
Bachelor Project:

RealMaps: Using real maps in Minecraft

Authors: Sindre Helleborg

Tellef Møllerup Åmdal

Date: 15.05.2015

Table of Contents
1. Abstract . 3
2. Sammendrag . 3
3. Preface . 4
4. Introduction . 5

4.1 Project Goal . 6
4.2 Earlier Work . 6
4.3 Team Background . 6
4.4 Report details . 7

4.4.1 High Dynamic Range . 7
4.4.2 Level Set Methods . 8
4.4.3 Minecraft . 8
4.4.4 Terminology . 10

5. Methodology . 11
5.1 Software Development Process . 12
5.2 Design . 12
5.3 Program Specifications . 13
5.4 RealTerrain . 18

5.4.1 Biomes Selection . 19
5.4.2 Bottoms up Midpoint Displacement Algorithm 20
5.4.3 HDR Compression Applied to Terrain . 21
5.4.4 Level Set Noise Reduction . 27
5.4.5 Map Analysis Algorithm . 31
5.4.6 Open street map feature parser. . 32

5.5 RealMapsWorldType . 33
5.5.1 Configuration . 34
5.5.2 Generator . 35
5.5.3 Other uses . 36

5.6 Website . 36
5.7 User Testing . 37

6. Result . 38
6.1 User Tests . 39

7. Conclusion . 41
8. References . 43
9. Appendix . 44

9.1 Original design notes, Ben Sawyer . 45
9.2 Initial thoughts and ideas . 47
9.3 Meeting notes bundle . 47

3

1. Abstract

Title RealMaps

Date 15.05.2015

Participants Sindre Helleborg

 Tellef Møllerup Åmdal

Supervisor Simon McCallum

Employer Ben Sawyer, Digimill

Contact Person Simon McCallum, , 61135268simon.mccallum@hig.no

Keywords Minecraft, Maps, Terrain, Geographical data, Geography

Pages 52

Attachments 3

Availability Open

Abstract The project was to create an automated system that would take
publicly available geographic data and use them to create to
playable Minecraft worlds. These maps where to be accessible
through a web server running our system. The focus of the project
was the technical simplicity to the end user and the similarity
between our maps and those generated by an ordinary minecraft
version, both aesthetically and gameplay wise.

Our solution ended up being 2 different java applications working in
a pipeline. We created these two and a proof of concept website
made with django. The first program handles downloading the
relevant geographical data and processing it into a form that can be
used to directly converted to a Minecraft map. The second one being
a Minecraft mod, used for generating the actual Minecraft world. It
uses Minecrafts own built in generator with our code running on
top.

We also did some user tests. We let people navigate through the
generated Minecraft worlds. We gave them a map of a real world
location and tasked them with finding the corresponding location in
Minecraft. We also did the opposite where we had them try and
mark a location on the map based on a location in Minecraft.

https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~tellefma
https://dev.imt.hig.no/confluence/display/~simonm

4

2. Sammendrag

Tittel: RealMaps

Dato: 15.05.2015

Deltakere: Sindre Helleborg

 Tellef Møllerup Åmdal

Veiledere Simon McCallum

Oppdragsgiver Ben Sawyer, Digimill

Kontaktperson Simon McCallum, , 61135268simon.mccallum@hig.no

Nøkkelord Minecraft, Maps, Terrain, Geographical data, Geography

Antall sider 52

Antall vedlegg 3

Tilgjengelighet Åpen

Sammendrag Prosjektet gikk ut på å lage et automatisk system som tar offentlig
tilgjengelig data og bruker det til å lage en spillbar Minecraft
verden. Disse kartene skal være tilgjengelige igjennom en web side
som kjører systemet vårt. Hovedmålene med prosjektet var å lage et
system som ikke krevde store tekniske ferdigheter av sluttbrukeren
og at kartene laget av systemet ligner på de i en vanlig versjon av
Minecraft, både når det gjelder estetikk og spillbarhet.

Løsningen vår var to Java applikasjoner som arbeider serielt, vi
lagde disse to og en test webserver lagd med Django. Det første
programmet håndterer nedlasting av relevant geografisk data og
bearbeider det til en form som kan bli direkte konvertert til et
Minecraft kart. Den andre er en Minecraft mod brukt til å generere
det faktiske Minecraft. kartet Den bruker Minecrafts innebygde
generator med vår kode kjørende på toppen.

I tillegg gjorde vi noen bruker tester. Vi lot folk navigere de
genererte Minecraft verdene. Vi ga dem et kart over et område i den
virkelige verden og ga dem oppgaven med å finne den tilsvarende
posisjonen i Minecraft. Vi gjorde også det motsatte, der oppgaven vi
ga dem var om å finne en posisjon på kartet markert i Minecraft.

https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~tellefma
https://dev.imt.hig.no/confluence/display/~simonm

5

3. Preface
The Minecraft RealMaps project was the brainchild of Ben Sawyer. As game
programming students we wanted a game related project and saw this project as a perfect
fit, as both have a quite extensive experience with Minecraft. We also saw it as an
interesting technical challenge creating a complete working service requiring several
interdependent parts. Working on creating something for an already existing game meant
that it would be easier to complete something a usable end product, that is something
more than a tech demo.

We would like to thank Ben Sawyer and Simon McCallum for their guidance during this
project.

6

4. Introduction
Project Goal

Goal : Make it possible to create HIGHLY playable maps from real geographies
using publicly accessible geographic data enabling new types of play and
learning inside Minecraft.

The task is to create an automated system for generating Minecraft maps from real world
geographic data. The main focus is that the map preserves gameplay and the aesthetics of
ordinary Minecraft maps while still recognizably representing a real world location. It is
important that the customer facing system be simple enough that even people without the
experience to modify Minecraft can use it, so it is essential that the maps delivered can
be played on an unmodified Minecraft version.

Our target demographic consists two groups, people who play Minecraft and people who
would want to use a Minecraft map of a real area for some other purpose. For example: a
teacher might want to use a Minecraft map of an area to teach pupils about about the
history of that area. Another example is if a city council wanted to display their plans for
a certain area in an accessible way. The common denominator with these groups is that
we cannot make assumptions about their level of technical skill in regards to Minecraft.

Earlier Work

There have been some attempts to create Minecraft map generators based on real world

data like ChunkMapper . Generally the problem with them have been a focus on[15]

accuracy rather than a focus on playable maps. We do not know of any examples that
generates the underground the same way as in Minecraft. Another thing that was a bit
lacking was the generated vegetation being a bit lackluster.

What our project will try to do differently is to preserve the Minecraft gameplay and
aesthetics.

Team Background

Our team consists of and . We both are doingSindre Helleborg Tellef Møllerup Åmdal
our 3rd year on the Game Programming line at Gjøvik University College (GUC). Both
of us have played Minecraft since its alpha stage.

Ben Sawyer
— Appendix A

https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~tellefma

7

Sindre has a completed a few semester of a master in physics, the extra math has been
helpful for this project. He did not really do much programming before starting his
Bachelors degree.

Tellef has previous experience modding for Minecraft and with Java. His history with
programming starts in Upper secondary school VG2 with learning AS3 in the IT2 course
and afterwards taught himself Java. Following Upper secondary school he went on to
taking Game Programming at GUC.

From the Game Programming line, we both learned C++, Java, Python, some SQL and a
bit of PHP.

Report details

This thesis is separated in to 3 distinct parts and the appendix. The first being the
introduction followed bu what we did and ending with our results and conclusion

Following this section there is a collection of explanation of things one should know
when reading this thesis. After that is the next part, beginning with how we organized us
and with what. Following that is explanation of the 3 major software components made
by us. Capping up this part of the thesis is an explanation of how our testing was done.
Starting up on third part of this thesis is the actual results from user tests followed by our
conclusions, references (end-note) and appendix.

High Dynamic Range

The human eye can can capture light intensity at dynamic range of five orders of

magnitude simultaneously . By comparison a modern LCD screen can display a[6]

relative difference in light intensity by a factor of a few hundred or about two orders of
magnitude dynamic range. The problem is that in a scene with bright and dark areas, a
human viewing an ordinary photograph of that scene may not be able to distinguish
details that he or she would have been able to if present when the photograph had been
taken. Meaning that photographs are not as representative of areas as they could be.
While there are cameras and techniques that can capture this range there are no
conventional displays capable of matching the feat. This makes raw HDR image data
useless for humans, linear compression would result in an image almost exactly the same
as if you had just used ordinary photography. What is needed is a way to compress the
range down into something that can be displayed on conventional media without
removing details from the image.

HDR compression algorithms takes high dynamic range data and compresses them into
low dynamic range data without losing detail, and in such a way that the resulting dataset

8

still looks like the scene it represents. There are several algorithms that do this, most of
them rely on the assumption that humans are more sensitive to local differences to global

ones .[4]

Level Set Methods

Level set methods is a conceptual framework used to solve various problems
numerically, particularly those involving changing topology. Working on curves that
split or merge will in most circumstances require a lot of considerations for special cases.
Another way of handling these are seeing them as an intersection between a three
dimensional surface and a plane. For example a two dimensional scalar field with the
scalar value representing height. If the scalar field represents the probability that a part of
an image represents a feature, the intersection with the plane might represent the
probable edge of the feature. Evolving the scalar field would then be edge detection.
This way there would be no need for handling splitting if the edge encompassed several
features. In addition doing it this way allows us to solve fairly complex problems on a
simple Cartesian grid. If more information about this topic is desired there are many

resources available online .[16]

Minecraft

What it is

From the Minecraft wiki front page:

 is a construction game created by founder sandbox Mojang AB M
, and inspired by the , and arkus Persson Infiniminer Dwarf Fortress Dungeon

 games. Gameplay involves players interacting with the game world byKeeper
placing and breaking various types of in a blocks three-dimensional environment
. In this environment, can build creative structures, creations, andplayers
artwork on servers and singleplayer worlds across multiple multiplayer game

.modes

It is a highly popular game played by many. Minecraft has in fact sold over 60 million
copies across multiple platforms including PC, Android, iOS, XBox 360, XBox One,
PS3 and PS4.

07.05.2015
— http://minecraft.gamepedia.com/Minecraft_Wiki

http://minecraft.gamepedia.com/Minecraft?version=3e79ed80166456ab5121ed12cdd2f88b
https://en.wikipedia.org/wiki/Open_world
http://minecraft.gamepedia.com/Mojang_AB
http://minecraft.gamepedia.com/Markus_Persson
http://minecraft.gamepedia.com/Markus_Persson
http://minecraft.gamepedia.com/Infiniminer
https://en.wikipedia.org/wiki/Dwarf_Fortress
https://en.wikipedia.org/wiki/Dungeon_Keeper
https://en.wikipedia.org/wiki/Dungeon_Keeper
http://minecraft.gamepedia.com/Blocks
http://minecraft.gamepedia.com/The_Overworld
http://minecraft.gamepedia.com/The_Player
http://minecraft.gamepedia.com/Multiplayer
http://minecraft.gamepedia.com/Gameplay
http://minecraft.gamepedia.com/Gameplay
http://minecraft.gamepedia.com/Minecraft_Wiki

9

Figure 4.1: Main menu Savannah and desert biome plus a village.Figure 4.2:

Figure 4.3: An oak forest biome on an island A ravine with lava.Figure 4.4:

Most things in Minecraft is blocks, block based or pixel sprites. A block in Minecraft is

typically 1m x 1m x 1m size, a 1m cubical volume. When one plays Minecraft there is3

generally the choice between survival or creative mode but that alone is not always the
sole deciding factor of how tings are played. The greatest reason behind that is custom
maps and server side scripts creating a different game experience with it.

Creative mode gives the player to shape the world however they pleases. The player has
everything they could use at their disposal and has the ability to fly. Infinite blocks and
instant block mining is convenient for creative work.

Survival, as the name implies, is a mode where surviving is part of gameplay. Things
like hunger, health, the environment and hostile creatures are some of the things a player
has to consider at all times. Mining blocks takes time and appropriate tools has to be
used to be effective and efficient.

The game world consists of blocks representing different kinds of terrain, trees, villages,
oceans and so on. Even tho one could say the world is infinite in the horizontal plane,

one can go 30'000km from the centre before hitting an invisible wall. Inonly [8]

comparison, the possible map surface is 7 times greater than the earth's surface. So,
realistically for players, the world goes on forever.

Before a world is generated, a generator and its settings has to be selected. The default
being a generator that uses a seed and multiple algorithms for the different parts it has to
generate. The default world generation is done in multiple passes, where each pass builds
on the previous one. Generally, the first thing is that a foundation is created with only 3

10

kins of blocks. Those are: air, water and stone. Air denotes empty space, water denotes
where oceans should be and stone denotes the general shape of the terrain. By how
Minecraft works, all positions not occupied by a block is an air block, but its more like a
0 data value. At the same time, the biome distribution is generated according to the seed
and their own placement rules, for example no desert besides a cold biome etc. Then, the
blocks are modified according to what biome they are in. After that, the world is
populated with things like grass, trees, villages and so on. Somewhere in there, the
underground cave systems and ravines are generated.

Modding

A mod is a collection of media, mostly but not limited to code, images, sound, models
and plain text. When used in conjunction with the application it was made for leads to
some sort of change. Modding is generally the act of creating, modifying or maintaining
a mod.

In relation to Minecraft, modding could lead to all sorts of changes in-game. Everything
from flying pigs, a new type of flower, deserts everywhere or just a modification to the
graphical user interface like moving the health meter.

Forge/FML (as of Q1 2015) is one of the most used modding framework for Minecraft.
FML, or ForgeModLoader as it stands for, is the library responsible for loading,
initializing and managing mods. Forge is the framework where its purpose is to act as a
compatibility layer between mods and Minecraft itself, handling most (if not all)
common additions and alterations.

Terminology

Biome - Unless otherwise specified refers to real world biomes. A contiguous area with
similar climactic conditions, typically with with similar types of vegetation

Biome - () Regions in the world with similar characteristics is the same biome.Minecraft
The biome value is per vertical column of blocks.

Block - () A singular cubical volume. Could also be said to be a voxel. A pieceMinecraft
of "Dirt" or "Oak Wood" is a when placed in the world.Block

Chunk - () An area consisting of 16 Sections vertically. Often the section partMinecraft
is omitted and instead referencing the blocks directly. Grid aligned on 16 blocks on both
x and z axis.

DEM - Digital Elevation Model. A digital model of a terrain surface.

Entity - () A dynamic object in the world, for example the player or an item onMinecraft
the ground.

FML - () The framework responsible for loading mods for Minecraft.Minecraft

11

Forge - () The framework responsible for exposing Minecraft's internalMinecraft
systems to mods in a way that it avoids conflicts and instability. It also provides useful
functionality to make certain common tasks easier.

Forge/FML - () Collective reference to and . Seldom does one useMinecraft Forge FML
one without the other.

Generator - () A piece of code that is uses to generate the with. SomeMinecraft World
generators has options that can be tweaked to the players content before the world is
generated.

HDR - High Dynamic Range

Item - () A Singular object in the players inventory or in the players world. ForMinecraft
example a "Fishing rod" or "Iron Ingot", note that when picket up is representedBlocks
as items.

Minecraft - A highly popular construction and / or survival based multiplayer and
singleplayer sandbox game where almost everything is cubes.

Mod - A collection of media, mostly but not limited to code, images, sound, models and
plain text. Its purpose to be used with a game to modify it.

Overworld - () The default dimension in a Minecraft world.Minecraft

Region - () An area spanning 32x32 Chunks horizontally. Grid aligned on 32 Minecraft
on both x and z axis.Chunks

Section - () An area of 16x16x16 . Grid aligned on 16 on x, yMinecraft Blocks Blocks
and z axis.

World - () The world a player interacts with and is playing in. It consists of Minecraft Bl
 on a grid divided into , and . The form of the land isocks Sections Chunks Regions

decided by the generator selected and the seed it uses.

WorldType - () The type of world to generate, is one of the things a player canMinecraft
adjust when adjusting generator settings.

12

5. Methodology
Software Development Process

At the beginning of this project we selected a scrum like model with development sprints
as short as one week. Planning was handled as weekly Skype meetings, where we would
discuss the needs of the project and take on assignments. Decision making was purely by
consent. The reasons for choosing a development process with so little hierarchy and
detailed long term planning was the fact that we only had a team of two developers and
that even though we structured the end result as a pipeline, each part was relatively
independent. There were no requirements for any off the components be finished before
development could begin on any of the others ones and each part missing could easily be
emulated, so development of each part could happen simultaneously. In addition both of
us have worked together before without running into major problems. The place we
foresaw potential problems where the interface and data structure connecting the
different components, to avoid getting into trouble here we planned out the format of
data sent between applications early and made sure to discuss it before making any
changes to these formats.

As part of this process we used a JIRA for issue tracking and sprint management. This
let us organize and divide up tasks better between the 2 of us. As for organizing
information like format definitions and project structures we use Confluence. We also
used it to write this project thesis on as a matter of fact.

When it comes to staying organized with our codebase we utilized git, as any sane
developer has make use of source control solutions. Our git repositories is hosted on
bitbucket.org as it was the most convenient solution. Another thing we used to help
development was a CI (Continuous Integration) setup for build automation. In our case it
was Jenkins. The main reason we set one up is so that we had access to the latest version
of the code in compiled form, making it generally easier to test and use with other
modules. We also configured that when the repository on Bitbucket received a push, it
would trigger the build system. Jenkins would then pull changes for said repository and
build it per configuration.

Design

We decided to structure our project as a pipeline consisting of several programs, defining
the format at each stage early while keeping the individual implementation as flexible as
possible. We designed the system in such a way as for it to be possible for a customer to
place an order on a web page and the system could carry out the operation independent
of any further human intervention. The system works by taking configurations from the
web page and feeding them into the RealMap Generator, downloads the relevant data
from 3rd party servers and generates map data. The System then uses a modified

13

Minecraft server to generate maps based on the map data. The RealMap generator
determines placement of biomes and the height of the terrain but the mod lets the
standard Minecraft systems handle the placement of vegetation and ores, in order to keep
the look as consistent as possible with ordinary Minecraft maps.

Figure 5.1: Planned modules for the map generator to the website.

When we ended up at the conclusion that interfacing with Minecraft in some way, a
decision was made to split the application up into at least 2 parts. The one that interfaced
with Minecraft and the ones that did the rest. This was based on the fact that the easiest
way to interface with and extend Minecraft is as a mod for the game, specifically a Forge
based mod. Also on the fact that Minecraft is quite the heavy burden on the system and
downloading, combining and adjusting geographical data don't require Minecraft at all.
Splitting up the solution also gives more flexibility to its uses. Lastly there is also
another good reason for this divide, licensing code. As modding when it comes to
copyright and selling product can be a legal minefield, we had the divide as a way to
keep the code bases separate when it comes to licenses.

Program Specifications

Command line arguments for the RealTerrain application

Keyword Default Required Keyword
Only

Explanation Type

-input - true false What file to
read from.

String

14

-output - true false What folder
to write to.

String

-latitude - true false Bottom
latitude.

Double

-longitude - true false Left
longitude.

Double

-import asc false false What kind of
data
importing.

Import

-export realmaps false false What kind of
data
exporting

Export

-osmserver see below* false false What osm
server to read
from.

String

-temp temp false false What folder
to store
temporary
data in.

String

-yscale 46.0 false false The vertical
scale of the
generated
world.

Double

-xzscale 46.0 false false The
horizontal
scale of the
generated
world.

Double

-compression - true false the type of
data
compression
used

Compression

-iterations 100 false false The number
of iterations
for the level
set noise
remover

Integer

15

-roughness 0.3 false false The
roughness of
the terrain
generated to
fill in missing
data

Double

-debugfolder - false false What folder
to write
debug data to.

String

-debug false false true Whether to
write debug
data.

Default

-printmanifest false false true Print manifest
content, then
exit.

Default

-help false false true Print the help
text, then
exit.

Default

*http://www.overpass-api.de/api/xapi

RealMaps WorldType

Folder Structure

<name> (Folder)
config.json (Main config file) Contains main configuration points, like
villages on / off.
features.json (Feature list) List of where certain features should be placed,
like signposts.
data (Folder)

region.<x>.<z>.png (Region height-map) Contains all necessary data
to generate an entire region.

File content definitions

(JSON) Main config file

http://www.overpass-api.de/api/xapi

16

{
 "Name":"string",
 "Latitude":0.0,
 "Longitude":0.0,
 "Width":0,
 "Height":0,
 "Scale":0.0,
 "Stronghold":true,
 "Villages":true,
 "WorldBorder": {
 "X":0.0,
 "Z":0.0,
 "Size":0
 }
}

"Name" (String) name of map.
"Latitude" (Double) world position, latitude wise.
"Longitude" (Double) world position, longitude wise.
"Width" (Integer) data width in blocks.
"Height" (Integer) data height in blocks.
"Scale" (Double) what scale on the xz plane this map is generated with. 2 would
mean a 1:2 scale map for block to meter.
"Stronghold" (Boolean) whether or not there should be strongholds generated.
"Villages" (Boolean) whether or not there should be villages generated.
"WorldBorder" (Object) (Optional, can be null)

"X" (Double) x position of the center
"Z" (Double) z position of the center
"size" (Integer) The width and height of the world border

(JSON) Feature list

17

{
 "Signs":[
 {
 "X":0,
 "Y":0,
 "Z":0,
 "Standing":true,
 "Facing":0,
 "Line1":"string",
 "Line2":"string",
 "Line3":"string",
 "Line4":"string"
 }, ...
],
 "Beacons":[
 {
 "X":0,
 "Y":0,
 "Z":0,
 "Color":"string"
 }, ...
]
}

"Signs" (Array of Object)
(Object) represents a sign

"X" (Integer) The x position of the sign
"Y" (Integer) The y position of the sign
"Z" (Integer) The z position of the sign
"Standing" (Boolean) Whether or not the sign is standing or wall
mounted
"Facing" (Integer) The direction the sign is facing, see this page for
values to use
"Line1" (String) The first line on the sign
"Line2" (String) The second line on the sign
"Line3" (String) The third line on the sign
"Line4" (String) The fourth line on the sign

"Beacons" (Array of Object)
(Object) represents a beacon

"X" (Integer)The x position of the beacon
"Y" (Integer) The y position of the beacon
"Z" (Integer) The z position of the beacon
"Color" (String) TODO

(PNG) Region height-map

Name: region.<x>.<z>.png

The x and z is a direct mapping to Minecraft region files.

http://minecraft.gamepedia.com/Sign#Block_data
http://minecraft.gamepedia.com/Sign#Block_data

18

Size: 512x512

Bit depth: 32 bit

8bit: Height-map data
8bit: Biome data
8bit: Water level data
8bit: Flags (from least to most significant bit)

Ignore height data
Ignore biome data
Ignore water data
-
-
-
-
-

RealTerrain

Language: Java

The language chosen for this part of the project was Java. We believe that Java was the
obvious choice, the development team have experience with it and we felt that it offered
a good balance between development time and performance. While C++ had been
another alternative the longer development time would not have been worth the
increased performance, especially because getting that extra performance would have
meant even more development time. As this is not a real time system it was just not
worth it. In addition the need for the mod to run Java means the project would have
required it in any case.

Library: JSON

Since we decided to use JSON as in our data format and the most practical library for
this was json.orgs own implementation.

Build system: Maven

As one of our team members had previous experience with Maven, we deciced to use it
as our build system for this project.

The RealTerrain processes third party data into a form the Minecraft mod uses to
generate maps. The program is started and runs to completion without human
intervention. Configuration of the program is handled by command line arguments. The
launcher parses the command line arguments and verifies that all the necessary ones are
present and valid. If this is not the case the program throws an exception.

19

The program loads the DEM data from the folder designated in the command line

arguments. Currently the only format supported is the ARC/INFO ASCII GRID format[9

. The program is designed to be as independent of the format as possible, so supporting]

additional formats should pose little problem. The program creates a map stored as a two
dimensional array large enough to contain the data based on the scale of the data and
desired scale of the end product. Since both the DEM data and the output map is aligned
as up being north all we have to do is scale the cell location in the input data to find the
location in the output data. The location cell in the input data is scaled to find out which
cell in the map it goes into. If several cells scale to the same location the average of them
is used in the map. Cells with missing data in them are filled in with the Bottoms Up
Midpoints Displacement Algorithm.

At this point additional data is downloaded from an OpenStreetMap server to give
additional terrain features such as woods and lakes. The map data is run through the
level set noise reduction algorithm to reduce the amount of noise and artifacts in the
data. The compression algorithm specified by the command line arguments is then
applied to the map data to reduce its dynamic range to something representable by
Minecraft. The current alternatives being gradient domain and linear
compression. Finally the height data and feature data is combined and exported in the
form of a png image together with files in a JSON format with additional map
specifications and data.

Biomes Selection

In order to do the most best terrain representation we had to utilize the broadest selection

of Minecraft biomes that was practical. We went through Minecrafts different biomes[13]

 and selected most of those that reasonably represents real world terrain without simply
being simply hillier versions of others with the same vegetation. We ended up with
selecting the following: ocean, plains, desert, extreme hills, forest, taiga, swampland, ice
plains, beach. jungle, cold beach, cold taiga and savanna.

From OpenStreetMap we have extracted the following relevant terrain features: water,
wetland, wood, needleleaved wood, broadleaved wood and beaches. Not enough to
represent all the biomes.

In order to have more of a basis for selection we divided the world up into six different
zones: Arctic, boreal, temperate, tropical desert, tropical savanna and tropical rainforest.
The program selects the general biome based on a png image with different specific
colours representing different biomes. In order to make the lookup as easy as possible

the image was made in a equirectangular projection so that the transformation from[14]

latitude and longitude to pixel coordinate is a simple linear transformation.

20

Figure 5.2: The lookup image dividing the world into different biomes.

we combined these two data sources to determine the particular Minecraft biome in the
following matrix.

 Arctic Boreal Temperate Tropical

 Desert Savanna Jungle

Not Specified Ice
Plains

Extreme
Hills

Plains Desert Savanna Plains

Water Ocean Ocean Ocean Ocean Ocean Ocean

Wetland Swamp Swamp Swamp Swamp Swamp Swamp

Wood Cold
Taiga

Taiga Forest Forest Forest Jungle

Needleleaved
Wood

Cold
Taiga

Taiga Taiga Taiga Taiga Jungle

Broadleaved
Wood

Cold
Taiga

Forest Forest Forest Forest Jungle

Beach Cold
Beach

Beach Beach Beach Beach Beach

Bottoms up Midpoint Displacement Algorithm

The DEM data we download had areas of faulty or missing data, hence the need for an
algorithm to fill in the missing pieces. The midpoint displacement or diamond-square
algorithm is a good candidate for making plausible terrain. The problem with using it in
its canonical form is that since it starts from the edges and generates the terrain top down
is that the missing terrain would end up with terrain completely unrelated to the
surrounding terrain. A solution to this problem was suggested by Belhadj an we decide

to implement this algorithm . The algorithm works by adding a step before the normal[7]

21

map generation procedure where the diamond-square algorithm is essentially reversed,
the algorithm goes through every data point and checks if their direct ascendant have
been generated, if this is not the case the ascendant is generated based upon all its known
direct descendants. This continues until every defined cell has had every ascendant
generation generated. Then the algorithm runs through as normal. We implemented this
algorithm with one change change to it. The algorithm as described worked by adding
all initial defined cells to a queue and processing them in order, adding subsequent
defined ascendant cells to the back of the queue. This has the consequence that a cell
may have had its direct ascendant processed before itself because the descendant that
added it to the queue was to far down the generational tree. The result being that some
info is lost as some cells cannot contribute to the value of the early generations. As the
generation of a cell is completely predicable due to the nature of the diamond
square algorithm we decided to to the bottoms up step of the algorithm starting with
what would usually be the end generation and continuing to the top.

Figure 5.3: Generation numbers in the midpoint displacement algorithm

HDR Compression Applied to Terrain

In this project we only concern ourselves with the representation of the surface of the
earth above water. Even then the height of the surface of the Earth range from 418
meters below sea level at the shore of the Dead Sea to 8848 meters above sea level at the

summit of mount Everest . [3] An unmodified version of Minecraft have a maximal

This leaves usvertical range of 256 meters with sea level usually being at 63 meters . [2]

 with an obvious problem when it comes to representing the Earth in Minecraft.

If we want a map consistent with the ordinary Minecraft experience we have 193
(maximum height minus sea level) meters to represent everything from sea level to the
highest point on the map. In the extreme example of representing the entire possible
range of natural heights on the planet we would need to scale everything down by a
factor of 46, mount Everest being 193 meters above sea level and the dead sea 9 meters
below. This would obscure smaller details and remove a major point of this project,
which is recognizing local landmarks from where you live inside Minecraft. We need to
represent both small and large terrain features on the same map. This problem has a close

22

analogue in photography namely HDR imaging. That is representing high dynamic range
image data on low dynamic range display mediums.

The only difference between a grayscale HDR photo and a DEM is what the data
represents, light intensity or height. They are both almost universally represented as
numbers organised into grids where the numbers have no obvious upper bound, and in
the case of DEM no obvious lower bounds either. For both types of data features at
multiple scales are important and a linear compression would obscure small scale details.
An HDR height map visualized as an image would of course be a prime candidate for an
HDR image compression algorithm. The question then becomes the degree the resulting
data visualized as a 3d environment looks like the terrain it is supposed to represent. The
only way for the terrain to keep its shape is to scale it down linearly, which as mentioned
earlier entails other problems.

HDR imaging algorithms usually rely on the assumption that the human vision is much

less sensitive to global image intensity ratios compared to local ones , so that the[4]

algorithms try to keep local ratios as close to the original data as possible on the expense
of global ratios. This obviously applies to height data represented as grayscale images
until you try to visualize that data in a 3d environment. At this point the analogy breaks
down as features that are not physically close may be visually close, for example
viewing a mountain behind a much closer hill. Representing relative difference across
many different scales necessarily means compacting large features more than smaller
ones. This means that terrain features visible in a high dynamic range environment may
be obscured in the low dynamic range environments as they are obscured by features less
compressed than they are, as shown in figure 5.4.

23

Figure 5.4: Illustration of how non-linear scaling may affect visibility. The blue line
represents vision in the real world or a linearly scaled terrain representation. The red line

illustrates vision in terrain that has been processed by an HDR imaging algorithm.

It is clear that a non-linear terrain representation becomes to some extent symbolic, but
as this is already the case with maps, we must find out how well a symbolic 3D
environment works. As the goal is terrain recognition more than an accurate
representation, we believe that HDR algorithms will in some cases give us a better result
since it can allow us to create maps in a smaller scale than would be possible otherwise
and that the distortion in terrain is made up for by the fact that we are representing the
area in a scale more familiar to people.

The algorithm we decided to implement was the gradient domain high dynamic range

compression . The algorithm works by finding the gradient of the logarithm of the[5]

image. The magnitude of the gradient is reduced in such a way that large gradients is
reduced more than small ones, this is called attenuating. The attenuation function is
constructed based on the original derivatives and smaller scaled down versions. This is
so that the derivative of strong edges affect weaker edges nearby so the strong edges
won't introduce halo artefacts as they are scaled down much more than the weaker image
features around them. The image is finally reconstructed from the attenuated gradient.

The reason for choosing this algorithm in particular is twofold, the focus on avoiding
introducing artefacts such as halos around strong edges and the focus on keeping all
gradients in the same direction.

24

Implementation

In implementing this algorithm there were some problems. In some image processing[5]

algorithms, the way you handle edge cases is almost immaterial, you can concentrate
solely on how the algorithm performs on the interior. This was certainly not the case in
this one. It turns out that this algorithm is extremely sensitive to missing data. For
example if we run the image in figure 5.5 through an earlier configuration of the
algorithm we end up with the the image in figure 5.6.

Figure 5.5: The image used in this example, scaled up 800%.

Figure 5.6: The result from the original configuration of the algorithm.

We see that the image has lost the upper row and leftmost column of data and gained
some unwanted halo artefacts. This configuration of the algorithm uses a border that is
one pixel wide, all the sub algorithms work on the entire area of the image that was part
of the original data. In debugging this algorithm it was very useful to export intermediate
data as images.

25

Figure 5.7: The forwards y differentiation of the image.

Figure 5.8: The backwards divergence of the attenuated gradient.

On image 5.7 and 5.8 the blue line represents the place where the original image ends,
everything outside the blue line represents data used by the algorithms for handling edge
cases.

(1)

The represents the log of the image. The attenuation function is represented by the
symbol . The represents a point in the data.

The upper right corner of the image in figure 5.8 represents the divergence of the
attenuated gradient explained in formula 1. It is missing data outside the part of the
image representing the original data. The problem is caused by the fact the algorithm is

26

trying to construct a height map where there are completely flat paths and paths leading
down a steep slope with the same start and end position, represented as a green and red
arrow on figure 5.8. A geometric impossibility in euclidean space. The closest
mathematical equivalent is the effect we see, a halo added to the image.

The problem is that the attenuating function was not handling the data outside the
original image. It works this way to avoid having to handle edge cases. This means that
we are losing the data on the edge when attenuating the gradient. The solution was to
increase the size of the image border by two pixels instead of one, so that the there is
enough buffer space for the differentiation function to generate all its data and so that
the attenuation can work on all the differentiated data and still have enough buffer space
to avoid handling edge case.

Since we are using finite difference methods it seems prudent to mention how the
various functions are approximated.

(2)

(3)

(4)

This algorithm tries to construct the closest approximation possible from the adjusted
gradient, this has the result that areas that are flat in the input data are not entirely flat in
the constructed output image. This becomes a problem for areas that this is very
noticeable, such as bodies of water. It became necessary to add a step to the algorithm to
enforce the flatness of such areas. It works by treating entire areas as a single pixel, any
adjustment to any of the individual pixels that make up that area is applied to all of them
with a factor inversely proportional to the number of pixels in the area.

In they show that.[12]

(5)

The approximation

(6)

gives us

(7)

The image is really reconstructed through a multigrid method but this simpler but slower
single grid version shows us the principle.

(8)

(9)

27

After running equation (9) enough times you get a close approximation of the the
mathematically closest image which gives .

Level Set Noise Reduction

It became apparent that we would need a noise reduction algorithm in our project as the
DEMs contains some artifacts from the data collection. We choose a noise removal
algorithm meant for images on the assumption that image noise would not behave
significantly different from the noise found in DEM data. Since we are using the data for
a purpose that makes apparent similarity to humans the relevant focus, potential small
systematic errors will not be a problem. Had the data been used in a way that made high
accuracy more important we would have spent more time considering this matter.

The choice of the Image processing via level set curvature flow in particular had much[1]

to do with the fact that this algorithm stabilizes to a final result, meaning that it is much
more useful in an automated system compared to an algorithm that would for a better
result need human intervention to stop it from removing to much of the actual terrain
features. Running this algorithm for any additional iterations after the image has
stabilized will not cause any additional changes. This means that configuring the system
is much easier as we only have to consider a lower bound on the number of iterations for
the algorithm to be effective.

The idea behind this algorithm is to see an image as a series of contours that can be
evolved based on the presence of noise until the image stabilizes.

On contours, convex areas have a negative curvature while concave areas have a positive
curvature. If we let a contour evolve under its own curvature, along the normal of the
contour, concave areas will grow until they become convex and convex areas will shrink
until they disappear. Very strongly convex or concave areas indicate noise but allowing
the image to evolve like this will only erase it.

If we only allow positive curvature to have an effect we will end up with concave areas
growing until the shape is convex. This is known as min flow, min(k, 0). If we only
allow negative curvature to have an effect we will end up with convex areas shrinking
until the entire shape is convex and then until it disappears completely. This is known as
max flow, max(k, 0). In order to selectively remove the unwanted features of the image
we need some way to selectively apply either min or max flow. The method suggested
was to utilize a switch based on local image properties. The function selects min flow on
locally convex points and max flow on locally concave points.

Let be the normal speed of the level set curve .

This is can be mathematically proven to be the equivalent of the following .[12]

28

(1)

The core of the algorithm is to let contours of the image evolve along the along the
normal direction with the speed , we then get.

(2)

 is the time differentiated image intensity, is the magnitude of the image
gradient and is the speed function. This is the equivalent of the image contours
moving in the normal direction with speed [1]. Applying finite integration to
this gives us the the following.

(3)

The variable represents the intensity of each step, we found that a value of 0.02
worked well. Having it higher than that sometimes lead to small images not stabilizing
and simply disappearing.

The speed function selects whether to use min or max flow, it it defined as follows.

(4)

The symbol refers to the curvature in point . refers to the average

image intensity around point , refers to the average image intensity

along the tangent of the contour in a small radius. The way to find the tangent is simply

to take the orthogonal to the direction of the gradient in that point.

The main problem in implementing the level set method applied to noise reduction was
related to the speed selection function. The problem was that the function was not
sensitive enough so very little would happen to the image, it was difficult to get the
function to detect edges between 90 and 270 degrees.

In order to understand the problem it was useful to consider what would constitute a
detection. There are four possibilities, the curvature may positive or negative, the
iso-intensity tangent may be higher or lower than the local average. A combination of
these two gives four possibilities. Looking at the function it is easy to see that two of the
combination would constitute a detection. Positive curvature and the iso-intensity
tangent being higher than the average leads to being positive. Negative curvature
and the iso-intensity tangent being lower than the average leads to being negative.
The two other combinations gives equal to zero.

29

Figure 5.9: Raw data scaled up 800%

Figure 5.10: Curvature, yellow being positive and green being negative.

Figure 5.11: Flow selection in an early version, blue meaning min-flow and red meaning
max-flow.

Figure 5.12: Improved flow selector.

In order to understand the behavior of this algorithm we must first understand the
properties of the curvature in a point.

The curvature in two dimensions can be expressed as the divergence of the unit normal
vector. (http://impact.byu.edu/Image%20Processing%20Seminar/FiniteDifferenceNotes.

)pdf

(5)

(6)

Giving us.

http://impact.byu.edu/Image%20Processing%20Seminar/FiniteDifferenceNotes.pdf
http://impact.byu.edu/Image%20Processing%20Seminar/FiniteDifferenceNotes.pdf

30

(7)

This reveals that when both the x and y axis curve downwards the curvature will be
negative, when both curve upwards the curvature will be positive. If the signs differ the
sign of the curvature will be undetermined but the magnitude will be much smaller.
Figure 5.13 illustrate that the curvature will be positive in the depressed area in a
concave feature, similarly an elevated area in a convex feature will have negative
curvature.

Figure 5.13: Image illustrating curvature in a concave area

It becomes clear that in order to increase sensitivity we need to increase the probability
of being less than when on an elevated area and the opposite when
not. Considering that decreasing when on an elevated area and increasing it
when in a depressed area will accomplish this. Not counting the central pixel when when
calculating the average of the local iso-intensity tangent will make the function more
sensitive, which solves the problem. This gives us the following result.

Figure 5.14: Noise added to original image data in figure 5.9.

31

Figure 5.15: Final result using the original function.

Figure 5.16: Final result using the improved function.

Map Analysis Algorithm

We decided that it would be useful with an algorithm automatically the degree to which
different parts of the maps where accessible from each other. The algorithm works by
dividing the entire map into convex areas smaller than a certain number of cells we will
call , here defined as areas that every point in the area can be reached from every other
without having to take a detour. Note that by this definition moving from on point on to
another in a region may involve moving through another region, as long as it can be done
in a straight line. As it is possible to jump one block up in Minecraft that is considered
the limit for traversable terrain. Every point that borders a region and is accessible from
another region is added to a list. Then Dijkstra algorithm is run with every region as a
starting point, having a set value as a cut off point for continuing the search called .
The amount of nodes in regions accessible from the starting region is tallied, we will call
that value . When calculating the accessibility of a certain region we use the
following formula.

(1)

This assumes that regions have no actual size, but this is accurate enough for our
purposes as long as is significantly larger than . We originally planned to
implement an algorithm creating paths out from some inaccessible regions if there
proved to be too many of them, but using this algorithm on our maps shoved that this
would be unnecessary as the terrain generation algorithm generally produced very
accessible maps.

32

Figure 5.17: Image showing accessibility in test image.

Open street map feature parser.

We recognized early that constructing maps exclusively from height data would result in
rather uninteresting terrain. Trying to generate terrain features such as lakes and woods
based solely on the height data would have been time consuming and error prone. For
example, figuring out whether a flat area is a desert or a lake would have been quite
difficult.

We realized that we needed a source of such data and decided that the best fit was

OpenStreetMap . Our program generates a http request from the location data received[9]

in the DEM and stores the response. The OSM data is stored as xml data in an
hierarchical fashion. The things we parse from the data are nodes, ways and relations.
Nodes containing latitude and longitude are stored with an id number. Ways are objects
in OSM that store geometric objects such as polygons and polylines as a list of reference
s to nodes. Ways that make up polygons simply store the same id reference first and last.
Relations are objects stored as references to ways, this is necessary to make up areas of
more complex topology. For example a wood with a hole in it could be stored as two
ways, one inside the other. Both the ways and relations may have tags in them signifying
that they represent some terrain feature. We parse this data and store it as ,coordinates
lineCollections and regions. Ways that make up a terrain feature by themselves are
turned into a and a region referencing that . Relations arelineCollection lineCollection
directly translated into regions. Regions describes the type of terrain it represents. Nodes
have their coordinates converted into a map relative coordinate system, but with enough
precision to tell where they are inside a map cell and not just which map cell they are in.
They are stored as a collection of coordinates.

What we end up with is a list of regions and a list of lineCollections and a collection of
 Each region contain references to its coordinates. lineCollections. Each lineCollection

references to its . For each region we create a two dimensional array.contain coordinates
The size of the array is based on the scale of the map and size of the region parsed, the
easternmost, northernmost, southernmost and westernmost is found. Thecoordinate

33

array is created so that it is large enough to encompass the extreme points. For each line
 in a region we iterate through all of its .Collection coordinates

First we find the line between the first and the second coordinate and then identify all
We proceed to docells where the line passes through the vertical center line of the cells.

this with the second and third coordinates, then between the third and fourth and so on.
When the last and second to last have been processed in this manner we movecoordinate
on to the next . When all the in a region have beenlineCollection lineCollections
processed we sum up the number of times the center line in each cell has been crossed.

Figure 5.18: An image showing the number of crossings on the array.

Figure 5.19: The crossing per column summed sequentially with the cells inside the
feature marked in green.

We sum up all the cell crossings in each column sequentially from the top to the bottom.
Each cell now contains the number of crossings that has happened in it and all of the
above cells. A cell with an odd number of crossings in and above it, is inside the terrain
feature. If there are an even number of crossings the cell is outside.

The cells inside the region is then transcribed to the main map, detailing the relevant
terrain type.

RealMapsWorldType

Language: Java

Java as the language of choice wasn't much of a choice really. As the modding
framework Forge/ FML and Minecraft is Java based, the only 2 viable options was Java
or Scala. On top of all this, of these options, only Java was viable based on past
experience with this language on our team. As a result, it meant that most of the core
code was in Java.

Framework: Forge/FML

The choice of Forge/FML was based on that one of our team members had previous
experience with using this framework. It is also one of the most used modding
framework for Minecraft and has a considerable amount of uses and things one can to to

34

the game.

Library: JSON

Since we decided to use JSON as in our data format and the most practical library for
this was json.orgs own implementation.

Build system: Forge Gradle (custom Gradle for Forge specifically)

This choice is the result of using Forge/FML. As the framework has its customized
version of Gradle to set up development environment and building working mod files,
means thet there is no piratical way around it. Not that it is a bad thing as it means all the
things that are required to mod for Minecraft is taken care of.

RealMapsWorldType is a Minecraft mod. The purpose it serves is to use data from
RealMapsGenerator to generate worlds in Minecraft to those specifications. It's mainly
intended as a server side only mod but will work client side as well.

The Mod is made to be used with Forge, a highly popular modding framework for
Minecraft. By it being a mod, it easily integrates itself into Minecraft's already existing
code base at runtime. This gives us access the already existing default Overworld terrain
generator. What we did is creating another WorldType that extended the default one. By
doing so, we supply our own generator that extended the default generator, making it so
that we could manipulate anything in the generator process.

When our generator is asked for a chunk, the mod checks if the chunk is inside the area
defined by the RealMapsGenerator. If that is the case, it replaces all the blocks of the
first stage with another set of blocks that mirror the data given by RealMapsGenerator
for that area, including water height. Something similar happens when it comes to the
biome step in the generator chunk generating process.

The mod is configured via a .cfg file in the config folder, and the "server.properties".

The mod also has client side only features (mostly for debugging) like the ability to
select a dataset interactively via the graphical user interface when configuring the
generator.

Configuration

Configurations for RealMapsWorldType is done in 2 files. Additionally, there is a client
only interactive way to configure these settings as well. The client only thing relates to
the "Customize" options when selecting world type as it allows the player to select what
dataset to use from a list of those parsed from the data folder.

The general settings file in "<Minecraft installation>/config/RealMaps.cfg"

35

Configuration file

general {
 # The folder to search after valid data sets in
 S:data_folder=terraindata

 # Name of the data set that should be selected as default
 S:default_data_set=default

 # Force all areas in data set to be generated
 B:force_generate=false

 # Shut down Minecraft after force generating the areas
 B:force_generate_quit=false
}

All of these options should be self explanatory with their comments. Note that the
"force_generate" and "force_generate_quit" only works on dedicated servers and not
when running the integrated one as a client.

The next set of configuration options is only for dedicated servers as they are in the
"server.properties" file. The options that will affect the generator are "level-type" and
"generator-settings". "level-type" is the field that determines what generator should be
used when creating a new world save. If the field "generator-settings" has a value
beyond being empty, then the value it has will be used as a path to a dataset to load and
use, otherwise the "default_data_set" value will be used if possible.

There is 1 more thing to take note of and that is the file "level.dat" in a saves structure. If
that save is using this world type the the field "generator-settings" will be used in the
same way as said above.

Generator

There actually exists 2 different version of the WorldType, "RealMaps-Flat" and
"RealMaps-Default". The difference is that the flat variant sets the ground level to 4
when that point is outside the dataset selected for that world. The default variant uses the
default generator with its settings when that column of blocks is outside the dataset.

Initialization

The first thing of note happens when the mod initializes. The mod will check its settings
for what folder is its default data folder. It will then scan that folder for all its valid
dataset and store a reference to them.

When the server component of the game starts up, given that the world type is set
correctly, the mod will load the given dataset specified in the "generator-settings" as
stated earlier. This field also exists in already created worlds so that when they are
loaded again the correct dataset is loaded. Note that this only works as long as that

36

dataset it used stays at that path. If it is a fresh world then the field in the "level.dat" file
is set to the path of the dataset selected to be used.

Generating chunks

All this presumes that the world this server has loaded is using RealMaspWorldType as
it world type. When the server tries to load a chunk it checks to see if it exists, if not the
server will request that chunk from the chunk generator. And in our case, is replaced
with RealMaps version of it thanks to the world type in use. When receiving requests for
chunks the first thing that is done is to check if it is within bounds of the defined area of
the selected dataset. If it is outside then the chunk generated is based on the default
behavior, and that is based on the version in use. If on the other hand then the chunk is
generated in accordance to the data for that area specified by the selected dataset.

In the first part of generating a chunk, each column of blocks are made to specifications.
First the column are filled up with stone blocks to height as specified by the dataset for
that point and after that, all air blocks up to the specified water level are replaced by
water blocks. In a later step where the distribution of biomes are supposed to be laid out,
the biome distribution for that chunk is replaced by data from the selected dataset that it
has for that area. All other things are handled by the default generator for Minecraft,
resulting in rather natural looking world with caves, forests and villages.

Other uses

The mod includes a chat command for translating the current player's positions into
latitude and longitude and then hand it to the player in the form of a Google Maps link.
The result is only useful if used when using a save where RealMapsWorldType is in
effect.

When it comes to the datasets one could artificially create them as long as it fits the
format definitions. This means that other people can use it to create almost custom
worlds that takes a fraction storage space compared ordinary custom save files.

Website

Language: Python, bash

The main reason behind using Python is simply that Django is python based.

Framework: Django

After looking at many different solutions, the one that had support for what we needed
and looked flexible enough without needing to learn an entirely new language was
Django. It has a stable and hassle free database support, management and integration. It
also has very nice templating and page rendering systems.

37

Library: Celery, JSON

Celery is a task queuing and distribution library made for real-time operation and
scheduling tasks as requested. Tasks, or sometime referred to as execution units, are
executed on any of the currently available worker servers set up.

Programs: PostgreSQL, Apache.

PostgreSQL was used as the database solution, mostly because its was nicer to work
with. Apache was used as it was the default and Django works with it by using
mod_wsgi.

This project as stated earlier, included the thoughts of generating these worlds as a
service. One of the challenges with this based on the fact that a Minecraft server is
needed as part of generating the maps. This meant either handling multiple Minecraft
instances running in parallel or just 1 and some locking mechanism. As this site would
only be a prof of concept, the simpler solution with managing 1 server was chosen. The
other option would work but more system resources and development time was needed
for that.

Generating worlds

The process for a world to be generated starts with a job request via the forms. In this
form the user can specify the geographical data to use, what settings to transform the
data with, name and description for the job. After this is recorded in the database, a
celery task is set up and executed on one of the worker threads. First thing the task does
is to create the folders used to store temporary and permanent results in. Next is to run
the generator to create a RealMaps dataset for the mod to use with, where all the options
set earlier at imputed as launch parameters for the generator to use. When the dataset is
generated, the Minecraft server is configured properly and then started. The server will
work until the entire map is generated and saved to disk. At this point the world file is
zipped up and moved to storage, the job marked as done and results recorded, and a
download link is generated.

User Testing

In order to test recognizability of the maps we have designed a set of experiments. The
point of the experiments is check whether a point on a conventional map may be found
inside Minecraft and vice versa. Given that we know the scale of the map and the
latitude and longitude of the map centre, it is relatively easy to convert Minecraft map
coordinates to real world coordinates and vice versa. The map we decided to use was
Google maps, it being the easiest alternative. Also, during testing we had a logger
running to track various things about the subjects in game. These was in our case what

38

direction they where looking and their position. Our goal for this was to see how close
they guessed the location and how they got to that location. This should hopefully give
insight in how much users recognizes their surroundings in Minecraft when compared to
a real place.

Test 1

The test subject is given a map with a location marked, the subject is asked to find the
corresponding points in a Minecraft map representing the same area.

Test 2

The test subject is given a Minecraft map with a location marked, the subject is asked to
find the corresponding points in a map representing the same area.

39

6. Result
User Tests

The images below shows illustrates the path some of our test subjects took. The red dot
is the start location and the blue dot is the end location.

Figure 6.1 to 6.5: Assorted collection of paths taken by test subjects.

We did two main rounds of tests, one with children around the age of ten. And one with
people in their early teens.

Generally we discovered that people in their early teens and children have some
difficulty navigating the maps. The fact that the around four year age difference between
the groups of test subjects made such a little difference was surprising. We did a few
informal tests with college students, they much less trouble navigating the same maps.
Most people in all age groups had roughly the same approach, try to identify a terrain
feature in water and navigate based on that. Even though the rate of success varied with
the age groups generally the strategy was the same, find a very obvious feature on the
map and navigate based on it.

40

1.
2.
3.
4.
5.
6.
7.
8.

9.

2 L20 572.448
309.495

1518.500
986.500

1 G2010 60.864184,
10.695748

3 L20 1029.300
801.700

1491.403
978.644

4 L20 2 4 4 3 511.594
1381.726

5 G2010 60.837069,
10.750397

7 G2010 1 3 2 3 519353

6 L20 3 ---

8 G2010 4 4 1 5 10951286

9 L20 3 5 3 4 715.511
1854.992

t2-1 L20 4 4 3 4 1352.74
2006.771

778.300
1533.320

t2-2 G2040 5 4 2 5 1706921

t2-3 L20 4 3 3 5 769.692
1476.320

115.769
1739.556

4 G2040 3 5 1 5 1125964

t2-5 L20 4 5 3 4 836.123
1542.881

968.231
1746.870

t2-6 G2040 4 4 4 3 439.260
1245.512

outside

Tester
Map Type
The map looks like Gjøvik
The map looks like Minecraft
It's easy to navigate the map
The map looks nice
Find the Latitude Longitude of the Beacon in minecraft
The Minecraft x z Coordinate of this point. https://www.google.no/maps/dir/60.79
7420,10.938327//@60.797420,10.938327,10z

https://www.google.no/maps/dir/60.797420,10.938327//@60.797420,10.938327,10z
https://www.google.no/maps/dir/60.797420,10.938327//@60.797420,10.938327,10z

41

9.

10.

11.

12.

The Minecraft x z Coordinate of this point. https://www.google.no/maps/dir/60.78
9137,10.682920//@60.789137,10.682920,10z
The Minecraft x z Coordinate of this point. https://www.google.no/maps/dir/60.72
0427,10.805908//@60.720427,10.805908,10z
The Minecraft x z Coordinate of this point. https://www.google.no/maps/dir/60.83
4592,10.618659//@60.834592,10.618659,10z
The Minecraft x z Coordinate of this point. https://www.google.no/maps/dir/60.84
7043,11.150257//@60.847043,11.150257,10z

https://www.google.no/maps/dir/60.789137,10.682920//@60.789137,10.682920,10z
https://www.google.no/maps/dir/60.789137,10.682920//@60.789137,10.682920,10z
https://www.google.no/maps/dir/60.720427,10.805908//@60.720427,10.805908,10z
https://www.google.no/maps/dir/60.720427,10.805908//@60.720427,10.805908,10z
https://www.google.no/maps/dir/60.834592,10.618659//@60.834592,10.618659,10z
https://www.google.no/maps/dir/60.834592,10.618659//@60.834592,10.618659,10z
https://www.google.no/maps/dir/60.847043,11.150257//@60.847043,11.150257,10z
https://www.google.no/maps/dir/60.847043,11.150257//@60.847043,11.150257,10z

42

7. Conclusion

Future Work

When we started this we had many ideas for possible features that we did not have time
to implement, the one core feature we did not manage to implement was automatic
downloading of the geographic height data. The API for scripted downloading of the
data was non-existent. Also the program as is supports only one data- format
ARC-ASCII, extending support for other formats would have been high on our list of
priorities. For the worlds generated, we had plans for roads, markers and borders to
populate the world with. Another direction worth exploring is generating specifically for
popular mod packs, like the "DireWolf20" pack by "Feed The Beast". Doing things like
generating structures and using biomes specific to that collection of mods. Another thing
that needs further work is the website itself. Because the site is only a prof of concept it
lacks in visuals, design, interactivity, usability and reliability.

User Testing

When conducting the tests we mainly learned that conducting QA tests properly and
consistently is hard and requires quite a lot of planning.

It is difficult to draw more conclusions than that based on our rather small sample, but to
the degree we can conclude anything we can conclude that norwegian children and early
teens are generally not very good at orienting on our maps. Observing the tests it became
clear that most people relied on obvious water features to navigate, most of the subjects
managed to find and identify the island Helgeøya but often got disoriented when moving
to far away from it. The testers where obviously hampered by the relatively short view
distances possible in Minecraft in combination with the relatively the relatively small
downscaling of the maps we where using. We did not have time to tests maps that did
not have bodies of water in them but can only assume that they would have been even
more difficult to navigate. We can in any case conclude that additional landmarks such
as roads and the location of cities would have been helpful.

An interesting possible follow up test could be to give the testers some training in
navigating and check if their performance improved.

General Conclusion.

Our project generates maps generally consistent with Minecraft gameplay and aesthetics.
The terrain is recognizably similar to the terrain it is supposed to represent. While some
people may have trouble navigating the maps initially, we are confident that adding
additional landmarks or other features representing the real world like major roads will
solve that issue. When it comes to offer this as a service, the website works but our

43

current limitation on what geographical data that users can select from makes it rather
useless. This will fix itself when more options to adjust for generating maps like
structures in the world, different way to compile data and more diverse collection of
geographical data to select areas from.

Figure 7.1: Google Maps image of Helgøya

Figure 7.2: Helgøya in scale 1:25 gradient domain 1:60

Figure 7.3: Helgøya in scale 1:100 Linear

44

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

11.

12.

13.

14.

15.

16.

8. References

Malladi, R., & Sethlan, J. A. (1995). Image processing via level set curvature
flow. ()http://www.pnas.org/content/92/15/7046.short
Minecraft Wiki. . [Online; accessedhttp://minecraft.gamepedia.com/Altitude
4-May-2015].
Wikipedia. http://en.wikipedia.org/wiki/Extreme_points_of_Earth#Highest_point.
[Online; accessed 4-May-2015].
Dicarlio, J. M., & Wandell, B. A. (2000). Rendering high dynamic range images.
Proc. SPIE 3965, Sensors and Camera Systems for Scientific, Industrial, and
Digital Photography Applications.
Fattal, R., Lischinski, D., & Werman, M. (2002). Gradient Domain High Dynamic
Range Compression.
Seetzen, H., Heidrich W., Stuerzlinger W., Ward G., Whitehead W.,Trentacoste
M., Ghosh A., & Vorozcovs A. (2004). High dynamic range display systems.
Belhadj, F. (2007, October). Terrain modeling: a constrained fractal model.
InProceedings of the 5th international conference on Computer graphics, virtual
reality, visualisation and interaction in Africa (pp. 197-204). ACM.
Changelog for 1.7.2, Changes -> GamePlay -> World boundary http://minecraft.g

 [Online; accessed 08.05.2015]amepedia.com/1.7.2#Gameplay
http://en.wikipedia.org/wiki/Esri_grid [Online; accessed 09.05.2015]
http://diyhpl.us/~bryan/papers2/frey/levelsets/Chopp%20D.L.,%20Computing%20
minimal%20surfaces.pdf
Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent
speed: algorithms based on Hamilton-Jacobi formulations. Journal of
computational physics, 79(1), 12-49.
Sethian, J. A. (1985). Curvature and the evolution of fronts. Communications in
Mathematical Physics, 101(4), 487-499.
Minecraft. Wiki. Minecraft Biomes [Onlihttp://minecraft.gamepedia.com/Biomes
ne; accessed 11.05.2015]
Wikipedia. Equirectangular Projection http://en.wikipedia.org/wiki/Equirectangul

 [Online; accessed 11.05.2015]ar_projection
Chunkmapper homepage [Online;https://secure.chunkmapper.com/index.html
accessed 13.05.2015]
Level Set, Wikipedia [Online; accessedhttp://en.wikipedia.org/wiki/Level_set
15.05.2015]

http://www.pnas.org/content/92/15/7046.short
http://minecraft.gamepedia.com/Altitude
http://en.wikipedia.org/wiki/Extreme_points_of_Earth#Highest_point
http://minecraft.gamepedia.com/1.7.2#Gameplay
http://minecraft.gamepedia.com/1.7.2#Gameplay
http://en.wikipedia.org/wiki/Esri_grid
http://diyhpl.us/~bryan/papers2/frey/levelsets/Chopp%20D.L.,%20Computing%20minimal%20surfaces.pdf
http://diyhpl.us/~bryan/papers2/frey/levelsets/Chopp%20D.L.,%20Computing%20minimal%20surfaces.pdf
http://minecraft.gamepedia.com/Biomes
http://en.wikipedia.org/wiki/Equirectangular_projection
http://en.wikipedia.org/wiki/Equirectangular_projection
https://secure.chunkmapper.com/index.html
http://en.wikipedia.org/wiki/Level_set

45

9. Appendix
Original design notes, Ben Sawyer

Edit Document

RealMaps for Minecraft

 Goal : Make it possible to create HIGHLY playable maps from real geographies using publicly
accessible geographic data enabling new types of play and learning inside Minecraft.

Initial Notes & Thoughts

Looking at GeoBoxers and thinking about what we discussed it does seem like what we should be
focusing on is a level of ease, speed, and automization with playability vs.a level of accuracy. Accuracy
of some level is needed but what we really want is to make it easy for someone to get something
reasonably accurate and fun to play and experiment with.

What we want this project to do is the following:

1. It's geared toward kids, and the public-at-large. The maps created need to be meaningful and easy to
produce, and navigate once in game.

2. The maps need to be playable, that means easy to build on, easy to recognize the area if you're familiar
with it, and have navigable traits such as not having forests that are too hard to navigate, featuring key
bodies of water, rivers, lakes, ponds, and having some ability to place down key areas of interest, not
buildings, but ideally major highways, place name locations, city centers, etc.

3. They need to allow mashups. So once you render the data, it'd be great to allow the surface layer to be
just sand, or just dirt, or all ice, etc. We should be trying to build topology spines, that then can be
rendered out in different ways that people find interesting, certainly one skin could be realistic terrain
types, but we shouldn't think our end goal is only this realistic portrayal.

Toward those ends here are some initial thoughts:

1. We do not want to render buildings. The results are not necessarily that interesting in some respects
because the details will suck. This was clear in Chunkmapper as well.

2. We need to really avoid vegetation that isn't done as Minecraft does it now. We want to use Minecraft's
trees and others and not interpret our own. Chunkmapper's vegetation approach is terrible.

2. We do want to render major roads as roads provide great geographic markers for young people and
people in general as to where a place is. How we are able to layer road information and cull it to just
major roads so cities aren't over run with streets is a critical need.

3. We do want to try and provide place data, ideally it'd be signs that are set down at specific points with
names on them, and another idea is "circles" denoting say a city limits or just a city center. Again culling
for major vs. minor or medium level names will be key.

4. We want to preserve the entire underground aspect of Minecraft as it is which is what people love about
it when they play if they're not playing some specific MOD. The best way to do this would be that that we
are able to merge a Minecraft generated below-sea level generated world with our above sea level
generated world.

https://dev.imt.hig.no/plugins/servlet/confluence/editinword/3245716/attachments/MinecraftRealMaps(1).docx

46

The way to do that is to use Minecraft's considerable map customization system to generate 1 or more
maps that has sea level placed at say 30, 40, 50, 60, 70, 80 (a couple that >64) and then see them generated
out to some X * Z level and then to use those as that surfaces upon which to paint the above surface
generated worlds. This creates the best of both worlds, Minecraft's well honed < sea level creations with
our above world real-world facsimiles. If someone doesn't want caverns and dungeons, etc. they can
simply marry it to a sea level of 0 or a higher sea level but with a simple custom map of below surface
stone, sand, etc.

5. We want to render topology most of all, and within that we need to think about how we handle height
maps. I feel like what we want to do is as let the user set the height map, and maybe also select the
exaggeration of it all as a result. Let it be relative accuracy but with the ability to add stress to higher
points or lower points. So if normally a hill outside of a town is 10 bricks high a stress on anything > 5
might be 2X making the hill 20 and the mountains further offer 120. One idea especially would be to have
midrange heights push to be closer to higher items. So if the Alps are 150 make a midrange not 75 but
100. While anything below stays more accurate. The idea being we can allow people to not have only the
tallest elevations be tall. Minecraft is more fun when there are more elevations.

Minecraft itself already experiments with exaggerated topologies too so it's not a stretch to realize it has
value.

6. I think we should first figure out how to just represent a 3D topology in one bricktype first before
figuring out how to render topologies with more accurate bricktype interpretations. However, soon
thereafter we're going to want to figure this out better and create some specific interpretations how we
render or allow people to define things like roads, forests, incidental trees, etc.

7. Boundaries are another issue. It would be good if we could allow people to select the ability to erect a
wall that places itself down using county, city limit, state/province, country markers. That way they could
truly denote the beginning and end of areas vs. see it bleed over and not have any sense where the
boundary is when play. ESRI's "open" shapefile format might work well here to make it easy to create
boundaries of countries, counties, states/provinces. I might have access to a key person there but have to
dig it up if we go that route.

8. We want the ability to really have maps that zoom in close or not. Chunkmapper gets close but I think
needs to be about 50% closer in scale. I really think we want unlimited zoom in some respect just not
unlimited size. E.g. if we choose to limit our Minecraft world sizes to 10,000x10,000 then if you choose
to do a 10km to 10km stretch you're down to a 1 brick = 1 meter interpretation of the world. We'll need to
figure out the realistic map size we can support, I can run some tests on that in terms of map sizes, etc. let
alone speed to calculate.

9. It seems to me what we would do is take some sort of NASA topology data and then render that, and not
put trees down, then we'd layer over that major roads as garnered from Open Street Map, or some other
valid source. Maybe there is a simpler method using .KML files from Google Earth exports, or some sort
of easier to find global elevation data that is just precise enough. The most detailed topographic data is
NASA's ASTER data,

 http://gis.stackexchange.com/questions/17989/how-to-download-the-entire-aster-gdemv2-dataset

It seems to me what we'd want to do is first just get a nice clear chunk of this data and then figure out how
to do that, then if we made that work we'd figure out how to download the entire dataset, or get an HD
ordered with it.

At the same time I feel like what we really want is perhaps a version of this data that we've re-processed
into something simpler and quicker to generate maps from but which benefits from the rich terrain data it
has. Perhaps someone has already done that but not sure where to find it, ESRI might have something, or
older topographic data sets might be good enough. My sense is though things that do basic elevations will
be hard to model from in terms of making them fun for Minecraft.

http://gis.stackexchange.com/questions/17989/how-to-download-the-entire-aster-gdemv2-dataset

47

10. I think our best approach again, will be to keep refining this paper plan, and doing some exploratory,
until we find the right fit of data, and output relevant to our goals.

11. In my ideal world, there is a web site, you go to the Web site, and you can select a boundary square, or
circle, or esri shape file and then a set of options like sea level, height exaggeration, surface features, and a
few other options, and what it does is a cloud service renders the map and makes it available for download
(ideally for a price to keep it sustainable) and then I take that file and I load it into Minecraft and I have
fun.

So this is a start, perhaps we toss this into a google doc, and further it from there.

Initial thoughts and ideas

Initial thoughts

Minecraft Server with Forge
Utilize vanilla underground generating
Custom terrain mod
NBT-Lib
heightmap
pipeline / node tree for easy process manipulation

Web page
User input -> map

Prototype ideas

png heightmap -> dirtmap

After first prototype

Welding map to standard minecraft map. 2d splines? Multivariate interpolation.
Map processing.

Landmarks visible.
Regions: linear planes ax+by=c.
Dijkstra’s?
Fill regions. Keep them convex regions. Quick hull.

Map playability score system.
Amount of features, distribution, landmarks, similarity to real world,
accessibility.

Quantization of terrain data.
Terrain spatial compression. Cartogram algorithm.

http://ivi.sagepub.com/content/13/1/42.short

http://ivi.sagepub.com/content/13/1/42.short

48

Meeting notes bundle

12.01.2015

Date

12 January 2015

Attendees

Tellef Møllerup Åmdal
Sindre Helleborg
Simon McCallum

Things to look into

Data mashup
Quantization of data
Legal aspects
Abstraction of data
Hosting costs / set up own server?
Target: standard Minecraft server
Read around distance compression
jpeg reference group: visual acceptance
Map representation

28.01.2015

Date

28 January 2015

Attendees

Tellef Møllerup Åmdal
Sindre Helleborg
Simon McCallum

Notes

IP ownership
 51 / 49 Ben, Us
 50 / 40 / 10 Ben, Us, Simon
 70 / 10 / 10 / 10 Ben, Sindre, Tellef, Simon

30 hours a week
Contract deadline extended to at least to Friday

https://dev.imt.hig.no/confluence/display/~tellefma
https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~simonm
https://dev.imt.hig.no/confluence/display/~tellefma
https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~simonm

49

% of profit, sum up to a limit

17.04.2015

Date

17 April 2015

Attendees

Tellef Møllerup Åmdal
Sindre Helleborg
Simon McCallum

Agenda

Confluense setup for bachelor thesis
Link to page or PDF of site?

Progress report
Practical bachelor and what it means

What we write about
Science

Delivery of source code
Webpage?
Link to repository or tag zip?

Notes

Biomes implemented
Temperated rainforest

Thesis notes
HDR
Meeting notes

Remaining
Thesis
Automatic geodata download

For grade
Write about automation process
Methodes
Getting access to data.

To next week
Show of progress
Feedback from Minecraft players
Make relevant questions.

World biomes

https://dev.imt.hig.no/confluence/display/~tellefma
https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~simonm

50

Png map
Key values
KML, define regions. Geographical markup.
Rasterise regions

Thesis
Results of questions
Abstraction and play
Elaboration around the original design documented.
Interaction
Background

Mc
Scale
Users
Market

Education
Objectives
Methodoliges

How things are applied
Result
Conclusion

What we achieved
Think in categories, not temporal.

22.04.2015

Date

22 April 2015

Attendees

Tellef Møllerup Åmdal
Sindre Helleborg
Simon McCallum

Agenda

Details about thesis writing
Details about user tests

Time
Sample size
Tests

Terrain visualizer
Unreal

https://dev.imt.hig.no/confluence/display/~tellefma
https://dev.imt.hig.no/confluence/display/~sindre.helleborg
https://dev.imt.hig.no/confluence/display/~simonm

51

Gfx exam based

Notes

Progress
Ideas about tests

Google maps to mc world
And reverse

Trial run for tests with other students
KML

Open street maps
Convert mc world tracking data to kml

Visualize in google earth
Minecraft

http://www.dwtkns.com/srtm
http://www.geodata.policysupport.org
Mc to klm converter

Small external utility
Minecraft mod to convert selected area to klm building
Thesis

Export to HTML
HTML to LaTex
Look and feel for pdf export
Intro

Background
Hdr
Other work
Similar systemsystem
Jpeg

Not absolute accuracy
Relative accuracy
Symbolic representation

Related work
Word explanation

Methodology (what we aimed for)
What we do different
Structure by area of dvelopment

Implementation (what we did)
Result

Images
Error metrics?

Local vs global differences
Applied hdr

http://www.dwtkns.com/srtm
http://www.geodata.policysupport.org

52

Debug data
Iteration diff

Conclusion
Future work

	Abstract
	Sammendrag
	Preface
	Introduction
	Project Goal
	Earlier Work
	Team Background
	Report details
	High Dynamic Range
	Level Set Methods
	Minecraft
	Terminology

	Methodology
	Software Development Process
	Design
	Program Specifications
	RealTerrain
	Biomes Selection
	Bottoms up Midpoint Displacement Algorithm
	HDR Compression Applied to Terrain
	Level Set Noise Reduction
	Map Analysis Algorithm
	Open street map feature parser.

	RealMapsWorldType
	Configuration
	Generator
	Other uses

	Website
	User Testing

	Result
	User Tests

	Conclusion
	References
	Appendix
	Original design notes, Ben Sawyer
	Initial thoughts and ideas
	Meeting notes bundle

