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Abstract— To enable autonomous vehicles to operate in clut-
tered and unpredictable environments with numerous obstacles,
such vehicles need a collision avoidance system that can react
to and handle sudden changes in the environment. In this
paper, we propose an optimization-based reactive collision
avoidance system that uses control barrier functions integrated
into the control allocation. We demonstrate the effectiveness of
our method through numerical simulations with autonomous
surface vehicles. The simulated vehicles track their reference
waypoints while maintaining safe distances. The proposed
method can be readily implemented on vehicles that already
use an optimization-based control allocation method.

I. INTRODUCTION

Autonomous vehicles are being increasingly used in clut-
tered and unpredictable environments where considerations
to other vehicles and obstacles need to be made. Therefore,
the control system of autonomous vehicles should include
some form of collision avoidance (COLAV).

Reviews of various COLAV concepts are presented in [1]–
[3]. In general, algorithms for COLAV can be split into two
categories: motion planning and reactive algorithms.

Motion planning algorithms include, among others, vari-
ous types of path planning algorithms [4]–[6], the dynamic
window algorithm [7], and model predictive control (MPC).
MPC can be used both for a single vehicle [8], [9] and for
multi-agent systems in a distributed form [10], [11].

Reactive algorithms for COLAV include, among others,
virtual potential fields [12], geometric guidance [13], and
control barrier functions (CBFs) [14]–[18]. Reactive algo-
rithms are often used together with motion planning algo-
rithms in a hybrid controller. In such a controller, the reactive
algorithm ensures the safety of the vehicle in unexpected
situations. Such an algorithm is proposed in [19], where
a collision-free velocity reference is obtained through nu-
merical optimization. The proposed algorithm is designed
specifically for autonomous surface vehicles (ASVs).

CBFs offer a COLAV method that is applicable for a wide
range of systems [20]. In the literature, there are typically two
ways in which CBFs are applied for COLAV. They are either
applied to a simplified model of the vehicle (e.g., a unicycle
model [14], [15]) to provide safe velocity references, or they
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are used together with control Lyapunov functions (CLFs)
[16]–[18] on the complete model.

Reactive COLAV methods that work with a simplified
model do not take into account the physical limitations
of the vehicle, such as acceleration or actuator constraints.
Consequently, these methods may output reference signals
that the underlying controllers cannot track. To mitigate this,
reactive COLAV methods should be included into the lowest-
possible control level.

In this paper, we consider overactuated vehicles, i.e., ve-
hicles with more actuators than degrees of freedom (DOFs),
with a control system consisting of blocks shown in Figure 1.
The control system contains a long-term, deliberate planner,
a high-level controller that outputs desired forces and torques
(τ d), and a control allocation block. The goal of control allo-
cation is to find actuator control inputs (u) that generate the
desired forces and torques. Most control allocation methods
are based on numerical optimization [21]–[23] which makes
them ideal for augmenting with CBF constraints.

The main contribution of this paper is a reactive COLAV
algorithm that is included at the lowest level in the control
pipeline, i.e. in the control allocation, to ensure the safety of
the vehicle regarding collision avoidance. Since it is included
at the lowest-possible control level, it also ensures the “base-
line” safety of any other higher level (long term/deliberate)
planners of the vehicle guidance, navigation and control
system. The algorithm can easily be implemented on ve-
hicles that apply a numerical optimization-based method to
control allocation. Moreover, the algorithm does not rely on
any communication between the vehicles; the only required
information is the position and velocity of other vehicles.
The paper extends the results in [24], which only considers
ASVs and simple encounters between one ASV and a vessel
moving at a constant course and speed, making the method
applicable to a wider range of vehicles and scenarios with
multiple autonomous vehicles.

The remainder of the paper is organized as follows.
Section II defines the notation and describes the model of
the vehicle. The proposed control allocation method and
CBFs for COLAV are introduced in Sections III and IV.
Section V describes the resulting combined COLAV and
control allocation optimization problem. Section VI presents
the results of numerical simulations using models of ASVs.
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Fig. 1: Control system of overactuated vehicles considered
in this paper



Finally, Section VII contains some concluding remarks.

II. VEHICLE MODEL

A. Notation

Let p denote the position and Θ the orientation (expressed
using the Euler angles) of the vehicle in a North-East-Down
(NED) reference frame. Let η be the pose of the vehicle

η =
[
pT, ΘT

]T
. (1)

Let ν be the velocities of the vehicle in the body-centered
frame. The complete state of the vehicle, x, is defined as

x =
[
ηT ,νT

]T
. (2)

Let τ be the vector of generalized forces acting on the
vehicle. Let K be the number of actuator parameters and
u ∈ RK the vector of inputs. Furthermore, let b : RK →
RnDOF be a nonlinear function that maps the inputs to the
generalized forces (nDOF is the number of DOFs).

B. Equations of Motion

The time-derivative of the pose can be obtained by trans-
forming the velocities. In addition, we assume that the time-
derivatives of the velocities are affine in the generalized
forces. We thus consider vehicles described by the following
dynamical equations

ẋ =

[
η̇
ν̇

]
=

[
J(Θ)ν

f(x) + g(x) τ

]
=

[
J(Θ)ν

f(x) + g(x) b(u)

]
, (3)

where J(Θ) is the transformation matrix. This equation
describes a large class of systems, including the matrix-
vector model of marine vessels [25]

η̇ = J(Θ)ν, (4a)
M ν̇ + (C(ν) + D(ν)) ν + g(η) = b(u), (4b)

where M, C(ν) and D(ν) is the mass, Coriolis and drag
matrix, respectively. This model can be converted to the form
in (3) since the matrix M is invertible.

III. CONTROL ALLOCATION

As stated in the Introduction, the goal of the control
allocation is to find the inputs that generate the desired forces
given by the high-level controller. For details on control
allocation techniques for both linear and nonlinear systems,
the reader is referred to [26].

In this paper, we consider systems where the function b can
be nonlinear. In the literature, nonlinear control allocation is
commonly solved by linearizing the function b [22], [23]

b(u0 + ∆u) ≈ b(u0) + B(u0) ∆u, (5)

where u0 are the inputs around which we linearize, ∆u is
the increment, and

B(u0) =
∂b(u)

∂u

∣∣∣∣
u0

, (6)

is the Jacobian of b evaluated at u0. Let τ d be the desired
forces. The goal of our control allocation scheme is to find
optimal inputs u∗ that satisfy

u∗ = arg min
u∈RK

‖b(u)− τ d‖2 , (7)

where ‖ · ‖ is the Euclidean norm.
Using the approximation (5), we can formulate the control

allocation problem as a quadratic program (QP)

u∗ = u0 + ∆u∗, (8)

∆u∗ = arg min
∆u∈RK

‖b(u0) + B(u0) ∆u− τ d‖2 . (9)

IV. CONTROL BARRIER FUNCTIONS

In this section, we will briefly present the theory behind
control barrier functions (CBFs). For more details, the reader
is referred to [20]. After presenting the notation for multiple
vehicles, we define the CBF for COLAV.

A. Introduction to CBFs

Consider a nonlinear control-affine system

ẋ = f̃(x) + g̃(x) u, (10)

where x ∈ Rn. A barrier function h : Rn → R defines a
safe set

C = {x |h(x) ≥ 0} . (11)

Assuming that the initial condition lies in the safe set,
the system trajectory will stay within C if the following
inequality holds [20]

d

dt
h(x) =

∂h(x)

∂x

(
f̃(x) + g̃(x) u

)
≥ −γ

(
h(x)

)
, (12)

where γ is an extended class-K∞ function. If there exists a
u such that (12) is satisfied, then h is a valid CBF.

B. CBFs for Reactive Collision Avoidance

Let there be m vehicles. We shall denote the variables that
belong to a given vehicle by an upper index (e.g., xi is the
state of the ith vehicle). In addition, let us define a relative
position of vehicles i and j as

pij = pi − pj . (13)

To ensure safety, we need a collection of CBFs that enforce
safe distances between each pair of vehicles. In the literature,
vehicles described by the model (3) frequently use CBFs in
the following form [17], [24]

hij(xi,xj) = ‖pij‖ − dmin + kv
d

dt
‖pij‖, (14)

where dmin is a minimum safe distance, and kv is a coeffi-
cient that penalizes the relative speed of the vehicles.

To use hij as a control barrier function, we need to
calculate its time-derivative. Differentiating (14) with respect
to time yields

d

dt
hij(xi,xj) =

d

dt
‖pij‖+ kv

d2

dt2
‖pij‖. (15)



To calculate the first and second time-derivative of the
relative distance, we need to find the first and second time-
derivatives of the relative position. For ṗij , we split the
derivative of η from (3) into the derivatives of position and
orientation

η̇i =

[
ṗi

Θ̇
i

]
=

[
Jp(Θi)

JΘ(Θi)

]
νi. (16)

Substituting this into the time-derivative of (13) yields

ṗij = Jp(Θi)νi − Jp(Θj)νj . (17)

For p̈ij , we assume that the target maintains its velocity, i.e.,

p̈ij ≈ p̈i, (18)

when calculating the time-derivative for the ith vehicle. As
discussed in [24], this is a “mild worst-case” assumption,
since maneuvers of the target vehicle tend to aid to resolving
the situation. Thus, taking the time-derivative of (17) yields

p̈i = J̇p(Θi)νi + Jp(Θi) ν̇i. (19)

Finally, we substitute the approximation of forces from (5)
into the equation for ν̇ in (3) to get

ν̇i = f(xi) + g(xi)
(
b(ui0) + B(ui0) ∆ui

)
, (20)

which we can substitute into (19) to calculate p̈i.

V. FORMULATING THE OPTIMIZATION
PROBLEM

Now we can combine the definitions from Sections III
and IV to formulate the proposed optimization problem for
control allocation with multi-vehicle COLAV.

A. The basic optimization problem

Let ui0 be the inputs of vehicle i from the previous control
period. The new inputs are calculated as

ui = ui0 + (∆ui)∗, (21)

where (∆ui)∗ is obtained by solving the QP

(∆ui)∗ = arg min
∆ui∈RK

∥∥b(ui0) + B(ui0) ∆ui − τ id
∥∥2

, (22a)

s.t.
d

dt
hij(xi,xj) ≥ −γ

(
hij(xi,xj)

)
,

j ∈ {1, . . . ,m} \ {i} ,
(22b)

uimin ≤ ui0 + ∆ui ≤ uimax, (22c)

∆uimin ≤ ∆ui ≤ ∆uimax, (22d)

where uimin and uimax are the absolute actuator limits, and
∆uimin and ∆uimax are the actuator rate limits. The absolute
limits are usually given by the physical limitations of the
vehicle (e.g., the thrust of a propeller or the deflection of
control surfaces) whereas the rate limits are user-defined to
reduce the rapid changes that wear out the actuators.

Simulation results using this control allocation algorithm
are presented in Section VI.

B. Modified Optimization Problem

The algorithm in (22) is suitable for vehicles where the
number of actuators is equivalent to the number of DOFs.
Applying the algorithm to vehicles where the number of
actuators is much greater than the number of DOFs results
in inefficient usage of the available actuators, as can be seen
in Section VI.

To reduce this effect, we add penalty terms on the actuator
usage, similar to those proposed in [23], in the cost function.
To simplify the notation, let ‖x‖2Q be the squared norm of
a vector x weighted by a matrix Q, i.e.,

‖x‖2Q = xT Q x. (23)

The modified optimization problem is defined as follows

(∆ui)∗ = arg min
∆ui∈RK

∥∥b(ui0) + B(ui0) ∆ui − τ id
∥∥2

Q

+
∥∥ui0 + ∆ui

∥∥2

Rabs
+
∥∥∆ui

∥∥2

Rrel
,

(24a)

s.t. constraints (22b)–(22d), (24b)

where Q is a positive definite matrix that penalizes the
difference between the desired and actual forces, and Rabs

and Rrel are positive semidefinite matrices that penalize the
absolute and incremental usage of actuators, respectively.

Note that both (22) and (24) use only local information
and measurements, and can thus be solved locally.

VI. SIMULATIONS

In the simulations, we test the ability of the proposed
algorithms to resolve a situation when four surface vessels
are simultaneously in danger of collision. Each vessel starts
in the corner of a square and is guided towards a reference
located in the diagonally opposite corner.

We tested the proposed algorithms on two models of ASVs
— the milliAmpere ferry [27] and the 1 : 90 scaled model of
the Inocean Cat I drillship [28] — using Simulink. Both ves-
sels are equipped with azimuth thrusters; the milliAmpere has
two and the drillship has six. Each thruster is parametrized
by two values: its thrust force and its azimuth. The input
vector for these vessels is defined as

u = [f1, . . . , fk, α1, . . . , αk]
T
, (25)

where fi is the thrust force and αi is the azimuth angle of
the ith thruster, and k is the number of thrusters. Both ASV
models have 3DOFs, i.e., the North-East position and the yaw
angle. The function that maps the inputs to the generalized
forces is
b(u) =

∑k
i=1 fi

[
cosαi, sinαi, L

i
x sinαi − Liy cosαi

]T
, (26)

where Lix and Liy is the position of the ith thruster, relative
to the center of mass.

For the higher-level controller that provides the desired
forces, we use a nonlinear PID controller [25]. The nonlinear
PID is an output-linearizing controller that transforms the
nonlinear dynamical equations from (4) to

η̈ + 2 Ωn Z η̇ + Ω2
n η = 0, (27)



Scenario
Thruster utilization [%]

Maximum Minimum Mean

MA basic 2.074 1.550 1.822
modified 0.838 0.835 0.837

DS basic 100.000 1.282 51.496
modified 6.161 0.259 3.816

TABLE I: Steady-state thruster utilization of the basic al-
gorithm (22) and the modified algorithm (24). MA — the
milliAmpere vessel, DS — the drillship scale model

where Z is the diagonal relative damping matrix, and Ωn

is the diagonal natural frequency matrix. Both matrices are
tuning parameters. For convenience, we express Ωn in terms
of a bandwidth matrix Ωbw

Ωn = Ωbw

(√
I− 2 Z2 +

√
4 Z4 − 4 Z2 + 2 I

)−1

, (28)

where √. is an elementwise square root.
The simulation parameters for both vessels are summa-

rized in Table II. The matrix Q is chosen as

Q = diag

(
1, 1,

1

L2

)
, L = min

i

√
(Lix)

2
+
(
Liy
)2
. (29)

Since the power consumption of a thruster increases with
the absolute value of its thrust force and the increment of its
azimuth, the matrices Rabs and Rrel are chosen as

Rabs =

[
rabs Ik×k

0k×k

]
, Rrel =

[
0k×k

rrel Ik×k

]
, (30)

where In×n is an n-by-n identity matrix, and 0n×n is an
n-by-n matrix of zeros. The rate constraints are identical for
all thrusters and symmetric, i.e.,

∆umax =

[
∆fmax 1k
∆αmax 1k

]
, ∆umin = −∆umax, (31)

where ∆fmax and ∆αmax are the force and azimuth rate
constraints, respectively, and 1k is a vector of ones.

The results of the simulations are shown in Figures 2, 3,
and 4. Figure 2 shows the results of algorithm (22). Figure 3
shows the results of algorithm (24). Each figure consists of

Parameter milliAmpere drillship
Ωbw diag (0.1, 0.1, 0.5)
Z diag (0.95, 0.95, 0.97)
Q diag (1, 1, 0.7) diag (1, 1, 1.13)
rabs 1 1
rrel 100 1

dmin [m] 15 2.5
kv [s] 15 15
γ(h) 0.1h 0.1h

fmin [N] −350 −0.8
fmax [N] 500 1.5

∆fmax [N] 350 0.5
∆αmax [rad] π

8
π
8

TABLE II: Simulation parameters. Parameters Ωbw and Z
are identical for both scenarios, diag (.) is a diagonal matrix

two plots. The plot on the left displays the trajectory of the
vessels. The colored lines show the trajectory of each vessel,
the boat-shaped polygons represent the pose of the vessels at
several evenly spaced time-instances, and the colored crosses
show the reference of each vessel. The plot on the right
shows the smallest distance between the vessels compared
to the minimum safe distance dmin. In both scenarios, the
vessels reach their reference position while maintaining safe
distance.

We also tested a scenario where one of the vessels is
uncontrolled. The results are shown in Figure 4. In this
scenario, the uncontrolled vessel (plotted in black) solves
the control allocation problem without the CBF constraints
(22b). Although the time it takes the vessels to converge to
their goal positions is greater, the minimum safe distance is
still maintained.

In this section, we have provided some insight into how
to chose some of the parameters for the simulated models.
When it comes to the choice of the coefficient kv , introduced
in (14), and the extended class-K∞ function γ, introduced in
(22), the following considerations can be made. Intuitively,
increasing kv increases the size of the “unsafe” region where
the barrier function is negative, causing the system to react
sooner in situations where two vehicles are on collision
course. Conversely, increasing the slope of γ decreases the
size of the region where the constraint (22b) is active, causing
the system to react later.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a method for integrating

a COLAV scheme into control allocation through control
barrier functions. We have demonstrated its effectiveness on
two models of ASVs, where it significantly improved the
safety. The proposed method can be readily implemented on
vehicles that already use optimization-based control alloca-
tion by simply including the constraints given by the control
barrier functions in the optimization.

Finding a systematic method for choosing the parameter
values that guarantee safety for a given vehicle model is a
topic for future work.
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