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Abstract 

Building sector is shown as a huge energy consumer worldwide. Therefore, a thorough 

understanding of energy performance in buildings is essential to propose and 

implement sustainable strategies for the future plans; and consequently, reach the low 

carbon emission targets. This study aims to investigate an approach to gather or 

generate large-scale energy data for Norwegian residential buildings. Also, approaches 

to visualize data and implement digital information tools are reviewed in this study. A 

qualitative literature survey was conducted to evaluate the relevant 

approaches/strategies for large data collection in the building sector. Results 

confirmed that building energy models could be suitable for generating consistent and 

detailed data. Elaborate and simplified engineering methods, statistical methods, 

neural networks and support vector machines, are widely used models. A hybrid model 

combining simulation-based techniques and machine learning algorithms shows 

promising results. An energy model class which simulates the physical relationship of 

processes at the building or end-use levels, which also utilizes cloud computing, could 

help generating generic energy models based on key performance indicators. The 

dataset can then be trained in a machine learning algorithm, which utilize historical 

information to attribute building energy use to particular end-uses and can predict 

different scenarios for the Norwegian building stock based on cadastre data and 

statistical data. The outcome of this study can help to introduce approaches to find the 

energy saving potentials in Norwegian buildings and present the suitable 

refurbishment strategies for future planning. 
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1 Introduction 

Transition of the European community towards sustainability is a combination of 

environmental, economic and social challenges that entails the adoption of strategic 

approaches across all sectors (European Environment Agency, 2020). The building 

sector accounts for 40% of the energy use (EPBD, 2010) and 36% of the CO2 emissions 

(Artola et al., 2016), in addition existing buildings with low energy performance 

represent most of the European building stock (Almeida & Ferreira, 2017). It is 

estimated that at 85-95% of today’s buildings will still exist by 2050 (European 

Commission, 2020b). The annual amount of deep renovations in the EU is only around 

0.2% (Esser et al., 2019), for residential buildings the annual weighted energy 

renovation rate is estimated to be 1% (Artola et al., 2016). Energy efficiency is an 

essential component for reaching the EU Commission 2030 climate target plan 

(European Commission, 2020c). The plan seeks to reduce the emissions by 55% by 

2030, compared to 1990 levels. In order to achieve the long-term carbon emissions 

targets, it is necessary to perform deep changes in the building sector (Almeida & 

Ferreira, 2017). 

Considering the huge energy consumption in the existing old buildings, proper 

renovation plans can help to reduce energy use in buildings. Overall, buildings are 

long-lasting structures; their renovation needs large investments on and the 

development of long-term strategies considering a life cycle approach (European 

Commission, 2020b). Sustainable building renovation projects mainly aim to lower 

energy consumption in buildings incorporating low carbon solutions (Kylili et al., 2016). 

Such projects are focused on reducing the long-term costs and affordability. 

Renovation projects are also about improvement of health and well-being of the 

occupants (European Commission, 2020a). Sustainable building renovation projects are 

anticipated to increase the comfort levels and the quality of life for the occupants, while 

minimizing the negative environmental impacts and increasing the economic value 

(Kylili et al., 2016). However, to choose and implement the right sustainable strategy 

for future renovation plans, access to reliable data on the building performance is 

essential.  

1.1 Scope of this study 

This study aims to investigate ‘how large-scale energy data can be gathered or 

generated for Norwegian residential buildings. Also, approaches to visualize data and 

implement digital information tools are reviewed in this study.  
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The outcome helps to introduce approaches to find the energy saving potentials in 

Norwegian buildings and present the suitable refurbishment strategies for future 

planning. 

2 Method 

This study was conducted through a qualitative literature survey, where the most 

relevant studies to the topic was reviewed and analysed. Oria and science direct were 

used as the main search engines. Regarding the literature selection criteria, only the 

English literature from 2010 to present in Europe were considered. The main search 

keywords and the number of studies found by each keyword are presented in Table 1. 

To include more relevant literature, some cited papers in the reviewed studies were 

also considered, even if they did not match the filtering criteria.  

The reviewed studies and obtained information were rated on a five-point scale based 

on the relevancy to the topic (where 5 was very relevant and one was slightly relevant). 

This was later transferred to a literature matrix, presented in Table 2. The matrix consists 

of the author name, location and a summary of the reviewed studies. 

 

Table 1: Search hits from Oria and ScienceDirect. 

Search engine Topic Hit 

Oria Urban energy models 215 053 

Oria Building Information Modelling for existing buildings 179 823 

Oria Energy performance building sector 78 843 

Oria Historic Building Information Modelling 74 724 

Oria Building stock performance indicators 36 185 

Oria Key Performance Indicators existing building stock 19 089 

Oria BIM existing buildings 4 002 

Oria Sustainable Renovation Classification 2 489 

Oria Classifying building stock energy models 1 547 

ScienceDirect Historic Building Information Modelling 1 441 

ScienceDirect Performance indicators existing building stock 961 

ScienceDirect Classifying building stock energy models 499 

ScienceDirect Performance indicators renovation 483 

ScienceDirect BIM building stock 79 
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3 Literature study 

Table 2 shows the matrix resulted from the literature survey. The table provides source, 

titles, content and location of the information in the papers. The relevant literature is 

further discussed in this section and categorized by building energy data with 

strategies, examples, visualization and digital tools, which is further discussed in the 

following sections. 

Table 2: Literature matrix 

Authors Location Summary 

(Langevin et al., 

2020) 

Europe - Presents a new energy model classification framework (leverages 

international modelling expertise from the participants of the 

International Energy Agency's Annex 70 on Building Energy 

Epidemiology).  

- Proposes a multi-layer quadrant scheme that classifies modelling 

techniques by their design (top-down or bottom-up) and degree of 

transparency (black-box or white-box) 

- Hybrid techniques are also addressed. 

(Swan & Ugursal, 

2009) 

Worldwide Two distinct approaches are identified: 

- Top-down, treats the building sector as an energy sink (focus on 

macroeconomic indicators)  

- Bottom-up, estimates energy consumption of representative individual 

buildings to regional and national sectors. 

(Intelligent Energy 

Europe, 2009) 

Europe - Improves knowledge about the energy performance of the building 

stock, using  the first IEE Project, Collecting DATA from Energy 

Certification to Monitor Performance Indicators for New and Existing 

Buildings (DATAMINE) 

(Intelligent Energy 

Europe, 2012b) 

Europe - Presents a systematic approach to classify building stocks according to 

their energy related properties  

- A cross-country comparison, exemplary building for showcasing and 

national building stock models usage 

(Intelligent Energy 

Europe, 2016a) 

Europe - Takes building typologies defined according to the TABULA approach 

as a basis for building stock monitoring activities  

- Tracked the progress of energy performance of building entireties 

regarding energy saving and climate protection targets – to trigger 

enhanced or corrective actions by the involved key actors in European 

Housing Stocks. 

(Khodeir et al., 

2016) 

Egypt - Integrates HBIM tools for sustainable retrofitting of heritage buildings 

through a conservation framework  

- Provides literature review and qualitative analysis of worldwide 

examples 

(Murphy et al., 

2013) 

Europe Proposes a new methodology for the HBIM for historic structures and 

environments involving the following stages:  

- collection and processing of laser/image survey data  
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- identifying historic detail from architectural pattern books 

- building of parametric historic components/objects 

- correlation and mapping of parametric objects onto scan data and the 

final production of engineering survey drawings and documentation 

(Visscher et al., 

2016) 

Europe A review from several European studies concluded that: 

- the energy saving targets based on renovation of the housing stock 

cannot be reached with the current renovation practices  

- there is a need to find ways to significantly increase the renovation rate 

and depths tremendously or to reduce the expectations on what can 

be reached by reducing the energy demand in the existing dwellings 

(Sandberg et al., 

2016a) 

Europe - shows that future trends for construction, demolition and renovation 

activities lead to similar patterns emerging in all countries 

- The model estimates future renovation activity due to the stock’s need 

for maintenance as a result of ageing 

- 78% of all dwellings are shown to benefit from energy efficiency 

measures by 2050, either as they are constructed (31%) or undergo 

deep renovation (47%) 

(Brattebø et al., 

2016) 

Norway - Shows typical effects of energy measures for existing housing in 

Norway.  

(Mata et al., 2013) Europe, 

Sweden 

- Presents the Energy, Carbon and Cost Assessment for Building Stocks 

(ECCABS) model, which is a model to assess energy-saving measures 

and carbon dioxide mitigation strategies in buildings  

- Energy usage and CO2 emissions in Swedish residential sector are 

shown to be reduced by 55% and 63%, respectively, with most of the 

measures being cost–effective 

(Sartori et al., 2016) Norway - Shows a model based on dynamic material flow analysis, general in its 

principles, applied to the dwellings stock in Norway  

- Technical parameters (e.g. dwellings lifetime and renovation cycles) are 

expressed by probability functions 

(Sandberg et al., 

2016b) 

Norway - Confirms that a historical shift to more efficient energy carriers and 

heating systems has influenced energy savings in the system  

- The total average energy savings per m2 are offset by changes in user 

heating habits 

- A significant decrease is shown in average delivered energy intensity 

per m2, only after the introduction of heat pumps 

(Sandberg et al., 

2014) 

Norway - Shows a segmented dynamic dwelling stock model for understanding 

the nature of the long-term development in stocks, their turn-over and 

need for maintenance, including a case study for Norway 

- Segments are defined by dwelling type and construction period  

- In Norway, detached houses constructed between 1945 and 2011 will 

dominate the renovation activity in the coming decades 

(Vieites et al., 2015) Europe - Presents some major projects carried out in Europe and their 

achievements regarding the integration of innovative technologies and 

use of different sources of renewable energy in existing buildings 
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3.1 Energy models 

There have been multiple efforts to classify existing building stock regarding to 

condition and energy consumption. The building characteristics are complex and is 

hard to model. Due to more ambitious goals, access to big data and greater 

computational power we are now able to simulate more complex data structures. In 

this section building energy models and building stock classification schemes are 

investigated. 

3.1.1 Swan and Ugursal classification scheme 

To date Swan and Ugursal (2009) classification has gained wide acceptance among 

building stock energy modelers. Two distinct approaches are identified: top-down and 

bottom-up. The top-down approach treats the building sector as an energy sink with 

focus on macroeconomic indicators and is not concerned with individual end-uses. The 

bottom-up approach estimates energy consumption of a representative set of 

individual buildings to regional and national sectors. Figure 1 shows an overview of the 

classification updated by Li et al. (Swan & Ugursal, 2009). 

(Pombo et al., 

2016) 

Worldwide - Provides a critical review of the research undertaken on housing retrofits 

and discusses the approaches driving the assessment of energy efficiency 

measures around the world 

- Building envelope insulation, window replacements, and air sealing are 

shown as the most common strategies under consideration 

- There is a need to apply a life cycle approach in order to find optimal 

retrofitting solutions and improvement potential of housing renovation 

(Jäger, 2012) Europe - A book about the current existing building stock. What measures can 

be done and several examples. 

(Ascione et al., 

2017a) 

Naples, Italy - Studies how to predict building energy performance with low 

computational power and good reliability using artificial neural 

networks.  

- Proposed methodology can give a significant support to rigorous 

approaches for planning building energy retrofit, e.g. those based on 

cost-optimal analysis or building performance optimization 

(Alves et al., 2018) Belo Horizonte, 

Brazil 

- Develops a comprehensive framework to identify and analyse the 

energy saving potential of existing building stock.  

- Cost effective energy savings of up to 24% can be possible in the high-

rise office building stock by 2036 

(Ascione et al., 

2017b) 

Italy - Investigates the large-scale energy retrofit of a significant share of 

Italian public administration buildings 

- High building energy performance can be achieved through three main 

levers: proper thermal design of the building envelope, efficient HVAC 

and primary energy systems; exploitation of renewable energy sources 

- For existing buildings, a good strategy is postponing the third lever to 

the retrofit of envelope and HVAC systems 
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3.1.2 Updated classification scheme 

A new proposed building stock energy model classification scheme has been 

introduced by Langevin et al. (2020). It divides building stock energy modelling into 

four quadrants (Q) based on their design (top-down/bottom up) and degree of 

transparency (black-box/white-box) as shown in Figure 2. It includes examples of 

emerging data-driven and simulation-based techniques alongside established 

techniques such as machine learning algorithms. Sub-layers representing key energy 

use determinants which could be mapped to the same four quadrants as shown in the 

energy layer. The model builds from existing classification frameworks while 

accounting for emerging simulation-based modelling techniques and recognizes the 

potential sub-layers of a building stock energy model (Langevin et al., 2020). 

Figure 2: Classification scheme for building stock energy models (Langevin 

et al., 2020). 

Figure 1: Top-down and bottom-up modelling techniques for estimating the regional or national 

energy consumption (Li et al., 2017). 
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The first quadrant, Q1 estimates building stock energy, utilizing available sector-wide 

historic variables such as demographics or economic indicators. The model typically 

excludes end-use energy attribution and rely on aggregate end-use functions. The 

economic indicator includes demographics, fuel prices, household income, or the gross 

domestic product of an economy as a whole. Technological models account for 

technological characteristics of the building stock (Langevin et al., 2020).  

The second quadrant, Q2 represent physical causality at the aggregate building and 

technology stock level. This model is characterized by quantitative models of 

aggregate-level building and technology stocks and flows which can be annual 

alterations to the residential stock from construction, retrofits and demolition. 

The third quadrant Q3 utilize historical information to attribute building energy use to 

particular end-uses. Classical statistical techniques are used to predict either whole 

building or end use energy consumption with regression-based and conditional 

demand analysis. Machine learning techniques utilize a wide range of algorithms to 

find patterns in rich and large datasets. These models have seen a large increase in the 

literature over the last decade. 

The last quadrant Q4 simulates the physical relationship of processes at the building 

or end-use levels, which include high-performance and cloud computing along with 

simulation-based techniques. The end-use distribution models the distribution of 

energy demand per end-use or appliance type to calculate total end-use or appliance 

energy consumption at scale. This is done without interactions between end-uses. The 

Agent-based models use software representations of individual buildings and 

decision-maker agents that have rules for interacting with other agents and their 

physical or economic environments. Physics-simulation include archetype modelling 

which is a well-established physics-based approach. This model simulates the energy 

performance of a single building or collection of buildings. The results can be scaled 

up to represent total sector energy use in a defined geographic area (Langevin et al., 

2020). 

There are also many hybrid models that use mixed approaches across the quadrants. 

Many of these hybrid models rely more heavily on one of the classification quadrants 

and have some inputs from others (Langevin et al., 2020). 

For the bottom-up approach many calculations are needed to evaluate the building 

energy system, from sub-system level to building level and even regional or national 

level. There will be a problem due to the different application in use of existing 

simulated building data. Each model has its own advantages in certain cases of 

applications. In the case of predicting building energy, the model can adopt some 
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simplifying strategies, it can become a light-weight model and is easy to develop while 

maintaining accuracy (Zhao & Magoulès, 2012). By implementing Artificial Neural 

Networks and Support Vector Machines a statistical model can give highly accurate 

prediction as long as model selection and parameters setting are well performed and 

sufficient historical performance data exist (Zhao & Magoulès, 2012). Use of machine 

learning techniques also shows promising results in renovation projects. A study 

(Ascione et al., 2017a) shows how to predict building energy performance with low 

computation and good reliability using artificial neural networks. The proposed 

methodology can give a significant support to rigorous approaches for planning 

building energy retrofit based on cost-optimal analysis or building performance 

optimization (Ascione et al., 2017a). 

An advantage for the top-down method is the limited input information which is often 

aggregated with economic data, sociodemographic and market economic effects. A 

limitation is the requirement of long-term historical data and technological details (Li 

et al., 2017). In more recent years the potential on Life Cycle Assessment (LCA) of 

building stock has been highlighted. Geographic Information System (GIS) integration 

is promising to explicitly consider spatial constraints and localize the hot spots, this can 

be areas with high potential of emissions reductions if refurbishment actions are put in 

place or areas with high material concentrations. It is suggested that research is done 

on calibration of building stock models, integration of GIS and 3D semantic models for 

improved description of the building stocks, integration of dynamic material flow 

analysis for the inclusion of dynamic evolution (Mastrucci et al., 2017). For calculating 

energy demand of the LCA studies the engineering-based method is commonly 

applied. The limitations and impact of these models are stated in the above section.   

3.1.3 Existing building data 

One strategy for building renovation is to analyse the existing building stock. This was 

done by the Intelligent Energy Europe from 2006 to 2016. The goal of the first IEE 

Project, Collecting DATA from Energy Certification to Monitor Performance Indicators 

for New and Existing Buildings (DATAMINE), was to improve the knowledge about the 

energy performance of the building stock. The collected 19 000 datasets from 12 

different European countries between 2006 and 2008 were analysed and compared. 

For different age and size groups "average buildings" were defined which are 

representative for the respective sample subsets (Intelligent Energy Europe, 2009). 

The second project, Typology Approach for Building Stock Energy Assessment 

(TABULA), was launched in 2009 based on the DATAMINE project, the idea was to make 

an agreed systematic approach to classify building stocks according to their energy 
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related properties. This was done for cross-country comparison, exemplary building for 

showcasing and for national building stock models usage. It was concluded that an 

energy saving of over 45 % can be reached, even with the standard refurbishment 

(Intelligent Energy Europe, 2012b; Loga et al., 2016). 

Energy Performance Indicator Tracking Schemes for the Continuous Optimisation of 

Refurbishment Processes (EPISCOPE) takes building typologies defined according to 

the TABULA approach as a basis for building stock monitoring activities (Intelligent 

Energy Europe, 2016a). The main objective is to track the progress of energy 

performance of buildings with regards to energy saving and climate protection targets, 

in order to trigger enhanced or corrective actions by the involved key actors in 

European Housing Stocks (Intelligent Energy Europe, 2016b). For the case of Norway, 

they concluded that the most sensitive input parameters is population and lifetime of 

dwellings, which also were the input parameters of highest uncertainty (Sandberg et 

al., 2016a). 

3.1.4 Examples of large-scale energy models 

Urban 3D models offer great support for establishing climate protection concepts by 

allowing to quantify measures to improve energy efficiency and integrate renewables. 

There are some software’s available for calculating large-scale energy models. One of 

these is CityGML which can model buildings with 4 different Levels of Details (LoDs). 

Figure 3: Examples of large-scale building models with LOD1 (a), LOD2 (b), LOD3 (c), and 

LOD4 (d) (Gröger et al., 2012). 

a b 

c d 
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LoD1 models buildings as a cube with flat roofs, LoD2 adds the details of roof shape. 

In LoD3 the details of exterior surfaces like windows and doors are added and LoD4 

models the interior surfaces as well, see Figure 3Error! Reference source not found. 

(Gröger et al., 2012). 

A case study of Ludwigsburg using SimStadt with LoD1 and LoD2 with almost 177,000 

buildings showed that 1°C reduction in the set-point temperature and set-back 

temperature of the public buildings resulted in 109 GWh annual energy saving (Eicker 

et al., 2018). The heating energy could be reduced by up to 58% by applying the highest 

refurbishment standard scenario. The most important requirements for replication of 

the results are 3D city models with valid solid geometry per building and basic attribute 

data such as year of construction (YoC) and building usage. Figure 4 shows an example 

of a similar project. It is very challenging to get detailed and reliable consumption data 

to validate the simulation results (Eicker et al., 2018). 

 

 

Form a study in Italy with a bottom-up engineering methodology conducted by 

Fracastoro & Serraino (2011), statistical distribution of buildings according to primary 

energy for heating demand had been obtained from Census data with integration of 

local standards, laws and energy statistics (Fracastoro & Serraino, 2011). The procedure 

is applicable to any location/region where the data size is large enough so it can be 

described by a complete and dedicated set of Census data, and small enough so it can 

guarantee a sufficient homogeneity under the climatic and building technology points 

Figure 4 Overview of the heating demand for a large-scale energy project similar to 

Ludwigsburg (hft-stuttgart, 2018) . 
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of view. This method has been used to define the performance scale for energy 

certification and to evaluate the energy saving potential of large scale retrofit actions 

on the building envelope. Building energy cadaster may be obtained from a reliable 

energy certification in the future. The global overview of the building stock energy 

performance may provide further insight for the decision-makers and local or state 

authorities (Fracastoro & Serraino, 2011). 

A German study conducted by Zirak et al. (2020) show applying a statistical year of 

construction (YoC) of a building can lead to an acceptable heating demand calculation 

of the entire city. This may not be accurate enough at building level. The focus was 

residential buildings and tested for two German cities. The YoC is an important 

parameter for the heating demand calculation of buildings in a district. These 

calculations can help decision-makers and urban planners when developing energy 

efficiency or climate protection concepts (Zirak et al., 2020). 

The Energy Efficiency for EU Historic Districts’ Sustainability (EFFESUS) was established 

in 2012 and the goal was to investigates the energy efficiency of European historic 

urban districts (Frick et al., 2013). This was done by develop and demonstrate through 

case studies a methodology for assessing and selecting energy efficiency interventions 

with a decision support system (Kariotellis, 2015). A multiscale data model with data 

from several cities from Spain, Sweden, Budapest, Turkey, Italy, Germany and UK was 

developed for the management of energy in addition to a new non-invasive, reversible 

yet cost-effective technology for significantly improving thermal properties was 

developed (Frick et al., 2013). Seven study cases are included in the project where the 

urban interventions consist of implementation of new and existing technologies at 

urban district level, such as smart grids, PV and energy storage. The building consist of 

application of new and existing products and systems at building level, including 

aerogel insulation, traditional passive solutions, improved indoor climate control 

systems, and secondary glazing/windows (Lucchi et al., 2017; Becherini et al., 2018). 

Within the EFFESUS project 77 Energy Conservation Measures were analysed to 

determine their impact on heritage significance. A Heritage Impact Assessment 

combined with the economic assessment and applicability of energy conservation 

Measures, can provide support to authorities and local decision-making processes 

regarding the sustainability of a historic district (Grun et al., 2013; Egusquiza et al., 

2018). Studies shows that examining the recurrent characteristics of historic 

architecture in a local context may promote energy improvements compatible with the 

material and aesthetic conservation of historic buildings (Genova et al., 2017). 
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3.2 Building indicators 

Building renovation project is affected and depended on a long list of aspects. In use 

of different classification schemes, one needs to define a set of parameters whom fit 

the boundaries of the project. Indicators on the existing building stock is needed in 

order to find out which buildings are most suitable for conducting smart renovation, it 

can be under construction to manage and keep track of the progress, and after 

renovation is conducted to see if we have reached our benchmark and goals. It is 

important to have well defined boundaries and performance indicators to have a 

successful refurbishment project. 

3.2.1 Performance Indicators 

Key Performance Indicators (KPI) reflect a goal and provide means for the measurement 

of the progress towards those goals for further learning and improvements. This is 

often used for project managers to keep track of the progress of a project but is also 

suited for evaluating a set of benchmarks for energy models. Eight generic categories 

for the performance of buildings have been identified, these employ a range of KPIs 

for their performance measurement, which are economic, environmental, social, 

technological, time, quality, disputes and project administration. Energy is the largest 

sub-category of them all under the environmental category and has 17 key 

performance indicators. Most of these address electrical energy consumption, peak 

demand and savings in form of return ratio and payback time. In addition, site 

orientation to maximise passive solar potential and utilisation of renewable sources can 

be found as measurements in different studies. With aspect to indoor comfort, thermal 

performance and use of daylight is also addressed in this sub-category. Although 

overheating risk, indoor quality and visual comfort are also found in separate sub-

categories (Kylili et al., 2016). 

There is not a common consensus on the definition of sub-categories, nor a 

standardised approach or methodology, not even regulations or guidelines for 

undertaking the assessment of each. The gap is created due to the lack of a sustainable 

building standardised basis, which will be established on a set of relevant well-defined 

performance indicators, for national and international building policies. This challenge 

is anticipated to be addressed through the work of research initiatives and innovative 

research projects in the coming years (Kylili et al., 2016). This can be certification 

systems such as the Building Research Establishment Environmental Assessment 

Method (BREEAM) which is a sustainability rating scheme for the built environment. 

Through its application and use, BREEAM helps clients to measure and reduce the 
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impacts of their buildings and in doing so, create higher value, lower risk assets that 

are better for people and the environment. The BREEAM Refurbishment and Fit Out 

(RFO) standard enables real estate investors, developers and building owners to assess 

sustainability-related impacts during the design and works of a refurbishment or fit out 

project. These have separate well defined performance Indicators categorized in the 

same way as the KPI (Building Research Establishment, 2015).  

There is a large potential for cost effective renovations that reduce both carbon 

emissions and non-renewable primary energy use. The evaluation of the benefits from 

energy related renovation programmes and policies focusses mainly on energy savings. 

This leads to the underestimation of the positive impacts and co-benefits such as visual 

and thermal comfort to the inhabitants of the buildings and to society. This may lead 

to sub-optimal investment decisions and policy design. Energy specialists tend to focus 

solely on energy-related effects and professionals from other fields (such as health 

professionals or economists) are unlikely to be consulted in the context of building 

renovations. This means that information to increase the perception of co-benefits, as 

well as interdisciplinary cooperation, is needed to fully take into account the extent of 

the non-energy benefits and to let them influence investment decisions and policy 

design (Almeida & Ferreira, 2017). 

3.2.2 Readiness Indicators 

In addition to KPI’s for benchmarking the progress and goals it is important to have 

indicators for measurement of the readiness. The 2018 revision of the European Energy 

Performance of Buildings Directive (EPBD) aims to further promote smart building 

technologies, in particular through the establishment of a Smart Readiness Indicator 

(SRI) for buildings (European Commission, 2020d). The indicator is an informative tool, 

the objective is to raise awareness about the benefits of smart technologies and 

Information and communications technology (ICT) in buildings, in particular from an 

energy perspective. Smartness of a building refers to the ability of that building or its 

systems to sense, interpret, communicate and actively respond in an efficient manner 

to changing conditions. This is in regard to the operation of technical building systems 

or the external environment, including energy grids, and to demands from building 

occupants (Märzinger & Österreicher, 2020). The SRI key functionalities is technological 

readiness assessment of a building capacity to adapt to user needs and energy 

environment, evaluation of building readiness in operating more efficiently and 

measurement of the readiness of building interaction in demand response with the 

energy system and the district infrastructure (Vigna et al., 2018). 
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SRI also is aimed at providing an indication of how well buildings can interact with the 

energy grids. Load shifting across buildings has an important role to improve efficiency 

and the integration of renewable energy systems. Current proposals for the SRI focus 

mainly on qualitative appraisals of the smartness of buildings and do not include the 

wider context of the districts. Quantitative approaches that can be easily applied at an 

early planning stage are still missing. To optimize infrastructure decisions on a larger 

scale, a perspective beyond the building level is necessary to evaluate and leverage the 

larger load shifting capacities (Märzinger & Österreicher, 2020). 

A study from Finland was set to provide the first insights into the applicability of the 

SRI in cold climate countries. Because of the advanced information and communication 

technology and high building energy consumption profiles, the Northern European 

countries were interesting test environment for the indicator. It was found that the 

baseline design for the European SRI is not directly feasible for cold climate countries. 

The applicability could be improved by reconsidering the realization of the selection of 

the SRI relevant building services in practical experiments (Janhunen et al., 2019). 

3.3 Digital tools and data visualization  

Often the decision-makers are non-technical and have not enough insight in the 

underlaying simulations and data fabrication. It is important to be able to visualize data 

and consider the knowledge of different end-users by including multiple data layers. 

Several methods have been proposed to evaluate the specific energy use of the existing 

building stock. From large number of Census and cadastre data or from actually 

monitored data. Methodologies based on Geographic Information System (GIS) 

techniques has also been assessed, which can integrate geometrical Census data, and 

adapt the methodology to the desired detail level (Fracastoro & Serraino, 2011).  

3.3.1 Historic Building Information Modelling 

Historic Building Information Modelling (HBIM) is a library of objects, based on historic 

architectural data.  These objects are cross platform available and consist of geometric 

descriptive language which is made by parametric mapped objects from point cloud 

and image survey data. The final stage in the reverse engineering process is to plot the 

parametric objects onto the laser scan surveys as building components to create or 

form the entire buildings. HBIM can automatically create details and cut sections in 

addition to the 3D models for both the analysis and conservation of historic objects, 

structures and environments. This can help engineers with rapid and accurate building 

energy models of existing buildings for final production of drawings and 

documentation (Murphy et al., 2013). It was found that applying both HBIM and 

sustainable retrofit on heritage buildings in Egypt was still limited and faces a number 
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of challenges such as unavailability of equipment, limited availability of professionals, 

and funding and financial-related challenges (Khodeir et al., 2016).  

A tool was launched from the TABULA project displaying the building energy related 

features and the possible energy savings by implementing refurbishment measures, 

see Figure 5. This was based on combination of existing data from several countries 

and allowed users to see possible energy savings by implementing refurbishment 

measures (Intelligent Energy Europe, 2012a). 

 

3.3.2 Data visualization 

The EU Building Stock Observatory (BSO) was established in 2016 as part of the Clean 

energy for all Europeans package and aims to provide a better understanding of the 

energy performance of the building sector through reliable, consistent and comparable 

data. The data published in the BSO can be very useful to policymakers, investors, 

stakeholders, local and national authorities and researchers. Historic data is organized 

according to ten thematic areas: building stock characteristics, building shell 

performance, technical building systems, nearly Zero-Energy Buildings, building 

renovation, energy consumption, certification, financing, energy poverty, energy 

market (Arcipowska A. et al., 2014). 

 

 

Figure 5: The TABULA WebTool allowing users to see possible energy savings by 

implementing refurbishment measures (Intelligent Energy Europe, 2012a). 
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Multimap is developed by Multiconsult and is a tool for mapping performance of 

building portfolios, such as technical condition of buildings, adaptability and usability 

as an input to strategic planning. This can be used on a larger scale with a top-down 

approach. This project led further to the research project Oscar value which focuses on 

develop knowledge, methods and tools to enable development and achieve 

sustainable buildings and value creation for owners and end-users (Temeljotov-Salaj 

et al., 2015). This can also be implemented with the Norwegian start-up company 

Endrava is focusing on the carbon capturing potential in Europe for sectors such as 

industry, power and heat and waste to energy. This is done by a top-down approach 

where large quantities of public data on emissions at European level are proceeded 

and quality-checked and combined with other relevant public and private databases. 

See Figure 7 for the overview of the tool (CaptureMap, 2020). This could also be 

transferred to energy savings potential for existing building. 

 

Figure 6: EU Buildings Datamapper interface (EC-GISCO, 2020). 



  18 

 

The Buildt Stock Explorer is an online tool for interactive analysis and modelling of the 

Norwegian building stock with aspect to energy use, year of construction, size and 

other metrics. It is currently being developed and more data and methods for 

modelling and statistical information are yet to come (Zhuravchak et al., 2019). 

 

4 Results and discussion 

To investigate the potential for white-box/black-box and bottom-up/top-down 

approaches for large-scale energy models in Norway, the existing Norwegian 

residential building stock and the different energy model approaches are focused as 

the first step of the analysis. 

4.1 Norwegian residential building stock 

Figure 7: CaptureMap main dashboard and facility details (CaptureMap, 2020). 

Figure 8: 3-dimensional scatter plot of sample subset form Built Stock Explorer (Zhuravchak et 

al., 2019). 
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The building data is collected from the Statistics Norway's Information Centre (SSB) 

(SSB, 2021). Such data is often generated from different catalogues and need to be 

post-processed. For large datasets this can be a tedious task, especially for usage in 

data simulation. Enova is owned by the Norwegian Ministry of Climate and 

Environment and contributes to reduced greenhouse gas emissions, development of 

energy and climate technology and a strengthened security of supply (Enova, 2021). 

Enova also have data which may be suitable for building energy data generation, this 

data is not publicly available but should be investigated for later work. 

The data gathered from SSB show the Norwegian building stock consist of in total 

2 610 000 residential houses, almost half of these are detached houses, 25 % are 

apartments, the rest consist of Semi-detached house and chain houses. There is in total 

383 000 (38 %) residential houses built before 1940 and 1 300 000 (54 %) houses built 

between 1940 to 1990 (SSB, 2020). According to Figure 9, 67 % of the detached houses 

were built between 1940-1990 and 17 % where built before 1940. There is a peak in 

detached houses in 1980 and has been a decline since then. Building apartments has 

on the other hand had an increase since 1990 (SSB, 2020).  

 

The energy usage is heavily impacted of the location and local climate. Therefore, have 

we investigated where in Norway most of the residential buildings are located.  

According to Figure 10, most of the buildings are in Oslo, Viken and Vestlandet, in total 

1 480 000 (60 %). In addition, the majority of building apartments (76 %) are located in 

this region. Detached houses are scattered across all regions. 
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Figure 9: Distribution of residential buildings by age. Blue: Detached houses, Red: Apartments, 

Green: Chain houses, Purple: Semi-detached (SSB, 2020). 
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There is no consistent or available data on specific floor area for different building types 

and ages combined. We can see the floor area distribution on Figure 11 for the different 

building categories. Most of the detached houses has floor area between 140-250 m2, 

apartments have smaller floorplan around 60-100 m2. Semi-detached houses have an 

even distributed floor area between 60 – 200 m2 and chain houses between 60 -140 

m2. 

Figure 11 Distribution of residential buildings by floor area (SSB, 2020). 
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Figure 10 Distribution of residential buildings by region in Norway. Blue: Detached houses, Red: 

Apartments, Green: Chain houses, Purple: Semi-detached (SSB, 2020). 
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4.2 Energy model approaches 

There are several studies presenting different approaches for generating quality energy 

data for existing buildings. Swan and Ugursal outlined classification scheme which has 

gained wide acceptance from large-scale energy modellers. One of the suggested 

approaches is to simulate individual buildings models, which later can be assembled to 

a large-scale energy model. It is an approach which is computationally demanding, 

where many variables must be integrated, and detailed models must be established. 

Simplification of large-scale building models has been conducted, where models from 

Ludwigsburg show that it is possible to generate data based on 3d city models and 

statistical data such as year of construction. It is important that these 3d models 

consists of valid solid geometry and not a mesh, which most scanned 3d models are. 

In addition, it is not mentioned how the model incorporate window size and properties, 

since the SimStadt tool only accounts for LoD1 and LoD2, which means it accounts for 

details such as building shape. 

Often lack of quality existing data makes is difficult for use in energy modelling. There 

have been some initiatives from IEE for gathering (DATAMINE), classifying (TABLUA) 

and tracking (EPISCOPE) energy data for use in refurbishment projects. There are some 

approaches for combining both computer generated and existing building data which 

seems promising. The approach indicates usage of either simulated models which has 

been generated over a decade or constructing of new data models, which can be 

combined with actual energy data for comparison. In use of complex data models and 

machine learning, it is important to have sufficient amount of high-quality data and 

the right variables. This means for a hybrid model with combination of machine 

learning techniques and physics-based simulations, one needs to define a set of 

variables form the generation of generic white-box energy models which are suitable 

for a black-box machine learning algorithm. Picking the right indicators depends on 

the usage of the data. There should also be integrated robustness and resilience 

parameters so we can find deviations on which input parameters that has greatest 

impact.  

Visualization is an important factor when working with large-scale data models. Often 

the decision-makers are non-technical and have not enough insight in the underlaying 

simulations and data fabrication. Therefore, are we in need of analytical tools which 

can provide us with an overview on different detail levels. The EU Building Stock 

Observatory Datamapper can be somewhat lacking updated data, since many countries 

is missing central data such as building performance and construction year. It would 

also be interesting to have more customizing control for the visualized data.  
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4.2.1 Q1 Black-box/Top-down approach 

This Black-box/Top-down approach estimates aggregate building energy use from 

sector wide economical or technological variables. These variables could be retrieved 

and generated with data from SSB or Norwegian Government Agency for 

Administration and Financial Management (DFØ). This model is simple and 

computationally tractable, readily paired with other modelling frameworks with 

example bottom-up representations of energy demand in Integrated Assessment 

Models. The limitation of this approach is typically unable to represent impacts of 

specific technology or operation improvements and unable to represent disruptive 

changes to building stock energy use due to reliance on historical data. 

4.2.2 Q2 White-box/Top-down approach 

The white-box top-down approach represent physical causality at the aggregate 

building and technology stock level. This could be data collected from EU Building 

Stock Observatory and Intelligent Energy Europe for buildings in Europe. More specific 

data for Norway can be gathered from Enova or SSB. The strength of Q2 is to be able 

to represent the complexity of building stock energy use and its components at the 

aggregate level, including technology and building stocks and the evolution of the 

system over time. It is difficult to link aggregate building energy use to building level 

operations. Meaning for example that we know the total energy consumption, but we 

don’t know the distribution with aspect to heat loss or other energy measures. It is also 

a challenging to represent spatial dimension, which also may require extensive data, 

time, and expert knowledge to fully represent system components. 

4.2.3 Q3 Black-box/Bottom-up approach 

The black-box bottom-up approach can represent the complexity of building stock 

energy use and its components at the aggregate level, including technology and 

building stocks and the evolution of the system over time. It is a somewhat more 

abstract approach which can be lacking some structure in the model and details on the 

building stock. There has been some scepticism for use of black-box models due to the 

lack of transparency. We have found more acceptance for machine learning techniques 

among building modelers in recent time. The Q3 approach is facing some of the same 

problem as the Q1 approach with being able to link aggregate building energy use to 

building operations level. There is a challenge to represent spatial dimension which 

may require extensive data.  

Fracastoro and Serraino (2011) studied statistical distribution of buildings according to 

primary energy for heating demand (E-SDOB). Which had been obtained from Census 

data with integration of local standards, laws and energy statistics. The procedure is 
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applicable to any location/region where the data size is large enough so it can be 

described by a complete and dedicated set of Census data and small enough so as to 

guarantee a sufficient homogeneity under the climatic and building technology points 

of view. This method has been used to define the performance scale for energy 

certification and to evaluate the energy saving potential of large scale retrofit actions 

on the building envelope. Building energy cadastre may be obtained from a reliable 

energy certification in the future. The global overview of the building stock energy 

performance may provide further insight for the decision-makers and local or state 

authorities (Fracastoro & Serraino, 2011). 

4.2.4 Q4 White-box/Bottom-up approach 

The Q4 approach is the most common approach for individual energy models. It 

simulates the physical relationships of processes at the building or energy end use 

level. The approach is useful to explicitly represent key dynamics influencing building 

energy end uses, building stock diversity, and the aggregate energy effects of changes 

to operations at the individual building level. It is found in the literature that standalone 

end-use distribution models are uncommon. The model requires extensive data to 

represent detailed characteristics of the building stock and drivers of its end use 

patterns, computationally intensive, potentially challenging to pair with other 

modelling frameworks. The data models are also time-consuming to build, and human 

errors may occur. Most of the studies found from the literature is related to the white-

box modelling. This was done by the TABULA project found in the literature study. 

Methodologies based on Geographic Information System (GIS) techniques is a rapidly 

developing physics-modelling. 

Eicker et al. (2018) established urban 3D models which offered great support for climate 

protection concepts by allowing to quantify measures to improve energy efficiency and 

integrate renewables. A case study of Ludwigsburg with almost 177,000 buildings 

showed that 1°C reduction in the set-point temperature and set-back temperature of 

the public buildings resulted in 109 GWh annual energy saving. The heating energy 

could be reduced by up to 58% by applying the highest refurbishment standard 

scenario. The most important requirements for replication of the results are 3d city 

models with valid solid geometry per building and basic attribute data such as year of 

construction (YoC) and building usage. It is very challenging to get detailed and reliable 

consumption data to validate the simulation results (Eicker et al., 2018). A Germany 

study show applying a statistical year of construction (YoC) of a building can lead to an 

acceptable heating demand calculation of the entire city. This may not be accurate 

enough at building level. The focus was residential buildings and tested for two German 

cities. The YoC is an important parameter for the heating demand calculation of 
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buildings in a district. These calculations can help decision-makers and urban planners 

when developing energy efficiency or climate protection concepts (Zirak et al., 2020). 

4.2.5 Hybrid approach 

A hybrid approach combines elements of the models across the four classification 

quadrants. It can rely on one specific quadrant and have some inputs from others or 

have an equally weighted input from both or all. The hybrid approach may address the 

limitations of one quadrant by complementing with the strengths of another. It is more 

flexible in application and able to answer a broader set of analysis questions. This can 

for example be a combination of top-down statistical data from SSB and generic 

bottom-up energy models. This may also lead to more complex model in design and 

implementation, which makes it more difficult to communicate and replicate.  

The literature indicates that Q1 and Q2 is most common combined with Q3 and Q4 

when using models for future predictions. This seems like a god way to integrate both 

macro and micro changes in the energy models, meaning generated generic models 

can consider population growth and building replacement rates. The Smart Readiness 

Indicator (RSI) could be an interesting implementation for indication of how well 

buildings can interact with the energy grids on a large-scale. Especially considering 

peak energy demand in the residential housing marked and the integration of new 

energy tariff in Norway. Which consider both energy consumption and peak energy 

demand.  

4.3 Suggested approach 

Using the bottom up methodology from Swan and Ugursal with a combination of 

statistical analysis and physics-based models seems promising for analysing the current 

building stock. This can be done by using a hybrid model indicated in Figure 2, 

quadrant Q3 and Q4. This gives us a starting point for addressing sustainable retrofit 

actions. The Q4 quadrant enables us to generate white box models which can later be 

used for a Q3 quadrant black box machine learning model. There are two approaches 

for generating building energy data. We can either use existing building models. Enova 

had in 2018 registered 1 111 467 residential buildings with the energy certification 

“Energimerkeordningen”. Of these 134 767 (12%) where simulated by computer 

programs, mainly Simien. The simulated models represent 5% of the total residential 

buildings. In addition, the simulated models are generated based on a standardized 

energy model, which does not take into account realistic data such as local climate and 

operation. The generated models only output results which gives us less control and 

validation. This is therefore not recommended for use directly in a white-box model.  
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Another approach is to generate simplified energy models from scratch which 

represent most of the building stock. This can be done by parametric simulation where 

different key performance indicators form chapter 3.2.1 are implemented.  It is 

suggested to outline and study the most important factors before generating the 

overall models, this should be input parameters which is available from the statistical 

data model. If we were to use SSB this could be different climate regions, size and age 

for instance. Error! Reference source not found. illustrates a simplified parametric 

model which consist of size, height and window to wall ratio. The generated data is 

created with the computer program Rhinoceros 6, using Visual programming and the 

plug-in ladybug tools and Colibri.  

 

 

There are also possibilities to integrate the white-box model in an Artificial neural 

network for generating even more data. Since the parametric run are time-consuming 

this could be an efficient way to produce more data to train with for the Q3 model.   

With enough consistent and reliable energy data, we can implement the data model in 

a machine learning algorithm using a neural network. By using supervised learning 

method with backpropagation, we can train the model to recognize key performance 

indicators which is established in the parametric model. The method can automatically 

detect data patterns in order to predict future data.  

 

 

Figure 12 Example of parametric run of simplified energy models for use in a large-scale model. 
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5 Conclusion  

The energy performance of the existing buildings is an important factor for reaching 

low carbon emissions targets. It is therefore important to have reliable dataset on 

performance of the currently existing building stocks, based on which we can choose 

and implement sustainable strategies for future plans. This study investigated how to 

gather or generate a large-scale energy data of the Norwegian residential buildings. A 

qualitative literature survey on the existing methods for generating large-scale energy 

data in buildings was conducted and the followings were concluded: 

- A common classification scheme includes a top-down and bottom-up approach. 

The top-down approach treats the building sector as an energy sink with focus 

on macroeconomic indicators and is not concerned with individual end-uses. 

The bottom-up approach estimates energy consumption of a representative set 

of individual buildings to regional and national sectors.  

- Energy modelling techniques can be set into four quadrants based on their 

design (top-down/bottom up) and degree of transparency (black-box/white-

box). In general, the most common modelling approach is physics-based 

simulations using the bottom-up and white-box modelling. There has been a 

growing usage of hybrid models with combination of white- and black-box 

modelling.  

- Reliable large-scale energy data can be gathered from existing building data 

from institutes such as EU Building Stock Observatory and Intelligent Energy 

Europe. The potential has not been fully utilized and can have great impact 

combined with energy modelling.  

- It is important to be able to visualize the large-scale energy data, since it can be 

difficult to comprehend, especially for non-technical end-users. 

Recommendation: A hybrid model combining simulation-based techniques and 

machine learning algorithms shows promising results. An energy model class enables 

us to generate white box models, which simulates the physical relationship of processes 

at the building or end-use level based on key performance indicators. The dataset can 

then be trained in a machine learning algorithm, which utilize historical information to 

attribute building energy use to particular end-uses and can predict different scenarios 

for the Norwegian building stock based on cadastre data and statistical data. The 

outcome of this study can help to introduce approaches to find the energy saving 

potentials in Norwegian buildings and present the suitable refurbishment strategies for 

future planning.  
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