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Abstract— Avoiding collisions is a crucial task for au-
tonomous systems. Many strategies for avoiding obstacles have
been proposed, yet the problem of having underactuated
dynamics is rarely addressed in previous studies of collision
avoidance algorithms. Underactuation of a system makes the
collision avoidance control problem more complex, since the
system then lacks the ability to directly control one or more of
its degrees of freedom. Therefore, in this paper, we will consider
collision avoidance for underactuated vehicles, specifically for
the class of vehicles which cannot directly control their sideways
speed. This is a broad class, which includes vehicles such as
cars, airplanes, and marine vehicles. If the unactuated, sideways
velocity component becomes sufficiently large, it can make the
vehicle glide sideways rather than moving forward, which in the
encounter with an obstacle may be fatal. To tackle this issue, we
propose a reactive collision avoidance algorithm, based on the
collision cone concept, which is specifically designed to account
for the underactuated dynamics of a surface vehicle. We present
a rigorous analysis of the closed-loop system and establish
explicit conditions guaranteeing vehicle safety. Simulations are
included to verify the theoretical result.

Index Terms— collision avoidance, marine vehicles, underac-
tuated systems, real-time control, nonlinear dynamical systems

I. INTRODUCTION

Autonomous and unmanned vehicles present a large po-
tential for both scientific and commercial applications. They
are already employed in several areas, such as subsea inspec-
tion and intervention, surveillance, transportation, and space
operations. The vehicles are required to navigate in com-
plex, dynamic environments while performing autonomous
or semi-autonomous operations. Collision avoidance (CA) of
obstacles is a critical part of the navigation due to the severe
consequences of a failure. CA algorithms are often divided
in two groups: reactive algorithms and motion planning
algorithms. The latter group generally depends on planning,
and often rely on optimization methods. This can be time-
consuming for vehicles with complex dynamics, navigat-
ing in dense environments. Optimization problems can fur-
thermore become computationally intractable for large and
complex search spaces. Hence, autonomous vehicles must
generally rely on backup solutions that are computationally
simpler and yet provably safe, i.e. reactive algorithms.

Reactive algorithms compute only one next action at each
instant and therefore cope well with highly dynamic and
unpredictable environments. A well-established approach for
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reactive collision avoidance is the velocity obstacle (VO)
algorithm [1]. The method is based on describing obstacles in
the velocity space by computing the set of relative velocities
between the vehicle and an obstacle which result in a future
collision. By maintaining velocities outside of this set, the
vehicle necessarily avoids a collision. This set is termed the
collision cone. The VO algorithm is conceptually similar to
the collision cone approach [2] which has developed nec-
essary and sufficient conditions for collision with obstacles
of arbitrary shape and time-varying velocities, based on the
collision cone theory. Contrary to the VO method which
evaluates obstacles in the velocity space, the collision cone
approach is guidance based. The method has been used to
construct guidance laws for both cooperative control [3] and
general obstacle avoidance [4].

We have previously applied the collision cone concept to
a nonholonomic vehicle [5], where we provide guarantees
for avoidance of a dynamic, unpredictable obstacle. In this
paper, we extend the method to incorporate the dynamics of
a surface vehicle that is able to generate a forward thrust
and a momentum in yaw, but lacks actuation in the sideways
direction. Although the vehicle has no sideways actuation,
forces in the sideways direction are generated when the
vehicle turns whilst moving forward, due to the centripetal
and to some extent the Coriolis effects. As the motion of the
vehicle depends on both the sideways and forward velocity,
the unactuated velocity component will significantly affect
its maneuvers. The underactuated dynamics must therefore
be properly accounted for in order to ensure safety.

Although the VO method and the collision cone approach
have been applied to different dynamical systems, e.g. [6],
[3], [7], [8], [9], hardly any analyze the resulting closed-loop
system dynamics, much less the underactuated dynamics.
The main contribution of this paper is therefore the estab-
lishment and analysis of a collision avoidance law which
provably ensures that an underactuated surface vehicle avoids
a collision with a dynamic, uncooperative obstacle that is
able to change both speed and direction at any instant, under
explicitly stated conditions. Similar to the constant avoidance
angle (CAA) algorithm [10] which has been applied to
underactuated marine vehicles, the proposed method steers
the vehicle a constant angle to the side of the obstacle.
In the CAA algorithm, the angle is chosen to make the
vehicle circumvent an obstacle at a constant distance and
therefore differs from collision cone approaches in that it
does not require knowledge of the obstacle shape. In the
proposed approach, the angle comprises an additional safety
measure, chosen specifically to account for the fact that the



Fig. 1: The body-fixed reference frame in relation to the inertial
reference frame.

vehicle cannot change its yaw rate momentarily. Another
similarity to the CAA algorithm is that we choose to control
the course of the vehicle rather than its heading, which
ensures that the vehicle is steered in the desired direction. In
[10], proportional-derivative control of the course is applied,
and safe course references are assigned to make the vehicle
avoid potential collisions. Although this control solution
stabilizes the course error dynamics exponentially, it does
not utilize the turning capabilities of the vehicle to the
fullest in collision avoidance scenarios. In our approach, we
instead let the vehicle turn at a constant, maximum rate
to avoid collision, thus generating faster and more agile
avoidance maneuvers. The collision avoidance problem is
moreover combined with path following to demonstrate that
the approach also allows the vehicle to achieve its separate
goals.

The paper is organized as follows. Section II and III
present the vehicle and obstacle models, respectively, and
Section IV defines the geometrical properties of the collision
cone. In Section V the control system of the vehicle is
presented. A mathematical analysis of the algorithm applied
to the system is given in Section VI. The theoretical results
are verified through simulations in Section VII, before some
concluding remarks are provided in Section VIII.

II. VEHICLE MODEL

We will in this section explain the notation used to
express the vehicle kinematics and present the kinematic and
dynamic model of an underactuated surface vehicle.

A. Notation
The vehicle is modeled in three degrees of freedom. The

model is expressed in the body frame b, which is attached
to the pivot point [11] of the vehicle, in reference to an
inertial frame n (cf. Figure 1). The position and velocity
of b with respect to n are denoted as pnb , [xnb , y

n
b ]
> and

vnnb , [ẋnb , ẏ
n
b ]
>, respectively, and the orientation of b with

respect to n is given by the heading angle ψnb . The body-
fixed linear and angular velocities are contained in the vector
νbnb , [ub, vb, rb]

>, where ub is the surge (forward) speed,
vb is the sway (sideways) speed, and rb is the yaw (heading)
rate. The speed of the vehicle is denoted as Ub ,

√
u2b + v2b

and the course as χnb , atan2 (ẏnb , ẋ
n
b ).

B. Model

The marine vehicle is assumed to have a thruster gener-
ating force in the forward direction and a rudder generating
angular momentum. The model is written in the expanded
form of [10]:

ẋnb = ub cos(ψnb )− vb sin(ψnb ), (1a)
ẏnb = ub sin(ψnb ) + vb cos(ψnb ), (1b)

ψ̇nb = rb, (1c)
u̇b = fu(ub, vb, rb) + τu, (1d)
v̇b = X(ub)rb + Y (ub)vb, (1e)
ṙb = fr(ub, vb, rb) + τr, (1f)

where the expressions of fu(ub, vb, rb), fr(ub, vb, rb),
X(ub), and Y (ub) depend on the mass and damping coeffi-
cients of the vehicle and are given in Appendix A, and τu
and τr are the control forces in surge and yaw, respectively.
For the full derivation of the model (1) we refer you to [10],
as well as [12] on modeling of marine vehicles in general.
Remark 1. The model (1) is valid for surface vehicles,
and also for describing the horizontal motion of underwater
vehicles, operating at maneuvering speeds.

III. OBSTACLE MODEL

The obstacle is modeled as a moving, circular domain Do,
with a radius of Ro, described by the kinematic equations:

ẋno = uo cos(ψno ), (2a)
ẏno = uo sin(ψno ), (2b)

ψ̇no = ro, (2c)
u̇o = ao, (2d)

where xno and yno are the Cartesian coordinates of the obstacle
center, uo and ao are the forward speed and acceleration,
and ψno and ro are the obstacle heading and heading rate,
respectively. The position of the obstacle center is denoted
as pno , [xno , y

n
o ]
> and the velocity as vnno , [ẋno , ẏ

n
o ]
>.

Assumption 1. The heading rate, ro, and forward accelera-
tion, ao, are bounded by

ro ∈ [−ro,max, ro,max] , (3)
ao ∈ [−ao,max, ao,max] , (4)

where ro,max ≥ 0 and ao,max ≥ 0 are constant parameters.

Assumption 2. The forward speed, uo, is bounded by

uo ∈ [0, uo,max] , (5)

where uo,max < ub is a constant parameter.

Remark 2. By Assumption 2, we require the forward speed
of the vehicle, ub, to be lower bounded by the maximum
forward speed of the obstacle. This ensures well-definedness
of the geometrical properties defined in the following section
and is generally a necessary assumption for guaranteeing
avoidance of a dynamic, uncooperative obstacle.



IV. THE COLLISION CONE

To keep the vehicle away from collision, the proposed
algorithm will make the vehicle maintain a course that avoids
a collision with the obstacle by the collision cone notion. To
remain out of collision, the vehicle should keep at least a
distance dsep > Ro to the obstacle center.

Definition 1 (Collision). A collision occurs between the
vehicle and the obstacle if

db,o < dsep, (6)

where db,o , ‖pnb − pno‖.

Consider a coordinate frame no, aligned with the inertial
frame n, moving with the obstacle velocity, vnno. In this
frame, the obstacle is static and the vehicle has the velocity
vnnbo , v

n
nb−vnno and course χnbo , atan2(ẏnb −ẏno , ẋnb −ẋno ).

The vehicle is in danger of colliding with the obstacle if its
course, given in no, lies between the angles

ψ±cc , α± β, (7)

where we use the superscript ± to distinguish between the
two angles, representing the edges of the collision cone.
Moreover, α , atan2 (yno − ynb , xno − xnb ) and

β , arcsin

(
dsep

db,o

)
, (8)

as shown in Figure 2a. Motivated by [13], we will call this
situation a conflict, which is characterized by the condition

|χnbo − α| < β. (9)

The same condition can be described with respect to the
inertial frame, n, by performing a coordinate transformation.
Consider Figure 2b, where we let the velocity vector vnnbo
point along the edge at ψ+

cc . The angle χ+
cc then defines the

corresponding edge given in n, computed as

χ±cc , ψ±cc + γ±b . (10)

Remark 3. The angle χ−cc is computed by the same procedure
as χ+

cc.

The angle γ+b can be found by using the Law of Sines on
the triangle defined by vnnb, −vnno, and vnnbo, as

γ±b , arcsin

(
uo sin (γ±o )

Ub

)
, (11)

where γ+o is found geometrically as

γ±o , π − ψno + ψ±cc . (12)

Adapted from [13], a measure of the angular distances to a
conflict with the obstacle is then found as

δ± , ±χnb ∓ χ±cc. (13)

The angles are wrapped into the domain δ± ∈ (−2π, 2π]
such that they are negative if the vehicle is in a conflict,
and positive otherwise. The formulation corresponds to the
distances the vehicle must turn in both directions in order

(a) Representation of ψ±
cc . (b) Decomposition of χ+

cc .

Fig. 2: Geometric representation of the collision cone.

to enter (or in the opposite case, exit) a conflict, and the
shortest distance is found geometrically as

δmin ,

{
δ+ if χnbo − α ≥ 0,

δ− if χnbo − α < 0,
(14)

where we map the angular difference to the interval
(χnbo − α) ∈ (−π, π].

V. VEHICLE CONTROL

This section presents the full control system of the vehicle.
The objective of the vehicle is to converge to a straight-
line path by following the course references generated by
a line-of-sight (LOS) guidance law. To ensure that path
following does not lead to a collision, the course of the
vehicle is controlled by a collision avoidance algorithm at
all times. Notice that, as opposed to vehicles with unicycle-
like kinematics, the heading and the course of the vehicle (1)
do not necessarily coincide. In particular, at non-zero sway
speeds, the vehicle will move in a direction that differs from
its heading. To circumvent this issue, the output of the course
control law is converted to an equivalent yaw rate signal. The
dynamics of the vehicle are moreover controlled by feedback
linearizing controllers, ensuring close tracking of the surge
speed and yaw rate references.

A. Path following

The objective of the vehicle is to follow a straight-line
path parallel to the xn-axis, defined as P , {(x, y) ∈ R2 |
y = ynt }, where ynt is the desired position along the yn-axis.
To make the vehicle converge to and move along this path,
we choose to use an LOS guidance law [12] to define the
desired course angle as

χngd , arctan

(
−y

n
b − ynt

∆

)
, (15)

where ∆ > 0 is the lookahead distance. To ensure that
the vehicle maintains this course, the desired course rate is
chosen as

rgd , χ̇ngd − λχχ̃ng , (16)

where χ̃ng , χnb − χngd and λχ > 0 is a constant gain. It is
straightforward to see that the control law (16) ensures global
exponential stability of the course error dynamics, provided
the desired course rate, rgd, is perfectly tracked.



B. Collision avoidance
To avoid colliding into an obstacle, the vehicle should

always abide by a collision avoidance algorithm. A safety
radius Rsafe > 0 is introduced to determine when collision
avoidance is needed. If the obstacle is outside of this radius,

db,o > Rsafe, (17)

then the vehicle should always maintain path following.
However, if the obstacle comes within the safety radius, path
following should continue as long as the guidance law is safe
to follow, determined by the condition:

χngd /∈ Vεcc and db,o ≥
dsep

cos(ε)
, (18)

where Vεcc ,
(
χ−cc−ε, χ+

cc +ε
)

and ε ≥ 0 is a constant safety
angle. If either of the safety conditions (17) and (18) holds,
the desired course rate is thus chosen by (16). Otherwise, the
desired course rate is chosen by a collision avoidance law,
which will be presented shortly.

To avoid oscillations, the initial turning direction of the
vehicle is held throughout the avoidance maneuver, chosen
as

j0 , arg min
j∈{±}

∣∣∣δ(j)∣∣∣ , (19)

evaluated at the time the control system switches from path
following to collision avoidance. In order to avoid a potential
collision, the vehicle should maintain some maximum course
rate, rχ,max > 0, in the chosen direction until a safe course
is obtained. The collision avoidance law is thus chosen as

rca ,

{
±rχ,max if δmin ≤ 0 | j0 = ±,
λδ
(
±ε∓ δmin

)
if δmin > 0

∣∣ δmin = δ±,
(20)

where λδ > 0 is a constant gain. The second case of (20) will
make the vehicle maintain a safety angle, ε, to a conflict with
obstacle and always coincides with the turning parameter j0.
This ensures that the vehicle does not diverge further than
necessary from the nominal trajectory. Moreover, the safety
angle acts as an additional security for the vehicle when the
obstacle is at a close distance. We will provide lower bounds
of the safety parameters ε and Rsafe in Section VI.

C. Surge and yaw controllers
Let ubd and rbd denote the desired surge speed and yaw

rate, respectively, where ubd > 0 is constant and rbd will be
defined in the next section. The surge and yaw dynamics are
controlled by the feedback linearizing controllers:

τu = u̇bd − fu(ub, vb, rb)− λuũb, (21a)
τr = ṙbd − fr(ub, vb, rb)− λr r̃b, (21b)

where ũb , ub−ubd, λu > 0 is the surge control gain, r̃b ,
rb − rbd, and λr > 0 is the yaw control gain. Substituting
(21) into the dynamics (1) verifies that the surge and yaw
error dynamics are linear and globally exponentially stable.

Assumption 3. At the time t0, the system has operated long
enough for the yaw rate and surge speed to converge, i.e.
r̃b(t0) = 0 and ũb(t0) = 0.

D. Course rate to yaw rate conversion

The course rate, defined as rχ , χ̇nb , is computed by
differentiating χnb , ψnb +arctan

(
vb
ub

)
with respect to time:

rχ =
U2
b +X(ub)ub

U2
b

rb +
Y (ub)ub
U2
b

vb, (22)

where we have used the fact that u̇b = 0, ensured by
Assumption 3. Thus, substituting ubd for ub, the desired yaw
rate is defined as

r̄bd ,
U2
bdrχd − Yudubdvb
U2
bd +Xudubd

, (23)

where rχd denotes the desired course rate of the vehicle,
chosen as either (16) or (20) by the collision avoidance
algorithm, and the notation Ubd,

√
u2bd + v2b , Xud,X(ubd),

and Yud,Y (ubd) is adopted for conciseness.

Assumption 4. The term X(ub) satisfies

X(ub) + ub > 0. (24)

Remark 4. Assumption 4 implies that a change in the yaw
of the vehicle results in a change in its course, which can
be seen directly from (22). This is a valid assumption for
marine vehicles and ensures that (23) is well-defined.
The modular structure of the algorithm will inevitably cause
discontinuities in the reference signal (23). Let td denote
a time at which such a jump occurs. To ensure that the
reference is smooth and can thus be tracked immediately,
we compute it as

rbd ,

{
rbd (td) + Td

Ts
(r̄bd (td)− rbd (td)) if Td < Ts,

r̄bd otherwise,
(25)

where Ts > 0 is a smoothing interval and Td , t− td. Note
that the parameters td and Ts are updated in line with changes
in r̄bd to avoid overshoots.

VI. MATHEMATICAL ANALYSIS

This section presents an analysis of the closed-loop be-
havior of the underactuated vehicle and associated control
system. We begin by establishing a lower bound of the
distance the vehicle keeps to the obstacle in the ideal case.

Lemma 1. Consider an obstacle moving with the time-
varying velocity vnno. Suppose that the vehicle satisfies

|χnbo(t)− α(t)| ≥ β(t) + ε, ∀t ≥ t0, (26)

where ε ∈
[
0, π2

)
is a constant angle, and suppose that

db,o(t0) ≥ dsep

cos(ε) . Then,

db,o(t) ≥
dsep

cos(ε)
, ∀t ≥ t0. (27)

Proof: Consider the line segment going from the
vehicle center, pnb , to the obstacle center, pno , with length
db,o and orientation α. The time-derivative of db,o is found
geometrically as

ḋb,o = −Ubo cos(χnbo − α), (28)



where Ubo , ‖vnnbo‖. Substituting (26) in (28) gives

β ≤ arccos

(
− ḋb,o
Ubo

)
− ε, (29)

and the time-derivative of β is computed from (8) as

β̇ = − ḋb,o
db,o

tan(β). (30)

Moreover, the initial condition db,o(t0) ≥ dsep

cos(ε) entails that
β(t0) ≤ π

2 − ε. Since β̇ < 0, ∀ḋb,o > 0 by (30) and β ≤
π
2 − ε, ∀ḋb,o ≤ 0 by (29), we have β(t) ≤ π

2 − ε, ∀t ≥ t0.
Solving (8) for the distance, db,o, with β ≤ π

2 − ε, yields
(27), which concludes the proof.

For the next lemma, we require the sway dynamics (1e)
to be nominally stable:

Assumption 5. The term Y (ub) satisfies

Y (ub) < 0. (31)

Due to the hydrodynamic damping forces caused by the sur-
rounding fluid, this is a valid assumption for marine vehicles.
Combining (22) and (1e), we end up with the sway dynamics

v̇b =
U2
b

U2
b +X(ub)ub

(X(ub)rχ + Y (ub)vb) , (32)

which will appear in the following analysis.

Lemma 2. Consider a vehicle described by (1), controlled
by the surge and yaw controllers (21). Let Assumption 3-5
hold. Suppose that the course rate, rχ, is dependent on the
sway speed, vb, in a way that the following holds:

|rχ(vb,max)| ≤ |Yud|
|Xud|

vb,max, (33)

where vb,max > 0 is constant, and |vb(t0)| ≤ vb,max. Then,

|vb(t)| ≤ vb,max, ∀t ≥ t0. (34)

Proof: The proof of this lemma follows along the
lines of the proof presented in [10, Lemma 2] for the CAA
algorithm. Consider the Lyapunov function candidate:

V = 0.5v2b . (35)

Assumption 3 ensures that ub(t) = ubd, ∀t ≥ t0. The time-
derivative of (35) along the trajectories of (32) is then

V̇ =
U2
bd

U2
bd +Xudubd

(
Xudrχvb + Yudv

2
b

)
. (36)

By Assumption 4 and 5, (36) satisfies

V̇ ≤ U2
bd

U2
bd +Xudubd

(
|Xud| |rχ| |vb| − |Yud| v2b

)
. (37)

Define the level set Ωv = { vb ∈ R | V ≤ 0.5v2b,max }. By
(33) and (37), Ωv is a positively invariant set. Thus, any
trajectory starting inside of the set cannot leave it.

Assumption 6. The course rate, rχ, is bounded by

rχ ∈ [−rχ,max, rχ,max] , (38)

where rχ,max > 0 is a constant parameter.

Remark 5. The maximum course rate is not a physical
constraint, rather, it represents a design parameter, similar to
vb,max. In the remainder of the analysis, these parameters will
be used to reach a set of safety conditions ensuring collision
avoidance for the vehicle by the proposed algorithm.

Lemma 3. Consider a vehicle described by (1) and an
obstacle described by (2). Let Assumption 1-6 hold, and
suppose that ub(t) = ubd and |vb(t)| ≤ vb,max for all t ≥ t0.
Furthermore, suppose that there exists a constant parameter
σ ∈ (0, 1) such that

vb,max ≤ σ

(
u2bd +Xudubd

)√
u2bd − u2o,max

|Xud|uo,max
(39)

and

rχ,max ≥
ro,max

uo,max

ubd
+

ao,max√
u2
bd−u2

o,max

+ σ |Yud|
|Xud|vb,max

(1− σ)
. (40)

Finally, suppose that, at a time t1 ≥ t0, the vehicle satisfies

|χnbo(t1)− α(t1)| ≥ β(t1) (41)

and db,o(t1) ≥ dsep. Then, a course rate, rχ, satisfying the
collision avoidance law (20), will keep the vehicle out of
conflict for all t ≥ t1. Moreover,

db,o(t) ≥ dsep, ∀t ≥ t1. (42)

Proof: The proof of this lemma follows the same line of
arguments as in [5, Theorem 1], where we consider collision
avoidance for vehicles with unicycle-type kinematics. We
here extend the proof by including the dynamical model of an
underactuated surface vehicle, resulting in less flexibility in
the choice of rχ,max due to the increased model complexity
as well as having unactuated dynamics to account for.

Consider the distances to conflict, δ±, defined in (13).
By (41), δmin(t1) ≥ 0. The time-derivative of δ± is com-
puted by substituting (7) and (10) into (13) as

δ̇± = ±rχ ∓
(
α̇± β̇

)
∓ γ̇±b . (43)

The time-derivative of γ±b is computed from (11) as

γ̇±b =
(
−ro+α̇±β̇

)
P
(
γ±o
)
+aoQ

(
γ±o
)
−v̇bvbR

(
γ±o
)
, (44)

where the expressions of P (γ±o ), Q (γ±o ), and R (γ±o ) are
given in Appendix A, which yields

δ̇± = ±rχ ± roP
(
γ±o
)
∓ aoQ

(
γ±o
)

± v̇bvbR
(
γ±o
)

+
(
1 + P

(
γ±o
)) (
∓α̇− β̇

)
.

(45)

The term ∓α̇− β̇ is computed as

Ubo
db,o

(± sin(χnbo − α)− cos(χnbo − α) tan(β)) , (46)

where α̇ is found geometrically and β̇ is computed from (8).
Recalling that the shortest distance to a conflict, δmin,



Fig. 3: Geometric representation of ε̃.

satisfies (14), we may write ± sin(χnbo−α) = | sin(χnbo−α)|.
Furthermore, the vehicle satisfies (41), which entails that

| sin(χnbo − α)| − cos(χnbo − α) tan(β) ≥ 0. (47)

Finally, P (γ±o ) ∈ (−1, 1) by Assumption 2, thus

δ̇± ≥± rχ
(

1 +
XudvbU

2
bdR (γ±o )

U2
bd +Xudubd

)
± roP

(
γ±o
)

∓ aoQ
(
γ±o
)
± Yudv

2
b

(
U2
bdR (γ±o )

U2
bd +Xudubd

)
,

(48)

where we have inserted the full expression for the sway
dynamics given by (32). Consider the term in front of rχ,

1 +
XudvbU

2
bdR (γ±o )

U2
bd +Xudubd

≥1− |Xud||vb| |uo|(
u2bd +Xudubd

)√
u2bd − u2o

.

(49)

To ensure that (49) is positive, we require vb,max to satisfy
(39), which gives the final expression:

δ̇±≥±rχ(1−σ)±roP
(
γ±o
)
∓aoQ

(
γ±o
)
−σ|vb|

|Yud|
|Xud|

. (50)

The remaining terms of (50) are bounded by the conditions
of the lemma and Assumption 1 and 2. Thus, if δmin ∈ [0, ε],
then δ̇min ≥ 0 when rχ satisfies the collision avoidance
law (20) and (40) holds. Hence, by (41), |χnbo(t)− α(t)| ≥
β(t), ∀t ≥ t1, which ensures that (42) holds by Lemma 1.

The main result will now be presented, where obstacle
avoidance is considered in combination with path following.
Before stating the theorem, we make the final assumption:

Assumption 7. The vehicle dynamics (1) satisfy

X2
uduo,max

(
ro,max

uo,max

ubd
+

ao,max√
u2
bd−u2

o,max

)
|Yud|

(
u2bd +Xudubd

)√
u2bd − u2o,max

≤ 1

8
. (51)

Remark 6. Assumption 7 follows from Lemma 2 and 3 and
ensures that condition (39) and (40) in combination with (33)
can be satisfied by a parameter σ ∈ (0, 1).

Theorem 1. Consider a vehicle described by (1) and an
obstacle described by (2). Let Assumption 1-7 hold, the safety

radius satisfy

Rsafe ≥ dsep +
Ubd,max + πuo,max

rχ,max
+ djump, (52)

the angular safety distance satisfy

ε ≥ arccos

(
dsep

dsep + djump

)
, (53)

and the smoothing time satisfy Ts ≤ Tjump, where djump ,

Tjump(uo,max + Ubd,max) and Ubd,max ,
√
u2bd + v2b,max.

Furthermore, for a constant parameter σ ∈ (0, 1), let (39)
and (40) of Lemma 3 hold, the maximum course rate satisfy

rχ,max ≤
|Yud|
|Xud|

vb,max, (54)

and the lookahead distance satisfy

∆ ≥ Ubd,max

rχ,max − λχπ
. (55)

Then, if db,o(t0) ≥ Rsafe and |vb(t0)| ≤ vb,max, the
vehicle controlled by the surge and yaw controllers (21),
the guidance system (15)-(16), and the collision avoidance
algorithm (17)-(20), will converge to the path P without
collision, i.e. db,o(t) ≥ dsep, ∀t ≥ t0.

Proof: We will prove this theorem by demonstrating
that the lower bounds on the safety radius (52) and the safety
angle (53) ensure that the vehicle is able to both reach a
safe course and follow the collision avoidance law before a
collision can possibly occur with the obstacle.

Lemma 2 in combination with Assumption 6 and the upper
bound (54) entails that |vb(t)| ≤ vb,max, ∀t ≥ t0. The speed
of the vehicle is hence bounded by Ub ≤ Ubd,max.

Consider a time t1 ≥ t0 at which the vehicle and the
obstacle are in a conflict, i.e. δmin(t1) < 0, and will
collide unless the vehicle changes its course. Let also the
distance satisfy db,o(t1) = Rsafe. We furthermore consider
the worst case scenario in such a situation. A jump in the
yaw reference signal occurs at the time t1, and the time it
takes to smooth the signal is upper bounded by Tjump, which
causes the distance between the vehicle and the obstacle to
reduce by djump. The vehicle must then have reached the
maximum course rate, rχ,max, by (25) and turns at this
rate for a full π rad turn before reaching a safe course,
during which the obstacle moves at maximum speed towards
the turning circle of the vehicle. It follows that the safety
radius (52) ensures that there exists a time t2 > t1 such that
db,o(t) ≥ dsep,∀t ∈ [t1, t2] and δmin(t2) = 0. Lemma 3 then
ensures that db,o ≥ dsep until guidance resumes.

Suppose now that, at some time t3 > t0, the guidance
law satisfies χngd ∈ Vεcc during which db,o < Rsafe, causing
the collision avoidance scheme to commence. The vehicle
is not guaranteed to follow (20) before the time Tjump has
passed. By (18), there must exist a time t′3 < t3 such that
db,o(t

′
3) ≥ dsep

cos(ε) and χnb (t) /∈ Vεcc, ∀t ∈ [t′3, t3], which
entails by Lemma 1 and the choice of ε in (53) that

db,o(t3) ≥
dsep

cos(ε)
≥ dsep + djump. (56)
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Fig. 4: The first simulation. The distance dsep from the obstacle
center is represented by the red circle and the vehicle by the orange
polygon. The obstacle and vehicle trajectories are shown as the red
and blue dashed lines, respectively. The path, P , is given by the
yellow line and χnb by the blue vector. The domain Vεcc is shown
as the red, transparent sector, with a radius of Rsafe.

Furthermore, consider Figure 3 which illustrates the worst
case reduction of δmin during the time Tjump, given by

ε̃ , arccos

(
dsep

dsep + djump

)
. (57)

It follows that the safety angle (53) ensures that db,o(t) ≥
dsep, δ

min(t) ≥ 0, ∀t ∈ [t3, t3 + Tjump]. Lemma 3 ensures
that a collision does not occur thereafter.

Finally, since ub > uo,max, the vehicle will eventually
escape the obstacle and resume path following, during which
the vehicle cannot enter a collision by Lemma 1 and the
safety criteria (17) and (18). The choice of ∆ in (55) entails
that |rgd| ≤ rχ,max, ensuring that χngd will be perfectly
followed. When tracked, the LOS guidance law (15) provides
uniform semiglobal exponential convergence of the cross-
track error e , ynb − ynt to zero [11], concluding the proof.

VII. SIMULATION RESULTS

This section presents two numerical simulations of the
underactuated surface vehicle (1), governed by the control
system presented in Section V. The model parameters belong
to an LAUV [14], operating in three degrees of freedom. In
both simulations, the desired surge speed of the vehicle is
chosen as ubd = 2 m/s, the initial heading as ψnb (t0) = 0 rad,
and the initial position as pnb (t0) = [0, 0]

> m. Assumption 4
and 5 hold with Y (ubd) = −2.8161 and X(ubd) = −1.0242.
We choose the control gains as λχ = 0.1 and λδ = λr =
λu = 1. The obstacle (2) has a radius of Ro = 10 m. The
separation distance is chosen as dsep = 15 m and the desired
yn-position as ynt = −20 m.

In the first scenario, the obstacle turns in a clockwise circle
at a constant speed of uo = uo,max = 1.8 m/s and turning
rate of ro = ro,max = 0.1 rad/s. We choose σ = 0.3,
vb,max = 0.27 m/s, and rχ,max = 0.74 rad/s, according
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Fig. 5: The second simulation.

to Theorem 1. The smoothing time is upper bounded by
Tjump = 2.33 s. The safety radius is chosen as Rsafe = 35 m,
the safety angle as ε = 0.9 rad, and the lookahead distance
as ∆ = 5 m, satisfying the conditions of Theorem 1.

The trajectories of the vehicle and the obstacle are plotted
in Figure 4 at four different times. At t = 10 s, the distance
is reduced to db,o = Rsafe simultaneously as δmin < 0. The
collision avoidance scheme is then initiated, which makes the
vehicle turn left at the maximum rate. The vehicle obtains
a safe course before a collision occurs, which is maintained
throughout the maneuver. Once the vehicle has circumvented
the obstacle by following the collision avoidance law (20),
the guidance course satisfies (18), causing the vehicle to
resume path following. The vehicle has converged to the
path at t = 98 s without collision. The distance to the
obstacle, db,o, and the sway speed of the vehicle, vb, during
the simulation is shown in the left-most plots of Figure 6,
thus supporting the theoretical result of Theorem 1.

In the second scenario, the obstacle approaches the vehicle
from the left at a constant acceleration of ao = ao,max =
0.05 m/s2 and zero turning rate. The initial speed of the
obstacle is uo(t0) = 0.5 m/s, and its maximum speed is
uo,max = 1.9 m/s. The control parameters are respectively
σ = 0.25, vb,max = 0.15 m/s, rχ,max = 0.41 rad/s, Tjump =
1.28 s, Rsafe = 40 m, ε = 0.73 rad, and ∆ = 21 m, chosen
to satisfy the conditions of Theorem 1.

The trajectories of the vehicle and the obstacle are plotted
in Figure 5. The vehicle is approaching the path as the
distance to the obstacle is reduced to Rsafe. The vehicle
turns right in accordance with (19) to avoid a collision. As
the vehicle attempts to avoid the obstacle by moving to the
right, the obstacle accelerates directly towards it. Despite
this, the vehicle is able to maintain at least the distance dsep
to the obstacle at all times, during which the sway speed
remains within the upper bound vb,max, as verified by the
right-most plots of Figure 6. The vehicle escapes the obstacle
at t = 68 s and converges to the path. Hence, the simulation
results confirm the theoretical result of Theorem 1.
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Fig. 6: Distance, db,o, and sway speed, vb, during the first and
second simulation, given in the left and right plots, respectively.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed and analyzed a reactive
collision avoidance algorithm, applied to a surface vehicle
that lacks actuation in the sideways direction. Rather than
neglecting the unactuated dynamics of the vehicle, we specif-
ically considered the sway dynamics in the control design
and analysis of the system. The proposed collision avoidance
law is based on the concept of a conflict, a condition
implying that the vehicle is headed towards a collision with
an obstacle. By making the vehicle stay out of conflicts, we
ensure that the vehicle avoids a collision. To achieve this for
an underactuated vehicle encountering a dynamic obstacle,
we considered the dynamic capabilities and constraints of
both the vehicle and the obstacle in the design of our
approach. Furthermore, we showed that collision avoidance
was guaranteed in any scenario, under explicit conditions
derived by our analysis of the complete, closed-loop system.
The collision avoidance problem was combined with path
following to demonstrate that other goal-reaching behaviour
of the vehicle is easily incorporated into the algorithm due
to its modular structure. Simulations of an underactuated
marine vehicle moving in three degrees of freedom were
included to verify the theoretical analysis.

Future work concerns the issue of avoiding multiple mov-
ing obstacles, as well as obstacles of arbitrary shape.

APPENDIX

A. Functional expressions

The functional expressions of the model (1) are defined:

fu(ub, vb, rb) , rb
rbm23 + vbm22

m11
− ub

d11
m11

, (58)

fr(ub, vb, rb) ,

rb
m23 (d23 −m11ub)−m22 (d33 +m23ub)

m22m33 −m2
23

+

vb
m23d22 +m22 (d32 + ub (m22 −m11))

m22m33 −m2
23

,

(59)

X(ub) ,
d33m23 − d23m33 + ub

(
m2

23 −m11m33

)
m22m33 −m2

23

, (60)

Y (ub) ,
d32m23 − d22m33 + ubm23 (m22 −m11)

m22m33 −m2
23

, (61)

where mij and dij are the elements of the inertia- and
damping matrix (including added mass) [12].

The expressions derived in Lemma 3 are defined:

P (γo) ,
uo cos(γo)

Ubd

√
1− (uo/Ubd)

2
sin2(γo)

, (62a)

Q(γo) ,
sin(γo)

Ubd

√
1− (uo/Ubd)

2
sin2(γo)

, (62b)

R(γo) ,
uo sin(γo)

U3
bd

√
1− (uo/Ubd)

2
sin2(γo)

. (62c)
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