically. The implementation of this is described

in Chapter 4.

Use Stencil for Shadows

Based on previous experience from hobby game engines, we believed we could im-

prove the system used to generate lights and shadows by utilizing the stencil buffer

found in OpenGL. The implementation is described in Chapter 3.

Simplified API

While using and developing Nox, we noticed that the engine has a relatively high

amount of boilerplate and overhead for new projects. We decided to eliminiate as

much of this as possible. The simplified API is described in Chapter 7.

Mobile Support

Mobile support was requested by Suttung Digital as a feature for Nox. The two

largest platforms, iOS and Android, would be the primary focus of support. Target-

ing the explosively popular mobile platforms which has become the hobby devel-

oper’s favorite platform would likely increase Nox’s popularity drastically. We de-

cided against implementing mobile support to focus on other features which bene-

fited the engine in other ways.

Physics Based Skeleton Animation

Suttung Digital requested skeletal animations in Nox. Skeletal animations are con-

joined physical bodies which move in a pre-defined pattern.

World Editor

The Nox engine relies almost entirely on JSON files to define worlds and the enti-

ties populating them. They had noticed that the artists were not as comfortable with

working in JSON as they were. The world editor would allow artits and program-

mers alike to work in a graphical "what you see is what you get" environment when

designing levels and worlds.

In-game Console for Live Editing

Many games, dating back to the late 1990’s, included an in-game console through

which multiple debugging properties were available for configuration. Suttung Dig-

10

Accommodating a Game Engine for Community Adoption

ital requested this feature as a live-editing and scripting-tool.

Rewrite of the Graphics System

Many of our features included modifying the graphics system of Nox. In doing so,

we learned that the system was due for a proper overhaul. To paraphrase Suttung

Digital’s Asbjørn Sporaland; “It is designed to be fast, nothing else.“

Actor Creation Pool

Suttung Digital proposed implementing an actor creation pool. The "pool" would pre-

allocate (or reuse) Actor instances to avoid having to avoid the overhead of allocating

multiple actors during brief bursts of actor creation. The pool would allocate actors

slowly in the background, and potentially also reuse old actor instances which are

no longer required.

Multithreaded Box2D

Suttung Digital proposed either parallelizing Box2D ourselves, or finding a fork

which already did it, and integrating it with Nox.

11

Accommodating a Game Engine for Community Adoption

2 Network

2.1 Network Requirements

We were tasked with implementing online multiplayer features into Nox. We believe

that networking is an important feature to include in the engine in order to build in-

terest around Nox. As discussed in Section 1.1, we believe more interesting features

can help to build a community around Nox. Suttung Digital had few, but well defined

requirements for the networking system.

• The solution must support seamless drop-in play

Alice should be able to invite Bob into her game session without leaving the game

or losing game progress.

• The solution must handle at least 8 concurrent players

8 simultaneous players is the absolute minimum number of connected clients the

solution must support. The latency and performance should be reasonable for

every connected player.

• The solution must support dedicated servers

Large-scale projects may require dedicated server hardware, which the network

solution must support.

Nox is a general purpose game engine, and is not designed with any one game

genre or type in mind. This meant that the networking protocol must meet the same

criteria; it must fit as well into a real-time strategy game as a side-scrolling shooter

or a match three puzzle game.

2.2 Network Architectural Design

The Nox Networking Protocol and API were designed by identifying the "lowest com-

mon denominator" of multiplayer games and implementing up to and including this

point. Advanced and game specific features are therefore not within the scope of the

Nox networking system.

In high-level terms, the points we identified as common denominators are:

• Discovering servers running on the local network

Servers running on the local network must broadcast their existence and con-

nection information. Clients on the local network must be able to connect to the

server without automatically entering the IP address of the server.

• Connecting to and disconnecting from servers

Game clients must be able to connect to a server running the same game with the

same version by only supplying the IP address and port number of the server.

• Server side white- and black-lists

12

Accommodating a Game Engine for Community Adoption

The server must support automatic rejection and acceptance based on a configu-

ration file containing whitelisted and blacklisted players or IP addresses.

• Synchronizing game actors

The process of synchronizing game actors must be performed automatically by

the network system. Details of synchronization are subject to the specific game

at hand.

• Synchronizing events

Through a simple API, events can be sent to the server and broadcast to the whole

lobby. The server must be able to validate received game events.

The network system is not required to handle advanced lag compensation fea-

tures which are unlikely to be required or useful for most games. It is therefore very

important that the networking solution is extendable, overrideable and scalable to

allow for games to implement the missing features.

Requiring players to invite friends into their session seamlessly pointed us ini-

tially towards a Peer-to-peer Architecture (P2P) in which no client is superior. The

additional requirement that dedicated server should be an option pointed us again

towards the Client-Server Architecture (CS). To meet both the requirement of ded-

icated servers and drop-in play, we considered two options. The first option would

be to modularize the implementation and implement both P2P and CS and require

the game implementation to load the correct module at the correct time. The second

option was to go fully for the CS architecture and run the server module within the

game client.

We chose architectural alternative number 2, bundle the game server and client

functionality within the game client. A game application process can be any combi-

nation of server and client. The four unique network configurations are:

1. Neither; playing offline

2. Playing client

3. Dedicated server

4. Server and playing client

2.2.1 Network System Design

To allow for both a server and a client module to be loaded inside the same running

process, the two modules share the same game state; the server module reads and

acts upon the exact same objects as the client module does. The abstract class di-

agram depicting the most significant classes of the network system can be seen in

Figure 3.

13

Accommodating a Game Engine for Community Adoption

Figure 3: Network system class diagram. Only the most significant classes and methods are

listed.

2.2.2 Indistinguishable Network Configurations

From an API perspective, we set out to make the difference between the four net-

work configurations (see list in Section 2.1) as indistinguishable as possible. We

believed this would provide the best interface to the networking functionality, as

the game implementations need not act differently based on which configuration is

currently running. We also believe that by not requiring special treatment for each

network configuration, it will be easier to integrate network features into an origi-

nally intended pure offline game.

The difference between the different network configurations is made small largely

by the way the Nox engine is already laid out. Almost all of the game logic occurs

within the game components, and game-wide communication is done via events -

little logic occurs without initiation from either a component or an event.

The client module is completely unaware if the server it is connected to is running

within the same process or a server half a world away. The server is aware if a client

is connected from within the same process, but only uses this knowledge to avoid

sending redundant data to "itself".

2.2.3 Synchronized Actors

An Actor in Nox is any object in the game world, be it a rock, an umbrella, the

player character, or a bullet casing falling to the ground. Actors are what define the

14

Accommodating a Game Engine for Community Adoption

game. In order to play online, the state of the actors in the game must therefore be

synchronized. An actor’s state is the aggregated state of all the attached components

- in itself, an actor has no attributes of significance in terms of synchronization.

A synchronized actor is an actor that is owned by one game client, and mir-

rored on the other connected game clients. A synchronized actor is immutable for

everyone but the owning game client1. Actors only regard synchronizing a subset

of their components - not all components may be deemed necessary to synchronize.

The game itself must specify explicitly which components should be synchronized.

Components are by default not synchronized.

Figure 4: Logical flow diagram of component synchronization

In Figure 4, the synchronized actor is owned by game client A, and mirrored on

game client B. The actor only synchronizes the state of it’s attached component A.

Game client B is unable to directly affect the state of the actor. This does not fully

exclude any alterations to the state of the actor from client B or the server; the event

channel can be used to force client A change the state of the actor. The Component

and Event Channel are described in detail in Section 2.2.4.

2.2.4 Channels

The Nox Networking Protocol has two primary channels over which game states can

be synchronized. The Component Channel and the Event Channel.

In an event-driven game engine where most of the game state and logic is encap-

sulated within components, no actions of significance should occur that affects the

game state without (A) being initiated by an event or a component, or (B) raising an

event or notifying the affected components. Clicking the "jump" button may result

in an event notifying the system of the pressed key, which results in the component

controlling the player actor jumping. The Nox Networking Protocol therefore only

supports "game initiated communication" over these two channels. The engine is al-

1Allowing synchronized actors to be mutable on remote copies is a point of further improvement.

15

Accommodating a Game Engine for Community Adoption

lowed to communicate outside of this constriction. Most notably, this happens during

the initiation phase of the Nox Networking Protocol, which is described in Section

2.3.3.

Component Channel

The component channel is responsible for synchronizing synchronized actors be-

tween connected hosts in a session. The component channel is only sending data

over the UDP transport layer protocol.

A subset of the synchronized actor’s components are synchronized across the

connected clients. The owner of the actor serializes the components and sends them

to the server at a frequent interval. The server in turn broadcasts all the received

component states to all connected clients, bar the originator of the component state.

Components have an interface for writing to and reading from a network packet.

Components are free to perform interpolations based on the estimated age of the

packet, and general lag compensation. Components which are continuous in nature

(such as physics) benefit heavily from compensating for the lag. To accommodate

these cases, an interpolation class, aptly named Interpolator, was added. The

ActorPhysics and Transform components contains default interpolation methods

for synchronization. We expect developers to replace the synchronization in these

components to better suit the specific requirements of the game being developed.

Event Channel

The event channel is responsible for transmitting events raised from a game client

or the server to one or more counterparts. Clients are only allowed to send events

to the server, while the server may send to any subset of the connected clients. The

decision whether or not to forward received events from the server is implemented

in the game space of the server.

The event channel can use either the TCP or UDP transport layer protocol. If the

underlying protocol is unspecified, UDP is used by default.

2.3 Protocol Implementation

2.3.1 Relationships and Identities

It was our goal to completely eliminate the knowledge of who exactly is the server.

When developing the game logic of a networked game, we intended for there to

be absolutely no distinction or awareness in whether a process is just a client, a

client and the server or just the server. Removing this awareness eliminates the

requirement to adapt based on the current identity, eliminating extra code, thus

potentially eliminating extra bugs.

2.3.2 Protocol Overview

The Nox Network Protocol is divided into two primary phases. The initial phase is the

Initiation Phase. In the initiation phase, the client and server exchanges information

to ensure that the applications are compatible. The second phase is the Game Phase.

In the game phase, game states are synchronized between the lobby.

16

Accommodating a Game Engine for Community Adoption

2.3.3 Initiation Phase

The NNP initiation phase is the first phase of the NNP protocol. In order to initiate

the protocol from a client, the only knowledge required about the server is the IP

address and TCP listening port. The goal of the initiation phase is to ensure that the

client and server are compatible (i.e. running the same game at the same version),

and to create UDP connections. The overview of the NNP Initiation Phase can be

seen in Figure 5.

The initial step is the sending of the ClientJoinRequest packet from the client.

This packet includes information about the client, such as the user name, and the

game and version of the application. The IP address of the client, his username,

the game, the version of the game, and the number of already connected clients are

taken into consideration when the server decides whether or not to accept the client.

As can be seen from the NNP initiation phase diagram, the client creates two

UDP sockets. This is required to allow both hosts to have a two-way UDP socket.

1. The client binds a UDP socket listening on any free port, bound outwards to an

arbitrary port. The client sends his listening port to the server.

2. The server binds an UDP socket listening on any free port, bound outwards to the

listening port of the client. The server sends his listening port to the client.

3. The client destroys the socket created in step 1, and creates a new UDP socket

listening on the same port as the old one, but bound outwards to the listening

port of the server.

After both hosts have (re)created their UDP sockets, a simple echo over UDP

ensures that the sockets are connected to each other. The echo is performed by

sending two "empty" packets of type ClientJoinRequest and ClientJoinResponse.

After the client has been successfully accepted into the server lobby, the previ-

ously connected clients are informed of new arrival, and the client is informed of the

existing clients already in the lobby.

17

Accommodating a Game Engine for Community Adoption

Client Event Bus Client Server Lobby

Start Connecting

Connection Initiated

createTcpSocket()

createUdpSocket()

[TCP] ClientJoinRequest

evaluateClient()

createUdpSocket()

[TCP] ClientJoinResponse

createUdpSocket()

[UDP] ClientJoinRequest

[UDP] ClientJoinResponse

[TCP] ClientDisconnected

dropClient()

Opt1Opt1 Should the server decide to drop the client, for any reason, at any time

Connection Failed

Opt2Opt2 If the client disconnects for any reason

[TCP] ClientConnected

[TCP] ClientConnected[]

Connection Success

Opt3Opt3 If the client was successfully accepted into the lobby

Figure 5: NNP Initiation Phase

18

Accommodating a Game Engine for Community Adoption

2.3.4 Game Phase

The game phase of the NNP is where most of the time is spent. The goal of this

phase is to synchronize the game states of the connected hosts, inform the lobby

when a client (dis)connects, and continuously estimate the clock difference between

the server and the clients.

Continuously during the game phase, a heartbeat 2 is executed. The heartbeat is

initiated by the server once every second, and consists of three steps. The heartbeat

calculates the round-trip-time between the server and the client, and estimates the

clock difference between the clocks of the client and server. The clock difference is

critical when compensating for lag, as it can be used to accurately calculate the age

of any packet sent from any client. In addition to this, the heartbeat ensures that the

hosts are able to communicate with eachother with a reasonable amount of latency.

If the server deems a client as unresponsive, it may drop the client without warning.

The game can define a component update frequency. This value is shared in the

common ancestor of the primary client class (ClientNetworkManager) and the server

class (ServerNetworkManager), the class NetworkManager. During the game phase,

both the client and server send out all available component states at this frequency.

The optional clauses in Figure 5 labeled "opt1" and "opt2" apply to the game

phase as well.

Client Server

startTimer()

[UDP] HeartbeatSYN

[UDP] HeartbeatSYNACK

calculateRTT()

calculateClockDiff()

[UDP] HeartbeatACK

HeartbeatHeartbeat The heartbeat runs every 2 seconds

Figure 6: NNP Game Phase Heartbeat

2http://en.wikipedia.org/wiki/Heartbeat_%28computing%29

19

http://en.wikipedia.org/wiki/Heartbeat_%28computing%29

Accommodating a Game Engine for Community Adoption

Client Event Bus Client Server Lobby

[TCP] ClientConnected

[TCP] ClientConnected

Client Connected

ArrivalArrival When a client joins the lobby

[TCP] ClientDisconnected

[TCP] ClientDisconnected

Client Disconnected

DepartureDeparture When a client leaves the lobby, for any reason

Figure 7: NNP Game Phase Arrival and Departure

20

Accommodating a Game Engine for Community Adoption

Client Server Lobby

aggreagateComponentStates()

ComponentPacket

ComponentPacket[]

ComponentPacket[]

ComponentsComponents Components are sent at a fixed, game-defined rate

Network Event

[xxP] NetworkEventPacket

evluateEvent()

[xxP] NetworkEventPacket

optopt If the event should be echoed

[xxP] NetworkEventPacket

optopt If the event should be sent to a subset of the lobby

EventEvent On client side network event

Figure 8: NNP Game Phase Component and Event Channels

2.3.5 Security and General Flaws

The NNP implementation is not encrypted or encoded in any way, all data is sent in

clear, uncompressed text. This is obviously a security concern, which should be im-

proved upon prior to using the NNP for commercial or widely distributed products.

There are no measures in place to improve the packet-loss rate of UDP communi-

cations in the NNP implementation. A lost packet will be lost forever, as the sender

keeps no track of it once sent.

2.3.6 Packet Implementation

The class Packet is responsible for storing data, providing access to the stored data,

and serializing to and from encoded binary formats.

The packet class supports the most common primitive data types, in addition to

21

Accommodating a Game Engine for Community Adoption

some more advanced structures.

Table 1: Supported data types in packets
Type Size (bytes) Description
UINT32 4 Unsigned 32 bit integer
INT32 4 Signed 32 bit integer
UINT64 8 Unsigned 64 bit integer
INT64 8 Signed 64 bit integer
FLOAT32 4 32 bit float
BYTE 1 Unsigned 8 bit integer
VEC2 8 Two 32 bit floating point numbers
STRING 1* Array of unsigned 8 bit integers (null terminated)
ARRAY 4* Array of unsigned 8 bit integers
PACKET 12* Binary encoded packet

* The size depends on the content. The listed size is the minimum size, given an empty con-

tainer.

Packets are able to encapsulate other packets, as seen in the final row of Table

1. There is no limit to the size of a packet, as long as the total size of the final,

encapsulating packet is less that 232) bytes. This limit is however not enforced.

The packets are loosely typed. There is no governing mechanism in place to en-

sure that a packet with a specified identification conforms to the expectations set

to that specific packet type. We consider the development overhead required to pre-

define the structure of all required packets to be too significant to outweigh the

flexibility and speed a loosely typed structure provides. Dynamically altering the

structure of a packet, as seen in Figure 14, is hard to combine with a strictly typed

packet system.

The storage and retrieval API for the Packet class is similar to the APIs for

std::iostream, as can be seen from Figure 9.

Figure 9: Packet API example code. The contents of the packet are purely demonstrational -

Nox has no built in support for chat.

1

2 void sendChatPacket(std : : string message, ClientId recipient)
3 {
4 Packet packet ;
5 packet << PacketId : :CHAT_MESSAGE;
6 packet << recipient ;
7 packet << message;
8

9 sendPacket(packet) ;
10 }

Binary Format

The packets aims to use as little overhead as possible. An empty packet require only

12 bytes of common data. The first four bytes of a packet contains the total length

of the packet. The next 8 bytes contains the timestamp from when the packet was

serialized. When serializing fields, a single byte is used as the field header to declare

22

Accommodating a Game Engine for Community Adoption

the type of the next field. A 32 bit integer will therefore require 40 bits (5 bytes) in

serialized form.

2.3.7 Packet Translator

It can be seen in Figure 3 that the Network Manager class owns an instance of

an IPacketTranslator, and a DefaultPacketTranslator. This class is required to

allow packets, which as discussed in Section 2.3.6 are typeless, to be translated into

strictly typed Event instances. When events are serialized to Packets, they simply

stream all their data, including a type header, into it. The Packet is then flagged

by the network system as an event packet. Upon arriving at the remote host, an

instance of the original type must be instantiated and initialized with the contents of

the packet. This could not be wholly done within the engine itself, as Nox is unaware

of the Event subclasses existing in the game’s code. The core Event subclasses in

the engine are handled by the DefaultPacketTranslator class.

2.3.8 Dedicated Servers

Dedicated servers are not natively supported by Nox, although the requirements

specified it. The problem is that the Server is responsible for issuing commands

to create synchronized actors, while the Client is responsible for creating them.

When no Client is running within the Server’s process, there is nobody to heed the

command. When there is a Client running within the same process as the Server,

the Client creates the synchronized actor within the game state, which is shared

between the Client and the Server. As the dedicated server has no synchronized

actors in it’s game state, it is unable to synchronize the actors it has commanded the

creation of.

A potential solution to this problem is to fake a Client on dedicated servers. The

fake Client would connect to the Server and handle commands like a regular Client,

but not be treated as a playing Client.

2.4 Network API Design and Usage

The APIs for the network system were developed in accordance with our own general

requirements (defined in Section 1.7). In addition to this, the system was designed

to require as little input and be as automatic as possible.

2.4.1 Declaring an Actor as Synchronized

An actor can be declared synchronized. This is done in the JSON definition of an

actor.

23

Accommodating a Game Engine for Community Adoption

Figure 10:

1

2 "Player":{
3 "components":
4 {
5 "Transform": { ... },
6 "Physics": { ... },
7 "Sprite": { ... }
8 },
9 "synchronized":

10 {
11 "components":["Transform", "Physics"],
12 "destroy": "MyCustomHandler"
13 }
14 }

In Figure 10, the actor named Player will have it’s Transform and Physics com-

ponents synchronized across the lobby. When the server decides that an actor of

type Player should be destroyed, the custom handler named MyCustomHandler

will be executed. The actor is not necessarily destroyed, but it will always be de-

synchronized. When an actor is de-synchronized, the network system ceases to syn-

crhonize the components. The actor can still exist in the game world. There are two

default destroy handlers:

• destroy

The actor will be de-synchronized and destroyed immediately.

• nosync

The actor will be de-synchronized, but will remain active.

Custom destroy handlers were added to allow for things such as rag-doll physics to

be enabled when a character dies, or other custom logic required by the game at

hand. Custom destroy handlers are added as lambda expressions:

2.4.2 Network Events

Whenever an event of significance occurs, for instance when a player fires a gun,

the originating host should notify the server of the event. The server is free to

forward the event to any of the connected clients. The server may for instance

also check if the player even has a gun before forwarding the event. Events that

should be sent to the server are raised like any other event. The special event type

NetworkOutEvent contains the event to be transmitted to the server, along with the

transport layer protocol to send the event over. The network layer listens for events

of type NetworkOutEvent, and sends it’s content to the server upon reception.

If the server decides that a received event was valid, it may broadcast the event

to any subset of the connected hosts. When the receiving hosts receives the event

24

Accommodating a Game Engine for Community Adoption

Figure 11:

1

2 nox : : logic : : world : :Manager *manager = this−>getWorldManager() ;
3 manager−>addSyncDestroyHandler(" ragdoll " ,
4 [] (Actor *a , Manager *m)
5 {
6 activateRagdollPhysics (a) ;
7 }) ;
8

9 manager−>addSyncDestroyHandler("explode" ,
10 [] (Actor *a , Manager *m)
11 {
12 createExplosion (getPositionOf (a)) ;
13 destroyActor (a) ;
14 }) ;

from the server, they are broadcast like any other event. The receiving hosts’ game

spaces have no way of telling if the event originated locally or from the server. In

the pseudo code showing how to send events over the network (Figure 12), the Gun

Component is completely unaware of who raised the FireGunEvent.

Figure 12: Sending an event to the server

1 / / PlayerComponent .cpp
2 void PlayerComponent : : fireGun ()
3 {
4 FireGunEvent fireEvent (getGun()) ;
5 NetworkOutEvent netEvent(fireEvent) ;
6

7 / / Send the event to the server
8 raiseEvent (netEvent) ;
9

10 / / I f we expect the server to be OK with the FireGunEvent ,
11 / / we may raise i t local ly .
12 raiseEvent (fireEvent) ;
13 }
14

15 / / GunComponent.cpp
16 void onFireEvent(FireGunEvent fireEvent)
17 {
18 displayMuzzleFlare () ;
19 }

2.4.3 Making Game Critical Decisions

The client/server networking model in games is based around making the server

the final decider in all game related questions. In order to incorporate this into the

design where the difference between client and server is nigh indistinguishable (as

discussed in Section 2.2.2), the decider was inserted into the server space. The

decider class, ServerDelegate, is overridden by the specific game and given to the

ServerNetworkManager. The server delegate is responsible for responding to events

received from the lobby, defining the size of the lobby, and is notified whenever a

25

Accommodating a Game Engine for Community Adoption

client leaves or joins.

As the server runs within the game’s process, the server delegate has full access

to the game state. From it’s update call, it is able to make game-flow decisions, such

as notifying the lobby that the match is over, or ensuring that clients are behaving

properly.

Figure 13: Making server-side game decisions

1 class MyServerDelegate : public nox : : ServerDelegate
2 {
3 void onClientNetworkEvent(ClientId sender , Event event)
4 {
5 i f (event . isTypeOf (FireGunEvent : : ID))
6 {
7 / / Check i f the sender can f ire his gun
8 i f (canClientFire (sender))
9 {

10 / / Broadcast the event to everyone else
11 broadcastToEveryoneElse(sender , event) ;
12

13 ClientId hitClient = getPlayerHitByGun(sender , event) ;
14 i f (hitClient != NOTHING_HIT)
15 {
16 HitPlayerEvent hitEvent (hitClient) ;
17 broadcastToEveryone(hitEvent) ;
18 }
19 }
20 }
21 }
22

23 void onUpdate(Duration deltaTime)
24 {
25 / / Ensure that a l l clients ’ actors move legally (i . e . , not
26 / / moving at above−allowed speeds) .
27 for (Client client : clients)
28 {
29 i f (! validMove(client−>currentPosition , client−>previousPosition))
30 {
31 / / Force the client to i t ’ s last valid position
32 ForceMoveEvent event (client−>previousPosition) ;
33 broadcastExclusivelyTo (client−>id , event) ;
34 }
35 }
36 }
37

38 / / . . .
39 };

2.4.4 Creating a Synchronized Component

Actors composiste components, and synchronized actors allow a subset of these

components to be synchronized across the network. The components must handle

the synchronization input and output themselves through specifically designed in-

terfaces.

The pseudo code for the class CarDrivingAiComponent in Figure 14 shows how to

synchronize a component. The class is an AI agent driving a car. The agent is allowed

26

Accommodating a Game Engine for Community Adoption

to drive forwards and to brake. Depending on whether the agent is accelerating or

braking, different data is sent to the remote copy. Components are free to send as

much data as they like.

Advanced interpolation and lag compensation should be done in the component

methods serialize() and deSerialize(). The network system’s estimation of the

packet’s age can be retrieved from the packet object, and used for estimation.

Figure 14: Synchronizing a component’s state

1 enum CarState { DRIVING, BRAKING };
2

3 class CarDrivingAiComponent : public nox : :Component
4 {
5 CarState state ;
6 f loat gasPedalPressure ;
7 f loat brakePedalPressure ;
8 int gear ;
9

10 public :
11 / / serial ize () gets called on synchronized components attached
12 / / to locally owned actors .
13 void serial ize (Packet& packet)
14 {
15 packet << state ;
16 i f (state == DRIVING)
17 {
18 packet << gasPedalPressure ;
19 packet << gear ;
20 }
21 else
22 {
23 packet << brakePedalPressure ;
24 }
25 }
26

27 / / deSerialize gets called on synchronized components attached
28 / / to remotely owned actors .
29 void deSerialize (const Packet packet)
30 {
31 packet >> state ;
32 i f (state == DRIVING)
33 {
34 packet >> gasPedalPressure ;
35 packet >> gear ;
36 brakePedalPressure = 0.0;
37 }
38 else
39 {
40 packet >> brakePedalPressure ;
41 gasPedalPressure = 0.0;
42 }
43 }
44 };

2.4.5 Sending Large Files

A relatively common use-case in multiplayer games it to send large binary files. The

files may be the profile image of players or user-made levels. The Nox networking

27

Accommodating a Game Engine for Community Adoption

system does support sending large binary files over the event channel. The compo-

nent channel may also be used, but the content only needs to be sent once, rendering

the event channel more suitable.

Figure 15: Sending large binary files

1 void sendLevel (std : : string levelFile)
2 {
3 std : : vector<unsigned char> binaryContent = readBinaryFormat(levelFile) ;
4

5 BlobTransmitEvent blobEvent(binaryContent) ;
6 blobEvent . setDescriptor ("custom level ") ;
7 blobEvent . setFileName(levelFile) ;
8

9 NetworkOutEvent netEvent(blobEvent) ;
10 raiseEvent (netEvent) ;
11 }

28

Accommodating a Game Engine for Community Adoption

3 Stencil Shadows

3.1 Stencil Shadow Requirements

The existing algorithm for generating shadow shapes was based on ray-casts in the

physics engine. The shadows were generated using as many threads as the running

computer have logical CPU cores. This was the only way the implementation would

provide acceptable performance, as ray-casts can be expensive in terms of process-

ing. We suggested improving the system to Suttung Digital, and they welcomed the

suggestion.

3.2 Light and Shadow in 2D

Light and shadow are features with the potential to raise the aestethical presentation

of a game significantly. Light and shadows are a definite juicy feature. Juicy features,

as described by Martin Jonasson at his GDC 2013 talk, "Juice it or Lose it" [4]:

“Juicy things are things that wobble, squirt, bounce around, and make little cute

noises; it’s sort of a catch-all phrase for things that make a game more satisfying

to interact with.“

Lights and shadow can increase the interactivity of a game by making the world

feel more immersive, dynamic and real. Jordan Thomas, who worked as a game de-

veloper on "Bioshock" and as Creative Director on "Bioshock 2" states that lighting

in 3D scenes “allows you to shout in subtext“. Thomas also states that in addition to

providing an illusion of depth on a two dimensional screen, lights (and sound) are

“hidden paths into our hearts“ [5].

There is no reason for lighting to have any less potential in 2D games. Games like

"The Swapper"16 uses lighting to create a highly dynamic and lifelike environments,

entirely in two dimensions.

29

Accommodating a Game Engine for Community Adoption

Figure 16: Screenshot from "The Swapper". The game utilizes lights, shadows, and normal

maps to achieve its unique look. Image taken from Facepalm Games’s Press Kit for The Swap-

per 2

The hardest and most important task of the shadow generating algorithm is to

find a way to exclude the beshadowed areas of the scene. While the details differ

wildly, the general high-level steps for achieving this in 2D is essentially the same

across all implementations.

1. Create polygons containing the shadow filled regions.

2. Create a circular or cone shaped polygon, the light polygon.

3. Subtract the shadow regions from the light polygon.

These steps are clearly visualized in Figure 17. There are multiple ways of achiev-

ing this goal. Two of the most common methods, stencil based shadow rendering and

ray-cast based shadow generation are discussed in Sections 3.4 and 3.3.

2http://facepalmgames.com/press/index.php

30

http://facepalmgames.com/press/index.php

Accommodating a Game Engine for Community Adoption

Figure 17: The final light geometry is created by subtracting the shadow polygon from the

circular light shape.

3.3 Existing Ray-cast Based Implementation

The ray-cast based shadow generation algorithm originally used in Nox was heavily

CPU-bound, and relied largely on expensive ray-casts in the world.

The algorithm creates a fully defined, ready-to-render polygon for each light,

where the shadowed areas are exluded from the light geometry. As can be seen in

Figure 18, redundant vertices and edges with no direct line of sight to the light’s

center are ignored from the final shadow area.

The created light polygon is absolutely positioned, which is a necessity in order

to also "include" the shadow regions in the polygon. This means that even in a scene

with no shadow casters, the entire light geometry must be recreated whenever the

light’s transform changes.

31

Accommodating a Game Engine for Community Adoption

Figure 18: Ray-cast based light polygon

The red points in Figure 18 indicate significant vertices in shadow-casting shapes.

The red and blue lines indicate the absolute shape of the light polygon. The grey

areas show where the shadows are cast.

32

Accommodating a Game Engine for Community Adoption

Figure 19: Ray-cast shadow generation pseudo code

1 / / This function is run for every light across as many threads
2 / / as are available to the system.
3 void generateShadowData(Light* l ight)
4 {
5 List shapes = getShapesInAABB(light−>getAABB()) ;
6 List shadowVertices ;
7 Phyisics *physics = getPhysics () ;
8

9 for (Shape *shape : shapes)
10 {
11 for (Vertex *vert : shape−>vertices)
12 {
13 i f (physics−>lightHitVertex (light , vertex))
14 {
15 shadowVertices .add(vertex) ;
16 }
17 }
18 }
19

20 / / This recreates the entire geometry of the light
21 generateLightShape(light , shadowVertices) ;
22 }

The algorithm works by querying the world for all shapes within the light’s AABB,

and casting rays to the vertices of the shapes to determine which vertices will cast

shadow. The pseudo-code in Figure 19 is a major oversimplification of the actual

algorithm, but it shows the processing required to calculate the shadow geometry.

The generated data is ready to be rendered without any advanced techniques, as

can be seen from the rendering pseudo code in Figure 20.

Figure 20: Pseudo-code illustrating the rendering process of ray-cast generated shadow data.

1 void renderLights (List l ights)
2 {
3 clearScreen(getClearColor ()) ;
4

5 VertexData vertices ;
6 for (Light * l ight : l ights)
7 {
8 vertices . addLight (l ight) ;
9 }

10

11 drawVertices (vertices) ;
12 }

3.4 Stencil Shadows in 2D

The stencil based implementation works by always assuming that a shadow-casting

shape with at least one vertex within the AABB of the light will cast shadow from all

of it’s edges. The algorithm is more intensive on the GPU than the existing ray-cast

based algorithm, but is in turn less CPU intensive.

33

Accommodating a Game Engine for Community Adoption

Figure 21: Stencil based shadow generation pseudo code

1 / / This function is run in succession for every light , on a single thread
2 void generateShadowData(Light* l ight)
3 {
4 List shapes = getShapesInAABB(light−>getAABB()) ;
5 List shadowVertices ;
6

7 for (Shape *shape : shapes)
8 {
9 light−>addVerticesFromShape(shape) ;

10 }
11 }

With this approach, the shadow geometry and light geometry are disjunct and

treated as two separate entities. The light geometry is created as a unit circle and is

scaled and moved to the desired location. The shadow geometry is excluded by uti-

lizing the stencil buffer during the rendering process. Only dramatic changes which

changes the attributes of the light regardless of transform requires the light geome-

try to be recalculated.

34

Accommodating a Game Engine for Community Adoption

Figure 22: Stencil based light and shadow polygon

The red points of Figure 3.4 indicate the vertices of shadow casting shapes which

cast shadow, and the red lines show the connection between them. Each shadow

casting edge is projected far beyond the radius of the light and drawn as a rectangle.

The projected edges are not shown in the figure. The darkened areas is where the

shadows will be cast, and will act as the stencil for the light geometry.

3.4.1 Rendering

The rendering of stencil based lights requires two passes per light. As each light

pollutes the stencil buffer with it’s shadow data, the buffer must be cleared after

drawing each light to prevent lights from interfering with each other in an unin-

tended fashion. Lights which does not cast shadows, or lights whose shadows does

not overlap any other light’s shadow or light geometry can in theory be drawn in a

single pass while still guaranteeing no interference, but the current implementation

does not do this.

35

Accommodating a Game Engine for Community Adoption

Figure 23: Stencil based light & shadow rendering pseudo code

1 void renderLights (List l ights)
2 {
3 for (Light * l ight : l ights)
4 {
5 drawToStencilBuffer (light−>getShadowGeometry()) ;
6 drawToColorBuffer(light−>getLightGeometry ()) ;
7 clearStencilBuffer () ;
8 }
9 }

In comparison with the ray-cast generated shadows seen in Figure 20, the ren-

dering is far more complex. The stencil shadow rendering requires 2N passes, where

the ray-cast based shadow rendering requires only 1.

3.5 Performance Analysis

The motivation for changing Nox’s light and shadow system was to increase perfor-

mance, especially on lower-end systems. In order to assess the whether or not this

was the case, we needed to test the performance of both implementations on a set of

computers with a broad spectrum in processing power. We had three machines avail-

able between us, and Magnus Bjerke Vik from Suttung Digital graciously offered to

run the tests on his machines as well.

Table 2: The test environments used throughout the entire document.
Name OS CPU Graphics Card RAM Resolution
Environment 1 Arch Linux Intel i7 4790K, 4 cores,

8 threads, 4.0GHz
Nvidia GeForce 9800 GTX+

(Nvidia 340.76 driver)
8GB 1920x1080

Environment 2 Ubuntu 14.04 Intel i5, 2 cores,
4 threads, 2.3GHz

Intel Graphics HD 3000
(Mesa 10.6.0 driver)

6GB 1280x800

Environment 3 Ubuntu 14.10 AMD FX-6360, 6 cores,
4.2GHz

Nvidia GeForce GTX 780 Ti
@1202MHz base

16GB 1920x1080

Environment 4 Antergos AMD E2-6110, 4 cores,
2x1.5GHz + 2x1.0GHz

AMD Radeon R2 8GB 1600x900

Environment 5 Arch Linux Intel i5 2500k
3.3GHz, 4 cores

Nvdia GeForce GTX 680
(Nvidia 349.16 driver)

8GB 1920x1080

Environment 6 Ubuntu 15.04 Intel i5 M 450, 2.4GHz
2 cores, 4 threads

ATI Mobility Radeon HD 5650
(Mesa 10.5.2 driver)

8GB 1366x768

The performance test ramps up from 1 moving light to a final total of 100 moving

lights. There are always 400 shadow casters in the scene. The tests have been run

on all the environments listed in Table 2. For each configuration of the test 3, perfor-

mance data was gathered over the course of 1000 frames. The configurations were

run sequentially as unique processes with no other heavy task executed simultane-

ously. Figure 24 illustrates the light performance test application. For the test cases,

all 100 lights are updated and rendered every frame4.

The ray-cast based shadow method recreates the light geometry when modifica-

tions to the light transform or modifications to the transform of any shadow casting

3The number of lights visible in the scene is considered the configuration of the test.
4Lights which are off-screen are still culled by OpenGL.

36

Accommodating a Game Engine for Community Adoption

fixture within the light’s AABB occurs. The stencil based shadow method recreates

the shadow geometry every frame.

The tests run at the system’s native resolution, as opposed to running in a reso-

lution all the systems supports. While this weakens the integrity of the data as the

tests were run under different conditions, the data still offers a good overview of

what performance can be expected from machines of different specifications.

Figure 24: Light performance test application. All the lights move in a circular pattern.

3.5.1 Shadow Generation Performance

The "shadow calculation time" refers to the time it takes for the system to generate

the shadow (and light, for the ray-cast implementation) for all the lights in the scene.

37

Accommodating a Game Engine for Community Adoption

Figure 25: Ray-cast light & shadow generation time

The ray-cast based shadow generation implementation is as previously discussed

in Section 3.3 heavy on the CPU, and easy on the GPU. In order to achieve acceptable

performance, the algorithm is executed on as many threads as are available to the

system. This can be seen in Figure 25, where the wall-clock processing times are

significantly shorter than the logical processing times.

As can be seen in Figure 25, all tested environments start at close to zero pro-

38

Accommodating a Game Engine for Community Adoption

cessing times for 1 light. The performance increases linearly and proportional to the

processing power available to the specific system. The slower environments ends

up spending close to 9 milliseconds (wall-clock) for 100 lights, whereas the faster

environments lie closer to 2.

Figure 26: Stencil based shadow generation times

When compared to the logical processing time of the ray-cast generation, the

stencil calculation is significantly faster, as can be seen in Figure 26. However, when

comparing against the wall-clock time of the ray-cast generation, the difference in

performance is trivial. The stencil shadow generation can in theory be performed

over multiple threads as well, as each light are entirely independent of one another.

This is a potential point of future improvement.

3.5.2 Rendering Times

The "rendering time" of a test is the time the method OpenGLRenderer::onRender()

takes to complete. This method handles all things related to rendering, except the

copying of the data that will be drawn. The copying of data happens asynchronously

in background threads.

The ray-cast generated shadows can as previously discussed in Section 3.3 be

drawn in a single pass due to the nature of the data. The largest determinator of

performance in this regard is therefore the size of the data that is drawn.

The stencil based shadow rendering requires as discussed in Section 3.4.1 2

passes per light. There is less data to be copied to the graphics card when drawing it,

as only the shadow data needs to be copied. The light geometry remained unchanged

throughout the entirety of the test. The largest determinator of performance with re-

gard to the stencil generated shadows is therefore likely to be a combination of the

39

Accommodating a Game Engine for Community Adoption

number of lights and the number of shadows cast in total.

Figure 27: Ray-cast and stencil based shadow rendering times

As Figure 27 shows, the rendering time for both implementations starts relatively

high, and decreases as more lights are added to the scene. The only exception to

this is Environment 4, which slowly increases with the stencil implementation. This

data surprised us, and we were unable to determine the cause of the behavior. We

40

Accommodating a Game Engine for Community Adoption

saw similar trends in a previous round of testing, where each test confguration were

only run for 200 frames. We suspected that the graphics cards (and CPUs) might

"ramp up" as the system realizes it is under heavy load, causing the performance

to increase over time. This was the reason we decided to run the tests for 1000

frames, in the hope that any anomalies caused by the system speeding up over time

would be removed. We believe this to be an unlikely source of the (unintended)

performance gain, as the tests take between 30 and 90 minutes to complete, and

that the automated test script uses between 1 and 3 seconds between configurations

to prepare the next test.

Performance anomalies aside, the rendering times of the high-end machines (en-

vironments 1, 3, and 5) lie between 14 and 16 milliseconds for 100 lights. We con-

sider none of these rendering times to be within the reasonable time frame, as little

time would be allowed for other tasks in the engine to run, while still achieving 60

frames per second.

3.5.3 Total System Impact

The final determinator of the performance of the two implementations is to combine

the time taken to generate the shadow (and light) data, and how long it takes to

draw it.

41

Accommodating a Game Engine for Community Adoption

Figure 28: Total system impact of light implementations

Figure 28 shows the total system impact of the two light & shadow implementa-

42

Accommodating a Game Engine for Community Adoption

tions. It’s worth to notice that because the rendering times decreases as lights are

added, the shadow calculation time increases near equally, resulting in very stable

performance on 5 of the 6 environments, regardless of the number of lights. The

performance difference between the two systems also shows that the performance

difference is insignificant.

3.5.4 Performance Conlcusion

The stencil light implementation set out to increase the performance of the light and

shadow generation in Nox, but as can be seen from Figure 28, the difference is at

best marginal. However, that does not mean the endeavour was fruitless. With the

ray-cast implementation, the engine creates a "burst" of work on all the system’s

cores once every frame. If an existing or new feature of Nox were to be given it’s

own thread, it is likely that it would behave more smoothly with the stencil lights

as opposed to the ray-cast based lights. The complexity of all the shadow related

methods was also significantly reduced, as shown in Table 3.

Table 3: Light implementation complexity and SLOC comparison. The complexity is measured

in cyclomatic complexity. 6 Only significant methods primarily used in generating or rendering

lights and shadows are included. RC is shorthand for Ray Cast. S is shorthand for Stencil. CC

is shorthand for Cyclomatic Complexity. SLOC is shorthand for Source Lines Of Code.
Method Name RC SLOC RC CC S SLOC S CC
Box2DSimulation::calculateVisibility 426 41 - -
OpenGlRenderer::lightRenderingDataPrepare 85 15 111 15
OpenGlRenderer::onLightMapRender 44 9 159 14
Box2DVisibilityMapper::getInvisibilityRegions - - 92 7
Box2DVisibilityMapper::getShapeVertices* - - 25 2
Box2DSimulation::calculateLightVisibility - - 27 4
Box2DSimulation::calculateLightGeometry - - 56 5

43

Accommodating a Game Engine for Community Adoption

4 Normal and Specular Maps

4.1 Requirements

We proposed to implement normal and specular mapping in Nox to Suttung Digital,

an improvement they gladly welcomed. The implementation is required to utilize

normal and specular maps in combination with the default "diffuse" textures.

4.2 Normal and Specular Maps

Normal mapping is a way of achieving depth and texture on a plane, where none

previously existed. The most common use-case for normal maps exists in the realm

of three-dimensional graphics, where proper use or normal maps can greatly reduce

the number of required polygons to achieve (largely) the same visual effect.

A normal map works by showing the normals of the 3D model against the plane it

has been flattened to. The r, g, and b values to show the as x, y, and z values as the

normal vector. This allows us to calculate the reflection, using the angle of the light.

A specular map works very similarly. It only gives one value, as it is a single channel

image. This value is used to represent the reflectiveness of the image. Given a 3-

dimensional color vector (RGB format) ~c, the color can be transformed to a normal

vector ~n via the following formula:

~n = 2~c− [1, 1, 1]

When rendering a texture with normal and specular mapping enabled, the inten-

sity is added to the texture’s red, blue and green chanels, while the alpha channel

remains untouched by the calculation.

Color = [Texr + Intensity,Texg + Intensity,Texb + Intensity,Texa]

The intensity is calculated by taking three factors into account; the angle at which

the light hits the object, the attenuation (falloff) of the light, and the specularity of

the object. ~D is the distance vector from the surface of the object to the light. ~U is

the normal of the surface. Tex is the diffuse texture. Spec is the specular texture.

Intensity = TexA +

n∑
i=1

max(0, ~D · ~U)× attenuation(|~D|)×
Specr + Specg + Specb

3

The attenuation function is the constant-linear-quadratic formula for attenuation1.

attenuation(d) =
1

c+ ld+ qdd

1https://goo.gl/jkoygh

44

Accommodating a Game Engine for Community Adoption

Figure 29: Normal map example in 3D by Paolo Cigoni2

In Figure 29, the original mesh uses 4,000,000 triangles to define the bumps and

dents in the face. The rightmost mesh consists of a mere 500 triangles (0.0125% of

the original) and achieves the same general look through the use of a normal map.

Figure 30: Normal map in 2D3

Figure 30 shows a 3D model converted to a normal map, and then rendered to

a 2D surface. The first cell shows a 3D model, the second cell shows a normal map

generated from said 3D model. The third cell shows the effect of rendering with said

normal map. The rendering was done in the Nox engine, using a white background,

one purple and one blue light.

2 "Normal map example" by Paolo Cignoni. Licensed under CC BY-SA 1.0 via Wikimedia Com-
mons - http://commons.wikimedia.org/wiki/File:Normal_map_example.png#/media/File:Normal_

map_example.png
3 Modified version of "Normal map example with scene and result" by Julian Herzog. Licensed under

CC BY 4.0 via Wikimedia Commons http://upload.wikimedia.org/wikipedia/commons/2/2e/Normal_

map_example_with_scene_and_result.png

45

http://commons.wikimedia.org/wiki/File:Normal_map_example.png#/media/File:Normal_map_example.png
http://commons.wikimedia.org/wiki/File:Normal_map_example.png#/media/File:Normal_map_example.png
http://upload.wikimedia.org/wikipedia/commons/2/2e/Normal_map_example_with_scene_and_result.png
http://upload.wikimedia.org/wikipedia/commons/2/2e/Normal_map_example_with_scene_and_result.png

Accommodating a Game Engine for Community Adoption

Figure 31: Specular map in 2D, based on Figure 30.

The second cell in Figure 31 shows the usage of both specular and normal maps.

It uses the same setup as Figure 30, with the addition of the black and white image

in cell one as a specular map.

4.3 Implementation

Implementing normal and specular maps in Nox required some changes to the exist-

ing light system. The lights themselves become naturally more complex when normal

mapping is taken into account. Lights now need attenuation paramters and a height.

The height is required to simulate the light in a 3D environment, which enhances

the effect of the normal map procedure. Lights previously had a falloff parameter,

but this was a constant factor. The lights were changed to instead use the constant-

linear-quadratic formula for attenuation.

After the lights were given additional attributes, the remaining task was to ex-

tend the rendering pipeline of Nox to load the maps, and use them in the relevant

shaders. The usage of normal and specular maps was implemented in the shader

spriteLightLuminance, which are responsible for drawing sprites affected by light.

The final result can be seen in Figures 30 and 31.

4.4 API Usage

The API for adding the normal and specular maps is very simple. By adding the

objects "normalMap" and "specularMap" with values for what files contains them to

the object in "textureAtlases", they are automatically used. This is done in line 10

and 11 of Figure 32.

46

Accommodating a Game Engine for Community Adoption

Figure 32: Normal and specular map definition

1 {
2 "texelsPerMeter": 100,
3 "textureAtlases":
4 [
5 {
6 "name": "graphics/textureAtlas",
7 "imageExtension": "png",
8 "dataExtension": "json",
9 "mipMap": true,

10 "normalMap":"graphics/normalAtlas.png",
11 "specularMap":"graphics/specularAtlas.png"
12 }
13]
14 }

There are no safety measures in place to ensure that the normal and specular

maps are of the same resolution or aspect ratio as the primary texture. Using nor-

mal and specular maps of lower resolution than the primary texture may reduce the

overall visual quality of the scene, but may increase performance on slower comput-

ers.

47

Accommodating a Game Engine for Community Adoption

5 Particle System

5.1 Requirements

Suttung Digital asked us to implement a particle system in the engine. The particle

system was wanted for visual effects. It needed to look good, but it did not need

to be so consistent that it could be used as a consistent gameplay element. As the

visual aspect is the main reason for adding the particle system to Nox, the rendering

functions have to be easy to replace. Different games may want to use different

particle effects, and having an expandable system is necessary to allow users to

create the exact effects needed for the aesthetics of their game.

With an engine already using Box2D, a particle system based around Box2D

would be the best solution. Otherwise we would have to replace the entire physics

system. Performance was an important factor, as having your engine run on as many

machines as possible is crucial. We did not want our particle system to exclude ma-

chines with weak processors, as this may exclude a significant portion of the poten-

tial player base.

It has to support Windows, Mac OS X, and Linux. Even tough we are not sup-

porting it in this project, support for Android, iOS or any other platforms is a big

plus.

5.2 Selecting a particle system

When selecting a solution for the particle system in Nox, Asbjørn Sporaland quickly

suggested using LiquidFun1, as he had seen some demos of it, and knew it was a

fork of Box2D. We looked for any alternative particle solutions in case there were any

better options, but LiquidFun seemed to be the best alternative. We also conscidered

writing our own implementation of a particle system, without collision detection, but

using the gravity forces in the engine.

5.2.1 Writing our own particle system

Writing our own particle system based on Box2D would take time. However it would

be made to perfectly fit our engine, and we would know everything about it. It would

do what we wanted it to do, and only what we wanted it to do. Having it only do

what we want it do do, might give us slightly better performance, as it does not do

anything unnecesary. But having it only do what we wanted it to, would mean more

work if we were to add features, that already exist in LiquidFun, later on. We had

not planned on implementing collisions in our own particle system.

5.2.2 Using LiquidFun

The particle data you get out of LiquidFun is easy to use with OpenGL. This is not

an advantage, as we could make sure this would be true for our self made particle

system. But at least it it works the way it should. LiquidFun is a fork of Box2D, and

1http://google.github.io/liquidfun/

48

Accommodating a Game Engine for Community Adoption

is therefore easy to put into the engine, by simply replacing the submodule in the git

repository. This would allow us to focus on implementing the surrounding particle

system.

LiquidFun being a fork, there will be some delay in getting upstream updates

from Box2D. However, Box2D has not been updated since November 20132 (as of

13.05.15), so updates are few an far between. Box2D also currently works exactly as

we need it to do, so no updates are required.

The major disadvantage is that Nox will now be further locked to LiquidFun than

it was to Box2D previously. Nox has generally had as many replaceable modules as

possible, and adding more interaction with the physics engine makes it more difficult

to replace it. LiquidFun supports the three desktop platforms already supported by

Nox, in addition to Android and iOS.

5.2.3 Conclusion

We went with LiquidFun, as it is more feature rich than our own solution would have

been, it is proven as a solution for adding particles to Box2D, it is easy to work with,

and it should be less work than writing our own system.

5.3 Particle systems in 2D

Particles in a 2D game engine work similarly to the rest of the physics system. You

could in fact just use tiny physics objects as particles, but this can be slow.

As a particle system can often have hundreds or thousands of particles in it at the

same time, it is important that it is highly optimized.

2https://code.google.com/p/box2d/downloads/list

49

Accommodating a Game Engine for Community Adoption

Figure 33: Particle accuracy

Figure 33 was made in the Nox engine. There might be a couple (or a lot) of

particles in there that are not where they "should" be in a perfect simulation, but

it does not matter, because the general mass of particles are where they should be,

and everything looks nice.

A good solution for optimizing particles is to only make them points, instead of

using physical bodies. Calculating a collision within a physical body is simpler with

a point than another body. Box2D checks if particles are within a certain distance

of eachother in both dimensions, and if so it will (depending on particle flags) push

them i opposite directions, or assert a pressure on them.

5.4 The Design

The particle system is outlined in Figure 34 and the this section of the document.

The component side of the particle system is responsible for creating new part-

cles, and sending them to Box2DSimulation. Box2DSimulation contains LiquidFun,

and LiquidFun updates the particles every cycle. When the particles are updated,

Box2DSimulation sends them to the particle renderer, wich updates its references

to them. When a new frame is rendered, the particle renderer renders the particles

using its latest references to the particles.

The component side of the particle system is based on actors having a particle

component, containing one or more particle emitters, each containing one or more

particle definitions (class Particle from Figure 34).

The particle component holds the particle emitters, and is responsible for posi-

50

Accommodating a Game Engine for Community Adoption

tioning and updating them. Whenever the actor it is attached to changes its position,

it sends out an event. This is picked up in the particle component, and it updates its

own copy of the position. When the system is updated, it calls for an update in each

of its particle emitters.

The particle emitters get the time since last update, and the global position of

the actor from the particle component when it updates them. It checks the time

against the emit rate of particles, and decides if and how many particles to emit.

For each particle to be emitted, it creates a b2ParticleDef, and sends it to the

b2ParticleSystem in the Box2DSimulation.

The emitters do not update the emitted particles. Those are dealt with in Liquid-

Fun. The emitters emit particles on update when needed.

When Box2DSimulation updates the particle system, it sends out a ParticleEvent,

containing a ParticleRenderBatch and the texture to use for the particles. This is

picked up in the view, and the ParticleRenderBatch is sent to the ParticleRenderer.

The ParticleRenderer extracts the ParticleRenderNodes from the ParticleRender-

Batch, and stores them in a map based on the texture used by that particular batch.

When rendering the particles, all particles using the same texture are rendered in

the same pass. The particle renderer therefore uses N passes, where N is the num-

ber of unique textures used by all the visible particles. The particle renderer always

discards the particle data after drawing it. Particles are supposed to move, bounce,

and scatter about, so the probability that a significant portion of the data will remain

valid until the next frame is low.

51

Accommodating a Game Engine for Community Adoption

Figure 34: Particle system

52

Accommodating a Game Engine for Community Adoption

5.5 API Usage

The API for the particle system in Nox was designed in the same spirit as Nox.

It therefore uses JSON, like all other components. Given time, the particle system

would be given an API upgrade in the simplified API improvements described in 7,

so developers would be free to construct particle systems directly in the code.

One thing to note in this section is that there are many values with corresponding

offset values. These refer to RandomType values. They allow for an offset to be set.

If set, the value, will be a random value within "offset" from its original value. These

values are named "*Offset". These are not necesary, as they will initialize to 0 if

undefined. They are however reccomended, as some randomness adds "life" to the

system.

As described in Section 5.4, the particle systems primary components are particle

components, particle emitters, and particles.

The definition of the particle component is a "Particle" object, containing an

"Emitters" array. The "Emitters" array must contain at least one valid object, as

a particle component without a valid emitter is completely useless. In the same way,

the "particle" array in an emitter must contain at least one valid Particle definition

for the emitter object to be valid. You can see an example of a validly defined compo-

nent in Figure 35. 50 times a second, JohnTheEmitter will emit PollyTheParrot. Polly

will go at a speed between 4.5 and 5.5, be a blueish color, and live between 0.2 and

1.0 seconds.

53

Accommodating a Game Engine for Community Adoption

Figure 35: Particle component definition

1 "components":
2 {
3 "Particle":
4 {
5 "Emitters": [{
6 "name": "JohnTheEmitter",
7 "position": {"x":-2.0, "y":-2.0},
8 "size": {"x":1.5, "y":0.5},
9 "emitRate": 50.0,

10 "velocityDirection": {"x":10.0, "xOffset":5.0, "y":-5.0, "
yOffset": 2.5},

11 "particle":[{
12 "name": "PollyTheParrotParticle",
13 "velocityScalar": 5.0,
14 "velocityScalarOffset": 0.5,
15 "color": {"r": 0.1, "g": 0.1, "b": 0.9, "a": 0.8, "

rOffset": 0.1,
16 "gOffset": 0.1, "bOffset": 0.1, "aOffset":

0.2},
17 "lifetime": 0.6,
18 "lifetimeOffset": 0.4,
19 "flags": ["tensile", "staticPressure", "repulsive"]
20 }]
21 }]
22 }
23 }

The value named "position" in the emitter sets the position relative to the posi-

tion of the Actor the component is attached to. The size is the size of the area within

particles can spawn. The "emitRate" is a floating point value, giving the rate of emis-

sion in particles per second. The "velocityDirection" describes the vector particles

will spawn along. The offsets allow for randomness in the direction. The vector is

normalized before emission, and multiplied by the speed of the emitted particle.

In the particle array in the particle emitter definition contains particle defini-

tions. The offsets in here are optional, but as in the emitter definition, they are

reccomended for the purpose of livening up the system. Even in just a small degree,

they are useful.

The "velocityScalar" is the speed at which particles spawn along the direction

defined in the emitter. The "color" is defined by red, green, blue and alpha. The

value is defined in floats from 0 to 1. The "lifetime" is the number of seconds a the

particle live for. The "flags" array contains flags that give properties to each particle.

These are defined in Table 4

54

Accommodating a Game Engine for Community Adoption

Table 4: Particle flags3

Flag Effect
waterParticle Water particle.
zombieParticle Removed after next simulation step.
wallParticle Zero velocity.
springParticle With restitution from stretching.
elasticParticle With restitution from deformation.
viscousParticle With viscosity.
powderParticle Without isotropic pressure.
tensileParticle With surface tension.
colorMixingParticle Mix color between contacting particles.
barrierParticle Prevents other particles from leaking.
staticPressureParticle Less compressibility.
repulsiveParticle With high repulsive force.

3Based on https://google.github.io/liquidfun/API-Ref/html/b2_particle_8h.html#a73d3b011893cb87452253b1b67a5cf50

55

Accommodating a Game Engine for Community Adoption

6 Audio Improvements

6.1 Requirements

The Nox engine originally only supported the absolute minimum in terms of playing

sounds. Sounds could only be played without position, meaning that sounds originat-

ing from afar are heard as being right in front of you. This was something Suttung

Digital requested to be improved upon, and we believe will help make the engine

more attractive and interesting, as discussed in Section 1.1.

The previous implementation used a bare-bones wrapper around OpenAL. To

avoid having to reinvent the wheel, we decided to investigate what third-party so-

lutions exists. We were looking for third-party sound libraries with the following

criteria:

• Cross platform support

The third-party solution must support Linux, Mac OSX and Windows natively.

Other platforms are a bonus.

• Basic audio properties

The third-party solution must support positional sounds, preferrably also support-

ing velocity & doppler effects.

• Effect and filter support

The third-party solution must offer a relatively comprehensive set of effects and

filters out of the box. If the solution also supports custom effects and filters, that

is a bonus.

• Open source

The third-party solution must be open source, and released under a license that

allows for binary distributions of the application using the library (The MIT li-

cense, for example). Suttung Digital are strong believers in OSS, and wishes to

bring Nox to mobile platforms. Open source libraries are easier to deal with in

terms of cross compiling, as you don’t have to rely on the developer to provide

pre-compiled libraries.

In addition to the list above, we were also taking into consideration the size of

the user base, the age of the project and the frequency of updates. Through our

research, we found a handful of potential libraries.

The libraries evaluated for integration with Nox, and the major downsides with

each of them were:

• PortAudio (No sound effects)

• IrrKlang (Proprietary, only free for non-commercial products)

• SoLoud (No sound effects)

• FMOD (Proprietary, only free for non-commercial products)

• SFML::Audio (No sound effects)

56

Accommodating a Game Engine for Community Adoption

• cAudio (Difficult to add custom sound effects)

With all requirements taken into account, cAudio was the chosen library. It sup-

ports sound effects, filters, position, velocity and more. It is licensed under the

zlib/libpng license 1, which means that it is freely distributable in binary form,

as long as the copyright notice is included in the distribution. cAudio is based on

OpenAL, rendering its cross platform support as wide as that of OpenAL.

6.2 Design

Positional sound requires that a movable object in some way or another becomes

associated with the sound. This was solved by adding an abstract class called Audio-

BufferPositionProvider. The class contains a method updateAudioBuffer(AudioBuffer*
buffer) in which implementations may assign available and desired attributes to

the sound.

As the listener can have both a position and a velocity, a similar class named

AudioListenerPositionProvider was added. The class is designed in the same

fashion - the AudioListenerPositionProvider is registered with a AudioSystem,

and the AudioSystem calls the virtual method updateListenerPosition(AudioSystem*)

every frame. The AudioListenerPositionProvider also here assigns all available

and desired attributes.

In order to seamlessly tie the system together, a component named ActorAudio

was added to the engine. The component extends the abstract class AudioBuffer-

PositionProvider. This component has an interface for playing sounds, and sounds

played via this class are automatically associated with the component. The com-

ponent checks every tick for sibling components 2 of type Transform and Actor-

Physics. The Transform component provides the position of the actor, and the Actor-

Physics provides the velocity. Having a Transform and / or ActorPhysics sibling is

strictly optional, but useful. A new camera class was added to ease the work of as-

signing the listener’s position. The camera class simply assigns it’s up-vector and

position to the listener.

6.3 Implementation

Being an engine with modularization as a key aspect, extending Nox to support

a second sound framework is by design easy. The sound sub-system, among oth-

ers, uses interfaces to abstract out the implementation. When using OpenAL as the

back end for playing sound, the game developer never (or rarely) interfaces with

OpenALSystem and OpenALBuffer - the interfaces AudioSystem and AudioBuffer are

used instead. Bar the creation of the AudioSystem instance, no significant refer-

ence to OpenALSystem is ever made. Adding cAudio is therefore trivial. The classes

CAudioSystem and CAudioBuffer will handle the logic required to play sounds via

cAudio, and Application will decide, based on compiler flags, which audio system

(OpenAL or cAudio) to instantiate.

The previous sole implementation using OpenAL did not support 3D sound or

velocity. These attributes had to be added to the abstract interfaces AudioSystem

and AudioBuffer in order to access the deeper functionality of cAudio. The OpenAL-

1http://opensource.org/licenses/Zlib
2Components attached to the same parent actor.

57

Accommodating a Game Engine for Community Adoption

specialized classes implements these methods, with empty bodies. 3

3OpenAL supports positional sounds, effects and velocity, but the OpenAL-specialized classes does not

58

Accommodating a Game Engine for Community Adoption

7 Simplified API

7.1 Requirements

The basis for improving the API was primarily a large amount of boilerplate required

to get a simple project running, as discussed in more detail in Section 7.2. Improving

the API was our own suggestion, and Suttung Digital welcomed the idea as it could

make the engine more attractive.

The requirements we set for the simplified API were:

• Insert a new "binding" layer between the game code and the Logic layer (see

Section 1.9)

The new layer should abstract away the difference between the Logic and Ap-

plication layers and perform most of the tasks related to making these layers

communicate with the game code.

• Expose more of the APIs through code to offer functionality previously exclusive

through JSON files.

We aim to make the engine easier to use, in order to please potential users inves-

tigating the engine. 1

7.2 Nox Usage

As discussed in the architectural description of Nox, the engine is structured into

two primary layers; the application layer and the logic layer. The game code can be

considered a third layer, hierarchically equal to the logic layer, as shown in Figure 1.

The game code is responsible for doing much of the binding between the logic and

application layers.

Suttung Digital has created a wide array of samples demonstrating how to use

and access the various aspects of the Nox Engine 2. We will go into detail about one

of the samples called 11-control, which demonstrates how to create a simple scene

in which an actor can move around in the game world.

1See discussion in Section 1.1.
2Nox samples are hosted at https://bitbucket.org/suttungdigital/nox-engine-sample.

59

Accommodating a Game Engine for Community Adoption

Figure 36: Screenshot from the sample 11-control. The Suttung Digital logo can freely move

around the world via keyboard input.

The game code must provide an Application and a View. The Application is

responsible for initializing the game and providing application layer services 3. The

View is primarily concerned with controlling the actor, and providing methods for

the player to view the game logic by displaying it on the screen.

In concrete terms, the responsibilities required for the sample 11-control to

initialize and use the engine, are listed below. Responsibilities which are solely con-

cerned with controlling the actor, i.e., the non-boilerplate aspects are omitted from

this list. There is made no distinction between the Application and View in this list.

These are steps required for nearly every application created using Nox, but the list

is not comprehensive; more advanced applications have additional responsibilities.

Some class names have been changed to be more verbose to more efficiently com-

municate their purpose. The class referred to as FileHandle is for instance really

called Handle.

• Create a ResourceCache to gain access to file system providers

• Create file system providers directories for all the directories containing files

required by the sample

• Create and initialize the physics subsystem

• Make Components included in the Nox engine available to the World Manager

This is required to allow the World Manager to recognize Components by string

3As described in section 1.9, the application layer is responsible for providing low-level features such
as file access and graphical functionality.

60

Accommodating a Game Engine for Community Adoption

references (for instance, "ActorPhysics", and create an instance of the corre-

sponding class.

• Load actor definitions

This is required to let the World Manager know how to create actors by string

references. For instance, the actor "Player" is defined in player.json.

• Load the world

1. Get a file FileHandle to the world file from the ResourceCache

2. Ensure that the file is of JSON-format

3. Create a WorldLoader and register the View with the WorldLoader

4. Load the world by giving the WorldLoader the FileHandle.

• Define which texture atlas to use

The texture atlas is defined in a JSON file containing the specific image files to

use and the regions of the sub-sprites in the sprite sheet.

• Create a Camera instance, and assign it to the OpenGlRenderer class

• Dispatch WindowWasResized events to the Camera instance

• Handle TransformChange events

This is required to update the graphical renderer when an Actor moves, is rotated

or in another way has had it’s transform altered.

• Handle SceneNodeCreated and SceneNodeRemoved events

Whenever an actor is created or removed, it is the game code’s responsibility to

update the scene graph.

All of the above responsibilities are explicitly handled by 11-control. Nearly ev-

ery game built with Nox must also handle the items above. More advanced games

have additional responsibilities. Playing sounds require the game code to handle the

playing sounds, for instance.

The sample consists of five C++ files; main.cpp, ControlApplication.cpp, ControlApplication.h,

ControllingWindowView.cpp, and ControllingWindowView.h. The total application

sums up to 352 lines of source code excluding comments and blank lines. In addition

to this, 202 lines of JSON divided between six files is also required to define the

world, the actors, the control scheme, and the texture atlas. The build system must

also be defined, either through CMake, or by setting up IDE projects.

Requiring a total of 554 lines of code & JSON to merely move a sprite around on

the screen is in our opinion excessive. In order to create such a simple application,

the knowledge required about the engine creates a high barrier of entry. We believe

that these metrics will prevent the engine from attaining a large user base, as they

are in direct conflict with our belief that a game engine should have a low barrier of

entry & productivity 4.

It can be seen from the list of application responsibilities earlier in this section

that applications are required to handle a lot of binding between aspects of Nox -

4See discussion in Section 1.1.

61

Accommodating a Game Engine for Community Adoption

most of which can, and should be hidden away internally in the engine.

7.3 New API Design

Abstraction

It can be seen from the list of application responsibilities in Section 7.2 that applica-

tions are required to handle a lot of binding between aspects of Nox - most of which

can, and should be hidden away internally in the engine. The large number of respon-

sibilities are rooted in the fact that the engine was designed as a two-layered system

(Application- and Logic layer) as discussed in Section 1.9, where the game code is

directly incorporated into the logic layer. As a result, there are many loose threads

that must be tied together, as the game code is largely responsible for making the

logic and application layer communicate.

The improved API is required to abstract away the interconnection between the

logic and application layer. Users of the engine should not be required to know about

the application and logic layer, even less the specific responsibilities each layer has.

The game code was originally hierarchically equal to the logic layer, as desribed

in Section 1.9 and shown in Figure 1. We inserted a new layer called the Game Layer

between the two. The game layer is responsible for eliminating as much boilerplate

from the game code as possible, and abstracting out the difference between the

Logic and Application layers. The new game architecture is shown in Figure 37.

62

Accommodating a Game Engine for Community Adoption

Figure 37: Nox’s new 3 layer architecture

Expose APIs

We consider learning a new set of APIs easy compared to learning the expected

object structure of a JSON file. With modern IDEs you have powerful visualization

tools to graphically show class relations and methods. We can expect that potential

users are already familiar with C++ - however, we cannot assume that they are

familiar with working extensively in JSON. We therefore believe that in order to

improve the ease of use discussed in Section 1.1, the Nox Engine should provide

much of the same functionality through C++ APIs as it does via JSON files. The C++

APIs must provide at least the core functionality. We expect that the majority of the

users desiring to use the advanced features will be more willing to go the extra mile

and learn the JSON formats - the C++ APIs will mostly target beginners. Advanced

users are more likely to use the JSON interfaces even if the functionality offered

is identical, as the project does not require to be recompiled when changing the

contents of a JSON file, thus greatly increasing the development cycles.

We believe that all the JSON functionality should be exposed in C++ to some

degree, but we have chosen to focus only on the APIs to create actors and populate

63

Accommodating a Game Engine for Community Adoption

the world.

7.4 Implementation

7.4.1 Game Layer Abstraction

The game layer, inserted between the logic layer and the game code, eliminates the

need for a large portion of the boilerplate code. The layer also removes to some

extent the requirement of a deep knowledge of Nox’s internal structure.

With the original design, a subclass of Application usually handled most of the

loose threads of the API. This included initializing core objects such as the graphics

renderer, the resource access object, and registering these objects with the proper

objects. This responsibility has been moved to the new class GameController, which

is now the new entry point of Nox (the previous entry point was Application). In

order to maintain the flexibility of the do-it-yourself approach to initialization that

previously existed, the Game Controller has multiple methods whose sole purpose

is to create objects. The default implementations of these methods returns the most

commonly used specializations of the requested interfaces, and can be overridden to

customize the program flow further. Internally during initialization, the Game Con-

troller queries itself through these methods to create objects of certain types, and

does the binding of these objects "behind the curtains". All the creation-interfaces

are listed in Figure 38.

Figure 38: Game Controller Creation-interfaces

1 class GameController
2 {
3 public :
4 virtual std : : string getGameName() const ;
5 virtual std : : string getOrganizationName() const ;
6 virtual std : : unique_ptr<GameApplication> createApplication () ;
7 virtual std : : unique_ptr<logic : : Logic> createLogic () const ;
8 virtual std : : unique_ptr<app : : resource : :Cache> createResourceCache () const ;
9 virtual std : : unique_ptr<app : : resource : : Provider>

10 createResourceProviderForAssetDirectory (const std : : string& dir) const ;
11 virtual std : : unique_ptr<app : : storage : : IDataStorage> createDataStorage () const ;
12 virtual std : : unique_ptr<GameWindowView> createGameView() const ;
13 virtual std : : vector<std : : string> getResourceCacheDirectories () const ;
14 virtual std : : vector<std : : string> getActorDefinitionSubdirectories () const ;
15 virtual std : : vector<std : : string> getWorldAtlasDefinitionFiles () const ;
16 virtual std : : string getWorldAtlasName() const ;
17

18 / / −−omitted−−
19 };

The simplified API aims to make the system as flexible as possible, but some flex-

ilibity removal was ineviteble. Games using the game layer are forced to commit to

SDL and OpenGL. The commitment to SDL and OpenGL hails from the new required

types for View and Application, which are GameWindowView and GameApplication.

As can be seen from the diagram in Figure 39, they are both derived from SDL-

specialized implementations of View and Application. In order to replace either SDL

or OpenGL, Game Window View and Game Application must be rewritten to some

64

Accommodating a Game Engine for Community Adoption

degree.

We consider these "abstract dependencies" to be superior to "explicit dependen-

cies". If SDL or OpenGL were to be replaced entirely in Nox, only Game Window

View and Game Application would require a rewrite, and the game would probably

not be able to tell the difference (and therefore not require any alterations). With

"explicit dependencies", where the game code itself requests specific technologies

like OpenGL or SDL, all games built using the old library must be changed to explic-

itly use the new.

Figure 39: Game layer class diagram

The sample 11-control which was discussed in Section 7.2 was reimplemented

with the new game layer API. The original implementation required 352 lines of

effective C++ code. The implementation using the game layer API requires 54 lines

of code to achieve the exact same functionality. Both samples depend on the same

JSON files, which sums to 202 effective lines. We consider this to be a step in the

right direction for users investigating the engine (see Section 1.1).

65

Accommodating a Game Engine for Community Adoption

7.4.2 Exposing JSON Functionality

We chose to focus on exposing the APIs to create actors, attach components to ac-

tors, and configure components. Previously, this was only possible to do through

JSON definition files.

Figure 40: Actor creation in JSON and C++

1 {
2 "Player": {
3 "name": "PlayerActor",
4 "components": {
5 "Transform": {},
6 "Sprite": {
7 "spriteName": "player.png",
8 "scale": 3.0
9 },

10 "GunFireComponent": {
11 "fireRate": 15.0
12 }
13 }
14 }

1 void createActor ()
2 {
3 GameController *game = getGameController () ;
4

5 / / GameController : : createActor creates an actor , adds i t to the world ,
6 / / and returns a raw pointer to i t .
7 Actor *actor = game−>createActor ("PlayerActor") ;
8

9 actor−>addComponent<Transform>() ;
10 actor−>addComponent<Sprite >() ;
11 actor−>addComponent<GunFireComponent>() ;
12

13 actor−>getComponent<Sprite >()−>setSpriteName("player .png") ;
14 actor−>getComponent<Sprite >()−>setScale (3.0) ;
15

16 actor−>getComponent<GunFireComponent>()−>setFireRate(15.0) ;
17 }

The difference between creating an actor in JSON versus creating one via the

C++ APIs can be seen in Figure 40. While there are strong benefits in favor of the

JSON approach, we believe the C++ APIs should be an option to the user of Nox. We

especially believe this to be beneficial for new users, as discussed in Section 7.3.

66

Accommodating a Game Engine for Community Adoption

8 Group Work

8.1 Group Structure

Our work process has been freely structured within a set of rules. We agreed that

we would work full 40 hour weeks, unless special conditions applied (and the other

person was notified). We worked primarily from own our homes, except during the

few occasions where "pair programming" benefited us greatly.

We used a modified version of Scrum as our development model. Being only two

people, we didn’t have need the need nor the resources to designate either to being

the Scrum Master. Also, as we had no designated working area, we had our daily

stand-up meetings over voice chat. Our sprints were two weeks in length, and gen-

erally 1 ran from Friday to Thursday to align our Sprint Review meeting with our

meetings with Suttung Digital, which were every other Thursday. Over the course of

the thesis, we relied more and more on brief and frequent communication and task

delegation over voice chat and instant messaging services than tracking issues and

progress in Jira. We think this was a reasonable choice for us, given our group size.

In our biweekly meetings with Suttung Digital, we would present the work we

had done for the past sprint, and receive suggestions on what to do next or how it

could be improved.

8.2 Evaluation of Group

Our group effort has largely worked well. Our communication has been frequent in

both person and over voice chat services. However, the communication of smaller,

day to day issues like asking for help when we were stuck could be definitely be

improved. We never had any code review sessions internally, thus fragmenting the

knowledge between us, and subsequent difficulties when treading into the other

person’s code. In retrospect, we consider the lack of code review sessions to be our

greatest hindrance as a team.

1Some of our sprints were extended and shifted by a couple of days.

67

Accommodating a Game Engine for Community Adoption

9 Task Critique

Our task was initially unclear, as discussed in Section 1.1. The Task Description

given by Suttung Digital, found in Appendix B, gave us the impression that we would

spend our time primarily on optimizing existing features. In the initial meetings

with Suttung Digital it became clear that our task would be focused more towards

improving the engine by adding functionality and features. We changed our focus

towards improving the audiovisual aesthetics of Nox, and later again shifted our

focus to accommodating Nox for community adoption.

Even though the focus of the thesis changed twice, we consider all our developed

features to fit into our final thesis. Suttung Digital were supportive of our thesis’s

best interest throughout the entire process, and never demanded us to implement

any one feature; we were able to decide ourselves which proposed features we felt

would make the best thesis. The topic chosen gave us the freedom to implement the

features we consider to be important in a game engine.

68

Accommodating a Game Engine for Community Adoption

10 Conclusion

10.1 Goal Discussion

As stated in section 1.1 we were tasked to accommodate the Nox Engine for commu-

nity adoption. To do this, we were going to focus on the first two steps in choosing a

game engine, interest and investigation. By adding features and making the engine

easier to use, we hoped to make the engine a more viable solution when selecting a

game engine.

By adding better audio, a particle system, networking features, normal and spec-

ular maps we have hopefully made Nox a more interesting game engine.

By changing the API, as described in chapter 7, we have shortened the boilerplate

code needed to set up a project from 352 lines of C++ code, to 54 lines of C++

code. This combined with the extended feature set will hopefully make the users

that investigate the engine more likely to go trough with using the engine.

In retrospect, we consider not adding mobile support (listed in Section 1.10) to

Nox as the biggest mistake of our feature selection. Mobile games are popular to de-

velop among hobby developers, and the distribution channels 1 have lower barriers

of entry than the PC distribution channels 2. If we were to do this project again, we

would likely drop the stencil-shadow implementation in favor of mobile support. If

the time available had sufficed is unknown, but this would be the first feature to be

replaced.

10.2 Continued Development

Working with the Nox engine there were certain things we were asked to consider,

or noticed a need for, but were outside the frames of our task. In case we or anyone

else were to continue development on the Nox engine, we have put a few suggestions

for future improvements that could benefit the engine in this section. We consider

the suggestions listed below to be in line with the subject of this thesis.

Mobile support

We chose not to focus on maintaining a mobile build for Nox. All the libraries used in

Nox are available on mobile. Making the Nox engine run on more platforms, specif-

ically Android and iOS. There are certain things that must be changed for mobile,

but allowing for games to be developed for other platforms than the main desktop

operating systems would be a vital tool for "selling" the engine to potential users.

World Editor

Creating tools for easily creating worlds, using a graphical editor might make game

design easier, especially when prototyping a game. The current approach of writing

your own JSON files is time consuming, and improvements could be made here.

1Most notably Apple AppStore, Google Play, and Amazon Appstore.
2Most notably Steam, Good Old Games, and GamersGate.

69

Accommodating a Game Engine for Community Adoption

GUI functionality

The engine does not currently have any GUI components in it. Creating a framework

for adding graphical components directly mapped to the screen layout could prove

a rather big task, but would add a lot of value to Nox. Creating the base system

for GUI elements, adding a few layout options. Basic functionality like buttons, text

inputs, text rendering, checkboxes and similar components would be important for

actually making games with the engine.

10.3 Conclusion

Our task has been to accommodate the Nox engine for open source community adop-

tion. We considered our primary objective in this regard to enforce the experience

of users investigating the engine, and to make it more attractive, as discussed in

Section 1.1.

We consider our improvements to the engine’s attractiveness to be our biggest

achievement. The engine now has more stand out features, which may tip investi-

gating users in Nox’s direction. The APIs of the added features are easy to use, and

fit into the Nox philosophy.

While we don’t expect the Nox engine to explode in popularity after our additions,

we consider our efforts a good step along the road to community adoption.

70

Accommodating a Game Engine for Community Adoption

Bibliography

[1] Vik, M. B. & Sporaland, A. 2014. Pyroeis.

[2] Heggen, E. S. 2015. In the age of free aaa game engines, are we still relevant?

[3] McShaffry, M. & Graham, D. 2012. Game Coding Complete, Fourth Edition.

Cengang Learning.

[4] Gamasutra, Jonasson, M., & Purho, P. 2013. Is your game ’juicy’ enough? "juice

it or lose it".

[5] Gillen, K. 2010. Illuminated ones: Shadow & light in games.

71

Accommodating a Game Engine for Community Adoption

A External Repositories

Our Jira and Confluence spaces can be found at the following address.

https://dev.imt.hig.no/confluence/display/OPTNOX/OptNOX

Our fork of the Nox engine. All developed features decribed in the thesis are as

of May 14th, 2015 in the process of being merged into Suttung Digital’s reposito-

ries.

https://bitbucket.org/optnox/nox-engine

Our fork of the Nox engine samples. The features developed for this thesis are in-

cluded in their own sample projects, in directories prefixed with "on-".

https://bitbucket.org/optnox/nox-engine-sample

Suttung Digital’s Nox repository.

https://bitbucket.org/suttungdigital/nox-engine

Suttung Digital’s sample repository for the Nox engine.

https://bitbucket.org/suttungdigital/nox-engine-sample

72

https://dev.imt.hig.no/confluence/display/OPTNOX/OptNOX
https://bitbucket.org/optnox/nox-engine
https://bitbucket.org/optnox/nox-engine-sample
https://bitbucket.org/suttungdigital/nox-engine
https://bitbucket.org/suttungdigital/nox-engine-sample

Accommodating a Game Engine for Community Adoption

B Task Description

73

Oppdragsgiver: Suttung Digital
Kontaktperson: Asbjørn Sporaland
Adresse: Raufossvegen 40, 2821 Gjøvik
Telefon: +47 95080723
Epost: sporaland@suttungdigital.com

Summary
Customising a game engine to improve the performance in a specific development area

Background
Suttung Digital is a company located at Mustad in Gjøvik and is currently developing a game
called Astral. They use an inhouse game engine called NOX Engine written in C++ for this
game. The NOX Engine is a game engine designed to be flexible and extendible to make it
applicable for different types of games. It is highly modular so that changing the subsystem
implementations can easily be done without breaking the system. This engine has advantages
and disadvantages in comparison to industry game engines such as Unity3D, Torque2D/3D, and
Unreal Engine

Description
The first part of this task is to evaluate the various game engines that are available, and assess
their features in relation to managing timelines, controlling the use of 3D and 2D, lighting effects,
AI authoring, and 3D sound manipulation.

The main programming work for this project is to extend one of the open source engines, NOX
Engine, or Torque2D/3D, to improve the handling in one of the three areas reviewed. This will
involve creating wrappers around game functionality and editing the core functionality of the
game engines. The technical improvements will be tested using a simple game developed to
demonstrate the improved performance of the game engine.

The task will involve system design, high level C++ programming and some low level
programming (potentially GPU shaders, or low level sound management). The technology used
is C++ (ISO C++11), OpenGL 3 and several libraries which could include SDL2, Box2D, Bullet,
ODE, OpenAL, Boost and more.

Accommodating a Game Engine for Community Adoption

C Nox Coding Conventions

75

1.
2.
3.
4.
5.

C++ Code Style
Source
Naming

Classes
Variables and Functions
Files

Coding
Files
Classes
Functions
Formatting
Patterns
Casting
Other

Example

Source

Use , not spaces.tabs for indentation
End all files with one newline.

Naming

Generally names should be . They should describe the purpose of the function, but not elaborate.short, sweet and to the point
Never use prefix or postfix on names (variables, functions, everything).

Classes

CamelCase is used for . E.g. "class SomeAwesomeClass".classes
Don't use for a word. E.g. an AABB box class will be "Aabb". several uppercase letters

 must begin with a capital “I”. e.g. class IOnEvent.Interface classes

Variables and Functions

camelBack is used for , including class members.variables and functions
Global variables start with the "g_" prefix. E.g. g_systemLogger.
Static constant variables (global const and static class member) are all uppercase with underscores as spaces. E.g.
STATIC_CONSTANT.

Files

Header files have the extension ".h".
Source files have the extension ".cpp".
If a , the file is named exactly the same as the class (including cases) plus the extension. file contains a single class
If a , they are named with all lower case and underscores.file contains several classes/functions or other things

Coding

Files

Headers must have , rather than “pragma once”. Include guards should have the formatinclude guards
<NAMESPACE><<_NAMESPACE>...>_FILENAME_H_. As an example, a file named LruCache.h with the namespace
nox::app::resource would have the include guard "NOX_APP_RESOURCE_LRUCACHE_H_"
Avoid including header files in header files as much as possible. Rather classes and include header files in theforward declare
source file.
Include header files in the following order:

Header file corresponding to this source file (if applicable).
Headers from the same component.
Headers from other components.
Third party library headers.
C++ Standard Library headers.

Have a newline as the final character of the file.

Classes

Always use this-> when you reference a member of a class (variables and functions).
Avoid using variables and functions. Constants are an exception.static member
Always use the keyword when overriding a base class method.override
Avoid .public member variables
Avoid , rather create protected member functions to operate on the variables.protected member variables
Avoid deep inheritance hierarchies.
Constructors taking one parameter must be marked as .explicit
When inheriting, the colon must be placed like this: "class SomeClass: public InheritedClass".
Constructors should initialize the member variables through an rather than assignments.initializer list
When using an initializer list, there should be no space between the constructor and the colon. All variables initialized should be
placed under the constructor on one line each with one tab to the left.

Functions

No space between the name and parentheses.
Space after comma between each parameter.

Formatting

Curly braces always start at a new line, if not a list (e.g. std::initializer_list).
Space between test (if/while) and parantheses of statement.

Patterns

Avoid using .global variables
Avoid using (which in practice is a global variable).singletons
Follow these guidelines in regard to (ownership is important): pointers http://stackoverflow.com/a/8706254
Use wherever sensible, as on methods (e.g. accessors), references, pointers, that shouldn’t change the data.const

Variables passed to methods should be if they don't change.const
Objects passed to methods should be passed as if they don't change.const references
Methods not modifying class members should be marked as .const
Variables declared that won't change should be marked as .const

Methods can be if they are short and called many times per frame.inlined
Inlined methods must be defined below the class declaration and not directly in the method declaration.

Defined types (struct, enums, etc.) used privately within a class should be defined in the class' private scope.
Defined types (struct, enums, etc.) that are tightly connected to a class, but are used publicly, should be defined in the class' public
scope.

Casting

Never use , always use one of C++'s explicit cast expressions (most commonly static_cast). This also goes for C-style cast
numbers. Se http://en.cppreference.com/w/cpp/language/explicit_cast

Other

Pointers and references must be declared with the asterisk or ampersand to the left (e.g. int* a;)
Never use “ ”, always use “using namespace namespace::thing”.
The usage should be minimal. It should only be used for very long-typed iterators and where the value is obvious.auto keyword

Example

// WorldBody.h

#ifndef NOX_WORLD_WORLDBODY_H_
#define NOX_WORLD_WORLDBODY_H_

namespace nox { namespace world
{

class WorldBody: public Body, public IEventListener
{
public:
 const glm::vec2& getPosition() const;
 float getRotation() const

 void setPosition(const glm::vec2& position);
 void setRotation(const float rotation);
 void setTarget(const Target* target);

 void onEvent(const Event& event) override;

private:
 glm::vec2 position;
 float rotation;
 const Target* target;
}

}

#endif

Class

void someFunction()
{
 int a = 0;
 auto b = a + 1; // BAD.

 std::vector<SomeClass> elements;

 // BAD. Need to look at the elements declaration to see what the type is. It is
even worse if elements is not declared locally.
 for (const auto& element : elements)
 {
 }

 // GOOD. Quicker to see what the type is.
 for (const SomeClass& element : elements)
 {
 }

 // OK. begin() always returns an iterator, and typing a vector iterator typename
is a hassle and clutters the code.
 auto elementIt = elements.begin();

 // OK.
 auto somePointer = std::make_shared<SomeClass>();
}

void someFunction()
{
 int a = 0;
 int b = 0;

 std::cin >> b;

 if (a == b)
 {
 for (int i = 0; i < 10; i++)
 {
 printf("%s", "So awesome.\n");
 }
 }
}

auto keyword

Formatting

Accommodating a Game Engine for Community Adoption

D Nox Documentation Conventions

80

C++ Documentation

What to Document

Public type definitions (classes, structs, enums, typedefs, etc.)
Public variable and function declarations (member functions/variables, global functions/variables).

How to Document

Format

The Javadoc style of the format is used. The Doxygen generator will run over the code and generate HTML documentation, so it'sDoxygen
important to strictly follow the format. All lines written should start with a capital letter.

Multiple lines of comments are enclosed with a /** */ style comment. Each line starts with an asterisk:

/**
 * This thing is so awesome
 * that it has to be written
 * over several lines.
 */

The Javadoc brief description is used, meaning that the first sentence of the comment will be used as the brief description. Write this
description short, but to the point. The rest of the comment will appear in the detailed description.

/**
 * This is the brief description (until the dot). The rest
 * is the detailed description.
 */

One-line documentation should be written with the //! format:

 //! This is a short one-line description.

When documenting items in a list, such as an enum, the documentation can be written after the item using the //!< format:

enum Things
{
 THING_1, //!< This is the first thing.
 THING_2 //!< This is the second thing.
}

Classes

Describe the purpose of the class, and how to use it. Some classes might only need a brief description, while others will need a more
elaborate detailed description. E.g. "Tree placed in the world", "Object simulated by physics".

Functions

Describe the purpose of the function, its parameters, and its return value. Short functions such as getters and setters might not need
documentation.

The purpose should not be written as a thing that it does, but what you do when you call it.

Good: "Calculate the addition of two numbers."

Bad: "Calculates the addition of two numbers."

Each parameter should have one line of documentation describing what they are used for. If a parameter is an output parameter, use
"@param[out]". Some parameters won't need documentation as their point is obvious.

The return value should have one line of documentation describing its purpose. Some return values won't need documentation as their
purpose is obvious.

For templates, the template types must, if they are not obvious, be documented using @tparam.

/**
 * Convert a vec2 type to another vec2 type.
 * @tparam InputVec2 Type of input vector. Must have public InputVec2::x and
InputVec2::y.
 * @tparam OutputVec2 Type of returned vector. Must have constructor taking
InputVec2::x and InputVec2::y.
 * @param inputVector Vector to convert.
 * @return Converted vector.
 */
template<class OutputVec2, class InputVec2>
OutputVec2 convertVec2(const InputVec2& inputVector);

Example C++ Function

Accommodating a Game Engine for Community Adoption

E Project Plan

Kristoffer was originally a part of the group. After a mutual agreement, he left the

group.

83

PROJECT PLAN
Sverre Blekastad Stensby
Kristoffer Alvin Dahlgren
Joakim Nordstrand Stien

TABLE OF CONTENTS

1. GOALS AND CONSTRAINTS
1.1. Background
1.2. Project goals
1.3. Task Description
1.4. Constraints and boundaries

2. PROJECT ORGANIZATION
2.1. Roles and responsibilities
2.2. Team rules and routines

3. PLANNING
3.1. Choice of development model
3.2. List of activities Work Breakdown Structure)

4. ORGANIZATION OF QUALITY ASSURANCE
4.1. Documentation
4.2. Risk Analysis
4.3. Project Consequences and Preemptive Measures
4.4. Team rules

5. EXECUTION PLAN

1. GOALS AND CONSTRAINTS

1.1. Background
Suttung Digital is a software company localized in Gjøvik. Suttung Digital wishes to have their
open source game engine, NOX Engine, improved. Improvements may include the addition of
new features, and improvement and optimization of existing features.

The engine is used by Suttung Digital in development of their game Astral, and has been in
development for a few years by the employees at SD. The engine is part of Pyroesis, a
bachelor thesis by Magnus Bjerke Vik and Asbjørn Sporaland , both of which are now working 1

at Suttung Digital.

1.2. Project goals
Goals
The project should result in an improved game engine which will offer more functionality than
what currently exist. Additions to functionality will be easily accessible when developing a
game using the engine. To the greatest extent possible, our work on the engine will not break
existing APIs. Existing projects built upon the engine will be, if not fully compatible with our
changes, very easy to migrate to the new APIs. The project will not break compatibility with
NOX's currently supported environments; Windows, GNU/Linux and Mac OS X.

The performance of various aspects of NOX Engine will be measured and analyzed. Based
on our findings, areas with poor performance may be optimized. The performance of demo
projects will be compared with similar projects written for other game engines to provide a
meaningful performance benchmark.

To demonstrate the additions and performance, a simple game will be developed to
showcase the new features of NOX Engine.

Purposes
The [resultatmål] of this project is to attain the skill to understand and work on an existing
codebase initially unknown to us, and the skill of collaborating on an open source project. We
will learn how to analyze performance and profile the performance of complex systems.

1.3. Task Description
The task will include:

● Literature review of game development and practices
● Feature addition

1http://hdl.handle.net/11250/216763

● Feature improvement
● Optimization

1.4. Constraints and boundaries
The work will be primarily limited to the NOX Engine. To some extent, other game engines will
be used to compare performance against the NOX Engine. When there are libraries we can
integrate into NOX instead of developing our own, existing libraries will be used.

2. PROJECT ORGANIZATION

2.1. Roles and responsibilities
● Sverre Stensby

Programmer
● Kristoffer Alvin Dahlgren

Programmer
● Joakim Stien

Programmer, team leader.

Under circumstances of high disagreement in the group, the team leader has authority to
make the final decision, if the team is unable to come to an agreement.

2.2. Team rules and routines
We are meeting with the project supervisor, Mariusz Nowostawski, every Tuesday. Every
other Thursday, we meet with Suttung Digital. Following both of these meetings and every
Thursday, we meet to discuss the progress internally. Each morning we have a daily scrum
standup meeting over Skype (or a similar service).

All meetings are mandatory by all team members.

3. PLANNING

3.1. Choice of development model
The project will be developed using the agile Scrum method. Scrum has been chosen due to
the uncertainties of what we will be developing, and the duration of these tasks.

Our sprints will be two weeks in duration, and run from Friday to Thursday. Sprint review
meeting will be done with Suttung on Thursday evening. Sprint retrospective meeting and
sprint planning meeting will be held afterwards internally.

3.2. List of activities Work Breakdown Structure)

● Physics based animations
● Network functionality
● Sound with mixing and effects
● Profile and possibly optimize in the following areas

○ Graphics
○ Physics
○ Resource managment
○ Network
○ Sound

In addition to this, we may add other features, as they occur to us or Suttung Digital.

4. ORGANIZATION OF QUALITY ASSURANCE

4.1. Documentation
To ensure that no data losses occur, all files used in the project are hosted online via different
hosting services. All source code related files are hosted on BitBucket, and all documentation
is hosted on HiGs Confluence server.

4.2. Risk Analysis

Description Probability (010) Impact (010)

One of the developer loses access to hardware capable
of running the game (fire/water damage ...).

1 6

One of the developers drops/is dropped from the project
(illness/disagreement within the group).

2 36

Complete data loss. 0 10

Partial data loss. 9 12

We are unable to finish a satisfactory product on time. 3 110

Major cross platform compatibility issues 23 69

Fruitless optimization. 45 2

4.3. Project Consequences and Preemptive Measures
● We are unable to finish a satisfactory product on time

To ensure that we are able to deliver on what we are planning to do, our biweekly
review meetings (Sprint Retrospective) will aim to identify activities with scopes
beyond our time limits and capabilities.

● Major cross platform compatibility issues
NOX Engine is currently supported on Mac OS X, GNU/Linux and Windows. It is
important for Suttung Digital that no additions or changes break this. Our team is
working on GNU/Linux and Windows, but Mac OS X is available for asserting the
platform compatibility.

● Fruitless optimization
Knowing the improvements of an optimization prior to implementation is nigh
impossible. Many factors, often unknown, come into play, potentially rendering the
attempted optimization to have negative effects. This is very likely to occur, and if it
does, we will analyze why.

4.4. Team rules
The rules are written in Norwegian. As point 10 states possible, the meeting schedule has
been adjusted.

1. Forventede arbeidstimer er 40 timer i uka. Ved ekstraordinære omstendigheter kan
dette fravikes. Research, møter og studie av litteratur er inkludert i denne tidsrammen.

2. Meld fra om man ikke kan nå forventede arbeidstimer.
3. Alt arbeid dokumenteres. Både i Confluence, Jira og i timeliste.

a. Wikien skal ha god struktur.
b. Alt skal kunne finnes kun ved å trykke på linker. Forsiden skal linke til

overordnede elementer, og disse skal igjen inneholde eller linke til
underelementer.

4. Kommenter koden.
5. Følg coding convention.
6. Aldri push til master før du er sikker på at det funker (så godt det lar seg gjøre).
7. Bruk branches. Commits skal tydelig forklare hva som er gjort. Mindre commits til

samme oppgave bør slås sammen.
8. Vær tilgjengelig på Skype i normal arbeidstid.
9. Vær tilgjengelig til morgenmøte ("sprint standup", alle hverdager) på Skype. Tid

avtales dagen før.
10. Møt opp på fysisk møte mandag og onsdag 13:00 hver uke og fredag 18:00 på slutten

av hver sprint. Dette kan endres ettersom vi endrer arbeidsmetoder.
11. Om gruppen har et problem med noens arbeidsmetoder eller adferd, så tas dette opp i

gruppen, og om det ikke rettes annses det som regelbrudd.

12. Om noen konsekvent bryter regler, skal dette tas opp i gruppen og evt. følges opp hos
veileder. Det kan til slutt føre til utkasting av gruppen.

5. EXECUTION PLAN

The project will consist of 9 sprints, the first 8 of which are two weeks in length. The final
sprint will only be one week in length. Sprints run from Thursdays to Fridays to best integrate
with Suttung Digital's schedule.

Accommodating a Game Engine for Community Adoption

F Project Agreement

91

Accommodating a Game Engine for Community Adoption

G Time Log

Sverre frequently forgot to track his working hours, so the recorded data is not

comprehensive. Joakim’s time logs are comprehensive.

94

Summary report
2015-01-01 - 2015-12-31

593 h 24 minTotal

Joakim Stien selected as users
Suttung Digital selected as clients

160 h

120 h

80 h

40 h

91.44

159.20 151.74

107.49

83.53

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Projects

NOX - Suttung Digital 593:24:17

Time entries

468:00:47
Networking 42:11:14
Other 83:12:16

Summary report
2015-01-01 - 2015-12-31

322 h 25 minTotal

Sverrebs selected as users
Suttung Digital selected as clients

118 h

89 h

59 h

30 h
25.22

117.13

57.56

76.51

46.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Projects

NOX - Suttung Digital 322:25:45

Time entries

187:22:40
Other 135:03:05

Accommodating a Game Engine for Community Adoption

H Commit Log

db9559a Joakim Stien Wed Jan 21 15:28:43 2015 +0100
Started integration of existing networking code . Moved default output directories of NOX

library and test executables .

bdf2b30 Joakim Stien Wed Jan 21 18:58:59 2015 +0100
Improved the Packet class quite a bit . Added test coverage for Packet stream methods

7b8e096 Joakim Stien Wed Jan 21 19:04:08 2015 +0100
Transitioned added code to the NOX standard

6b6fc78 Joakim Stien Wed Jan 21 19:20:38 2015 +0100
Integrated ConnectionListener . This includes server socket functionality .

4e23795 Joakim Stien Thu Jan 22 12:56:59 2015 +0100
[NET] Added IPacketTranslator interface .

570a7c7 Joakim Stien Thu Jan 22 17:58:07 2015 +0100
Added the skeleton of NetworkController

3a1fc8b Joakim Stien Thu Jan 22 17:58:44 2015 +0100
Ignoring KDevelop f i l es

84468e4 Joakim Stien Thu Jan 22 18:01:28 2015 +0100
What savage replaced my spaces with tabs??

7faa946 Joakim Stien Fri Jan 23 11:45:09 2015 +0100
Renamed NetworkController to CommunicationController

26c5371 Joakim Stien Fri Jan 23 11:45:24 2015 +0100
Temporary commmit (switching computer)

627808e Joakim Stien Fri Jan 23 13:09:54 2015 +0100
Another remote−repo−stash . Switching computers again .

cde77e9 Joakim Stien Fri Jan 23 14:25:30 2015 +0100
Temporary commit

6190534 Joakim Stien Fri Jan 23 14:27:26 2015 +0100
Merge resolve

505f5b6 Joakim Stien Fri Jan 23 14:33:18 2015 +0100
Merge resolve

96a785f Joakim Stien Fri Jan 23 14:39:12 2015 +0100
Moved application / net to app/ net

de052ae Joakim Stien Fri Jan 23 14:44:30 2015 +0100
Successfully merged with SuttungDigital /NOX

ec4c394 Joakim Stien Fri Jan 23 14:48:55 2015 +0100
Merge resolve

9e9bfb2 Joakim Stien Fri Jan 23 15:11:29 2015 +0100
REALLY moved application / net to app/ net .

d4667f5 Joakim Stien Fri Jan 23 15:19:07 2015 +0100

97

Accommodating a Game Engine for Community Adoption

Changed a l l references to ILogicContext to IContext .

6464263 Joakim Stien Fri Jan 23 15:19:48 2015 +0100
The test suite now compiles fu l ly .

c57238e Joakim Stien Fri Jan 23 15:19:56 2015 +0100
Merge branch ’master ’ into pimms

b718083 Joakim Stien Fri Jan 23 15:33:33 2015 +0100
Fixed s i l l y errors

6aa00a1 Joakim Stien Fri Jan 23 15:42:41 2015 +0100
Fixed obscure compiler crash under MSVC.

a4e5a5d Joakim Stien Fri Jan 23 15:45:08 2015 +0100
Merge branch ’master ’ into pimms

fd941a2 Joakim Stien Fri Jan 23 15:45:30 2015 +0100
Merge branch ’pimms’ of bitbucket . org :optnox /nox−engine into pimms

0ce00f7 Joakim Stien Fri Jan 23 18:04:33 2015 +0100
test−net now compiles . Woo−fkn−doo

73dea94 Joakim Stien Fri Jan 23 18:06:15 2015 +0100
Merge branch ’master ’ into pimms

49f5af5 Joakim Stien Sat Jan 24 00:40:11 2015 +0100
Pre−weekend commit. Packet and Socket may need more functionality to better accommodate

the IConversation implementations .

3ad003b Joakim Stien Mon Jan 26 16:36:59 2015 +0100
Applied stash from ’pimms’ onto ’master ’ . Trying to clean this up nicely . . .

9888e01 Joakim Stien Mon Jan 26 16:37:28 2015 +0100
Applied the correct stash onto the correct branch .

864a1a9 Joakim Stien Mon Jan 26 16:37:49 2015 +0100
Revert "Applied stash from ’pimms’ onto ’master ’ . Trying to clean this up nicely . . . "

b8c6bd9 Joakim Stien Mon Jan 26 18:49:53 2015 +0100
Potentially implemented the setup TCP protocol . . . poorly . Holy shit this is a huge task .

61e44be Joakim Stien Mon Jan 26 18:50:08 2015 +0100
Merge branch ’pimms’

c02899c Joakim Stien Mon Jan 26 18:55:15 2015 +0100
Salvaged the common_convo f i l es from 3ad003b

69387d4 Joakim Stien Mon Jan 26 19:05:21 2015 +0100
Fixed some compiler errors and warnings

4d364a7 Joakim Stien Mon Jan 26 19:05:31 2015 +0100
Merge branch ’pimms’

04b1b4a Joakim Stien Mon Jan 26 19:06:29 2015 +0100
Hot dang, double Ds

5b07676 Joakim Stien Mon Jan 26 19:06:42 2015 +0100
Merge branch ’pimms’

9a4bcd8 Joakim Stien Mon Jan 26 21:15:32 2015 +0100
ClientNetworkView is now theoretically , potentially able to join a running server .

0998b93 Joakim Stien Mon Jan 26 21:26:42 2015 +0100

98

Accommodating a Game Engine for Community Adoption

Changed the functionality of common_convo; the SocketBase parameter is no longer being
used . Remove i t from IConversation perhaps?

ac67854 Joakim Stien Mon Jan 26 23:21:38 2015 +0100
The ServerNetworkView may now potentially accept new connections . Testing this jazz is

the next item on the agenda.

8c7e36e Joakim Stien Mon Jan 26 23:34:09 2015 +0100
Like the lovely lad that I am, a l l my commits compile

02a4f67 Joakim Stien Mon Jan 26 23:35:57 2015 +0100
Merge branch ’pimms’

f99f968 Joakim Stien Wed Jan 28 13:01:06 2015 +0100
Added find module for SDL2_net

775e5e2 Joakim Stien Wed Jan 28 13:10:24 2015 +0100
SDL2_net is now it ’ s own dependency in src /CMakeLists

5a3860e Joakim Stien Wed Jan 28 13:12:45 2015 +0100
Messaging about the use of SDL2_net

0ff7635 Joakim Stien Wed Jan 28 13:22:16 2015 +0100
fucks sake

a645eeb Joakim Stien Wed Jan 28 13:26:45 2015 +0100
Added correct class to CommunicationController : : handleIncomingPackets

cb2c176 Joakim Stien Wed Jan 28 14:27:11 2015 +0100
Added bunch of print ’ s to common_convo. TODO: Use the Logger API

fffc1bf Joakim Stien Wed Jan 28 15:11:15 2015 +0100
Verbosified common_convos

ba5f461 Joakim Stien Wed Jan 28 15:24:30 2015 +0100
Added getter for command line arguments in Application .

175ba9a Joakim Stien Wed Jan 28 16:00:27 2015 +0100
Moved the argv−copying to the top of Application : : in i t (int , char**)

ad1a5dd Joakim Stien Wed Jan 28 16:01:06 2015 +0100
Common convo packets are now f i l l ed and retrieved from in a consequent manner.

258417f Joakim Stien Fri Jan 30 10:38:01 2015 +0100
Merge branch ’pimms’

54dec7d Joakim Stien Fri Jan 30 11:03:03 2015 +0100
Now assigning actual client IDs to new clients .

0444ef6 Joakim Stien Fri Jan 30 11:15:06 2015 +0100
Moved protocol : : PacketId to protocol .h

5124e39 Joakim Stien Fri Jan 30 11:26:24 2015 +0100
Refactored IConversation − gave i t a default socket instance and renamed i t to

Conversation .

d5989a3 Joakim Stien Fri Jan 30 11:43:31 2015 +0100
Packet now inherits from iostream

a5e2325 Joakim Stien Fri Jan 30 13:33:25 2015 +0100
Revert "Packet now inherits from iostream"

c6cd934 Joakim Stien Fri Jan 30 13:33:58 2015 +0100

99

Accommodating a Game Engine for Community Adoption

Added (de) serial ization to Packet instances while s t i l l maintaining backwards
compatibility

ff5e8bc Joakim Stien Fri Jan 30 15:36:14 2015 +0100
Renamed Event : : serial ize () and Event : : deSerialize () to doSerialize and doDeSerialize

respectively .

d5e5c92 Joakim Stien Fri Jan 30 16:38:46 2015 +0100
Added ClientStats and some management methods in NetworkView

14f87fa Joakim Stien Sun Feb 1 19:25:58 2015 +0100
Merged in upstream

508b384 Joakim Stien Mon Feb 2 13:45:23 2015 +0100
Refactored IDecisionManager to only return the maximum lobby size . Added getters to

NetworkView for this value .

80e80d7 Joakim Stien Mon Feb 2 14:00:17 2015 +0100
Added ClientStats to src /CMakeLists . txt .

b1faf0a Sverre B. Stensby Mon Feb 2 14:47:54 2015 +0100
Added NetworkOutEvent and tests

9d36613 Sverre B. Stensby Mon Feb 2 15:05:25 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

79d300a Joakim Stien Mon Feb 2 15:36:02 2015 +0100
i n i t i a l addition of BroadcastSender

e1bf02d Joakim Stien Mon Feb 2 15:48:52 2015 +0100
Using constant instead of hard−coded port no for broadcast

d67bb65 Joakim Stien Mon Feb 2 16:48:54 2015 +0100
In i t i a l addition of BroadcastReceiver

652b601 Joakim Stien Mon Feb 2 17:44:24 2015 +0100
Fixed some cr i t ica l errors in BroadcastReceiver

f09b3ea Joakim Stien Mon Feb 2 18:20:09 2015 +0100
Removed a l l printf calls , replaced them with proper Logger calls .

c0cf0d6 Joakim Stien Mon Feb 2 18:37:47 2015 +0100
Fixed the in i t ia l i zat ion procedure

290f4b7 Joakim Stien Mon Feb 2 18:51:51 2015 +0100
Added Jimmy−proofing to the ClientNetworkView

fb56426 Sverre B. Stensby Mon Feb 2 19:31:40 2015 +0100
OPTNOX−19: Added onEventPacketRecieved

33e01e9 Joakim Stien Mon Feb 2 19:32:23 2015 +0100
Better log handling

80be12c Joakim Stien Mon Feb 2 19:35:02 2015 +0100
Removed verbosity

eec3a31 Joakim Stien Mon Feb 2 19:39:12 2015 +0100
Merged master into pimms

dc22421 Joakim Stien Tue Feb 3 05:29:33 2015 +0100
Added ServerBroadcastEvent , raising i t appropriately in BroadcastReceiver

a979ced Joakim Stien Tue Feb 3 05:39:30 2015 +0100
Merge bitbucket .com: suttungdigital /nox−engine into merge

100

Accommodating a Game Engine for Community Adoption

57ff357 Joakim Stien Tue Feb 3 05:40:23 2015 +0100
merge resolution

eca2743 Joakim Stien Tue Feb 3 05:43:23 2015 +0100
Temporary f ix to CMake issues (test / application / net / event does not exist or is empty)

a5c67a5 Joakim Stien Tue Feb 3 06:25:52 2015 +0100
Now using the Uint32 host IP as the unqiue ID in the map in BroadcastReceiver . The code

is a mess, and wil l be carefully refactored when I ’m awake.

424eb06 Joakim Stien Tue Feb 3 11:43:38 2015 +0100
Added ’sourceIp ’ member to Packet . This wil l help identifying broadcasting servers .

da60904 Joakim Stien Tue Feb 3 11:59:44 2015 +0100
Now using the source IP of the broadcaster in ServerConnectionInfo instances hailing

from BroadcastReceiver

bcf97e0 Joakim Stien Tue Feb 3 12:23:12 2015 +0100
Now properly setting the source IP of UDP broadcast packets

e9b9807 Joakim Stien Wed Feb 4 09:14:42 2015 +0100
Added (de) serial ization of std : : vector<byte> when Events are (de) serialized to std : : (i |o

)streams

5a03125 Joakim Stien Wed Feb 4 09:17:45 2015 +0100
Now heeding UserData : : deSerialize return value in Event : : operator>>(UserData&)

edc943b Joakim Stien Wed Feb 4 09:24:14 2015 +0100
Added (de) serial ization interface to / from bool in logic : : event : : Event

9768aab Joakim Stien Wed Feb 4 09:25:31 2015 +0100
Added ClientConnectionEvent

f90dc57 Joakim Stien Wed Feb 4 09:32:52 2015 +0100
Removed a l l but one warning when compiling under GCC 4.9

f6b66cb Joakim Stien Wed Feb 4 10:08:35 2015 +0100
Potentially distributing connection of new clients to the lobby

f53f2d0 Joakim Stien Wed Feb 4 10:14:01 2015 +0100
Renamed ClientConnectionEvent to ClientConnectedEvent and made i t single purpose only

752ba58 Joakim Stien Wed Feb 4 10:55:07 2015 +0100
Added ClientDisconnectedEvent

c927b51 Joakim Stien Wed Feb 4 10:55:51 2015 +0100
Added cal l to superclass in ClientConnectedEvent : : do(De) Serialize

1c91884 Joakim Stien Wed Feb 4 11:08:15 2015 +0100
Now raising ClientDisconnectedEvent from ServerNetworkView when a client drops out .

6455992 Joakim Stien Wed Feb 4 11:17:24 2015 +0100
Removed IdType parameter to NetworkOutEvent, using static const NetworkOutEvent : : ID

77369aa Joakim Stien Wed Feb 4 11:17:40 2015 +0100
src /CMakeLists . txt now reflects the source tree properly .

6d55480 Joakim Stien Wed Feb 4 12:18:32 2015 +0100
Added octalIpAddress () function in protocol . (h|cpp) . Using this instead of

SDLNet_ResolveIP to generate the hostname of a discovery broadcast .

dab7a5b Joakim Stien Wed Feb 4 12:26:28 2015 +0100
Fixed stupid bug in octalIpAddress ()

101

Accommodating a Game Engine for Community Adoption

4118caa Joakim Stien Wed Feb 4 13:06:46 2015 +0100
Added test for (de) serial izing UserData

d3163ad Joakim Stien Wed Feb 4 13:09:48 2015 +0100
Carefully removed head from bowels

c5f5bdf Joakim Stien Wed Feb 4 13:57:09 2015 +0100
Setting the ClientId properly in common_convo’ s UserData .

899b784 Joakim Stien Wed Feb 4 13:57:21 2015 +0100
Merge branch ’pimms’ of https : / / bitbucket . org /optnox /nox−engine into pimms

ca241fe Joakim Stien Wed Feb 4 14:19:04 2015 +0100
Now not binding to any host / port in BroadcastReceiver

66655c2 Joakim Stien Wed Feb 4 15:45:02 2015 +0100
Added method for kicking a client

867a589 Sverre B. Stensby Thu Feb 5 08:52:15 2015 +0100
OPTNOX−18: Start of work. Needs more work to connect things .

2243880 Sverre B. Stensby Thu Feb 5 08:57:10 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

7aa6b7c Joakim Stien Thu Feb 5 14:32:52 2015 +0100
Added nox : : u t i l : : IniFi le for INI format R/W.

a49103b Joakim Stien Thu Feb 5 16:12:05 2015 +0100
Added octalToIp (std : : string) and related tests

5663dcc Joakim Stien Thu Feb 5 16:12:39 2015 +0100
Added getter for a l l values in IniFile

d5ef3f0 Joakim Stien Thu Feb 5 16:36:00 2015 +0100
In i t i a l commit of AccessList . IniFi le must be changed to support 64 bit unsigned as well

as int .

216c19b Joakim Stien Fri Feb 6 10:52:18 2015 +0100
Replaced ’ int ’ and ’ float ’ in IniFile with 64 bit counterparts , long and double .

ec9784b Joakim Stien Fri Feb 6 11:23:13 2015 +0100
AccessList implementation appears complete .

b0f1def Joakim Stien Fri Feb 6 11:58:01 2015 +0100
The AccessList is now the prime decider (next to free space , obv .) when accepting new

clients

5e6b08a Joakim Stien Fri Feb 6 12:10:02 2015 +0100
IniFi le .cpp now upholds the oath sworn in IniFile .h

2e0aba1 Joakim Stien Fri Feb 6 13:27:03 2015 +0100
Added banClient () method in ServerNetworkView

8e17995 Joakim Stien Fri Feb 6 13:28:41 2015 +0100
Merge branch ’pimms’ of bitbucket . org :optnox /nox−engine into pimms

99c1bfb Joakim Stien Fri Feb 6 14:20:44 2015 +0100
Resolved suttungdigital /NOX−Engine issue #21 − Failing shutdown

dcc101c Joakim Stien Fri Feb 6 15:07:27 2015 +0100
Merged src /CMakeLists . txt

a3cf375 Joakim Stien Fri Feb 6 15:11:26 2015 +0100

102

Accommodating a Game Engine for Community Adoption

Merge branch ’merge’

a455e47 Joakim Stien Fri Feb 6 15:19:06 2015 +0100
Some content got lost in the merge. Re−added i t .

80a3367 Joakim Stien Fri Feb 6 16:49:02 2015 +0100
Added default settings f i l e . Application now always looks for ’ settings . ini ’ . Don’ t know

i f this should be overrideable .

7826a69 Joakim Stien Fri Feb 6 17:19:13 2015 +0100
Doing in i t ia l i zat ion in the correct order .

bbaf44d Joakim Stien Mon Feb 9 08:33:17 2015 +0100
Moved settings f i l e to logic : : IContext

7802471 Joakim Stien Mon Feb 9 09:07:36 2015 +0100
Merge branch ’master ’ into merge

514df79 Joakim Stien Mon Feb 9 09:09:00 2015 +0100
Merge branch ’merge’ into pimms

e7e370f Joakim Stien Mon Feb 9 09:30:36 2015 +0100
Improved the IniFile−usage in logic : : Logic

5356228 Joakim Stien Mon Feb 9 09:32:52 2015 +0100
Keeping jsoncpp up to date

2bfc3dd Joakim Stien Mon Feb 9 09:39:24 2015 +0100
JoinServerConversation and AcceptClientConversation now detects the ID of the app and it

’ s version . Mismatched clients are denied access .

90b28f8 Joakim Stien Mon Feb 9 09:47:44 2015 +0100
BroadcastSender now uses the logic : : IContext−defined appId and versionId .

BroadcastReceiver ignores incompatible servers .

79a3141 Joakim Stien Mon Feb 9 09:58:13 2015 +0100
Renamed ServerConnectionInfo : : (gameName| version) to (appId | versionId)

03455b0 Joakim Stien Mon Feb 9 11:14:59 2015 +0100
Added Component* Actor : : findActor (std : : string) const

51c4868 Joakim Stien Mon Feb 9 11:26:52 2015 +0100
Added serial ize (Packet&) and deSerialize (const Packet&) to Component

192630e Joakim Stien Mon Feb 9 12:09:06 2015 +0100
Added FieldType : :VEC2 and corresponding handlers

b31793d Joakim Stien Mon Feb 9 12:11:30 2015 +0100
Fixed somme typos : /

8984419 Joakim Stien Mon Feb 9 12:22:57 2015 +0100
Added Packet : : operator<<(Packet) and Packet : : operator>>(Packet)

db8eae3 Joakim Stien Mon Feb 9 12:25:30 2015 +0100
Added setter for outFieldIndex

9d38928 Joakim Stien Mon Feb 9 12:48:50 2015 +0100
Constified setOutStreamPosition ()

15a9632 Joakim Stien Mon Feb 9 12:50:11 2015 +0100
Added SyncOut−component

53337f f Joakim Stien Mon Feb 9 12:53:31 2015 +0100
Added serial ize (Packet&) and deSerialize (const Packet&) to Transform

103

Accommodating a Game Engine for Community Adoption

454bdca Joakim Stien Mon Feb 9 13:12:07 2015 +0100
Added setter for angular velocity in the physics subsystem

8bd0d37 Joakim Stien Mon Feb 9 13:13:09 2015 +0100
Removed method from SyncOut which clearly belongs in SyncIn

5b79fd8 Joakim Stien Mon Feb 9 14:55:52 2015 +0100
Fixed stuff under Windows

fb25633 Joakim Stien Mon Feb 9 14:56:38 2015 +0100
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

f9fbaf3 Joakim Stien Mon Feb 9 18:31:12 2015 +0100
Resolved OPTNOX−39, retrieving incoming packets and distributing them (indirectly) to

active Conversations

aa2939b Joakim Stien Mon Feb 9 18:31:42 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

fc0c19e Sverre B. Stensby Tue Feb 10 03:33:43 2015 +0100
OPTNOX−18: A lot of connecting done.

80e22a3 Sverre B. Stensby Tue Feb 10 03:36:24 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

ad44fad Sverre B. Stensby Tue Feb 10 04:23:54 2015 +0100
bugfix

2450df1 Joakim Stien Tue Feb 10 12:05:52 2015 +0100
Added SyncIn component

c8d8ba0 Joakim Stien Tue Feb 10 12:15:29 2015 +0100
Renamed IDecisionManager to ServerDelegate

6227841 Joakim Stien Tue Feb 10 12:19:45 2015 +0100
Merge branch ’pimms’

357b726 Joakim Stien Tue Feb 10 12:22:38 2015 +0100
Properly setting JoinServerConversation : : done and AcceptClientConversation : : done

80ddc74 Joakim Stien Tue Feb 10 12:22:48 2015 +0100
Merge branch ’pimms’

0c799c6 Joakim Stien Tue Feb 10 12:27:34 2015 +0100
Now logging informationally when a Join /Accept convo ends

67984da Joakim Stien Tue Feb 10 12:31:26 2015 +0100
ServerDelegate .cpp is no longer suspicioiusly empty

fa1adda Joakim Stien Tue Feb 10 12:32:04 2015 +0100
Resolved OPTNOX−43. #underscope

5f97fe8 Joakim Stien Tue Feb 10 12:33:33 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

6699ed2 Joakim Stien Tue Feb 10 13:30:39 2015 +0100
Added ServerDelegate : : createSynchronizedActor

6925860 Joakim Stien Tue Feb 10 13:46:36 2015 +0100
Fixed circular dependency between ServerNetworkView and ServerDelegate

6a79cb9 Joakim Stien Tue Feb 10 13:46:50 2015 +0100
Fixed typo in CreateSynchronized .cpp

104

Accommodating a Game Engine for Community Adoption

33e092b Joakim Stien Tue Feb 10 13:59:03 2015 +0100
Setting ServerDelegate : : networkView from a position when the context actually exists .

8a0e11f Sverre B. Stensby Wed Feb 11 04:39:10 2015 +0100
Hipefully finished OPTNOX−18. Needs comments and testing .

d43db64 Joakim Stien Wed Feb 11 11:11:25 2015 +0100
Parsing synchronized object data in actor : : Factory

3e7da04 Joakim Stien Wed Feb 11 11:26:05 2015 +0100
Parsing of SynchronizedAttr properly overwrites values in the inheritance line .

f93ce7f Joakim Stien Wed Feb 11 11:40:24 2015 +0100
Small bugfix in Synchronized parsing

d3a477c Joakim Stien Wed Feb 11 11:40:38 2015 +0100
Merge branch ’pimms’

ee5cebb Joakim Stien Wed Feb 11 11:59:46 2015 +0100
Aded destroySynchronized(SyncId) and destroyAllSynchronized (ClientId) in ServerDelegate

4d8df85 Joakim Stien Wed Feb 11 12:04:17 2015 +0100
Added Destroy Synchronized event to Cmake

5ed39b8 Joakim Stien Wed Feb 11 12:29:39 2015 +0100
Added lambda handlers for Packets (PacketId based) in CommunicationController

cf4b28f Joakim Stien Wed Feb 11 13:05:12 2015 +0100
Added 5 new events needed for OPTNOX−52

de084fb Joakim Stien Wed Feb 11 13:05:41 2015 +0100
Raising connectivity events about sel f from ClientNetworkView

63be025 Joakim Stien Wed Feb 11 13:27:25 2015 +0100
Resolved OPTNOX−52. The Client now raises events on key connectivity events .

2e07787 Joakim Stien Wed Feb 11 13:44:23 2015 +0100
Removed ServerController (empty f i l es)

e7d3e3b Sverre B. Stensby Wed Feb 11 16:56:03 2015 +0100
Merge branch ’master ’ into sverre

9720cc8 Joakim Stien Wed Feb 11 19:00:44 2015 +0100
Resolved OPTNOX−47. Synchronized actors are now created when the CreateSynchronized

event is raised .

ca6ac02 Joakim Stien Wed Feb 11 19:08:10 2015 +0100
Forgot to cal l setup (. . , . .) on ListenerManagers

5e6abba Joakim Stien Wed Feb 11 19:08:24 2015 +0100
Merge branch ’pimms’

1685140 Sverre B. Stensby Thu Feb 12 03:50:37 2015 +0100
Bugfix , should now mostly be done

45a2349 Sverre B. Stensby Thu Feb 12 03:51:23 2015 +0100
Merge branch ’sverre ’

136d99d Joakim Stien Thu Feb 12 12:48:14 2015 +0100
Added NetworkOutEventListeners to ServerNetworkView and ClientNetworkView . Made

ClientNetworkView broadcast listening optional .

38b333d Joakim Stien Thu Feb 12 12:55:39 2015 +0100

105

Accommodating a Game Engine for Community Adoption

Added delayed in i t ia l i zat ion of broadcast listening in ClientNetworkView

268bcd8 Joakim Stien Thu Feb 12 13:52:21 2015 +0100
Removed NetworkOutEventListener from XxxxxNetworkView

e32f529 Joakim Stien Thu Feb 12 14:33:35 2015 +0100
Added UDP handshake to JoinServer / AcceptClient convos

30dc178 Joakim Stien Thu Feb 12 14:34:16 2015 +0100
Merge branch ’master ’ into pimms

1ce4e50 Joakim Stien Thu Feb 12 14:46:26 2015 +0100
Resolved OPTNOX−62. Clients now properly disconnect when the connection is lost .

f73b684 Sverre B. Stensby Thu Feb 12 17:10:49 2015 +0100
Shortened PacketId . I t should now work just great .

a4f19ee Sverre B. Stensby Thu Feb 12 17:10:54 2015 +0100
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

cd977d4 Joakim Stien Thu Feb 12 18:12:28 2015 +0100
Added functionality for removing actors safely without breaking the existing API

1914569 Joakim Stien Thu Feb 12 18:33:56 2015 +0100
Added parsing of and the storing of the Destruction Handler function name in Actor ,

SyncAttributes

eca7656 Joakim Stien Thu Feb 12 19:41:51 2015 +0100
Removal of actors should now be safe under normal circumstances .

db0f202 Joakim Stien Thu Feb 12 19:48:48 2015 +0100
Fixed compiler errors

0825968 Sverre B. Stensby Fri Feb 13 10:42:23 2015 +0100
Forgot to incrementally commit. The client now recieves packets . They are just a bit

wrong.

cd62ca7 Sverre B. Stensby Fri Feb 13 10:42:28 2015 +0100
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

9f2bf9a Joakim Stien Mon Feb 16 13:06:33 2015 +0100
Temporary commit to clear my stash

a1b73c1 Joakim Stien Mon Feb 16 13:30:16 2015 +0100
Slight refactor

b2e6e44 Joakim Stien Mon Feb 16 14:06:28 2015 +0100
Almost resolved issue with packetsending

c381532 Joakim Stien Mon Feb 16 15:40:14 2015 +0100
Added Box2DVisibilityMapper

9af890a Joakim Stien Tue Feb 17 12:51:26 2015 +0100
Added own creation of l ight vertices

faacfd3 Joakim Stien Tue Feb 17 13:01:06 2015 +0100
Using Light : : alphaFallOff correctly

fc6b056 Sverre B. Stensby Wed Feb 18 03:14:51 2015 +0100
Made the code compile on Linux again .

3e75dbb Sverre B. Stensby Wed Feb 18 04:58:46 2015 +0100
Sending and recieving packets now works just the way i t should .

106

Accommodating a Game Engine for Community Adoption

4ccb0d5 Joakim Stien Wed Feb 18 10:22:31 2015 +0100
Merge branch ’master ’ into pimms

3a87d0e Joakim Stien Wed Feb 18 12:12:31 2015 +0100
[OPTNOX−51] Handling SyncOut and SyncIn in the ComController class hierarchy . Now also

adding SyncOut component to remotely owned Actors on the server (in RemoteClient) .

8c2654f Joakim Stien Wed Feb 18 12:50:44 2015 +0100
[OPTNOX−58][OPTNOX−64] Resolved 58, removed a l l NetworkOutEvent usages from

ServerNetworkView for 64.

5e7a073 Joakim Stien Wed Feb 18 12:51:40 2015 +0100
Merge branch ’pimms’ of bitbucket . org :optnox /nox−engine into pimms

68355d5 Joakim Stien Wed Feb 18 13:11:40 2015 +0100
Merge resolution

8279e63 Sverre B. Stensby Wed Feb 18 19:28:39 2015 +0100
OPTNOX−55 done.

3469b3d Sverre B. Stensby Wed Feb 18 19:28:57 2015 +0100
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

2a2e7cc Sverre B. Stensby Thu Feb 19 02:50:24 2015 +0100
Replaced Box2d with liquidfun .

861e2fd Joakim Stien Thu Feb 19 12:01:11 2015 +0100
[OPTNOX−66] Added Event : : Event(const nox : : app : : net : : Packet*) constructor which

deSerializes the event . Improved IPacketTranslator interface .

bd16cbf Joakim Stien Thu Feb 19 12:01:56 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

3379259 Joakim Stien Thu Feb 19 12:14:25 2015 +0100
[OPTNOX−63] Renamed al l references to NetworkView to NetworkManger.

a2baab3 Joakim Stien Thu Feb 19 12:28:48 2015 +0100
[OPTNOX−63] Added setters and getters for (Client | Server)NetworkManager

e6eca11 Joakim Stien Thu Feb 19 12:34:35 2015 +0100
[OPTNOX−63] Updating NewtorkManagers in logic : : Logic

d85803b Joakim Stien Thu Feb 19 12:37:58 2015 +0100
Merge branch ’master ’ into pimms

47b919f Joakim Stien Thu Feb 19 16:12:56 2015 +0100
[OPTNOX−65] Added DefaultPacketTranslator . Resolved issue with Event(const Packet*)

constructor . Moved EVENT_PACKET handling to (Local |Remote) Client .

db34841 Joakim Stien Thu Feb 19 16:33:39 2015 +0100
Now REALLY not using NetworkOutEvent on the server .

51082af Joakim Stien Fri Feb 20 10:39:56 2015 +0100
Fixed bug related to SYNC_UPDATE recovery . Made Box2DSimulation : : worldModifyMutex std : :

recursive_mutex

b96e1e9 Joakim Stien Fri Feb 20 11:29:12 2015 +0100
[OPTNOX−84] Now creating existing synchronized actors on new clients

1c1287e Joakim Stien Fri Feb 20 14:13:53 2015 +0100
resolved issue where flooding of the network made the server quite unresponsive

040ef5d Joakim Stien Fri Feb 20 14:58:21 2015 +0100
Slight fixes a l l over the face

107

Accommodating a Game Engine for Community Adoption

db0cbd1 Joakim Stien Sat Feb 21 15:25:41 2015 +0100
[OPTNOX−85] REALLY fixed the synchronization handling

8139ace Joakim Stien Sat Feb 21 15:43:29 2015 +0100
[OPTNOX−90] The DestroySynchronized event is now serialized into a packet (as i t should

be)

dd8658e Joakim Stien Sat Feb 21 16:12:31 2015 +0100
Fixed bug in world : :Manager where removeActor(const actor : : Identif ier&) would always

raise a SIGSEGV. This also resolved OPTNOX−90.

a57e14c Joakim Stien Sat Feb 21 16:28:52 2015 +0100
Added shadow vertex GeometrySet to graphics : : Light

9cc7c86 Joakim Stien Sat Feb 21 16:39:18 2015 +0100
Consequent usage of this−>totalLightCoords in OpenGlRenderer

798198a Joakim Stien Sat Feb 21 16:57:30 2015 +0100
Salvaged performance . (h|cpp)

0c564f9 Joakim Stien Sat Feb 21 17:32:41 2015 +0100
Added Clock class for measuring elapsed time

fddc9e5 Joakim Stien Sat Feb 21 17:34:30 2015 +0100
Well I ’m a fkn moron. Publicized the Clock methods.

259ed42 Joakim Stien Sat Feb 21 19:01:53 2015 +0100
[OPTNOX−9] Added PerformanceMonitor and related classes with API compliance to Evernote

doc ’15.01 ’

73da648 Joakim Stien Mon Feb 23 11:47:13 2015 +0100
Replaced a l l occurrences of four spaces with tab characters

feac767 Joakim Stien Mon Feb 23 13:02:30 2015 +0100
Now loading normal maps. Like a boss .

5cc7345 Joakim Stien Mon Feb 23 15:02:35 2015 +0100
Loading specular maps into OpenGlRenderer

aacb28e Joakim Stien Mon Feb 23 15:08:31 2015 +0100
RenderData now is the definer of glActiveTexture

4cc5f0a Joakim Stien Mon Feb 23 15:45:26 2015 +0100
The OpenGlRenderer now uses the new RenderData API .

f6bfaaa Joakim Stien Mon Feb 23 16:15:29 2015 +0100
Added normal and specular uniforms to spriteLightLuminance shader

e4b72b6 Joakim Stien Mon Feb 23 20:37:50 2015 +0100
Normal mapping ALMOST works!

138b86a Joakim Stien Mon Feb 23 21:36:36 2015 +0100
90% done with normal maps

fb75390 Joakim Stien Tue Feb 24 12:53:20 2015 +0100
Poking around, i t looks a million times better already .

a3882dc Joakim Stien Tue Feb 24 13:47:51 2015 +0100
[OPTNOX−91] Added attenuation and Z−height to graphics : : Light and ActorLight component.

447d4d9 Joakim Stien Tue Feb 24 14:19:36 2015 +0100
[OPTNOX−91] The normal maps looks fucking gorgeous now.

108

Accommodating a Game Engine for Community Adoption

1f62397 Joakim Stien Wed Feb 25 12:18:43 2015 +0100
Sprite lighting is now calculated based on the distance between the center of l ight and

the fragment , normalized to the range [0 ,100] , where 100=(light . range)

e294113 Joakim Stien Wed Feb 25 12:51:19 2015 +0100
Oops, fixed s i l l y syntax error in SLL. frag

31cd6d9 Joakim Stien Wed Feb 25 13:24:14 2015 +0100
Added getter methods for app : : graphics : : Light from logic : : graphics : : ActorLight . Added

const setter methods for mutable f ields in Light .

dec096a Joakim Stien Wed Feb 25 14:18:38 2015 +0100
[OPTNOX−93] Resolved bug.

e4b5210 Joakim Stien Wed Feb 25 14:41:03 2015 +0100
[OPTNOX−92] Fixed stupid issue where off−screen lights would be counted

508f30e Joakim Stien Wed Feb 25 15:19:04 2015 +0100
Specular fkn maps! Looks gorgeous , etc

2f1a31c Joakim Stien Wed Feb 25 17:12:11 2015 +0100
Tweaked specular shader

e860fe1 Joakim Stien Wed Feb 25 17:29:18 2015 +0100
No longer ignoring YCM configs

8f0051b Joakim Stien Wed Feb 25 17:31:03 2015 +0100
No ignoring YCM compiled config settings

1da0110 Joakim Stien Thu Feb 26 14:13:43 2015 +0100
Merged in Gachapen/optnox−nox−engine / fix_shader_issues (pull request #1)

9f450f9 Joakim Stien Thu Feb 26 14:21:34 2015 +0100
Merged in upstream NOX

f791995 Joakim Stien Thu Feb 26 14:26:17 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

39a2adf Joakim Stien Thu Feb 26 14:58:35 2015 +0100
Purging warnings

bd0e8ec Joakim Stien Fri Feb 27 15:42:36 2015 +0100
Change in YCM config

9f20088 Joakim Stien Fri Feb 27 15:43:11 2015 +0100
Trying to multithread the graphics

cfcc588 Joakim Stien Fri Feb 27 16:49:04 2015 +0100
Merge branch ’master ’ into pimms

9dd6ab5 Joakim Stien Fri Feb 27 18:39:38 2015 +0100
Now requesting OpenGL 3.0 expl ic i t ly

26f2f02 Joakim Stien Fri Feb 27 19:52:14 2015 +0100
Revert "Trying to multithread the graphics " . Will retry later .

dacb079 Joakim Stien Mon Mar 2 11:12:07 2015 +0100
Merged in master

05cb029 Joakim Stien Mon Mar 2 11:13:38 2015 +0100
Explicit isystems for third party l ibraries in YCM config

61acb1a Joakim Stien Mon Mar 2 15:38:57 2015 +0100
Temporary commit, going to school .

109

Accommodating a Game Engine for Community Adoption

ac1aa79 Joakim Stien Mon Mar 2 19:06:27 2015 +0100
Light are now rendered via use of the stencil buffer . phyislcs : : Simulation : :

isPointShadowed is l ikely broken now.

5e56df4 Joakim Stien Mon Mar 2 19:07:19 2015 +0100
Merged branch pimmslight

872d880 Joakim Stien Mon Mar 2 19:07:34 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

0b52e92 Joakim Stien Mon Mar 2 19:07:36 2015 +0100
Merge branch ’pimms’

9342590 Joakim Stien Tue Mar 3 08:50:48 2015 +0100
Running light generation on the main thread

c1d710b Joakim Stien Tue Mar 3 08:50:57 2015 +0100
Merge branch ’pimmslight ’ of bitbucket . org :optnox /nox−engine into pimmslight

82a97a8 Joakim Stien Tue Mar 3 10:37:47 2015 +0100
Made light and shadow generation single threaded , and as non−redundant as possible .

Light geometries are only recreated when one of their geometrical properties (range ,
alphaFallOff , isRadial , coneAngleRadian) has changed.

662ff49 Joakim Stien Tue Mar 3 10:38:20 2015 +0100
Merge branch ’pimmslight ’ into pimms

dd1b9de Joakim Stien Tue Mar 3 10:38:32 2015 +0100
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

4d1b67c Joakim Stien Tue Mar 3 11:12:35 2015 +0100
Fixed graphics : :Camera: :getBoundingAABB. Now not rendering shadows nor lights that are

off−screen .

57a802b Joakim Stien Tue Mar 3 11:24:45 2015 +0100
Changing the range of a light no longer forces the geometry to be recreated

2e4f4ab Joakim Stien Tue Mar 3 13:28:24 2015 +0100
Shadows are no longer being generated for off−screen lights . However, the shadows are

generated one frame *after* the light actually appears , due to the ordering of
update−dispatches i logic : : Logic .

0c43595 Joakim Stien Tue Mar 3 13:45:04 2015 +0100
potentially worthless change in Camera: :getBoundingAABB()

9d8c0c3 Joakim Stien Thu Mar 5 14:56:14 2015 +0100
In i t i a l improvement of lag compensation

728015b Joakim Stien Thu Mar 5 15:05:39 2015 +0100
Merge branch ’master ’ into pimms

19d13a4 Joakim Stien Fri Mar 6 10:55:34 2015 +0100
Merge resolution

65c93e1 Joakim Stien Fri Mar 6 11:57:18 2015 +0100
No longer applying interpolated states unti l the remote state has arrived in

ActorPhysics . Increased UDP update frequency to 20hz

3d9eb4b Joakim Stien Fri Mar 6 13:34:02 2015 +0100
Added User−Hash to UserData , to identify when the hosting player has connected over

loopback

288b630 Joakim Stien Fri Mar 6 14:04:28 2015 +0100

110

Accommodating a Game Engine for Community Adoption

no longer synchronizing the host over the network , as the game state is shared .

ebbd85f Joakim Stien Sun Mar 8 14:07:04 2015 +0100
Made a l l ActorPhysics synchronizable attributes optional via JSON−definitions .

87f6831 Joakim Stien Sun Mar 8 14:40:16 2015 +0100
Added synchronization to 2dActorDirectionControl

401e9aa Joakim Stien Sun Mar 8 14:55:52 2015 +0100
Estimating the position with a hard−coded 100ms round−trip−time . on−02 looks − overall −

pretty damn fine .

2f79a6e Joakim Stien Fri Feb 27 18:39:38 2015 +0100
Now requesting OpenGL 3.0 expl ic i t ly

3d13384 Joakim Stien Sun Mar 8 18:30:26 2015 +0100
Merge branch ’master ’ of bitbucket . org : suttungdigital /nox−engine into suttungmaster

5cd04d0 Joakim Stien Mon Mar 9 08:27:13 2015 +0100
Only expl ic i t ly requesting an OpenGL 3.0 context under Linux .

76b4d51 Joakim Stien Mon Mar 9 08:33:42 2015 +0100
Merge resolution

a92385c Joakim Stien Mon Mar 9 12:32:10 2015 +0100
Implemented heartbeat and a l l related functionality

e014141 Joakim Stien Mon Mar 9 13:32:22 2015 +0100
The ClientNetworkManager is now aware of a l l connected clients .

63d0b4e Joakim Stien Mon Mar 9 13:49:39 2015 +0100
Now estimating the age of incoming packets

ab6ef92 Joakim Stien Mon Mar 9 13:59:53 2015 +0100
Now using the estimated age of the packet in ActorPhysics

61f0e5d Joakim Stien Tue Mar 10 11:16:12 2015 +0100
Now taking the component channel frequency into account in ActorPhysics interpolation

0883054 Joakim Stien Thu Mar 12 10:16:02 2015 +0100
Now calculating the difference between the host ’ s clocks

1d67015 Joakim Stien Thu Mar 12 17:54:08 2015 +0100
Now calculating the time difference properly . Focks sake .

de944aa Joakim Stien Thu Mar 12 18:29:47 2015 +0100
ClientStats now eases into the new clock difference to lessen the impact of sudden

spikes

675ea5b Joakim Stien Fri Mar 13 08:28:21 2015 +0100
Packets now always include the creation time (INT64)

6ca66c6 Joakim Stien Fri Mar 13 09:44:41 2015 +0100
Packets can now contain serialized Packets recursively

a4edb8d Joakim Stien Fri Mar 13 10:30:06 2015 +0100
Optimized component−channel packets for packet−level creation time transfer .

b1c585c Joakim Stien Fri Mar 13 12:08:21 2015 +0100
Now estimating the age of incoming packets more accurately .

5341c2a Joakim Stien Fri Mar 13 13:13:21 2015 +0100
Improved lag compensation

111

Accommodating a Game Engine for Community Adoption

9ad9ef5 Joakim Stien Tue Mar 17 11:08:20 2015 +0100
Fixed some cr i t ica l issues in the Performance ut i l s

37fbbab Joakim Stien Tue Mar 17 11:15:07 2015 +0100
Added ’−−perfdump’ cmd flag handling in Application . PerformanceManager now creates

intermediate directories in the perflog output path

3df25d6 Joakim Stien Tue Mar 17 14:55:32 2015 +0100
Merged in SuttungDigital /nox−engine

6b184ee Joakim Stien Wed Mar 18 11:29:58 2015 +0100
Removed a l l extremities from bodily cavities .

94dd6b5 Joakim Stien Thu Mar 19 11:00:23 2015 +0100
Lights now only update their shadows i f ((a | | b)&&c) where (a) the light has moved, (b)

shadow casters within range has moved, (c) the light casts shadow and is on screen

5cb4e38 Joakim Stien Thu Mar 19 13:53:45 2015 +0100
Small improvement to light pipeline

c44cbb0 Joakim Stien Thu Mar 19 14:43:46 2015 +0100
Improved the light pipeline further . Data is now only updated i f any changes have *

actually* happened, and are only uploaded to the GPU i f the data was updated .

4c84888 Joakim Stien Thu Mar 19 15:02:58 2015 +0100
Using a more reliable (and more correct) PTM−ratio in OpenGlRenderer

2910b1f Joakim Stien Sun Mar 22 11:33:37 2015 +0100
The camera AABB is now calculated properly .

6534ca9 Joakim Stien Mon Mar 23 09:48:12 2015 +0100
Copied gitignore from master

28fea49 Joakim Stien Mon Mar 23 12:40:31 2015 +0100
Added CMake Find−module for cAudio (Linux only , barely working ;−))

51cee32 Joakim Stien Mon Mar 23 12:41:15 2015 +0100
Added int ia l , basic cAudio implementation . Currently offers no more features than the

existing OpenAL implementation .

b6d0265 Joakim Stien Mon Mar 23 12:54:42 2015 +0100
NOX_USING_CAUDIO or NOX_USING_OPENAL are now #defined from CMakeLists . txt when either is

enabled .

a3a18c6 Joakim Stien Mon Mar 23 13:04:56 2015 +0100
Added creation of default audio : : System to app : : Application

86a2968 Joakim Stien Mon Mar 23 13:06:32 2015 +0100
Merged in audiorama so the sample suite compiles

48ad435 Joakim Stien Mon Mar 23 13:14:22 2015 +0100
resource : : Descriptor no longer includes the ’ . ’ when returning the f i l e extension (prev :

’ .ogg’ , new: ’ogg’)

32e545b Joakim Stien Tue Mar 24 11:55:15 2015 +0100
Full overhaul of sound−playing API

b6034d3 Joakim Stien Tue Mar 24 12:10:12 2015 +0100
Added PlaySound event

c1a769c Joakim Stien Tue Mar 24 12:25:55 2015 +0100
logic : : Logic is now listening for logic : : audio : : PlaySound , and plays a sound i f i t can

upon catching one

112

Accommodating a Game Engine for Community Adoption

5c46a05 Joakim Stien Tue Mar 24 13:35:35 2015 +0100
Added methods in app : : resource to translate Descriptors into usable relative paths

3c80912 Joakim Stien Tue Mar 24 13:37:12 2015 +0100
Proper use of audio : : System : : shutdown() in CAudioSystem

d29206f Joakim Stien Tue Mar 24 13:48:38 2015 +0100
Increased cAudio log level to ERROR

91164b1 Joakim Stien Tue Mar 24 13:51:11 2015 +0100
Merged in Audiorama

0e23733 Joakim Stien Tue Mar 24 14:17:31 2015 +0100
added position , velocity , direciton , up−vector , etc to audio interfaces and cAudio

implementations

6440c1f Joakim Stien Tue Mar 24 17:10:06 2015 +0100
Added BufferPositionProvider

2b88143 Joakim Stien Wed Mar 25 14:30:08 2015 +0100
3D audio now actually works . Wow!

a271536 Joakim Stien Wed Mar 25 14:30:55 2015 +0100
Merge branch ’audiorama’

820fad5 Joakim Stien Sat Mar 28 12:07:50 2015 +0100
Added ListenerPositionProvider for automatically assigning the listener position

fc4262f Joakim Stien Sat Mar 28 12:24:41 2015 +0100
graphics : :Camera is now an audio : : ListenerPositionProvider , and provides sound positions

. Sounds should be integrated into 11−control to implement and assert up−vector
assignment .

2e2139b Joakim Stien Sat Mar 28 18:22:43 2015 +0100
Moved logic : : audio : : PlaySound handling to RenderSdlWindow

525a6ab Joakim Stien Sat Mar 28 19:12:14 2015 +0100
Removed old , outdated and unintended code from Transform.h

a2d8aaa Joakim Stien Sat Mar 28 19:12:52 2015 +0100
Added ’ loop ’ attribute to PlaySound event

3e25a15 Joakim Stien Sat Mar 28 19:13:18 2015 +0100
The Camera is now taking the rotation into account when assigning it ’ s transform to the

audio−l istener

c9b1fe4 Joakim Stien Sat Mar 28 19:13:44 2015 +0100
window: :RenderSdlWindowView now takes PlaySound : : loop into account when creating an

event−init iated sound.

5891be8 Joakim Stien Sat Mar 28 19:16:41 2015 +0100
Undid some stupid doings

900120a Joakim Stien Mon Mar 30 12:30:25 2015 +0200
Moved renderer , camera and rootSceneNode responsibil it ies into RenderSdlWindowView

79658a0 Joakim Stien Mon Mar 30 13:19:23 2015 +0200
Moved net / subpackage to logic / from app/

fca0a2a Joakim Stien Mon Mar 30 13:23:08 2015 +0200
[Net] Changed a l l header guards and includes referring to <net> as an <app> subpackage

to refer to i t as a <logic> subpackage

f3450b9 Joakim Stien Mon Mar 30 13:32:25 2015 +0200

113

Accommodating a Game Engine for Community Adoption

[Net] Changed a l l references to app : : net to logic : : net

e4121b1 Joakim Stien Mon Mar 30 15:31:55 2015 +0200
Merged Audiorama into Master

f0862e1 Joakim Stien Mon Mar 30 15:52:02 2015 +0200
[Audiorama] Manual merge fixes

b26f9d8 Joakim Stien Mon Mar 30 16:02:03 2015 +0200
Merged in suttung /master

c398c89 Joakim Stien Tue Mar 31 13:30:07 2015 +0200
Moved net source−group to the logic / supergroup

2cb6fbb Joakim Stien Tue Mar 31 15:30:13 2015 +0200
Resolved a l l resolvable warnings (cAudio is doing some funky jazz though)

4d73517 Joakim Stien Tue Mar 31 16:25:11 2015 +0200
Renamed LagInterpolator to Interpolator

0fe02b8 Joakim Stien Mon Apr 6 08:09:09 2015 +0200
The camera is now listening ’ in the right direction ’ .

0f319ec Joakim Stien Mon Apr 6 09:36:09 2015 +0200
cAudio is now included as a submodule of Nox

699196a Joakim Stien Mon Apr 6 09:44:19 2015 +0200
[cAudio] Staying up to date with pimms/cAudio

a1edf34 Joakim Stien Mon Apr 6 11:48:51 2015 +0200
[MacOSX] Mac OSX compatibility changes

2b7429e Joakim Stien Mon Apr 6 12:21:06 2015 +0200
Consistently using uintXX_t in cr i t ica l networking applications . Removed typedef ’byte ’

(was unsigned char) .

9a919f1 Joakim Stien Mon Apr 6 14:50:04 2015 +0200
Compatibility with OSX and uintXX_t

bda0498 Joakim Stien Mon Apr 6 15:40:31 2015 +0200
Staying up to date with cAudio

b51699b Joakim Stien Mon Apr 6 14:50:11 2015 +0200
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

5a893df Joakim Stien Mon Apr 6 15:57:07 2015 +0200
Staying up to date with cAudio

cb3863b Joakim Stien Mon Apr 6 16:07:24 2015 +0200
Added license header to a l l un−licensed f i l e

5541ada Joakim Stien Mon Apr 6 17:38:56 2015 +0200
[Merge] Network, audio documentation & network cleanup

fca45fb Joakim Stien Mon Apr 6 17:44:32 2015 +0200
[Merge] Moved network unit−tests to the proper logic / subdir

acb5974 Joakim Stien Mon Apr 6 17:59:51 2015 +0200
Revert "Replaced Box2d with liquidfun . "

e2a4e78 Joakim Stien Mon Apr 6 18:04:41 2015 +0200
Reverted s i l l y change in usage of b2World : : Step(. . .)

ac491f1 Joakim Stien Tue Apr 7 09:36:55 2015 +0200

114

Accommodating a Game Engine for Community Adoption

Merge branch ’audiorama’ into easyapi

e3f8dc3 Joakim Stien Tue Apr 7 09:47:36 2015 +0200
Merged in audiorama

4201ad6 Joakim Stien Mon Apr 6 09:36:09 2015 +0200
cAudio is now included as a submodule of Nox

56c6dad Joakim Stien Tue Apr 7 09:57:13 2015 +0200
Merge branch ’audiorama’ into easyapi

37e167e Joakim Stien Wed Jan 28 15:24:30 2015 +0100
Added getter for command line arguments in Application .

27dc119 Joakim Stien Tue Apr 7 13:21:57 2015 +0200
Added GameController , GameWindowView and omniscient ’nox .h ’ .

e31695a Joakim Stien Wed Apr 8 10:39:47 2015 +0200
added the missing GameApplication class . Things appear to be ful ly functional .

cc3bfe8 Joakim Stien Wed Apr 8 12:35:23 2015 +0200
Made actor : :Component : : in i t i a l i ze (. .) void instead of bool . Added interface for creating

empty actors and creating components direct l ly from an Actor instance

809ddee Sverre Blekastad Stensby Fri Apr 10 18:50:34 2015 +0200
Revert "[Merge] Moved network unit−tests to the proper logic / subdir"

7b2d1dc Sverre Blekastad Stensby Fri Apr 10 18:51:15 2015 +0200
Revert "Revert "[Merge] Moved network unit−tests to the proper logic / subdir ""

df5d3f9 Sverre Blekastad Stensby Fri Apr 10 18:51:40 2015 +0200
Revert "Revert "Replaced Box2d with liquidfun . " "

aae1462 Sverre Blekastad Stensby Fri Apr 10 19:32:45 2015 +0200
Windows comaptibility changes

9a2d5e3 Sverre Blekastad Stensby Fri Apr 10 20:38:20 2015 +0200
Merge commit ’aae1462’

e98abc4 Joakim Stien Mon Apr 13 11:49:42 2015 +0200
Appliction arguments are now placed into nox : : app : : Application : : appArgs

89d531c Joakim Stien Tue Apr 14 12:42:39 2015 +0200
Up to date with cAudio

9fa89ff Joakim Stien Tue Apr 14 13:16:42 2015 +0200
Inlined a l l namespaces bar ’nox ’

b068278 Joakim Stien Tue Apr 14 13:19:55 2015 +0200
Inlined a l l namespaces bar ’nox ’ in cpp f i l es

11cec56 Joakim Stien Tue Apr 14 13:40:51 2015 +0200
Renamed logic : : IContext to logic : : ILogicContext

7111815 Joakim Stien Tue Apr 14 13:54:54 2015 +0200
Cleaned up app : : graphics : : Light . Un−constified the reference to app : : graphics : : Light

from LightRenderNode and ActorLight .

02618c6 Joakim Stien Tue Apr 14 14:03:18 2015 +0200
Renamed app : : IContext to app : : IApplicationContext

531a548 Joakim Stien Tue Apr 14 14:12:29 2015 +0200
Updated nox .h and unit tests to use ILogicContext and IApplicationContext

115

Accommodating a Game Engine for Community Adoption

df7c29d Joakim Stien Thu Apr 16 12:10:21 2015 +0200
Removed IResrouceAcces : : getPathToResource and Provider : : getResourcePath(Descriptor&)

b250591 Joakim Stien Wed Apr 15 21:11:04 2015 +0200
StencilTiledTextureRenderer now works with stencil l ights

0c67130 Joakim Stien Wed Apr 15 19:55:30 2015 +0200
Readded ycm_extra_conf

71d3083 Joakim Stien Tue Apr 14 09:38:26 2015 +0200
CAudioBuffer now plays sounds via IAudioManager : : createFromRaw

d9d78b5 Joakim Stien Tue Apr 14 08:36:03 2015 +0200
Verbose floating points

556601c Joakim Stien Tue Apr 14 08:27:53 2015 +0200
Removed Box2D include from ActorPhysics .cpp!

74d2f9b Joakim Stien Tue Apr 14 08:27:13 2015 +0200
Removed the possibi l i ty to loop tracks from PlaySound event

ca20109 Joakim Stien Tue Apr 14 08:22:25 2015 +0200
Removed Transform : : connectedSoundBuffers

9504538 Joakim Stien Mon Apr 13 12:02:00 2015 +0200
Derp. Missing word in documentation .

27b351c Joakim Stien Mon Apr 13 11:47:23 2015 +0200
Updated documentation of audio : : Buffer : : i n i t i a l i ze (. . .)

001b9e7 Joakim Stien Mon Apr 13 12:34:01 2015 +0200
Updated TestLog to reflect the changes made to the LogLevel enumerations

436a6a2 Joakim Stien Thu Apr 16 12:30:49 2015 +0200
resource : : Descriptor is no longer dependent on boost : : filesystem to find the f i l e

extension

7a10755 Joakim Stien Thu Apr 16 12:35:23 2015 +0200
Removed unused forward declarations from app : : Application

949c94a Joakim Stien Thu Apr 16 12:52:04 2015 +0200
CMakeLists . txt now disabled OpenAL and enables cAudio i f both are disabled or enabled

7069ed8 Joakim Stien Thu Apr 16 17:56:37 2015 +0200
Added AccumulationType : :AVG_FRAME to ut i l : : perf

def26c6 Sverre B. Stensby Mon Apr 27 12:49:53 2015 +0200
Started managing NetworkOutEvents again

509ed5e Joakim Stien Mon Apr 27 12:50:59 2015 +0200
Added interfaces to ServerDelegate to broadcast events to the lobby . Properly ignoring

system events in RemoteClient .

df52ed4 Sverre B. Stensby Mon Apr 27 12:53:16 2015 +0200
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

f115308 Sverre B. Stensby Mon Apr 27 12:59:49 2015 +0200
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine

63392a2 Joakim Stien Mon Apr 27 13:07:25 2015 +0200
Added nullptr check in CNM: : onEvent

c4b3df5 Joakim Stien Mon Apr 27 13:09:14 2015 +0200
ServerDelegate : : broadcast*** method suite now takes a TLProtocol

116

Accommodating a Game Engine for Community Adoption

055e7f8 Joakim Stien Tue Apr 28 12:50:09 2015 +0200
Fixed issue when sending large packets over TCP

d4b279c Joakim Stien Tue Apr 28 12:56:22 2015 +0200
UDP is now completely forbidden from ever sending more than MAX_UDP_PKT_LEN bytes in a

single packet .

79bb477 Joakim Stien Tue Apr 28 13:02:49 2015 +0200
updated documentation

5323be5 Joakim Stien Wed Apr 29 14:58:29 2015 +0200
Removed box2d library

6001f50 Joakim Stien Wed Apr 29 16:00:55 2015 +0200
SoundExtraData : : frequency was duplication of SED: : samplesPerSec . Removed : : frequency .

a291e5f Joakim Stien Wed Apr 29 16:04:51 2015 +0200
Removed debug printf from ClientStats

c1bd340 Joakim Stien Sun May 3 12:02:16 2015 +0200
Added getter for logic : : IContext in Actor

6cacba6 Joakim Stien Sun May 3 13:28:25 2015 +0200
[Audio] Added AudioListenerCamera and ActorAudio

b4b2bc7 Joakim Stien Sun May 3 13:28:25 2015 +0200
[Audio] Added AudioListenerCamera and ActorAudio

79a4dcc Joakim Stien Sun May 3 15:38:18 2015 +0200
Merge branch ’master ’ into easyapi

22c6545 Sverre B. Stensby Fri Feb 20 05:34:24 2015 +0000
started prelim work on OPTNOX−77

9e7509a Sverre B. Stensby Tue Feb 24 09:46:15 2015 +0100
Added structure and loading of particle system.

721d2ad Sverre B. Stensby Tue Feb 24 10:04:33 2015 +0100
Adding particle attributes .

67c6161 Sverre B. Stensby Wed Feb 25 05:41:22 2015 +0100
Added Test . Does not pass . Parsing needs work.

659198b Sverre B. Stensby Wed Feb 25 05:58:33 2015 +0100
Test now passes .

04b4a26 Sverre B. Stensby Thu Feb 26 09:45:56 2015 +0100
More work on OPTNOX−80

587c46f Sverre B. Stensby Thu Feb 26 10:17:05 2015 +0100
OPTNOX−80 Terminated .

abb2312 Sverre B. Stensby Fri Mar 6 04:34:36 2015 +0100
Rendering particles almost works .

d7dacce Joakim Stien Mon Mar 9 15:54:47 2015 +0100
Renamed FireParticleRenderer to TextureParticleRenderer . Created new render step for

particles .

08f6cc1 Joakim Stien Mon Mar 9 17:33:48 2015 +0100
Changed the particle data flow into the IRenderer−class .

6cff04c Joakim Stien Tue Mar 10 11:20:34 2015 +0100

117

Accommodating a Game Engine for Community Adoption

ParticleRenderNode wrapped in the warm embrace of nox : : app : : graphics .

66528db Joakim Stien Tue Mar 10 11:40:05 2015 +0100
ParticleEvent now provides the data expected in IRenderer

8321ce6 Joakim Stien Tue Mar 10 11:42:43 2015 +0100
Moved unit tests to the proper location

bdbfbc6 Joakim Stien Wed Mar 11 09:34:59 2015 +0100
Renamed Fire Particle shaders to TextureParticle

97227e6 Joakim Stien Wed Mar 11 09:36:22 2015 +0100
Renamed textureParticleLight to particleLight

1cd40d7 Joakim Stien Wed Mar 11 10:37:12 2015 +0100

some particle data is being drawn through the use of nasty paths and weird stuff

d12c65e Joakim Stien Wed Mar 11 10:38:08 2015 +0100
Moved the ParticleEvent dispatch in ParticleEmitter to update ()

f243071 Joakim Stien Wed Mar 11 14:40:48 2015 +0100
Temporary commit so Sverre can see my swizzy

b0a52f1 Joakim Stien Wed Mar 11 15:46:47 2015 +0100
Rendering of particles almost works

ed374d5 Sverre B. Stensby Thu Mar 12 02:37:32 2015 +0100
ParticleEmitters now spawn according to position of object .

ccefe62 Sverre B. Stensby Thu Mar 12 03:57:55 2015 +0100
ParticleEmitters now take rotation into account for position .

da911ff Sverre B. Stensby Thu Mar 12 04:03:14 2015 +0100
ParticleEmitters now take rotation into account for velocity .

95fbcba Joakim Stien Thu Mar 12 09:23:53 2015 +0100
Temporary commit

8990468 Joakim Stien Mon Mar 16 09:07:29 2015 +0100
Fixed include guards

f5438f6 Sverre B. Stensby Wed Mar 18 05:10:20 2015 +0100
ParticleEmitters now push things into separate particle systems .

7f256c2 Sverre B. Stensby Thu Mar 19 04:06:48 2015 +0100
bugfix

cb7da98 Sverre B. Stensby Thu Mar 19 08:20:49 2015 +0100
Added particle flags

136fe1c Sverre B. Stensby Tue Mar 24 04:03:36 2015 +0100
Added RandomType.

bc395f7 Sverre B. Stensby Tue Mar 24 04:11:43 2015 +0100
Cleanup

fa7d4a9 Sverre B. Stensby Tue Mar 24 04:30:33 2015 +0100
Added randomness to spawn locations .

649fcbb Sverre B. Stensby Tue Mar 24 14:24:45 2015 +0100
Added randomness to more things in particle system

d2f30f7 Sverre B. Stensby Thu Mar 26 02:35:04 2015 +0100
Added hex translator with tests , and a test−a l l build target that runs a l l tests .

118

Accommodating a Game Engine for Community Adoption

6a37221 Sverre B. Stensby Thu Mar 26 05:13:29 2015 +0100
Made size of particles 1/10th original size .

04ac307 Sverre B. Stensby Tue Apr 7 02:55:20 2015 +0200
This should work now

881e173 Sverre B. Stensby Tue Apr 7 12:58:10 2015 +0200
It ’ s working! It ’ s working! [insert podracer sounds]

3a14e04 Sverre B. Stensby Wed Apr 8 12:34:39 2015 +0200
Simulation now sends particle updates to the renderer . Should now only happen once per

update (look into only once per frame) .

19dfbad Joakim Stien Fri Apr 10 14:08:25 2015 +0200
Removed light rendering from ParticleRenderer

130e5f8 Joakim Stien Fri Apr 10 14:11:46 2015 +0200
Added texture and shader names to ParticleEvent

59a5376 Joakim Stien Fri Apr 10 14:17:22 2015 +0200
Removed CreationData and other invalid attributes of ParticleRenderer

089b836 Joakim Stien Fri Apr 10 14:21:19 2015 +0200
Made OpenGlRenderer : : particleRenderer stack allocated (non ptr)

82e7169 Joakim Stien Fri Apr 10 14:28:05 2015 +0200
Partial revert of e56200b

4447009 Joakim Stien Fri Apr 10 22:41:24 2015 +0200
Removed customizable shader from ParticleRenderer

2ec04ee Joakim Stien Sun Apr 12 15:10:27 2015 +0200
[OPTNOX−143] Using IResourceAccess to retrieve shader contents for ParticleRenderer

87c912f Joakim Stien Sun Apr 12 16:25:17 2015 +0200
Now using ParticleRenderBatch in ParticleRender to aggregate particles using the same

texture into the same draw cal l

1b284e2 Joakim Stien Sun Apr 12 18:55:24 2015 +0200
[OPTNOX−145] Textured particles are now supported .

09b2cc1 Sverre B. Stensby Tue Apr 14 12:08:51 2015 +0200
Added color back into the particle system.

6d9e60b Sverre B. Stensby Wed Apr 15 10:04:09 2015 +0200
zoom now works on particles

76c486a Sverre B. Stensby Wed Apr 15 10:04:24 2015 +0200
zoom now works on particles

dc1c54f Sverre B. Stensby Mon May 4 04:55:22 2015 +0200
merged to f i t refactoring .

dde655a Joakim Stien Mon May 4 11:50:34 2015 +0200
Updated entire repo to EasyAPI conventions

cfa43aa Joakim Stien Mon May 4 12:27:45 2015 +0200
Manual merge of accidentally unmerged feature

85f0a4a Sverre B. Stensby Sun May 3 18:31:55 2015 +0200
ActorAudio only updates buffers when there is a transform change.

39ab834 Joakim Stien Mon May 4 12:29:37 2015 +0200

119

Accommodating a Game Engine for Community Adoption

Merge branch ’master ’ into easyapi

be61a61 Joakim Stien Mon May 4 12:30:09 2015 +0200
Removed ActorAudio : : onUpdate

c0dc9bc Joakim Stien Mon May 4 12:36:35 2015 +0200
Merge branch ’master ’ into easyapi

fbe4ec6 Joakim Stien Mon May 4 12:57:55 2015 +0200
Re−merged the audio subsystem

500dce6 Joakim Stien Mon May 4 13:32:49 2015 +0200
RenderSdlWindowView now uses AudioListenerCamera by default

019700c Joakim Stien Mon May 4 14:52:59 2015 +0200
Merge branch ’suttungmaster ’

b89a954 Joakim Stien Mon May 4 14:58:30 2015 +0200
Compatibility changes for merge

6dd27c2 Joakim Stien Mon May 4 14:59:00 2015 +0200
Merge branch ‘master ‘

9e6a714 Joakim Stien Mon May 4 15:00:39 2015 +0200
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

c217c57 Joakim Stien Mon May 4 15:39:12 2015 +0200
Merge branch ’master ’ into easyapi

c445488 Joakim Stien Mon May 4 16:22:41 2015 +0200
ActorSprite now work when init iated from code *and* JSON

2a8a143 Joakim Stien Mon May 4 17:13:37 2015 +0200
Added interfaces for handling SDL_Event in the Game Layer

0403b9a Joakim Stien Mon May 4 17:47:04 2015 +0200
Gave GameWindowView the functionality to handle control of the Controlled Actor

892b329 Sverre B. Stensby Tue May 5 01:50:07 2015 +0200
Minor change. Get l i s t of emitters from component

85b21b3 Sverre B. Stensby Tue May 5 01:51:56 2015 +0200
Merge branch ’master ’ of https : / / bitbucket . org /optnox /nox−engine into particle_merge

1036b0d Sverre B. Stensby Thu May 7 09:51:59 2015 +0200
fixed cmake

26f3a26 Sverre B. Stensby Thu May 7 09:52:48 2015 +0200
moved position and component update to onComponentEvent

d99766e Sverre B. Stensby Fri May 8 08:33:54 2015 +0200
Removed unused particle renderers , moved renderer from opengl / to 2d/

84a7527 Sverre B. Stensby Fri May 8 18:11:06 2015 +0200
Merge branch ’particle_merge ’

4c572ae Joakim Stien Fri May 8 21:08:16 2015 +0200
Added support for constant gravity

b731684 Joakim Stien Fri May 8 21:09:24 2015 +0200
Merge branch ’master ’ of bitbucket . org :optnox /nox−engine

25d85e7 Joakim Stien Fri May 8 21:17:43 2015 +0200
Fixed some compiler errors from gravity patch

120

Accommodating a Game Engine for Community Adoption

301ab5a Joakim Stien Sun May 10 18:17:58 2015 +0200
Added ServerDelegate : : onUpdate

2a0684a Joakim Stien Mon May 11 15:31:07 2015 +0200
Reverted inlined namespaces

0ce56ce Joakim Stien Mon May 11 15:30:32 2015 +0100
Windows compatibility changes

43899d2 Joakim Stien Mon May 11 18:27:02 2015 +0200
Fixed problem with invalid packet estimation . Heartbeats are always started once every

second .

appendix/commitlog.txt

121

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Task Presentation
	Intended Audience
	About the Authors
	Thesis Scope
	Project Roles
	Terminology
	General Requirements
	Introduction to Nox
	History of Nox
	Nox Design Philosophy
	The Relevance of the In-House Game Engine
	Open Source, Game Engines and Nox

	Nox Architecture
	Considered Features

	Network
	Network Requirements
	Network Architectural Design
	Network System Design
	Indistinguishable Network Configurations
	Synchronized Actors
	Channels

	Protocol Implementation
	Relationships and Identities
	Protocol Overview
	Initiation Phase
	Game Phase
	Security and General Flaws
	Packet Implementation
	Packet Translator
	Dedicated Servers

	Network API Design and Usage
	Declaring an Actor as Synchronized
	Network Events
	Making Game Critical Decisions
	Creating a Synchronized Component
	Sending Large Files

	Stencil Shadows
	Stencil Shadow Requirements
	Light and Shadow in 2D
	Existing Ray-cast Based Implementation
	Stencil Shadows in 2D
	Rendering

	Performance Analysis
	Shadow Generation Performance
	Rendering Times
	Total System Impact
	Performance Conlcusion

	Normal and Specular Maps
	Requirements
	Normal and Specular Maps
	Implementation
	API Usage

	Particle System
	Requirements
	Selecting a particle system
	Writing our own particle system
	Using LiquidFun
	Conclusion

	Particle systems in 2D
	The Design
	API Usage

	Audio Improvements
	Requirements
	Design
	Implementation

	Simplified API
	Requirements
	Nox Usage
	New API Design
	Implementation
	Game Layer Abstraction
	Exposing JSON Functionality

	Group Work
	Group Structure
	Evaluation of Group

	Task Critique
	Conclusion
	Goal Discussion
	Continued Development
	Conclusion

	Bibliography
	External Repositories
	Task Description
	Nox Coding Conventions
	Nox Documentation Conventions
	Project Plan
	Project Agreement
	Time Log
	Commit Log

