
BACHELOROPPGAVE:

IDSanity
A centralized framework for managing IDPS and WAF rulesets.

FORFATTERE:
Tommy Berge Ingdal
Halvor Mydske Thoresen
Victor Ruldolfsson

DATO:
15.05.2015

Chapter 0 IDSanity

Sammendrag av Bacheloroppgaven

Tittel: IDSanity Nr: -
Et sentralisert og modulært rammeverk for å håndtere Dato: 15.05.2015
IDPS og WAF-regelsett.

Deltakere: Tommy Berge Ingdal
Halvor Mydske Thoresen
Victor Ruldolfsson

Veiledere: Stewart Kowalski
Thomas Kemmerich

Oppdragsgiver: IT-Tjenesten, Høgskolen i Gjøvik

Kontaktperson: Christoffer Hallstensen, christoffer.hallstensen@hig.no

Stikkord IDPS, WAF, Rammeverk, Python

Antall sider: 116 Antall vedlegg: 5 Tilgjengelighet: Åpen
Kort beskrivelse av bacheloroppgaven:
I et stort nettverk med flere IDPS og/eller WAF-noder kan det fort bli tidkrevende og
komplisert å vedlikeholde og holde styr på hvilke regelsett som er aktive til enhver tid.
Dette kan potensielt føre til at man benytter seg av utdaterte regelsett og i tillegg bruker
altfor mye tid på vedlikehold.

IDSanity forsøker å løse dette ved å la systemadministratorer vedlikeholde alle noder
ved hjelp av ett felles verktøy - enten via CLI eller det medfølgende web-grenesnittet.
Applikasjonen bygger på klient-server-modellen hvor man har én server og én eller flere
klienter.
IDSanity startes i slave mode på hver node og kommuniserer direkte med Master som
kjører på en separat server.

Applikasjonen er i all hovedsak utviklet for å kjøre på Debian/Linux, men er så-
pass modulær at moduler kan utvikles for andre platformer om nødvendig.
I tillegg til å være et verktøy for å skape en god oversikt over aktive regelsett så fungerer
også IDSanity som et fullstendig vedlikeholdsverktøy for IDPS/WAFs.

i

Chapter 0 IDSanity

Summary of Graduate Project

Title: IDSanity Nr: -
A centralized and modular framework for managing Date: 15.05.2015
IDPS and WAF rulesets.

Participants: Tommy Berge Ingdal
Halvor Mydske Thoresen
Victor Ruldolfsson

Supervisor: Stewart Kowalski
Thomas Kemmerich

Employer: IT-Tjenesten, Høgskolen i Gjøvik

Contact person: Christoffer Hallstensen, christoffer.hallstensen@hig.no

Keywords IDPS, WAF, Framework, Python

Pages: 116 Appendixes: 5 Availability: Open
Short description of the main project:
In a big and complex network of IDPS and/or WAF nodes it may become time-consuming
and complicated to maintain and keep control of all the different rule sets which are
active at a given time. This can potentially lead to the use of out-dated rule sets and that
the administrators spend way to much time on maintenance.

IDSanity aims to solve this problem by giving system administrators a way to maintain
all nodes in a network with one easy-to-use tool, either through the command-line or
web interface. The application makes use of a client-server model where you have one
server and one or more clients.
IDSanity starts in slave mode on each node in the network and communicates directly
with the Master which are running on a separate server.

The application was mainly developed to run on Debian/Linux, but since IDSanity
is module based it’s really easy to develop new modules that can be run on different
operating systems.
In addition to give the administrators a good overview of the active rule sets on each
node, IDSanity functions as a complete maintenance tool for IDPS/WAFs.

ii

Chapter 0 IDSanity

iii

Chapter 0 IDSanity

Preface

IDSanity was developed by three students at Gjøvik University College during the spring
of 2015 as a Bachelor’s Thesis for The IT Departement at Gjøvik University College.
Since this project mainly was aimed at Information Security students we felt that this
project was a good opportunity to learn more about Intrusion Detection And Prevention
Systems, Web Applications Firewalls, as well as a programming language we previously
had minimal experience with.

We feel that this has been a good experience for all of us and that we have learned
many new things during this project period.

We would like to thank the IT Departement at Gjøvik University College for the oppor-
tunity to work on this project, and specially Christoffer Hallstensen for the good dialog
during the project meetings.
We would also like to thank Stewart Kowalski and Thomas Kemmerich for positive and
constructive feedback early in the project period.

Other people we would like to thank are:
• Niklas Lindén for help with designing the logo.

Gjøvik, 15.05.2015

Tommy B. Ingdal Halvor M. Thoresen Victor Rudolfsson

iv

Chapter 0 IDSanity

Contents

Preface . iv
Contents . v
List of Figures . viii
List of Tables . ix
Abbreviations . x
Glossary . xi
1 Introduction . 1

1.1 Problem Area . 1
1.2 Target Audience . 1
1.3 Employer . 1
1.4 Project Goal . 1
1.5 Project Description . 2

2 Background . 3
2.1 IDPS . 3

2.1.1 Network-based . 3
2.1.2 Host-based . 4
2.1.3 Signature-based . 4
2.1.4 Anomaly-based . 4

2.2 WAF . 5
2.3 Suricata . 5

2.3.1 Signatures . 5
2.4 OSSEC . 6

2.4.1 Architecture . 6
2.4.2 Rule Sets . 7

2.5 ModSecurity . 8
2.6 Similar Projects . 9

3 Requirement Specification . 11
3.1 Use Case . 11

3.1.1 Use Case Diagram . 11
3.1.2 Comments on Use Case Diagram 11
3.1.3 High level Use Case Descriptions 12
3.1.4 Detailed use case . 15

3.2 Functional Requirements . 16
3.2.1 Usability . 16
3.2.2 Performance . 18
3.2.3 Security . 18

3.3 Operational Requirements . 18
3.3.1 Usability . 18
3.3.2 Availability . 19
3.3.3 Reliability . 19
3.3.4 Performance . 20

v

Chapter 0 IDSanity

3.3.5 Environment . 20
3.3.6 Documentation . 20
3.3.7 Security . 20

3.4 System requirements . 21
4 Design . 22

4.1 Sequence Diagram . 22
4.2 Deployment Diagram . 24
4.3 Class Diagram . 25
4.4 ER-Diagram . 26

5 Implementation . 27
5.1 Software Licence . 27
5.2 Development Environment . 27
5.3 Writing New Modules . 29
5.4 Master daemon . 33
5.5 Client daemon . 33
5.6 Events . 34

5.6.1 The Events class . 34
5.6.2 Hooking into Events . 37
5.6.3 Naming convention . 37
5.6.4 Core Events . 37

5.7 Internal Communication . 42
5.7.1 Message Structure . 42
5.7.2 Message Response Structure . 43
5.7.3 Recurring communication . 43

5.8 External Communication (API) . 45
5.8.1 Route structure . 45
5.8.2 IDSanityApi module . 45

5.9 External Communication (CLI) . 52
5.9.1 CLI Argument Events . 52
5.9.2 CLI Argument Hooks . 52
5.9.3 CLI Subcommands . 52

5.10 Controllers . 54
5.10.1 IDSanity CLI Controllers . 54

5.11 Models . 57
5.11.1 Model Mixin (providing extra functionality) 57
5.11.2 Key . 58
5.11.3 Node . 59
5.11.4 NodeRule . 61
5.11.5 Rule . 62
5.11.6 Software . 63
5.11.7 OperatingSystem . 64
5.11.8 JSON Serializers . 64

5.12 Library . 66
5.12.1 Singleton Metaclass . 66
5.12.2 Factory (master) . 67
5.12.3 Factory (slave) . 67

vi

Chapter 0 IDSanity

5.12.4 Communicator . 68
5.12.5 ModuleLoader . 69
5.12.6 HostAnalyzer . 70

5.13 Modules (plugins) . 71
5.13.1 IDS Modules . 71

6 Testing . 74
6.1 Model Tests . 74
6.2 IDSanity Library Tests . 77

7 Conclusion . 80
7.1 Missing Functionality . 80
7.2 Discussion . 81

Bibliography . 82
A Project Proposal . 83
B Preliminary Project . 84
C Software License Agreement . 110
D Project Agreement . 113
E Meetings . 115

vii

Chapter 0 IDSanity

List of Figures

1 Gjøvik University College . 1
2 Example of an inline IDPS.[3] . 3
3 Example of a passive IDPS.[4] . 4
4 Suricata Signature. 5
5 Example of a OSSEC architecture.[8] . 7
6 OSSEC Rule. 7
7 Example on how ModSecurity works.[11] 8
8 Aanval Live Event Correlation[12] . 9
9 Snorby Listing Sessions[13] . 10
10 Sequence Diagram. 22
11 Deployment Diagram. 24
12 IDSanity Class Diagram . 25
13 Entity-Relationship Model . 26
14 PyCharm Integrated Development Environment. 28
15 Atom Editor. 29
16 Creating a module: Inheritance. 29
17 Creating a module: Event Hooking. 30
18 Creating a module: Event Hooking. 30
19 IDSanity: Configuration file. 31
20 Source Code: Suricata Module. 32
21 IDSanity: Message Structure. 42
22 IDSanity: Message Response Structure. 43
23 IDSanity: Identification Request. 43
24 IDSanity: Identification Response. 44
25 IDSanity: Sync Request. 44

viii

Chapter 0 IDSanity

List of Tables

1 IDSanity: Core Events . 41
2 IDSanity: API Route Structure . 45
3 IDSanity: API Key Routes. 46
4 IDSanity: API Node Routes . 47
5 IDSanity: API Rule Routes. 48
6 IDSanity: API NodeRule Routes. 49
7 IDSanity: API OperatingSystem Routes. 50
8 IDSanity: API Software Routes. 51

ix

Chapter 0 IDSanity

Abbreviations

API Application Programming Interface.
CLI Command-Line Interface.
GUI Graphical user interface.
HIDS Host-Based Intrusion Detection Sys-

tem.
HMAC Hash Message Authentication

Code.
HTTP Hypertext Transfer Protocol.
IDS Intrusion Detection System.
IDPS Intrusion-Detection And Prevention

System.
IPS Intrusion-Prevention System.
JSON JavaScript Object Notation.
LDAP Lightweight Directory Access Proto-

col.

MITM Man-in-the-middle.
NIDS Network-Based Intrusion Detection

System.
NIST National Institute of Standards and

Technology.
OSSEC Open Source Security.
PKI Public Key Infrastructure.
SIEM Security Information And Event

Management.
SSL/TLS Secure Sockets Layer/Transport

Layer Security. itemSQLi SQL Injec-
tion.

WAF Web Application Firewall.
XML EXtensible Markup Language.

x

Chapter 0 IDSanity

Glossary

Agent In the context of IDPS an agent
is an application installed on a host
computer reporting system status to
a Master or management server.

Debian Unix-like computer operating sys-
tem and Linux distribution.

Flask Micro web application framework
for Python.

Git Distributed revision control system
with an emphasis on speed and data
integrity.

Github A web-based Git repository host-
ing service, which offers revision
control and source code manage-
ment.

IPS/Inline The Intrusion Prevention Sys-
tem is placed in the direct comm-
munication path between the source
and destination.

Master The master is a Node with the
main server application installed,
that communicates and controls the
Slaves.

MITM Attack Is an attack where the at-
tacker secretly relays and maybe
alters the communication between
source and destination.

Node A node is an entity in the system.
A node can either be a Master, or a
Slave.

Open Source Refers to a program in
which the source code is available
to the general public for use and/or
modification free of charge.

OSSEC Open source host-based intrusion
detection system.

PEP8 Style Guide for Python Source
Code.

Python High-level programming lan-
guage.

PostgreSQL Object-releational database
management system.

RESTful Software architecture style for
designing networked applications.

RESTless Software that does not adhere
to RESTful principles.

Slave The Slave is a Node with the Slave
application installed, that communi-
cates with the Master.

Snort Open source network intrusion pre-
vention system and network intru-
sion detection system.

SSL/TLS Cryptographic protocol de-
signed to provide communications
security over a computer network.

Suricata Open source intrusion detection
system.

Twisted Event-driven networking engine
written in Python.

Zero-Day Attack An attack that exploits a
previously unknown vulnerability.

xi

Chapter 1 IDSanity

1 Introduction

The following chapter contains necessary information for the reader to get a basic un-
derstanding of what the IDSanity project aims to accomplish.

1.1 Problem Area

With the rapidly increasing acknowledgement of the importance of information secu-
rity [1], more and more precautions are taken within businesses to detect threats, protect
information and negate or prevent damage done by digital attacks. [1]
One of the most popular [1] ways to achieve better security is to implement one or more
intrusion-detection systems and/or web application firewalls in the network.
However, due to the increase of applications used to tackle different aspects of the se-
curity infrastructure it is getting harder for system administrators to keep track off and
manage all the different rules sets on different sensors.

1.2 Target Audience

This project is mainly developed for the IT Departement at Gjøvik University College and
is meant to be a tool for network and system administrators already familiar with IDPS
and/or WAFs.
If the IT Departement decides to release this project as open-source it may also be of use
to other businesses in need of a centralized framework to manage their network security.
IDSanity may also be of interest to other developers wanting to expand or add new
functionality to help maintain their network.

1.3 Employer

Employer for this project is the IT Departement at Gjøvik University College.
The IT Departement consists of 15 employees and works closely with Gjøvik University
College’s research and educational environment, in the operation of network & computer
systems and information security.

Fig. 1: Gjøvik University College

1.4 Project Goal

This project aims to make the management of IDPS and/or WAF sensors less problematic
and time consuming. With networks growing more complicated and complex each day
the need for more security sensors increases.
When you have to manage a large set of IDPS and/or WAF sensors it may become cum-
bersome to maintain scripts or manage each of the sensors manually.

1

Chapter 1 IDSanity

IDSanity aims to solve this problem by giving system administrators a centralized, modu-
lar framework, where the network administrators can manage a large set of sensors with
one tool. When IDSanity is installed on each node in the network, network administra-
tors can manage all of the sensors with a CLI on the Master or the web interface.
Since the application is modular it’s also really easy to create new modules to make the
network security management easier.

1.5 Project Description

The assignment is delivered by the IT Departement at Gjøvik University College and was
originally called GUC Security Rules Management - later renamed IDSanity.
The IT Departement has actively been working towards better detection of security re-
lated events, and in a big and complicated network it may become cumbersome to man-
age rules sets, rule revisions and clients.
The task is to develop a centralized framework for managing HIDS , NIDS , IPS , WAFs and
system audit policy rules.
In addition to the framework it self a web interface should also be developed as part of
the project assignment.

The first and most important part of this project is to develop the framework. IDSan-
ity should be able to push new rule sets out to the nodes, edit existing rule sets, go back
to a previous rule set as well as maintain an overview of the current state of the network.
It should be as modular as possible allowing other developers to create new modules
for other IDPS and WAF s. The appplication will also include an API , allowing the IT
Departement to expand or use other programming languages to maintain the clients in
the network.
The second part is to develop a web interface. Most system administrators use scripts or
CLI to maintain clients in a network, but since a web interface makes it easy to get an
overview of the current state of the network, the IT Departement also wanted this to be
a part of the project assignment.

Since the IT Departement mainly use Debian and CentOS as part of their infrastruc-
ture, IDSanity is developed with those operating systems in mind. The application will
be packaged for easy installation on Debian but should also work on CentOS since it’s
also a part of the infrastructure.

2

Chapter 2 IDSanity

2 Background

The following chapter contains necessary information for the reader to get a basic un-
derstanding of what the IDSanity application is dependent on. And a short summary of
similar projects.

2.1 IDPS

Intrusion Detection And Prevention Systems, abreviated IDPS , is a network security ap-
pliance that monitor the network or host for potential malicious activity and take appro-
priate measures, such as blocking a specific packet or alerting the system administrators
if a match is found.
When we talk about IDPSs we usually divide the term in two different parts: network-
based and host-based. And each of these two approaches can either be signature-based
or anomaly-based.
Each of these different types of IDPSs aim to solve the same problem, but function in
very different ways.

2.1.1 Network-based

A network-based IDPS is installed on the network itself and monitors the traffic for po-
tentially malicious traffic. It analyzes network, transport and application protocols to
identify suspicious activity [2].
An IDPS sensor can generally be installed in two different ways: Inline or Passive.

Inline

The sensor is installed directly in the communication path between the source and des-
tination. This means that all traffic going to and from the network is sent through the
IDPS sensor.

Fig. 2: Example of an inline IDPS.[3]

3

Chapter 2 IDSanity

Passive

A passive sensor is installed in such a way that it receives a copy of all the traffic going to
and from the network. They are typically installed in key network locations (e.g between
two networks).

Fig. 3: Example of a passive IDPS.[4]

2.1.2 Host-based

This type of IDPS is installed on the host machine and monitors system logs, file modifi-
cation/access, which processes are running, if there are any changes to the system etc.
It is typical for a host-based IDPS to have an agent installed on the host which com-
municates directly with the Master or managment servers. The agent reports what is
happening on the host computer and the Master or management servers then take ap-
propriate measures if needed.
One example of host-based IDPS is OSSEC, which are discussed later in this chapter.

2.1.3 Signature-based

This form of detection is using a pre-existing signature, which may have been created by
other security firms, in order to detect attacks against the network.
This is the simplest detection method available [2] since it just analyzes packets and/or
log entries. This data is then compared against a signature, and if a match is found, an
attack may be ongoing or already happened.
NIST lists the following as examples a signature-based IDPS may detect:

∙ A telnet attempt with the username "root".

∙ An email with the subject of "Free Pictures!!"

Signature-based IDPSs is very effective at detecting threats already known, but ineffective
against unknown/0-day attacks.

2.1.4 Anomaly-based

Unlike signature-based IDPS which relies on having the correct signatures at all times,
this approach function in a complete different way. By defining a normal behaviour,
anomalies can be detected by analyzing the state of the network. If the behaviour of

4

Chapter 2 IDSanity

the network is out of the ordinary an alert may be triggered.
McAfee [5] lists a number of anomalies that can occur in a network:

∙ HTTP traffic on a non-standard port, say port 53 (protocol anomaly)

∙ A segment of binary code in a user password (application anomaly)

∙ Too much UDP compared to TCP traffic (statistical anomaly)

The positive thing about anomaly-based IDPS is that it can detect 0-day attacks. As long
as the network state is out the ordinary, an alert may be triggered.
While anomaly-based IDPS do alot of good things, the false-positive ratio may be alot
higher than signature-based IDPS.

2.2 WAF

A Web Application Firewall (WAF) is a device on your network, a plugin for your server
or a filter that applies different rule sets to the HTTP communication between the client
and server. A WAF is meant to protect against attacks such as XSS and SQLi.
Some well-known Web Application Firewalls include:

∙ ModSecurity

∙ WebKnight

∙ IronBee

2.3 Suricata

Even though Snort has been the de facto standard IDS for many years now, Suricata
(IDPS) are becoming more and more popular. With about the same feature set as Snort
and support for multi-threading, Suricata is a very good choice for system administrators
wanting to secure their network.

2.3.1 Signatures

Suricata makes use of signatures (also called rules) to detect potential dangerous and
malicious network traffic.
System administrators can write their own signatures or subscribe to rule feeds provided
by security firms around the world.

Example on a Suricata signature:

alert http $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:"ET
WEB_SPECIFIC_APPS 20/20 Auto Gallery SQL Injection Attempt --
vehiclelistings.asp sale_type UNION SELECT "; flow:established ,to_server
; content :"/ vehiclelistings.asp?"; nocase; http_uri; content :" sale_type
="; nocase; http_uri; content :"UNION"; nocase; http_uri; pcre :"/ UNION\s
+SELECT/Ui"; reference:cve ,CVE -2006 -6092; reference:url ,www.
securityfocus.com/bid /21154; reference:url ,doc.emergingthreats.net
/2007517; classtype:web -application -attack; sid :2007517; rev :9;)

Fig. 4: Suricata Signature.

5

Chapter 2 IDSanity

A signature consists of three parts: Action, Header and Rule-options.

Action

The Action can be either Pass, Drop, Reject or Alert.

Pass: When a signature find a match, the scanning will stop and skip to the end of
all rules.
Drop: If the drop action is used in a signature and a match is found the packet is dropped
immediately.
Note: This will only work in IPS/Inline mode.
Reject: Suricata will reject the packet and both the source and destination will receive a
reject packet.
Alert: The packet will be threated like any other non-threatening packet but Suricata
will generate an alert. The system administrators will see this alert and can then take
appropriate actions.

Header

The second part of the header dictates which protocol Suricata will detect. This value
can be one of four values: tcp, udp, icmp or ip. If a rule use the option ip this means "all".
It’s worth mentioning that Suricata 2.0 added a few other protocols as well: http, ftp, tls,
smb and dns.

Rule-options

Rule-options is a set of parameters you can add to your Suricata rules, in order to analyze
packets in more depth. Rule-options have a set format:
name: setting;

In Suricata there are specific settings for meta-information, headers, payloads and flows.

2.4 OSSEC

OSSEC is a free, open-source HIDS. It combines log analysis, integrity checking, windows
registry monitoring, rootkit detection, time-based alerting, and active response, in to a
full platform to monito and control the user’s systems. [6][7]

2.4.1 Architecture

OSSEC works by having a centralized manager that receives information from differ-
ent sources to monitor and analyze, eg. OSSEC agents, syslogs, databases or agentless
devices [6].

In this OSSEC architecture setup, the OSSEC agent is installed on a number of devices
in the system. These agents send their logs and information to the centralized OSSEC
server. The server then handles this information based on the configuration, ie. sends an
email alert, or performs active response.

6

Chapter 2 IDSanity

Fig. 5: Example of a OSSEC architecture.[8]

2.4.2 Rule Sets

OSSEC comes with an extensive list of default rules. It is highly discouraged to modify
these rules as they are overwritten on every OSSEC upgrade [9]. However, there is a file
local_rules.xml that one should use to write custom rules for OSSEC. If the user wants to
change one of the default rules, a copy of the rule can be added to the local_rules.xml
file, with the wanted modification and the <overwrite="yes"> attribute added.
OSSEC rules are written in the well known XML format and supports a wide selection of
attributes for optimal customization.
The following example rule detects whenever a USB is inserted into the agent, and gen-
erates an alert.

<ru l e id=" 10000000 " l e v e l=" 12 ">
<i f \ _s id>5100</ i f \ _ s id>
<match>s c s i</match>
<regex>Direc t−Access</ regex>
<d e s c r i p t i o n>NEW USB FOUND</ d e s c r i p t i o n>

</ ru l e>

Fig. 6: OSSEC Rule.

7

Chapter 2 IDSanity

2.5 ModSecurity

ModSecurity is a Web Application Firewall which provides protection from a range of
attacks, including Cross-Site Scripting and SQL Injection.
As mentioned in the ModSecurity Reference Manual [10], it monitors the HTTP traffic
and can do real-time analysis with little or no changes to the existing infrastructure.

Fig. 7: Example on how ModSecurity works.[11]

8

Chapter 2 IDSanity

2.6 Similar Projects

Aanval

Aanval ("attack" in Dutch) is a commercial product designed to maintain Snort, Suricata
and Syslog data. Originally developed by Loyal Moses in 2003 it still remains one of the
longest Snort capable SIEM products in the industry.

Fig. 8: Aanval Live Event Correlation[12]

9

Chapter 2 IDSanity

Snorby

Snorby is a web application written in Ruby On Rails for network security monitoring.
It currently works with systems such as Snort, Suricata and Sagan. Since Snorby is open
source it’s a very popular choice amongst system administrators that want a nice and
powerful web application to monitor the security of their network infrastructure.

Fig. 9: Snorby Listing Sessions[13]

10

Chapter 3 IDSanity

3 Requirement Specification

The requirement specification is based on the employers wishes and the developers de-
cisions of what should be implemented in the IDSanity application to make the usage
experience as good as possible for the employer. The chapter will discuss the program
flow, operational, functional and system requirements.

3.1 Use Case

The following section will utilize use case diagrams to depict the general flow of the
IDSanity application. It is not absolute, but it will give a general overview of interaction
between the users and the system.

3.1.1 Use Case Diagram

3.1.2 Comments on Use Case Diagram

In the use case diagram there are only two entities which makes up the flow of the ap-
plication. There is the System administrator which has access to all functionality in the
system, and the basic user which has only the most basic read-only permission. This is
because of the security issues that occurs when a user has more permissions than they
are equipped to handle.
The use case is of a fairly simplistic art due to how the IDSanity should application oper-
ates. There are generally very little nesting of the main functionalities, instead there are
a lot of hidden functionality going on in the background, that are not described in this
use case diagram.
Third-party library entities functionalities that none of the users of the system has any
control over, are also excluded.

11

Chapter 3 IDSanity

Every use case in this diagram happens after authentication is verified.

3.1.3 High level Use Case Descriptions

Due to the simplistic nature of the use case diagram, all use cases are described in a high
level format to give some clarification and basic summarization of their functionality.

Use Case Show host information
Entity System administrator & Basic user
System Command-line interface & Web-interface
Goal Display information about the selected node
Description The system administrator and a basic user can select a node and show

all relevant host information.
Output Host name, IP-address, nickname, operating system, last seen, last

changed, software, list of rules

Use Case Ban node
Entity System administrator
System Command-line interface
Goal Stop communication with node
Description The system administrator can ban a node. The node will no longer be

able to communicate with the master
Limitation Executed from Master node only.

Use Case Unban node
Entity System administrator
System Command-line interface
Goal Regain communication with node
Description The system administrator can unban a node. The node will now be able

to communicate with the master again
Limitation Executed from Master node only, and is dependent on that the node has

previously been banned

Use Case Enable IDPS/WAF
Entity System administrator
System Command-line interface
Goal Enable the relevant IDPS or WAF program on a node
Description The system administrator can choose to enable the relevant IDPS or WAF

program on a node to start functionality
Limitation Executed from Slave node only

Use Case Disable IDPS/WAF
Entity System administrator
System Command-line interface
Goal Disable the relevant IDPS or WAF program on a node
Description The system administrator can choose to disable the relevant IDPS or

WAF program on a node to stop functionality
Limitation Executed from Slave node only

12

Chapter 3 IDSanity

Use Case Modify node
Entity System administrator
System Command-line interface
Goal Modify settings or information on a node
Description The system administrator can change settings or information on a node.

E.g Nickname or public-key path

Use Case Add rule
Entity System administrator
System Command-line interface
Goal Add a new IDPS or WAF rule
Description The system administrator can add a new rule for use in an IDPS or WAF

on a node.

Use Case Drop rule
Entity System administrator
System Command-line interface & Web-interface
Goal Deactivate or delete an IDPS or WAF rule
Description The system administrator can deactivate or delete an already existing

rule from an IDPS or WAF on a node.

Use Case Show rules
Entity System administrator & Basic user
System Command-line interface & Web-interface
Goal Show relevant information about the selected rules
Description The system administrator or a basic user can list information of rules

based on id, software, IP-range or direction

Use Case Update rule
Entity System administrator & Basic user
System Command-line interface
Goal Modify a rules information
Description The system administrator can modify rule information

Use Case Add-feed
Entity System administrator
System Command-line interface
Goal Add a new rule feed from a selected source
Description The system administrator can add rule-feeds from a source that are kept

up to date and based on extensive threat intelligence conducted by the
feed vendor

13

Chapter 3 IDSanity

Use Case Manage node-rule relations
Entity System administrator
System Command-line interface & Web-interface
Goal Select what rules should be active on which nodes
Description The system administrator can select a set of rules to be activated on the

different nodes.

Use Case Retrieve log
Entity System administrator & Basic user
System Command-line interface & Web-interface
Goal Get relevant logs from the selected node
Description The system administrator and a basic user can chose to retrieve relevant

logs from the different nodes in the system.
Output All log files

Use Case Show status
Entity System administrator & Basic user
System Command-line interface & Web-interface
Goal Get relevant status about a node or rule
Description The system administrator and a basic user can retrieve current status of

a node or a rule.
Output If a node or rule is activated or not, number of triggers or error messages.

Use Case Initiate node
Entity System administrator
System Deamon
Goal Start a new deamon instance on a Master or Slave node
Description The system administrator start or stop the deamon on a selected node.

This will result in if the node is set up and a part of the IDSanity system
or not.

14

Chapter 3 IDSanity

3.1.4 Detailed use case

The following two detailed use cases is just a small part of the use cases, but it shows the
flow of the most important functions.

Name: Manage node-rule relations Actors: System administrator
Pre-condition: The CLI or the Web-interface must be set up and working. User is
authenticated.
Post-condition: Modified settings will be sent to the relevant nodes and the entire
system will be updated.
Trigger: User want to modify what rules that are active on a node.
Event flow:

1. System administrator requests the necessary information for options on what to
do, from either the Web-interface or through the CLI.

1. Request node overview

1. Enable or disable rules based on the list of available rules on the selected
node

2. Request rule overview

1. Select which nodes the given rule should be enabled or disabled on, based
on the list of available nodes for that rule

2. System verifies that only valid options are selected

3. System initiates the communication to sync modifications

4. System verifies that the sync was successful

Event variation:

1. There are no valid information to request

1. The system administer will be prompted with an error explaining the situation

2. The system administer can chose whether or not to try again, based on the error
message

3. There are no valid options to modify

1. The system administer will not be able to modify anything, and must have to
add rules or nodes to the system to continue

2. Invalid options are selected

1. The system administer tries to enable a rule on an invalid node.

1. The node does not have to appropriate software to handle the rule

1. The system administrator has to update or install the required software
to continue, and find the bug in the program that allowed the user to
select an invalid option.

2. The node is not enabled

1. The system administrator has to enable the node to continue, and find
the bug in the program that allowed the user to select an invalid option.

2. Sync verification failed

1. The system administrator is prompted the option to retry the sync, or to discard
current changes

15

Chapter 3 IDSanity

Name: Add rule Actors: System administrator
Pre-condition: Connection to the relevant node is up. The system administrator has
written a valid rule to add to the node
Post-condition: A new rule has been added to one or more valid nodes
Trigger: The system administrator needs better rule coverage in their system
Event flow:

1. The system administrator has to decide which nodes the newly created rule should
be activating on

2. Then the system administrator has to execute the correct command useing the CLI

3. The system has to verify the rule

4. The system has to verify that the rule fits the selected node(s).

5. The system adds the new rule to the node(s)

6. The system must verify that the rule was added to the node(s)

Event variation:

1. The rule is not valid, or does not fit one or more of the selected nodes

1. The administrator gets an appropriate error message

2. The administrator can decide if he wants to force add the rule or not

3. The system failed to add the rule to the node

1. The administrator gets an appropriate error message

2. The administrator must debug what might cause the problem

3.2 Functional Requirements

The functional requirements is a combined list of specific features that is desired in the
IDSanity application by the employer and the developers.

3.2.1 Usability

There should be two different main ways to access IDSanity, which covers different func-
tional needs.
These are: CLI & API.
The API allows for custom Web Interfaces and even GUIs to communicate with IDSanity
in a standardized way.

CLI

The CLI should cover all administrative and operational functionality, and will be the
system administrator’s main tool to manage the system.
All setup and initiation functionality, such as starting a Master or Slave node, can be done
through the CLI only.
The CLI should have an extensive amount of functionality to meet the user’s needs.

Node related functionality

enable Starts the ID(P)S on a node. Slaves can only enable themselves.
disable Stops the ID(P)S on a node. Slaves can only disable themselves.
ban Only available for master. Ignore messages from the node.
unban Only available for master. Allow messages from the node (default).

16

Chapter 3 IDSanity

add-feed Adds a rule feed from a vendor to a node
status Checks the current status of a node and gets all sub-command information

last-seen Gets only the last-seen info for a node
last-update Gets the last-update time for a node
ipaddress Gets only the IP-address for a node (only master available for slaves)
hostname Gets only the host name of a node

set Allows modifying host information (not unique ID)
nickname Sets the nickname for a node.
public-key Sets the path to the public key on the node

rule Performs actions on rules for that specific node (see rule actions below)
log Retrieves the most recent log information from a node.

Rule related functionality

add Adds a new rule
update Modifies a rule
drop Removes a rule
show Shows all rules

id Shows a specific rule by ID.
software Shows rules by software.
ip Shows rules by IP-address or IP-range.
outgoing Shows rules for outgoing direction
incoming Shows rules for incoming direction

Web Interface

The main functionality of the Web Interface is to give a simple, intuitive and fast overview
of system status. The Web Interface is the system administrator’s main way to monitor
and document the situation. This should also be more accessible for the users without
extensive knowledge of headless systems, such as upper management or trainees.
The Web Interface should support the newest release of all WebKit and gecko -based
browser, including IE 7 and above.
It should also be accessible through the use of mobile devices, but limited to the most
essential functionality ie. node status.
A RESTful API should be implemented in such a way that the Web Interface can commu-
nicate with the master directly and perform the same actions as the CLI.
The main information screens in the Web Interface is the Node overview and the Rule
overview screen.
Node overview The Node overview screen should at least have the following basic

functionality.

∙ Show node status - e.g enabled, disabled, IP address, host name, ID(P)S soft-
ware

∙ Number of active rules

∙ Information about the node host

∙ Information about the installed software on the node

By selecting a specific rule in the node overview, information about that rule should
be displayed and options to administer the rule comes up.

17

Chapter 3 IDSanity

Rule overview When entering the Rule overview screen the following information
should be displayed.

∙ Overview of all rules on all nodes

∙ Detailed list of available rules

∙ Functionality to manage what rules should be on which nodes

3.2.2 Performance

∙ One of the biggest performance problems with the IDSanity application will be the
amount of bandwidth required for all the communication between nodes. To reduce
the bandwidth requirement, all communication should be compressed.

∙ To minimize hardware resource requirements, only well tested libraries and the newest
software releases should be utilized.

3.2.3 Security

∙ Information leakage is always a possibility when sending information over the net-
work. To ensure that the information can not be read in case of a leak, all communi-
cation must go over SSL

∙ To prevent MITM attacks, public key cryptology should be utilized. By doing this, the
nodes can be sure that they communicate with the correct counterpart.

API

IDSanity should provide an API which should run in the background and provide the
same functionality as the CLI provides to allow applications such as custom GUIs or Web
Interfaces to interact with IDSanity. This API should restrict functionality such as directly
creating Nodes, or modifying existing nodes’ unique_identifier, and should also restrict
access based on a pre-set API key or IP address.

Access to the API should only be allowed with the pre-set key used in an algorithm
such as HMAC to create temporary tokens for each individual action, and access should
optionally be restricted to the local host.

Each resource should be accessible using standard RESTful behaviour, where HTTP
states such as GET represents a SELECT query, PUT represents an UPDATE, POST repre-
sents an INSERT query and DELETE represents a DELETE query.

3.3 Operational Requirements

The operational requirements is a combined list of vague functionality that is desired in
the IDSanity application by the employer and the developers.

3.3.1 Usability

Requirements for usability is divided into CLI usability and Web Interface usability, due
to different targeted user groups and functionality.

CLI

∙ The IDSanity CLI should be targeted to system administrators with basic knowledge
of how Snort, Suricata, OSSEC and ModSecurity operates.

18

Chapter 3 IDSanity

∙ Familiar and relatable terminology should be used to reduce the time spent learning
the program.

∙ The navigational structure, such as command options, should be similar to how how
Snort, Suricata, OSSEC and ModSecurity.

Web Interface

∙ The IDSanity Web Interface should be targeted to users without the basic knowledge
of how Snort, Suricata, OSSEC and ModSecurity operates.

∙ The design should be in such away that every action requires the minimal amount of
key presses possible.

∙ The Web Interface should communicate with the API

∙ The Web Interface must display an overview of all nodes and their status, such as rules
and activity, in an intuitive way so that the user can gather the necessary information
easily.

3.3.2 Availability

IDPS and WAF rule sets are regularly updated due to the increasing threat-intelligence
community and technology. It is important to always be up-to-date and a crisis where
access to the system is need, can happen at any time. Because of this, availability is a
crucial factor.

∙ The IDSanity application system should have a minimum uptime of 98%, where the
last 2% should cover updates, restarts, rule generation and system errors.

∙ Try-Catch-blockers shoud be implemented, and exceptions should be captured to en-
sure stability and reduce program-crashes.

3.3.3 Reliability

When dealing with security, reliability is an important aspect to consider. To ensure reli-
ability of the of the information and rule sets, the following requirements must be met.

∙ To prevent corruption or unwanted tampering of the rules sets, the entire rule set on
each node should be regenerated each time a change is committed on the master and
with regular intervals.

∙ Access to direct manipulation of the database should be restricted to IDSanity appli-
cation, and the system administrator.

∙ Every change made to the system should be logged for future reference and for relia-
bility control.

∙ Rule sets should always be able to return to a previous state, in case of user mistakes
or system errors.

∙ All slaves should always mirror their masters rule sets, to ensure synchronous rule
sets across the system.

19

Chapter 3 IDSanity

3.3.4 Performance

Due to the lack of hardware on most IDPS and WAF nodes, it is important that the
IDSanity application performance is optimized.
Failure to meet the performance requirements might result in stability issues, or in worst
case scenario, not being able to run the application. To ensure performance of the system,
the following requirements should be met

∙ Only libraries that are proven to be compatible with each other should be used

∙ The minimal amount of packages and libraries should be loaded at any time

3.3.5 Environment

IDSanity stability and functionality is reliant on a overall stable environment, both soft-
ware and hardware.

Software

∙ IDSanity should run on OSX, Windows and *nix

Hardware

∙ The hardware should meet the minimal requirement to run the base IDPS or WAF
application in addition to the IDSanity application.

∙ A stable access to electricity, is important to ensure uptime.

3.3.6 Documentation

Documentation is important to ensure that future development is done properly and to
ensure that the user is operating the IDSanity application as intended, and that future
development can continue without unnecessary confusion.

Inline documentation should be provided to the point where no function should baffle
a potential future developer, and each class and function should begin with a docstrings
that explains that class or functions attributes or parameters, and the intended purpose.

∙ All Python development code should follow the PEP8 standard. This will make the
code more readable, which helps with future development and increases the change
to catch code-design flaws.

∙ The documentation tool Sphinx should be used to generate detailed and easy to read
documentation.

∙ Each class and function should begin with a docstring explaining its purpose

∙ Docstrings should contain reStructuredText notation to allow Sphinx to generate de-
cent documentation

3.3.7 Security

To ensure the security within the IDSanity application itself, the following requirements
must be met.

∙ A Public Key Infrastructure must be used between the master and the slave, to ensure
secure communication and prevent information leakage.

20

Chapter 3 IDSanity

∙ To restrict access to the system, LDAP and PKI should be used for authentication.

∙ Every event should be logged.

∙ Source-code analysis should be conducted regularly to ensure minimal amounts of
bugs and possible exploits.

3.4 System requirements

To ensure that IDSanity runs optimally in the GUC IT Departements system environment,
the following technical requirements must be met.

Database
PostgreSQL 9.2.x or newer should be used when implementing database function-
ality.

Programming language
The IDSanity system and all related applications can be developed by the following
programming languages.

∙ PHP

∙ Python

∙ C/C++

∙ HTML/CSS/Javascript

Operating System
IDSanity must run on CentOS 6.5 and newer, or Debian 7.x

Authentication
LDAP should be supported to gather information about system users.

Libraries And Frameworks
To implement secure and tested functionality without re-inventing the wheel, the
following libraries and frameworks should be used.
PyCrypto For PKI implementation and signatures
Beautiful Soup For parsing of XML
Python-Ldap For implementing LDAP authentication when accessing the Master

node
Python-Json-logger For logging and parsing in JSON format
ConfigParser For maintaining and parsing configuration files
Twisted For network communication and service creation
SQLAlchemy For database object-relational mapping
psycopg2 For PostgreSQL support in SQLAlchemy
Flask For simple, lightweight web services
Flask-restful For creating a RESTful API with Flask
marshmallow For JSON serialization of Python objects
blessings For CLI formatting with colors
dmidecode For parsing smbios and DMI data to generate unique hardware based

IDs

21

Chapter 4 IDSanity

4 Design

In this chapter we will describe how IDSanity is designed and how the underlying archi-
tecture work. Since IDSanity is a prototype and not a production-ready system we expect
that the application will change over time, both in terms of architecture and GUI.

4.1 Sequence Diagram

The sequence diagram shows the IDSanity applications internal communication flow
in detail. The diagram will take in account the main entities, Slave and Master, their
databases, and their relevant models.
The following diagram displays the synchronization functionality which ensures that the
rules are the same between the Slave and the Master.

Fig. 10: Sequence Diagram.

1. The initial step in the synchronization functionality is for the Slave to find it’s system

22

Chapter 4 IDSanity

Node

2. To do this the Node model contacts the Slave database.

3. If the requested information exists in the database, it is returned to the Node model.
However, if no node information can be found, it will create it.

4. After the Node model receives the node information, it relays it directly to the Slave

5. When the Slave has gathered all the initial information, it can verify it’s information
by creating a hash of it’s rule set, and sending it to the Master

6. The Master then has to contact it’s Node model to find the correct Slave information

7. The Node model has to relay the request to the Masters Database

8. The database returns it’s relevant information back to the Node model

9. Which again sends the information to the Master

10. Now the master can compare the rule set hash it got from the Slave, and the infor-
mation it had in it’s own database. If the hash matches, it means that no changes
has happened since the last synchronization check, and the function terminates by
responding with a NOOP message

11. However, if the hash do not match, the rest of the synchronization is executed. This
happens when the Master requests all the current rules from it’s database

12. This rule set request has to go though the Rule model

13. Which again executes the correct database select query

14. The database then returns it’s query results to the Rule model

15. The Rule model filters the results and sends the related rules to the Node model

16. Which again formates the list of rules for future use, and sends the rules as a list
message of JSON objects back to the Slave

17. Now the Slave has to loop through the list of objects.

18. This loop starts by sending the current rules SID to the Rule model

19. Which executes the correct select query in the Slave database.

20. The database then returns the information it has on the relevant SID to the Rule
model

21. The Rule model creates a Rule object based on the information, and sends it to the
Slave

22. If the Slave finds that the rule it received is different from the one it already has in it’s
database, then it sends a update request at the relevant attributes to the Rule model

23. The Rule model executes the requested update query. Repeat until all rules are looped
through

24. The Slave then rehashes it’s ruleset, and dispatches the relevant event The last stages
will be performed in reverse if the Slave had the newest version of the rule set, and
the master need an update.

23

Chapter 4 IDSanity

4.2 Deployment Diagram

Fig. 11: Deployment Diagram.

In the deployment diagram above we have illustrated how the application is meant
to be deployed in a working infrastructure.

Management Server

The Management Server is running an operating system (*nix, Windows or OSX) and
IDSanity is running as a service in the background. IDSanity communicates with a run-
ning database in the background (i.e. PostgreSQLk) on the same server. The Management
Server have a copy of all the different rule sets which are active or inactive on each of the
nodes in the network.

Node

Each node on the network communicates directly with the Management Server. The nodes
are either running *nix, Windows or OSX and sends all of its rules to the Management
Server.
There’s also a database running in the background on each node, which keeps track of
all the active or inactive rules.

24

Chapter 4 IDSanity

Communication

Since IDSanity is using Twisted as its core framework, it’s easy to do the communica-
tion over SSL/TLS. Even though IDSanity can communicate with the Management Server
using only HTTP, it is recommended that the communication is done over SSL/TLS to
ensure a secure way of transmitting rule sets.

4.3 Class Diagram

Fig. 12: IDSanity Class Diagram

The class diagram illustrated above shows the most vital classes for the IDSanity ap-
plication, their properties, and their relationship to one another.
All 3rd party library classes are intentionally omitted from the diagram, since the dia-
gram serves the purpose to provide an overview of the relationships between the main
functionality classes withing the application.

25

Chapter 4 IDSanity

4.4 ER-Diagram

Fig. 13: Entity-Relationship Model

Since we have a relatively complex database layout we have created an ER-diagram
in order to give an overview of the database.
This diagram shows how all the different tables in the database are connected together
and how the relationships and dependencies between them are.

26

Chapter 5 IDSanity

5 Implementation

This chapter describes how IDSanity is implemented both in terms of underlying technol-
ogy and functionality, and how everything described in the previous chapters has been
solved. This also includes parts of the source code and illustrations.

5.1 Software Licence

Since this application is meant to be open-source we had a few different software licenses
to choose from. We mainly discussed wether to use the BSD, Apache or MIT lisence.
Even though there are similarities between the three, there is also a few important dif-
ferences.

BSD

With this license you let people do anything with your code without warranty, as long as
the author is attributed.

Apache

This is a permissive license that provides an express grant of patent right from con-
tributers to the users.

MIT

A short and to the point license that allows people to anything with the code, as long as
the autors are attributed. The code is also provided without warranty.

After a short discussion within the group and with the employer we decided to use the
MIT license.
As stated before this license is short and to the point and easy to understand. It is also
required to include the license as well as a copyright notice.
The authors can also not be hold liable of any problems or damages because of the code.
Because of this we think the MIT lisence is the best choice for the IDSanity project.

5.2 Development Environment

This section describes the technology used to develop IDSanity and how the backend of
this application was implemented during the development period.

Python

Even though Python is at version 3.4.3 we decided to use Python 2.7.x. After a discussion
and some research into the subject matter, we discovered that Python 2.7.x still has the
best support. And since IDSanity is using a good amount of pre-existing packages, we
needed a Python version with good support for the newest ones available.

PostgreSQL

One of the requirements from the employer was that IDSanity should use PostgreSQL as
the database backend.
PostgreSQL is becoming a more and more popular [14] database management system

27

Chapter 5 IDSanity

and is widely used in many different applications around the world. PostgreSQL is a
object-relational database management system (ORDBMS).
This is similar to a relational database, but uses a object-oriented approach where objects,
classses and inheritance is directly supported by the database.

Operating System

IDSanity is mainly developed for CentOS and Debian since this is the operating systems
used by the employer, but the application may also work on other Linux distributions.
IDSanity is made as cross-platform as possible, making it possible to run the application
on *nix, Windows and OSX.

Integrated Development Environment (IDE)

As a part of the development process two editors/IDEs, namely PyCharm and Atom, has
been used.

PyCharm

PyCharm is a Integrated Development Environment used for programming in Python.
It includes code-analysis tools, a debugger, unit testing, version control and also have
support for web development with Django.
It’s a cross-platform application and does provide a free version as well as a paid, pro
version.

Fig. 14: PyCharm Integrated Development Environment.

28

Chapter 5 IDSanity

Atom

Atom is a hackable and open-source editor made available through Github. It’s highly
customizable using for example CSS and Javascript.
Node.js is integrated so it’s really easy to create your own extensions or download pre-
existing ones.
The design and functionality mimic that of Sublime Text which has been a very popular
editor for many years now.

Fig. 15: Atom Editor.

5.3 Writing New Modules

This section will describe how other developers can create their own modules to use
with IDSanity. It will go through what is required and what’s optional in order to get the
module up and running.

Inherit The Base Module

IDSanity ships with a BaseModule all other modules need to inherit from in order to
work and get the necessary functionality.
In order for this to work we first need to import the BaseModule, as seen in line #1.
Then you create a class of your choice and inherit from the BaseModule you included
before.

1 from base_module import BaseModule
2
3 class SuricataModule(BaseModule):
4 """
5 SuricataModule detects running instances of Suricata and
6 parses rules.
7 """

Fig. 16: Creating a module: Inheritance.

29

Chapter 5 IDSanity

Hooking Into Events

The modules have no functionality if you don’t make them react to the events available
in IDSanity. For a full list of the Core Events available, check out subsection 5.6.4.
In order for this to work you need to setup an event hook. An example on how to accom-
plish this is shown in the code example below.

We first create a contructor by using the built-in function "__init__(self)". In this con-
structor we setup the event hook by specifying which events we want to react to and
which function that should be run when a specific event is dispatched.

On line #10 we tell IDSanity that when the event "on_node_create_self " is dispatched,
the method "detect_suricata()" should trigger.
"detect_suricata()" is a method we define later in the class.

1 from base_module import BaseModule
2
3 class SuricataModule(BaseModule):
4 """
5 SuricataModule detects running instances of Suricata and
6 parses rules.
7 """
8
9 def __init__(self):

10 self.events.hook("on_node_create_self", self , "detect_suricata")

Fig. 17: Creating a module: Event Hooking.

Creating The Method That Will Trigger

The last thing to do is to create the method that will run when the event is dispatched.
This is just a normal method as any other method in Python. This method obviously need
to be named exactly the same as in the event hook in "__init__(self)".

1 from base_module import BaseModule
2
3 class SuricataModule(BaseModule):
4 """
5 SuricataModule detects running instances of Suricata and
6 parses rules.
7 """
8
9 def __init__(self):

10 self.events.hook("on_node_create_self", self , "detect_suricata")
11
12 def detect_suricata(self):
13 """
14 Tries to detect if Suricata is running.
15
16 :return: True if detected , False otherwise
17 """
18 if os.path.isfile('suricata.yaml') or self.get_pid('suricata '):
19 return True
20 return False

Fig. 18: Creating a module: Event Hooking.

30

Chapter 5 IDSanity

Wrapping Up

As soon as the Module is done, you need to register the Module in IDSanity. The way ID-
Sanity works is that it will only load and activate modules that exists in the configuration
file, as shown in the figure below.

[configuration]
master = 1
port = 9595
modules =

SurricataModule

[postgresql]
host = localhost
database = idsanity
user = idsane
password = idsanity

Fig. 19: IDSanity: Configuration file.

In the modules section you specify which modules IDSanity should load. So as long
the module name is included in the configuration file and the module itself exists in the
modules folder, the module should now be loaded by IDSanity and react to the events
you have specified.
The complete source code of the Suricata module is listed on the next page.

31

Chapter 5 IDSanity

End-result: Suricata Module

1 from base_module import BaseModule
2 from idstools import rule
3 from subprocess import check_output , CalledProcessError
4 import os
5
6 class SuricataModule(BaseModule):
7 def __init__(self):
8 self.events.hook("on_node_create_self", self , "detect_suricata")
9 self.events.hook("on_rule_create", self , "parse_rule")

10 self.events.hook("on_rule_update", self , "parse_rule")
11
12 def detect_suricata(self):
13 """
14 Tries to detect if Suricata is running.
15
16 :return: True if detected , False otherwise
17 """
18 if os.path.isfile('suricata.yaml') or self.get_pid('suricata '):
19 return True
20 return False
21
22 def parse_rule(self , rule_dict):
23 """
24 Parse a rule object and update it.
25
26 :param rule_dict: Rule to verify
27 :return:
28 """
29 if rule_dict:
30 for key in list(rule_dict.keys ()):
31 if rule_dict[key] == []:
32 del rule_dict[key]
33
34 if "direction" in rule_dict:
35 if "<" in rule_dict["direction"] \
36 and ">" in rule_dict["direction"]:
37 rule_dict["direction"] = "BIDIRECTIONAL"
38 elif ">" in rule_dict["direction"]:
39 rule_dict["direction"] = "OUTBOUND"
40 elif "<" in rule_dict["direction"]:
41 rule_dict["direction"] = "INBOUND"
42
43 def validate_rule(self , raw_rule):
44 """
45 Validate rules by using the parse method from idstools.
46
47 :param raw_rule: Rule to parse (string)
48 :return: Parsed rule or False
49 """
50 parsed_rule = rule.parse(raw_rule)
51
52 if parsed_rule:
53 return parsed_rule
54 else:
55 return False
56
57 def get_pid(self , procname):
58 try:
59 return int(check_output (["pidof", procname]). strip ())
60 except CalledProcessError:
61 return False

Fig. 20: Source Code: Suricata Module.

32

Chapter 5 IDSanity

5.4 Master daemon

When the application initializes, it starts up as a Twisted plugin which parses the com-
mand line options and determines whether or not IDSanity is running in Master or Slave
mode, and then uses the appropriate Factory to set up either the Master (server) daemon,
or the Slave (client) daemon. The only difference between these are whether or not to
listen for - or attempt connecting to - a remote host.

class idsanity.idsanityd.Idsanityd
Bases: twisted.internet.protocol.Protocol
This is the IDSanity Master daemon, which listens for connections on the given
port, and sets up the ModuleLoader.
It dispatches the ON_INIT event when it’s done instantiating.
connectionMade()

This function is run as soon as a connection is made to the other end, and
begins the identification process by calling Communicator.shake_hands().
Dispatches the ON_CONNECT event

Todo Dispatch on_node_connect event

dataReceived(data)
Whenever data is received over the connection, this function is run and passes
the data to Communicator.receive().

5.5 Client daemon

class idsanity.idsanity.Idsanity
Bases: twisted.protocols.basic.LineReceiver
This is the IDSanity client (Slave), which establishes a connection to an endpoint
at the specified IP.
connectionMade()

Overriden hook that will be run as soon as a connection is made to the other
end of the line.
Triggers Communicator.shake_hands() to initiate the identification process.

dataReceived(data)
Overridden hook that will be run as soon as anything is received over the con-
nection. This data will be passed to Communicator.receive() where parsing
takes place.

end = ‘die’

33

Chapter 5 IDSanity

5.6 Events

Most of the IDSanity architecture is based around events, where core functions in the
program, such as the models, register events as soon as they’re loaded, and dispatch
them as things happen.

For example, when a new node object is inserted into the database, ON_NODE_CREATE
will be dispatched, which lets any function react to the event, and work with the object
that triggered it.

This could be a potential security issue if a malicious function hooked into an event,
however, if a hypothetical adversary has access to the source and permission to edit it, the
problem is on a much more serious level. As with most things Python, we’re all responsible
adults here.

5.6.1 The Events class

This is the class responsible for keeping everything glued together, by keeping track of
events and assigning them an integer values which are automatically incremented, simi-
lar to an enum in certain languages.

The Events class, like the ModuleLoader, uses the Singleton metaclass and instantiat-
ing it will always return the same instance - there can never be two or more instances of
the Events class to ensure the events it contains are consistent, and can be accessed from
anywhere after importing it and requesting an instance through Events(). This provides
access to registering events and hooks, and then dispatching events.

Registering events is done by calling Events().register(’my_cool_event’) any-
where after importing the class. When it comes to modules, it’s recommended that all
event registration is done in a dedicated method specifically named register_events,
as the ModuleLoader will attempt to run this as soon as it has loaded each module, and
events must be registered before they can be hooked into.

When an event is registered, it’s turned into a class constant of Events, and can be
accessed through Events().MY_COOL_EVENT directly, but most functions that take an
event as parameter also accept a string representation of its name.

Just like an enum in other languages, every new item is automatically assigned a
unique incrementing integer value, which makes it efficient for use as indices in lists,
and consequently it is also iterable; it’s possible to iterate through it and get a tuple of
the event name and its value in a for loop like so:

for (event_constant, value) Events():
print(event_constant, value)

After an event has been registered, it can be dispatched. If no hooks have been set up
for the event, nothing happens. But if hooks have been set up, anywhere in the program
after the event was registered, dispatching the event will cause it to execute the desired
function on the desired class.

The SayHi example module is a good example of this. When IDSanityd starts up, Id-
sanityd overrides Twisted’s connectionMade() callback which is called when a connec-
tion is received on the listening port. If we would put all the code in here for anything
we might want to do, now and in the future, when a connection is made ... well, we’d
end up with a lot of unorganized cluttered code in the main class.

Instead, we register an event in the constructor, like so: Events().register(’on_connect’)
Now inside the connectionMade function, we just call Events().dispatch(’on_connect’),

34

Chapter 5 IDSanity

or Events().dispatch(Events().ON_CONNECT) if you prefer, which will cause all func-
tions that have hooked into this event to be executed.

class idsanity.lib.events.Events
Bases: object
Contains constants for Event hooks - similar to an Enum but less
complex. self.append(‘MY_HOOK’) in an empty Events, will give

>>> self.MY_HOOK
1
>>>

action_map = {}
Keeps a list of functions to call for each event upon dispatch

counter = 0
Denotes the highest used index, and value, for event constants

dispatch(evt, parameter={})
Dispatches an event

Parameters

∙ event – Event to dispatch

∙ parameters – Parameters to send to event hook

event_value_pair(event)
Retrieves the actual value for an event

Parameters event – String or Integer representation of event
Returns tuple of event name and its const value, i.e (EVENT_NAME, 1)

exists(event)
Verifies that an event has been registered and exists

Parameters event – String representation of event name
Returns True if event exists, False if it doesn’t

hook(event, cls, method)
Hooks into an event

Parameters

∙ event – Event to hook into

∙ cls – Class to run method on

∙ method – Class method to run when event is dispatched

Returns True if successful, False if event could not be found

i = 1
Iterator indicating current position in list of events, used to iterate

instance = None
last_event = None

Keep track of the last dispatched event for testing and verification
next()

Gets the next element when iterating this object, and make sure it exists,
otherwise skip to the next one if it has been removed

Returns String representation of event name
register(new_event)

Register a new event
Parameters new_event – Name of event
Returns True on success, False if event already existed

reverse_map = {}

35

Chapter 5 IDSanity

Maps integer value to constant name to allow retrieving the event from its
value

unregister(event)
Removes an event, but does not decrement the maximum event const value

Parameters event – Event to remove
Returns The value of the removed event, or False if unknown event

36

Chapter 5 IDSanity

5.6.2 Hooking into Events

Hooking (or listening) is what we call a reaction to an event, because events are thrown
out as a “do something or dont I dont care”, like waving a flag, and a hook specifies that
when this ‘flag’ pops up, respond by running the specified function. Hooks are therefore
defined as Events().hook(’on_connect’, class, method) where class is an actual
class object, like self, and the method is represented as a string name.

The dispatch method also takes an optional extra argument, which can be a dict of
arguments or anything else you wish to receive in your function. This will be passed
to the method when the hook triggers. Most core Events pass the object the event was
triggered for as parameter, i.e ON_NODE_CREATE will pass the newly created Node object.
Exactly what is passed, and thus can and should be received, is documented in the Core
Events table.

5.6.3 Naming convention

Since hooks are responses to events, it’s common practice to name the events on_ some-
thing, and therefore all existing events are named hierarchically, with the scope follow-
ing the on_ keyword, such as on_cli for the command line interface, followed by the
resource they operate on and the action they perform. For example, an event for chang-
ing the nickname for a node in the command line interface is thus called
on_cli_node_set_nick, and to display information about a node we have the event
on_cli_node_print_info.

5.6.4 Core Events

Events that exist by default in IDSanity are listed here, together with when they are
dispatched and what argument needs to be passed along with them.

Event name Dispatched Parameter
ON_CLI_NODE_STATUS When all status info

about a node is
printed via the CLI

ON_CLI_NODE_STATUS_HOSTNAME When a user requests
to print the hostname
of a node via CLI

ON_CLI_NODE_STATUS_IPADDRESS When a user requests
to print the IP address
of a node via the CLI

ON_CLI_NODE_STATUS_NICKNAME When a user requests
printing the nickname
of a node via CLI
*Note: * Not imple-
mented yet

ON_CLI_NODE_STATUS_LAST_SEEN When a user re-
quests printing the
last_seen info for a
Node via the CLI

ON_CLI_NODE_STATUS_LAST_UPDATE When a user re-
quests printing the
last_update info for
a Node via the CLI

Continued on next page

37

Chapter 5 IDSanity

Table 1 – continued from previous page
Event name Dispatched Parameter
ON_CLI_NODE_SET_NICK When a user requests

setting a new nick-
name for a Node
*Note: * Not yet
implemented

ON_CLI_NODE_SET_KEY When a user sets the
pubkey for a Node via
the CLI

ON_CLI_NODE_ENABLE When a user enables
a Node that was pre-
viously disabled. En-
abling also enables the
IDS.

ON_CLI_NODE_DISABLE When a user disabled
a previously enabled
Node via the CLI

ON_CLI_NODE_BAN When a user bans a
node via the com-
mand line interface.
Banning a Node pre-
vents all communica-
tion with it.

ON_CLI_NODE_UNBAN When a user bans a
node via the com-
mand line interface.
Banning a Node pre-
vents all communica-
tion with it.

ON_CLI_RULE_ADD When a user adds a
new Rule through the
command line.

ON_CLI_RULE_ASSIGN When a user assigns
an already existing
Rule to a Node via
the command line
interface

ON_CLI_RULE_UNASSIGN When a user removes
an existing Rule from
a Node via the CLI

ON_CLI_RULE_SHOW When a user prints
information about a
Rule via the command
line interface

ON_CLI_RULE_UPDATE When a user updates a
rule via the command
line interface.

ON_CLI_RULE_DROP When a user removes
a Rule from all nodes
via the command line
interface.

Continued on next page

38

Chapter 5 IDSanity

Table 1 – continued from previous page
Event name Dispatched Parameter
ON_SOFTWARE_CREATE When a new Software

is created and added
to the database for the
first time.

Software() in-
stance

ON_SOFTWARE_UPDATE When a Software ob-
ject is changed and
saved to database.

Software() in-
stance

ON_SOFTWARE_DESTROY When a Software ob-
ject is deleted.

Software() in-
stance

ON_RULE_CREATE When a new Rule is
created and inserted
into the database.

Rule() instance

ON_RULE_UPDATE When an existing Rule
is updated and saved
to database.

Rule() instance

ON_RULE_DESTROY When an existing Rule
is deleted from the
database.

Rule() instance

ON_KEY_CREATE When a public key
is inserted into the
database.

Key() instance

ON_KEY_UPDATE When an existing pub-
lic key is updated and
saved to database

Key() instance

ON_KEY_DESTROY When an existing pub-
lic key is deleted from
the database.

Key() instance

ON_NODE_CREATE When a new Node
object is created and
inserted into the
database.

Node() instance

ON_NODE_CREATE_SELF When the Node rep-
resenting the current
system is created for
the first time and
saved to db

Node() instance

ON_NODE_UPDATE When a Node object is
modified and saved to
the database.

Node() instance

ON_NODE_DESTROY When a Node object is
deleted.

Node() instance

ON_NODE_CONNECT When a Node connects
to another Slave/Mas-
ter, or vice versa.

Node() instance
(the node that just
connected)

ON_NODE_DISCONNECT When a Node’s con-
nection to another
Node (whether master
or slave) is closed.

Node() instance
(the node that just
disconnected)

Continued on next page

39

Chapter 5 IDSanity

Table 1 – continued from previous page
Event name Dispatched Parameter
ON_NODE_BAN When a Node that was

previously unbanned
gets banned, i.e when
the Node.is_banned
changes.

Node() instance

ON_NODE_UNBAN When a Node that
was previously
banned gets un-
banned, i.e when
the Node.is_banned
changes.

Node() instance

ON_NODE_RULE_CREATE When a new associa-
tion between a Rule
and a Node is created.

NodeRule() in-
stance

ON_NODE_RULE_UPDATE When an existing as-
sociation between a
Rule and a Node is up-
dated.

NodeRule() in-
stance

ON_NODE_RULE_DESTROY When an existing
association between
a Node and Rule
is deleted from the
database. Note: This is
very rare, NodeRules
should not be deleted
but instead, disabled.

NodeRule() in-
stance

ON_OPERATING_SYSTEM_CREATE When a new Operat-
ingSystem is inserted
into the database.

OperatingSystem()

ON_OPERATING_SYSTEM_UPDATE When an Operat-
ingSystem is updated
and saved to database.

OperatingSystem()

ON_OPERATING_SYSTEM_DESTROY When an Operat-
ingSystem is removed
from the database.

OperatingSystem()

ON_CONNECT When the system’s
Node connects to
another Node (Mas-
ter/Slave)

None

ON_INIT When IDSanityd ini-
tializes.

None

ON_NODE_RULE_DISABLE When a NodeRule that
used to be enabled
becomes disabled in
the database, regard-
less of how. Note:
Use instead of the
ON_NODE_RULE_DESTROY
event.

NodeRule() in-
stance

Continued on next page

40

Chapter 5 IDSanity

Table 1 – continued from previous page
Event name Dispatched Parameter
ON_NODE_RULE_ENABLE When a NodeRule that

used to be disabled
has its enabled at-
tribute set to True

NodeRule() in-
stance

ON_NODE_SYNC_NOOP When a Synchroniza-
tion request triggered
no sync because
the Rule-set hashes
matched.

JSON message that
triggered no sync to
occur.

ON_NODE_SYNC_SEND When a synchroniza-
tion is sent from the
Master to a Slave. This
event only occurs on
the Master node.

JSON message that
will be sent to the
slave node for sync

ON_NODE_SYNC_RECEIVE When a Slave receives
a sync message from
the Master and begins
synchronization.

List of NodeRule()
objects that were
modified in sync

ON_NODE_SYNC_BACK When the Master re-
ceives unsync’ed data
from a slave after a
sync has occured.

JSON object with
the information re-
ceived from slave

ON_RULE_REQUEST_SID When a Slave is about
to send a message re-
serving Rule slots and
SIDs from the Master.

Number represent-
ing the amount of
SIDs to request.

ON_RULE_RECEIVE_SID When a Slave receives
new SIDs from the
Master.

JSON object with
list of received SIDs
from Master

ON_SYSTEM_MESSAGE_SEND Whenever any mes-
sage is sent from the
current Node to the
Node on the other
end.

JSON message to
send on the net-
work

ON_SYSTEM_MESSAGE_RECEIVE Whenever any mes-
sage is received by the
current node from the
other end of the line.

JSON received over
the network.

ON_SYSTEM_MESSAGE_ERROR Whenever an error
message is received
from the Node on the
other end of the line.

JSON message with
error message.

Table 1: Core Events.

41

Chapter 5 IDSanity

5.7 Internal Communication

Inter-node communication in IDSanity work in two ways, the API and the internal com-
munication - and generally, Nodes should not interact via the RESTful API as this is
mainly to be used for communication with other local processes, and mostly aimed at
writing alternative interfaces.

The internal communication is done over TLS and requires a protocol to follow.
That’s where this chapter comes in, to answer such questions as:

∙ What is sent, when?

∙ What responses are to be expected?

∙ What happens to the received information?

∙ How is this information safeguarded?

5.7.1 Message Structure

Messages are sent as JSON internally, making parsing simple. Each message contains the
resource the message is about, an action it wishes to perform, and a data field containing
the payload.

Each message also contains a ‘signature’. Signatures are created by signing the JSON
object (without the signature field) with the current nodes private key.

Each node makes sure to discard any message that does not contain a valid signature.
Example:

{
'action': 'update',
'resource': 'node',
'data':

{
'node':

{
'id': '9',
'unique_identifier': '124d-13dd-3r43-5fee',

}
},

'signature': 'wefe4r403m44f84cjc4f9kr42'
}

Fig. 21: IDSanity: Message Structure.

42

Chapter 5 IDSanity

5.7.2 Message Response Structure

Message responses are always the updated, created or deleted object, which lets the
client verify that the changes it requested occurred. The only exception is when an error
occurs, which can be verified by the client as the message is now a JSON formatted error
message.

Example:

{
'resource': 'error',
'action': 'failed',
'data':

{
'error':

{
'message': 'An error occurred'

}
},

'signature': 'ngruktpd32t5k35kf4l25'
}

Fig. 22: IDSanity: Message Response Structure.

5.7.3 Recurring communication

There are mainly two common types of messages occurring regularly between the master
and the slave: Updating the Rule list, and identifying one another.

Most other messages are responses to these.

Identification

A node, master or slave, may at any time ask for identification. Identification implies
that the node requesting it is not entirely sure about what node is on the other end, and
would like to know the information it requires to create (or update) a Node object in its
local database.

The response message contains all this information, as well as the public key required
to verify any subsequent signatures made by the node.

Request

{
'action': 'identify',
'resource': 'node',
'data': {},
'signature': 'qweqwod3r392fdmf4'

}

Fig. 23: IDSanity: Identification Request.

43

Chapter 5 IDSanity

Response

A node identifies by sending its host information, including public key and its unique
identifier as a response to an identification request.

{
'action': 'identification',
'resource': 'node',
'data':

{
'node':

{
'unique_identifier': '124d-13dd-3r43-5fee',
'public_key': 'PUBKEYHERE',
'hostname': 'Slave1',
....

}
},

'signature': '14e1djd1rjfjnd49rfes4'
}

Fig. 24: IDSanity: Identification Response.

At this point, if there is no node with this unique identifier in the database, the public_key
field will be used to verify the signature. If it matches, the master continues to add this
node to its database.

Note: Only when the database has no public key stored will it be inserted for the
node. An existing node cannot change public key without the administrator manually
removing the existing public key from the node in its database.

Synchronizing the rule list

Each node running in slave mode will periodically request to get an updated rule set. It
keeps track of the last time it received one, and requests it again every 30 minutes.

This is the most common type of message, and is very simple: It contains the node’s
unique identifier, a hash digest of its current enabled rule set, and looks like this:

{
'resource': 'node',
'action': 'sync',
'data':

{
'node':

{
'current_rule_hash': 'longhashhere'

}
},

'signature': 'qwe1j42342j2nr2f24oif'
}

Fig. 25: IDSanity: Sync Request.

If the current_rule_hash matches what the slave has in its database, it sends a response
with an empty data field. If it doesn’t match, the data field will contain all the rules that
have been changed.

44

Chapter 5 IDSanity

5.8 External Communication (API)

The RESTful API is how outside applications can communicate with IDSanity, which is
especially useful when writing GUIs or web interfaces. It’s entirely based on Flask and
Flask-Restful, and provides full access to the underlying database.

5.8.1 Route structure

The API follows default RESTful routing, like so:

Action HTTP Verb URL
Find by ID GET /resource/1
Find all GET /resources
Update PUT /resource/1
Create POST /resources
Delete DELETE /resource/1

Table 2: IDSanity: API Route Structure

More specific information about each route can be found in the documentation for
each individual view.

5.8.2 IDSanityApi module

This is the basis of the API, which sets up all routes and links them to the respective
views, and creates the Flask application. This class is instantiated by default if IDSanity
is running as a Master, and turned off by default if running as a slave.

The API can be forced on or off using the --api 1 or --api 0 option when starting
the idsanity daemon.
class idsanity.api.idsanity_api.IdsanityApi(import_name=’api’)

Bases: flask.app.Flask
The RESTful Webservices exposing functionality for building GUIs and web inter-
faces

idsanity.api.idsanity_api.add_cors_headers(response)

API views

Each view in the API subclasses the two base classes, one for single objects and one for
multiple objects.

By subclassing these and setting the class attributes model and serializer, standard
RESTful behaviour is provided to the resource.

The contents of the view is defined mainly by the given serializer, which handles
serialization and deserialization of JSON <-> Python objects.

Base view (Single object)

class idsanity.lib.api.views.single_base_view.SingleBaseView
Bases: flask_restful.Resource
Base view subclassed by all single resources. Should make all resources that refer-
ence a single model record “just work”
delete(id)

Deletes a single model record
Parameters id – id of the record to delete

get(id)
Get a single model

45

Chapter 5 IDSanity

Parameters id – id of the model to retrieve

methods = [’DELETE’, ‘GET’, ‘PUT’]
put(id)

Updates a single model record
Parameters id – id of the record to update

Base view (Many objects)

class idsanity.lib.api.views.many_base_view.ManyBaseView
Bases: flask_restful.Resource
Base view subclassed by all resources. Hopefully, this class should make all models
“just work”
get()

Get a list of every <model name>
methods = [’GET’, ‘POST’]
post()

Creates a new record of <model>

Key
The Key resource provides access to the Key model in the database, which contains

public keys belonging to the different nodes. This resource only allows GET and PUT by
default, as shown in the table below, since keys should not be created or deleted unless
done automatically by IDSanity.

Action HTTP Verb URL
Find Key by ID GET /api/key/1
Find all GET /api/keys
Update PUT /api/key/1

Table 3: IDSanity: API Key Routes.

class idsanity.lib.api.views.key_view.KeyView
Bases: idsanity.lib.api.views.single_base_view.SingleBaseView
methods = [’DELETE’, ‘GET’, ‘PUT’]
model

alias of Key
serializer

alias of KeySchema
class idsanity.lib.api.views.keys_view.KeysView

Bases: idsanity.lib.api.views.many_base_view.ManyBaseView
methods = [’GET’, ‘POST’]
model

alias of Key
serializer

alias of KeySchema

46

Chapter 5 IDSanity

Node
Every machine running IDSanity is considered a Node, and all information we need to

know about the system is contained in the Node object, like system information, and
relationships to which Software(s) it’s running, what Rule(s) it should have, and what
OperatingSystem it runs on.

Generally, a Slave node will only have two Nodes in its database: itself, and the Master,
since it only stores information about the Nodes it knows and a Slave only communicates
with the Master.

The Master on the other hand will have a record for each Node it communicates with.
Nodes cannot be created through the API, because this should happen automatically.

Action HTTP Verb URL
Find Node by ID GET /api/node/1
Find all Node GET /api/nodes
Update a Node PUT /api/node/1
Delete DELETE /api/node/1

Table 4: IDSanity: API Node Routes

class idsanity.lib.api.views.node_view.NodeView
Bases: idsanity.lib.api.views.single_base_view.SingleBaseView
methods = [’DELETE’, ‘GET’, ‘PUT’]
model

alias of Node
serializer

alias of NodeSchema
class idsanity.lib.api.views.nodes_view.NodesView

Bases: idsanity.lib.api.views.many_base_view.ManyBaseView
methods = [’GET’, ‘POST’]
model

alias of Node
serializer

alias of NodeSchema

47

Chapter 5 IDSanity

Rule
A Rule contains all columns needed by a Snort-like rule, in addition to the raw field

which contains the raw rule. All rules in the database are linked to the Node (s) they
have been added to with a NodeRule object.

Rules can be created, updated, deleted and retrieved through the API.

Action HTTP Verb URL
Find a Rule by ID GET /api/rule/1
Find all Rules GET /api/rules
Update a Rule PUT /api/rule/1
Create new Rule POST /api/rules
Delete a Rule DELETE /api/rule/1

Table 5: IDSanity: API Rule Routes.

class idsanity.lib.api.views.rule_view.RuleView
Bases: idsanity.lib.api.views.single_base_view.SingleBaseView
methods = [’DELETE’, ‘GET’, ‘PUT’]
model

alias of Rule
serializer

alias of RuleSchema
class idsanity.lib.api.views.rules_view.RulesView

Bases: idsanity.lib.api.views.many_base_view.ManyBaseView
methods = [’GET’, ‘POST’]
model

alias of Rule
serializer

alias of RuleSchema

48

Chapter 5 IDSanity

NodeRule
The NodeRule is what makes the association between a Node and a Rule, and should be
created as soon as a Rule is created to link it to the Node (s) it should run on.

NodeRule (s) cannot be deleted, but can be disabled. By disabling it, it will no longer
exist on the node until it’s enabled again.

Action HTTP Verb URL
Find NodeRule by ID GET /api/node-rules/1
Find all NodeRules GET /api/node-rule
Update a NodeRule PUT /api/node-rule/1
Create new NodeRule POST /api/node-rules

Table 6: IDSanity: API NodeRule Routes.

class idsanity.lib.api.views.node_rule_view.NodeRuleView
Bases: idsanity.lib.api.views.single_base_view.SingleBaseView
methods = [’DELETE’, ‘GET’, ‘PUT’]
model

alias of NodeRule
serializer

alias of NodeRuleSchema
class idsanity.lib.api.views.node_rules_view.NodeRulesView

Bases: idsanity.lib.api.views.many_base_view.ManyBaseView
methods = [’GET’, ‘POST’]
model

alias of NodeRule
serializer

alias of NodeRuleSchema

49

Chapter 5 IDSanity

OperatingSystem
An OperatingSystem contains information about an OS, mainly to keep track of simple
system information such as kernel version and OS family. As soon as a Node is created,
this information is also created or updated.

Action HTTP Verb URL
Find OperatingSystem GET /api/operating-system/1
Find all OperatingSystems GET /api/operating-systems
Update an OperatingSystem PUT /api/operating-system/1
Create new OperatingSystem POST /api/operating-systems
Delete an OperatingSystem DELETE /api/operating-system/1

Table 7: IDSanity: API OperatingSystem Routes.

class idsanity.lib.api.views.operating_system_view.OperatingSystemView
Bases: idsanity.lib.api.views.single_base_view.SingleBaseView
methods = [’DELETE’, ‘GET’, ‘PUT’]
model

alias of OperatingSystem
serializer

alias of OperatingSystemSchema
class idsanity.lib.api.views.operating_systems_view.OperatingSystemsView

Bases: idsanity.lib.api.views.many_base_view.ManyBaseView
methods = [’GET’, ‘POST’]
model

alias of OperatingSystem
serializer

alias of OperatingSystemSchema

50

Chapter 5 IDSanity

Software
The Software object contains information about individual IDPS / Firewall softwares

that exist in the network. These objects are created automatically by its respective module
- for example, the Suricata module will detect if Suricata is running on a Node, or if a
rule that was just added is actually a Suricata rule, and if the software (and the software
version) does not exist in the database, it will be created.

Each Rule belongs to a software, and each Node has (hopefully) at least one Software.

Action HTTP Verb URL
Find a Software by ID GET /api/software/1
Find all Softwares GET /api/softwares
Update a Software PUT /api/software/1
Create new Software POST /api/softwares
Delete a Software DELETE /api/software/1

Table 8: IDSanity: API Software Routes.

class idsanity.lib.api.views.software_view.SoftwareView
Bases: idsanity.lib.api.views.single_base_view.SingleBaseView
methods = [’DELETE’, ‘GET’, ‘PUT’]
model

alias of Software
serializer

alias of SoftwareSchema
class idsanity.lib.api.views.softwares_view.SoftwaresView

Bases: idsanity.lib.api.views.many_base_view.ManyBaseView
methods = [’GET’, ‘POST’]
model

alias of Software
serializer

alias of SoftwareSchema

51

Chapter 5 IDSanity

5.9 External Communication (CLI)

The CLI is how users (and scripts) can interact with the database in idsanity, since the
daemons run autonomously. Actions performed through the CLI will be noticed by the
daemons, and synchronized when a sync occurs.

IDSanity uses Twisted’s built-in module for Command Line Parsing. This means that
each command and its options are contained as a list in a class that subclasses usage.Options.

There are different types of lists providing different kinds of functionality, such as
subCommands which defines commands, and optFlags which provides --flag function-
ality.

IDSanity keeps each subcommand and its options, optflags and subcommands in sep-
arate files and directories, and all commands related to node or rule can be found in its
own directory under the lib/cli/arguments directory.

5.9.1 CLI Argument Events

The ArgumentEvents class is responsible for registering all events that will be dispatched
for the different arguments.

When an argument is passed to IDSanity CLI, all the options will be sent as an ar-
gument with the dispatched event, and any module can technically hook into this and
provide additional behaviour.

By default, IDSanity utilizes two command line event controllers to manage this. The
Event Controllers hook into the different events dispatched, and perform the requested
action.
class idsanity.lib.cli.argument_events.ArgumentEvents

Bases: object
Parses commands and arguments, and determines what action to take
arguments = {}
react()

Parse options and dispatch hooks. This must be done after all hooks have been
registered, otherwise no functions will be run!

register_events()

5.9.2 CLI Argument Hooks

ArgumentHooks creates the “root” of the argument tree by linking the idsanitycli com-
mand to its two subcommands, node and rule, from which all other actions branch out.

class idsanity.lib.cli.argument_hooks.ArgumentHooks
Bases: twisted.python.usage.Options
subCommands = [[’node’, None, <class ‘idsanity.lib.cli.arguments.node.node.NodeHooks’>, ‘Perform actions on a node’], [’rule’, None, <class ‘idsanity.lib.cli.arguments.rule.rule.RuleHooks’>, ‘Perform actions on a rule’]]

5.9.3 CLI Subcommands

The Commandline Interface is resource based, which means that each subcommand af-
fects a resource in one way or another, and is thus on action upon that resource. IDSanity
mainly manages two resources, Node and Rule, and everything else is to describe these
resources and their relationships.

As such, the two main subcommands on the command-line are node and rule.

52

Chapter 5 IDSanity

Resource Arguments: Node
Node command

class idsanity.lib.cli.arguments.node.node.NodeHooks
Bases: twisted.python.usage.Options
optFlags = [[’show’, None, ‘Shows all linked nodes and their IDs’], [’enable’, None, ‘Enables the ID(P)S or Firewall’], [’disable’, None, ‘Disables the ID(P)S or Firewall’], [’ban’, None, ‘Bans node from communicating with the master’], [’unban’, None, ‘Unbans node from communicating with the master’]]
parseArgs(argument)
subCommands = [[’status’, None, <class ‘idsanity.lib.cli.arguments.node.status.NodeStatusHooks’>, ‘Shows status for a node’], [’set’, None, <class ‘idsanity.lib.cli.arguments.node.set.NodeSetHooks’>, ‘Edit node information’], [’feed’, None, <class ‘idsanity.lib.cli.arguments.node.feed.NodeFeedHooks’>, ‘Adds a vendor rule feed to the node’]]

Node feed

class idsanity.lib.cli.arguments.node.feed.NodeFeedHooks
Bases: twisted.python.usage.Options
optFlags = [[’add’, None, ‘Adds a vendor rule feed to the node’], [’remove’, None, ‘Removes a vendor rule feed from the node’], [’show’, None, ‘Shows all vendor rule feeds on the node’]]
parseArgs(argument)

Node set custom settings

class idsanity.lib.cli.arguments.node.set.NodeSetHooks
Bases: twisted.python.usage.Options
optFlags = [[’nickname’, ‘n’, ‘Set the nickname for a node’], [’public-key’, ‘k’, ‘Set public key from path’]]
parseArgs(argument)

Node status

class idsanity.lib.cli.arguments.node.status.NodeStatusHooks
Bases: twisted.python.usage.Options
optFlags = [[’hostname’, ‘h’, “Shows a nodes’s hostname”], [’nickname’, ‘n’, ‘Shows the nickname for a node’], [’ipaddress’, ‘i’, “Shows a node’s last known IP address”], [’last-seen’, ‘s’, ‘Shows when a node was last seen’], [’last-update’, ‘u’, ‘Shows when a node was last updated’]]
parseArgs(argument)

Resource Arguments: Rule
Rule command

class idsanity.lib.cli.arguments.rule.rule.RuleHooks
Bases: twisted.python.usage.Options
parseArgs(argument)
subCommands = [[’show’, None, <class ‘idsanity.lib.cli.arguments.rule.show.RuleShowHooks’>, ‘Print rules’], [’add’, None, <class ‘idsanity.lib.cli.arguments.rule.add.RuleAddHooks’>, ‘Add a new rule’], [’assign’, None, <class ‘idsanity.lib.cli.arguments.rule.assign.RuleAssignHooks’>, ‘Assign a rule to a node’], [’unassign’, None, <class ‘idsanity.lib.cli.arguments.rule.unassign.RuleUnassignHooks’>, ‘Unassign a rule from a node’], [’update’, None, <class ‘idsanity.lib.cli.arguments.rule.update.RuleUpdateHooks’>, ‘Update an existing rule’], [’drop’, None, <class ‘idsanity.lib.cli.arguments.rule.drop.RuleDropHooks’>, ‘Remove an existing rule’]]

Add Rule

class idsanity.lib.cli.arguments.rule.add.RuleAddHooks
Bases: twisted.python.usage.Options
optParameters = [[’node’, ‘n’, 0, ‘Node to add the Rule to (0 means self)’], [’host’, ‘h’, ‘Amnesthesias-MacBook-Pro.local’, ‘Node to add Rule to by hostname’], [’software’, ‘s’, ‘Suricata’, ‘Which software is this rule for?’], [’version’, ‘v’, ‘2.9.3’, ‘Which version of the software?’]]
parseArgs(argument)

Assign rule

class idsanity.lib.cli.arguments.rule.assign.RuleAssignHooks
Bases: twisted.python.usage.Options
optFlags = [[’rule’, None, ‘Rule ID to assign to a node’]]
optParameters = [[’node’, 0, ‘Node to assign rule to’]]
parseArgs(argument)

Drop rule

class idsanity.lib.cli.arguments.rule.drop.RuleDropHooks
Bases: twisted.python.usage.Options
optFlags = [[’id’, None, ‘Rule ID to delete’]]

53

Chapter 5 IDSanity

parseArgs(argument)

Show rule

class idsanity.lib.cli.arguments.rule.show.RuleShowHooks
Bases: twisted.python.usage.Options
optFlags = [[’node’, None, ‘Show all rules for node’], [’all’, None, ‘Show all rules’], [’id’, None, ‘Show a specific rule’], [’ip’, None, ‘Show rules by IP-address or IP-range’], [’outgoing’, None, ‘Show outgoing rules’], [’incoming’, None, ‘Show incoming rules’]]
parseArgs(argument)

Unassign rule

class idsanity.lib.cli.arguments.rule.unassign.RuleUnassignHooks
Bases: twisted.python.usage.Options
optFlags = [[’rule’, None, ‘Rule ID to unassign from a node’]]
optParameters = [[’node’, ‘n’, 0, ‘Node to unassign rule from’]]
parseArgs(argument)

Update rule

class idsanity.lib.cli.arguments.rule.update.RuleUpdateHooks
Bases: twisted.python.usage.Options
optFlags = [[’id’, None, ‘Rule ID to update’]]
parseArgs(argument)

5.10 Controllers

Controllers make up the layer between what a user wants to do, and the resulting output
of the users desired action.

Thus, controllers are how IDSanity reacts to user specified events, and are used by
the command line interface after commands have been parsed, by dispatching one of the
CLI events which the appropriate controller hook into.

5.10.1 IDSanity CLI Controllers

The Command Line Interface consists of two major parts, the commands & event triggers,
and the event controllers.

Every event controller sets up hooks to the events dispatched by the commands it
operates on, and then perform the requested actions in the hooked method.

There are two different event controllers: NodeController and RuleController, one
for each resource.

Node Controller

class idsanity.lib.cli.controllers.node_controller.NodeController
Bases: object
Perform actions on a node by hooking into events dispatched by command line
arguments.
This is where all things related to a Node on the command line actually happens.
TERMINAL_DELIMITER = ‘ | ‘

Used to separate columns in text printed to the command line
TERMINAL_LINE = ‘================================’

Used to distinctively separate rows (headlines) on the command line
ban(id)

Blacklist a node from further communication with the master
Parameters id – Node ID

54

Chapter 5 IDSanity

Returns Bool
disable(id)

Disable the ID(P)S or Firewall software running on a Node’s host
Parameters id – Node ID
Returns Bool

enable(id)
Enable the ID(P)S or Firewall software running on a Node’s host

Parameters id – Node ID
Returns Bool

print_status(id=‘0’)
Print extensive information about a node’s current status, such as amount
of (active/inactive) rules, ip address, hostname, software, operating system,
nickname, ID, etc

Parameters id – Node ID
Returns True

print_status_hostname(id)
Display a Node’s hostname

Parameters id – Node ID
Returns the hostname

print_status_ip(id)
Display a Node’s ip address

Parameters id – Node ID
Returns the IP

print_status_nick(id)
Display a Node’s nickname

Parameters id – Node ID
Returns the nickname

print_status_seen(id)
Display a Node’s last seen date

Parameters id – Node ID
Returns Last seen date

print_status_updated(id)
Display a Node’s last update date

Parameters id – Node ID
Returns Last update date

register_hooks()
Register all Event hooks used by this controller

set_key(id)
Set the public key for a Node

Parameters id – Node ID
Returns True

set_nick(id)
Set the nickname on a Node

Parameters id – Node ID
Returns True

unban(id)
Remove Node from blacklist

Parameters id – Node ID
Returns Bool

55

Chapter 5 IDSanity

Rule Controller

class idsanity.controllers.cli.rule_controller.RuleController
Bases: object
Perform actions on a rule by hooking into events dispatched by command line
arguments.
This is where actions related to individual rules on the command line actually occur,
and output presented to user is generated.
TERMINAL_DELIMITER = ‘ | ‘

Used to separate columns on the command line
TERMINAL_LINE = ‘================================’

Used to separate headlines on the command line
add_rule(args)

Adds a new rule - if rule is an ID, it assigns an existing rule to a node; otherwise
a rule is created and assigned

Parameters args – Dict containing {“node_id”: id, “software”: software_name,
“version”: software_version, “raw”: The rule to add}

Returns The newly created Rule, or None
assign_rule(args)

Assigns a rule to a node
Parameters args – List containing {“rule_id”: id_of_rule, “node_id”: id_of_node}
Returns True or False

drop_rule(args)
Removes a rule by ID
Note: This will affect ALL nodes this rule is assigned to. Confirm this from
user.

Parameters args – Dictionary containing key ‘rule_id’
Returns True or False

register_hooks()
show_rules(args)

Show all rules for a node (or all nodes) If no valid id, hostname or unique
identifier is found, show all rules

Parameters args – dict with {“node_id”: id_hostname_unique_identifier }
Returns List of rules

unassign_rule(args)
UnAssigns a rule from a node

Parameters args – List containing {“rule_id”: id_of_rule, “node_id”: id_of_node}
Returns True or False

update_rule(args)
Updates an existing rule by replacing its’ content

Parameters args – List containing {“rule_id”: id, “raw”: new_rule}
Returns True or False

56

Chapter 5 IDSanity

5.11 Models

IDSanity uses SQLAlchemy’s ORM, which turns every row and its relationships in the
database into Python objects by mapping the tables and columns onto models.

When a model object is modified and saved in the code, the changes are reflected in
the database, which makes the database a whole lot easier to work with.

All models subclass the BaseModel which is provided by SQLAlchemy, and then also
subclass the ModelExtension mixin class which provides additional functionality to each
model, like .find(), .update() and .save() methods.

Furthermore, each model must also have a serializer if it will be accessible via the
RESTful API.

5.11.1 Model Mixin (providing extra functionality)

class idsanity.lib.models.model_extension.ModelExtension
Bases: object
Provides class methods for all models that don’t come with SQLAlchemy by de-
fault, and makes updating and finding models much much easier and much more
readable.
classmethod create(**arguments)

Creates a new object and commits it immediately. Do not use this in a loop,
instead, use create_many.

Parameters **arguments – All attribute=value required for the object
Returns The created object

classmethod create_many(arguments=[])
Creates multiple new objects of a given model and commits them. Use this to
create many instances of a model

Parameters arguments – List of arguments to create model objects from
Returns List of created objects

delete(commit=True)
Deletes an object

Parameters commit – Whether or not to commit the current session after-
wards

classmethod exists(**arguments)
Checks if an object exists

Parameters **arguments – Column=Value pair to find object on
Returns bool

classmethod find(record_id=None, **arguments)
Find a model by any argument (defaults to ID).

Parameters

∙ record_id – ID of object to find (optional)

∙ **arguments – attribute=value to find model by

Returns None or an instance of the requested model
classmethod id_in(ids=[])

Gets all models that match the criteria, using SQL “column IN (...)”
Parameters ids – All IDs to match
Returns All models with a column value matching one in the list

classmethod id_not_in(ids=[])
Gets all models that do NOT match the criteria, using SQL “column NOT IN
(...)” This is the inverse of id_in

Parameters arguments – All IDs to exclude
Returns All models with a column value matching one in the list

57

Chapter 5 IDSanity

save()
Saves the object immediately

update(**arguments)
Updates any model by setting the attributes as arguments, like Node.update(hostname=’CoolHost’)

Parameters **arguments – Dynamic arguments
Returns True or False depending on the success of the operation

classmethod where(**arguments)
Find a model by any arguments

Parameters **arguments – attribute=value to find models by
Returns All matching models

5.11.2 Key

class idsanity.lib.models.key.Key(**kwargs)
Bases: idsanity.lib.models.model_extension.ModelExtension , sqlalchemy.ext.declarative.api.Base
This is the class which holds public keys used by different nodes in the network.
It’s a simply class associated to the nodes.
date_added

Date the key was added to the database
id

The Key ID
key

The raw public key

58

Chapter 5 IDSanity

5.11.3 Node

class idsanity.lib.models.node.Node(**kwargs)
Bases: idsanity.lib.models.model_extension.ModelExtension , sqlalchemy.ext.declarative.api.Base
The Node contains all information about a system, whether Master or Slave. It’s
not clear from the database whether or not a Node is a Master or Slave as the only
difference is in the communication and responses between them.

The Node object is, together with the Rule object, the most important objects in ID-
Sanity, and all other objects exist to aid these. The Node contains host information
such as what supported softwares it runs, what operating system it runs on, and
system information such as hostname, last known IP, and the last time it was seen.

Every node, regardless of ID in the local database on either the slave or the master,
can be identified by its unique_identifier. The unique identifier is a SHA1 hash gen-
erated using a set of hardware based parameters, such as the CPU ID, CPU model,
vendor and brand, and the motherboard serial number for Windows and Linux.
This hash is then truncated to sixteen characters separated by a dash after every
fourth character, creating a unique identifier for each Node, which allows a Master
and Slave to uniquely identify each other in their respective local database, and
allows the system administrator to uniquely identify a Node even if two nodes, for
whatever reason, should end up having the same hostname (i.e in the case of a
rogue node attempting to impersonate an existing node on the network to retrieve
its set of rules from the master). This value is generated in the HostAnalyzer, and
the complete description of how it’s generated can be found in 5.12.7 HostAnalyzer

A Node can be banned from communication, or disabled (which should turn) off
IDS / Firewall functionality. Only the Master can push these changes to slaves, and
these attributes cannot be changed from the slave.

From the Node object, it’s possible to retrieve all Rules associated with the Node
(and the hash of all these together), and the public key used to verify its signatures.

Only messages sent with a valid signatures will be accepted, any other messages
will be ignored.

current_rule_hash
The hash of all rules that currently exist or should exist the Node

static find_or_create_self()
Looks up the Node for the current system in the database, or creates it if it
doesn’t exist

Todo Decide which IP is being used by using Communicator.transport

hash_current_rules()
Creates a hash from all enabled rules on the node

hostname
The hostname of the Node

id

59

Chapter 5 IDSanity

The ID and primary key of the Node in the local database
is_banned

Indicates whether or not this Node is banned from communication
key

Relationship pointing to an actual Key object
key_id

The ID and ForeignKey of the Key object representing the Nodes public key
last_change

Last time this Node was synchronized
last_ip

The last known IP this Node had, updated last time it connected
last_seen

Last time this Node connected or disconnected
node_rules

List of NodeRule objects associated with this Node
operating_system

Relationship pointing to an OperatingSystem object representing the Nodes
OS

operating_system_id
The ID and Foreign Key of the OperatingSystem this Node has

static refresh_system_info(ignored_param=’‘)
Refreshes system information, such as the IP, hostname, and date of last_seen
for the system node.
This method is run on startup

Parameters ignored_param – Discarded parameter, because all events must
take at least one parameter

Returns Node object

rules
Direct list of Rule objects (through nodes_rules) associated with the Node

softwares
List of Software objects associated with this Node - the softwares it runs

unique_identifier
A unique identifier based on hardware information to distinguish nodes

60

Chapter 5 IDSanity

5.11.4 NodeRule

class idsanity.lib.models.node_rule.NodeRule(**kwargs)
Bases: idsanity.lib.models.model_extension.ModelExtension , sqlalchemy.ext.declarative.api.Base
This is an object implementing Association pattern, as in a many-to-many rela-
tionship with additional columns in the relationship. In this case, date_added and
enabled.
NodeRule makes the association between Nodes and Rules, adding information
about whether a rule is enabled (and thus exists on file) on a Node, and when it
was added there.
NodeRules should not be deleted once they have been created, instead, they should
just be disabled as this effectively keeps the changes in the sync messages but causes
the change to be reflected on the filesystem.
date_added

The date it was first created
enabled

Whether or not this Rule is enabled on the Node
id

The ID and primary key of the NodeRule
node

Relationship pointing to the Node object it belongs to
node_id

A reference to the Node it belongs to
rule

Relationship pointing to the Rule object it belongs to
rule_id

A reference to the Rule it belongs to

61

Chapter 5 IDSanity

5.11.5 Rule

class idsanity.lib.models.rule.Rule(**kwargs)
Bases: idsanity.lib.models.model_extension.ModelExtension , sqlalchemy.ext.declarative.api.Base
A Rule is a single rule for any supported Firewall or Intrusion Detection System
that has been added to the database. Rules are added through one of three ways:

∙ By the user, manually (either via CLI or through the API)

∙ Automatically after a sync message was received from the Master

∙ Automatically after a sync-back message was received from a Slave

Modification of Rules trigger events like ON_RULE_CREATE, ON_RULE_UPDATE
and ON_RULE_DESTROY which any module can hook into, with the target Rule
passed as a parameter to functions that hook into them.
Modules for the supported IDS/Firewalls are responsible for dissecting a Rule and
populating the other fields - by default, only the date_added, and raw fields are
populated apart from the ID.
The Rule object represents a typical Snort-like rule, and OSSEC rules are stored just
as raw.
A hope for the future is that by dissecting rules, they can be reassembled for differ-
ent types of IDS’ and it will be possible to translate between different rule flavors.
action

Action to take if this Rule is triggered
classtype

Classtype for this rule
date_added

Date this rule was created
direction

The direction of this Rule, i.e OUTBOUND, INBOUND or BIDIRECTIONAL
flowbits

Flowbits, if any
static generate_sid()

Locates the highest SID currently in the database and returns the next free
SID

gid
Group ID

group
The group the Rule belongs to

id
ID and Primary Key of this Rule in the local database

message
Message contained within the Rule

meta
Metadata for the Rule

priority
Priority number

raw

62

Chapter 5 IDSanity

Raw representation of the rule as a string. This is what’s printed to file!
rev

Revision number (version of the Rule). When a Rule is updated, a new Rule
should be created with an incremented revision number.

static set_sid(m, c, target)
Sets the SID to the next free SID if no SID is defined already

sid
Numeric unique identifier - unique across all nodes in the network!

software
Relationship pointing to the Software object this Rule has identified as belong-
ing to.

software_id
ID and Foreign Key of the Software type this Rule is identified as

5.11.6 Software

class idsanity.lib.models.software.Software(**kwargs)
Bases: idsanity.lib.models.model_extension.ModelExtension , sqlalchemy.ext.declarative.api.Base
A Software is a Firewall or Intrusion Detection (+ Prevention) System such as
Suricata, Snort or OSSEC. Every Rule in the database should be associated with a
Software + version, and every Node should have at least one Software if the system
runs a software supported by IDSanity.
When a Node is created, each IDS Modules should attempt to detect if the Software
it provides support for exists on the machine, and if it does, create it in the database
if it doesnt already exist and associate with the Node.
Whenever a new Rule is added, these Modules should detect whether or not the
Rule is valid for that Software, and make an association between the Rule and the
Software objects.
It’s always possible to retrieve all Nodes or Rules associated with a Software in the
database.
id

ID and Primary Key of the Software object in the local database
name

Name of the Software, i.e ‘Suricata’
nodes

List of Node objects that has been associated with the Software
rules

List of Rule objects associated with this Software version
software_versions = UniqueConstraint()
version

Version of the Software (name + version combination is unique)

63

Chapter 5 IDSanity

5.11.7 OperatingSystem

class idsanity.lib.models.operating_system.OperatingSystem(**kwargs)
Bases: idsanity.lib.models.model_extension.ModelExtension , sqlalchemy.ext.declarative.api.Base
An OperatingSystem object is merely a representation of an operating system that
a node runs. It’s likely that most slaves will only contain two records, one for the
master and one for itself, since it won’t need to know about any others unless one
of them changes.
OperatingSystem objects only contain a family and an info column, and the com-
bination of these is unique.
family

The OS family, i.e ‘Linux2’ or ‘OS X’
id

ID and Primary Key of the OperatingSystem in the database
info

Additional information, such as kernel version, release, and so on

5.11.8 JSON Serializers

Serializers are responsible for turning models into JSON objects. Each serializer has a
serializer method that takes a model as an argument, and returns it as a JSON object.

If a serializer is instantiated with many=True, it can serializer a list of objects.
It’s the output of the serializers that are returned from the API, and each model that

should be accessible from the API should also have its own serializer.
Serializers subclass marshmallow.Schema, which is Marshmallow’s base serializer class,

and provides some basic serialization functionality.
More often than not, serializers contain the same fields as the model they serialize,

but can optionally customize these fields to create the desired output. In idsanity, rela-
tionships such as nodes for a Key object return a list of IDs instead of nested objects,
requiring a second query to retrieve the desired objects.

Key Serializer

class idsanity.lib.serializers.key.KeySchema(obj=None, extra=None,
only=None, ex-
clude=None, prefix=u’‘,
strict=False, many=False,
skip_missing=False, con-
text=None)

Bases: marshmallow.schema.Schema
make_object(data)
static serializer(instance)

64

Chapter 5 IDSanity

Node Serializer

class idsanity.lib.serializers.node.NodeSchema(obj=None, extra=None,
only=None, ex-
clude=None, prefix=u’‘,
strict=False, many=False,
skip_missing=False, con-
text=None)

Bases: marshmallow.schema.Schema
make_object(data)
static serializer(instance)

NodeRule Serializer

class idsanity.lib.serializers.node_rule.NodeRuleSchema(obj=None,
extra=None,
only=None,
exclude=None,
prefix=u’‘,
strict=False,
many=False,
skip_missing=False,
context=None)

Bases: marshmallow.schema.Schema
make_object(data)
static serializer(instance)

Rule Serializer

class idsanity.lib.serializers.rule.RuleSchema(obj=None, extra=None,
only=None, ex-
clude=None, prefix=u’‘,
strict=False, many=False,
skip_missing=False, con-
text=None)

Bases: marshmallow.schema.Schema
make_object(data)
static serializer(instance)

Software Serializer

class idsanity.lib.serializers.software.SoftwareSchema(obj=None,
extra=None,
only=None, ex-
clude=None,
prefix=u’‘,
strict=False,
many=False,
skip_missing=False,
context=None)

Bases: marshmallow.schema.Schema
make_object(data)
static serializer(instance)

65

Chapter 5 IDSanity

OperatingSystem Serializer

class idsanity.lib.serializers.operating_system.OperatingSystemSchema(obj=None,
ex-
tra=None,
only=None,
ex-
clude=None,
pre-
fix=u’‘,
strict=False,
many=False,
skip_missing=False,
con-
text=None)

Bases: marshmallow.schema.Schema
make_object(data)
static serializer(instance)

5.12 Library

The lib folder contains internal classes for IDSanity, used for managing communication
between master and slave, connection to the database, event management, the command
line interface and API, and everything else that is managed internally.

The lib/core directory contain most of the core files that aren’t exposed to the out-
side other than through the CLI or API, whereas the lib/models directory contains all
models that allow for interacting with the database through the ORM layer.

Two factories are to be found in the core directory as well, and these factories are
responsible for accepting settings and then loading the appropriate daemon class to in-
stantiate - there’s one factory for each mode IDSanity can run in, thus, there’s one for
slave, and one for master.

Each factory also dispatches events, such as the common ON_INIT, but depending on
the mode IDSanity is running in, additional mode-specific events may also be dispatched
by the factories. The important thing to note is that a factory does nothing but set up
everything required for the daemon to begin operating.

5.12.1 Singleton Metaclass

class idsanity.lib.core.singleton_metaclass.Singleton(name, bases, dict)
Bases: type
This is a metaclass that allows the module loader and events class to follow the
singleton pattern - that is, only ever create one instance, and always return the
same instance if it’s instantiated, since there should never be a need for multiple
module loaders, and a module loader should be accessed without reinstantiation.
The same thing applies for the Events class, where multiple instances would lead
to some events not being accessible from the same object as the others.

66

Chapter 5 IDSanity

5.12.2 Factory (master)

class idsanity.lib.core.factory.IdsanityMasterFactory(settings)
Bases: twisted.internet.protocol.Factory
This factory sets up everything required to initialized the app, and is called by the
service maker to daemonize IDSanity.
It’s responsible for loading the module loader and thus make sure all modules are
loaded, and use the settings passed to it to set up the database, and create a Node
object for the current system if one doesn’t already exist.
Events such as ON_CONNECT, ON_INIT and ON_NODE_CREATE_SELF must be regis-
tered here to ensure they can be dispatched when they occur.
protocol

alias of IdsanityMaster

5.12.3 Factory (slave)

class idsanity.lib.core.factory_slave.IdsanitySlaveFactory
Bases: twisted.internet.protocol.ClientFactory
This is the factory that sets up IDSanity in slave mode. It essentially does the same
thing as the master factory, except instead of listening for connections, it connects
to the specified IP and port.

It’s initialized by the service maker when the client is daemonized after starting up,
and spawns an instance of the IDSanity client daemon.
It’s responsible for loading the module loader and thus make sure all modules are
loaded, and use the settings passed to it to set up the database, and create a Node
object for the current system if one doesn’t already exist.
Events such as ON_CONNECT, ON_INIT and ON_NODE_CREATE_SELF must be regis-
tered here to ensure they can be dispatched when they occur.
clientConnectionFailed(connector, reason)
clientConnectionLost(connector, reason)
protocol

alias of IdsanitySlave

67

Chapter 5 IDSanity

5.12.4 Communicator

class idsanity.lib.core.communicator.Communicator
Bases: object
Manages all communication between master/slave, by filtering all messages sent
and received through its static methods.
This is where encryption and decryption on messages sent and received internally
by IDSanity should be managed, as well as signature creation and verification.
The following events are registered here:

∙ ON_NODE_RULE_DISABLE

∙ ON_NODE_RULE_ENABLE

∙ ON_NODE_SYNC_NOOP

∙ ON_NODE_SYNC_SEND

∙ ON_NODE_SYNC_RECEIVE

∙ ON_NODE_SYNC_BACK

∙ ON_NODE_UPDATE

∙ ON_RULE_REQUEST_SID

∙ ON_RULE_RECEIVE_SID

∙ ON_SYSTEM_MESSAGE_RECEIVE

∙ ON_SYSTEM_MESSAGE_SEND

∙ ON_SYSTEM_MESSAGE_ERROR

∙ RULE_SID_REQUEST

last_sent = ‘’
static receive(msg, transport=None)

Parses a received message (i.e decrypts it) and returns the results.
This function automatically calls Communicator._parse on the message.
This function can, if a transport is provided, reply via .send()

Parameters

∙ msg – The received message

∙ transport – Optional transport to write reply to

Returns Parsed message as dict

static request_sids(amount=0)
This triggers a slave to immediately send a request for a certain number of
SIDs from the master.
Once it receives SIDs, it should update rules in the database that do not have
a SID assigned.

Params amount Amount of SIDs to request from master

static send(msg, transport=None)
Sends a message to the other end of the connection.
If a twisted transport is provided, it will write directly to the transport, other-
wise it returns the prepared message.

Parameters

68

Chapter 5 IDSanity

∙ msg – Message to send

∙ transport – Optional transport

static shake_hands()
Begin handshake by sending an ‘identify’ message to the other end of the line.
The node at the other end will receive this message, parse it, and create an
‘identification’ message as a response.
This message will be parsed, and the node will be added (or updated) in the
database.

static slave_request_sync()
Called from the slaves end to begin synchronization, by creating a ‘verify’
message containing the current rule hash, and sending it to the Master.
When the Master receives it, it will check if the hash matches, and either reply
with a node sync_noop message, or a node sync message containing all the
rules to be synchronized.
This function should be called every X minutes from the slave.

5.12.5 ModuleLoader

class idsanity.lib.core.module_loader.ModuleLoader(names=[])
Bases: object
Loads all modules dropped into the modules/ folder, using baseclass BaseModule.
These are stored in modules, which is effectively static.
Can be accessed anywhere by ModuleLoader.modules
MODULE_PATH = ‘../../modules/’

The path where modules to be imported are located. This should be made
crossplatform by implementing an absolute path

instance = None
load_modules()

Loads all modules and assigns them to indexes in ModuleLoader.plugins
Return list All loaded modules

plugins = []
Contains instances of each module

whitelist = []
List of which modules to load. These are retrieved from the config file.

69

Chapter 5 IDSanity

5.12.6 HostAnalyzer

class idsanity.lib.core.host_analyzer.HostAnalyzer
Bases: object
Gathers information about the system, to be used when creating a Node for it
static directory_exists(*args)

Check if dir(s) exists on the host
Parameters *args – Path to dir(s) as one or more string arguments
Returns List of existing directories or False

static file_exists(*args)
Check if file(s) exists on the host

Parameters *args – Path to file(s) as one or more string arguments
Returns List of existing files or False

generate_key(bits=4096)
Generates a key pair for the Node

Returns private key, public key

generate_uuid()
Generate a UUID based on BIOS and hardware information for the system.
This unique identifier will be used to identify a host uniquely.
The UUID is a SHA1 hash of:

∙ CPU Family number

∙ CPU Model number

∙ CPU brand as a string

∙ CPU vendor as a string

∙ Motherboard / Chassis serial number

The hash is truncated to 16 characters, and separated by dashes after every
4th letter.
Example: 8915-4f39-1aa1-1250

Returns String representation of a unique ID
get_dmi()

Retrieves DMI information for the system and returns it. This should work on
OS X, Windows and Linux.

Todo Make this crossplatform by adding a proper call to dmidecode.exe
Returns DMI contents as string

get_hostname()
Retrieves the hostname

Todo Make cross-platform!
get_ip()

Retrieves the current IP address(es) for each interface
Returns Dict with IP-address(es) of each NIC on the host

get_key()
Checks for a key pair in the conf directory, and returns the public key.
If no key exists, calls self.generate_key()

Returns The public key for this system as a string
get_os_architecture()

Find out whether the system is x86 or x86_64
Returns Architecture as str (x86 or x86_64)

get_os_family()
Detect the OS family (Linux, Mac, Windows)

70

Chapter 5 IDSanity

Returns OS Family as str
get_os_info()

Get all information about the OS in a dict
Note Does NOT return private key!
Returns dictionary self.info with OS information

get_os_kernel()
Get the current kernel of the host system as a string

Returns str representation of kernel
get_os_version()

Get the current operating system platform version
Returns OS version in str form

get_unique_identifier()
Generates a unique ID based on system information

Returns ID for this system
static process_exists(*args)

Check if a process is running with a name like any of the arguments
Parameters *args – Process name(s) as one or more string arguments
Returns List of processes and PIDs, or False

5.13 Modules (plugins)

Modules for IDSanity all subclass BaseModule, which should provide some basic func-
tionality for modules.

As of now, it only provides the class variable events, providing access to register, hook
into and dispatch events.

Modules may have a method called register_events, and if it does, it will be exe-
cuted as soon as the module is loaded when IDSanity starts up to ensure that events are
registered before they can be dispatched.

If a module has any new events to register, they should be registered in register_events.
Writing new modules is easy - simply subclass BaseModule and hook the desired

methods into the events you’d like it to listen for.

5.13.1 IDS Modules

A typical usecase is adding new ID(P)S softwares to IDSanity, since all supported soft-
wares are represented by a module.

Software/IDS modules are required to provide a detect method, and a parse method.

Detecting software

The detect method must hook into ON_DETECT and take a an instance of Node as an
argument. It should then perform necessary checks on the system, to determine if the
software it should detect exists.

lib.host_analyzer.HostAnalyzer provides some useful methods for this, namely
HostAnalyzer.file_exists(), HostAnalyzer.directory_exists() and HostAnalyzer.process_exists()
which all take one or multiple strings as arguments and returns what it finds or False if
it finds nothing.

If the software exists on the system, it must try to locate it in the database, or create
it if it doesn’t exist, and append the software to the Node’s list of softwares.

Parsing & Validating rules

Each IDS module must also be able to parse and validate rules for the software its meant
for.

71

Chapter 5 IDSanity

The Rule-parsing method must hook into both ON_RULE_CREATE and ON_RULE_UPDATE
and take a Rule object as an argument. If the Rule is a valid Rule for the software, it
should assign any fields except for raw on the Rule, and set the software attribute of the
Rule to the right software.

The Rule-validation method must take a raw string as argument, and return False if
the Rule is not a valid rule for the software, or the parsed Rule if it is.

BaseModule

class idsanity.modules.base_module.BaseModule
Bases: object
Base Module to build all other modules on, to create a module, create a file of the
same name and subclass BaseModule.
any_method()
events = <lib.events.Events object>

A reference to the Events instance to be accessed by any submodules
static register_events()

Events that need to be registered should be registered in the register_events
method, so override this method and call self.events.register(’your_event_name’)
in this function.

SayHello (example module)

class idsanity.modules.say_hello.SayHello
Bases: idsanity.modules.base_module.BaseModule
Sample module that only prints “HELLO” when a connection is made
hello(parameters)

ModSecurity

class idsanity.modules.modsecurity_module.ModSecurityModule
SurricataModule detects running instances of mod_security and parses rules.
detect_modsecurity()

Detect if mod_security is enabled and running on the node.
Returns True if detected, False otherwise

parse_rule()
Parse mod_security rule and returned the parsed rule.

Parameters rule_dict – Rule to verify
Returns None or dict with parsed rule

validate_rule(r)
Validates a mod_security rule to see if it’s valid.

Parameters r – Rule string to parse (string)
Returns False or parsed rule

72

Chapter 5 IDSanity

Snort

class idsanity.modules.snort_module.SnortModule
Bases: idsanity.modules.base_module.BaseModule
SnortModule manages detection of running Snort instances on the machine and
parsing of Snort rules.
Hooks into ON_RULE_CREATE and ON_RULE_UPDATE to parse and update rule
with dissected fields.
detect()

Attempts to find out if Snort is installed on this machine by first checking
running processes, and then falling back to looking for common files

dissect_rule(r)
Parse a rule and update it with dissected fields

Parameters r – Rule object to verify as Snort rule
validate_rule(raw)

Validates a rule by attempting to parse it. If it comes out as None, it’s invalid
and False is returned.

Parameters r – Rule string to parse
Returns False or parsed rule

Suricata

class idsanity.modules.suricata_module.SuricataModule
Bases: idsanity.modules.base_module.BaseModule
SuricataModule detects running instances of Suricata and parses rules.
detect_suricata()

Tries to detect if Suricata is running.
Returns True if detected, False otherwise

get_pid(procname)
parse_rule(rule_dict)

Parse a rule object and update it.
Parameters rule_dict – Rule to verify
Returns

validate_rule(raw_rule)
Validate rules by using the parse method from idstools.

Parameters raw_rule – Rule to parse (string)
Returns Parsed rule or False

73

Chapter 6 IDSanity

6 Testing

Tests are written using a combination of Twisted’s extension of python’s built-in unit tests,
called twisted.Trial, and the python testing framework py.test. Each folder, such as the lib
and models, have a subdirectory dedicated for tests aptly named ’tests’. All tests in these
folder begin with the name test_ followed by what they test, test_connection.py which
tests the connection to a master daemon.

There are often some files in these directories that do not begin with the test prefix,
and these are base classes which provide functionality for the other tests which subclass
these. For example, the base class for database tests ensure a database is set up for test-
ing and that changes can be rolled back after the tests are performed.

Each function test a specific functionality and provide appropriate error messages
should a test fail. To execute tests, the PYTHONPATH environment variable must include
the root directory of IDSanity, and for Unix based systems with a shell, there’s a shell-
script called run-tests.sh in the root directory of IDSanity that ensures this is done
before executing the tests.

6.1 Model Tests
Database Test base class

class idsanity.lib.models.test.database_test_case.DatabaseTestCase(methodName=’runTest’)
Bases: twisted.trial._asynctest.TestCase
A base test case for tests connecting to the database. Provides access to session vari-
able and makes sure any changes made are rolled back after the test is complete.
setUp()
tearDown()

74

Chapter 6 IDSanity

Key Test Case

class idsanity.lib.models.test.test_key.KeyTestCase(methodName=’runTest’)
Bases: idsanity.lib.models.test.database_test_case.DatabaseTestCase
test_create_event()

Ensure the CREATE event has been dispatched for this resource
test_destroy_event()

Ensure the DESTROY event gets dispatched for this resource
test_save()

Makes sure saving the object works
test_update_event()

Ensure the UPDATE event gets dispatched for this resource

Node Test Case

class idsanity.lib.models.test.test_node.NodeTestCase(methodName=’runTest’)
Bases: idsanity.lib.models.test.database_test_case.DatabaseTestCase
node_rule_event()

Ensure the CREATE event has been dispatched for this resource
test_create_event()

Ensure the CREATE event has been dispatched for this resource
test_destroy_event()

Ensure the DESTROY event gets dispatched for this resource
test_node_key_relationship()

Ensure that a relationship exists in the database between Node and Key after
being created on the model.

test_node_rule_relationship()
Ensure that a relationship between a Node and a Rule exists in the form of a
NodeRule object and that it can be found in the database after creating a new
Rule for the node.

test_save()
Ensure that saving a model after modifying its attributes actually updates the
information in the database.

test_update_event()
Ensure the UPDATE event gets dispatched for this resource

75

Chapter 6 IDSanity

Operating System Test Case

class idsanity.lib.models.test.test_operating_system.OperatingSystemTestCase(methodName=’runTest’)
Bases: idsanity.lib.models.test.database_test_case.DatabaseTestCase
test_create_event()

Ensure the CREATE event has been dispatched for this resource
test_destroy_event()

Ensure the DESTROY event gets dispatched for this resource
test_save()

Makes sure saving the object works
test_update_event()

Ensure the UPDATE event gets dispatched for this resource

Rule Test Case

class idsanity.lib.models.test.test_rule.RuleTestCase(methodName=’runTest’)
Bases: idsanity.lib.models.test.database_test_case.DatabaseTestCase
test_create_event()

Ensure the CREATE event has been dispatched for this resource
test_destroy_event()

Ensure the DESTROY event gets dispatched for this resource
test_save()

Makes sure saving the object works
test_update_event()

Ensure the UPDATE event gets dispatched for this resource

Software Test Case

class idsanity.lib.models.test.test_software.SoftwareTestCase(methodName=’runTest’)
Bases: idsanity.lib.models.test.database_test_case.DatabaseTestCase
test_create_event()

Ensure the CREATE event has been dispatched for this resource
test_destroy_event()

Ensure the DESTROY event gets dispatched for this resource
test_save()

Makes sure saving the object works
test_update_event()

Ensure the UPDATE event gets dispatched for this resource

76

Chapter 6 IDSanity

6.2 IDSanity Library Tests
Base class for tests that require a connection

This is the base class for all tests that require communication between master and slave.
It does this by setting up a “mock” client that communicates with the other end, and
allows sending and receiving messages.

All tests that require a connection should subclass this and use the functions it pro-
vides.
class idsanity.lib.core.test.connection_test_case.ConnectionTestCase(methodName=’runTest’)

Bases: twisted.trial._asynctest.TestCase
Test the server functionality.
setUp()

Reads database configuration from the settings.test.conf file with con-
nection parameters to the test database, and provides functions to send and
receive messages.
This function will be run automatically when the class is instantiated.

Communicator Test Case

class idsanity.lib.test.test_communicator.CommunicatorTestCase(methodName=’runTest’)
Bases: lib.test.connection_test_case.ConnectionTestCase
Test the communication between Master and Slave
test_node_update()

Tests so that sending a message to update a Node’s metadata actually updates
it in the database. The message is signed and the signature will be verified
before applying the update.
Should also test so that an invalid signature causes no change.

test_receive()
Test so that messages can be received, parsed and reacted to by the Master

test_send()
Test so that messages can be sent

test_sign_message()
Ensures a signature is added to a message after calling Communicator._sign_message()
with a dict parameter

test_verify_signature()
Ensure a signature can be verified using its public key from the database

77

Chapter 6 IDSanity

Communicator Test Case
Connection Test Case

class idsanity.lib.core.test.test_connection.ConnectTestCase(methodName=’runTest’)
Bases: idsanity.lib.core.test.connection_test_case.ConnectionTestCase
test_connected()

Ensure that a connection is possible
test_event_dispatched()

Ensure that the Events().last_event is set after a message was sent, and that
the ON_SYSTEM_MESSAGE_SENT was dispatched.

Events Test Case

class idsanity.lib.core.test.test_events.EventsTestCase(methodName=’runTest’)
Bases: twisted.trial._asynctest.TestCase
Test the functionality of the Events class
setUp()

Set up the Events class for use in all test functions
test_dispatch()

Test that a hook is properly dispatched when dispatch is run on that event.
test_event_value_pair()

Make sure a proper event value pair is returned from Events().event_value_pair(‘event_name’)
test_exists()

Make sure the existence of an event can be reliably checked with the exists
method

test_hook()
Test that an event hook is properly registered after .hook and thus able to be
dispatched.

test_next()
Ensure the Events() class is iterable

test_register()
Make sure registering an event works and the event exists in the event dictio-
nary

test_unregister()
Make sure unregistering an event works and it’s properly removed after it has
been unregistered

test_unregister_unknown_event()
Make sure unregistration of an event that has not been registered fails grace-
fully

verify_dispatch(args)
Method that will be run when test_dispatch() dispatches the event, used to
verify that hooking into events actually works

78

Chapter 6 IDSanity

HostAnalyzer Test Case

class idsanity.lib.core.test.test_host_analyzer.HostAnalyzerTestCase(methodName=’runTest’)
Bases: twisted.trial._asynctest.TestCase
Test the functionality of the Host Analyzer
setUp()
test_hostname()

Test that a valid hostname is returned
test_ip()

Test that valid IPv4 or IPv6 addresses are returned for each interface
test_os_architecture()

Test that valid system architecture information is returned
test_os_family()

Test that valid OS family information is returned
test_os_hostname()

Test that the hostname is identical to the current machine’s hostname
test_os_info()

Test that valid operating system information is returned
test_os_kernel()

Test that valid kernel information is returned
test_os_version()

Test that valid OS version / release information is returned
test_unique_identifier()

Test generation of unique identifier and that it is returned in the correct for-
mat.

ModuleLoader Test Case

class idsanity.lib.core.test.test_module_loader.ModuleLoaderTestCase(methodName=’runTest’)
Bases: twisted.trial._asynctest.TestCase
Test the functionality of the Module Loader
setUp()
test_load_modules()

Test plugins are loaded properly
test_load_modules_instances()

Make sure module loader has a list of module instances
test_load_modules_whitelist()

Test whether modules are properly white-listed in configuration

79

Chapter 7 IDSanity

7 Conclusion

7.1 Missing Functionality

As said previous in this report, IDSanity is meant to be a prototype and not a fully func-
tional application ready for a production environment.
Because of this there are some functionality that is missing or not yet completed. This
section will describe the missing funtionality in IDSanity.

Enable/Disable Node

During the planing phase we discussed the pos.sibilities of adding a way of enabling
and disabling a running node. This was never fully implemented but should be easy to
implement in the future if this functionality is needed by the system administrators.

Ban/Unban Node

This was never implemented due to the time frame and the fact that other, more impor-
tant, features of IDSanity was prioritized.

Rule Feeds

We discusses the possibility of adding a way to subscribe to rules feeds from third-party
vendors, but never implemented this feature. Rules feeds are basically just plain-text
available on the internet, so this is also something that should be fairly simple to imple-
ment in the future if needed.

Node Nickname

As of now each node gets a unique ID generated by creating a hash of hardware IDs etc.
This isn’t the best way to distinguish between running nodes, but sadly nicknames was
never implemented in IDSanity.

LDAP

This is probably the most missed functionality as of today. LDAP was also a part of the
design specification, but as the project grew in complexity, LDAP was pushed further and
further away from the actual implementation plan of IDSanity. Python however has great
support for LDAP, so this should not be a problem to implement in the future if needed.

Database

Even though the database is up and running and some information is saved into the
database, full rule sets are not yet saved.
Rule sets are dissected and parsed and is ready to be inserted into the database, but this
functionality was never finished.

BaseModule

Modules that inherit from BaseModule does not get as much functionality as it should.

80

Chapter 7 IDSanity

7.2 Discussion

This last section is a discussion on a personal level on our thoughts about the project and
what we have learned.
The combination of a new programming language and the amount of technologies we
weren’t familiar with, turned out to be a bigger challenge than our initial thoughts. We
succeeded and we failed on a weekly basis. We underestimated and overestimated. We
learned, forgot, and then rapidly learned again when the same mistakes hit us right back
in the face. And now, at the very end of a long, but interesting project, we’re left standing
with some mixed feelings.

The Good: We, all three members of the group, has learned extreme amounts of new
information and skills throughout this project. A whole new programming language
is now in our repertoire, and we can use and manage applications and systems
which are some of the most relevant programs for our future careers in information
security.
One of our highest rated threats in the weighted threat analysis we performed
was the possibility that the project would be too difficult. Even though there was
some truth to this, we managed to get get through the project without too big of
problems, and did not have to change to a different project.

The Bad: This was the biggest project we’ve had so far in our lives, in such a small time
frame. We dramatically underestimated exactly how much work that had to be
done to transform this project from the basic idea, to a working system. However,
it’s not all bad. Even though we didn’t manage to implement all the desired func-
tionality our employer and our imagination came up with in the beginning, we did
manage to create a working prototype of the framework. And just by accomplishing
that, we are all quite satisfied.

The Ugly: We learned about some minor character flaws in ourself that only such a big
group project could get out. However, by being able to work though those flaws
we where able to grow and emerge even stronger. One of the biggest mistakes we
did was in the beginning of the project was that we did not test our theories before
deciding to go for them, so ideas that looked good on paper, did not automatically
work as well in reality. This was a result of lack of knowledge of all parts of the
project, and how they worked and interacted with each other.

Throughout the entire project, we discussed and reflected about every wall we hit, and
always came up with solutions. Some of the solutions worked, some did not. But no mat-
ter what, we learned how to handle difficult situation in an environment where every
member is dependent on each other. We went in motivated, and came out on the other
side even more so.
All in all we learned something from every aspect of this project, and we will cherish our
newly toned skills for the years to come.

81

Chapter IDSanity

Bibliography

[1] Sikkerhetsråd, N. March 2014. Mørketallsundersøkelsen. http:
//www.nsr-org.no/getfile.php/Dokumenter/NSR%20publikasjoner/M%C3%
B8rketallsunders%C3%B8kelsen/M%C3%B8rketall_2014.pdf.

[2] NIST. February 2007. Guide to intrusion detection and prevention systems. http:
//csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf.

[3] Infotech, R. 2015. Intrusion detection & prevention system. http://www.
rubikinfotech.com/wp-content/uploads/2014/09/intrustion.jpg.

[4] Institute, I. 2013. Network design firewall ids/ips. http://
2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/
uploads/040813_1643_NetworkDesi2.jpg.

[5] McAfee. March 2003. Deciphering detection techniques: Part ii anomaly-based in-
trusion detection. http://www.mcafee.com/japan/products/pdf/Deciphering_
Detection_Techniques-Anomaly-Based_Detection_WP_en.pdf.

[6] Micro, T. 2015. Ossec how it works. http://www.ossec.net/?page_id=169.
[7] Micro, T. 2015. Ossec features. http://www.ossec.net/?page_id=165.
[8] Micro, T. 2015. Ossec architecture example. http://www.ossec.net/

wp-content/uploads/2012/04/ossec-arch2-1024x586.jpg.
[9] Cid, D. B. 2007. Ossec log analysis. http://www.ossec.net/files/

auscert-2007-dcid.pdf".
[10] Trustwave Holdings, I. May 2015. Modsecurity reference manual.

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#
Introduction.

[11] VPS, S. 2014. How to install & configure mod_security on cpanel/whm vps. https:
//www.solvps.com/blog/how-to-install-mod-security-cpanel-vps/".

[12] Aanval. 2008. Aanval live event correlation. https://www.aanval.com/images/
screenshots/7.0/15.png.

[13] Chaos, D. 2013. Snorby listing sessions. http://www.drchaos.com/wp-content/
uploads/2013/11/Snorby-Event-Screen.png.

[14] DB-Engines. May 2015. Trend of postgresql popularity. http://db-engines.com/
en/ranking_trend/system/PostgreSQL.

82

http://www.nsr-org.no/getfile.php/Dokumenter/NSR%20publikasjoner/M%C3%B8rketallsunders%C3%B8kelsen/M%C3%B8rketall_2014.pdf
http://www.nsr-org.no/getfile.php/Dokumenter/NSR%20publikasjoner/M%C3%B8rketallsunders%C3%B8kelsen/M%C3%B8rketall_2014.pdf
http://www.nsr-org.no/getfile.php/Dokumenter/NSR%20publikasjoner/M%C3%B8rketallsunders%C3%B8kelsen/M%C3%B8rketall_2014.pdf
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.rubikinfotech.com/wp-content/uploads/2014/09/intrustion.jpg
http://www.rubikinfotech.com/wp-content/uploads/2014/09/intrustion.jpg
http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/040813_1643_NetworkDesi2.jpg
http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/040813_1643_NetworkDesi2.jpg
http://2we26u4fam7n16rz3a44uhbe1bq2.wpengine.netdna-cdn.com/wp-content/uploads/040813_1643_NetworkDesi2.jpg
http://www.mcafee.com/japan/products/pdf/Deciphering_Detection_Techniques-Anomaly-Based_Detection_WP_en.pdf
http://www.mcafee.com/japan/products/pdf/Deciphering_Detection_Techniques-Anomaly-Based_Detection_WP_en.pdf
http://www.ossec.net/?page_id=169
http://www.ossec.net/?page_id=165
http://www.ossec.net/wp-content/uploads/2012/04/ossec-arch2-1024x586.jpg
http://www.ossec.net/wp-content/uploads/2012/04/ossec-arch2-1024x586.jpg
http://www.ossec.net/files/auscert-2007-dcid.pdf"
http://www.ossec.net/files/auscert-2007-dcid.pdf"
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Introduction
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual#Introduction
https://www.solvps.com/blog/how-to-install-mod-security-cpanel-vps/"
https://www.solvps.com/blog/how-to-install-mod-security-cpanel-vps/"
https://www.aanval.com/images/screenshots/7.0/15.png
https://www.aanval.com/images/screenshots/7.0/15.png
http://www.drchaos.com/wp-content/uploads/2013/11/Snorby-Event-Screen.png
http://www.drchaos.com/wp-content/uploads/2013/11/Snorby-Event-Screen.png
http://db-engines.com/en/ranking_trend/system/PostgreSQL
http://db-engines.com/en/ranking_trend/system/PostgreSQL

Chapter A IDSanity

A Project Proposal

Problemstilling for bacheloroppgaver ved IMT våren 2015

Oppdragsgiver
Oppdragsgiver: Høgskolen i Gjøvik, IT-tjenesten

Kontaktperson: Christoffer Hallstensen

Addresse: Teknologiveien 22, 2815 Gjøvik

Telefon: 61135145 / 48135180

Epost: christofferh@hig.no

GUC Security Rules management
Utvikle et rammeverk for et sentralisert web/kommandolinje basert verktøy for å håndtere
HIDS, NIDS, IPS, WAF og system audit policy regler.

IT-tjenesten har en stund arbeidet med å implementere bedre deteksjon av sikkerhetsrelevante
hendelser. I et distribuert system kan det fort bli uoversiktlig og vanskelig å ha kontroll på versjoner av
regelsett og policyer samt hvilke klienter som har hvilke regelsett og om de er policy compliant.

Beskrivelse av oppgaven
Dette prosjektet går ut på å:

• Utvikle et modulært rammeverk for effektiv distibuering og håndtering av regelsett for IDS og
WAF

• Utvikle et web interface for enkel oversikt

Denne oppgaven passer for Informasjonssikkerhet og Programvareutvikling

Studenten vil gjennom prosjektet få erfaring innen
• Utvikling av programvare

• Systemutvikling

• Åpen kildekode systemer for systemsikkerhet

• Katalogtjenester

83

Chapter B IDSanity

B Preliminary Project
Gjøvik University College

Project Plan

Preliminary Project For The Bachelor Thesis

Authors:
Tommy B. Ingdal
Halvor Mydske Thoresen
Victor Rudulfsson

February 13, 2015

84

Contents

Contents 1

1 Goals And Limitations 2
1.1 Background . 2
1.2 Project Goal . 2
1.3 Boundary . 2

2 Scope 3
2.1 Limitations . 3
2.2 Project Description . 3

3 Project Organization 4
3.1 Responsibilities And Roles . 4
3.2 Group Procedures And Rules . 4

4 Planning, Follow-Up And Reporting 5
4.1 Division Of Project . 5
4.2 Status Meetings And Decision Points 5

5 Quality Assurance 6
5.1 Documentation, Standards And Source Code 6

5.1.1 Documentation . 7
5.1.2 Standards . 7
5.1.3 Testing . 8

5.2 Configuration Management . 9
5.2.1 Git workflow . 9
5.2.2 Backlog & Administration . 11

5.3 Risk Analysis . 12

6 Implementation Plan 13
6.1 Gantt Chart . 13
6.2 Comments On Gantt Chart . 13
6.3 Ideas . 14

1

6.3.1 Application Flow . 14
6.3.2 Idea #1: Program States . 16
6.3.3 Idea #2: Separate Programs 16
6.3.4 Code Structure . 17

6.4 Features . 17
6.4.1 Under-the-Hood . 19
6.4.2 Administrating Nodes . 19

6.4.2.1 Command-line . 19
6.4.2.2 Web interface . 20

6.4.3 Administrating Rules . 20
6.4.3.1 Command-line . 21
6.4.3.2 Web interface . 21

6.4.4 RESTful API . 21

A Group Contract 22

B Gantt Chart 24

2

1 Goals And Limitations

1.1 Background

The IT department at Gjøvik University College has been working on implementing
improved detection of security related events in their network.
The systems that are going to be implemented to achieve this, are complex and has a
tendency to become difficult to manage.

1.2 Project Goal

The goal of the project is to simplify the distribution and management aspect of the
new intrusion detection and prevention, web application firewall and system audit pol-
icy systems by developing tools that keeps track of the ruleset and policy versions on
the different sensors. These tools will also ease the process of deploying and editing
those rules and policies.
The end product will be a fully functional and modular framework which is accessable
by both a commandline interface and a simple web interface. The product should be
made in such a way that it can be extended by user-made modules with relative ease.
To achieve this, all code will follow well known standards and be sufficiently docu-
mentet.

1.3 Boundary

The tools developed during this project should be of interest for other institutions than
the current employer, but because of limited resources and time, the primary focus will
be on developing the best possible product tailored for the IT department at GUC.
The project will also be limited to the use of PHP, Python, C/C++ and HTML, CSS and
Jacascript as development languages because of the already existing systems at GUC.
The application must also be able to function on CentOS 6.5 or newer, or Debian 7.x,
and the use of databases are limited to PostgresSQL 9.2.x.

3

2 Scope

2.1 Limitations

This application will not be able to handle all the different HIDS, NIDS and WAFs
that exist out-of-the-box. The application will however be modular, which means that
IT-tjenesten will be able to add their own modules if they wish to extend the application.

The use of closed-source libraries will be kept at a minimum or avoided all together. The
reason for this is to avoid the problems that may arrise if a closed-source system or li-
brary is updated or changed, and potentially causing problems for our application.

2.2 Project Description

The IT department at Gjøvik University College is in need of a centralized and modular
tool to ease the distribution and management of HIDS, NIDS, IPS, WAF and system
audit policy rulesets. The tools should be controlled by the use of command line and a
simple web interface.
During the course of the project, the group members will get increased experience in
software development, system engeneering, distribution systems and working with the
security aspect of open-source systems.

4

3 Project Organization

3.1 Responsibilities And Roles

For the Bachelor Thesis our employer is Gjøvik University College / IT Departement
and we have two supervisors, namely Stewart Kowalski and Thomas Kemmerich.
Our group consists of three members: Tommy B. Ingdal, Halvor Mydske Thoresen and
Victor Rudolfsson. All of which are students in Information Security.

Tommy B. Ingdal is our elected group leader and will communicate with the super-
visors and employer on behalf of the group.
Even though we have elected a group leader, we do have a democratic group system and
the group has to vote if there’s a disagreement. The group leader is only there to ensure
that the supervisors, employer and group members can have a easy way of communi-
cating.
All the group members have worked together on projects before and know each other
very well. This is an advantage since we know the work flow of each other and trust
each member to finish the task he has been given.
Each member have also signed a group contract to ensure that each member know the
rules in the group. You can find this contract under Appendix A - Group Contract.

3.2 Group Procedures And Rules

See Appendix A - Group Contract

5

4 Planning, Follow-Up And Reporting

4.1 Division Of Project

We have to decided to divivde the project in two parts. The first, and most important
part, is to finish the development of the core component(s) of the application (i.e. the
API which other systems and the web front-end can communicate with). The second
part of the project is to develop the front-end, or the web application, the administrators
will use to manage the rule sets for the different sensors on the network.

The most difficult, and time consuming part, is the development of the API. We expect
to be working on this part until the end of April, but hopefully we will finish this task
sooner than expected. As soon as we finish this part, all group members will be focused
on the front-end development, as well as the report it self.

Even though this is a development project, we also have to work on the project report
during the development. During the meetings we will have each week, we will discuss
what needs to be added to the report, as well as delegating different tasks related to the
project report.

4.2 Status Meetings And Decision Points

To ensure consistant feedback and that we are doing everything correct, we wish to
have status meetings with our supervisor(s) every week. Preferably at the start of the
week.

At the status meetings we will show where we are in the development lifecycle by using
the Gantt diagram, and what we have done with the report since last time. We will
also present a plan for the coming week (i.e. which tasks we hope to complete, both in
regards of the application it self and the report).

6

5 Quality Assurance

5.1 Documentation, Standards And Source Code

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea – let’s do more of those!

Figure 1: PEP-20 - The Zen of Python

Quality should be assured by means of four basic practices:

• Documentation,

• Testing,

• Modularity and

• consistent use of defined Standards.

7

"A style guide is about consistency. Consistency with this style guide is
important. Consistency within a project is more important. Consistency
within one module or function is most important."

Figure 2: PEP-8 - Style Guide for Python Code

5.1.1 Documentation

To make the code readable and easy to modify in the future, it’s not only a good idea, or
a requirement, but an incredibly bad choice to not document code. Therefore, all code
written should be documented both using Python’s built-in, standardized docstrings
practice.

These can then be accessed either through the REPL, using the magic function.__doc__
but also by using automated documentation tools like Sphinx.
Using docstrings with Python in conjunction with Sphinx allows for a native replace-
ment to regular javadoc.

This only makes sense if used consistently - and as mentioned previously, this is one of
the core pillars of Python.

Documenting source code at the same time as it’s written is required, not only to reach
the desired quality level in the end product, but because even if the code is just a draft,
and it’s "intended to be rewritten later", if the code in itself is not clear enough to
other people than the author, it must be commented to allow refactoring, modification
or improvement by others.

5.1.2 Standards

Python standards are very clear, providing common guidelines in the PEP-8 (Style
Guide) and PEP-20 (The Zen of Python). These shall be adhered to to as high de-
gree as possible.

Although it’s a common practice to use CamelCase and name functions according to
the programmers own abbreviations (such as bob.getUID() for a function that returns the
user ID) this can end up messy when such abbreviations aren’t obvious (is bob.getUID()

8

returning the users ID? or is UID some inherited attribute like Unique Identifier, in-
herited by all objects of the same base class?) to other programmers without double-
checking. Therefore, function names should be named according to what they do in a
readable manner, in lowercase with words separated by underscores. That one extra
second you may have saved by making the name shorter is paid for with reduced clarity
- instead, a function to retrieve the ID from a user object would be unmistakingly named
bob.get_user_id().

Now you might be thinking "You fool! Why use getters and setters when nothing is
private in Python?", in which case you may rest assured it was merely for explana-
tory purposes; which brings us to attributes and variables. Similarly to methods, these
should always be named by the same principle: snake_case, with clarity and reabability
in mind.

"Don’t build a house on sand"

Furthermore, there’s no shame in refactoring. On the contrary, refactoring is always
welcome once code becomes messy and big - even though this is not necessarily part
of SCRUM. Although it may take up precious time, it’s often necessary to maintain
a good quality as the code base grows. A house needs to be built on a firm founda-
tion; continuing coding on a loose foundation may end up costing more time in the
end than necessary, and just like with writing a book, don’t be too attached to the first
draft!.

5.1.3 Testing

Tests should always be written on the system/functional level, and integration level,
meaning tests that probe functionality and interaction between units (classes). Unit
testing is not mandatory (but recommended!) as the internals of a class may change
without breaking functionality (but causing a failing test). Therefore, tests should probe
functions exposed to and accessed by other classes to ensure functionality remains in-
tact.

Furthermore, it’s generally a good idea to remember that if a function deserves and/or
requires an elaborate explanation in its block comment, then a test should be written for
it.

9

5.2 Configuration Management

Certain administrative overhead is necessary for maintaining, reviewing/analysing and
storing the source code in a good manner. As such, use of a version control system is
mission critical, and it’s been agreed unanimously that git (and github) will be used for
this purpose.

This comes with a big responsibility that is easy (or convenient) to ignore, and because
of it’s importance it will be repeated: Commit messages must be provided, must be
descriptive, and must be less than 80 characters.

5.2.1 Git workflow

Developing with git requires certain mutually agreed-upon practices, and a good work-
flow is required. All code written will be developed in their respective branches, and
only tested, functional code will make it into the master branch.

Three default branches will be used, together with additional branches created as the
need arises:

• Master: Production branch containing latest version of functional, tested, production-
ready code.

• Hotfixes: Contains quick bug-fixes for previously undetected bugs discovered in
Master branch.

• Release branches: Not a branch in itself, but a branch for each release. This is
useful to access the code for each individual release as it was when it was merged
into Master, even if it’s not the most recent release.

• Development: Contains code that is being worked on, with each new feature
being developed in..

• Feature branches: A branch for each new feature, that is then merged back into
the development branch and subsequently into its release branch, until it’s ready
to go into Master as the latest version.

10

Code that has been merged into the current Release branch is ready to be tested, after
which it can be merged into Master. If this sounds confusing, this diagram by Vincent
Driessen may help visualize the process:

Figure 3: Git Workflow

11

5.2.2 Backlog & Administration

Figure 4: Taiga.io - Agile Project Management

To manage sprints, keep track of user stories and features, and get an overview of how
the project is moving along for the rest of the group, we’ll be using a relatively new
Project Management System called Taiga.io. Taiga is built by developers who simply
got tired of bloated, overcomplicated project management systems that tried to meet
every possible need and was chosen instead of the previously used TeamWork.com be-
cause of its slimmed down, minimalistic interface, and functional simplicity in regards
to our requirements.

Taiga is elegant, easy to navigate, and has just the features we need - nothing more,
nothing less. It’s built for SCRUM or KANBAN, and because the SCRUM version of
Taiga contains a KANBAN-like backlog, it meets our requirements perfectly.

12

5.3 Risk Analysis

There are a lot of factors that can go wrong during a four month long project.
By analysing the threats and risks, we are able to mitigate potential problems that may
arrise during the project period.

Weighted Risk Analysis
Bachelor Thesis

Threat Probability Impact Time Consumption Total
Weighted Score: 30 40 30 100

Project Too Difficult 0.2 1 0.9 73

We have underestimated the skills needed to implement this application and we have to
work on a different project.

Group Disbanding 0.1 1 0.8 67

This is a group project, and because of this there will always be a possibility for one or
more of the group members not being able to continue contributing due to various
reasons.

Loss Of Data 0.4 0.7 0.8 64

Loss of data or information could occur due to various reasons like user faults or
hardware trouble.

Unable To Access Material 0.3 0.2 0.8 41

All materials and project files are stored digitally and online. If the group are unable to
access this information, a lot of time will be wasted.

Loss Of Communication 0.2 0.1 0.8 34

If the group members are unable to contact each other, the supervisor or the employer, a
lot of time will be wasted.

13

6 Implementation Plan

6.1 Gantt Chart

See Appendix B - Gantt Chart

6.2 Comments On Gantt Chart

In our Gantt Chart we have included three main parts: Scrum+Kanban, Project Report and Pre-
sentation.
Scrum+Kanban shows the different sprints we have to go through in the development life cycle.
Each sprint is 7 days, and during those 7 days we have to implement the tasks chosen for that
specific sprint. If we for some reason don’t finish a specific task on time, this task carries over
to the next sprint.
Sprint #10 however is optional. The reason we included an optional sprint is beacuse of potential
bugs and problems that may arrise during the end of the development fase. If the application is
finished, tested and working on sprint #9, we skip sprint #10 and continue writing on the project
report, if not, we will use this sprint to finish the application.

The Project Report part of the Gantt Chart shows how much time we have dedicated to actu-
ally writing on the report. We will start working on the main report as soon as the preliminary
project is delivered, and continue working on this report throughout this project.

The last task of the Bachelor Thesis is to work on the presentation. We have dedicated 12 days
to the presentation part. This includes making the presentation, the poster, as well as practicing
the presentation and trying out potential demoes we will show to the participants.

14

6.3 Ideas

As of now, we have established more or less how the network communication should work in
practice, but the inner workings of the program is not yet decided, as we have two ideas - both
of which would work. Some things are common for both ideas and thus these common practices
will be explained first, followed by the differences in design.

6.3.1 Application Flow

When the application is started, it’s started with an argument that specifies whether it’s a slave-
node or a master-node. Slave nodes have the option to specify either an IP for the primary Master
to connect to, or be run in automatic detection mode.

When a slave is run in automatic mode, it will broadcast a HELLO-packet triggering the master
to respond and exchange public keys with the node. When a Master has been found, it’s IP and
hostname will be displayed to the user, which can confirm that these are correct.

When a slave has specified the IP to connect to, it establishes a connection with the master,
and exchanges public keys. After these have been exchanged, communication can continue
encrypted.

The slave node sends a hash of all its current rules to the Master, and the date these were last
updated (or 0 if never). The master compares this hash against the hash it has for this nodes rules
in its database, and proceeds to transfer the rules to be applied by the slave. If the hash from
the node didn’t match what the master had on record, but the timestamp was 0 for the node, the
master can request to import rules from the Node and assign it (to only) that node. This would
prevent wiping out the Nodes rules, and would allow the Master to synchronize with previously
unlinked ID(P)S nodes.

Nodes are allowed to query the master for updated rules by providing the date it was last updated,
the hash of its current rules and its unique identifier (generated using hardware parameters); the
Master updates the field for the nodes last update and sets it to the current time. If the master
hasn’t received a query for new rules in more than twice the default interval for the nodes, it will
proceed to query the node and initiate an update if the rule-hash has changed.

Apart from this, the Master also runs a RESTful API, which allows an authenticated user to do
everything that can be done via the CLI, but in a more sophisticated manner:

• Manage nodes

15

– Assign nickname

– Assign rules to multiple nodes

– Blacklist nodes from communicating with the master

– Edit node information (but NOT unique identifier)

– Query the slave for logs

– Enable or disable a specific node

– Get status for a specific node (Online/Not online?)

– Force update

and Manage Rules:

• Add rule

• Add rule feeds (for automatic rule updates from different vendors)

• View rules

– by software (+ version)

– by node

– by subnet (IP-range)

– by direction (outgoing/incoming)

• Edit rule

• Remove rules

This RESTful API would be used only locally to allow a web-application running on the local
machine to communicate with the daemon. This gives some flexibility as it makes the application
rather agnostic as to what language or platform the interface is written on, and as long as the
requests are only within the local machine and authenticated, it would be possible to support
different interfaces for managing the application graphically.

Now, when it comes to the difference in ideas, these are mainly related to the program structure,
the differences of which are described below.

16

6.3.2 Idea #1: Program States

The idea here is that the program is written as one, single program, which can be run in different
modes. This means that all nodes would essentially have the same database layout (but nodes
wouldn’t use as much of it, and would only keep a single node in its database, linked to itself),
and the RESTful API would be disabled by default.

This would be based mainly on two existing Python libraries: Twisted and SQLAlchemy. Twisted
would be the basis, which manages network communications, and daemonization; and both the
node and the master would build on this for communication. Twisted has a vast library of
protocols it can utilize, as well as good logging functionality, and provides good performance
and scalability because it is built on something called deferreds, which lays the foundation for
its asynchronous architecture.

There are also other alternatives here, when large scalability comes into play: Cyclone. Cyclone
implements another library, called Tornado as a Twisted plugin, making Tornado usable through
Twisted as a protocol, and Tornado uses non-blocking network I/O to scale to tens of thousands
of open connections. However, although we may want to be able to scale to a lot of nodes, it’s
fairly unlikely that the amount would be in the thousands.

Twisted is also actively maintained, which while it leaves the responsibility up to the Twisted
developers, the networking part becomes something that doesn’t have to be actively developed
on our part now or in the future, as we can pass this off to Twisted.

A downside of this approach would be packaging more than is necessary for slaves that will
never run in Master-mode, containing a few hundred kilobytes of extra code that won’t be run,
and the Master containing some extra classes (such as those used to import/export rules on
slaves).

6.3.3 Idea #2: Separate Programs

This idea takes a different approach, in that the program is not written as one large program
running in different states and thus behaving slightly differently, but instead the program is
written as two separate daemons, a master and a slave.

The master node would only run the master daemon, which contains all of the Master-functionality
previously described. The slave would thus only run the slave daemon, which would contain the
slave functionality. While the master would be built upon Twisted and SQLAlchemy, the slaves

17

would not. These would instead manage daemonizing and networking functionality manually
and be written from scratch as this is fairly easily done in Python, and the database for each node
would be a stripped down version containing only what’s absolutely necessary for the node. A
slave node could thus never be changed to run as a master and vice versa, their roles are defined
by the program they run.

A downside with this is that additional networking functionality that may be implemented in the
future would require developing it from scratch on the slave node (this could arguably classify
as YAGNI) or changing it to build on Twisted; and the package would be split in two.

6.3.4 Code Structure

Common for both ideas is the structure of the Master, which would consist of a few basic classes
inheriting SQLAlchemy’s SQLObject, which makes each object associated to a row in its SQL
table, and containing relationships to its related objects - a Node containing a set of Rule objects,
for example.

A module loader loads all enabled modules from the module-directory, and a set of functions
for various events (such as on_rule_save, on_node_connect, and so on) which allows modules
to hook into these events and execute desired functionality when these events are triggered. This
paves the way for a highly modular design where events by default do nothing unless a module
reacts to it.

If the program is based on separate programs, these events may be slightly different for a slave-
node and a master-node.

6.4 Features

As previously mentioned, apart from the basic classes, all actual functionality and making use
of the classes happen in the modules. There should be one module responsible for distributing
rules, hooking into i.e on_rule_save() and then checking all nodes that should have this rule, and
updating these.

Running Node.save(), for example, would save the node and be responsible for making sure data
is sent to it, and a callback from this would trigger the on_node_save() event hook which could
be used to alert the administrator of the result.

18

In general, actions performed by the user trigger events which the modules hook into to perform
different actions, ensuring a highly modular design of as low coupling and high cohesion as
possible.

Available events:

• Software:

– on_software_create Dispatched when a new software + version has been added

– on_software_change Dispatched when an existing software + version has been changed

– on_software_destroy Dispatched when a software + version is removed from the
database

– on_software_save Dispatched on save regardless of change or if its new

• Key:

– on_key_create Dispatched when a new key is added

– on_key_generate Dispatched when a new key is generated

– on_key_change Dispatched when a key is changed

– on_key_destroy Dispatched when a key is destroyed

– on_key_save Dispatched when a key is saved

• Node:

– on_node_create Dispatched when a new node is added to the database

– on_node_change Dispatched when an existing node has been updated with new
information

– on_node_connect Dispatched when a node attempts to connect

– on_node_disconnect Dispatched when a node disconnects

– on_node_auth_success Dispatched when a node has successfully authenticated

– on_node_auth_fail Dispatched when a node fails to authenticate

– on_node_detect Dispatched when a non-connected node is detected on the network

– on_node_save Dispatched everytime a node is saved

– on_node_enable Dispatched when a node becomes enabled

– on_node_disable Dispatched when a node becomes disabled

19

– on_node_rule_change Dispatched when rules are added, or removed from a node

– on_node_ban Dispatched when a node is banned

– on_node_unban Dispatched when a node is unbanned

• Rule:

– on_rule_create Dispatched when a rule is created

– on_rule_change Dispatched when an existing rule is modified

– on_rule_destroy Dispatched when a rule is destroyed

– on_rule_save Dispatched everytime a rule is saved

6.4.1 Under-the-Hood

Some functions that are automatic are the handshake and the communication process between
the nodes. Apart from optional but recommended parameters, such as IP, this should happen
automatically - and so should the generation of a unique ID based on hard drive serial number,
CPU ID and CPU vendor.

Slave nodes should be able to manage importing and exporting rules from the ID(P)S systems
running on their host automatically once an update has been completed.

6.4.2 Administrating Nodes

As with all administration, the RESTful API (described later) provides a way to integrate a web
interface for doing what can already be done on the command line more efficiently.

6.4.2.1 Command-line administration of nodes begin with specifying the resource, in this
case node, followed by the ID of the node, and the requested action. If no id or action is specified,
a list of nodes will be presented.

Actions for nodes are:

• enable Starts the ID(P)S on a node. Slaves can only enable themselves.

• disable Stops the ID(P)S on a node. Slaves can only disable themselves.

• ban Only available for master. Ignore messages from the node.

20

• unban Only available for master. Allow messages from the node (default).

• add-feed Adds a rule feed from a vendor to a node

• status Checks the current status of a node and gets all sub-command information

– last-seen Gets only the last-seen info for a node

– last-update Gets the last-update time for a node

– ipaddress Gets only the ip-address for a node (only master available for slaves)

– hostname Gets only the hostname of a node

• set Allows modifying host information (not unique ID)

– nickname Sets the nickname for a node.

– public-key Sets the path to the public key on the node

• rule Performs actions on rules for that specific node (see rule actions below)

• log Retrieves the most recent log information from a node.

6.4.2.2 Web interface administration provides a dashboard with an overview of active
nodes, and is not available for slaves. On the master running the web-interface, three different
views are available to get an oversight: Overviewm, Nodes, and Rules. Each object has its own
detail page, but as this section is about nodes, that’s what the focus will be on here.

The Node page displays a table of all slaves and their status (enabled, disabled, unable to con-
nect), number of rules active, host information, and what software and version it’s running.
When clicking a node, a detailed page of information is displayed and allows the administra-
tor to modify the information. By clicking the Rules link, rules specific for that node will be
displayed, which brings us to Rule administration.

6.4.3 Administrating Rules

Similar to Nodes, Rules are another type of resource that can be edited both via command-line
and web interface.

21

6.4.3.1 Command-line administration of rules begin with specifying the rule resource
followed by the ID of the rule (if the action is on an existing rule - only add acts on a non-
existing rule) and any action to take on that rule.

Actions for rules are:

• add Adds a new rule

• update Modifies a rule

• drop Removes a rule

• show Shows all rules

– id Shows a specific rule by ID.

– software Shows rules by software.

– ip Shows rules by IP-address or IP-range.

– outgoing Shows rules for outgoing direction

– incoming Shows rules for incoming direction

6.4.3.2 Web interface provides a page for Rules where all rules of all nodes can be seen,
and where information for each rule is sorted in a table. Here, rules can be mass-assigned (or
un-assigned) to nodes, and applied instantly.

6.4.4 RESTful API

The Master runs a RESTful API providing access to the command-line arguments for authenti-
cated users (and requires HMAC or certificate based authentication for each request) via Flask.

A web-interface connects to the RESTful API and is thus able to perform the same actions as
is available on the Master’s commandline through the web-interface. If the implementation is
based on idea #1, whether the program is run as master or slave, this means each slave will also
have a (by default) inactive RESTful API, and a web-interface. Should this be activated, then
the only node that exists to administrate for the slave is itself, and thus it would work only for
configuring that host.

22

Gruppekontrakt
B.Sc-oppgave

Gruppemedlemmer

• Tommy B. Ingdal

tommy.ingdal@hig.no

(+47) 92016861

• Halvor Thoresen

halvor.thoresen@hig.no

(+47) 99593818

• Victor Rudolfsson

victor.rudulfsson@hig.no

(+47) 47141618

Arbeidsperiode

01. januar 2015 – 15. mai 2015

Arbeidsfordeling

Arbeid skal fordeles jevnt og rettferdig mellom gruppemedlemmene. Hvert gruppemedlem plikter å fortelle

gruppen om ev. forhold som gjør at man ikke kan jobbe så mye som antatt. Om en slik situasjon skulle oppstå

må arbeid fordeles på nytt mellom medlemmene slik at man ikke blir hengende etter skjema.

Møtetider

Siden flere av gruppemedlemmene har jobb, så er det vanskelig å forholde seg 100% nøyaktig til hvert tidspunkt.

Vi har derfor bestemt at tidene under skal overholdes så fremt det lar seg gjøre, men man kan møtes andre

dager/tidspunkt om nødvendig.

Mandag: 10.00 – 15.00

Tirsdag: 10.00 – 15.00

Onsdag: 10.00 – 15.00

Uenigheter

Om det skulle oppstå interne uenigheter skal veileder kontaktes. Om man likevel ikke skulle komme til enighet

vil veileder ta en avgjørelse på vegne av gruppen.

Avskjedighet

Om et gruppemedlem ikke møter til fastsatt tid, uten gyldig grunn, eller bryter andre interne regler vil

det bli gitt en advarsel.

A Group Contract

23

Ved gjentatte regelbrudd vil gruppemedlemmet risikere å bli avskjediget fra gruppen. Veileder vil da bli

kontakt for videre håndtering av situasjonen.

Underskrifter

Ved å signere sier jeg meg enig i kontraktens innhold og er klar over at gjentatte regelbrudd kan føre til

eksklusjon fra gruppen.

________________________ ________________________ ________________________

 Tommy B. Ingdal Halvor Thoresen Victor Rudulfsson

24

Bachelor Thesis - IDSanity Jan 27, 2015

Gantt Chart 3

Name Begin date End date Duration

Bachelor Thesis 13/01/15 02/06/15 101

Preliminary Project 13/01/15 27/01/15 11

Main Project 29/01/15 06/05/15 70

Scrum+Kanban 29/01/15 06/05/15 70

Sprint #1 29/01/15 06/02/15 7

Sprint #2 09/02/15 17/02/15 7

Sprint #3 18/02/15 26/02/15 7

Sprint #4 27/02/15 09/03/15 7

Sprint #5 10/03/15 18/03/15 7

Sprint #6 19/03/15 27/03/15 7

Sprint #7 30/03/15 07/04/15 7

Sprint #8 08/04/15 16/04/15 7

Sprint #9 17/04/15 27/04/15 7

(Sprint #10) 28/04/15 06/05/15 7

Project Report 29/01/15 15/05/15 77

Writing 29/01/15 01/05/15 67

Wrap Up 01/05/15 15/05/15 11

Presentation 15/05/15 01/06/15 12

Prepare Presentation 15/05/15 01/06/15 12

Deadline, Preliminary Project 28/01/15 28/01/15 0

Deadline, Main Project 15/05/15 15/05/15 0

Presentation 03/06/15 03/06/15 0

2015

Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 Week 18 Week 19 Week 20 Week 21 Week 22 Week 23 Week 24 Week 25
11/01/15 18/01/15 25/01/15 01/02/15 08/02/15 15/02/15 22/02/15 01/03/15 08/03/15 15/03/15 22/03/15 29/03/15 05/04/15 12/04/15 19/04/15 26/04/15 03/05/15 10/05/15 17/05/15 24/05/15 31/05/15 07/06/15 14/06/15

 Bachelor Thesis

 Preliminary Project

 Main Project

 Scrum+Kanban

 Sprint #1

 Sprint #2

 Sprint #3

 Sprint #4

 Sprint #5

 Sprint #6

 Sprint #7

 Sprint #8

 Sprint #9

 (Sprint #10)

 Project Report

 Writing

 Wrap Up

 Presentation

 Prepare Presentation

 Deadline, Preliminary Project

 Deadline, Main Project

 Presentation

B Gantt Chart

25

Chapter C IDSanity

C Software License Agreement

110

Chapter C IDSanity

111

Chapter C IDSanity

112

Chapter D IDSanity

D Project Agreement

113

Chapter D IDSanity

114

Chapter E IDSanity

E Meetings

In this chapter we will go outline the meetings we have had during this project periode.
Most of the meetings have happened online, either via Skype or Teamspeak, but we have
also had meetings with our supervisors.

16th of January

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen and Victor Rudolfsson.
What: Discussed different coding styles, which software development model to use and

how to organize and manage the project.
All members signed the group contract and the project website was created with
Wordpress.

17th of January

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen, Victor Rudolfsson and the employer.
What: Talked about the planned infrastructure, if we get access to a testing environment,

how we should develop the requirement specification and who "owns" the finished
product. Employer will give us requirement specification proposal.

19th of January

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen, Victor Rudolfsson and the supervisors.
What: Tasks related to the preliminary project are delegated between the group mem-

bers. We also talked about what we should include and got a few tips from the
supervisors.

20th of February

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen, Victor Rudolfsson and the supervisors.
What: Presented the preliminary project for the supervisors and got some quick feed-

back. The employer gave us an overview of the project, what we need to include
etc.

5th of March

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen and Victor Rudolfsson.
What: Delegated tasks related to the actual writing of the report. We also had a few

decisions to make related to the application regarding encryption and database
storage.

115

Chapter E IDSanity

27th of March

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen and Victor Rudolfsson.
What: Software License Agreement is now finished and signed by both parties. Main

focus is on the application itself.

13th of April

Where: Gjøvik University College.
Who: Tommy B. Ingdal, Halvor M. Thoresen and Victor Rudolfsson.
What: Delegated new tasks in regards of the report. The development of the application

is still ongoing, so the work has been diveded; Victor focuses on the application
while Tommy and Halvor works on the report.

116

	Preface
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Glossary
	Introduction
	Problem Area
	Target Audience
	Employer
	Project Goal
	Project Description

	Background
	IDPS
	Network-based
	Host-based
	Signature-based
	Anomaly-based

	WAF
	Suricata
	Signatures

	OSSEC
	Architecture
	Rule Sets

	ModSecurity
	Similar Projects

	Requirement Specification
	Use Case
	Use Case Diagram
	Comments on Use Case Diagram
	High level Use Case Descriptions
	Detailed use case

	Functional Requirements
	Usability
	Performance
	Security

	Operational Requirements
	Usability
	Availability
	Reliability
	Performance
	Environment
	Documentation
	Security

	System requirements

	Design
	Sequence Diagram
	Deployment Diagram
	Class Diagram
	ER-Diagram

	Implementation
	Software Licence
	Development Environment
	Writing New Modules
	Master daemon
	Client daemon
	Events
	The Events class
	Hooking into Events
	Naming convention
	Core Events

	Internal Communication
	Message Structure
	Message Response Structure
	Recurring communication

	External Communication (API)
	Route structure
	IDSanityApi module

	External Communication (CLI)
	CLI Argument Events
	CLI Argument Hooks
	CLI Subcommands

	Controllers
	IDSanity CLI Controllers

	Models
	Model Mixin (providing extra functionality)
	Key
	Node
	NodeRule
	Rule
	Software
	OperatingSystem
	JSON Serializers

	Library
	Singleton Metaclass
	Factory (master)
	Factory (slave)
	Communicator
	ModuleLoader
	HostAnalyzer

	Modules (plugins)
	IDS Modules

	Testing
	Model Tests
	IDSanity Library Tests

	Conclusion
	Missing Functionality
	Discussion

	Bibliography
	Project Proposal
	Preliminary Project
	Software License Agreement
	Project Agreement
	Meetings

